xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 179e15d53acdb1fc27e9e2c8f7e1d1e08dcf4a89)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
439        // Bitcast Val back the original type and extract the corresponding
440        // vector we want.
441        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443                                            ValueVT.getVectorElementType(), Elts);
444        Val = DAG.getBitcast(WiderVecType, Val);
445        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
446                           DAG.getVectorIdxConstant(0, DL));
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG,
614                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isFixedLengthVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   unsigned PartNumElts = PartVT.getVectorNumElements();
620   unsigned ValueNumElts = ValueVT.getVectorNumElements();
621   if (PartNumElts > ValueNumElts &&
622       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
623     EVT ElementVT = PartVT.getVectorElementType();
624     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
625     // undef elements.
626     SmallVector<SDValue, 16> Ops;
627     DAG.ExtractVectorElements(Val, Ops);
628     SDValue EltUndef = DAG.getUNDEF(ElementVT);
629     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
630       Ops.push_back(EltUndef);
631 
632     // FIXME: Use CONCAT for 2x -> 4x.
633     return DAG.getBuildVector(PartVT, DL, Ops);
634   }
635 
636   return SDValue();
637 }
638 
639 /// getCopyToPartsVector - Create a series of nodes that contain the specified
640 /// value split into legal parts.
641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
642                                  SDValue Val, SDValue *Parts, unsigned NumParts,
643                                  MVT PartVT, const Value *V,
644                                  Optional<CallingConv::ID> CallConv) {
645   EVT ValueVT = Val.getValueType();
646   assert(ValueVT.isVector() && "Not a vector");
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648   const bool IsABIRegCopy = CallConv.hasValue();
649 
650   if (NumParts == 1) {
651     EVT PartEVT = PartVT;
652     if (PartEVT == ValueVT) {
653       // Nothing to do.
654     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
655       // Bitconvert vector->vector case.
656       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
657     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
658       Val = Widened;
659     } else if (PartVT.isVector() &&
660                PartEVT.getVectorElementType().bitsGE(
661                    ValueVT.getVectorElementType()) &&
662                PartEVT.getVectorElementCount() ==
663                    ValueVT.getVectorElementCount()) {
664 
665       // Promoted vector extract
666       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667     } else {
668       if (ValueVT.getVectorNumElements() == 1) {
669         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
670                           DAG.getVectorIdxConstant(0, DL));
671       } else {
672         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
673                "lossy conversion of vector to scalar type");
674         EVT IntermediateType =
675             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
676         Val = DAG.getBitcast(IntermediateType, Val);
677         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
678       }
679     }
680 
681     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
682     Parts[0] = Val;
683     return;
684   }
685 
686   // Handle a multi-element vector.
687   EVT IntermediateVT;
688   MVT RegisterVT;
689   unsigned NumIntermediates;
690   unsigned NumRegs;
691   if (IsABIRegCopy) {
692     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
693         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
694         NumIntermediates, RegisterVT);
695   } else {
696     NumRegs =
697         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
698                                    NumIntermediates, RegisterVT);
699   }
700 
701   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
702   NumParts = NumRegs; // Silence a compiler warning.
703   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
704 
705   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
706          "Mixing scalable and fixed vectors when copying in parts");
707 
708   Optional<ElementCount> DestEltCnt;
709 
710   if (IntermediateVT.isVector())
711     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
712   else
713     DestEltCnt = ElementCount::getFixed(NumIntermediates);
714 
715   EVT BuiltVectorTy = EVT::getVectorVT(
716       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
717   if (ValueVT != BuiltVectorTy) {
718     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
719       Val = Widened;
720 
721     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
722   }
723 
724   // Split the vector into intermediate operands.
725   SmallVector<SDValue, 8> Ops(NumIntermediates);
726   for (unsigned i = 0; i != NumIntermediates; ++i) {
727     if (IntermediateVT.isVector()) {
728       // This does something sensible for scalable vectors - see the
729       // definition of EXTRACT_SUBVECTOR for further details.
730       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
731       Ops[i] =
732           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
734     } else {
735       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736                            DAG.getVectorIdxConstant(i, DL));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!Register::isVirtualRegister(Regs[Part + i]) ||
826           !RegisterVT.isInteger())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getScalarSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, unsigned>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     unsigned RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   PendingConstrainedFP.clear();
1014   PendingConstrainedFPStrict.clear();
1015   CurInst = nullptr;
1016   HasTailCall = false;
1017   SDNodeOrder = LowestSDNodeOrder;
1018   StatepointLowering.clear();
1019 }
1020 
1021 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1022   DanglingDebugInfoMap.clear();
1023 }
1024 
1025 // Update DAG root to include dependencies on Pending chains.
1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1027   SDValue Root = DAG.getRoot();
1028 
1029   if (Pending.empty())
1030     return Root;
1031 
1032   // Add current root to PendingChains, unless we already indirectly
1033   // depend on it.
1034   if (Root.getOpcode() != ISD::EntryToken) {
1035     unsigned i = 0, e = Pending.size();
1036     for (; i != e; ++i) {
1037       assert(Pending[i].getNode()->getNumOperands() > 1);
1038       if (Pending[i].getNode()->getOperand(0) == Root)
1039         break;  // Don't add the root if we already indirectly depend on it.
1040     }
1041 
1042     if (i == e)
1043       Pending.push_back(Root);
1044   }
1045 
1046   if (Pending.size() == 1)
1047     Root = Pending[0];
1048   else
1049     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1050 
1051   DAG.setRoot(Root);
1052   Pending.clear();
1053   return Root;
1054 }
1055 
1056 SDValue SelectionDAGBuilder::getMemoryRoot() {
1057   return updateRoot(PendingLoads);
1058 }
1059 
1060 SDValue SelectionDAGBuilder::getRoot() {
1061   // Chain up all pending constrained intrinsics together with all
1062   // pending loads, by simply appending them to PendingLoads and
1063   // then calling getMemoryRoot().
1064   PendingLoads.reserve(PendingLoads.size() +
1065                        PendingConstrainedFP.size() +
1066                        PendingConstrainedFPStrict.size());
1067   PendingLoads.append(PendingConstrainedFP.begin(),
1068                       PendingConstrainedFP.end());
1069   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1070                       PendingConstrainedFPStrict.end());
1071   PendingConstrainedFP.clear();
1072   PendingConstrainedFPStrict.clear();
1073   return getMemoryRoot();
1074 }
1075 
1076 SDValue SelectionDAGBuilder::getControlRoot() {
1077   // We need to emit pending fpexcept.strict constrained intrinsics,
1078   // so append them to the PendingExports list.
1079   PendingExports.append(PendingConstrainedFPStrict.begin(),
1080                         PendingConstrainedFPStrict.end());
1081   PendingConstrainedFPStrict.clear();
1082   return updateRoot(PendingExports);
1083 }
1084 
1085 void SelectionDAGBuilder::visit(const Instruction &I) {
1086   // Set up outgoing PHI node register values before emitting the terminator.
1087   if (I.isTerminator()) {
1088     HandlePHINodesInSuccessorBlocks(I.getParent());
1089   }
1090 
1091   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1092   if (!isa<DbgInfoIntrinsic>(I))
1093     ++SDNodeOrder;
1094 
1095   CurInst = &I;
1096 
1097   visit(I.getOpcode(), I);
1098 
1099   if (!I.isTerminator() && !HasTailCall &&
1100       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1101     CopyToExportRegsIfNeeded(&I);
1102 
1103   CurInst = nullptr;
1104 }
1105 
1106 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1107   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1108 }
1109 
1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1111   // Note: this doesn't use InstVisitor, because it has to work with
1112   // ConstantExpr's in addition to instructions.
1113   switch (Opcode) {
1114   default: llvm_unreachable("Unknown instruction type encountered!");
1115     // Build the switch statement using the Instruction.def file.
1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1117     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1118 #include "llvm/IR/Instruction.def"
1119   }
1120 }
1121 
1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1123                                                 const DIExpression *Expr) {
1124   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1125     const DbgValueInst *DI = DDI.getDI();
1126     DIVariable *DanglingVariable = DI->getVariable();
1127     DIExpression *DanglingExpr = DI->getExpression();
1128     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1129       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1130       return true;
1131     }
1132     return false;
1133   };
1134 
1135   for (auto &DDIMI : DanglingDebugInfoMap) {
1136     DanglingDebugInfoVector &DDIV = DDIMI.second;
1137 
1138     // If debug info is to be dropped, run it through final checks to see
1139     // whether it can be salvaged.
1140     for (auto &DDI : DDIV)
1141       if (isMatchingDbgValue(DDI))
1142         salvageUnresolvedDbgValue(DDI);
1143 
1144     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1145   }
1146 }
1147 
1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1149 // generate the debug data structures now that we've seen its definition.
1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1151                                                    SDValue Val) {
1152   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1153   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1154     return;
1155 
1156   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1157   for (auto &DDI : DDIV) {
1158     const DbgValueInst *DI = DDI.getDI();
1159     assert(DI && "Ill-formed DanglingDebugInfo");
1160     DebugLoc dl = DDI.getdl();
1161     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1162     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1163     DILocalVariable *Variable = DI->getVariable();
1164     DIExpression *Expr = DI->getExpression();
1165     assert(Variable->isValidLocationForIntrinsic(dl) &&
1166            "Expected inlined-at fields to agree");
1167     SDDbgValue *SDV;
1168     if (Val.getNode()) {
1169       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1170       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1171       // we couldn't resolve it directly when examining the DbgValue intrinsic
1172       // in the first place we should not be more successful here). Unless we
1173       // have some test case that prove this to be correct we should avoid
1174       // calling EmitFuncArgumentDbgValue here.
1175       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1176         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1177                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1178         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1179         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1180         // inserted after the definition of Val when emitting the instructions
1181         // after ISel. An alternative could be to teach
1182         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1183         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1184                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1185                    << ValSDNodeOrder << "\n");
1186         SDV = getDbgValue(Val, Variable, Expr, dl,
1187                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1188         DAG.AddDbgValue(SDV, Val.getNode(), false);
1189       } else
1190         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1191                           << "in EmitFuncArgumentDbgValue\n");
1192     } else {
1193       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1194       auto Undef =
1195           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1196       auto SDV =
1197           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1198       DAG.AddDbgValue(SDV, nullptr, false);
1199     }
1200   }
1201   DDIV.clear();
1202 }
1203 
1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1205   Value *V = DDI.getDI()->getValue();
1206   DILocalVariable *Var = DDI.getDI()->getVariable();
1207   DIExpression *Expr = DDI.getDI()->getExpression();
1208   DebugLoc DL = DDI.getdl();
1209   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1210   unsigned SDOrder = DDI.getSDNodeOrder();
1211 
1212   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1213   // that DW_OP_stack_value is desired.
1214   assert(isa<DbgValueInst>(DDI.getDI()));
1215   bool StackValue = true;
1216 
1217   // Can this Value can be encoded without any further work?
1218   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1219     return;
1220 
1221   // Attempt to salvage back through as many instructions as possible. Bail if
1222   // a non-instruction is seen, such as a constant expression or global
1223   // variable. FIXME: Further work could recover those too.
1224   while (isa<Instruction>(V)) {
1225     Instruction &VAsInst = *cast<Instruction>(V);
1226     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1227 
1228     // If we cannot salvage any further, and haven't yet found a suitable debug
1229     // expression, bail out.
1230     if (!NewExpr)
1231       break;
1232 
1233     // New value and expr now represent this debuginfo.
1234     V = VAsInst.getOperand(0);
1235     Expr = NewExpr;
1236 
1237     // Some kind of simplification occurred: check whether the operand of the
1238     // salvaged debug expression can be encoded in this DAG.
1239     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1240       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1241                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1242       return;
1243     }
1244   }
1245 
1246   // This was the final opportunity to salvage this debug information, and it
1247   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1248   // any earlier variable location.
1249   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1250   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1251   DAG.AddDbgValue(SDV, nullptr, false);
1252 
1253   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1254                     << "\n");
1255   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1256                     << "\n");
1257 }
1258 
1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1260                                            DIExpression *Expr, DebugLoc dl,
1261                                            DebugLoc InstDL, unsigned Order) {
1262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1263   SDDbgValue *SDV;
1264   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1265       isa<ConstantPointerNull>(V)) {
1266     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1267     DAG.AddDbgValue(SDV, nullptr, false);
1268     return true;
1269   }
1270 
1271   // If the Value is a frame index, we can create a FrameIndex debug value
1272   // without relying on the DAG at all.
1273   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1274     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1275     if (SI != FuncInfo.StaticAllocaMap.end()) {
1276       auto SDV =
1277           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1278                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1279       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1280       // is still available even if the SDNode gets optimized out.
1281       DAG.AddDbgValue(SDV, nullptr, false);
1282       return true;
1283     }
1284   }
1285 
1286   // Do not use getValue() in here; we don't want to generate code at
1287   // this point if it hasn't been done yet.
1288   SDValue N = NodeMap[V];
1289   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1290     N = UnusedArgNodeMap[V];
1291   if (N.getNode()) {
1292     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1293       return true;
1294     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1295     DAG.AddDbgValue(SDV, N.getNode(), false);
1296     return true;
1297   }
1298 
1299   // Special rules apply for the first dbg.values of parameter variables in a
1300   // function. Identify them by the fact they reference Argument Values, that
1301   // they're parameters, and they are parameters of the current function. We
1302   // need to let them dangle until they get an SDNode.
1303   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1304                        !InstDL.getInlinedAt();
1305   if (!IsParamOfFunc) {
1306     // The value is not used in this block yet (or it would have an SDNode).
1307     // We still want the value to appear for the user if possible -- if it has
1308     // an associated VReg, we can refer to that instead.
1309     auto VMI = FuncInfo.ValueMap.find(V);
1310     if (VMI != FuncInfo.ValueMap.end()) {
1311       unsigned Reg = VMI->second;
1312       // If this is a PHI node, it may be split up into several MI PHI nodes
1313       // (in FunctionLoweringInfo::set).
1314       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1315                        V->getType(), None);
1316       if (RFV.occupiesMultipleRegs()) {
1317         unsigned Offset = 0;
1318         unsigned BitsToDescribe = 0;
1319         if (auto VarSize = Var->getSizeInBits())
1320           BitsToDescribe = *VarSize;
1321         if (auto Fragment = Expr->getFragmentInfo())
1322           BitsToDescribe = Fragment->SizeInBits;
1323         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1324           unsigned RegisterSize = RegAndSize.second;
1325           // Bail out if all bits are described already.
1326           if (Offset >= BitsToDescribe)
1327             break;
1328           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1329               ? BitsToDescribe - Offset
1330               : RegisterSize;
1331           auto FragmentExpr = DIExpression::createFragmentExpression(
1332               Expr, Offset, FragmentSize);
1333           if (!FragmentExpr)
1334               continue;
1335           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1336                                     false, dl, SDNodeOrder);
1337           DAG.AddDbgValue(SDV, nullptr, false);
1338           Offset += RegisterSize;
1339         }
1340       } else {
1341         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1342         DAG.AddDbgValue(SDV, nullptr, false);
1343       }
1344       return true;
1345     }
1346   }
1347 
1348   return false;
1349 }
1350 
1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1352   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1353   for (auto &Pair : DanglingDebugInfoMap)
1354     for (auto &DDI : Pair.second)
1355       salvageUnresolvedDbgValue(DDI);
1356   clearDanglingDebugInfo();
1357 }
1358 
1359 /// getCopyFromRegs - If there was virtual register allocated for the value V
1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1361 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1362   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1363   SDValue Result;
1364 
1365   if (It != FuncInfo.ValueMap.end()) {
1366     Register InReg = It->second;
1367 
1368     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1369                      DAG.getDataLayout(), InReg, Ty,
1370                      None); // This is not an ABI copy.
1371     SDValue Chain = DAG.getEntryNode();
1372     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1373                                  V);
1374     resolveDanglingDebugInfo(V, Result);
1375   }
1376 
1377   return Result;
1378 }
1379 
1380 /// getValue - Return an SDValue for the given Value.
1381 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1382   // If we already have an SDValue for this value, use it. It's important
1383   // to do this first, so that we don't create a CopyFromReg if we already
1384   // have a regular SDValue.
1385   SDValue &N = NodeMap[V];
1386   if (N.getNode()) return N;
1387 
1388   // If there's a virtual register allocated and initialized for this
1389   // value, use it.
1390   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1391     return copyFromReg;
1392 
1393   // Otherwise create a new SDValue and remember it.
1394   SDValue Val = getValueImpl(V);
1395   NodeMap[V] = Val;
1396   resolveDanglingDebugInfo(V, Val);
1397   return Val;
1398 }
1399 
1400 /// getNonRegisterValue - Return an SDValue for the given Value, but
1401 /// don't look in FuncInfo.ValueMap for a virtual register.
1402 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1403   // If we already have an SDValue for this value, use it.
1404   SDValue &N = NodeMap[V];
1405   if (N.getNode()) {
1406     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1407       // Remove the debug location from the node as the node is about to be used
1408       // in a location which may differ from the original debug location.  This
1409       // is relevant to Constant and ConstantFP nodes because they can appear
1410       // as constant expressions inside PHI nodes.
1411       N->setDebugLoc(DebugLoc());
1412     }
1413     return N;
1414   }
1415 
1416   // Otherwise create a new SDValue and remember it.
1417   SDValue Val = getValueImpl(V);
1418   NodeMap[V] = Val;
1419   resolveDanglingDebugInfo(V, Val);
1420   return Val;
1421 }
1422 
1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1424 /// Create an SDValue for the given value.
1425 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1426   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1427 
1428   if (const Constant *C = dyn_cast<Constant>(V)) {
1429     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1430 
1431     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1432       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1433 
1434     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1435       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1436 
1437     if (isa<ConstantPointerNull>(C)) {
1438       unsigned AS = V->getType()->getPointerAddressSpace();
1439       return DAG.getConstant(0, getCurSDLoc(),
1440                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1441     }
1442 
1443     if (match(C, m_VScale(DAG.getDataLayout())))
1444       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1445 
1446     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1447       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1448 
1449     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1450       return DAG.getUNDEF(VT);
1451 
1452     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1453       visit(CE->getOpcode(), *CE);
1454       SDValue N1 = NodeMap[V];
1455       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1456       return N1;
1457     }
1458 
1459     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1460       SmallVector<SDValue, 4> Constants;
1461       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1462            OI != OE; ++OI) {
1463         SDNode *Val = getValue(*OI).getNode();
1464         // If the operand is an empty aggregate, there are no values.
1465         if (!Val) continue;
1466         // Add each leaf value from the operand to the Constants list
1467         // to form a flattened list of all the values.
1468         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1469           Constants.push_back(SDValue(Val, i));
1470       }
1471 
1472       return DAG.getMergeValues(Constants, getCurSDLoc());
1473     }
1474 
1475     if (const ConstantDataSequential *CDS =
1476           dyn_cast<ConstantDataSequential>(C)) {
1477       SmallVector<SDValue, 4> Ops;
1478       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1479         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1480         // Add each leaf value from the operand to the Constants list
1481         // to form a flattened list of all the values.
1482         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1483           Ops.push_back(SDValue(Val, i));
1484       }
1485 
1486       if (isa<ArrayType>(CDS->getType()))
1487         return DAG.getMergeValues(Ops, getCurSDLoc());
1488       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1489     }
1490 
1491     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1492       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1493              "Unknown struct or array constant!");
1494 
1495       SmallVector<EVT, 4> ValueVTs;
1496       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1497       unsigned NumElts = ValueVTs.size();
1498       if (NumElts == 0)
1499         return SDValue(); // empty struct
1500       SmallVector<SDValue, 4> Constants(NumElts);
1501       for (unsigned i = 0; i != NumElts; ++i) {
1502         EVT EltVT = ValueVTs[i];
1503         if (isa<UndefValue>(C))
1504           Constants[i] = DAG.getUNDEF(EltVT);
1505         else if (EltVT.isFloatingPoint())
1506           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1507         else
1508           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1509       }
1510 
1511       return DAG.getMergeValues(Constants, getCurSDLoc());
1512     }
1513 
1514     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1515       return DAG.getBlockAddress(BA, VT);
1516 
1517     VectorType *VecTy = cast<VectorType>(V->getType());
1518 
1519     // Now that we know the number and type of the elements, get that number of
1520     // elements into the Ops array based on what kind of constant it is.
1521     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1522       SmallVector<SDValue, 16> Ops;
1523       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1524       for (unsigned i = 0; i != NumElements; ++i)
1525         Ops.push_back(getValue(CV->getOperand(i)));
1526 
1527       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1528     } else if (isa<ConstantAggregateZero>(C)) {
1529       EVT EltVT =
1530           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1531 
1532       SDValue Op;
1533       if (EltVT.isFloatingPoint())
1534         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1535       else
1536         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1537 
1538       if (isa<ScalableVectorType>(VecTy))
1539         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1540       else {
1541         SmallVector<SDValue, 16> Ops;
1542         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1543         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1544       }
1545     }
1546     llvm_unreachable("Unknown vector constant");
1547   }
1548 
1549   // If this is a static alloca, generate it as the frameindex instead of
1550   // computation.
1551   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1552     DenseMap<const AllocaInst*, int>::iterator SI =
1553       FuncInfo.StaticAllocaMap.find(AI);
1554     if (SI != FuncInfo.StaticAllocaMap.end())
1555       return DAG.getFrameIndex(SI->second,
1556                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1557   }
1558 
1559   // If this is an instruction which fast-isel has deferred, select it now.
1560   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1561     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1562 
1563     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1564                      Inst->getType(), None);
1565     SDValue Chain = DAG.getEntryNode();
1566     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1567   }
1568 
1569   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1570     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1571   }
1572   llvm_unreachable("Can't get register for value!");
1573 }
1574 
1575 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1576   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1577   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1578   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1579   bool IsSEH = isAsynchronousEHPersonality(Pers);
1580   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1581   if (!IsSEH)
1582     CatchPadMBB->setIsEHScopeEntry();
1583   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1584   if (IsMSVCCXX || IsCoreCLR)
1585     CatchPadMBB->setIsEHFuncletEntry();
1586 }
1587 
1588 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1589   // Update machine-CFG edge.
1590   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1591   FuncInfo.MBB->addSuccessor(TargetMBB);
1592 
1593   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1594   bool IsSEH = isAsynchronousEHPersonality(Pers);
1595   if (IsSEH) {
1596     // If this is not a fall-through branch or optimizations are switched off,
1597     // emit the branch.
1598     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1599         TM.getOptLevel() == CodeGenOpt::None)
1600       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1601                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1602     return;
1603   }
1604 
1605   // Figure out the funclet membership for the catchret's successor.
1606   // This will be used by the FuncletLayout pass to determine how to order the
1607   // BB's.
1608   // A 'catchret' returns to the outer scope's color.
1609   Value *ParentPad = I.getCatchSwitchParentPad();
1610   const BasicBlock *SuccessorColor;
1611   if (isa<ConstantTokenNone>(ParentPad))
1612     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1613   else
1614     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1615   assert(SuccessorColor && "No parent funclet for catchret!");
1616   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1617   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1618 
1619   // Create the terminator node.
1620   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1621                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1622                             DAG.getBasicBlock(SuccessorColorMBB));
1623   DAG.setRoot(Ret);
1624 }
1625 
1626 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1627   // Don't emit any special code for the cleanuppad instruction. It just marks
1628   // the start of an EH scope/funclet.
1629   FuncInfo.MBB->setIsEHScopeEntry();
1630   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1631   if (Pers != EHPersonality::Wasm_CXX) {
1632     FuncInfo.MBB->setIsEHFuncletEntry();
1633     FuncInfo.MBB->setIsCleanupFuncletEntry();
1634   }
1635 }
1636 
1637 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1638 // the control flow always stops at the single catch pad, as it does for a
1639 // cleanup pad. In case the exception caught is not of the types the catch pad
1640 // catches, it will be rethrown by a rethrow.
1641 static void findWasmUnwindDestinations(
1642     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1643     BranchProbability Prob,
1644     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1645         &UnwindDests) {
1646   while (EHPadBB) {
1647     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1648     if (isa<CleanupPadInst>(Pad)) {
1649       // Stop on cleanup pads.
1650       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1651       UnwindDests.back().first->setIsEHScopeEntry();
1652       break;
1653     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1654       // Add the catchpad handlers to the possible destinations. We don't
1655       // continue to the unwind destination of the catchswitch for wasm.
1656       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1657         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1658         UnwindDests.back().first->setIsEHScopeEntry();
1659       }
1660       break;
1661     } else {
1662       continue;
1663     }
1664   }
1665 }
1666 
1667 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1668 /// many places it could ultimately go. In the IR, we have a single unwind
1669 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1670 /// This function skips over imaginary basic blocks that hold catchswitch
1671 /// instructions, and finds all the "real" machine
1672 /// basic block destinations. As those destinations may not be successors of
1673 /// EHPadBB, here we also calculate the edge probability to those destinations.
1674 /// The passed-in Prob is the edge probability to EHPadBB.
1675 static void findUnwindDestinations(
1676     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1677     BranchProbability Prob,
1678     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1679         &UnwindDests) {
1680   EHPersonality Personality =
1681     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1682   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1683   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1684   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1685   bool IsSEH = isAsynchronousEHPersonality(Personality);
1686 
1687   if (IsWasmCXX) {
1688     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1689     assert(UnwindDests.size() <= 1 &&
1690            "There should be at most one unwind destination for wasm");
1691     return;
1692   }
1693 
1694   while (EHPadBB) {
1695     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1696     BasicBlock *NewEHPadBB = nullptr;
1697     if (isa<LandingPadInst>(Pad)) {
1698       // Stop on landingpads. They are not funclets.
1699       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1700       break;
1701     } else if (isa<CleanupPadInst>(Pad)) {
1702       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1703       // personalities.
1704       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1705       UnwindDests.back().first->setIsEHScopeEntry();
1706       UnwindDests.back().first->setIsEHFuncletEntry();
1707       break;
1708     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1709       // Add the catchpad handlers to the possible destinations.
1710       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1711         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1712         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1713         if (IsMSVCCXX || IsCoreCLR)
1714           UnwindDests.back().first->setIsEHFuncletEntry();
1715         if (!IsSEH)
1716           UnwindDests.back().first->setIsEHScopeEntry();
1717       }
1718       NewEHPadBB = CatchSwitch->getUnwindDest();
1719     } else {
1720       continue;
1721     }
1722 
1723     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1724     if (BPI && NewEHPadBB)
1725       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1726     EHPadBB = NewEHPadBB;
1727   }
1728 }
1729 
1730 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1731   // Update successor info.
1732   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1733   auto UnwindDest = I.getUnwindDest();
1734   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1735   BranchProbability UnwindDestProb =
1736       (BPI && UnwindDest)
1737           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1738           : BranchProbability::getZero();
1739   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1740   for (auto &UnwindDest : UnwindDests) {
1741     UnwindDest.first->setIsEHPad();
1742     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1743   }
1744   FuncInfo.MBB->normalizeSuccProbs();
1745 
1746   // Create the terminator node.
1747   SDValue Ret =
1748       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1749   DAG.setRoot(Ret);
1750 }
1751 
1752 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1753   report_fatal_error("visitCatchSwitch not yet implemented!");
1754 }
1755 
1756 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1757   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1758   auto &DL = DAG.getDataLayout();
1759   SDValue Chain = getControlRoot();
1760   SmallVector<ISD::OutputArg, 8> Outs;
1761   SmallVector<SDValue, 8> OutVals;
1762 
1763   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1764   // lower
1765   //
1766   //   %val = call <ty> @llvm.experimental.deoptimize()
1767   //   ret <ty> %val
1768   //
1769   // differently.
1770   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1771     LowerDeoptimizingReturn();
1772     return;
1773   }
1774 
1775   if (!FuncInfo.CanLowerReturn) {
1776     unsigned DemoteReg = FuncInfo.DemoteRegister;
1777     const Function *F = I.getParent()->getParent();
1778 
1779     // Emit a store of the return value through the virtual register.
1780     // Leave Outs empty so that LowerReturn won't try to load return
1781     // registers the usual way.
1782     SmallVector<EVT, 1> PtrValueVTs;
1783     ComputeValueVTs(TLI, DL,
1784                     F->getReturnType()->getPointerTo(
1785                         DAG.getDataLayout().getAllocaAddrSpace()),
1786                     PtrValueVTs);
1787 
1788     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1789                                         DemoteReg, PtrValueVTs[0]);
1790     SDValue RetOp = getValue(I.getOperand(0));
1791 
1792     SmallVector<EVT, 4> ValueVTs, MemVTs;
1793     SmallVector<uint64_t, 4> Offsets;
1794     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1795                     &Offsets);
1796     unsigned NumValues = ValueVTs.size();
1797 
1798     SmallVector<SDValue, 4> Chains(NumValues);
1799     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1800     for (unsigned i = 0; i != NumValues; ++i) {
1801       // An aggregate return value cannot wrap around the address space, so
1802       // offsets to its parts don't wrap either.
1803       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1804                                            TypeSize::Fixed(Offsets[i]));
1805 
1806       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1807       if (MemVTs[i] != ValueVTs[i])
1808         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1809       Chains[i] = DAG.getStore(
1810           Chain, getCurSDLoc(), Val,
1811           // FIXME: better loc info would be nice.
1812           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1813           commonAlignment(BaseAlign, Offsets[i]));
1814     }
1815 
1816     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1817                         MVT::Other, Chains);
1818   } else if (I.getNumOperands() != 0) {
1819     SmallVector<EVT, 4> ValueVTs;
1820     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1821     unsigned NumValues = ValueVTs.size();
1822     if (NumValues) {
1823       SDValue RetOp = getValue(I.getOperand(0));
1824 
1825       const Function *F = I.getParent()->getParent();
1826 
1827       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1828           I.getOperand(0)->getType(), F->getCallingConv(),
1829           /*IsVarArg*/ false);
1830 
1831       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1832       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1833                                           Attribute::SExt))
1834         ExtendKind = ISD::SIGN_EXTEND;
1835       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1836                                                Attribute::ZExt))
1837         ExtendKind = ISD::ZERO_EXTEND;
1838 
1839       LLVMContext &Context = F->getContext();
1840       bool RetInReg = F->getAttributes().hasAttribute(
1841           AttributeList::ReturnIndex, Attribute::InReg);
1842 
1843       for (unsigned j = 0; j != NumValues; ++j) {
1844         EVT VT = ValueVTs[j];
1845 
1846         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1847           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1848 
1849         CallingConv::ID CC = F->getCallingConv();
1850 
1851         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1852         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1853         SmallVector<SDValue, 4> Parts(NumParts);
1854         getCopyToParts(DAG, getCurSDLoc(),
1855                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1856                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1857 
1858         // 'inreg' on function refers to return value
1859         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1860         if (RetInReg)
1861           Flags.setInReg();
1862 
1863         if (I.getOperand(0)->getType()->isPointerTy()) {
1864           Flags.setPointer();
1865           Flags.setPointerAddrSpace(
1866               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1867         }
1868 
1869         if (NeedsRegBlock) {
1870           Flags.setInConsecutiveRegs();
1871           if (j == NumValues - 1)
1872             Flags.setInConsecutiveRegsLast();
1873         }
1874 
1875         // Propagate extension type if any
1876         if (ExtendKind == ISD::SIGN_EXTEND)
1877           Flags.setSExt();
1878         else if (ExtendKind == ISD::ZERO_EXTEND)
1879           Flags.setZExt();
1880 
1881         for (unsigned i = 0; i < NumParts; ++i) {
1882           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1883                                         VT, /*isfixed=*/true, 0, 0));
1884           OutVals.push_back(Parts[i]);
1885         }
1886       }
1887     }
1888   }
1889 
1890   // Push in swifterror virtual register as the last element of Outs. This makes
1891   // sure swifterror virtual register will be returned in the swifterror
1892   // physical register.
1893   const Function *F = I.getParent()->getParent();
1894   if (TLI.supportSwiftError() &&
1895       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1896     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1897     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1898     Flags.setSwiftError();
1899     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1900                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1901                                   true /*isfixed*/, 1 /*origidx*/,
1902                                   0 /*partOffs*/));
1903     // Create SDNode for the swifterror virtual register.
1904     OutVals.push_back(
1905         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1906                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1907                         EVT(TLI.getPointerTy(DL))));
1908   }
1909 
1910   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1911   CallingConv::ID CallConv =
1912     DAG.getMachineFunction().getFunction().getCallingConv();
1913   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1914       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1915 
1916   // Verify that the target's LowerReturn behaved as expected.
1917   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1918          "LowerReturn didn't return a valid chain!");
1919 
1920   // Update the DAG with the new chain value resulting from return lowering.
1921   DAG.setRoot(Chain);
1922 }
1923 
1924 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1925 /// created for it, emit nodes to copy the value into the virtual
1926 /// registers.
1927 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1928   // Skip empty types
1929   if (V->getType()->isEmptyTy())
1930     return;
1931 
1932   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1933   if (VMI != FuncInfo.ValueMap.end()) {
1934     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1935     CopyValueToVirtualRegister(V, VMI->second);
1936   }
1937 }
1938 
1939 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1940 /// the current basic block, add it to ValueMap now so that we'll get a
1941 /// CopyTo/FromReg.
1942 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1943   // No need to export constants.
1944   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1945 
1946   // Already exported?
1947   if (FuncInfo.isExportedInst(V)) return;
1948 
1949   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1950   CopyValueToVirtualRegister(V, Reg);
1951 }
1952 
1953 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1954                                                      const BasicBlock *FromBB) {
1955   // The operands of the setcc have to be in this block.  We don't know
1956   // how to export them from some other block.
1957   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1958     // Can export from current BB.
1959     if (VI->getParent() == FromBB)
1960       return true;
1961 
1962     // Is already exported, noop.
1963     return FuncInfo.isExportedInst(V);
1964   }
1965 
1966   // If this is an argument, we can export it if the BB is the entry block or
1967   // if it is already exported.
1968   if (isa<Argument>(V)) {
1969     if (FromBB == &FromBB->getParent()->getEntryBlock())
1970       return true;
1971 
1972     // Otherwise, can only export this if it is already exported.
1973     return FuncInfo.isExportedInst(V);
1974   }
1975 
1976   // Otherwise, constants can always be exported.
1977   return true;
1978 }
1979 
1980 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1981 BranchProbability
1982 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1983                                         const MachineBasicBlock *Dst) const {
1984   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1985   const BasicBlock *SrcBB = Src->getBasicBlock();
1986   const BasicBlock *DstBB = Dst->getBasicBlock();
1987   if (!BPI) {
1988     // If BPI is not available, set the default probability as 1 / N, where N is
1989     // the number of successors.
1990     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1991     return BranchProbability(1, SuccSize);
1992   }
1993   return BPI->getEdgeProbability(SrcBB, DstBB);
1994 }
1995 
1996 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1997                                                MachineBasicBlock *Dst,
1998                                                BranchProbability Prob) {
1999   if (!FuncInfo.BPI)
2000     Src->addSuccessorWithoutProb(Dst);
2001   else {
2002     if (Prob.isUnknown())
2003       Prob = getEdgeProbability(Src, Dst);
2004     Src->addSuccessor(Dst, Prob);
2005   }
2006 }
2007 
2008 static bool InBlock(const Value *V, const BasicBlock *BB) {
2009   if (const Instruction *I = dyn_cast<Instruction>(V))
2010     return I->getParent() == BB;
2011   return true;
2012 }
2013 
2014 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2015 /// This function emits a branch and is used at the leaves of an OR or an
2016 /// AND operator tree.
2017 void
2018 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2019                                                   MachineBasicBlock *TBB,
2020                                                   MachineBasicBlock *FBB,
2021                                                   MachineBasicBlock *CurBB,
2022                                                   MachineBasicBlock *SwitchBB,
2023                                                   BranchProbability TProb,
2024                                                   BranchProbability FProb,
2025                                                   bool InvertCond) {
2026   const BasicBlock *BB = CurBB->getBasicBlock();
2027 
2028   // If the leaf of the tree is a comparison, merge the condition into
2029   // the caseblock.
2030   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2031     // The operands of the cmp have to be in this block.  We don't know
2032     // how to export them from some other block.  If this is the first block
2033     // of the sequence, no exporting is needed.
2034     if (CurBB == SwitchBB ||
2035         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2036          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2037       ISD::CondCode Condition;
2038       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2039         ICmpInst::Predicate Pred =
2040             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2041         Condition = getICmpCondCode(Pred);
2042       } else {
2043         const FCmpInst *FC = cast<FCmpInst>(Cond);
2044         FCmpInst::Predicate Pred =
2045             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2046         Condition = getFCmpCondCode(Pred);
2047         if (TM.Options.NoNaNsFPMath)
2048           Condition = getFCmpCodeWithoutNaN(Condition);
2049       }
2050 
2051       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2052                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2053       SL->SwitchCases.push_back(CB);
2054       return;
2055     }
2056   }
2057 
2058   // Create a CaseBlock record representing this branch.
2059   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2060   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2061                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2062   SL->SwitchCases.push_back(CB);
2063 }
2064 
2065 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2066                                                MachineBasicBlock *TBB,
2067                                                MachineBasicBlock *FBB,
2068                                                MachineBasicBlock *CurBB,
2069                                                MachineBasicBlock *SwitchBB,
2070                                                Instruction::BinaryOps Opc,
2071                                                BranchProbability TProb,
2072                                                BranchProbability FProb,
2073                                                bool InvertCond) {
2074   // Skip over not part of the tree and remember to invert op and operands at
2075   // next level.
2076   Value *NotCond;
2077   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2078       InBlock(NotCond, CurBB->getBasicBlock())) {
2079     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2080                          !InvertCond);
2081     return;
2082   }
2083 
2084   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2085   // Compute the effective opcode for Cond, taking into account whether it needs
2086   // to be inverted, e.g.
2087   //   and (not (or A, B)), C
2088   // gets lowered as
2089   //   and (and (not A, not B), C)
2090   unsigned BOpc = 0;
2091   if (BOp) {
2092     BOpc = BOp->getOpcode();
2093     if (InvertCond) {
2094       if (BOpc == Instruction::And)
2095         BOpc = Instruction::Or;
2096       else if (BOpc == Instruction::Or)
2097         BOpc = Instruction::And;
2098     }
2099   }
2100 
2101   // If this node is not part of the or/and tree, emit it as a branch.
2102   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2103       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2104       BOp->getParent() != CurBB->getBasicBlock() ||
2105       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2106       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2107     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2108                                  TProb, FProb, InvertCond);
2109     return;
2110   }
2111 
2112   //  Create TmpBB after CurBB.
2113   MachineFunction::iterator BBI(CurBB);
2114   MachineFunction &MF = DAG.getMachineFunction();
2115   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2116   CurBB->getParent()->insert(++BBI, TmpBB);
2117 
2118   if (Opc == Instruction::Or) {
2119     // Codegen X | Y as:
2120     // BB1:
2121     //   jmp_if_X TBB
2122     //   jmp TmpBB
2123     // TmpBB:
2124     //   jmp_if_Y TBB
2125     //   jmp FBB
2126     //
2127 
2128     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2129     // The requirement is that
2130     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2131     //     = TrueProb for original BB.
2132     // Assuming the original probabilities are A and B, one choice is to set
2133     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2134     // A/(1+B) and 2B/(1+B). This choice assumes that
2135     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2136     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2137     // TmpBB, but the math is more complicated.
2138 
2139     auto NewTrueProb = TProb / 2;
2140     auto NewFalseProb = TProb / 2 + FProb;
2141     // Emit the LHS condition.
2142     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2143                          NewTrueProb, NewFalseProb, InvertCond);
2144 
2145     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2146     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2147     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2148     // Emit the RHS condition into TmpBB.
2149     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2150                          Probs[0], Probs[1], InvertCond);
2151   } else {
2152     assert(Opc == Instruction::And && "Unknown merge op!");
2153     // Codegen X & Y as:
2154     // BB1:
2155     //   jmp_if_X TmpBB
2156     //   jmp FBB
2157     // TmpBB:
2158     //   jmp_if_Y TBB
2159     //   jmp FBB
2160     //
2161     //  This requires creation of TmpBB after CurBB.
2162 
2163     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2164     // The requirement is that
2165     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2166     //     = FalseProb for original BB.
2167     // Assuming the original probabilities are A and B, one choice is to set
2168     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2169     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2170     // TrueProb for BB1 * FalseProb for TmpBB.
2171 
2172     auto NewTrueProb = TProb + FProb / 2;
2173     auto NewFalseProb = FProb / 2;
2174     // Emit the LHS condition.
2175     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2176                          NewTrueProb, NewFalseProb, InvertCond);
2177 
2178     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2179     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2180     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2181     // Emit the RHS condition into TmpBB.
2182     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2183                          Probs[0], Probs[1], InvertCond);
2184   }
2185 }
2186 
2187 /// If the set of cases should be emitted as a series of branches, return true.
2188 /// If we should emit this as a bunch of and/or'd together conditions, return
2189 /// false.
2190 bool
2191 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2192   if (Cases.size() != 2) return true;
2193 
2194   // If this is two comparisons of the same values or'd or and'd together, they
2195   // will get folded into a single comparison, so don't emit two blocks.
2196   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2197        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2198       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2199        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2200     return false;
2201   }
2202 
2203   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2204   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2205   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2206       Cases[0].CC == Cases[1].CC &&
2207       isa<Constant>(Cases[0].CmpRHS) &&
2208       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2209     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2210       return false;
2211     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2212       return false;
2213   }
2214 
2215   return true;
2216 }
2217 
2218 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2219   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2220 
2221   // Update machine-CFG edges.
2222   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2223 
2224   if (I.isUnconditional()) {
2225     // Update machine-CFG edges.
2226     BrMBB->addSuccessor(Succ0MBB);
2227 
2228     // If this is not a fall-through branch or optimizations are switched off,
2229     // emit the branch.
2230     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2231       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2232                               MVT::Other, getControlRoot(),
2233                               DAG.getBasicBlock(Succ0MBB)));
2234 
2235     return;
2236   }
2237 
2238   // If this condition is one of the special cases we handle, do special stuff
2239   // now.
2240   const Value *CondVal = I.getCondition();
2241   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2242 
2243   // If this is a series of conditions that are or'd or and'd together, emit
2244   // this as a sequence of branches instead of setcc's with and/or operations.
2245   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2246   // unpredictable branches, and vector extracts because those jumps are likely
2247   // expensive for any target), this should improve performance.
2248   // For example, instead of something like:
2249   //     cmp A, B
2250   //     C = seteq
2251   //     cmp D, E
2252   //     F = setle
2253   //     or C, F
2254   //     jnz foo
2255   // Emit:
2256   //     cmp A, B
2257   //     je foo
2258   //     cmp D, E
2259   //     jle foo
2260   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2261     Instruction::BinaryOps Opcode = BOp->getOpcode();
2262     Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1);
2263     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2264         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2265         (Opcode == Instruction::And || Opcode == Instruction::Or) &&
2266         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2267           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2268       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2269                            Opcode,
2270                            getEdgeProbability(BrMBB, Succ0MBB),
2271                            getEdgeProbability(BrMBB, Succ1MBB),
2272                            /*InvertCond=*/false);
2273       // If the compares in later blocks need to use values not currently
2274       // exported from this block, export them now.  This block should always
2275       // be the first entry.
2276       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2277 
2278       // Allow some cases to be rejected.
2279       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2280         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2281           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2282           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2283         }
2284 
2285         // Emit the branch for this block.
2286         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2287         SL->SwitchCases.erase(SL->SwitchCases.begin());
2288         return;
2289       }
2290 
2291       // Okay, we decided not to do this, remove any inserted MBB's and clear
2292       // SwitchCases.
2293       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2294         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2295 
2296       SL->SwitchCases.clear();
2297     }
2298   }
2299 
2300   // Create a CaseBlock record representing this branch.
2301   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2302                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2303 
2304   // Use visitSwitchCase to actually insert the fast branch sequence for this
2305   // cond branch.
2306   visitSwitchCase(CB, BrMBB);
2307 }
2308 
2309 /// visitSwitchCase - Emits the necessary code to represent a single node in
2310 /// the binary search tree resulting from lowering a switch instruction.
2311 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2312                                           MachineBasicBlock *SwitchBB) {
2313   SDValue Cond;
2314   SDValue CondLHS = getValue(CB.CmpLHS);
2315   SDLoc dl = CB.DL;
2316 
2317   if (CB.CC == ISD::SETTRUE) {
2318     // Branch or fall through to TrueBB.
2319     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2320     SwitchBB->normalizeSuccProbs();
2321     if (CB.TrueBB != NextBlock(SwitchBB)) {
2322       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2323                               DAG.getBasicBlock(CB.TrueBB)));
2324     }
2325     return;
2326   }
2327 
2328   auto &TLI = DAG.getTargetLoweringInfo();
2329   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2330 
2331   // Build the setcc now.
2332   if (!CB.CmpMHS) {
2333     // Fold "(X == true)" to X and "(X == false)" to !X to
2334     // handle common cases produced by branch lowering.
2335     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2336         CB.CC == ISD::SETEQ)
2337       Cond = CondLHS;
2338     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2339              CB.CC == ISD::SETEQ) {
2340       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2341       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2342     } else {
2343       SDValue CondRHS = getValue(CB.CmpRHS);
2344 
2345       // If a pointer's DAG type is larger than its memory type then the DAG
2346       // values are zero-extended. This breaks signed comparisons so truncate
2347       // back to the underlying type before doing the compare.
2348       if (CondLHS.getValueType() != MemVT) {
2349         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2350         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2351       }
2352       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2353     }
2354   } else {
2355     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2356 
2357     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2358     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2359 
2360     SDValue CmpOp = getValue(CB.CmpMHS);
2361     EVT VT = CmpOp.getValueType();
2362 
2363     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2364       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2365                           ISD::SETLE);
2366     } else {
2367       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2368                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2369       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2370                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2371     }
2372   }
2373 
2374   // Update successor info
2375   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2376   // TrueBB and FalseBB are always different unless the incoming IR is
2377   // degenerate. This only happens when running llc on weird IR.
2378   if (CB.TrueBB != CB.FalseBB)
2379     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2380   SwitchBB->normalizeSuccProbs();
2381 
2382   // If the lhs block is the next block, invert the condition so that we can
2383   // fall through to the lhs instead of the rhs block.
2384   if (CB.TrueBB == NextBlock(SwitchBB)) {
2385     std::swap(CB.TrueBB, CB.FalseBB);
2386     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2387     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2388   }
2389 
2390   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2391                                MVT::Other, getControlRoot(), Cond,
2392                                DAG.getBasicBlock(CB.TrueBB));
2393 
2394   // Insert the false branch. Do this even if it's a fall through branch,
2395   // this makes it easier to do DAG optimizations which require inverting
2396   // the branch condition.
2397   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2398                        DAG.getBasicBlock(CB.FalseBB));
2399 
2400   DAG.setRoot(BrCond);
2401 }
2402 
2403 /// visitJumpTable - Emit JumpTable node in the current MBB
2404 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2405   // Emit the code for the jump table
2406   assert(JT.Reg != -1U && "Should lower JT Header first!");
2407   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2408   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2409                                      JT.Reg, PTy);
2410   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2411   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2412                                     MVT::Other, Index.getValue(1),
2413                                     Table, Index);
2414   DAG.setRoot(BrJumpTable);
2415 }
2416 
2417 /// visitJumpTableHeader - This function emits necessary code to produce index
2418 /// in the JumpTable from switch case.
2419 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2420                                                JumpTableHeader &JTH,
2421                                                MachineBasicBlock *SwitchBB) {
2422   SDLoc dl = getCurSDLoc();
2423 
2424   // Subtract the lowest switch case value from the value being switched on.
2425   SDValue SwitchOp = getValue(JTH.SValue);
2426   EVT VT = SwitchOp.getValueType();
2427   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2428                             DAG.getConstant(JTH.First, dl, VT));
2429 
2430   // The SDNode we just created, which holds the value being switched on minus
2431   // the smallest case value, needs to be copied to a virtual register so it
2432   // can be used as an index into the jump table in a subsequent basic block.
2433   // This value may be smaller or larger than the target's pointer type, and
2434   // therefore require extension or truncating.
2435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2436   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2437 
2438   unsigned JumpTableReg =
2439       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2440   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2441                                     JumpTableReg, SwitchOp);
2442   JT.Reg = JumpTableReg;
2443 
2444   if (!JTH.OmitRangeCheck) {
2445     // Emit the range check for the jump table, and branch to the default block
2446     // for the switch statement if the value being switched on exceeds the
2447     // largest case in the switch.
2448     SDValue CMP = DAG.getSetCC(
2449         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2450                                    Sub.getValueType()),
2451         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2452 
2453     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2454                                  MVT::Other, CopyTo, CMP,
2455                                  DAG.getBasicBlock(JT.Default));
2456 
2457     // Avoid emitting unnecessary branches to the next block.
2458     if (JT.MBB != NextBlock(SwitchBB))
2459       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2460                            DAG.getBasicBlock(JT.MBB));
2461 
2462     DAG.setRoot(BrCond);
2463   } else {
2464     // Avoid emitting unnecessary branches to the next block.
2465     if (JT.MBB != NextBlock(SwitchBB))
2466       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2467                               DAG.getBasicBlock(JT.MBB)));
2468     else
2469       DAG.setRoot(CopyTo);
2470   }
2471 }
2472 
2473 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2474 /// variable if there exists one.
2475 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2476                                  SDValue &Chain) {
2477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2478   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2479   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2480   MachineFunction &MF = DAG.getMachineFunction();
2481   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2482   MachineSDNode *Node =
2483       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2484   if (Global) {
2485     MachinePointerInfo MPInfo(Global);
2486     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2487                  MachineMemOperand::MODereferenceable;
2488     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2489         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2490     DAG.setNodeMemRefs(Node, {MemRef});
2491   }
2492   if (PtrTy != PtrMemTy)
2493     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2494   return SDValue(Node, 0);
2495 }
2496 
2497 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2498 /// tail spliced into a stack protector check success bb.
2499 ///
2500 /// For a high level explanation of how this fits into the stack protector
2501 /// generation see the comment on the declaration of class
2502 /// StackProtectorDescriptor.
2503 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2504                                                   MachineBasicBlock *ParentBB) {
2505 
2506   // First create the loads to the guard/stack slot for the comparison.
2507   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2508   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2509   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2510 
2511   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2512   int FI = MFI.getStackProtectorIndex();
2513 
2514   SDValue Guard;
2515   SDLoc dl = getCurSDLoc();
2516   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2517   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2518   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2519 
2520   // Generate code to load the content of the guard slot.
2521   SDValue GuardVal = DAG.getLoad(
2522       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2523       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2524       MachineMemOperand::MOVolatile);
2525 
2526   if (TLI.useStackGuardXorFP())
2527     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2528 
2529   // Retrieve guard check function, nullptr if instrumentation is inlined.
2530   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2531     // The target provides a guard check function to validate the guard value.
2532     // Generate a call to that function with the content of the guard slot as
2533     // argument.
2534     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2535     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2536 
2537     TargetLowering::ArgListTy Args;
2538     TargetLowering::ArgListEntry Entry;
2539     Entry.Node = GuardVal;
2540     Entry.Ty = FnTy->getParamType(0);
2541     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2542       Entry.IsInReg = true;
2543     Args.push_back(Entry);
2544 
2545     TargetLowering::CallLoweringInfo CLI(DAG);
2546     CLI.setDebugLoc(getCurSDLoc())
2547         .setChain(DAG.getEntryNode())
2548         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2549                    getValue(GuardCheckFn), std::move(Args));
2550 
2551     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2552     DAG.setRoot(Result.second);
2553     return;
2554   }
2555 
2556   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2557   // Otherwise, emit a volatile load to retrieve the stack guard value.
2558   SDValue Chain = DAG.getEntryNode();
2559   if (TLI.useLoadStackGuardNode()) {
2560     Guard = getLoadStackGuard(DAG, dl, Chain);
2561   } else {
2562     const Value *IRGuard = TLI.getSDagStackGuard(M);
2563     SDValue GuardPtr = getValue(IRGuard);
2564 
2565     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2566                         MachinePointerInfo(IRGuard, 0), Align,
2567                         MachineMemOperand::MOVolatile);
2568   }
2569 
2570   // Perform the comparison via a getsetcc.
2571   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2572                                                         *DAG.getContext(),
2573                                                         Guard.getValueType()),
2574                              Guard, GuardVal, ISD::SETNE);
2575 
2576   // If the guard/stackslot do not equal, branch to failure MBB.
2577   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2578                                MVT::Other, GuardVal.getOperand(0),
2579                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2580   // Otherwise branch to success MBB.
2581   SDValue Br = DAG.getNode(ISD::BR, dl,
2582                            MVT::Other, BrCond,
2583                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2584 
2585   DAG.setRoot(Br);
2586 }
2587 
2588 /// Codegen the failure basic block for a stack protector check.
2589 ///
2590 /// A failure stack protector machine basic block consists simply of a call to
2591 /// __stack_chk_fail().
2592 ///
2593 /// For a high level explanation of how this fits into the stack protector
2594 /// generation see the comment on the declaration of class
2595 /// StackProtectorDescriptor.
2596 void
2597 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2598   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2599   TargetLowering::MakeLibCallOptions CallOptions;
2600   CallOptions.setDiscardResult(true);
2601   SDValue Chain =
2602       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2603                       None, CallOptions, getCurSDLoc()).second;
2604   // On PS4, the "return address" must still be within the calling function,
2605   // even if it's at the very end, so emit an explicit TRAP here.
2606   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2607   if (TM.getTargetTriple().isPS4CPU())
2608     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2609   // WebAssembly needs an unreachable instruction after a non-returning call,
2610   // because the function return type can be different from __stack_chk_fail's
2611   // return type (void).
2612   if (TM.getTargetTriple().isWasm())
2613     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2614 
2615   DAG.setRoot(Chain);
2616 }
2617 
2618 /// visitBitTestHeader - This function emits necessary code to produce value
2619 /// suitable for "bit tests"
2620 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2621                                              MachineBasicBlock *SwitchBB) {
2622   SDLoc dl = getCurSDLoc();
2623 
2624   // Subtract the minimum value.
2625   SDValue SwitchOp = getValue(B.SValue);
2626   EVT VT = SwitchOp.getValueType();
2627   SDValue RangeSub =
2628       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2629 
2630   // Determine the type of the test operands.
2631   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2632   bool UsePtrType = false;
2633   if (!TLI.isTypeLegal(VT)) {
2634     UsePtrType = true;
2635   } else {
2636     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2637       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2638         // Switch table case range are encoded into series of masks.
2639         // Just use pointer type, it's guaranteed to fit.
2640         UsePtrType = true;
2641         break;
2642       }
2643   }
2644   SDValue Sub = RangeSub;
2645   if (UsePtrType) {
2646     VT = TLI.getPointerTy(DAG.getDataLayout());
2647     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2648   }
2649 
2650   B.RegVT = VT.getSimpleVT();
2651   B.Reg = FuncInfo.CreateReg(B.RegVT);
2652   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2653 
2654   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2655 
2656   if (!B.OmitRangeCheck)
2657     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2658   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2659   SwitchBB->normalizeSuccProbs();
2660 
2661   SDValue Root = CopyTo;
2662   if (!B.OmitRangeCheck) {
2663     // Conditional branch to the default block.
2664     SDValue RangeCmp = DAG.getSetCC(dl,
2665         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2666                                RangeSub.getValueType()),
2667         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2668         ISD::SETUGT);
2669 
2670     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2671                        DAG.getBasicBlock(B.Default));
2672   }
2673 
2674   // Avoid emitting unnecessary branches to the next block.
2675   if (MBB != NextBlock(SwitchBB))
2676     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2677 
2678   DAG.setRoot(Root);
2679 }
2680 
2681 /// visitBitTestCase - this function produces one "bit test"
2682 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2683                                            MachineBasicBlock* NextMBB,
2684                                            BranchProbability BranchProbToNext,
2685                                            unsigned Reg,
2686                                            BitTestCase &B,
2687                                            MachineBasicBlock *SwitchBB) {
2688   SDLoc dl = getCurSDLoc();
2689   MVT VT = BB.RegVT;
2690   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2691   SDValue Cmp;
2692   unsigned PopCount = countPopulation(B.Mask);
2693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2694   if (PopCount == 1) {
2695     // Testing for a single bit; just compare the shift count with what it
2696     // would need to be to shift a 1 bit in that position.
2697     Cmp = DAG.getSetCC(
2698         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2699         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2700         ISD::SETEQ);
2701   } else if (PopCount == BB.Range) {
2702     // There is only one zero bit in the range, test for it directly.
2703     Cmp = DAG.getSetCC(
2704         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2705         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2706         ISD::SETNE);
2707   } else {
2708     // Make desired shift
2709     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2710                                     DAG.getConstant(1, dl, VT), ShiftOp);
2711 
2712     // Emit bit tests and jumps
2713     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2714                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2715     Cmp = DAG.getSetCC(
2716         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2717         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2718   }
2719 
2720   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2721   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2722   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2723   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2724   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2725   // one as they are relative probabilities (and thus work more like weights),
2726   // and hence we need to normalize them to let the sum of them become one.
2727   SwitchBB->normalizeSuccProbs();
2728 
2729   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2730                               MVT::Other, getControlRoot(),
2731                               Cmp, DAG.getBasicBlock(B.TargetBB));
2732 
2733   // Avoid emitting unnecessary branches to the next block.
2734   if (NextMBB != NextBlock(SwitchBB))
2735     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2736                         DAG.getBasicBlock(NextMBB));
2737 
2738   DAG.setRoot(BrAnd);
2739 }
2740 
2741 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2742   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2743 
2744   // Retrieve successors. Look through artificial IR level blocks like
2745   // catchswitch for successors.
2746   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2747   const BasicBlock *EHPadBB = I.getSuccessor(1);
2748 
2749   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2750   // have to do anything here to lower funclet bundles.
2751   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2752                                         LLVMContext::OB_gc_transition,
2753                                         LLVMContext::OB_gc_live,
2754                                         LLVMContext::OB_funclet,
2755                                         LLVMContext::OB_cfguardtarget}) &&
2756          "Cannot lower invokes with arbitrary operand bundles yet!");
2757 
2758   const Value *Callee(I.getCalledOperand());
2759   const Function *Fn = dyn_cast<Function>(Callee);
2760   if (isa<InlineAsm>(Callee))
2761     visitInlineAsm(I);
2762   else if (Fn && Fn->isIntrinsic()) {
2763     switch (Fn->getIntrinsicID()) {
2764     default:
2765       llvm_unreachable("Cannot invoke this intrinsic");
2766     case Intrinsic::donothing:
2767       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2768       break;
2769     case Intrinsic::experimental_patchpoint_void:
2770     case Intrinsic::experimental_patchpoint_i64:
2771       visitPatchpoint(I, EHPadBB);
2772       break;
2773     case Intrinsic::experimental_gc_statepoint:
2774       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2775       break;
2776     case Intrinsic::wasm_rethrow_in_catch: {
2777       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2778       // special because it can be invoked, so we manually lower it to a DAG
2779       // node here.
2780       SmallVector<SDValue, 8> Ops;
2781       Ops.push_back(getRoot()); // inchain
2782       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2783       Ops.push_back(
2784           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2785                                 TLI.getPointerTy(DAG.getDataLayout())));
2786       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2787       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2788       break;
2789     }
2790     }
2791   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2792     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2793     // Eventually we will support lowering the @llvm.experimental.deoptimize
2794     // intrinsic, and right now there are no plans to support other intrinsics
2795     // with deopt state.
2796     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2797   } else {
2798     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2799   }
2800 
2801   // If the value of the invoke is used outside of its defining block, make it
2802   // available as a virtual register.
2803   // We already took care of the exported value for the statepoint instruction
2804   // during call to the LowerStatepoint.
2805   if (!isa<GCStatepointInst>(I)) {
2806     CopyToExportRegsIfNeeded(&I);
2807   }
2808 
2809   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2810   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2811   BranchProbability EHPadBBProb =
2812       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2813           : BranchProbability::getZero();
2814   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2815 
2816   // Update successor info.
2817   addSuccessorWithProb(InvokeMBB, Return);
2818   for (auto &UnwindDest : UnwindDests) {
2819     UnwindDest.first->setIsEHPad();
2820     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2821   }
2822   InvokeMBB->normalizeSuccProbs();
2823 
2824   // Drop into normal successor.
2825   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2826                           DAG.getBasicBlock(Return)));
2827 }
2828 
2829 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2830   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2831 
2832   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2833   // have to do anything here to lower funclet bundles.
2834   assert(!I.hasOperandBundlesOtherThan(
2835              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2836          "Cannot lower callbrs with arbitrary operand bundles yet!");
2837 
2838   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2839   visitInlineAsm(I);
2840   CopyToExportRegsIfNeeded(&I);
2841 
2842   // Retrieve successors.
2843   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2844 
2845   // Update successor info.
2846   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2847   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2848     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2849     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2850     Target->setIsInlineAsmBrIndirectTarget();
2851   }
2852   CallBrMBB->normalizeSuccProbs();
2853 
2854   // Drop into default successor.
2855   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2856                           MVT::Other, getControlRoot(),
2857                           DAG.getBasicBlock(Return)));
2858 }
2859 
2860 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2861   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2862 }
2863 
2864 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2865   assert(FuncInfo.MBB->isEHPad() &&
2866          "Call to landingpad not in landing pad!");
2867 
2868   // If there aren't registers to copy the values into (e.g., during SjLj
2869   // exceptions), then don't bother to create these DAG nodes.
2870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2871   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2872   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2873       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2874     return;
2875 
2876   // If landingpad's return type is token type, we don't create DAG nodes
2877   // for its exception pointer and selector value. The extraction of exception
2878   // pointer or selector value from token type landingpads is not currently
2879   // supported.
2880   if (LP.getType()->isTokenTy())
2881     return;
2882 
2883   SmallVector<EVT, 2> ValueVTs;
2884   SDLoc dl = getCurSDLoc();
2885   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2886   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2887 
2888   // Get the two live-in registers as SDValues. The physregs have already been
2889   // copied into virtual registers.
2890   SDValue Ops[2];
2891   if (FuncInfo.ExceptionPointerVirtReg) {
2892     Ops[0] = DAG.getZExtOrTrunc(
2893         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2894                            FuncInfo.ExceptionPointerVirtReg,
2895                            TLI.getPointerTy(DAG.getDataLayout())),
2896         dl, ValueVTs[0]);
2897   } else {
2898     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2899   }
2900   Ops[1] = DAG.getZExtOrTrunc(
2901       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2902                          FuncInfo.ExceptionSelectorVirtReg,
2903                          TLI.getPointerTy(DAG.getDataLayout())),
2904       dl, ValueVTs[1]);
2905 
2906   // Merge into one.
2907   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2908                             DAG.getVTList(ValueVTs), Ops);
2909   setValue(&LP, Res);
2910 }
2911 
2912 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2913                                            MachineBasicBlock *Last) {
2914   // Update JTCases.
2915   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2916     if (SL->JTCases[i].first.HeaderBB == First)
2917       SL->JTCases[i].first.HeaderBB = Last;
2918 
2919   // Update BitTestCases.
2920   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2921     if (SL->BitTestCases[i].Parent == First)
2922       SL->BitTestCases[i].Parent = Last;
2923 }
2924 
2925 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2926   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2927 
2928   // Update machine-CFG edges with unique successors.
2929   SmallSet<BasicBlock*, 32> Done;
2930   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2931     BasicBlock *BB = I.getSuccessor(i);
2932     bool Inserted = Done.insert(BB).second;
2933     if (!Inserted)
2934         continue;
2935 
2936     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2937     addSuccessorWithProb(IndirectBrMBB, Succ);
2938   }
2939   IndirectBrMBB->normalizeSuccProbs();
2940 
2941   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2942                           MVT::Other, getControlRoot(),
2943                           getValue(I.getAddress())));
2944 }
2945 
2946 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2947   if (!DAG.getTarget().Options.TrapUnreachable)
2948     return;
2949 
2950   // We may be able to ignore unreachable behind a noreturn call.
2951   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2952     const BasicBlock &BB = *I.getParent();
2953     if (&I != &BB.front()) {
2954       BasicBlock::const_iterator PredI =
2955         std::prev(BasicBlock::const_iterator(&I));
2956       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2957         if (Call->doesNotReturn())
2958           return;
2959       }
2960     }
2961   }
2962 
2963   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2964 }
2965 
2966 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2967   SDNodeFlags Flags;
2968 
2969   SDValue Op = getValue(I.getOperand(0));
2970   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2971                                     Op, Flags);
2972   setValue(&I, UnNodeValue);
2973 }
2974 
2975 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2976   SDNodeFlags Flags;
2977   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2978     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2979     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2980   }
2981   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
2982     Flags.setExact(ExactOp->isExact());
2983   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
2984     Flags.copyFMF(*FPOp);
2985 
2986   SDValue Op1 = getValue(I.getOperand(0));
2987   SDValue Op2 = getValue(I.getOperand(1));
2988   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2989                                      Op1, Op2, Flags);
2990   setValue(&I, BinNodeValue);
2991 }
2992 
2993 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2994   SDValue Op1 = getValue(I.getOperand(0));
2995   SDValue Op2 = getValue(I.getOperand(1));
2996 
2997   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2998       Op1.getValueType(), DAG.getDataLayout());
2999 
3000   // Coerce the shift amount to the right type if we can.
3001   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3002     unsigned ShiftSize = ShiftTy.getSizeInBits();
3003     unsigned Op2Size = Op2.getValueSizeInBits();
3004     SDLoc DL = getCurSDLoc();
3005 
3006     // If the operand is smaller than the shift count type, promote it.
3007     if (ShiftSize > Op2Size)
3008       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3009 
3010     // If the operand is larger than the shift count type but the shift
3011     // count type has enough bits to represent any shift value, truncate
3012     // it now. This is a common case and it exposes the truncate to
3013     // optimization early.
3014     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3015       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3016     // Otherwise we'll need to temporarily settle for some other convenient
3017     // type.  Type legalization will make adjustments once the shiftee is split.
3018     else
3019       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3020   }
3021 
3022   bool nuw = false;
3023   bool nsw = false;
3024   bool exact = false;
3025 
3026   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3027 
3028     if (const OverflowingBinaryOperator *OFBinOp =
3029             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3030       nuw = OFBinOp->hasNoUnsignedWrap();
3031       nsw = OFBinOp->hasNoSignedWrap();
3032     }
3033     if (const PossiblyExactOperator *ExactOp =
3034             dyn_cast<const PossiblyExactOperator>(&I))
3035       exact = ExactOp->isExact();
3036   }
3037   SDNodeFlags Flags;
3038   Flags.setExact(exact);
3039   Flags.setNoSignedWrap(nsw);
3040   Flags.setNoUnsignedWrap(nuw);
3041   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3042                             Flags);
3043   setValue(&I, Res);
3044 }
3045 
3046 void SelectionDAGBuilder::visitSDiv(const User &I) {
3047   SDValue Op1 = getValue(I.getOperand(0));
3048   SDValue Op2 = getValue(I.getOperand(1));
3049 
3050   SDNodeFlags Flags;
3051   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3052                  cast<PossiblyExactOperator>(&I)->isExact());
3053   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3054                            Op2, Flags));
3055 }
3056 
3057 void SelectionDAGBuilder::visitICmp(const User &I) {
3058   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3059   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3060     predicate = IC->getPredicate();
3061   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3062     predicate = ICmpInst::Predicate(IC->getPredicate());
3063   SDValue Op1 = getValue(I.getOperand(0));
3064   SDValue Op2 = getValue(I.getOperand(1));
3065   ISD::CondCode Opcode = getICmpCondCode(predicate);
3066 
3067   auto &TLI = DAG.getTargetLoweringInfo();
3068   EVT MemVT =
3069       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3070 
3071   // If a pointer's DAG type is larger than its memory type then the DAG values
3072   // are zero-extended. This breaks signed comparisons so truncate back to the
3073   // underlying type before doing the compare.
3074   if (Op1.getValueType() != MemVT) {
3075     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3076     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3077   }
3078 
3079   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3080                                                         I.getType());
3081   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3082 }
3083 
3084 void SelectionDAGBuilder::visitFCmp(const User &I) {
3085   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3086   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3087     predicate = FC->getPredicate();
3088   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3089     predicate = FCmpInst::Predicate(FC->getPredicate());
3090   SDValue Op1 = getValue(I.getOperand(0));
3091   SDValue Op2 = getValue(I.getOperand(1));
3092 
3093   ISD::CondCode Condition = getFCmpCondCode(predicate);
3094   auto *FPMO = cast<FPMathOperator>(&I);
3095   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3096     Condition = getFCmpCodeWithoutNaN(Condition);
3097 
3098   SDNodeFlags Flags;
3099   Flags.copyFMF(*FPMO);
3100 
3101   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3102                                                         I.getType());
3103   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition, Flags));
3104 }
3105 
3106 // Check if the condition of the select has one use or two users that are both
3107 // selects with the same condition.
3108 static bool hasOnlySelectUsers(const Value *Cond) {
3109   return llvm::all_of(Cond->users(), [](const Value *V) {
3110     return isa<SelectInst>(V);
3111   });
3112 }
3113 
3114 void SelectionDAGBuilder::visitSelect(const User &I) {
3115   SmallVector<EVT, 4> ValueVTs;
3116   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3117                   ValueVTs);
3118   unsigned NumValues = ValueVTs.size();
3119   if (NumValues == 0) return;
3120 
3121   SmallVector<SDValue, 4> Values(NumValues);
3122   SDValue Cond     = getValue(I.getOperand(0));
3123   SDValue LHSVal   = getValue(I.getOperand(1));
3124   SDValue RHSVal   = getValue(I.getOperand(2));
3125   SmallVector<SDValue, 1> BaseOps(1, Cond);
3126   ISD::NodeType OpCode =
3127       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3128 
3129   bool IsUnaryAbs = false;
3130 
3131   SDNodeFlags Flags;
3132   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3133     Flags.copyFMF(*FPOp);
3134 
3135   // Min/max matching is only viable if all output VTs are the same.
3136   if (is_splat(ValueVTs)) {
3137     EVT VT = ValueVTs[0];
3138     LLVMContext &Ctx = *DAG.getContext();
3139     auto &TLI = DAG.getTargetLoweringInfo();
3140 
3141     // We care about the legality of the operation after it has been type
3142     // legalized.
3143     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3144       VT = TLI.getTypeToTransformTo(Ctx, VT);
3145 
3146     // If the vselect is legal, assume we want to leave this as a vector setcc +
3147     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3148     // min/max is legal on the scalar type.
3149     bool UseScalarMinMax = VT.isVector() &&
3150       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3151 
3152     Value *LHS, *RHS;
3153     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3154     ISD::NodeType Opc = ISD::DELETED_NODE;
3155     switch (SPR.Flavor) {
3156     case SPF_UMAX:    Opc = ISD::UMAX; break;
3157     case SPF_UMIN:    Opc = ISD::UMIN; break;
3158     case SPF_SMAX:    Opc = ISD::SMAX; break;
3159     case SPF_SMIN:    Opc = ISD::SMIN; break;
3160     case SPF_FMINNUM:
3161       switch (SPR.NaNBehavior) {
3162       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3163       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3164       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3165       case SPNB_RETURNS_ANY: {
3166         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3167           Opc = ISD::FMINNUM;
3168         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3169           Opc = ISD::FMINIMUM;
3170         else if (UseScalarMinMax)
3171           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3172             ISD::FMINNUM : ISD::FMINIMUM;
3173         break;
3174       }
3175       }
3176       break;
3177     case SPF_FMAXNUM:
3178       switch (SPR.NaNBehavior) {
3179       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3180       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3181       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3182       case SPNB_RETURNS_ANY:
3183 
3184         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3185           Opc = ISD::FMAXNUM;
3186         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3187           Opc = ISD::FMAXIMUM;
3188         else if (UseScalarMinMax)
3189           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3190             ISD::FMAXNUM : ISD::FMAXIMUM;
3191         break;
3192       }
3193       break;
3194     case SPF_ABS:
3195       IsUnaryAbs = true;
3196       Opc = ISD::ABS;
3197       break;
3198     case SPF_NABS:
3199       // TODO: we need to produce sub(0, abs(X)).
3200     default: break;
3201     }
3202 
3203     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3204         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3205          (UseScalarMinMax &&
3206           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3207         // If the underlying comparison instruction is used by any other
3208         // instruction, the consumed instructions won't be destroyed, so it is
3209         // not profitable to convert to a min/max.
3210         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3211       OpCode = Opc;
3212       LHSVal = getValue(LHS);
3213       RHSVal = getValue(RHS);
3214       BaseOps.clear();
3215     }
3216 
3217     if (IsUnaryAbs) {
3218       OpCode = Opc;
3219       LHSVal = getValue(LHS);
3220       BaseOps.clear();
3221     }
3222   }
3223 
3224   if (IsUnaryAbs) {
3225     for (unsigned i = 0; i != NumValues; ++i) {
3226       Values[i] =
3227           DAG.getNode(OpCode, getCurSDLoc(),
3228                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3229                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3230     }
3231   } else {
3232     for (unsigned i = 0; i != NumValues; ++i) {
3233       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3234       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3235       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3236       Values[i] = DAG.getNode(
3237           OpCode, getCurSDLoc(),
3238           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3239     }
3240   }
3241 
3242   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3243                            DAG.getVTList(ValueVTs), Values));
3244 }
3245 
3246 void SelectionDAGBuilder::visitTrunc(const User &I) {
3247   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3248   SDValue N = getValue(I.getOperand(0));
3249   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3250                                                         I.getType());
3251   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3252 }
3253 
3254 void SelectionDAGBuilder::visitZExt(const User &I) {
3255   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3256   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3257   SDValue N = getValue(I.getOperand(0));
3258   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3259                                                         I.getType());
3260   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3261 }
3262 
3263 void SelectionDAGBuilder::visitSExt(const User &I) {
3264   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3265   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3266   SDValue N = getValue(I.getOperand(0));
3267   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3268                                                         I.getType());
3269   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3270 }
3271 
3272 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3273   // FPTrunc is never a no-op cast, no need to check
3274   SDValue N = getValue(I.getOperand(0));
3275   SDLoc dl = getCurSDLoc();
3276   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3277   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3278   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3279                            DAG.getTargetConstant(
3280                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3281 }
3282 
3283 void SelectionDAGBuilder::visitFPExt(const User &I) {
3284   // FPExt is never a no-op cast, no need to check
3285   SDValue N = getValue(I.getOperand(0));
3286   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3287                                                         I.getType());
3288   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3289 }
3290 
3291 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3292   // FPToUI is never a no-op cast, no need to check
3293   SDValue N = getValue(I.getOperand(0));
3294   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3295                                                         I.getType());
3296   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3297 }
3298 
3299 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3300   // FPToSI is never a no-op cast, no need to check
3301   SDValue N = getValue(I.getOperand(0));
3302   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3303                                                         I.getType());
3304   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3305 }
3306 
3307 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3308   // UIToFP is never a no-op cast, no need to check
3309   SDValue N = getValue(I.getOperand(0));
3310   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3311                                                         I.getType());
3312   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3313 }
3314 
3315 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3316   // SIToFP is never a no-op cast, no need to check
3317   SDValue N = getValue(I.getOperand(0));
3318   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3319                                                         I.getType());
3320   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3321 }
3322 
3323 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3324   // What to do depends on the size of the integer and the size of the pointer.
3325   // We can either truncate, zero extend, or no-op, accordingly.
3326   SDValue N = getValue(I.getOperand(0));
3327   auto &TLI = DAG.getTargetLoweringInfo();
3328   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3329                                                         I.getType());
3330   EVT PtrMemVT =
3331       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3332   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3333   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3334   setValue(&I, N);
3335 }
3336 
3337 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3338   // What to do depends on the size of the integer and the size of the pointer.
3339   // We can either truncate, zero extend, or no-op, accordingly.
3340   SDValue N = getValue(I.getOperand(0));
3341   auto &TLI = DAG.getTargetLoweringInfo();
3342   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3343   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3344   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3345   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3346   setValue(&I, N);
3347 }
3348 
3349 void SelectionDAGBuilder::visitBitCast(const User &I) {
3350   SDValue N = getValue(I.getOperand(0));
3351   SDLoc dl = getCurSDLoc();
3352   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3353                                                         I.getType());
3354 
3355   // BitCast assures us that source and destination are the same size so this is
3356   // either a BITCAST or a no-op.
3357   if (DestVT != N.getValueType())
3358     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3359                              DestVT, N)); // convert types.
3360   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3361   // might fold any kind of constant expression to an integer constant and that
3362   // is not what we are looking for. Only recognize a bitcast of a genuine
3363   // constant integer as an opaque constant.
3364   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3365     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3366                                  /*isOpaque*/true));
3367   else
3368     setValue(&I, N);            // noop cast.
3369 }
3370 
3371 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3372   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3373   const Value *SV = I.getOperand(0);
3374   SDValue N = getValue(SV);
3375   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3376 
3377   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3378   unsigned DestAS = I.getType()->getPointerAddressSpace();
3379 
3380   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3381     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3382 
3383   setValue(&I, N);
3384 }
3385 
3386 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3388   SDValue InVec = getValue(I.getOperand(0));
3389   SDValue InVal = getValue(I.getOperand(1));
3390   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3391                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3392   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3393                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3394                            InVec, InVal, InIdx));
3395 }
3396 
3397 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3398   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3399   SDValue InVec = getValue(I.getOperand(0));
3400   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3401                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3402   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3403                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3404                            InVec, InIdx));
3405 }
3406 
3407 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3408   SDValue Src1 = getValue(I.getOperand(0));
3409   SDValue Src2 = getValue(I.getOperand(1));
3410   ArrayRef<int> Mask;
3411   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3412     Mask = SVI->getShuffleMask();
3413   else
3414     Mask = cast<ConstantExpr>(I).getShuffleMask();
3415   SDLoc DL = getCurSDLoc();
3416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3417   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3418   EVT SrcVT = Src1.getValueType();
3419 
3420   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3421       VT.isScalableVector()) {
3422     // Canonical splat form of first element of first input vector.
3423     SDValue FirstElt =
3424         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3425                     DAG.getVectorIdxConstant(0, DL));
3426     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3427     return;
3428   }
3429 
3430   // For now, we only handle splats for scalable vectors.
3431   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3432   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3433   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3434 
3435   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3436   unsigned MaskNumElts = Mask.size();
3437 
3438   if (SrcNumElts == MaskNumElts) {
3439     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3440     return;
3441   }
3442 
3443   // Normalize the shuffle vector since mask and vector length don't match.
3444   if (SrcNumElts < MaskNumElts) {
3445     // Mask is longer than the source vectors. We can use concatenate vector to
3446     // make the mask and vectors lengths match.
3447 
3448     if (MaskNumElts % SrcNumElts == 0) {
3449       // Mask length is a multiple of the source vector length.
3450       // Check if the shuffle is some kind of concatenation of the input
3451       // vectors.
3452       unsigned NumConcat = MaskNumElts / SrcNumElts;
3453       bool IsConcat = true;
3454       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3455       for (unsigned i = 0; i != MaskNumElts; ++i) {
3456         int Idx = Mask[i];
3457         if (Idx < 0)
3458           continue;
3459         // Ensure the indices in each SrcVT sized piece are sequential and that
3460         // the same source is used for the whole piece.
3461         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3462             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3463              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3464           IsConcat = false;
3465           break;
3466         }
3467         // Remember which source this index came from.
3468         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3469       }
3470 
3471       // The shuffle is concatenating multiple vectors together. Just emit
3472       // a CONCAT_VECTORS operation.
3473       if (IsConcat) {
3474         SmallVector<SDValue, 8> ConcatOps;
3475         for (auto Src : ConcatSrcs) {
3476           if (Src < 0)
3477             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3478           else if (Src == 0)
3479             ConcatOps.push_back(Src1);
3480           else
3481             ConcatOps.push_back(Src2);
3482         }
3483         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3484         return;
3485       }
3486     }
3487 
3488     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3489     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3490     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3491                                     PaddedMaskNumElts);
3492 
3493     // Pad both vectors with undefs to make them the same length as the mask.
3494     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3495 
3496     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3497     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3498     MOps1[0] = Src1;
3499     MOps2[0] = Src2;
3500 
3501     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3502     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3503 
3504     // Readjust mask for new input vector length.
3505     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3506     for (unsigned i = 0; i != MaskNumElts; ++i) {
3507       int Idx = Mask[i];
3508       if (Idx >= (int)SrcNumElts)
3509         Idx -= SrcNumElts - PaddedMaskNumElts;
3510       MappedOps[i] = Idx;
3511     }
3512 
3513     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3514 
3515     // If the concatenated vector was padded, extract a subvector with the
3516     // correct number of elements.
3517     if (MaskNumElts != PaddedMaskNumElts)
3518       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3519                            DAG.getVectorIdxConstant(0, DL));
3520 
3521     setValue(&I, Result);
3522     return;
3523   }
3524 
3525   if (SrcNumElts > MaskNumElts) {
3526     // Analyze the access pattern of the vector to see if we can extract
3527     // two subvectors and do the shuffle.
3528     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3529     bool CanExtract = true;
3530     for (int Idx : Mask) {
3531       unsigned Input = 0;
3532       if (Idx < 0)
3533         continue;
3534 
3535       if (Idx >= (int)SrcNumElts) {
3536         Input = 1;
3537         Idx -= SrcNumElts;
3538       }
3539 
3540       // If all the indices come from the same MaskNumElts sized portion of
3541       // the sources we can use extract. Also make sure the extract wouldn't
3542       // extract past the end of the source.
3543       int NewStartIdx = alignDown(Idx, MaskNumElts);
3544       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3545           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3546         CanExtract = false;
3547       // Make sure we always update StartIdx as we use it to track if all
3548       // elements are undef.
3549       StartIdx[Input] = NewStartIdx;
3550     }
3551 
3552     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3553       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3554       return;
3555     }
3556     if (CanExtract) {
3557       // Extract appropriate subvector and generate a vector shuffle
3558       for (unsigned Input = 0; Input < 2; ++Input) {
3559         SDValue &Src = Input == 0 ? Src1 : Src2;
3560         if (StartIdx[Input] < 0)
3561           Src = DAG.getUNDEF(VT);
3562         else {
3563           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3564                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3565         }
3566       }
3567 
3568       // Calculate new mask.
3569       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3570       for (int &Idx : MappedOps) {
3571         if (Idx >= (int)SrcNumElts)
3572           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3573         else if (Idx >= 0)
3574           Idx -= StartIdx[0];
3575       }
3576 
3577       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3578       return;
3579     }
3580   }
3581 
3582   // We can't use either concat vectors or extract subvectors so fall back to
3583   // replacing the shuffle with extract and build vector.
3584   // to insert and build vector.
3585   EVT EltVT = VT.getVectorElementType();
3586   SmallVector<SDValue,8> Ops;
3587   for (int Idx : Mask) {
3588     SDValue Res;
3589 
3590     if (Idx < 0) {
3591       Res = DAG.getUNDEF(EltVT);
3592     } else {
3593       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3594       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3595 
3596       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3597                         DAG.getVectorIdxConstant(Idx, DL));
3598     }
3599 
3600     Ops.push_back(Res);
3601   }
3602 
3603   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3604 }
3605 
3606 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3607   ArrayRef<unsigned> Indices;
3608   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3609     Indices = IV->getIndices();
3610   else
3611     Indices = cast<ConstantExpr>(&I)->getIndices();
3612 
3613   const Value *Op0 = I.getOperand(0);
3614   const Value *Op1 = I.getOperand(1);
3615   Type *AggTy = I.getType();
3616   Type *ValTy = Op1->getType();
3617   bool IntoUndef = isa<UndefValue>(Op0);
3618   bool FromUndef = isa<UndefValue>(Op1);
3619 
3620   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3621 
3622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3623   SmallVector<EVT, 4> AggValueVTs;
3624   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3625   SmallVector<EVT, 4> ValValueVTs;
3626   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3627 
3628   unsigned NumAggValues = AggValueVTs.size();
3629   unsigned NumValValues = ValValueVTs.size();
3630   SmallVector<SDValue, 4> Values(NumAggValues);
3631 
3632   // Ignore an insertvalue that produces an empty object
3633   if (!NumAggValues) {
3634     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3635     return;
3636   }
3637 
3638   SDValue Agg = getValue(Op0);
3639   unsigned i = 0;
3640   // Copy the beginning value(s) from the original aggregate.
3641   for (; i != LinearIndex; ++i)
3642     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3643                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3644   // Copy values from the inserted value(s).
3645   if (NumValValues) {
3646     SDValue Val = getValue(Op1);
3647     for (; i != LinearIndex + NumValValues; ++i)
3648       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3649                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3650   }
3651   // Copy remaining value(s) from the original aggregate.
3652   for (; i != NumAggValues; ++i)
3653     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3654                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3655 
3656   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3657                            DAG.getVTList(AggValueVTs), Values));
3658 }
3659 
3660 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3661   ArrayRef<unsigned> Indices;
3662   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3663     Indices = EV->getIndices();
3664   else
3665     Indices = cast<ConstantExpr>(&I)->getIndices();
3666 
3667   const Value *Op0 = I.getOperand(0);
3668   Type *AggTy = Op0->getType();
3669   Type *ValTy = I.getType();
3670   bool OutOfUndef = isa<UndefValue>(Op0);
3671 
3672   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3673 
3674   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3675   SmallVector<EVT, 4> ValValueVTs;
3676   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3677 
3678   unsigned NumValValues = ValValueVTs.size();
3679 
3680   // Ignore a extractvalue that produces an empty object
3681   if (!NumValValues) {
3682     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3683     return;
3684   }
3685 
3686   SmallVector<SDValue, 4> Values(NumValValues);
3687 
3688   SDValue Agg = getValue(Op0);
3689   // Copy out the selected value(s).
3690   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3691     Values[i - LinearIndex] =
3692       OutOfUndef ?
3693         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3694         SDValue(Agg.getNode(), Agg.getResNo() + i);
3695 
3696   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3697                            DAG.getVTList(ValValueVTs), Values));
3698 }
3699 
3700 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3701   Value *Op0 = I.getOperand(0);
3702   // Note that the pointer operand may be a vector of pointers. Take the scalar
3703   // element which holds a pointer.
3704   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3705   SDValue N = getValue(Op0);
3706   SDLoc dl = getCurSDLoc();
3707   auto &TLI = DAG.getTargetLoweringInfo();
3708 
3709   // Normalize Vector GEP - all scalar operands should be converted to the
3710   // splat vector.
3711   bool IsVectorGEP = I.getType()->isVectorTy();
3712   ElementCount VectorElementCount =
3713       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3714                   : ElementCount::getFixed(0);
3715 
3716   if (IsVectorGEP && !N.getValueType().isVector()) {
3717     LLVMContext &Context = *DAG.getContext();
3718     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3719     if (VectorElementCount.isScalable())
3720       N = DAG.getSplatVector(VT, dl, N);
3721     else
3722       N = DAG.getSplatBuildVector(VT, dl, N);
3723   }
3724 
3725   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3726        GTI != E; ++GTI) {
3727     const Value *Idx = GTI.getOperand();
3728     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3729       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3730       if (Field) {
3731         // N = N + Offset
3732         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3733 
3734         // In an inbounds GEP with an offset that is nonnegative even when
3735         // interpreted as signed, assume there is no unsigned overflow.
3736         SDNodeFlags Flags;
3737         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3738           Flags.setNoUnsignedWrap(true);
3739 
3740         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3741                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3742       }
3743     } else {
3744       // IdxSize is the width of the arithmetic according to IR semantics.
3745       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3746       // (and fix up the result later).
3747       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3748       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3749       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3750       // We intentionally mask away the high bits here; ElementSize may not
3751       // fit in IdxTy.
3752       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3753       bool ElementScalable = ElementSize.isScalable();
3754 
3755       // If this is a scalar constant or a splat vector of constants,
3756       // handle it quickly.
3757       const auto *C = dyn_cast<Constant>(Idx);
3758       if (C && isa<VectorType>(C->getType()))
3759         C = C->getSplatValue();
3760 
3761       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3762       if (CI && CI->isZero())
3763         continue;
3764       if (CI && !ElementScalable) {
3765         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3766         LLVMContext &Context = *DAG.getContext();
3767         SDValue OffsVal;
3768         if (IsVectorGEP)
3769           OffsVal = DAG.getConstant(
3770               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3771         else
3772           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3773 
3774         // In an inbounds GEP with an offset that is nonnegative even when
3775         // interpreted as signed, assume there is no unsigned overflow.
3776         SDNodeFlags Flags;
3777         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3778           Flags.setNoUnsignedWrap(true);
3779 
3780         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3781 
3782         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3783         continue;
3784       }
3785 
3786       // N = N + Idx * ElementMul;
3787       SDValue IdxN = getValue(Idx);
3788 
3789       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3790         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3791                                   VectorElementCount);
3792         if (VectorElementCount.isScalable())
3793           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3794         else
3795           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3796       }
3797 
3798       // If the index is smaller or larger than intptr_t, truncate or extend
3799       // it.
3800       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3801 
3802       if (ElementScalable) {
3803         EVT VScaleTy = N.getValueType().getScalarType();
3804         SDValue VScale = DAG.getNode(
3805             ISD::VSCALE, dl, VScaleTy,
3806             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3807         if (IsVectorGEP)
3808           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3809         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3810       } else {
3811         // If this is a multiply by a power of two, turn it into a shl
3812         // immediately.  This is a very common case.
3813         if (ElementMul != 1) {
3814           if (ElementMul.isPowerOf2()) {
3815             unsigned Amt = ElementMul.logBase2();
3816             IdxN = DAG.getNode(ISD::SHL, dl,
3817                                N.getValueType(), IdxN,
3818                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3819           } else {
3820             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3821                                             IdxN.getValueType());
3822             IdxN = DAG.getNode(ISD::MUL, dl,
3823                                N.getValueType(), IdxN, Scale);
3824           }
3825         }
3826       }
3827 
3828       N = DAG.getNode(ISD::ADD, dl,
3829                       N.getValueType(), N, IdxN);
3830     }
3831   }
3832 
3833   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3834   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3835   if (IsVectorGEP) {
3836     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3837     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3838   }
3839 
3840   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3841     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3842 
3843   setValue(&I, N);
3844 }
3845 
3846 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3847   // If this is a fixed sized alloca in the entry block of the function,
3848   // allocate it statically on the stack.
3849   if (FuncInfo.StaticAllocaMap.count(&I))
3850     return;   // getValue will auto-populate this.
3851 
3852   SDLoc dl = getCurSDLoc();
3853   Type *Ty = I.getAllocatedType();
3854   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3855   auto &DL = DAG.getDataLayout();
3856   uint64_t TySize = DL.getTypeAllocSize(Ty);
3857   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3858 
3859   SDValue AllocSize = getValue(I.getArraySize());
3860 
3861   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3862   if (AllocSize.getValueType() != IntPtr)
3863     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3864 
3865   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3866                           AllocSize,
3867                           DAG.getConstant(TySize, dl, IntPtr));
3868 
3869   // Handle alignment.  If the requested alignment is less than or equal to
3870   // the stack alignment, ignore it.  If the size is greater than or equal to
3871   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3872   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3873   if (*Alignment <= StackAlign)
3874     Alignment = None;
3875 
3876   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3877   // Round the size of the allocation up to the stack alignment size
3878   // by add SA-1 to the size. This doesn't overflow because we're computing
3879   // an address inside an alloca.
3880   SDNodeFlags Flags;
3881   Flags.setNoUnsignedWrap(true);
3882   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3883                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3884 
3885   // Mask out the low bits for alignment purposes.
3886   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3887                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3888 
3889   SDValue Ops[] = {
3890       getRoot(), AllocSize,
3891       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3892   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3893   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3894   setValue(&I, DSA);
3895   DAG.setRoot(DSA.getValue(1));
3896 
3897   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3898 }
3899 
3900 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3901   if (I.isAtomic())
3902     return visitAtomicLoad(I);
3903 
3904   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3905   const Value *SV = I.getOperand(0);
3906   if (TLI.supportSwiftError()) {
3907     // Swifterror values can come from either a function parameter with
3908     // swifterror attribute or an alloca with swifterror attribute.
3909     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3910       if (Arg->hasSwiftErrorAttr())
3911         return visitLoadFromSwiftError(I);
3912     }
3913 
3914     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3915       if (Alloca->isSwiftError())
3916         return visitLoadFromSwiftError(I);
3917     }
3918   }
3919 
3920   SDValue Ptr = getValue(SV);
3921 
3922   Type *Ty = I.getType();
3923   Align Alignment = I.getAlign();
3924 
3925   AAMDNodes AAInfo;
3926   I.getAAMetadata(AAInfo);
3927   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3928 
3929   SmallVector<EVT, 4> ValueVTs, MemVTs;
3930   SmallVector<uint64_t, 4> Offsets;
3931   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3932   unsigned NumValues = ValueVTs.size();
3933   if (NumValues == 0)
3934     return;
3935 
3936   bool isVolatile = I.isVolatile();
3937 
3938   SDValue Root;
3939   bool ConstantMemory = false;
3940   if (isVolatile)
3941     // Serialize volatile loads with other side effects.
3942     Root = getRoot();
3943   else if (NumValues > MaxParallelChains)
3944     Root = getMemoryRoot();
3945   else if (AA &&
3946            AA->pointsToConstantMemory(MemoryLocation(
3947                SV,
3948                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3949                AAInfo))) {
3950     // Do not serialize (non-volatile) loads of constant memory with anything.
3951     Root = DAG.getEntryNode();
3952     ConstantMemory = true;
3953   } else {
3954     // Do not serialize non-volatile loads against each other.
3955     Root = DAG.getRoot();
3956   }
3957 
3958   SDLoc dl = getCurSDLoc();
3959 
3960   if (isVolatile)
3961     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3962 
3963   // An aggregate load cannot wrap around the address space, so offsets to its
3964   // parts don't wrap either.
3965   SDNodeFlags Flags;
3966   Flags.setNoUnsignedWrap(true);
3967 
3968   SmallVector<SDValue, 4> Values(NumValues);
3969   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3970   EVT PtrVT = Ptr.getValueType();
3971 
3972   MachineMemOperand::Flags MMOFlags
3973     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
3974 
3975   unsigned ChainI = 0;
3976   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3977     // Serializing loads here may result in excessive register pressure, and
3978     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3979     // could recover a bit by hoisting nodes upward in the chain by recognizing
3980     // they are side-effect free or do not alias. The optimizer should really
3981     // avoid this case by converting large object/array copies to llvm.memcpy
3982     // (MaxParallelChains should always remain as failsafe).
3983     if (ChainI == MaxParallelChains) {
3984       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3985       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3986                                   makeArrayRef(Chains.data(), ChainI));
3987       Root = Chain;
3988       ChainI = 0;
3989     }
3990     SDValue A = DAG.getNode(ISD::ADD, dl,
3991                             PtrVT, Ptr,
3992                             DAG.getConstant(Offsets[i], dl, PtrVT),
3993                             Flags);
3994 
3995     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
3996                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3997                             MMOFlags, AAInfo, Ranges);
3998     Chains[ChainI] = L.getValue(1);
3999 
4000     if (MemVTs[i] != ValueVTs[i])
4001       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4002 
4003     Values[i] = L;
4004   }
4005 
4006   if (!ConstantMemory) {
4007     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4008                                 makeArrayRef(Chains.data(), ChainI));
4009     if (isVolatile)
4010       DAG.setRoot(Chain);
4011     else
4012       PendingLoads.push_back(Chain);
4013   }
4014 
4015   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4016                            DAG.getVTList(ValueVTs), Values));
4017 }
4018 
4019 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4020   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4021          "call visitStoreToSwiftError when backend supports swifterror");
4022 
4023   SmallVector<EVT, 4> ValueVTs;
4024   SmallVector<uint64_t, 4> Offsets;
4025   const Value *SrcV = I.getOperand(0);
4026   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4027                   SrcV->getType(), ValueVTs, &Offsets);
4028   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4029          "expect a single EVT for swifterror");
4030 
4031   SDValue Src = getValue(SrcV);
4032   // Create a virtual register, then update the virtual register.
4033   Register VReg =
4034       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4035   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4036   // Chain can be getRoot or getControlRoot.
4037   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4038                                       SDValue(Src.getNode(), Src.getResNo()));
4039   DAG.setRoot(CopyNode);
4040 }
4041 
4042 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4043   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4044          "call visitLoadFromSwiftError when backend supports swifterror");
4045 
4046   assert(!I.isVolatile() &&
4047          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4048          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4049          "Support volatile, non temporal, invariant for load_from_swift_error");
4050 
4051   const Value *SV = I.getOperand(0);
4052   Type *Ty = I.getType();
4053   AAMDNodes AAInfo;
4054   I.getAAMetadata(AAInfo);
4055   assert(
4056       (!AA ||
4057        !AA->pointsToConstantMemory(MemoryLocation(
4058            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4059            AAInfo))) &&
4060       "load_from_swift_error should not be constant memory");
4061 
4062   SmallVector<EVT, 4> ValueVTs;
4063   SmallVector<uint64_t, 4> Offsets;
4064   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4065                   ValueVTs, &Offsets);
4066   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4067          "expect a single EVT for swifterror");
4068 
4069   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4070   SDValue L = DAG.getCopyFromReg(
4071       getRoot(), getCurSDLoc(),
4072       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4073 
4074   setValue(&I, L);
4075 }
4076 
4077 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4078   if (I.isAtomic())
4079     return visitAtomicStore(I);
4080 
4081   const Value *SrcV = I.getOperand(0);
4082   const Value *PtrV = I.getOperand(1);
4083 
4084   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4085   if (TLI.supportSwiftError()) {
4086     // Swifterror values can come from either a function parameter with
4087     // swifterror attribute or an alloca with swifterror attribute.
4088     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4089       if (Arg->hasSwiftErrorAttr())
4090         return visitStoreToSwiftError(I);
4091     }
4092 
4093     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4094       if (Alloca->isSwiftError())
4095         return visitStoreToSwiftError(I);
4096     }
4097   }
4098 
4099   SmallVector<EVT, 4> ValueVTs, MemVTs;
4100   SmallVector<uint64_t, 4> Offsets;
4101   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4102                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4103   unsigned NumValues = ValueVTs.size();
4104   if (NumValues == 0)
4105     return;
4106 
4107   // Get the lowered operands. Note that we do this after
4108   // checking if NumResults is zero, because with zero results
4109   // the operands won't have values in the map.
4110   SDValue Src = getValue(SrcV);
4111   SDValue Ptr = getValue(PtrV);
4112 
4113   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4114   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4115   SDLoc dl = getCurSDLoc();
4116   Align Alignment = I.getAlign();
4117   AAMDNodes AAInfo;
4118   I.getAAMetadata(AAInfo);
4119 
4120   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4121 
4122   // An aggregate load cannot wrap around the address space, so offsets to its
4123   // parts don't wrap either.
4124   SDNodeFlags Flags;
4125   Flags.setNoUnsignedWrap(true);
4126 
4127   unsigned ChainI = 0;
4128   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4129     // See visitLoad comments.
4130     if (ChainI == MaxParallelChains) {
4131       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4132                                   makeArrayRef(Chains.data(), ChainI));
4133       Root = Chain;
4134       ChainI = 0;
4135     }
4136     SDValue Add =
4137         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4138     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4139     if (MemVTs[i] != ValueVTs[i])
4140       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4141     SDValue St =
4142         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4143                      Alignment, MMOFlags, AAInfo);
4144     Chains[ChainI] = St;
4145   }
4146 
4147   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4148                                   makeArrayRef(Chains.data(), ChainI));
4149   DAG.setRoot(StoreNode);
4150 }
4151 
4152 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4153                                            bool IsCompressing) {
4154   SDLoc sdl = getCurSDLoc();
4155 
4156   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4157                                MaybeAlign &Alignment) {
4158     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4159     Src0 = I.getArgOperand(0);
4160     Ptr = I.getArgOperand(1);
4161     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4162     Mask = I.getArgOperand(3);
4163   };
4164   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4165                                     MaybeAlign &Alignment) {
4166     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4167     Src0 = I.getArgOperand(0);
4168     Ptr = I.getArgOperand(1);
4169     Mask = I.getArgOperand(2);
4170     Alignment = None;
4171   };
4172 
4173   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4174   MaybeAlign Alignment;
4175   if (IsCompressing)
4176     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4177   else
4178     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4179 
4180   SDValue Ptr = getValue(PtrOperand);
4181   SDValue Src0 = getValue(Src0Operand);
4182   SDValue Mask = getValue(MaskOperand);
4183   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4184 
4185   EVT VT = Src0.getValueType();
4186   if (!Alignment)
4187     Alignment = DAG.getEVTAlign(VT);
4188 
4189   AAMDNodes AAInfo;
4190   I.getAAMetadata(AAInfo);
4191 
4192   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4193       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4194       // TODO: Make MachineMemOperands aware of scalable
4195       // vectors.
4196       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4197   SDValue StoreNode =
4198       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4199                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4200   DAG.setRoot(StoreNode);
4201   setValue(&I, StoreNode);
4202 }
4203 
4204 // Get a uniform base for the Gather/Scatter intrinsic.
4205 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4206 // We try to represent it as a base pointer + vector of indices.
4207 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4208 // The first operand of the GEP may be a single pointer or a vector of pointers
4209 // Example:
4210 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4211 //  or
4212 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4213 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4214 //
4215 // When the first GEP operand is a single pointer - it is the uniform base we
4216 // are looking for. If first operand of the GEP is a splat vector - we
4217 // extract the splat value and use it as a uniform base.
4218 // In all other cases the function returns 'false'.
4219 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4220                            ISD::MemIndexType &IndexType, SDValue &Scale,
4221                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4222   SelectionDAG& DAG = SDB->DAG;
4223   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4224   const DataLayout &DL = DAG.getDataLayout();
4225 
4226   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4227 
4228   // Handle splat constant pointer.
4229   if (auto *C = dyn_cast<Constant>(Ptr)) {
4230     C = C->getSplatValue();
4231     if (!C)
4232       return false;
4233 
4234     Base = SDB->getValue(C);
4235 
4236     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4237     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4238     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4239     IndexType = ISD::SIGNED_SCALED;
4240     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4241     return true;
4242   }
4243 
4244   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4245   if (!GEP || GEP->getParent() != CurBB)
4246     return false;
4247 
4248   if (GEP->getNumOperands() != 2)
4249     return false;
4250 
4251   const Value *BasePtr = GEP->getPointerOperand();
4252   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4253 
4254   // Make sure the base is scalar and the index is a vector.
4255   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4256     return false;
4257 
4258   Base = SDB->getValue(BasePtr);
4259   Index = SDB->getValue(IndexVal);
4260   IndexType = ISD::SIGNED_SCALED;
4261   Scale = DAG.getTargetConstant(
4262               DL.getTypeAllocSize(GEP->getResultElementType()),
4263               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4264   return true;
4265 }
4266 
4267 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4268   SDLoc sdl = getCurSDLoc();
4269 
4270   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4271   const Value *Ptr = I.getArgOperand(1);
4272   SDValue Src0 = getValue(I.getArgOperand(0));
4273   SDValue Mask = getValue(I.getArgOperand(3));
4274   EVT VT = Src0.getValueType();
4275   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4276                         ->getMaybeAlignValue()
4277                         .getValueOr(DAG.getEVTAlign(VT));
4278   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4279 
4280   AAMDNodes AAInfo;
4281   I.getAAMetadata(AAInfo);
4282 
4283   SDValue Base;
4284   SDValue Index;
4285   ISD::MemIndexType IndexType;
4286   SDValue Scale;
4287   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4288                                     I.getParent());
4289 
4290   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4291   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4292       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4293       // TODO: Make MachineMemOperands aware of scalable
4294       // vectors.
4295       MemoryLocation::UnknownSize, Alignment, AAInfo);
4296   if (!UniformBase) {
4297     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4298     Index = getValue(Ptr);
4299     IndexType = ISD::SIGNED_SCALED;
4300     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4301   }
4302   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4303   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4304                                          Ops, MMO, IndexType);
4305   DAG.setRoot(Scatter);
4306   setValue(&I, Scatter);
4307 }
4308 
4309 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4310   SDLoc sdl = getCurSDLoc();
4311 
4312   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4313                               MaybeAlign &Alignment) {
4314     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4315     Ptr = I.getArgOperand(0);
4316     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4317     Mask = I.getArgOperand(2);
4318     Src0 = I.getArgOperand(3);
4319   };
4320   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4321                                  MaybeAlign &Alignment) {
4322     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4323     Ptr = I.getArgOperand(0);
4324     Alignment = None;
4325     Mask = I.getArgOperand(1);
4326     Src0 = I.getArgOperand(2);
4327   };
4328 
4329   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4330   MaybeAlign Alignment;
4331   if (IsExpanding)
4332     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4333   else
4334     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4335 
4336   SDValue Ptr = getValue(PtrOperand);
4337   SDValue Src0 = getValue(Src0Operand);
4338   SDValue Mask = getValue(MaskOperand);
4339   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4340 
4341   EVT VT = Src0.getValueType();
4342   if (!Alignment)
4343     Alignment = DAG.getEVTAlign(VT);
4344 
4345   AAMDNodes AAInfo;
4346   I.getAAMetadata(AAInfo);
4347   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4348 
4349   // Do not serialize masked loads of constant memory with anything.
4350   MemoryLocation ML;
4351   if (VT.isScalableVector())
4352     ML = MemoryLocation(PtrOperand);
4353   else
4354     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4355                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4356                            AAInfo);
4357   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4358 
4359   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4360 
4361   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4362       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4363       // TODO: Make MachineMemOperands aware of scalable
4364       // vectors.
4365       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4366 
4367   SDValue Load =
4368       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4369                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4370   if (AddToChain)
4371     PendingLoads.push_back(Load.getValue(1));
4372   setValue(&I, Load);
4373 }
4374 
4375 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4376   SDLoc sdl = getCurSDLoc();
4377 
4378   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4379   const Value *Ptr = I.getArgOperand(0);
4380   SDValue Src0 = getValue(I.getArgOperand(3));
4381   SDValue Mask = getValue(I.getArgOperand(2));
4382 
4383   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4384   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4385   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4386                         ->getMaybeAlignValue()
4387                         .getValueOr(DAG.getEVTAlign(VT));
4388 
4389   AAMDNodes AAInfo;
4390   I.getAAMetadata(AAInfo);
4391   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4392 
4393   SDValue Root = DAG.getRoot();
4394   SDValue Base;
4395   SDValue Index;
4396   ISD::MemIndexType IndexType;
4397   SDValue Scale;
4398   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4399                                     I.getParent());
4400   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4401   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4402       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4403       // TODO: Make MachineMemOperands aware of scalable
4404       // vectors.
4405       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4406 
4407   if (!UniformBase) {
4408     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4409     Index = getValue(Ptr);
4410     IndexType = ISD::SIGNED_SCALED;
4411     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4412   }
4413   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4414   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4415                                        Ops, MMO, IndexType);
4416 
4417   PendingLoads.push_back(Gather.getValue(1));
4418   setValue(&I, Gather);
4419 }
4420 
4421 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4422   SDLoc dl = getCurSDLoc();
4423   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4424   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4425   SyncScope::ID SSID = I.getSyncScopeID();
4426 
4427   SDValue InChain = getRoot();
4428 
4429   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4430   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4431 
4432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4433   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4434 
4435   MachineFunction &MF = DAG.getMachineFunction();
4436   MachineMemOperand *MMO = MF.getMachineMemOperand(
4437       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4438       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4439       FailureOrdering);
4440 
4441   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4442                                    dl, MemVT, VTs, InChain,
4443                                    getValue(I.getPointerOperand()),
4444                                    getValue(I.getCompareOperand()),
4445                                    getValue(I.getNewValOperand()), MMO);
4446 
4447   SDValue OutChain = L.getValue(2);
4448 
4449   setValue(&I, L);
4450   DAG.setRoot(OutChain);
4451 }
4452 
4453 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4454   SDLoc dl = getCurSDLoc();
4455   ISD::NodeType NT;
4456   switch (I.getOperation()) {
4457   default: llvm_unreachable("Unknown atomicrmw operation");
4458   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4459   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4460   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4461   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4462   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4463   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4464   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4465   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4466   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4467   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4468   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4469   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4470   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4471   }
4472   AtomicOrdering Ordering = I.getOrdering();
4473   SyncScope::ID SSID = I.getSyncScopeID();
4474 
4475   SDValue InChain = getRoot();
4476 
4477   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4478   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4479   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4480 
4481   MachineFunction &MF = DAG.getMachineFunction();
4482   MachineMemOperand *MMO = MF.getMachineMemOperand(
4483       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4484       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4485 
4486   SDValue L =
4487     DAG.getAtomic(NT, dl, MemVT, InChain,
4488                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4489                   MMO);
4490 
4491   SDValue OutChain = L.getValue(1);
4492 
4493   setValue(&I, L);
4494   DAG.setRoot(OutChain);
4495 }
4496 
4497 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4498   SDLoc dl = getCurSDLoc();
4499   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4500   SDValue Ops[3];
4501   Ops[0] = getRoot();
4502   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4503                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4504   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4505                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4506   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4507 }
4508 
4509 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4510   SDLoc dl = getCurSDLoc();
4511   AtomicOrdering Order = I.getOrdering();
4512   SyncScope::ID SSID = I.getSyncScopeID();
4513 
4514   SDValue InChain = getRoot();
4515 
4516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4517   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4518   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4519 
4520   if (!TLI.supportsUnalignedAtomics() &&
4521       I.getAlignment() < MemVT.getSizeInBits() / 8)
4522     report_fatal_error("Cannot generate unaligned atomic load");
4523 
4524   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4525 
4526   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4527       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4528       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4529 
4530   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4531 
4532   SDValue Ptr = getValue(I.getPointerOperand());
4533 
4534   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4535     // TODO: Once this is better exercised by tests, it should be merged with
4536     // the normal path for loads to prevent future divergence.
4537     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4538     if (MemVT != VT)
4539       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4540 
4541     setValue(&I, L);
4542     SDValue OutChain = L.getValue(1);
4543     if (!I.isUnordered())
4544       DAG.setRoot(OutChain);
4545     else
4546       PendingLoads.push_back(OutChain);
4547     return;
4548   }
4549 
4550   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4551                             Ptr, MMO);
4552 
4553   SDValue OutChain = L.getValue(1);
4554   if (MemVT != VT)
4555     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4556 
4557   setValue(&I, L);
4558   DAG.setRoot(OutChain);
4559 }
4560 
4561 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4562   SDLoc dl = getCurSDLoc();
4563 
4564   AtomicOrdering Ordering = I.getOrdering();
4565   SyncScope::ID SSID = I.getSyncScopeID();
4566 
4567   SDValue InChain = getRoot();
4568 
4569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4570   EVT MemVT =
4571       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4572 
4573   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4574     report_fatal_error("Cannot generate unaligned atomic store");
4575 
4576   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4577 
4578   MachineFunction &MF = DAG.getMachineFunction();
4579   MachineMemOperand *MMO = MF.getMachineMemOperand(
4580       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4581       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4582 
4583   SDValue Val = getValue(I.getValueOperand());
4584   if (Val.getValueType() != MemVT)
4585     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4586   SDValue Ptr = getValue(I.getPointerOperand());
4587 
4588   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4589     // TODO: Once this is better exercised by tests, it should be merged with
4590     // the normal path for stores to prevent future divergence.
4591     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4592     DAG.setRoot(S);
4593     return;
4594   }
4595   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4596                                    Ptr, Val, MMO);
4597 
4598 
4599   DAG.setRoot(OutChain);
4600 }
4601 
4602 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4603 /// node.
4604 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4605                                                unsigned Intrinsic) {
4606   // Ignore the callsite's attributes. A specific call site may be marked with
4607   // readnone, but the lowering code will expect the chain based on the
4608   // definition.
4609   const Function *F = I.getCalledFunction();
4610   bool HasChain = !F->doesNotAccessMemory();
4611   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4612 
4613   // Build the operand list.
4614   SmallVector<SDValue, 8> Ops;
4615   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4616     if (OnlyLoad) {
4617       // We don't need to serialize loads against other loads.
4618       Ops.push_back(DAG.getRoot());
4619     } else {
4620       Ops.push_back(getRoot());
4621     }
4622   }
4623 
4624   // Info is set by getTgtMemInstrinsic
4625   TargetLowering::IntrinsicInfo Info;
4626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4627   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4628                                                DAG.getMachineFunction(),
4629                                                Intrinsic);
4630 
4631   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4632   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4633       Info.opc == ISD::INTRINSIC_W_CHAIN)
4634     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4635                                         TLI.getPointerTy(DAG.getDataLayout())));
4636 
4637   // Add all operands of the call to the operand list.
4638   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4639     const Value *Arg = I.getArgOperand(i);
4640     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4641       Ops.push_back(getValue(Arg));
4642       continue;
4643     }
4644 
4645     // Use TargetConstant instead of a regular constant for immarg.
4646     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4647     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4648       assert(CI->getBitWidth() <= 64 &&
4649              "large intrinsic immediates not handled");
4650       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4651     } else {
4652       Ops.push_back(
4653           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4654     }
4655   }
4656 
4657   SmallVector<EVT, 4> ValueVTs;
4658   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4659 
4660   if (HasChain)
4661     ValueVTs.push_back(MVT::Other);
4662 
4663   SDVTList VTs = DAG.getVTList(ValueVTs);
4664 
4665   // Create the node.
4666   SDValue Result;
4667   if (IsTgtIntrinsic) {
4668     // This is target intrinsic that touches memory
4669     AAMDNodes AAInfo;
4670     I.getAAMetadata(AAInfo);
4671     Result =
4672         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4673                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4674                                 Info.align, Info.flags, Info.size, AAInfo);
4675   } else if (!HasChain) {
4676     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4677   } else if (!I.getType()->isVoidTy()) {
4678     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4679   } else {
4680     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4681   }
4682 
4683   if (HasChain) {
4684     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4685     if (OnlyLoad)
4686       PendingLoads.push_back(Chain);
4687     else
4688       DAG.setRoot(Chain);
4689   }
4690 
4691   if (!I.getType()->isVoidTy()) {
4692     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4693       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4694       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4695     } else
4696       Result = lowerRangeToAssertZExt(DAG, I, Result);
4697 
4698     MaybeAlign Alignment = I.getRetAlign();
4699     if (!Alignment)
4700       Alignment = F->getAttributes().getRetAlignment();
4701     // Insert `assertalign` node if there's an alignment.
4702     if (InsertAssertAlign && Alignment) {
4703       Result =
4704           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4705     }
4706 
4707     setValue(&I, Result);
4708   }
4709 }
4710 
4711 /// GetSignificand - Get the significand and build it into a floating-point
4712 /// number with exponent of 1:
4713 ///
4714 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4715 ///
4716 /// where Op is the hexadecimal representation of floating point value.
4717 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4718   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4719                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4720   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4721                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4722   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4723 }
4724 
4725 /// GetExponent - Get the exponent:
4726 ///
4727 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4728 ///
4729 /// where Op is the hexadecimal representation of floating point value.
4730 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4731                            const TargetLowering &TLI, const SDLoc &dl) {
4732   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4733                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4734   SDValue t1 = DAG.getNode(
4735       ISD::SRL, dl, MVT::i32, t0,
4736       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4737   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4738                            DAG.getConstant(127, dl, MVT::i32));
4739   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4740 }
4741 
4742 /// getF32Constant - Get 32-bit floating point constant.
4743 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4744                               const SDLoc &dl) {
4745   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4746                            MVT::f32);
4747 }
4748 
4749 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4750                                        SelectionDAG &DAG) {
4751   // TODO: What fast-math-flags should be set on the floating-point nodes?
4752 
4753   //   IntegerPartOfX = ((int32_t)(t0);
4754   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4755 
4756   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4757   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4758   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4759 
4760   //   IntegerPartOfX <<= 23;
4761   IntegerPartOfX = DAG.getNode(
4762       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4763       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4764                                   DAG.getDataLayout())));
4765 
4766   SDValue TwoToFractionalPartOfX;
4767   if (LimitFloatPrecision <= 6) {
4768     // For floating-point precision of 6:
4769     //
4770     //   TwoToFractionalPartOfX =
4771     //     0.997535578f +
4772     //       (0.735607626f + 0.252464424f * x) * x;
4773     //
4774     // error 0.0144103317, which is 6 bits
4775     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4776                              getF32Constant(DAG, 0x3e814304, dl));
4777     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4778                              getF32Constant(DAG, 0x3f3c50c8, dl));
4779     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4780     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4781                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4782   } else if (LimitFloatPrecision <= 12) {
4783     // For floating-point precision of 12:
4784     //
4785     //   TwoToFractionalPartOfX =
4786     //     0.999892986f +
4787     //       (0.696457318f +
4788     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4789     //
4790     // error 0.000107046256, which is 13 to 14 bits
4791     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4792                              getF32Constant(DAG, 0x3da235e3, dl));
4793     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4794                              getF32Constant(DAG, 0x3e65b8f3, dl));
4795     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4796     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4797                              getF32Constant(DAG, 0x3f324b07, dl));
4798     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4799     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4800                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4801   } else { // LimitFloatPrecision <= 18
4802     // For floating-point precision of 18:
4803     //
4804     //   TwoToFractionalPartOfX =
4805     //     0.999999982f +
4806     //       (0.693148872f +
4807     //         (0.240227044f +
4808     //           (0.554906021e-1f +
4809     //             (0.961591928e-2f +
4810     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4811     // error 2.47208000*10^(-7), which is better than 18 bits
4812     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4813                              getF32Constant(DAG, 0x3924b03e, dl));
4814     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4815                              getF32Constant(DAG, 0x3ab24b87, dl));
4816     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4817     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4818                              getF32Constant(DAG, 0x3c1d8c17, dl));
4819     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4820     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4821                              getF32Constant(DAG, 0x3d634a1d, dl));
4822     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4823     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4824                              getF32Constant(DAG, 0x3e75fe14, dl));
4825     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4826     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4827                               getF32Constant(DAG, 0x3f317234, dl));
4828     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4829     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4830                                          getF32Constant(DAG, 0x3f800000, dl));
4831   }
4832 
4833   // Add the exponent into the result in integer domain.
4834   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4835   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4836                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4837 }
4838 
4839 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4840 /// limited-precision mode.
4841 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4842                          const TargetLowering &TLI, SDNodeFlags Flags) {
4843   if (Op.getValueType() == MVT::f32 &&
4844       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4845 
4846     // Put the exponent in the right bit position for later addition to the
4847     // final result:
4848     //
4849     // t0 = Op * log2(e)
4850 
4851     // TODO: What fast-math-flags should be set here?
4852     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4853                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4854     return getLimitedPrecisionExp2(t0, dl, DAG);
4855   }
4856 
4857   // No special expansion.
4858   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4859 }
4860 
4861 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4862 /// limited-precision mode.
4863 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4864                          const TargetLowering &TLI, SDNodeFlags Flags) {
4865   // TODO: What fast-math-flags should be set on the floating-point nodes?
4866 
4867   if (Op.getValueType() == MVT::f32 &&
4868       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4869     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4870 
4871     // Scale the exponent by log(2).
4872     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4873     SDValue LogOfExponent =
4874         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4875                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4876 
4877     // Get the significand and build it into a floating-point number with
4878     // exponent of 1.
4879     SDValue X = GetSignificand(DAG, Op1, dl);
4880 
4881     SDValue LogOfMantissa;
4882     if (LimitFloatPrecision <= 6) {
4883       // For floating-point precision of 6:
4884       //
4885       //   LogofMantissa =
4886       //     -1.1609546f +
4887       //       (1.4034025f - 0.23903021f * x) * x;
4888       //
4889       // error 0.0034276066, which is better than 8 bits
4890       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4891                                getF32Constant(DAG, 0xbe74c456, dl));
4892       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4893                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4894       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4895       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4896                                   getF32Constant(DAG, 0x3f949a29, dl));
4897     } else if (LimitFloatPrecision <= 12) {
4898       // For floating-point precision of 12:
4899       //
4900       //   LogOfMantissa =
4901       //     -1.7417939f +
4902       //       (2.8212026f +
4903       //         (-1.4699568f +
4904       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4905       //
4906       // error 0.000061011436, which is 14 bits
4907       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4908                                getF32Constant(DAG, 0xbd67b6d6, dl));
4909       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4910                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4911       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4912       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4913                                getF32Constant(DAG, 0x3fbc278b, dl));
4914       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4915       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4916                                getF32Constant(DAG, 0x40348e95, dl));
4917       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4918       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4919                                   getF32Constant(DAG, 0x3fdef31a, dl));
4920     } else { // LimitFloatPrecision <= 18
4921       // For floating-point precision of 18:
4922       //
4923       //   LogOfMantissa =
4924       //     -2.1072184f +
4925       //       (4.2372794f +
4926       //         (-3.7029485f +
4927       //           (2.2781945f +
4928       //             (-0.87823314f +
4929       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4930       //
4931       // error 0.0000023660568, which is better than 18 bits
4932       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4933                                getF32Constant(DAG, 0xbc91e5ac, dl));
4934       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4935                                getF32Constant(DAG, 0x3e4350aa, dl));
4936       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4937       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4938                                getF32Constant(DAG, 0x3f60d3e3, dl));
4939       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4940       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4941                                getF32Constant(DAG, 0x4011cdf0, dl));
4942       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4943       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4944                                getF32Constant(DAG, 0x406cfd1c, dl));
4945       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4946       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4947                                getF32Constant(DAG, 0x408797cb, dl));
4948       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4949       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4950                                   getF32Constant(DAG, 0x4006dcab, dl));
4951     }
4952 
4953     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4954   }
4955 
4956   // No special expansion.
4957   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
4958 }
4959 
4960 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4961 /// limited-precision mode.
4962 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4963                           const TargetLowering &TLI, SDNodeFlags Flags) {
4964   // TODO: What fast-math-flags should be set on the floating-point nodes?
4965 
4966   if (Op.getValueType() == MVT::f32 &&
4967       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4968     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4969 
4970     // Get the exponent.
4971     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4972 
4973     // Get the significand and build it into a floating-point number with
4974     // exponent of 1.
4975     SDValue X = GetSignificand(DAG, Op1, dl);
4976 
4977     // Different possible minimax approximations of significand in
4978     // floating-point for various degrees of accuracy over [1,2].
4979     SDValue Log2ofMantissa;
4980     if (LimitFloatPrecision <= 6) {
4981       // For floating-point precision of 6:
4982       //
4983       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4984       //
4985       // error 0.0049451742, which is more than 7 bits
4986       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4987                                getF32Constant(DAG, 0xbeb08fe0, dl));
4988       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4989                                getF32Constant(DAG, 0x40019463, dl));
4990       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4991       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4992                                    getF32Constant(DAG, 0x3fd6633d, dl));
4993     } else if (LimitFloatPrecision <= 12) {
4994       // For floating-point precision of 12:
4995       //
4996       //   Log2ofMantissa =
4997       //     -2.51285454f +
4998       //       (4.07009056f +
4999       //         (-2.12067489f +
5000       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5001       //
5002       // error 0.0000876136000, which is better than 13 bits
5003       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5004                                getF32Constant(DAG, 0xbda7262e, dl));
5005       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5006                                getF32Constant(DAG, 0x3f25280b, dl));
5007       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5008       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5009                                getF32Constant(DAG, 0x4007b923, dl));
5010       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5011       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5012                                getF32Constant(DAG, 0x40823e2f, dl));
5013       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5014       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5015                                    getF32Constant(DAG, 0x4020d29c, dl));
5016     } else { // LimitFloatPrecision <= 18
5017       // For floating-point precision of 18:
5018       //
5019       //   Log2ofMantissa =
5020       //     -3.0400495f +
5021       //       (6.1129976f +
5022       //         (-5.3420409f +
5023       //           (3.2865683f +
5024       //             (-1.2669343f +
5025       //               (0.27515199f -
5026       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5027       //
5028       // error 0.0000018516, which is better than 18 bits
5029       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5030                                getF32Constant(DAG, 0xbcd2769e, dl));
5031       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5032                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5033       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5034       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5035                                getF32Constant(DAG, 0x3fa22ae7, dl));
5036       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5037       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5038                                getF32Constant(DAG, 0x40525723, dl));
5039       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5040       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5041                                getF32Constant(DAG, 0x40aaf200, dl));
5042       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5043       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5044                                getF32Constant(DAG, 0x40c39dad, dl));
5045       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5046       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5047                                    getF32Constant(DAG, 0x4042902c, dl));
5048     }
5049 
5050     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5051   }
5052 
5053   // No special expansion.
5054   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5055 }
5056 
5057 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5058 /// limited-precision mode.
5059 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5060                            const TargetLowering &TLI, SDNodeFlags Flags) {
5061   // TODO: What fast-math-flags should be set on the floating-point nodes?
5062 
5063   if (Op.getValueType() == MVT::f32 &&
5064       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5065     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5066 
5067     // Scale the exponent by log10(2) [0.30102999f].
5068     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5069     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5070                                         getF32Constant(DAG, 0x3e9a209a, dl));
5071 
5072     // Get the significand and build it into a floating-point number with
5073     // exponent of 1.
5074     SDValue X = GetSignificand(DAG, Op1, dl);
5075 
5076     SDValue Log10ofMantissa;
5077     if (LimitFloatPrecision <= 6) {
5078       // For floating-point precision of 6:
5079       //
5080       //   Log10ofMantissa =
5081       //     -0.50419619f +
5082       //       (0.60948995f - 0.10380950f * x) * x;
5083       //
5084       // error 0.0014886165, which is 6 bits
5085       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5086                                getF32Constant(DAG, 0xbdd49a13, dl));
5087       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5088                                getF32Constant(DAG, 0x3f1c0789, dl));
5089       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5090       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5091                                     getF32Constant(DAG, 0x3f011300, dl));
5092     } else if (LimitFloatPrecision <= 12) {
5093       // For floating-point precision of 12:
5094       //
5095       //   Log10ofMantissa =
5096       //     -0.64831180f +
5097       //       (0.91751397f +
5098       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5099       //
5100       // error 0.00019228036, which is better than 12 bits
5101       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5102                                getF32Constant(DAG, 0x3d431f31, dl));
5103       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5104                                getF32Constant(DAG, 0x3ea21fb2, dl));
5105       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5106       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5107                                getF32Constant(DAG, 0x3f6ae232, dl));
5108       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5109       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5110                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5111     } else { // LimitFloatPrecision <= 18
5112       // For floating-point precision of 18:
5113       //
5114       //   Log10ofMantissa =
5115       //     -0.84299375f +
5116       //       (1.5327582f +
5117       //         (-1.0688956f +
5118       //           (0.49102474f +
5119       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5120       //
5121       // error 0.0000037995730, which is better than 18 bits
5122       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5123                                getF32Constant(DAG, 0x3c5d51ce, dl));
5124       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5125                                getF32Constant(DAG, 0x3e00685a, dl));
5126       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5127       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5128                                getF32Constant(DAG, 0x3efb6798, dl));
5129       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5130       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5131                                getF32Constant(DAG, 0x3f88d192, dl));
5132       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5133       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5134                                getF32Constant(DAG, 0x3fc4316c, dl));
5135       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5136       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5137                                     getF32Constant(DAG, 0x3f57ce70, dl));
5138     }
5139 
5140     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5141   }
5142 
5143   // No special expansion.
5144   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5145 }
5146 
5147 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5148 /// limited-precision mode.
5149 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5150                           const TargetLowering &TLI, SDNodeFlags Flags) {
5151   if (Op.getValueType() == MVT::f32 &&
5152       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5153     return getLimitedPrecisionExp2(Op, dl, DAG);
5154 
5155   // No special expansion.
5156   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5157 }
5158 
5159 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5160 /// limited-precision mode with x == 10.0f.
5161 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5162                          SelectionDAG &DAG, const TargetLowering &TLI,
5163                          SDNodeFlags Flags) {
5164   bool IsExp10 = false;
5165   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5166       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5167     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5168       APFloat Ten(10.0f);
5169       IsExp10 = LHSC->isExactlyValue(Ten);
5170     }
5171   }
5172 
5173   // TODO: What fast-math-flags should be set on the FMUL node?
5174   if (IsExp10) {
5175     // Put the exponent in the right bit position for later addition to the
5176     // final result:
5177     //
5178     //   #define LOG2OF10 3.3219281f
5179     //   t0 = Op * LOG2OF10;
5180     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5181                              getF32Constant(DAG, 0x40549a78, dl));
5182     return getLimitedPrecisionExp2(t0, dl, DAG);
5183   }
5184 
5185   // No special expansion.
5186   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5187 }
5188 
5189 /// ExpandPowI - Expand a llvm.powi intrinsic.
5190 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5191                           SelectionDAG &DAG) {
5192   // If RHS is a constant, we can expand this out to a multiplication tree,
5193   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5194   // optimizing for size, we only want to do this if the expansion would produce
5195   // a small number of multiplies, otherwise we do the full expansion.
5196   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5197     // Get the exponent as a positive value.
5198     unsigned Val = RHSC->getSExtValue();
5199     if ((int)Val < 0) Val = -Val;
5200 
5201     // powi(x, 0) -> 1.0
5202     if (Val == 0)
5203       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5204 
5205     bool OptForSize = DAG.shouldOptForSize();
5206     if (!OptForSize ||
5207         // If optimizing for size, don't insert too many multiplies.
5208         // This inserts up to 5 multiplies.
5209         countPopulation(Val) + Log2_32(Val) < 7) {
5210       // We use the simple binary decomposition method to generate the multiply
5211       // sequence.  There are more optimal ways to do this (for example,
5212       // powi(x,15) generates one more multiply than it should), but this has
5213       // the benefit of being both really simple and much better than a libcall.
5214       SDValue Res;  // Logically starts equal to 1.0
5215       SDValue CurSquare = LHS;
5216       // TODO: Intrinsics should have fast-math-flags that propagate to these
5217       // nodes.
5218       while (Val) {
5219         if (Val & 1) {
5220           if (Res.getNode())
5221             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5222           else
5223             Res = CurSquare;  // 1.0*CurSquare.
5224         }
5225 
5226         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5227                                 CurSquare, CurSquare);
5228         Val >>= 1;
5229       }
5230 
5231       // If the original was negative, invert the result, producing 1/(x*x*x).
5232       if (RHSC->getSExtValue() < 0)
5233         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5234                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5235       return Res;
5236     }
5237   }
5238 
5239   // Otherwise, expand to a libcall.
5240   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5241 }
5242 
5243 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5244                             SDValue LHS, SDValue RHS, SDValue Scale,
5245                             SelectionDAG &DAG, const TargetLowering &TLI) {
5246   EVT VT = LHS.getValueType();
5247   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5248   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5249   LLVMContext &Ctx = *DAG.getContext();
5250 
5251   // If the type is legal but the operation isn't, this node might survive all
5252   // the way to operation legalization. If we end up there and we do not have
5253   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5254   // node.
5255 
5256   // Coax the legalizer into expanding the node during type legalization instead
5257   // by bumping the size by one bit. This will force it to Promote, enabling the
5258   // early expansion and avoiding the need to expand later.
5259 
5260   // We don't have to do this if Scale is 0; that can always be expanded, unless
5261   // it's a saturating signed operation. Those can experience true integer
5262   // division overflow, a case which we must avoid.
5263 
5264   // FIXME: We wouldn't have to do this (or any of the early
5265   // expansion/promotion) if it was possible to expand a libcall of an
5266   // illegal type during operation legalization. But it's not, so things
5267   // get a bit hacky.
5268   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5269   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5270       (TLI.isTypeLegal(VT) ||
5271        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5272     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5273         Opcode, VT, ScaleInt);
5274     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5275       EVT PromVT;
5276       if (VT.isScalarInteger())
5277         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5278       else if (VT.isVector()) {
5279         PromVT = VT.getVectorElementType();
5280         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5281         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5282       } else
5283         llvm_unreachable("Wrong VT for DIVFIX?");
5284       if (Signed) {
5285         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5286         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5287       } else {
5288         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5289         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5290       }
5291       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5292       // For saturating operations, we need to shift up the LHS to get the
5293       // proper saturation width, and then shift down again afterwards.
5294       if (Saturating)
5295         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5296                           DAG.getConstant(1, DL, ShiftTy));
5297       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5298       if (Saturating)
5299         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5300                           DAG.getConstant(1, DL, ShiftTy));
5301       return DAG.getZExtOrTrunc(Res, DL, VT);
5302     }
5303   }
5304 
5305   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5306 }
5307 
5308 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5309 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5310 static void
5311 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5312                      const SDValue &N) {
5313   switch (N.getOpcode()) {
5314   case ISD::CopyFromReg: {
5315     SDValue Op = N.getOperand(1);
5316     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5317                       Op.getValueType().getSizeInBits());
5318     return;
5319   }
5320   case ISD::BITCAST:
5321   case ISD::AssertZext:
5322   case ISD::AssertSext:
5323   case ISD::TRUNCATE:
5324     getUnderlyingArgRegs(Regs, N.getOperand(0));
5325     return;
5326   case ISD::BUILD_PAIR:
5327   case ISD::BUILD_VECTOR:
5328   case ISD::CONCAT_VECTORS:
5329     for (SDValue Op : N->op_values())
5330       getUnderlyingArgRegs(Regs, Op);
5331     return;
5332   default:
5333     return;
5334   }
5335 }
5336 
5337 /// If the DbgValueInst is a dbg_value of a function argument, create the
5338 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5339 /// instruction selection, they will be inserted to the entry BB.
5340 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5341     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5342     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5343   const Argument *Arg = dyn_cast<Argument>(V);
5344   if (!Arg)
5345     return false;
5346 
5347   if (!IsDbgDeclare) {
5348     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5349     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5350     // the entry block.
5351     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5352     if (!IsInEntryBlock)
5353       return false;
5354 
5355     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5356     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5357     // variable that also is a param.
5358     //
5359     // Although, if we are at the top of the entry block already, we can still
5360     // emit using ArgDbgValue. This might catch some situations when the
5361     // dbg.value refers to an argument that isn't used in the entry block, so
5362     // any CopyToReg node would be optimized out and the only way to express
5363     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5364     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5365     // we should only emit as ArgDbgValue if the Variable is an argument to the
5366     // current function, and the dbg.value intrinsic is found in the entry
5367     // block.
5368     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5369         !DL->getInlinedAt();
5370     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5371     if (!IsInPrologue && !VariableIsFunctionInputArg)
5372       return false;
5373 
5374     // Here we assume that a function argument on IR level only can be used to
5375     // describe one input parameter on source level. If we for example have
5376     // source code like this
5377     //
5378     //    struct A { long x, y; };
5379     //    void foo(struct A a, long b) {
5380     //      ...
5381     //      b = a.x;
5382     //      ...
5383     //    }
5384     //
5385     // and IR like this
5386     //
5387     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5388     //  entry:
5389     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5390     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5391     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5392     //    ...
5393     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5394     //    ...
5395     //
5396     // then the last dbg.value is describing a parameter "b" using a value that
5397     // is an argument. But since we already has used %a1 to describe a parameter
5398     // we should not handle that last dbg.value here (that would result in an
5399     // incorrect hoisting of the DBG_VALUE to the function entry).
5400     // Notice that we allow one dbg.value per IR level argument, to accommodate
5401     // for the situation with fragments above.
5402     if (VariableIsFunctionInputArg) {
5403       unsigned ArgNo = Arg->getArgNo();
5404       if (ArgNo >= FuncInfo.DescribedArgs.size())
5405         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5406       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5407         return false;
5408       FuncInfo.DescribedArgs.set(ArgNo);
5409     }
5410   }
5411 
5412   MachineFunction &MF = DAG.getMachineFunction();
5413   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5414 
5415   bool IsIndirect = false;
5416   Optional<MachineOperand> Op;
5417   // Some arguments' frame index is recorded during argument lowering.
5418   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5419   if (FI != std::numeric_limits<int>::max())
5420     Op = MachineOperand::CreateFI(FI);
5421 
5422   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5423   if (!Op && N.getNode()) {
5424     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5425     Register Reg;
5426     if (ArgRegsAndSizes.size() == 1)
5427       Reg = ArgRegsAndSizes.front().first;
5428 
5429     if (Reg && Reg.isVirtual()) {
5430       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5431       Register PR = RegInfo.getLiveInPhysReg(Reg);
5432       if (PR)
5433         Reg = PR;
5434     }
5435     if (Reg) {
5436       Op = MachineOperand::CreateReg(Reg, false);
5437       IsIndirect = IsDbgDeclare;
5438     }
5439   }
5440 
5441   if (!Op && N.getNode()) {
5442     // Check if frame index is available.
5443     SDValue LCandidate = peekThroughBitcasts(N);
5444     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5445       if (FrameIndexSDNode *FINode =
5446           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5447         Op = MachineOperand::CreateFI(FINode->getIndex());
5448   }
5449 
5450   if (!Op) {
5451     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5452     auto splitMultiRegDbgValue
5453       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5454       unsigned Offset = 0;
5455       for (auto RegAndSize : SplitRegs) {
5456         // If the expression is already a fragment, the current register
5457         // offset+size might extend beyond the fragment. In this case, only
5458         // the register bits that are inside the fragment are relevant.
5459         int RegFragmentSizeInBits = RegAndSize.second;
5460         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5461           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5462           // The register is entirely outside the expression fragment,
5463           // so is irrelevant for debug info.
5464           if (Offset >= ExprFragmentSizeInBits)
5465             break;
5466           // The register is partially outside the expression fragment, only
5467           // the low bits within the fragment are relevant for debug info.
5468           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5469             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5470           }
5471         }
5472 
5473         auto FragmentExpr = DIExpression::createFragmentExpression(
5474             Expr, Offset, RegFragmentSizeInBits);
5475         Offset += RegAndSize.second;
5476         // If a valid fragment expression cannot be created, the variable's
5477         // correct value cannot be determined and so it is set as Undef.
5478         if (!FragmentExpr) {
5479           SDDbgValue *SDV = DAG.getConstantDbgValue(
5480               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5481           DAG.AddDbgValue(SDV, nullptr, false);
5482           continue;
5483         }
5484         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5485         FuncInfo.ArgDbgValues.push_back(
5486           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5487                   RegAndSize.first, Variable, *FragmentExpr));
5488       }
5489     };
5490 
5491     // Check if ValueMap has reg number.
5492     DenseMap<const Value *, Register>::const_iterator
5493       VMI = FuncInfo.ValueMap.find(V);
5494     if (VMI != FuncInfo.ValueMap.end()) {
5495       const auto &TLI = DAG.getTargetLoweringInfo();
5496       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5497                        V->getType(), None);
5498       if (RFV.occupiesMultipleRegs()) {
5499         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5500         return true;
5501       }
5502 
5503       Op = MachineOperand::CreateReg(VMI->second, false);
5504       IsIndirect = IsDbgDeclare;
5505     } else if (ArgRegsAndSizes.size() > 1) {
5506       // This was split due to the calling convention, and no virtual register
5507       // mapping exists for the value.
5508       splitMultiRegDbgValue(ArgRegsAndSizes);
5509       return true;
5510     }
5511   }
5512 
5513   if (!Op)
5514     return false;
5515 
5516   assert(Variable->isValidLocationForIntrinsic(DL) &&
5517          "Expected inlined-at fields to agree");
5518   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5519   FuncInfo.ArgDbgValues.push_back(
5520       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5521               *Op, Variable, Expr));
5522 
5523   return true;
5524 }
5525 
5526 /// Return the appropriate SDDbgValue based on N.
5527 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5528                                              DILocalVariable *Variable,
5529                                              DIExpression *Expr,
5530                                              const DebugLoc &dl,
5531                                              unsigned DbgSDNodeOrder) {
5532   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5533     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5534     // stack slot locations.
5535     //
5536     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5537     // debug values here after optimization:
5538     //
5539     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5540     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5541     //
5542     // Both describe the direct values of their associated variables.
5543     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5544                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5545   }
5546   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5547                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5548 }
5549 
5550 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5551   switch (Intrinsic) {
5552   case Intrinsic::smul_fix:
5553     return ISD::SMULFIX;
5554   case Intrinsic::umul_fix:
5555     return ISD::UMULFIX;
5556   case Intrinsic::smul_fix_sat:
5557     return ISD::SMULFIXSAT;
5558   case Intrinsic::umul_fix_sat:
5559     return ISD::UMULFIXSAT;
5560   case Intrinsic::sdiv_fix:
5561     return ISD::SDIVFIX;
5562   case Intrinsic::udiv_fix:
5563     return ISD::UDIVFIX;
5564   case Intrinsic::sdiv_fix_sat:
5565     return ISD::SDIVFIXSAT;
5566   case Intrinsic::udiv_fix_sat:
5567     return ISD::UDIVFIXSAT;
5568   default:
5569     llvm_unreachable("Unhandled fixed point intrinsic");
5570   }
5571 }
5572 
5573 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5574                                            const char *FunctionName) {
5575   assert(FunctionName && "FunctionName must not be nullptr");
5576   SDValue Callee = DAG.getExternalSymbol(
5577       FunctionName,
5578       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5579   LowerCallTo(I, Callee, I.isTailCall());
5580 }
5581 
5582 /// Given a @llvm.call.preallocated.setup, return the corresponding
5583 /// preallocated call.
5584 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5585   assert(cast<CallBase>(PreallocatedSetup)
5586                  ->getCalledFunction()
5587                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5588          "expected call_preallocated_setup Value");
5589   for (auto *U : PreallocatedSetup->users()) {
5590     auto *UseCall = cast<CallBase>(U);
5591     const Function *Fn = UseCall->getCalledFunction();
5592     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5593       return UseCall;
5594     }
5595   }
5596   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5597 }
5598 
5599 /// Lower the call to the specified intrinsic function.
5600 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5601                                              unsigned Intrinsic) {
5602   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5603   SDLoc sdl = getCurSDLoc();
5604   DebugLoc dl = getCurDebugLoc();
5605   SDValue Res;
5606 
5607   SDNodeFlags Flags;
5608   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5609     Flags.copyFMF(*FPOp);
5610 
5611   switch (Intrinsic) {
5612   default:
5613     // By default, turn this into a target intrinsic node.
5614     visitTargetIntrinsic(I, Intrinsic);
5615     return;
5616   case Intrinsic::vscale: {
5617     match(&I, m_VScale(DAG.getDataLayout()));
5618     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5619     setValue(&I,
5620              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5621     return;
5622   }
5623   case Intrinsic::vastart:  visitVAStart(I); return;
5624   case Intrinsic::vaend:    visitVAEnd(I); return;
5625   case Intrinsic::vacopy:   visitVACopy(I); return;
5626   case Intrinsic::returnaddress:
5627     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5628                              TLI.getPointerTy(DAG.getDataLayout()),
5629                              getValue(I.getArgOperand(0))));
5630     return;
5631   case Intrinsic::addressofreturnaddress:
5632     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5633                              TLI.getPointerTy(DAG.getDataLayout())));
5634     return;
5635   case Intrinsic::sponentry:
5636     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5637                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5638     return;
5639   case Intrinsic::frameaddress:
5640     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5641                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5642                              getValue(I.getArgOperand(0))));
5643     return;
5644   case Intrinsic::read_volatile_register:
5645   case Intrinsic::read_register: {
5646     Value *Reg = I.getArgOperand(0);
5647     SDValue Chain = getRoot();
5648     SDValue RegName =
5649         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5650     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5651     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5652       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5653     setValue(&I, Res);
5654     DAG.setRoot(Res.getValue(1));
5655     return;
5656   }
5657   case Intrinsic::write_register: {
5658     Value *Reg = I.getArgOperand(0);
5659     Value *RegValue = I.getArgOperand(1);
5660     SDValue Chain = getRoot();
5661     SDValue RegName =
5662         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5663     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5664                             RegName, getValue(RegValue)));
5665     return;
5666   }
5667   case Intrinsic::memcpy: {
5668     const auto &MCI = cast<MemCpyInst>(I);
5669     SDValue Op1 = getValue(I.getArgOperand(0));
5670     SDValue Op2 = getValue(I.getArgOperand(1));
5671     SDValue Op3 = getValue(I.getArgOperand(2));
5672     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5673     Align DstAlign = MCI.getDestAlign().valueOrOne();
5674     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5675     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5676     bool isVol = MCI.isVolatile();
5677     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5678     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5679     // node.
5680     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5681     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5682                                /* AlwaysInline */ false, isTC,
5683                                MachinePointerInfo(I.getArgOperand(0)),
5684                                MachinePointerInfo(I.getArgOperand(1)));
5685     updateDAGForMaybeTailCall(MC);
5686     return;
5687   }
5688   case Intrinsic::memcpy_inline: {
5689     const auto &MCI = cast<MemCpyInlineInst>(I);
5690     SDValue Dst = getValue(I.getArgOperand(0));
5691     SDValue Src = getValue(I.getArgOperand(1));
5692     SDValue Size = getValue(I.getArgOperand(2));
5693     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5694     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5695     Align DstAlign = MCI.getDestAlign().valueOrOne();
5696     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5697     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5698     bool isVol = MCI.isVolatile();
5699     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5700     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5701     // node.
5702     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5703                                /* AlwaysInline */ true, isTC,
5704                                MachinePointerInfo(I.getArgOperand(0)),
5705                                MachinePointerInfo(I.getArgOperand(1)));
5706     updateDAGForMaybeTailCall(MC);
5707     return;
5708   }
5709   case Intrinsic::memset: {
5710     const auto &MSI = cast<MemSetInst>(I);
5711     SDValue Op1 = getValue(I.getArgOperand(0));
5712     SDValue Op2 = getValue(I.getArgOperand(1));
5713     SDValue Op3 = getValue(I.getArgOperand(2));
5714     // @llvm.memset defines 0 and 1 to both mean no alignment.
5715     Align Alignment = MSI.getDestAlign().valueOrOne();
5716     bool isVol = MSI.isVolatile();
5717     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5718     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5719     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5720                                MachinePointerInfo(I.getArgOperand(0)));
5721     updateDAGForMaybeTailCall(MS);
5722     return;
5723   }
5724   case Intrinsic::memmove: {
5725     const auto &MMI = cast<MemMoveInst>(I);
5726     SDValue Op1 = getValue(I.getArgOperand(0));
5727     SDValue Op2 = getValue(I.getArgOperand(1));
5728     SDValue Op3 = getValue(I.getArgOperand(2));
5729     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5730     Align DstAlign = MMI.getDestAlign().valueOrOne();
5731     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5732     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5733     bool isVol = MMI.isVolatile();
5734     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5735     // FIXME: Support passing different dest/src alignments to the memmove DAG
5736     // node.
5737     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5738     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5739                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5740                                 MachinePointerInfo(I.getArgOperand(1)));
5741     updateDAGForMaybeTailCall(MM);
5742     return;
5743   }
5744   case Intrinsic::memcpy_element_unordered_atomic: {
5745     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5746     SDValue Dst = getValue(MI.getRawDest());
5747     SDValue Src = getValue(MI.getRawSource());
5748     SDValue Length = getValue(MI.getLength());
5749 
5750     unsigned DstAlign = MI.getDestAlignment();
5751     unsigned SrcAlign = MI.getSourceAlignment();
5752     Type *LengthTy = MI.getLength()->getType();
5753     unsigned ElemSz = MI.getElementSizeInBytes();
5754     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5755     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5756                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5757                                      MachinePointerInfo(MI.getRawDest()),
5758                                      MachinePointerInfo(MI.getRawSource()));
5759     updateDAGForMaybeTailCall(MC);
5760     return;
5761   }
5762   case Intrinsic::memmove_element_unordered_atomic: {
5763     auto &MI = cast<AtomicMemMoveInst>(I);
5764     SDValue Dst = getValue(MI.getRawDest());
5765     SDValue Src = getValue(MI.getRawSource());
5766     SDValue Length = getValue(MI.getLength());
5767 
5768     unsigned DstAlign = MI.getDestAlignment();
5769     unsigned SrcAlign = MI.getSourceAlignment();
5770     Type *LengthTy = MI.getLength()->getType();
5771     unsigned ElemSz = MI.getElementSizeInBytes();
5772     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5773     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5774                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5775                                       MachinePointerInfo(MI.getRawDest()),
5776                                       MachinePointerInfo(MI.getRawSource()));
5777     updateDAGForMaybeTailCall(MC);
5778     return;
5779   }
5780   case Intrinsic::memset_element_unordered_atomic: {
5781     auto &MI = cast<AtomicMemSetInst>(I);
5782     SDValue Dst = getValue(MI.getRawDest());
5783     SDValue Val = getValue(MI.getValue());
5784     SDValue Length = getValue(MI.getLength());
5785 
5786     unsigned DstAlign = MI.getDestAlignment();
5787     Type *LengthTy = MI.getLength()->getType();
5788     unsigned ElemSz = MI.getElementSizeInBytes();
5789     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5790     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5791                                      LengthTy, ElemSz, isTC,
5792                                      MachinePointerInfo(MI.getRawDest()));
5793     updateDAGForMaybeTailCall(MC);
5794     return;
5795   }
5796   case Intrinsic::call_preallocated_setup: {
5797     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5798     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5799     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5800                               getRoot(), SrcValue);
5801     setValue(&I, Res);
5802     DAG.setRoot(Res);
5803     return;
5804   }
5805   case Intrinsic::call_preallocated_arg: {
5806     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5807     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5808     SDValue Ops[3];
5809     Ops[0] = getRoot();
5810     Ops[1] = SrcValue;
5811     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5812                                    MVT::i32); // arg index
5813     SDValue Res = DAG.getNode(
5814         ISD::PREALLOCATED_ARG, sdl,
5815         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5816     setValue(&I, Res);
5817     DAG.setRoot(Res.getValue(1));
5818     return;
5819   }
5820   case Intrinsic::dbg_addr:
5821   case Intrinsic::dbg_declare: {
5822     const auto &DI = cast<DbgVariableIntrinsic>(I);
5823     DILocalVariable *Variable = DI.getVariable();
5824     DIExpression *Expression = DI.getExpression();
5825     dropDanglingDebugInfo(Variable, Expression);
5826     assert(Variable && "Missing variable");
5827     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5828                       << "\n");
5829     // Check if address has undef value.
5830     const Value *Address = DI.getVariableLocation();
5831     if (!Address || isa<UndefValue>(Address) ||
5832         (Address->use_empty() && !isa<Argument>(Address))) {
5833       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5834                         << " (bad/undef/unused-arg address)\n");
5835       return;
5836     }
5837 
5838     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5839 
5840     // Check if this variable can be described by a frame index, typically
5841     // either as a static alloca or a byval parameter.
5842     int FI = std::numeric_limits<int>::max();
5843     if (const auto *AI =
5844             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5845       if (AI->isStaticAlloca()) {
5846         auto I = FuncInfo.StaticAllocaMap.find(AI);
5847         if (I != FuncInfo.StaticAllocaMap.end())
5848           FI = I->second;
5849       }
5850     } else if (const auto *Arg = dyn_cast<Argument>(
5851                    Address->stripInBoundsConstantOffsets())) {
5852       FI = FuncInfo.getArgumentFrameIndex(Arg);
5853     }
5854 
5855     // llvm.dbg.addr is control dependent and always generates indirect
5856     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5857     // the MachineFunction variable table.
5858     if (FI != std::numeric_limits<int>::max()) {
5859       if (Intrinsic == Intrinsic::dbg_addr) {
5860         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5861             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5862         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5863       } else {
5864         LLVM_DEBUG(dbgs() << "Skipping " << DI
5865                           << " (variable info stashed in MF side table)\n");
5866       }
5867       return;
5868     }
5869 
5870     SDValue &N = NodeMap[Address];
5871     if (!N.getNode() && isa<Argument>(Address))
5872       // Check unused arguments map.
5873       N = UnusedArgNodeMap[Address];
5874     SDDbgValue *SDV;
5875     if (N.getNode()) {
5876       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5877         Address = BCI->getOperand(0);
5878       // Parameters are handled specially.
5879       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5880       if (isParameter && FINode) {
5881         // Byval parameter. We have a frame index at this point.
5882         SDV =
5883             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5884                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5885       } else if (isa<Argument>(Address)) {
5886         // Address is an argument, so try to emit its dbg value using
5887         // virtual register info from the FuncInfo.ValueMap.
5888         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5889         return;
5890       } else {
5891         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5892                               true, dl, SDNodeOrder);
5893       }
5894       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5895     } else {
5896       // If Address is an argument then try to emit its dbg value using
5897       // virtual register info from the FuncInfo.ValueMap.
5898       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5899                                     N)) {
5900         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5901                           << " (could not emit func-arg dbg_value)\n");
5902       }
5903     }
5904     return;
5905   }
5906   case Intrinsic::dbg_label: {
5907     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5908     DILabel *Label = DI.getLabel();
5909     assert(Label && "Missing label");
5910 
5911     SDDbgLabel *SDV;
5912     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5913     DAG.AddDbgLabel(SDV);
5914     return;
5915   }
5916   case Intrinsic::dbg_value: {
5917     const DbgValueInst &DI = cast<DbgValueInst>(I);
5918     assert(DI.getVariable() && "Missing variable");
5919 
5920     DILocalVariable *Variable = DI.getVariable();
5921     DIExpression *Expression = DI.getExpression();
5922     dropDanglingDebugInfo(Variable, Expression);
5923     const Value *V = DI.getValue();
5924     if (!V)
5925       return;
5926 
5927     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5928         SDNodeOrder))
5929       return;
5930 
5931     // TODO: Dangling debug info will eventually either be resolved or produce
5932     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5933     // between the original dbg.value location and its resolved DBG_VALUE, which
5934     // we should ideally fill with an extra Undef DBG_VALUE.
5935 
5936     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5937     return;
5938   }
5939 
5940   case Intrinsic::eh_typeid_for: {
5941     // Find the type id for the given typeinfo.
5942     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5943     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5944     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5945     setValue(&I, Res);
5946     return;
5947   }
5948 
5949   case Intrinsic::eh_return_i32:
5950   case Intrinsic::eh_return_i64:
5951     DAG.getMachineFunction().setCallsEHReturn(true);
5952     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5953                             MVT::Other,
5954                             getControlRoot(),
5955                             getValue(I.getArgOperand(0)),
5956                             getValue(I.getArgOperand(1))));
5957     return;
5958   case Intrinsic::eh_unwind_init:
5959     DAG.getMachineFunction().setCallsUnwindInit(true);
5960     return;
5961   case Intrinsic::eh_dwarf_cfa:
5962     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5963                              TLI.getPointerTy(DAG.getDataLayout()),
5964                              getValue(I.getArgOperand(0))));
5965     return;
5966   case Intrinsic::eh_sjlj_callsite: {
5967     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5968     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5969     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5970     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5971 
5972     MMI.setCurrentCallSite(CI->getZExtValue());
5973     return;
5974   }
5975   case Intrinsic::eh_sjlj_functioncontext: {
5976     // Get and store the index of the function context.
5977     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5978     AllocaInst *FnCtx =
5979       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5980     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5981     MFI.setFunctionContextIndex(FI);
5982     return;
5983   }
5984   case Intrinsic::eh_sjlj_setjmp: {
5985     SDValue Ops[2];
5986     Ops[0] = getRoot();
5987     Ops[1] = getValue(I.getArgOperand(0));
5988     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5989                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5990     setValue(&I, Op.getValue(0));
5991     DAG.setRoot(Op.getValue(1));
5992     return;
5993   }
5994   case Intrinsic::eh_sjlj_longjmp:
5995     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5996                             getRoot(), getValue(I.getArgOperand(0))));
5997     return;
5998   case Intrinsic::eh_sjlj_setup_dispatch:
5999     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6000                             getRoot()));
6001     return;
6002   case Intrinsic::masked_gather:
6003     visitMaskedGather(I);
6004     return;
6005   case Intrinsic::masked_load:
6006     visitMaskedLoad(I);
6007     return;
6008   case Intrinsic::masked_scatter:
6009     visitMaskedScatter(I);
6010     return;
6011   case Intrinsic::masked_store:
6012     visitMaskedStore(I);
6013     return;
6014   case Intrinsic::masked_expandload:
6015     visitMaskedLoad(I, true /* IsExpanding */);
6016     return;
6017   case Intrinsic::masked_compressstore:
6018     visitMaskedStore(I, true /* IsCompressing */);
6019     return;
6020   case Intrinsic::powi:
6021     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6022                             getValue(I.getArgOperand(1)), DAG));
6023     return;
6024   case Intrinsic::log:
6025     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6026     return;
6027   case Intrinsic::log2:
6028     setValue(&I,
6029              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6030     return;
6031   case Intrinsic::log10:
6032     setValue(&I,
6033              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6034     return;
6035   case Intrinsic::exp:
6036     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6037     return;
6038   case Intrinsic::exp2:
6039     setValue(&I,
6040              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6041     return;
6042   case Intrinsic::pow:
6043     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6044                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6045     return;
6046   case Intrinsic::sqrt:
6047   case Intrinsic::fabs:
6048   case Intrinsic::sin:
6049   case Intrinsic::cos:
6050   case Intrinsic::floor:
6051   case Intrinsic::ceil:
6052   case Intrinsic::trunc:
6053   case Intrinsic::rint:
6054   case Intrinsic::nearbyint:
6055   case Intrinsic::round:
6056   case Intrinsic::roundeven:
6057   case Intrinsic::canonicalize: {
6058     unsigned Opcode;
6059     switch (Intrinsic) {
6060     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6061     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6062     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6063     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6064     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6065     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6066     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6067     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6068     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6069     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6070     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6071     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6072     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6073     }
6074 
6075     setValue(&I, DAG.getNode(Opcode, sdl,
6076                              getValue(I.getArgOperand(0)).getValueType(),
6077                              getValue(I.getArgOperand(0)), Flags));
6078     return;
6079   }
6080   case Intrinsic::lround:
6081   case Intrinsic::llround:
6082   case Intrinsic::lrint:
6083   case Intrinsic::llrint: {
6084     unsigned Opcode;
6085     switch (Intrinsic) {
6086     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6087     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6088     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6089     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6090     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6091     }
6092 
6093     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6094     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6095                              getValue(I.getArgOperand(0))));
6096     return;
6097   }
6098   case Intrinsic::minnum:
6099     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6100                              getValue(I.getArgOperand(0)).getValueType(),
6101                              getValue(I.getArgOperand(0)),
6102                              getValue(I.getArgOperand(1)), Flags));
6103     return;
6104   case Intrinsic::maxnum:
6105     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6106                              getValue(I.getArgOperand(0)).getValueType(),
6107                              getValue(I.getArgOperand(0)),
6108                              getValue(I.getArgOperand(1)), Flags));
6109     return;
6110   case Intrinsic::minimum:
6111     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6112                              getValue(I.getArgOperand(0)).getValueType(),
6113                              getValue(I.getArgOperand(0)),
6114                              getValue(I.getArgOperand(1)), Flags));
6115     return;
6116   case Intrinsic::maximum:
6117     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6118                              getValue(I.getArgOperand(0)).getValueType(),
6119                              getValue(I.getArgOperand(0)),
6120                              getValue(I.getArgOperand(1)), Flags));
6121     return;
6122   case Intrinsic::copysign:
6123     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6124                              getValue(I.getArgOperand(0)).getValueType(),
6125                              getValue(I.getArgOperand(0)),
6126                              getValue(I.getArgOperand(1)), Flags));
6127     return;
6128   case Intrinsic::fma:
6129     setValue(&I, DAG.getNode(
6130                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6131                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6132                      getValue(I.getArgOperand(2)), Flags));
6133     return;
6134 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6135   case Intrinsic::INTRINSIC:
6136 #include "llvm/IR/ConstrainedOps.def"
6137     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6138     return;
6139   case Intrinsic::fmuladd: {
6140     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6141     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6142         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6143       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6144                                getValue(I.getArgOperand(0)).getValueType(),
6145                                getValue(I.getArgOperand(0)),
6146                                getValue(I.getArgOperand(1)),
6147                                getValue(I.getArgOperand(2)), Flags));
6148     } else {
6149       // TODO: Intrinsic calls should have fast-math-flags.
6150       SDValue Mul = DAG.getNode(
6151           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6152           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6153       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6154                                 getValue(I.getArgOperand(0)).getValueType(),
6155                                 Mul, getValue(I.getArgOperand(2)), Flags);
6156       setValue(&I, Add);
6157     }
6158     return;
6159   }
6160   case Intrinsic::convert_to_fp16:
6161     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6162                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6163                                          getValue(I.getArgOperand(0)),
6164                                          DAG.getTargetConstant(0, sdl,
6165                                                                MVT::i32))));
6166     return;
6167   case Intrinsic::convert_from_fp16:
6168     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6169                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6170                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6171                                          getValue(I.getArgOperand(0)))));
6172     return;
6173   case Intrinsic::pcmarker: {
6174     SDValue Tmp = getValue(I.getArgOperand(0));
6175     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6176     return;
6177   }
6178   case Intrinsic::readcyclecounter: {
6179     SDValue Op = getRoot();
6180     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6181                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6182     setValue(&I, Res);
6183     DAG.setRoot(Res.getValue(1));
6184     return;
6185   }
6186   case Intrinsic::bitreverse:
6187     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6188                              getValue(I.getArgOperand(0)).getValueType(),
6189                              getValue(I.getArgOperand(0))));
6190     return;
6191   case Intrinsic::bswap:
6192     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6193                              getValue(I.getArgOperand(0)).getValueType(),
6194                              getValue(I.getArgOperand(0))));
6195     return;
6196   case Intrinsic::cttz: {
6197     SDValue Arg = getValue(I.getArgOperand(0));
6198     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6199     EVT Ty = Arg.getValueType();
6200     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6201                              sdl, Ty, Arg));
6202     return;
6203   }
6204   case Intrinsic::ctlz: {
6205     SDValue Arg = getValue(I.getArgOperand(0));
6206     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6207     EVT Ty = Arg.getValueType();
6208     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6209                              sdl, Ty, Arg));
6210     return;
6211   }
6212   case Intrinsic::ctpop: {
6213     SDValue Arg = getValue(I.getArgOperand(0));
6214     EVT Ty = Arg.getValueType();
6215     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6216     return;
6217   }
6218   case Intrinsic::fshl:
6219   case Intrinsic::fshr: {
6220     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6221     SDValue X = getValue(I.getArgOperand(0));
6222     SDValue Y = getValue(I.getArgOperand(1));
6223     SDValue Z = getValue(I.getArgOperand(2));
6224     EVT VT = X.getValueType();
6225 
6226     if (X == Y) {
6227       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6228       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6229     } else {
6230       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6231       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6232     }
6233     return;
6234   }
6235   case Intrinsic::sadd_sat: {
6236     SDValue Op1 = getValue(I.getArgOperand(0));
6237     SDValue Op2 = getValue(I.getArgOperand(1));
6238     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6239     return;
6240   }
6241   case Intrinsic::uadd_sat: {
6242     SDValue Op1 = getValue(I.getArgOperand(0));
6243     SDValue Op2 = getValue(I.getArgOperand(1));
6244     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6245     return;
6246   }
6247   case Intrinsic::ssub_sat: {
6248     SDValue Op1 = getValue(I.getArgOperand(0));
6249     SDValue Op2 = getValue(I.getArgOperand(1));
6250     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6251     return;
6252   }
6253   case Intrinsic::usub_sat: {
6254     SDValue Op1 = getValue(I.getArgOperand(0));
6255     SDValue Op2 = getValue(I.getArgOperand(1));
6256     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6257     return;
6258   }
6259   case Intrinsic::sshl_sat: {
6260     SDValue Op1 = getValue(I.getArgOperand(0));
6261     SDValue Op2 = getValue(I.getArgOperand(1));
6262     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6263     return;
6264   }
6265   case Intrinsic::ushl_sat: {
6266     SDValue Op1 = getValue(I.getArgOperand(0));
6267     SDValue Op2 = getValue(I.getArgOperand(1));
6268     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6269     return;
6270   }
6271   case Intrinsic::smul_fix:
6272   case Intrinsic::umul_fix:
6273   case Intrinsic::smul_fix_sat:
6274   case Intrinsic::umul_fix_sat: {
6275     SDValue Op1 = getValue(I.getArgOperand(0));
6276     SDValue Op2 = getValue(I.getArgOperand(1));
6277     SDValue Op3 = getValue(I.getArgOperand(2));
6278     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6279                              Op1.getValueType(), Op1, Op2, Op3));
6280     return;
6281   }
6282   case Intrinsic::sdiv_fix:
6283   case Intrinsic::udiv_fix:
6284   case Intrinsic::sdiv_fix_sat:
6285   case Intrinsic::udiv_fix_sat: {
6286     SDValue Op1 = getValue(I.getArgOperand(0));
6287     SDValue Op2 = getValue(I.getArgOperand(1));
6288     SDValue Op3 = getValue(I.getArgOperand(2));
6289     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6290                               Op1, Op2, Op3, DAG, TLI));
6291     return;
6292   }
6293   case Intrinsic::smax: {
6294     SDValue Op1 = getValue(I.getArgOperand(0));
6295     SDValue Op2 = getValue(I.getArgOperand(1));
6296     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6297     return;
6298   }
6299   case Intrinsic::smin: {
6300     SDValue Op1 = getValue(I.getArgOperand(0));
6301     SDValue Op2 = getValue(I.getArgOperand(1));
6302     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6303     return;
6304   }
6305   case Intrinsic::umax: {
6306     SDValue Op1 = getValue(I.getArgOperand(0));
6307     SDValue Op2 = getValue(I.getArgOperand(1));
6308     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6309     return;
6310   }
6311   case Intrinsic::umin: {
6312     SDValue Op1 = getValue(I.getArgOperand(0));
6313     SDValue Op2 = getValue(I.getArgOperand(1));
6314     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6315     return;
6316   }
6317   case Intrinsic::abs: {
6318     // TODO: Preserve "int min is poison" arg in SDAG?
6319     SDValue Op1 = getValue(I.getArgOperand(0));
6320     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6321     return;
6322   }
6323   case Intrinsic::stacksave: {
6324     SDValue Op = getRoot();
6325     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6326     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6327     setValue(&I, Res);
6328     DAG.setRoot(Res.getValue(1));
6329     return;
6330   }
6331   case Intrinsic::stackrestore:
6332     Res = getValue(I.getArgOperand(0));
6333     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6334     return;
6335   case Intrinsic::get_dynamic_area_offset: {
6336     SDValue Op = getRoot();
6337     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6338     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6339     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6340     // target.
6341     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6342       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6343                          " intrinsic!");
6344     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6345                       Op);
6346     DAG.setRoot(Op);
6347     setValue(&I, Res);
6348     return;
6349   }
6350   case Intrinsic::stackguard: {
6351     MachineFunction &MF = DAG.getMachineFunction();
6352     const Module &M = *MF.getFunction().getParent();
6353     SDValue Chain = getRoot();
6354     if (TLI.useLoadStackGuardNode()) {
6355       Res = getLoadStackGuard(DAG, sdl, Chain);
6356     } else {
6357       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6358       const Value *Global = TLI.getSDagStackGuard(M);
6359       Align Align = DL->getPrefTypeAlign(Global->getType());
6360       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6361                         MachinePointerInfo(Global, 0), Align,
6362                         MachineMemOperand::MOVolatile);
6363     }
6364     if (TLI.useStackGuardXorFP())
6365       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6366     DAG.setRoot(Chain);
6367     setValue(&I, Res);
6368     return;
6369   }
6370   case Intrinsic::stackprotector: {
6371     // Emit code into the DAG to store the stack guard onto the stack.
6372     MachineFunction &MF = DAG.getMachineFunction();
6373     MachineFrameInfo &MFI = MF.getFrameInfo();
6374     SDValue Src, Chain = getRoot();
6375 
6376     if (TLI.useLoadStackGuardNode())
6377       Src = getLoadStackGuard(DAG, sdl, Chain);
6378     else
6379       Src = getValue(I.getArgOperand(0));   // The guard's value.
6380 
6381     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6382 
6383     int FI = FuncInfo.StaticAllocaMap[Slot];
6384     MFI.setStackProtectorIndex(FI);
6385     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6386 
6387     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6388 
6389     // Store the stack protector onto the stack.
6390     Res = DAG.getStore(
6391         Chain, sdl, Src, FIN,
6392         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6393         MaybeAlign(), MachineMemOperand::MOVolatile);
6394     setValue(&I, Res);
6395     DAG.setRoot(Res);
6396     return;
6397   }
6398   case Intrinsic::objectsize:
6399     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6400 
6401   case Intrinsic::is_constant:
6402     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6403 
6404   case Intrinsic::annotation:
6405   case Intrinsic::ptr_annotation:
6406   case Intrinsic::launder_invariant_group:
6407   case Intrinsic::strip_invariant_group:
6408     // Drop the intrinsic, but forward the value
6409     setValue(&I, getValue(I.getOperand(0)));
6410     return;
6411   case Intrinsic::assume:
6412   case Intrinsic::var_annotation:
6413   case Intrinsic::sideeffect:
6414     // Discard annotate attributes, assumptions, and artificial side-effects.
6415     return;
6416 
6417   case Intrinsic::codeview_annotation: {
6418     // Emit a label associated with this metadata.
6419     MachineFunction &MF = DAG.getMachineFunction();
6420     MCSymbol *Label =
6421         MF.getMMI().getContext().createTempSymbol("annotation", true);
6422     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6423     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6424     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6425     DAG.setRoot(Res);
6426     return;
6427   }
6428 
6429   case Intrinsic::init_trampoline: {
6430     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6431 
6432     SDValue Ops[6];
6433     Ops[0] = getRoot();
6434     Ops[1] = getValue(I.getArgOperand(0));
6435     Ops[2] = getValue(I.getArgOperand(1));
6436     Ops[3] = getValue(I.getArgOperand(2));
6437     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6438     Ops[5] = DAG.getSrcValue(F);
6439 
6440     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6441 
6442     DAG.setRoot(Res);
6443     return;
6444   }
6445   case Intrinsic::adjust_trampoline:
6446     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6447                              TLI.getPointerTy(DAG.getDataLayout()),
6448                              getValue(I.getArgOperand(0))));
6449     return;
6450   case Intrinsic::gcroot: {
6451     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6452            "only valid in functions with gc specified, enforced by Verifier");
6453     assert(GFI && "implied by previous");
6454     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6455     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6456 
6457     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6458     GFI->addStackRoot(FI->getIndex(), TypeMap);
6459     return;
6460   }
6461   case Intrinsic::gcread:
6462   case Intrinsic::gcwrite:
6463     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6464   case Intrinsic::flt_rounds:
6465     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6466     setValue(&I, Res);
6467     DAG.setRoot(Res.getValue(1));
6468     return;
6469 
6470   case Intrinsic::expect:
6471     // Just replace __builtin_expect(exp, c) with EXP.
6472     setValue(&I, getValue(I.getArgOperand(0)));
6473     return;
6474 
6475   case Intrinsic::debugtrap:
6476   case Intrinsic::trap: {
6477     StringRef TrapFuncName =
6478         I.getAttributes()
6479             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6480             .getValueAsString();
6481     if (TrapFuncName.empty()) {
6482       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6483         ISD::TRAP : ISD::DEBUGTRAP;
6484       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6485       return;
6486     }
6487     TargetLowering::ArgListTy Args;
6488 
6489     TargetLowering::CallLoweringInfo CLI(DAG);
6490     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6491         CallingConv::C, I.getType(),
6492         DAG.getExternalSymbol(TrapFuncName.data(),
6493                               TLI.getPointerTy(DAG.getDataLayout())),
6494         std::move(Args));
6495 
6496     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6497     DAG.setRoot(Result.second);
6498     return;
6499   }
6500 
6501   case Intrinsic::uadd_with_overflow:
6502   case Intrinsic::sadd_with_overflow:
6503   case Intrinsic::usub_with_overflow:
6504   case Intrinsic::ssub_with_overflow:
6505   case Intrinsic::umul_with_overflow:
6506   case Intrinsic::smul_with_overflow: {
6507     ISD::NodeType Op;
6508     switch (Intrinsic) {
6509     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6510     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6511     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6512     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6513     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6514     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6515     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6516     }
6517     SDValue Op1 = getValue(I.getArgOperand(0));
6518     SDValue Op2 = getValue(I.getArgOperand(1));
6519 
6520     EVT ResultVT = Op1.getValueType();
6521     EVT OverflowVT = MVT::i1;
6522     if (ResultVT.isVector())
6523       OverflowVT = EVT::getVectorVT(
6524           *Context, OverflowVT, ResultVT.getVectorNumElements());
6525 
6526     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6527     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6528     return;
6529   }
6530   case Intrinsic::prefetch: {
6531     SDValue Ops[5];
6532     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6533     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6534     Ops[0] = DAG.getRoot();
6535     Ops[1] = getValue(I.getArgOperand(0));
6536     Ops[2] = getValue(I.getArgOperand(1));
6537     Ops[3] = getValue(I.getArgOperand(2));
6538     Ops[4] = getValue(I.getArgOperand(3));
6539     SDValue Result = DAG.getMemIntrinsicNode(
6540         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6541         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6542         /* align */ None, Flags);
6543 
6544     // Chain the prefetch in parallell with any pending loads, to stay out of
6545     // the way of later optimizations.
6546     PendingLoads.push_back(Result);
6547     Result = getRoot();
6548     DAG.setRoot(Result);
6549     return;
6550   }
6551   case Intrinsic::lifetime_start:
6552   case Intrinsic::lifetime_end: {
6553     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6554     // Stack coloring is not enabled in O0, discard region information.
6555     if (TM.getOptLevel() == CodeGenOpt::None)
6556       return;
6557 
6558     const int64_t ObjectSize =
6559         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6560     Value *const ObjectPtr = I.getArgOperand(1);
6561     SmallVector<const Value *, 4> Allocas;
6562     getUnderlyingObjects(ObjectPtr, Allocas);
6563 
6564     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6565            E = Allocas.end(); Object != E; ++Object) {
6566       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6567 
6568       // Could not find an Alloca.
6569       if (!LifetimeObject)
6570         continue;
6571 
6572       // First check that the Alloca is static, otherwise it won't have a
6573       // valid frame index.
6574       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6575       if (SI == FuncInfo.StaticAllocaMap.end())
6576         return;
6577 
6578       const int FrameIndex = SI->second;
6579       int64_t Offset;
6580       if (GetPointerBaseWithConstantOffset(
6581               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6582         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6583       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6584                                 Offset);
6585       DAG.setRoot(Res);
6586     }
6587     return;
6588   }
6589   case Intrinsic::invariant_start:
6590     // Discard region information.
6591     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6592     return;
6593   case Intrinsic::invariant_end:
6594     // Discard region information.
6595     return;
6596   case Intrinsic::clear_cache:
6597     /// FunctionName may be null.
6598     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6599       lowerCallToExternalSymbol(I, FunctionName);
6600     return;
6601   case Intrinsic::donothing:
6602     // ignore
6603     return;
6604   case Intrinsic::experimental_stackmap:
6605     visitStackmap(I);
6606     return;
6607   case Intrinsic::experimental_patchpoint_void:
6608   case Intrinsic::experimental_patchpoint_i64:
6609     visitPatchpoint(I);
6610     return;
6611   case Intrinsic::experimental_gc_statepoint:
6612     LowerStatepoint(cast<GCStatepointInst>(I));
6613     return;
6614   case Intrinsic::experimental_gc_result:
6615     visitGCResult(cast<GCResultInst>(I));
6616     return;
6617   case Intrinsic::experimental_gc_relocate:
6618     visitGCRelocate(cast<GCRelocateInst>(I));
6619     return;
6620   case Intrinsic::instrprof_increment:
6621     llvm_unreachable("instrprof failed to lower an increment");
6622   case Intrinsic::instrprof_value_profile:
6623     llvm_unreachable("instrprof failed to lower a value profiling call");
6624   case Intrinsic::localescape: {
6625     MachineFunction &MF = DAG.getMachineFunction();
6626     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6627 
6628     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6629     // is the same on all targets.
6630     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6631       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6632       if (isa<ConstantPointerNull>(Arg))
6633         continue; // Skip null pointers. They represent a hole in index space.
6634       AllocaInst *Slot = cast<AllocaInst>(Arg);
6635       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6636              "can only escape static allocas");
6637       int FI = FuncInfo.StaticAllocaMap[Slot];
6638       MCSymbol *FrameAllocSym =
6639           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6640               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6641       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6642               TII->get(TargetOpcode::LOCAL_ESCAPE))
6643           .addSym(FrameAllocSym)
6644           .addFrameIndex(FI);
6645     }
6646 
6647     return;
6648   }
6649 
6650   case Intrinsic::localrecover: {
6651     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6652     MachineFunction &MF = DAG.getMachineFunction();
6653 
6654     // Get the symbol that defines the frame offset.
6655     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6656     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6657     unsigned IdxVal =
6658         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6659     MCSymbol *FrameAllocSym =
6660         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6661             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6662 
6663     Value *FP = I.getArgOperand(1);
6664     SDValue FPVal = getValue(FP);
6665     EVT PtrVT = FPVal.getValueType();
6666 
6667     // Create a MCSymbol for the label to avoid any target lowering
6668     // that would make this PC relative.
6669     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6670     SDValue OffsetVal =
6671         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6672 
6673     // Add the offset to the FP.
6674     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6675     setValue(&I, Add);
6676 
6677     return;
6678   }
6679 
6680   case Intrinsic::eh_exceptionpointer:
6681   case Intrinsic::eh_exceptioncode: {
6682     // Get the exception pointer vreg, copy from it, and resize it to fit.
6683     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6684     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6685     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6686     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6687     SDValue N =
6688         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6689     if (Intrinsic == Intrinsic::eh_exceptioncode)
6690       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6691     setValue(&I, N);
6692     return;
6693   }
6694   case Intrinsic::xray_customevent: {
6695     // Here we want to make sure that the intrinsic behaves as if it has a
6696     // specific calling convention, and only for x86_64.
6697     // FIXME: Support other platforms later.
6698     const auto &Triple = DAG.getTarget().getTargetTriple();
6699     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6700       return;
6701 
6702     SDLoc DL = getCurSDLoc();
6703     SmallVector<SDValue, 8> Ops;
6704 
6705     // We want to say that we always want the arguments in registers.
6706     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6707     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6708     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6709     SDValue Chain = getRoot();
6710     Ops.push_back(LogEntryVal);
6711     Ops.push_back(StrSizeVal);
6712     Ops.push_back(Chain);
6713 
6714     // We need to enforce the calling convention for the callsite, so that
6715     // argument ordering is enforced correctly, and that register allocation can
6716     // see that some registers may be assumed clobbered and have to preserve
6717     // them across calls to the intrinsic.
6718     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6719                                            DL, NodeTys, Ops);
6720     SDValue patchableNode = SDValue(MN, 0);
6721     DAG.setRoot(patchableNode);
6722     setValue(&I, patchableNode);
6723     return;
6724   }
6725   case Intrinsic::xray_typedevent: {
6726     // Here we want to make sure that the intrinsic behaves as if it has a
6727     // specific calling convention, and only for x86_64.
6728     // FIXME: Support other platforms later.
6729     const auto &Triple = DAG.getTarget().getTargetTriple();
6730     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6731       return;
6732 
6733     SDLoc DL = getCurSDLoc();
6734     SmallVector<SDValue, 8> Ops;
6735 
6736     // We want to say that we always want the arguments in registers.
6737     // It's unclear to me how manipulating the selection DAG here forces callers
6738     // to provide arguments in registers instead of on the stack.
6739     SDValue LogTypeId = getValue(I.getArgOperand(0));
6740     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6741     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6742     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6743     SDValue Chain = getRoot();
6744     Ops.push_back(LogTypeId);
6745     Ops.push_back(LogEntryVal);
6746     Ops.push_back(StrSizeVal);
6747     Ops.push_back(Chain);
6748 
6749     // We need to enforce the calling convention for the callsite, so that
6750     // argument ordering is enforced correctly, and that register allocation can
6751     // see that some registers may be assumed clobbered and have to preserve
6752     // them across calls to the intrinsic.
6753     MachineSDNode *MN = DAG.getMachineNode(
6754         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6755     SDValue patchableNode = SDValue(MN, 0);
6756     DAG.setRoot(patchableNode);
6757     setValue(&I, patchableNode);
6758     return;
6759   }
6760   case Intrinsic::experimental_deoptimize:
6761     LowerDeoptimizeCall(&I);
6762     return;
6763 
6764   case Intrinsic::experimental_vector_reduce_v2_fadd:
6765   case Intrinsic::experimental_vector_reduce_v2_fmul:
6766   case Intrinsic::experimental_vector_reduce_add:
6767   case Intrinsic::experimental_vector_reduce_mul:
6768   case Intrinsic::experimental_vector_reduce_and:
6769   case Intrinsic::experimental_vector_reduce_or:
6770   case Intrinsic::experimental_vector_reduce_xor:
6771   case Intrinsic::experimental_vector_reduce_smax:
6772   case Intrinsic::experimental_vector_reduce_smin:
6773   case Intrinsic::experimental_vector_reduce_umax:
6774   case Intrinsic::experimental_vector_reduce_umin:
6775   case Intrinsic::experimental_vector_reduce_fmax:
6776   case Intrinsic::experimental_vector_reduce_fmin:
6777     visitVectorReduce(I, Intrinsic);
6778     return;
6779 
6780   case Intrinsic::icall_branch_funnel: {
6781     SmallVector<SDValue, 16> Ops;
6782     Ops.push_back(getValue(I.getArgOperand(0)));
6783 
6784     int64_t Offset;
6785     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6786         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6787     if (!Base)
6788       report_fatal_error(
6789           "llvm.icall.branch.funnel operand must be a GlobalValue");
6790     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6791 
6792     struct BranchFunnelTarget {
6793       int64_t Offset;
6794       SDValue Target;
6795     };
6796     SmallVector<BranchFunnelTarget, 8> Targets;
6797 
6798     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6799       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6800           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6801       if (ElemBase != Base)
6802         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6803                            "to the same GlobalValue");
6804 
6805       SDValue Val = getValue(I.getArgOperand(Op + 1));
6806       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6807       if (!GA)
6808         report_fatal_error(
6809             "llvm.icall.branch.funnel operand must be a GlobalValue");
6810       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6811                                      GA->getGlobal(), getCurSDLoc(),
6812                                      Val.getValueType(), GA->getOffset())});
6813     }
6814     llvm::sort(Targets,
6815                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6816                  return T1.Offset < T2.Offset;
6817                });
6818 
6819     for (auto &T : Targets) {
6820       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6821       Ops.push_back(T.Target);
6822     }
6823 
6824     Ops.push_back(DAG.getRoot()); // Chain
6825     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6826                                  getCurSDLoc(), MVT::Other, Ops),
6827               0);
6828     DAG.setRoot(N);
6829     setValue(&I, N);
6830     HasTailCall = true;
6831     return;
6832   }
6833 
6834   case Intrinsic::wasm_landingpad_index:
6835     // Information this intrinsic contained has been transferred to
6836     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6837     // delete it now.
6838     return;
6839 
6840   case Intrinsic::aarch64_settag:
6841   case Intrinsic::aarch64_settag_zero: {
6842     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6843     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6844     SDValue Val = TSI.EmitTargetCodeForSetTag(
6845         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6846         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6847         ZeroMemory);
6848     DAG.setRoot(Val);
6849     setValue(&I, Val);
6850     return;
6851   }
6852   case Intrinsic::ptrmask: {
6853     SDValue Ptr = getValue(I.getOperand(0));
6854     SDValue Const = getValue(I.getOperand(1));
6855 
6856     EVT PtrVT = Ptr.getValueType();
6857     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6858                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6859     return;
6860   }
6861   case Intrinsic::get_active_lane_mask: {
6862     auto DL = getCurSDLoc();
6863     SDValue Index = getValue(I.getOperand(0));
6864     SDValue TripCount = getValue(I.getOperand(1));
6865     Type *ElementTy = I.getOperand(0)->getType();
6866     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6867     unsigned VecWidth = VT.getVectorNumElements();
6868 
6869     SmallVector<SDValue, 16> OpsTripCount;
6870     SmallVector<SDValue, 16> OpsIndex;
6871     SmallVector<SDValue, 16> OpsStepConstants;
6872     for (unsigned i = 0; i < VecWidth; i++) {
6873       OpsTripCount.push_back(TripCount);
6874       OpsIndex.push_back(Index);
6875       OpsStepConstants.push_back(
6876           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
6877     }
6878 
6879     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
6880 
6881     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
6882     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6883     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6884     SDValue VectorInduction = DAG.getNode(
6885        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6886     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
6887     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6888                                  VectorTripCount, ISD::CondCode::SETULT);
6889     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6890                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6891                              SetCC));
6892     return;
6893   }
6894   }
6895 }
6896 
6897 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6898     const ConstrainedFPIntrinsic &FPI) {
6899   SDLoc sdl = getCurSDLoc();
6900 
6901   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6902   SmallVector<EVT, 4> ValueVTs;
6903   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6904   ValueVTs.push_back(MVT::Other); // Out chain
6905 
6906   // We do not need to serialize constrained FP intrinsics against
6907   // each other or against (nonvolatile) loads, so they can be
6908   // chained like loads.
6909   SDValue Chain = DAG.getRoot();
6910   SmallVector<SDValue, 4> Opers;
6911   Opers.push_back(Chain);
6912   if (FPI.isUnaryOp()) {
6913     Opers.push_back(getValue(FPI.getArgOperand(0)));
6914   } else if (FPI.isTernaryOp()) {
6915     Opers.push_back(getValue(FPI.getArgOperand(0)));
6916     Opers.push_back(getValue(FPI.getArgOperand(1)));
6917     Opers.push_back(getValue(FPI.getArgOperand(2)));
6918   } else {
6919     Opers.push_back(getValue(FPI.getArgOperand(0)));
6920     Opers.push_back(getValue(FPI.getArgOperand(1)));
6921   }
6922 
6923   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6924     assert(Result.getNode()->getNumValues() == 2);
6925 
6926     // Push node to the appropriate list so that future instructions can be
6927     // chained up correctly.
6928     SDValue OutChain = Result.getValue(1);
6929     switch (EB) {
6930     case fp::ExceptionBehavior::ebIgnore:
6931       // The only reason why ebIgnore nodes still need to be chained is that
6932       // they might depend on the current rounding mode, and therefore must
6933       // not be moved across instruction that may change that mode.
6934       LLVM_FALLTHROUGH;
6935     case fp::ExceptionBehavior::ebMayTrap:
6936       // These must not be moved across calls or instructions that may change
6937       // floating-point exception masks.
6938       PendingConstrainedFP.push_back(OutChain);
6939       break;
6940     case fp::ExceptionBehavior::ebStrict:
6941       // These must not be moved across calls or instructions that may change
6942       // floating-point exception masks or read floating-point exception flags.
6943       // In addition, they cannot be optimized out even if unused.
6944       PendingConstrainedFPStrict.push_back(OutChain);
6945       break;
6946     }
6947   };
6948 
6949   SDVTList VTs = DAG.getVTList(ValueVTs);
6950   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6951 
6952   SDNodeFlags Flags;
6953   if (EB == fp::ExceptionBehavior::ebIgnore)
6954     Flags.setNoFPExcept(true);
6955 
6956   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6957     Flags.copyFMF(*FPOp);
6958 
6959   unsigned Opcode;
6960   switch (FPI.getIntrinsicID()) {
6961   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6962 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
6963   case Intrinsic::INTRINSIC:                                                   \
6964     Opcode = ISD::STRICT_##DAGN;                                               \
6965     break;
6966 #include "llvm/IR/ConstrainedOps.def"
6967   case Intrinsic::experimental_constrained_fmuladd: {
6968     Opcode = ISD::STRICT_FMA;
6969     // Break fmuladd into fmul and fadd.
6970     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
6971         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
6972                                         ValueVTs[0])) {
6973       Opers.pop_back();
6974       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
6975       pushOutChain(Mul, EB);
6976       Opcode = ISD::STRICT_FADD;
6977       Opers.clear();
6978       Opers.push_back(Mul.getValue(1));
6979       Opers.push_back(Mul.getValue(0));
6980       Opers.push_back(getValue(FPI.getArgOperand(2)));
6981     }
6982     break;
6983   }
6984   }
6985 
6986   // A few strict DAG nodes carry additional operands that are not
6987   // set up by the default code above.
6988   switch (Opcode) {
6989   default: break;
6990   case ISD::STRICT_FP_ROUND:
6991     Opers.push_back(
6992         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
6993     break;
6994   case ISD::STRICT_FSETCC:
6995   case ISD::STRICT_FSETCCS: {
6996     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
6997     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
6998     break;
6999   }
7000   }
7001 
7002   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7003   pushOutChain(Result, EB);
7004 
7005   SDValue FPResult = Result.getValue(0);
7006   setValue(&FPI, FPResult);
7007 }
7008 
7009 std::pair<SDValue, SDValue>
7010 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7011                                     const BasicBlock *EHPadBB) {
7012   MachineFunction &MF = DAG.getMachineFunction();
7013   MachineModuleInfo &MMI = MF.getMMI();
7014   MCSymbol *BeginLabel = nullptr;
7015 
7016   if (EHPadBB) {
7017     // Insert a label before the invoke call to mark the try range.  This can be
7018     // used to detect deletion of the invoke via the MachineModuleInfo.
7019     BeginLabel = MMI.getContext().createTempSymbol();
7020 
7021     // For SjLj, keep track of which landing pads go with which invokes
7022     // so as to maintain the ordering of pads in the LSDA.
7023     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7024     if (CallSiteIndex) {
7025       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7026       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7027 
7028       // Now that the call site is handled, stop tracking it.
7029       MMI.setCurrentCallSite(0);
7030     }
7031 
7032     // Both PendingLoads and PendingExports must be flushed here;
7033     // this call might not return.
7034     (void)getRoot();
7035     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7036 
7037     CLI.setChain(getRoot());
7038   }
7039   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7040   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7041 
7042   assert((CLI.IsTailCall || Result.second.getNode()) &&
7043          "Non-null chain expected with non-tail call!");
7044   assert((Result.second.getNode() || !Result.first.getNode()) &&
7045          "Null value expected with tail call!");
7046 
7047   if (!Result.second.getNode()) {
7048     // As a special case, a null chain means that a tail call has been emitted
7049     // and the DAG root is already updated.
7050     HasTailCall = true;
7051 
7052     // Since there's no actual continuation from this block, nothing can be
7053     // relying on us setting vregs for them.
7054     PendingExports.clear();
7055   } else {
7056     DAG.setRoot(Result.second);
7057   }
7058 
7059   if (EHPadBB) {
7060     // Insert a label at the end of the invoke call to mark the try range.  This
7061     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7062     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7063     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7064 
7065     // Inform MachineModuleInfo of range.
7066     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7067     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7068     // actually use outlined funclets and their LSDA info style.
7069     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7070       assert(CLI.CB);
7071       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7072       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7073     } else if (!isScopedEHPersonality(Pers)) {
7074       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7075     }
7076   }
7077 
7078   return Result;
7079 }
7080 
7081 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7082                                       bool isTailCall,
7083                                       const BasicBlock *EHPadBB) {
7084   auto &DL = DAG.getDataLayout();
7085   FunctionType *FTy = CB.getFunctionType();
7086   Type *RetTy = CB.getType();
7087 
7088   TargetLowering::ArgListTy Args;
7089   Args.reserve(CB.arg_size());
7090 
7091   const Value *SwiftErrorVal = nullptr;
7092   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7093 
7094   if (isTailCall) {
7095     // Avoid emitting tail calls in functions with the disable-tail-calls
7096     // attribute.
7097     auto *Caller = CB.getParent()->getParent();
7098     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7099         "true")
7100       isTailCall = false;
7101 
7102     // We can't tail call inside a function with a swifterror argument. Lowering
7103     // does not support this yet. It would have to move into the swifterror
7104     // register before the call.
7105     if (TLI.supportSwiftError() &&
7106         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7107       isTailCall = false;
7108   }
7109 
7110   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7111     TargetLowering::ArgListEntry Entry;
7112     const Value *V = *I;
7113 
7114     // Skip empty types
7115     if (V->getType()->isEmptyTy())
7116       continue;
7117 
7118     SDValue ArgNode = getValue(V);
7119     Entry.Node = ArgNode; Entry.Ty = V->getType();
7120 
7121     Entry.setAttributes(&CB, I - CB.arg_begin());
7122 
7123     // Use swifterror virtual register as input to the call.
7124     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7125       SwiftErrorVal = V;
7126       // We find the virtual register for the actual swifterror argument.
7127       // Instead of using the Value, we use the virtual register instead.
7128       Entry.Node =
7129           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7130                           EVT(TLI.getPointerTy(DL)));
7131     }
7132 
7133     Args.push_back(Entry);
7134 
7135     // If we have an explicit sret argument that is an Instruction, (i.e., it
7136     // might point to function-local memory), we can't meaningfully tail-call.
7137     if (Entry.IsSRet && isa<Instruction>(V))
7138       isTailCall = false;
7139   }
7140 
7141   // If call site has a cfguardtarget operand bundle, create and add an
7142   // additional ArgListEntry.
7143   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7144     TargetLowering::ArgListEntry Entry;
7145     Value *V = Bundle->Inputs[0];
7146     SDValue ArgNode = getValue(V);
7147     Entry.Node = ArgNode;
7148     Entry.Ty = V->getType();
7149     Entry.IsCFGuardTarget = true;
7150     Args.push_back(Entry);
7151   }
7152 
7153   // Check if target-independent constraints permit a tail call here.
7154   // Target-dependent constraints are checked within TLI->LowerCallTo.
7155   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7156     isTailCall = false;
7157 
7158   // Disable tail calls if there is an swifterror argument. Targets have not
7159   // been updated to support tail calls.
7160   if (TLI.supportSwiftError() && SwiftErrorVal)
7161     isTailCall = false;
7162 
7163   TargetLowering::CallLoweringInfo CLI(DAG);
7164   CLI.setDebugLoc(getCurSDLoc())
7165       .setChain(getRoot())
7166       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7167       .setTailCall(isTailCall)
7168       .setConvergent(CB.isConvergent())
7169       .setIsPreallocated(
7170           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7171   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7172 
7173   if (Result.first.getNode()) {
7174     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7175     setValue(&CB, Result.first);
7176   }
7177 
7178   // The last element of CLI.InVals has the SDValue for swifterror return.
7179   // Here we copy it to a virtual register and update SwiftErrorMap for
7180   // book-keeping.
7181   if (SwiftErrorVal && TLI.supportSwiftError()) {
7182     // Get the last element of InVals.
7183     SDValue Src = CLI.InVals.back();
7184     Register VReg =
7185         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7186     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7187     DAG.setRoot(CopyNode);
7188   }
7189 }
7190 
7191 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7192                              SelectionDAGBuilder &Builder) {
7193   // Check to see if this load can be trivially constant folded, e.g. if the
7194   // input is from a string literal.
7195   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7196     // Cast pointer to the type we really want to load.
7197     Type *LoadTy =
7198         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7199     if (LoadVT.isVector())
7200       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7201 
7202     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7203                                          PointerType::getUnqual(LoadTy));
7204 
7205     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7206             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7207       return Builder.getValue(LoadCst);
7208   }
7209 
7210   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7211   // still constant memory, the input chain can be the entry node.
7212   SDValue Root;
7213   bool ConstantMemory = false;
7214 
7215   // Do not serialize (non-volatile) loads of constant memory with anything.
7216   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7217     Root = Builder.DAG.getEntryNode();
7218     ConstantMemory = true;
7219   } else {
7220     // Do not serialize non-volatile loads against each other.
7221     Root = Builder.DAG.getRoot();
7222   }
7223 
7224   SDValue Ptr = Builder.getValue(PtrVal);
7225   SDValue LoadVal =
7226       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7227                           MachinePointerInfo(PtrVal), Align(1));
7228 
7229   if (!ConstantMemory)
7230     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7231   return LoadVal;
7232 }
7233 
7234 /// Record the value for an instruction that produces an integer result,
7235 /// converting the type where necessary.
7236 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7237                                                   SDValue Value,
7238                                                   bool IsSigned) {
7239   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7240                                                     I.getType(), true);
7241   if (IsSigned)
7242     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7243   else
7244     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7245   setValue(&I, Value);
7246 }
7247 
7248 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7249 /// true and lower it. Otherwise return false, and it will be lowered like a
7250 /// normal call.
7251 /// The caller already checked that \p I calls the appropriate LibFunc with a
7252 /// correct prototype.
7253 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7254   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7255   const Value *Size = I.getArgOperand(2);
7256   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7257   if (CSize && CSize->getZExtValue() == 0) {
7258     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7259                                                           I.getType(), true);
7260     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7261     return true;
7262   }
7263 
7264   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7265   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7266       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7267       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7268   if (Res.first.getNode()) {
7269     processIntegerCallValue(I, Res.first, true);
7270     PendingLoads.push_back(Res.second);
7271     return true;
7272   }
7273 
7274   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7275   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7276   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7277     return false;
7278 
7279   // If the target has a fast compare for the given size, it will return a
7280   // preferred load type for that size. Require that the load VT is legal and
7281   // that the target supports unaligned loads of that type. Otherwise, return
7282   // INVALID.
7283   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7284     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7285     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7286     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7287       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7288       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7289       // TODO: Check alignment of src and dest ptrs.
7290       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7291       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7292       if (!TLI.isTypeLegal(LVT) ||
7293           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7294           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7295         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7296     }
7297 
7298     return LVT;
7299   };
7300 
7301   // This turns into unaligned loads. We only do this if the target natively
7302   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7303   // we'll only produce a small number of byte loads.
7304   MVT LoadVT;
7305   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7306   switch (NumBitsToCompare) {
7307   default:
7308     return false;
7309   case 16:
7310     LoadVT = MVT::i16;
7311     break;
7312   case 32:
7313     LoadVT = MVT::i32;
7314     break;
7315   case 64:
7316   case 128:
7317   case 256:
7318     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7319     break;
7320   }
7321 
7322   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7323     return false;
7324 
7325   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7326   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7327 
7328   // Bitcast to a wide integer type if the loads are vectors.
7329   if (LoadVT.isVector()) {
7330     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7331     LoadL = DAG.getBitcast(CmpVT, LoadL);
7332     LoadR = DAG.getBitcast(CmpVT, LoadR);
7333   }
7334 
7335   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7336   processIntegerCallValue(I, Cmp, false);
7337   return true;
7338 }
7339 
7340 /// See if we can lower a memchr call into an optimized form. If so, return
7341 /// true and lower it. Otherwise return false, and it will be lowered like a
7342 /// normal call.
7343 /// The caller already checked that \p I calls the appropriate LibFunc with a
7344 /// correct prototype.
7345 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7346   const Value *Src = I.getArgOperand(0);
7347   const Value *Char = I.getArgOperand(1);
7348   const Value *Length = I.getArgOperand(2);
7349 
7350   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7351   std::pair<SDValue, SDValue> Res =
7352     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7353                                 getValue(Src), getValue(Char), getValue(Length),
7354                                 MachinePointerInfo(Src));
7355   if (Res.first.getNode()) {
7356     setValue(&I, Res.first);
7357     PendingLoads.push_back(Res.second);
7358     return true;
7359   }
7360 
7361   return false;
7362 }
7363 
7364 /// See if we can lower a mempcpy call into an optimized form. If so, return
7365 /// true and lower it. Otherwise return false, and it will be lowered like a
7366 /// normal call.
7367 /// The caller already checked that \p I calls the appropriate LibFunc with a
7368 /// correct prototype.
7369 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7370   SDValue Dst = getValue(I.getArgOperand(0));
7371   SDValue Src = getValue(I.getArgOperand(1));
7372   SDValue Size = getValue(I.getArgOperand(2));
7373 
7374   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7375   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7376   // DAG::getMemcpy needs Alignment to be defined.
7377   Align Alignment = std::min(DstAlign, SrcAlign);
7378 
7379   bool isVol = false;
7380   SDLoc sdl = getCurSDLoc();
7381 
7382   // In the mempcpy context we need to pass in a false value for isTailCall
7383   // because the return pointer needs to be adjusted by the size of
7384   // the copied memory.
7385   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7386   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7387                              /*isTailCall=*/false,
7388                              MachinePointerInfo(I.getArgOperand(0)),
7389                              MachinePointerInfo(I.getArgOperand(1)));
7390   assert(MC.getNode() != nullptr &&
7391          "** memcpy should not be lowered as TailCall in mempcpy context **");
7392   DAG.setRoot(MC);
7393 
7394   // Check if Size needs to be truncated or extended.
7395   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7396 
7397   // Adjust return pointer to point just past the last dst byte.
7398   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7399                                     Dst, Size);
7400   setValue(&I, DstPlusSize);
7401   return true;
7402 }
7403 
7404 /// See if we can lower a strcpy call into an optimized form.  If so, return
7405 /// true and lower it, otherwise return false and it will be lowered like a
7406 /// normal call.
7407 /// The caller already checked that \p I calls the appropriate LibFunc with a
7408 /// correct prototype.
7409 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7410   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7411 
7412   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7413   std::pair<SDValue, SDValue> Res =
7414     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7415                                 getValue(Arg0), getValue(Arg1),
7416                                 MachinePointerInfo(Arg0),
7417                                 MachinePointerInfo(Arg1), isStpcpy);
7418   if (Res.first.getNode()) {
7419     setValue(&I, Res.first);
7420     DAG.setRoot(Res.second);
7421     return true;
7422   }
7423 
7424   return false;
7425 }
7426 
7427 /// See if we can lower a strcmp call into an optimized form.  If so, return
7428 /// true and lower it, otherwise return false and it will be lowered like a
7429 /// normal call.
7430 /// The caller already checked that \p I calls the appropriate LibFunc with a
7431 /// correct prototype.
7432 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7433   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7434 
7435   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7436   std::pair<SDValue, SDValue> Res =
7437     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7438                                 getValue(Arg0), getValue(Arg1),
7439                                 MachinePointerInfo(Arg0),
7440                                 MachinePointerInfo(Arg1));
7441   if (Res.first.getNode()) {
7442     processIntegerCallValue(I, Res.first, true);
7443     PendingLoads.push_back(Res.second);
7444     return true;
7445   }
7446 
7447   return false;
7448 }
7449 
7450 /// See if we can lower a strlen call into an optimized form.  If so, return
7451 /// true and lower it, otherwise return false and it will be lowered like a
7452 /// normal call.
7453 /// The caller already checked that \p I calls the appropriate LibFunc with a
7454 /// correct prototype.
7455 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7456   const Value *Arg0 = I.getArgOperand(0);
7457 
7458   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7459   std::pair<SDValue, SDValue> Res =
7460     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7461                                 getValue(Arg0), MachinePointerInfo(Arg0));
7462   if (Res.first.getNode()) {
7463     processIntegerCallValue(I, Res.first, false);
7464     PendingLoads.push_back(Res.second);
7465     return true;
7466   }
7467 
7468   return false;
7469 }
7470 
7471 /// See if we can lower a strnlen call into an optimized form.  If so, return
7472 /// true and lower it, otherwise return false and it will be lowered like a
7473 /// normal call.
7474 /// The caller already checked that \p I calls the appropriate LibFunc with a
7475 /// correct prototype.
7476 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7477   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7478 
7479   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7480   std::pair<SDValue, SDValue> Res =
7481     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7482                                  getValue(Arg0), getValue(Arg1),
7483                                  MachinePointerInfo(Arg0));
7484   if (Res.first.getNode()) {
7485     processIntegerCallValue(I, Res.first, false);
7486     PendingLoads.push_back(Res.second);
7487     return true;
7488   }
7489 
7490   return false;
7491 }
7492 
7493 /// See if we can lower a unary floating-point operation into an SDNode with
7494 /// the specified Opcode.  If so, return true and lower it, otherwise return
7495 /// false and it will be lowered like a normal call.
7496 /// The caller already checked that \p I calls the appropriate LibFunc with a
7497 /// correct prototype.
7498 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7499                                               unsigned Opcode) {
7500   // We already checked this call's prototype; verify it doesn't modify errno.
7501   if (!I.onlyReadsMemory())
7502     return false;
7503 
7504   SDNodeFlags Flags;
7505   Flags.copyFMF(cast<FPMathOperator>(I));
7506 
7507   SDValue Tmp = getValue(I.getArgOperand(0));
7508   setValue(&I,
7509            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7510   return true;
7511 }
7512 
7513 /// See if we can lower a binary floating-point operation into an SDNode with
7514 /// the specified Opcode. If so, return true and lower it. Otherwise return
7515 /// false, and it will be lowered like a normal call.
7516 /// The caller already checked that \p I calls the appropriate LibFunc with a
7517 /// correct prototype.
7518 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7519                                                unsigned Opcode) {
7520   // We already checked this call's prototype; verify it doesn't modify errno.
7521   if (!I.onlyReadsMemory())
7522     return false;
7523 
7524   SDNodeFlags Flags;
7525   Flags.copyFMF(cast<FPMathOperator>(I));
7526 
7527   SDValue Tmp0 = getValue(I.getArgOperand(0));
7528   SDValue Tmp1 = getValue(I.getArgOperand(1));
7529   EVT VT = Tmp0.getValueType();
7530   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7531   return true;
7532 }
7533 
7534 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7535   // Handle inline assembly differently.
7536   if (I.isInlineAsm()) {
7537     visitInlineAsm(I);
7538     return;
7539   }
7540 
7541   if (Function *F = I.getCalledFunction()) {
7542     if (F->isDeclaration()) {
7543       // Is this an LLVM intrinsic or a target-specific intrinsic?
7544       unsigned IID = F->getIntrinsicID();
7545       if (!IID)
7546         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7547           IID = II->getIntrinsicID(F);
7548 
7549       if (IID) {
7550         visitIntrinsicCall(I, IID);
7551         return;
7552       }
7553     }
7554 
7555     // Check for well-known libc/libm calls.  If the function is internal, it
7556     // can't be a library call.  Don't do the check if marked as nobuiltin for
7557     // some reason or the call site requires strict floating point semantics.
7558     LibFunc Func;
7559     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7560         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7561         LibInfo->hasOptimizedCodeGen(Func)) {
7562       switch (Func) {
7563       default: break;
7564       case LibFunc_bcmp:
7565         if (visitMemCmpBCmpCall(I))
7566           return;
7567         break;
7568       case LibFunc_copysign:
7569       case LibFunc_copysignf:
7570       case LibFunc_copysignl:
7571         // We already checked this call's prototype; verify it doesn't modify
7572         // errno.
7573         if (I.onlyReadsMemory()) {
7574           SDValue LHS = getValue(I.getArgOperand(0));
7575           SDValue RHS = getValue(I.getArgOperand(1));
7576           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7577                                    LHS.getValueType(), LHS, RHS));
7578           return;
7579         }
7580         break;
7581       case LibFunc_fabs:
7582       case LibFunc_fabsf:
7583       case LibFunc_fabsl:
7584         if (visitUnaryFloatCall(I, ISD::FABS))
7585           return;
7586         break;
7587       case LibFunc_fmin:
7588       case LibFunc_fminf:
7589       case LibFunc_fminl:
7590         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7591           return;
7592         break;
7593       case LibFunc_fmax:
7594       case LibFunc_fmaxf:
7595       case LibFunc_fmaxl:
7596         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7597           return;
7598         break;
7599       case LibFunc_sin:
7600       case LibFunc_sinf:
7601       case LibFunc_sinl:
7602         if (visitUnaryFloatCall(I, ISD::FSIN))
7603           return;
7604         break;
7605       case LibFunc_cos:
7606       case LibFunc_cosf:
7607       case LibFunc_cosl:
7608         if (visitUnaryFloatCall(I, ISD::FCOS))
7609           return;
7610         break;
7611       case LibFunc_sqrt:
7612       case LibFunc_sqrtf:
7613       case LibFunc_sqrtl:
7614       case LibFunc_sqrt_finite:
7615       case LibFunc_sqrtf_finite:
7616       case LibFunc_sqrtl_finite:
7617         if (visitUnaryFloatCall(I, ISD::FSQRT))
7618           return;
7619         break;
7620       case LibFunc_floor:
7621       case LibFunc_floorf:
7622       case LibFunc_floorl:
7623         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7624           return;
7625         break;
7626       case LibFunc_nearbyint:
7627       case LibFunc_nearbyintf:
7628       case LibFunc_nearbyintl:
7629         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7630           return;
7631         break;
7632       case LibFunc_ceil:
7633       case LibFunc_ceilf:
7634       case LibFunc_ceill:
7635         if (visitUnaryFloatCall(I, ISD::FCEIL))
7636           return;
7637         break;
7638       case LibFunc_rint:
7639       case LibFunc_rintf:
7640       case LibFunc_rintl:
7641         if (visitUnaryFloatCall(I, ISD::FRINT))
7642           return;
7643         break;
7644       case LibFunc_round:
7645       case LibFunc_roundf:
7646       case LibFunc_roundl:
7647         if (visitUnaryFloatCall(I, ISD::FROUND))
7648           return;
7649         break;
7650       case LibFunc_trunc:
7651       case LibFunc_truncf:
7652       case LibFunc_truncl:
7653         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7654           return;
7655         break;
7656       case LibFunc_log2:
7657       case LibFunc_log2f:
7658       case LibFunc_log2l:
7659         if (visitUnaryFloatCall(I, ISD::FLOG2))
7660           return;
7661         break;
7662       case LibFunc_exp2:
7663       case LibFunc_exp2f:
7664       case LibFunc_exp2l:
7665         if (visitUnaryFloatCall(I, ISD::FEXP2))
7666           return;
7667         break;
7668       case LibFunc_memcmp:
7669         if (visitMemCmpBCmpCall(I))
7670           return;
7671         break;
7672       case LibFunc_mempcpy:
7673         if (visitMemPCpyCall(I))
7674           return;
7675         break;
7676       case LibFunc_memchr:
7677         if (visitMemChrCall(I))
7678           return;
7679         break;
7680       case LibFunc_strcpy:
7681         if (visitStrCpyCall(I, false))
7682           return;
7683         break;
7684       case LibFunc_stpcpy:
7685         if (visitStrCpyCall(I, true))
7686           return;
7687         break;
7688       case LibFunc_strcmp:
7689         if (visitStrCmpCall(I))
7690           return;
7691         break;
7692       case LibFunc_strlen:
7693         if (visitStrLenCall(I))
7694           return;
7695         break;
7696       case LibFunc_strnlen:
7697         if (visitStrNLenCall(I))
7698           return;
7699         break;
7700       }
7701     }
7702   }
7703 
7704   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7705   // have to do anything here to lower funclet bundles.
7706   // CFGuardTarget bundles are lowered in LowerCallTo.
7707   assert(!I.hasOperandBundlesOtherThan(
7708              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7709               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7710          "Cannot lower calls with arbitrary operand bundles!");
7711 
7712   SDValue Callee = getValue(I.getCalledOperand());
7713 
7714   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7715     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7716   else
7717     // Check if we can potentially perform a tail call. More detailed checking
7718     // is be done within LowerCallTo, after more information about the call is
7719     // known.
7720     LowerCallTo(I, Callee, I.isTailCall());
7721 }
7722 
7723 namespace {
7724 
7725 /// AsmOperandInfo - This contains information for each constraint that we are
7726 /// lowering.
7727 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7728 public:
7729   /// CallOperand - If this is the result output operand or a clobber
7730   /// this is null, otherwise it is the incoming operand to the CallInst.
7731   /// This gets modified as the asm is processed.
7732   SDValue CallOperand;
7733 
7734   /// AssignedRegs - If this is a register or register class operand, this
7735   /// contains the set of register corresponding to the operand.
7736   RegsForValue AssignedRegs;
7737 
7738   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7739     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7740   }
7741 
7742   /// Whether or not this operand accesses memory
7743   bool hasMemory(const TargetLowering &TLI) const {
7744     // Indirect operand accesses access memory.
7745     if (isIndirect)
7746       return true;
7747 
7748     for (const auto &Code : Codes)
7749       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7750         return true;
7751 
7752     return false;
7753   }
7754 
7755   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7756   /// corresponds to.  If there is no Value* for this operand, it returns
7757   /// MVT::Other.
7758   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7759                            const DataLayout &DL) const {
7760     if (!CallOperandVal) return MVT::Other;
7761 
7762     if (isa<BasicBlock>(CallOperandVal))
7763       return TLI.getProgramPointerTy(DL);
7764 
7765     llvm::Type *OpTy = CallOperandVal->getType();
7766 
7767     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7768     // If this is an indirect operand, the operand is a pointer to the
7769     // accessed type.
7770     if (isIndirect) {
7771       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7772       if (!PtrTy)
7773         report_fatal_error("Indirect operand for inline asm not a pointer!");
7774       OpTy = PtrTy->getElementType();
7775     }
7776 
7777     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7778     if (StructType *STy = dyn_cast<StructType>(OpTy))
7779       if (STy->getNumElements() == 1)
7780         OpTy = STy->getElementType(0);
7781 
7782     // If OpTy is not a single value, it may be a struct/union that we
7783     // can tile with integers.
7784     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7785       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7786       switch (BitSize) {
7787       default: break;
7788       case 1:
7789       case 8:
7790       case 16:
7791       case 32:
7792       case 64:
7793       case 128:
7794         OpTy = IntegerType::get(Context, BitSize);
7795         break;
7796       }
7797     }
7798 
7799     return TLI.getValueType(DL, OpTy, true);
7800   }
7801 };
7802 
7803 
7804 } // end anonymous namespace
7805 
7806 /// Make sure that the output operand \p OpInfo and its corresponding input
7807 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7808 /// out).
7809 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7810                                SDISelAsmOperandInfo &MatchingOpInfo,
7811                                SelectionDAG &DAG) {
7812   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7813     return;
7814 
7815   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7816   const auto &TLI = DAG.getTargetLoweringInfo();
7817 
7818   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7819       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7820                                        OpInfo.ConstraintVT);
7821   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7822       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7823                                        MatchingOpInfo.ConstraintVT);
7824   if ((OpInfo.ConstraintVT.isInteger() !=
7825        MatchingOpInfo.ConstraintVT.isInteger()) ||
7826       (MatchRC.second != InputRC.second)) {
7827     // FIXME: error out in a more elegant fashion
7828     report_fatal_error("Unsupported asm: input constraint"
7829                        " with a matching output constraint of"
7830                        " incompatible type!");
7831   }
7832   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7833 }
7834 
7835 /// Get a direct memory input to behave well as an indirect operand.
7836 /// This may introduce stores, hence the need for a \p Chain.
7837 /// \return The (possibly updated) chain.
7838 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7839                                         SDISelAsmOperandInfo &OpInfo,
7840                                         SelectionDAG &DAG) {
7841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7842 
7843   // If we don't have an indirect input, put it in the constpool if we can,
7844   // otherwise spill it to a stack slot.
7845   // TODO: This isn't quite right. We need to handle these according to
7846   // the addressing mode that the constraint wants. Also, this may take
7847   // an additional register for the computation and we don't want that
7848   // either.
7849 
7850   // If the operand is a float, integer, or vector constant, spill to a
7851   // constant pool entry to get its address.
7852   const Value *OpVal = OpInfo.CallOperandVal;
7853   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7854       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7855     OpInfo.CallOperand = DAG.getConstantPool(
7856         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7857     return Chain;
7858   }
7859 
7860   // Otherwise, create a stack slot and emit a store to it before the asm.
7861   Type *Ty = OpVal->getType();
7862   auto &DL = DAG.getDataLayout();
7863   uint64_t TySize = DL.getTypeAllocSize(Ty);
7864   MachineFunction &MF = DAG.getMachineFunction();
7865   int SSFI = MF.getFrameInfo().CreateStackObject(
7866       TySize, DL.getPrefTypeAlign(Ty), false);
7867   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7868   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7869                             MachinePointerInfo::getFixedStack(MF, SSFI),
7870                             TLI.getMemValueType(DL, Ty));
7871   OpInfo.CallOperand = StackSlot;
7872 
7873   return Chain;
7874 }
7875 
7876 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7877 /// specified operand.  We prefer to assign virtual registers, to allow the
7878 /// register allocator to handle the assignment process.  However, if the asm
7879 /// uses features that we can't model on machineinstrs, we have SDISel do the
7880 /// allocation.  This produces generally horrible, but correct, code.
7881 ///
7882 ///   OpInfo describes the operand
7883 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7884 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7885                                  SDISelAsmOperandInfo &OpInfo,
7886                                  SDISelAsmOperandInfo &RefOpInfo) {
7887   LLVMContext &Context = *DAG.getContext();
7888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7889 
7890   MachineFunction &MF = DAG.getMachineFunction();
7891   SmallVector<unsigned, 4> Regs;
7892   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7893 
7894   // No work to do for memory operations.
7895   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7896     return;
7897 
7898   // If this is a constraint for a single physreg, or a constraint for a
7899   // register class, find it.
7900   unsigned AssignedReg;
7901   const TargetRegisterClass *RC;
7902   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7903       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7904   // RC is unset only on failure. Return immediately.
7905   if (!RC)
7906     return;
7907 
7908   // Get the actual register value type.  This is important, because the user
7909   // may have asked for (e.g.) the AX register in i32 type.  We need to
7910   // remember that AX is actually i16 to get the right extension.
7911   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7912 
7913   if (OpInfo.ConstraintVT != MVT::Other) {
7914     // If this is an FP operand in an integer register (or visa versa), or more
7915     // generally if the operand value disagrees with the register class we plan
7916     // to stick it in, fix the operand type.
7917     //
7918     // If this is an input value, the bitcast to the new type is done now.
7919     // Bitcast for output value is done at the end of visitInlineAsm().
7920     if ((OpInfo.Type == InlineAsm::isOutput ||
7921          OpInfo.Type == InlineAsm::isInput) &&
7922         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7923       // Try to convert to the first EVT that the reg class contains.  If the
7924       // types are identical size, use a bitcast to convert (e.g. two differing
7925       // vector types).  Note: output bitcast is done at the end of
7926       // visitInlineAsm().
7927       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7928         // Exclude indirect inputs while they are unsupported because the code
7929         // to perform the load is missing and thus OpInfo.CallOperand still
7930         // refers to the input address rather than the pointed-to value.
7931         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7932           OpInfo.CallOperand =
7933               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7934         OpInfo.ConstraintVT = RegVT;
7935         // If the operand is an FP value and we want it in integer registers,
7936         // use the corresponding integer type. This turns an f64 value into
7937         // i64, which can be passed with two i32 values on a 32-bit machine.
7938       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7939         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7940         if (OpInfo.Type == InlineAsm::isInput)
7941           OpInfo.CallOperand =
7942               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7943         OpInfo.ConstraintVT = VT;
7944       }
7945     }
7946   }
7947 
7948   // No need to allocate a matching input constraint since the constraint it's
7949   // matching to has already been allocated.
7950   if (OpInfo.isMatchingInputConstraint())
7951     return;
7952 
7953   EVT ValueVT = OpInfo.ConstraintVT;
7954   if (OpInfo.ConstraintVT == MVT::Other)
7955     ValueVT = RegVT;
7956 
7957   // Initialize NumRegs.
7958   unsigned NumRegs = 1;
7959   if (OpInfo.ConstraintVT != MVT::Other)
7960     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7961 
7962   // If this is a constraint for a specific physical register, like {r17},
7963   // assign it now.
7964 
7965   // If this associated to a specific register, initialize iterator to correct
7966   // place. If virtual, make sure we have enough registers
7967 
7968   // Initialize iterator if necessary
7969   TargetRegisterClass::iterator I = RC->begin();
7970   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7971 
7972   // Do not check for single registers.
7973   if (AssignedReg) {
7974       for (; *I != AssignedReg; ++I)
7975         assert(I != RC->end() && "AssignedReg should be member of RC");
7976   }
7977 
7978   for (; NumRegs; --NumRegs, ++I) {
7979     assert(I != RC->end() && "Ran out of registers to allocate!");
7980     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7981     Regs.push_back(R);
7982   }
7983 
7984   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7985 }
7986 
7987 static unsigned
7988 findMatchingInlineAsmOperand(unsigned OperandNo,
7989                              const std::vector<SDValue> &AsmNodeOperands) {
7990   // Scan until we find the definition we already emitted of this operand.
7991   unsigned CurOp = InlineAsm::Op_FirstOperand;
7992   for (; OperandNo; --OperandNo) {
7993     // Advance to the next operand.
7994     unsigned OpFlag =
7995         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7996     assert((InlineAsm::isRegDefKind(OpFlag) ||
7997             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7998             InlineAsm::isMemKind(OpFlag)) &&
7999            "Skipped past definitions?");
8000     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8001   }
8002   return CurOp;
8003 }
8004 
8005 namespace {
8006 
8007 class ExtraFlags {
8008   unsigned Flags = 0;
8009 
8010 public:
8011   explicit ExtraFlags(const CallBase &Call) {
8012     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8013     if (IA->hasSideEffects())
8014       Flags |= InlineAsm::Extra_HasSideEffects;
8015     if (IA->isAlignStack())
8016       Flags |= InlineAsm::Extra_IsAlignStack;
8017     if (Call.isConvergent())
8018       Flags |= InlineAsm::Extra_IsConvergent;
8019     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8020   }
8021 
8022   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8023     // Ideally, we would only check against memory constraints.  However, the
8024     // meaning of an Other constraint can be target-specific and we can't easily
8025     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8026     // for Other constraints as well.
8027     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8028         OpInfo.ConstraintType == TargetLowering::C_Other) {
8029       if (OpInfo.Type == InlineAsm::isInput)
8030         Flags |= InlineAsm::Extra_MayLoad;
8031       else if (OpInfo.Type == InlineAsm::isOutput)
8032         Flags |= InlineAsm::Extra_MayStore;
8033       else if (OpInfo.Type == InlineAsm::isClobber)
8034         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8035     }
8036   }
8037 
8038   unsigned get() const { return Flags; }
8039 };
8040 
8041 } // end anonymous namespace
8042 
8043 /// visitInlineAsm - Handle a call to an InlineAsm object.
8044 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8045   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8046 
8047   /// ConstraintOperands - Information about all of the constraints.
8048   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8049 
8050   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8051   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8052       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8053 
8054   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8055   // AsmDialect, MayLoad, MayStore).
8056   bool HasSideEffect = IA->hasSideEffects();
8057   ExtraFlags ExtraInfo(Call);
8058 
8059   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8060   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8061   unsigned NumMatchingOps = 0;
8062   for (auto &T : TargetConstraints) {
8063     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8064     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8065 
8066     // Compute the value type for each operand.
8067     if (OpInfo.Type == InlineAsm::isInput ||
8068         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8069       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8070 
8071       // Process the call argument. BasicBlocks are labels, currently appearing
8072       // only in asm's.
8073       if (isa<CallBrInst>(Call) &&
8074           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8075                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8076                         NumMatchingOps) &&
8077           (NumMatchingOps == 0 ||
8078            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8079                         NumMatchingOps))) {
8080         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8081         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8082         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8083       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8084         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8085       } else {
8086         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8087       }
8088 
8089       OpInfo.ConstraintVT =
8090           OpInfo
8091               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8092               .getSimpleVT();
8093     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8094       // The return value of the call is this value.  As such, there is no
8095       // corresponding argument.
8096       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8097       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8098         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8099             DAG.getDataLayout(), STy->getElementType(ResNo));
8100       } else {
8101         assert(ResNo == 0 && "Asm only has one result!");
8102         OpInfo.ConstraintVT =
8103             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8104       }
8105       ++ResNo;
8106     } else {
8107       OpInfo.ConstraintVT = MVT::Other;
8108     }
8109 
8110     if (OpInfo.hasMatchingInput())
8111       ++NumMatchingOps;
8112 
8113     if (!HasSideEffect)
8114       HasSideEffect = OpInfo.hasMemory(TLI);
8115 
8116     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8117     // FIXME: Could we compute this on OpInfo rather than T?
8118 
8119     // Compute the constraint code and ConstraintType to use.
8120     TLI.ComputeConstraintToUse(T, SDValue());
8121 
8122     if (T.ConstraintType == TargetLowering::C_Immediate &&
8123         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8124       // We've delayed emitting a diagnostic like the "n" constraint because
8125       // inlining could cause an integer showing up.
8126       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8127                                           "' expects an integer constant "
8128                                           "expression");
8129 
8130     ExtraInfo.update(T);
8131   }
8132 
8133 
8134   // We won't need to flush pending loads if this asm doesn't touch
8135   // memory and is nonvolatile.
8136   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8137 
8138   bool IsCallBr = isa<CallBrInst>(Call);
8139   if (IsCallBr) {
8140     // If this is a callbr we need to flush pending exports since inlineasm_br
8141     // is a terminator. We need to do this before nodes are glued to
8142     // the inlineasm_br node.
8143     Chain = getControlRoot();
8144   }
8145 
8146   // Second pass over the constraints: compute which constraint option to use.
8147   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8148     // If this is an output operand with a matching input operand, look up the
8149     // matching input. If their types mismatch, e.g. one is an integer, the
8150     // other is floating point, or their sizes are different, flag it as an
8151     // error.
8152     if (OpInfo.hasMatchingInput()) {
8153       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8154       patchMatchingInput(OpInfo, Input, DAG);
8155     }
8156 
8157     // Compute the constraint code and ConstraintType to use.
8158     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8159 
8160     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8161         OpInfo.Type == InlineAsm::isClobber)
8162       continue;
8163 
8164     // If this is a memory input, and if the operand is not indirect, do what we
8165     // need to provide an address for the memory input.
8166     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8167         !OpInfo.isIndirect) {
8168       assert((OpInfo.isMultipleAlternative ||
8169               (OpInfo.Type == InlineAsm::isInput)) &&
8170              "Can only indirectify direct input operands!");
8171 
8172       // Memory operands really want the address of the value.
8173       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8174 
8175       // There is no longer a Value* corresponding to this operand.
8176       OpInfo.CallOperandVal = nullptr;
8177 
8178       // It is now an indirect operand.
8179       OpInfo.isIndirect = true;
8180     }
8181 
8182   }
8183 
8184   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8185   std::vector<SDValue> AsmNodeOperands;
8186   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8187   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8188       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8189 
8190   // If we have a !srcloc metadata node associated with it, we want to attach
8191   // this to the ultimately generated inline asm machineinstr.  To do this, we
8192   // pass in the third operand as this (potentially null) inline asm MDNode.
8193   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8194   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8195 
8196   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8197   // bits as operand 3.
8198   AsmNodeOperands.push_back(DAG.getTargetConstant(
8199       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8200 
8201   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8202   // this, assign virtual and physical registers for inputs and otput.
8203   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8204     // Assign Registers.
8205     SDISelAsmOperandInfo &RefOpInfo =
8206         OpInfo.isMatchingInputConstraint()
8207             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8208             : OpInfo;
8209     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8210 
8211     auto DetectWriteToReservedRegister = [&]() {
8212       const MachineFunction &MF = DAG.getMachineFunction();
8213       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8214       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8215         if (Register::isPhysicalRegister(Reg) &&
8216             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8217           const char *RegName = TRI.getName(Reg);
8218           emitInlineAsmError(Call, "write to reserved register '" +
8219                                        Twine(RegName) + "'");
8220           return true;
8221         }
8222       }
8223       return false;
8224     };
8225 
8226     switch (OpInfo.Type) {
8227     case InlineAsm::isOutput:
8228       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8229         unsigned ConstraintID =
8230             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8231         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8232                "Failed to convert memory constraint code to constraint id.");
8233 
8234         // Add information to the INLINEASM node to know about this output.
8235         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8236         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8237         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8238                                                         MVT::i32));
8239         AsmNodeOperands.push_back(OpInfo.CallOperand);
8240       } else {
8241         // Otherwise, this outputs to a register (directly for C_Register /
8242         // C_RegisterClass, and a target-defined fashion for
8243         // C_Immediate/C_Other). Find a register that we can use.
8244         if (OpInfo.AssignedRegs.Regs.empty()) {
8245           emitInlineAsmError(
8246               Call, "couldn't allocate output register for constraint '" +
8247                         Twine(OpInfo.ConstraintCode) + "'");
8248           return;
8249         }
8250 
8251         if (DetectWriteToReservedRegister())
8252           return;
8253 
8254         // Add information to the INLINEASM node to know that this register is
8255         // set.
8256         OpInfo.AssignedRegs.AddInlineAsmOperands(
8257             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8258                                   : InlineAsm::Kind_RegDef,
8259             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8260       }
8261       break;
8262 
8263     case InlineAsm::isInput: {
8264       SDValue InOperandVal = OpInfo.CallOperand;
8265 
8266       if (OpInfo.isMatchingInputConstraint()) {
8267         // If this is required to match an output register we have already set,
8268         // just use its register.
8269         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8270                                                   AsmNodeOperands);
8271         unsigned OpFlag =
8272           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8273         if (InlineAsm::isRegDefKind(OpFlag) ||
8274             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8275           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8276           if (OpInfo.isIndirect) {
8277             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8278             emitInlineAsmError(Call, "inline asm not supported yet: "
8279                                      "don't know how to handle tied "
8280                                      "indirect register inputs");
8281             return;
8282           }
8283 
8284           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8285           SmallVector<unsigned, 4> Regs;
8286 
8287           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8288             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8289             MachineRegisterInfo &RegInfo =
8290                 DAG.getMachineFunction().getRegInfo();
8291             for (unsigned i = 0; i != NumRegs; ++i)
8292               Regs.push_back(RegInfo.createVirtualRegister(RC));
8293           } else {
8294             emitInlineAsmError(Call,
8295                                "inline asm error: This value type register "
8296                                "class is not natively supported!");
8297             return;
8298           }
8299 
8300           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8301 
8302           SDLoc dl = getCurSDLoc();
8303           // Use the produced MatchedRegs object to
8304           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8305           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8306                                            true, OpInfo.getMatchedOperand(), dl,
8307                                            DAG, AsmNodeOperands);
8308           break;
8309         }
8310 
8311         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8312         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8313                "Unexpected number of operands");
8314         // Add information to the INLINEASM node to know about this input.
8315         // See InlineAsm.h isUseOperandTiedToDef.
8316         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8317         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8318                                                     OpInfo.getMatchedOperand());
8319         AsmNodeOperands.push_back(DAG.getTargetConstant(
8320             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8321         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8322         break;
8323       }
8324 
8325       // Treat indirect 'X' constraint as memory.
8326       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8327           OpInfo.isIndirect)
8328         OpInfo.ConstraintType = TargetLowering::C_Memory;
8329 
8330       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8331           OpInfo.ConstraintType == TargetLowering::C_Other) {
8332         std::vector<SDValue> Ops;
8333         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8334                                           Ops, DAG);
8335         if (Ops.empty()) {
8336           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8337             if (isa<ConstantSDNode>(InOperandVal)) {
8338               emitInlineAsmError(Call, "value out of range for constraint '" +
8339                                            Twine(OpInfo.ConstraintCode) + "'");
8340               return;
8341             }
8342 
8343           emitInlineAsmError(Call,
8344                              "invalid operand for inline asm constraint '" +
8345                                  Twine(OpInfo.ConstraintCode) + "'");
8346           return;
8347         }
8348 
8349         // Add information to the INLINEASM node to know about this input.
8350         unsigned ResOpType =
8351           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8352         AsmNodeOperands.push_back(DAG.getTargetConstant(
8353             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8354         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8355         break;
8356       }
8357 
8358       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8359         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8360         assert(InOperandVal.getValueType() ==
8361                    TLI.getPointerTy(DAG.getDataLayout()) &&
8362                "Memory operands expect pointer values");
8363 
8364         unsigned ConstraintID =
8365             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8366         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8367                "Failed to convert memory constraint code to constraint id.");
8368 
8369         // Add information to the INLINEASM node to know about this input.
8370         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8371         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8372         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8373                                                         getCurSDLoc(),
8374                                                         MVT::i32));
8375         AsmNodeOperands.push_back(InOperandVal);
8376         break;
8377       }
8378 
8379       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8380               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8381              "Unknown constraint type!");
8382 
8383       // TODO: Support this.
8384       if (OpInfo.isIndirect) {
8385         emitInlineAsmError(
8386             Call, "Don't know how to handle indirect register inputs yet "
8387                   "for constraint '" +
8388                       Twine(OpInfo.ConstraintCode) + "'");
8389         return;
8390       }
8391 
8392       // Copy the input into the appropriate registers.
8393       if (OpInfo.AssignedRegs.Regs.empty()) {
8394         emitInlineAsmError(Call,
8395                            "couldn't allocate input reg for constraint '" +
8396                                Twine(OpInfo.ConstraintCode) + "'");
8397         return;
8398       }
8399 
8400       if (DetectWriteToReservedRegister())
8401         return;
8402 
8403       SDLoc dl = getCurSDLoc();
8404 
8405       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8406                                         &Call);
8407 
8408       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8409                                                dl, DAG, AsmNodeOperands);
8410       break;
8411     }
8412     case InlineAsm::isClobber:
8413       // Add the clobbered value to the operand list, so that the register
8414       // allocator is aware that the physreg got clobbered.
8415       if (!OpInfo.AssignedRegs.Regs.empty())
8416         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8417                                                  false, 0, getCurSDLoc(), DAG,
8418                                                  AsmNodeOperands);
8419       break;
8420     }
8421   }
8422 
8423   // Finish up input operands.  Set the input chain and add the flag last.
8424   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8425   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8426 
8427   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8428   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8429                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8430   Flag = Chain.getValue(1);
8431 
8432   // Do additional work to generate outputs.
8433 
8434   SmallVector<EVT, 1> ResultVTs;
8435   SmallVector<SDValue, 1> ResultValues;
8436   SmallVector<SDValue, 8> OutChains;
8437 
8438   llvm::Type *CallResultType = Call.getType();
8439   ArrayRef<Type *> ResultTypes;
8440   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8441     ResultTypes = StructResult->elements();
8442   else if (!CallResultType->isVoidTy())
8443     ResultTypes = makeArrayRef(CallResultType);
8444 
8445   auto CurResultType = ResultTypes.begin();
8446   auto handleRegAssign = [&](SDValue V) {
8447     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8448     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8449     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8450     ++CurResultType;
8451     // If the type of the inline asm call site return value is different but has
8452     // same size as the type of the asm output bitcast it.  One example of this
8453     // is for vectors with different width / number of elements.  This can
8454     // happen for register classes that can contain multiple different value
8455     // types.  The preg or vreg allocated may not have the same VT as was
8456     // expected.
8457     //
8458     // This can also happen for a return value that disagrees with the register
8459     // class it is put in, eg. a double in a general-purpose register on a
8460     // 32-bit machine.
8461     if (ResultVT != V.getValueType() &&
8462         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8463       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8464     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8465              V.getValueType().isInteger()) {
8466       // If a result value was tied to an input value, the computed result
8467       // may have a wider width than the expected result.  Extract the
8468       // relevant portion.
8469       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8470     }
8471     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8472     ResultVTs.push_back(ResultVT);
8473     ResultValues.push_back(V);
8474   };
8475 
8476   // Deal with output operands.
8477   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8478     if (OpInfo.Type == InlineAsm::isOutput) {
8479       SDValue Val;
8480       // Skip trivial output operands.
8481       if (OpInfo.AssignedRegs.Regs.empty())
8482         continue;
8483 
8484       switch (OpInfo.ConstraintType) {
8485       case TargetLowering::C_Register:
8486       case TargetLowering::C_RegisterClass:
8487         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8488                                                   Chain, &Flag, &Call);
8489         break;
8490       case TargetLowering::C_Immediate:
8491       case TargetLowering::C_Other:
8492         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8493                                               OpInfo, DAG);
8494         break;
8495       case TargetLowering::C_Memory:
8496         break; // Already handled.
8497       case TargetLowering::C_Unknown:
8498         assert(false && "Unexpected unknown constraint");
8499       }
8500 
8501       // Indirect output manifest as stores. Record output chains.
8502       if (OpInfo.isIndirect) {
8503         const Value *Ptr = OpInfo.CallOperandVal;
8504         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8505         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8506                                      MachinePointerInfo(Ptr));
8507         OutChains.push_back(Store);
8508       } else {
8509         // generate CopyFromRegs to associated registers.
8510         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8511         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8512           for (const SDValue &V : Val->op_values())
8513             handleRegAssign(V);
8514         } else
8515           handleRegAssign(Val);
8516       }
8517     }
8518   }
8519 
8520   // Set results.
8521   if (!ResultValues.empty()) {
8522     assert(CurResultType == ResultTypes.end() &&
8523            "Mismatch in number of ResultTypes");
8524     assert(ResultValues.size() == ResultTypes.size() &&
8525            "Mismatch in number of output operands in asm result");
8526 
8527     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8528                             DAG.getVTList(ResultVTs), ResultValues);
8529     setValue(&Call, V);
8530   }
8531 
8532   // Collect store chains.
8533   if (!OutChains.empty())
8534     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8535 
8536   // Only Update Root if inline assembly has a memory effect.
8537   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8538     DAG.setRoot(Chain);
8539 }
8540 
8541 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8542                                              const Twine &Message) {
8543   LLVMContext &Ctx = *DAG.getContext();
8544   Ctx.emitError(&Call, Message);
8545 
8546   // Make sure we leave the DAG in a valid state
8547   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8548   SmallVector<EVT, 1> ValueVTs;
8549   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8550 
8551   if (ValueVTs.empty())
8552     return;
8553 
8554   SmallVector<SDValue, 1> Ops;
8555   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8556     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8557 
8558   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8559 }
8560 
8561 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8562   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8563                           MVT::Other, getRoot(),
8564                           getValue(I.getArgOperand(0)),
8565                           DAG.getSrcValue(I.getArgOperand(0))));
8566 }
8567 
8568 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8570   const DataLayout &DL = DAG.getDataLayout();
8571   SDValue V = DAG.getVAArg(
8572       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8573       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8574       DL.getABITypeAlign(I.getType()).value());
8575   DAG.setRoot(V.getValue(1));
8576 
8577   if (I.getType()->isPointerTy())
8578     V = DAG.getPtrExtOrTrunc(
8579         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8580   setValue(&I, V);
8581 }
8582 
8583 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8584   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8585                           MVT::Other, getRoot(),
8586                           getValue(I.getArgOperand(0)),
8587                           DAG.getSrcValue(I.getArgOperand(0))));
8588 }
8589 
8590 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8591   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8592                           MVT::Other, getRoot(),
8593                           getValue(I.getArgOperand(0)),
8594                           getValue(I.getArgOperand(1)),
8595                           DAG.getSrcValue(I.getArgOperand(0)),
8596                           DAG.getSrcValue(I.getArgOperand(1))));
8597 }
8598 
8599 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8600                                                     const Instruction &I,
8601                                                     SDValue Op) {
8602   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8603   if (!Range)
8604     return Op;
8605 
8606   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8607   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8608     return Op;
8609 
8610   APInt Lo = CR.getUnsignedMin();
8611   if (!Lo.isMinValue())
8612     return Op;
8613 
8614   APInt Hi = CR.getUnsignedMax();
8615   unsigned Bits = std::max(Hi.getActiveBits(),
8616                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8617 
8618   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8619 
8620   SDLoc SL = getCurSDLoc();
8621 
8622   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8623                              DAG.getValueType(SmallVT));
8624   unsigned NumVals = Op.getNode()->getNumValues();
8625   if (NumVals == 1)
8626     return ZExt;
8627 
8628   SmallVector<SDValue, 4> Ops;
8629 
8630   Ops.push_back(ZExt);
8631   for (unsigned I = 1; I != NumVals; ++I)
8632     Ops.push_back(Op.getValue(I));
8633 
8634   return DAG.getMergeValues(Ops, SL);
8635 }
8636 
8637 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8638 /// the call being lowered.
8639 ///
8640 /// This is a helper for lowering intrinsics that follow a target calling
8641 /// convention or require stack pointer adjustment. Only a subset of the
8642 /// intrinsic's operands need to participate in the calling convention.
8643 void SelectionDAGBuilder::populateCallLoweringInfo(
8644     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8645     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8646     bool IsPatchPoint) {
8647   TargetLowering::ArgListTy Args;
8648   Args.reserve(NumArgs);
8649 
8650   // Populate the argument list.
8651   // Attributes for args start at offset 1, after the return attribute.
8652   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8653        ArgI != ArgE; ++ArgI) {
8654     const Value *V = Call->getOperand(ArgI);
8655 
8656     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8657 
8658     TargetLowering::ArgListEntry Entry;
8659     Entry.Node = getValue(V);
8660     Entry.Ty = V->getType();
8661     Entry.setAttributes(Call, ArgI);
8662     Args.push_back(Entry);
8663   }
8664 
8665   CLI.setDebugLoc(getCurSDLoc())
8666       .setChain(getRoot())
8667       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8668       .setDiscardResult(Call->use_empty())
8669       .setIsPatchPoint(IsPatchPoint)
8670       .setIsPreallocated(
8671           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8672 }
8673 
8674 /// Add a stack map intrinsic call's live variable operands to a stackmap
8675 /// or patchpoint target node's operand list.
8676 ///
8677 /// Constants are converted to TargetConstants purely as an optimization to
8678 /// avoid constant materialization and register allocation.
8679 ///
8680 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8681 /// generate addess computation nodes, and so FinalizeISel can convert the
8682 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8683 /// address materialization and register allocation, but may also be required
8684 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8685 /// alloca in the entry block, then the runtime may assume that the alloca's
8686 /// StackMap location can be read immediately after compilation and that the
8687 /// location is valid at any point during execution (this is similar to the
8688 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8689 /// only available in a register, then the runtime would need to trap when
8690 /// execution reaches the StackMap in order to read the alloca's location.
8691 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8692                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8693                                 SelectionDAGBuilder &Builder) {
8694   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8695     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8696     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8697       Ops.push_back(
8698         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8699       Ops.push_back(
8700         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8701     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8702       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8703       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8704           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8705     } else
8706       Ops.push_back(OpVal);
8707   }
8708 }
8709 
8710 /// Lower llvm.experimental.stackmap directly to its target opcode.
8711 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8712   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8713   //                                  [live variables...])
8714 
8715   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8716 
8717   SDValue Chain, InFlag, Callee, NullPtr;
8718   SmallVector<SDValue, 32> Ops;
8719 
8720   SDLoc DL = getCurSDLoc();
8721   Callee = getValue(CI.getCalledOperand());
8722   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8723 
8724   // The stackmap intrinsic only records the live variables (the arguments
8725   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8726   // intrinsic, this won't be lowered to a function call. This means we don't
8727   // have to worry about calling conventions and target specific lowering code.
8728   // Instead we perform the call lowering right here.
8729   //
8730   // chain, flag = CALLSEQ_START(chain, 0, 0)
8731   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8732   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8733   //
8734   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8735   InFlag = Chain.getValue(1);
8736 
8737   // Add the <id> and <numBytes> constants.
8738   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8739   Ops.push_back(DAG.getTargetConstant(
8740                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8741   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8742   Ops.push_back(DAG.getTargetConstant(
8743                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8744                   MVT::i32));
8745 
8746   // Push live variables for the stack map.
8747   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8748 
8749   // We are not pushing any register mask info here on the operands list,
8750   // because the stackmap doesn't clobber anything.
8751 
8752   // Push the chain and the glue flag.
8753   Ops.push_back(Chain);
8754   Ops.push_back(InFlag);
8755 
8756   // Create the STACKMAP node.
8757   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8758   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8759   Chain = SDValue(SM, 0);
8760   InFlag = Chain.getValue(1);
8761 
8762   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8763 
8764   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8765 
8766   // Set the root to the target-lowered call chain.
8767   DAG.setRoot(Chain);
8768 
8769   // Inform the Frame Information that we have a stackmap in this function.
8770   FuncInfo.MF->getFrameInfo().setHasStackMap();
8771 }
8772 
8773 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8774 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8775                                           const BasicBlock *EHPadBB) {
8776   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8777   //                                                 i32 <numBytes>,
8778   //                                                 i8* <target>,
8779   //                                                 i32 <numArgs>,
8780   //                                                 [Args...],
8781   //                                                 [live variables...])
8782 
8783   CallingConv::ID CC = CB.getCallingConv();
8784   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8785   bool HasDef = !CB.getType()->isVoidTy();
8786   SDLoc dl = getCurSDLoc();
8787   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8788 
8789   // Handle immediate and symbolic callees.
8790   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8791     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8792                                    /*isTarget=*/true);
8793   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8794     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8795                                          SDLoc(SymbolicCallee),
8796                                          SymbolicCallee->getValueType(0));
8797 
8798   // Get the real number of arguments participating in the call <numArgs>
8799   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8800   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8801 
8802   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8803   // Intrinsics include all meta-operands up to but not including CC.
8804   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8805   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8806          "Not enough arguments provided to the patchpoint intrinsic");
8807 
8808   // For AnyRegCC the arguments are lowered later on manually.
8809   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8810   Type *ReturnTy =
8811       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8812 
8813   TargetLowering::CallLoweringInfo CLI(DAG);
8814   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8815                            ReturnTy, true);
8816   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8817 
8818   SDNode *CallEnd = Result.second.getNode();
8819   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8820     CallEnd = CallEnd->getOperand(0).getNode();
8821 
8822   /// Get a call instruction from the call sequence chain.
8823   /// Tail calls are not allowed.
8824   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8825          "Expected a callseq node.");
8826   SDNode *Call = CallEnd->getOperand(0).getNode();
8827   bool HasGlue = Call->getGluedNode();
8828 
8829   // Replace the target specific call node with the patchable intrinsic.
8830   SmallVector<SDValue, 8> Ops;
8831 
8832   // Add the <id> and <numBytes> constants.
8833   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8834   Ops.push_back(DAG.getTargetConstant(
8835                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8836   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8837   Ops.push_back(DAG.getTargetConstant(
8838                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8839                   MVT::i32));
8840 
8841   // Add the callee.
8842   Ops.push_back(Callee);
8843 
8844   // Adjust <numArgs> to account for any arguments that have been passed on the
8845   // stack instead.
8846   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8847   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8848   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8849   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8850 
8851   // Add the calling convention
8852   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8853 
8854   // Add the arguments we omitted previously. The register allocator should
8855   // place these in any free register.
8856   if (IsAnyRegCC)
8857     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8858       Ops.push_back(getValue(CB.getArgOperand(i)));
8859 
8860   // Push the arguments from the call instruction up to the register mask.
8861   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8862   Ops.append(Call->op_begin() + 2, e);
8863 
8864   // Push live variables for the stack map.
8865   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8866 
8867   // Push the register mask info.
8868   if (HasGlue)
8869     Ops.push_back(*(Call->op_end()-2));
8870   else
8871     Ops.push_back(*(Call->op_end()-1));
8872 
8873   // Push the chain (this is originally the first operand of the call, but
8874   // becomes now the last or second to last operand).
8875   Ops.push_back(*(Call->op_begin()));
8876 
8877   // Push the glue flag (last operand).
8878   if (HasGlue)
8879     Ops.push_back(*(Call->op_end()-1));
8880 
8881   SDVTList NodeTys;
8882   if (IsAnyRegCC && HasDef) {
8883     // Create the return types based on the intrinsic definition
8884     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8885     SmallVector<EVT, 3> ValueVTs;
8886     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8887     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8888 
8889     // There is always a chain and a glue type at the end
8890     ValueVTs.push_back(MVT::Other);
8891     ValueVTs.push_back(MVT::Glue);
8892     NodeTys = DAG.getVTList(ValueVTs);
8893   } else
8894     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8895 
8896   // Replace the target specific call node with a PATCHPOINT node.
8897   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8898                                          dl, NodeTys, Ops);
8899 
8900   // Update the NodeMap.
8901   if (HasDef) {
8902     if (IsAnyRegCC)
8903       setValue(&CB, SDValue(MN, 0));
8904     else
8905       setValue(&CB, Result.first);
8906   }
8907 
8908   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8909   // call sequence. Furthermore the location of the chain and glue can change
8910   // when the AnyReg calling convention is used and the intrinsic returns a
8911   // value.
8912   if (IsAnyRegCC && HasDef) {
8913     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8914     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8915     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8916   } else
8917     DAG.ReplaceAllUsesWith(Call, MN);
8918   DAG.DeleteNode(Call);
8919 
8920   // Inform the Frame Information that we have a patchpoint in this function.
8921   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8922 }
8923 
8924 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8925                                             unsigned Intrinsic) {
8926   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8927   SDValue Op1 = getValue(I.getArgOperand(0));
8928   SDValue Op2;
8929   if (I.getNumArgOperands() > 1)
8930     Op2 = getValue(I.getArgOperand(1));
8931   SDLoc dl = getCurSDLoc();
8932   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8933   SDValue Res;
8934   SDNodeFlags SDFlags;
8935   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
8936     SDFlags.copyFMF(*FPMO);
8937 
8938   switch (Intrinsic) {
8939   case Intrinsic::experimental_vector_reduce_v2_fadd:
8940     if (SDFlags.hasAllowReassociation())
8941       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8942                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
8943                         SDFlags);
8944     else
8945       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2, SDFlags);
8946     break;
8947   case Intrinsic::experimental_vector_reduce_v2_fmul:
8948     if (SDFlags.hasAllowReassociation())
8949       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8950                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
8951                         SDFlags);
8952     else
8953       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2, SDFlags);
8954     break;
8955   case Intrinsic::experimental_vector_reduce_add:
8956     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8957     break;
8958   case Intrinsic::experimental_vector_reduce_mul:
8959     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8960     break;
8961   case Intrinsic::experimental_vector_reduce_and:
8962     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8963     break;
8964   case Intrinsic::experimental_vector_reduce_or:
8965     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8966     break;
8967   case Intrinsic::experimental_vector_reduce_xor:
8968     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8969     break;
8970   case Intrinsic::experimental_vector_reduce_smax:
8971     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8972     break;
8973   case Intrinsic::experimental_vector_reduce_smin:
8974     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8975     break;
8976   case Intrinsic::experimental_vector_reduce_umax:
8977     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8978     break;
8979   case Intrinsic::experimental_vector_reduce_umin:
8980     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8981     break;
8982   case Intrinsic::experimental_vector_reduce_fmax:
8983     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
8984     break;
8985   case Intrinsic::experimental_vector_reduce_fmin:
8986     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
8987     break;
8988   default:
8989     llvm_unreachable("Unhandled vector reduce intrinsic");
8990   }
8991   setValue(&I, Res);
8992 }
8993 
8994 /// Returns an AttributeList representing the attributes applied to the return
8995 /// value of the given call.
8996 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8997   SmallVector<Attribute::AttrKind, 2> Attrs;
8998   if (CLI.RetSExt)
8999     Attrs.push_back(Attribute::SExt);
9000   if (CLI.RetZExt)
9001     Attrs.push_back(Attribute::ZExt);
9002   if (CLI.IsInReg)
9003     Attrs.push_back(Attribute::InReg);
9004 
9005   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9006                             Attrs);
9007 }
9008 
9009 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9010 /// implementation, which just calls LowerCall.
9011 /// FIXME: When all targets are
9012 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9013 std::pair<SDValue, SDValue>
9014 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9015   // Handle the incoming return values from the call.
9016   CLI.Ins.clear();
9017   Type *OrigRetTy = CLI.RetTy;
9018   SmallVector<EVT, 4> RetTys;
9019   SmallVector<uint64_t, 4> Offsets;
9020   auto &DL = CLI.DAG.getDataLayout();
9021   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9022 
9023   if (CLI.IsPostTypeLegalization) {
9024     // If we are lowering a libcall after legalization, split the return type.
9025     SmallVector<EVT, 4> OldRetTys;
9026     SmallVector<uint64_t, 4> OldOffsets;
9027     RetTys.swap(OldRetTys);
9028     Offsets.swap(OldOffsets);
9029 
9030     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9031       EVT RetVT = OldRetTys[i];
9032       uint64_t Offset = OldOffsets[i];
9033       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9034       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9035       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9036       RetTys.append(NumRegs, RegisterVT);
9037       for (unsigned j = 0; j != NumRegs; ++j)
9038         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9039     }
9040   }
9041 
9042   SmallVector<ISD::OutputArg, 4> Outs;
9043   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9044 
9045   bool CanLowerReturn =
9046       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9047                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9048 
9049   SDValue DemoteStackSlot;
9050   int DemoteStackIdx = -100;
9051   if (!CanLowerReturn) {
9052     // FIXME: equivalent assert?
9053     // assert(!CS.hasInAllocaArgument() &&
9054     //        "sret demotion is incompatible with inalloca");
9055     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9056     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9057     MachineFunction &MF = CLI.DAG.getMachineFunction();
9058     DemoteStackIdx =
9059         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9060     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9061                                               DL.getAllocaAddrSpace());
9062 
9063     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9064     ArgListEntry Entry;
9065     Entry.Node = DemoteStackSlot;
9066     Entry.Ty = StackSlotPtrType;
9067     Entry.IsSExt = false;
9068     Entry.IsZExt = false;
9069     Entry.IsInReg = false;
9070     Entry.IsSRet = true;
9071     Entry.IsNest = false;
9072     Entry.IsByVal = false;
9073     Entry.IsByRef = false;
9074     Entry.IsReturned = false;
9075     Entry.IsSwiftSelf = false;
9076     Entry.IsSwiftError = false;
9077     Entry.IsCFGuardTarget = false;
9078     Entry.Alignment = Alignment;
9079     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9080     CLI.NumFixedArgs += 1;
9081     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9082 
9083     // sret demotion isn't compatible with tail-calls, since the sret argument
9084     // points into the callers stack frame.
9085     CLI.IsTailCall = false;
9086   } else {
9087     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9088         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9089     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9090       ISD::ArgFlagsTy Flags;
9091       if (NeedsRegBlock) {
9092         Flags.setInConsecutiveRegs();
9093         if (I == RetTys.size() - 1)
9094           Flags.setInConsecutiveRegsLast();
9095       }
9096       EVT VT = RetTys[I];
9097       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9098                                                      CLI.CallConv, VT);
9099       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9100                                                        CLI.CallConv, VT);
9101       for (unsigned i = 0; i != NumRegs; ++i) {
9102         ISD::InputArg MyFlags;
9103         MyFlags.Flags = Flags;
9104         MyFlags.VT = RegisterVT;
9105         MyFlags.ArgVT = VT;
9106         MyFlags.Used = CLI.IsReturnValueUsed;
9107         if (CLI.RetTy->isPointerTy()) {
9108           MyFlags.Flags.setPointer();
9109           MyFlags.Flags.setPointerAddrSpace(
9110               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9111         }
9112         if (CLI.RetSExt)
9113           MyFlags.Flags.setSExt();
9114         if (CLI.RetZExt)
9115           MyFlags.Flags.setZExt();
9116         if (CLI.IsInReg)
9117           MyFlags.Flags.setInReg();
9118         CLI.Ins.push_back(MyFlags);
9119       }
9120     }
9121   }
9122 
9123   // We push in swifterror return as the last element of CLI.Ins.
9124   ArgListTy &Args = CLI.getArgs();
9125   if (supportSwiftError()) {
9126     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9127       if (Args[i].IsSwiftError) {
9128         ISD::InputArg MyFlags;
9129         MyFlags.VT = getPointerTy(DL);
9130         MyFlags.ArgVT = EVT(getPointerTy(DL));
9131         MyFlags.Flags.setSwiftError();
9132         CLI.Ins.push_back(MyFlags);
9133       }
9134     }
9135   }
9136 
9137   // Handle all of the outgoing arguments.
9138   CLI.Outs.clear();
9139   CLI.OutVals.clear();
9140   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9141     SmallVector<EVT, 4> ValueVTs;
9142     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9143     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9144     Type *FinalType = Args[i].Ty;
9145     if (Args[i].IsByVal)
9146       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9147     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9148         FinalType, CLI.CallConv, CLI.IsVarArg);
9149     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9150          ++Value) {
9151       EVT VT = ValueVTs[Value];
9152       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9153       SDValue Op = SDValue(Args[i].Node.getNode(),
9154                            Args[i].Node.getResNo() + Value);
9155       ISD::ArgFlagsTy Flags;
9156 
9157       // Certain targets (such as MIPS), may have a different ABI alignment
9158       // for a type depending on the context. Give the target a chance to
9159       // specify the alignment it wants.
9160       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9161 
9162       if (Args[i].Ty->isPointerTy()) {
9163         Flags.setPointer();
9164         Flags.setPointerAddrSpace(
9165             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9166       }
9167       if (Args[i].IsZExt)
9168         Flags.setZExt();
9169       if (Args[i].IsSExt)
9170         Flags.setSExt();
9171       if (Args[i].IsInReg) {
9172         // If we are using vectorcall calling convention, a structure that is
9173         // passed InReg - is surely an HVA
9174         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9175             isa<StructType>(FinalType)) {
9176           // The first value of a structure is marked
9177           if (0 == Value)
9178             Flags.setHvaStart();
9179           Flags.setHva();
9180         }
9181         // Set InReg Flag
9182         Flags.setInReg();
9183       }
9184       if (Args[i].IsSRet)
9185         Flags.setSRet();
9186       if (Args[i].IsSwiftSelf)
9187         Flags.setSwiftSelf();
9188       if (Args[i].IsSwiftError)
9189         Flags.setSwiftError();
9190       if (Args[i].IsCFGuardTarget)
9191         Flags.setCFGuardTarget();
9192       if (Args[i].IsByVal)
9193         Flags.setByVal();
9194       if (Args[i].IsByRef)
9195         Flags.setByRef();
9196       if (Args[i].IsPreallocated) {
9197         Flags.setPreallocated();
9198         // Set the byval flag for CCAssignFn callbacks that don't know about
9199         // preallocated.  This way we can know how many bytes we should've
9200         // allocated and how many bytes a callee cleanup function will pop.  If
9201         // we port preallocated to more targets, we'll have to add custom
9202         // preallocated handling in the various CC lowering callbacks.
9203         Flags.setByVal();
9204       }
9205       if (Args[i].IsInAlloca) {
9206         Flags.setInAlloca();
9207         // Set the byval flag for CCAssignFn callbacks that don't know about
9208         // inalloca.  This way we can know how many bytes we should've allocated
9209         // and how many bytes a callee cleanup function will pop.  If we port
9210         // inalloca to more targets, we'll have to add custom inalloca handling
9211         // in the various CC lowering callbacks.
9212         Flags.setByVal();
9213       }
9214       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9215         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9216         Type *ElementTy = Ty->getElementType();
9217 
9218         unsigned FrameSize = DL.getTypeAllocSize(
9219             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9220         Flags.setByValSize(FrameSize);
9221 
9222         // info is not there but there are cases it cannot get right.
9223         Align FrameAlign;
9224         if (auto MA = Args[i].Alignment)
9225           FrameAlign = *MA;
9226         else
9227           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9228         Flags.setByValAlign(FrameAlign);
9229       }
9230       if (Args[i].IsNest)
9231         Flags.setNest();
9232       if (NeedsRegBlock)
9233         Flags.setInConsecutiveRegs();
9234       Flags.setOrigAlign(OriginalAlignment);
9235 
9236       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9237                                                  CLI.CallConv, VT);
9238       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9239                                                         CLI.CallConv, VT);
9240       SmallVector<SDValue, 4> Parts(NumParts);
9241       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9242 
9243       if (Args[i].IsSExt)
9244         ExtendKind = ISD::SIGN_EXTEND;
9245       else if (Args[i].IsZExt)
9246         ExtendKind = ISD::ZERO_EXTEND;
9247 
9248       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9249       // for now.
9250       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9251           CanLowerReturn) {
9252         assert((CLI.RetTy == Args[i].Ty ||
9253                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9254                  CLI.RetTy->getPointerAddressSpace() ==
9255                      Args[i].Ty->getPointerAddressSpace())) &&
9256                RetTys.size() == NumValues && "unexpected use of 'returned'");
9257         // Before passing 'returned' to the target lowering code, ensure that
9258         // either the register MVT and the actual EVT are the same size or that
9259         // the return value and argument are extended in the same way; in these
9260         // cases it's safe to pass the argument register value unchanged as the
9261         // return register value (although it's at the target's option whether
9262         // to do so)
9263         // TODO: allow code generation to take advantage of partially preserved
9264         // registers rather than clobbering the entire register when the
9265         // parameter extension method is not compatible with the return
9266         // extension method
9267         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9268             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9269              CLI.RetZExt == Args[i].IsZExt))
9270           Flags.setReturned();
9271       }
9272 
9273       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9274                      CLI.CallConv, ExtendKind);
9275 
9276       for (unsigned j = 0; j != NumParts; ++j) {
9277         // if it isn't first piece, alignment must be 1
9278         // For scalable vectors the scalable part is currently handled
9279         // by individual targets, so we just use the known minimum size here.
9280         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9281                     i < CLI.NumFixedArgs, i,
9282                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9283         if (NumParts > 1 && j == 0)
9284           MyFlags.Flags.setSplit();
9285         else if (j != 0) {
9286           MyFlags.Flags.setOrigAlign(Align(1));
9287           if (j == NumParts - 1)
9288             MyFlags.Flags.setSplitEnd();
9289         }
9290 
9291         CLI.Outs.push_back(MyFlags);
9292         CLI.OutVals.push_back(Parts[j]);
9293       }
9294 
9295       if (NeedsRegBlock && Value == NumValues - 1)
9296         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9297     }
9298   }
9299 
9300   SmallVector<SDValue, 4> InVals;
9301   CLI.Chain = LowerCall(CLI, InVals);
9302 
9303   // Update CLI.InVals to use outside of this function.
9304   CLI.InVals = InVals;
9305 
9306   // Verify that the target's LowerCall behaved as expected.
9307   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9308          "LowerCall didn't return a valid chain!");
9309   assert((!CLI.IsTailCall || InVals.empty()) &&
9310          "LowerCall emitted a return value for a tail call!");
9311   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9312          "LowerCall didn't emit the correct number of values!");
9313 
9314   // For a tail call, the return value is merely live-out and there aren't
9315   // any nodes in the DAG representing it. Return a special value to
9316   // indicate that a tail call has been emitted and no more Instructions
9317   // should be processed in the current block.
9318   if (CLI.IsTailCall) {
9319     CLI.DAG.setRoot(CLI.Chain);
9320     return std::make_pair(SDValue(), SDValue());
9321   }
9322 
9323 #ifndef NDEBUG
9324   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9325     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9326     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9327            "LowerCall emitted a value with the wrong type!");
9328   }
9329 #endif
9330 
9331   SmallVector<SDValue, 4> ReturnValues;
9332   if (!CanLowerReturn) {
9333     // The instruction result is the result of loading from the
9334     // hidden sret parameter.
9335     SmallVector<EVT, 1> PVTs;
9336     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9337 
9338     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9339     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9340     EVT PtrVT = PVTs[0];
9341 
9342     unsigned NumValues = RetTys.size();
9343     ReturnValues.resize(NumValues);
9344     SmallVector<SDValue, 4> Chains(NumValues);
9345 
9346     // An aggregate return value cannot wrap around the address space, so
9347     // offsets to its parts don't wrap either.
9348     SDNodeFlags Flags;
9349     Flags.setNoUnsignedWrap(true);
9350 
9351     MachineFunction &MF = CLI.DAG.getMachineFunction();
9352     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9353     for (unsigned i = 0; i < NumValues; ++i) {
9354       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9355                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9356                                                         PtrVT), Flags);
9357       SDValue L = CLI.DAG.getLoad(
9358           RetTys[i], CLI.DL, CLI.Chain, Add,
9359           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9360                                             DemoteStackIdx, Offsets[i]),
9361           HiddenSRetAlign);
9362       ReturnValues[i] = L;
9363       Chains[i] = L.getValue(1);
9364     }
9365 
9366     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9367   } else {
9368     // Collect the legal value parts into potentially illegal values
9369     // that correspond to the original function's return values.
9370     Optional<ISD::NodeType> AssertOp;
9371     if (CLI.RetSExt)
9372       AssertOp = ISD::AssertSext;
9373     else if (CLI.RetZExt)
9374       AssertOp = ISD::AssertZext;
9375     unsigned CurReg = 0;
9376     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9377       EVT VT = RetTys[I];
9378       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9379                                                      CLI.CallConv, VT);
9380       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9381                                                        CLI.CallConv, VT);
9382 
9383       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9384                                               NumRegs, RegisterVT, VT, nullptr,
9385                                               CLI.CallConv, AssertOp));
9386       CurReg += NumRegs;
9387     }
9388 
9389     // For a function returning void, there is no return value. We can't create
9390     // such a node, so we just return a null return value in that case. In
9391     // that case, nothing will actually look at the value.
9392     if (ReturnValues.empty())
9393       return std::make_pair(SDValue(), CLI.Chain);
9394   }
9395 
9396   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9397                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9398   return std::make_pair(Res, CLI.Chain);
9399 }
9400 
9401 void TargetLowering::LowerOperationWrapper(SDNode *N,
9402                                            SmallVectorImpl<SDValue> &Results,
9403                                            SelectionDAG &DAG) const {
9404   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9405     Results.push_back(Res);
9406 }
9407 
9408 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9409   llvm_unreachable("LowerOperation not implemented for this target!");
9410 }
9411 
9412 void
9413 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9414   SDValue Op = getNonRegisterValue(V);
9415   assert((Op.getOpcode() != ISD::CopyFromReg ||
9416           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9417          "Copy from a reg to the same reg!");
9418   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9419 
9420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9421   // If this is an InlineAsm we have to match the registers required, not the
9422   // notional registers required by the type.
9423 
9424   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9425                    None); // This is not an ABI copy.
9426   SDValue Chain = DAG.getEntryNode();
9427 
9428   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9429                               FuncInfo.PreferredExtendType.end())
9430                                  ? ISD::ANY_EXTEND
9431                                  : FuncInfo.PreferredExtendType[V];
9432   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9433   PendingExports.push_back(Chain);
9434 }
9435 
9436 #include "llvm/CodeGen/SelectionDAGISel.h"
9437 
9438 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9439 /// entry block, return true.  This includes arguments used by switches, since
9440 /// the switch may expand into multiple basic blocks.
9441 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9442   // With FastISel active, we may be splitting blocks, so force creation
9443   // of virtual registers for all non-dead arguments.
9444   if (FastISel)
9445     return A->use_empty();
9446 
9447   const BasicBlock &Entry = A->getParent()->front();
9448   for (const User *U : A->users())
9449     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9450       return false;  // Use not in entry block.
9451 
9452   return true;
9453 }
9454 
9455 using ArgCopyElisionMapTy =
9456     DenseMap<const Argument *,
9457              std::pair<const AllocaInst *, const StoreInst *>>;
9458 
9459 /// Scan the entry block of the function in FuncInfo for arguments that look
9460 /// like copies into a local alloca. Record any copied arguments in
9461 /// ArgCopyElisionCandidates.
9462 static void
9463 findArgumentCopyElisionCandidates(const DataLayout &DL,
9464                                   FunctionLoweringInfo *FuncInfo,
9465                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9466   // Record the state of every static alloca used in the entry block. Argument
9467   // allocas are all used in the entry block, so we need approximately as many
9468   // entries as we have arguments.
9469   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9470   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9471   unsigned NumArgs = FuncInfo->Fn->arg_size();
9472   StaticAllocas.reserve(NumArgs * 2);
9473 
9474   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9475     if (!V)
9476       return nullptr;
9477     V = V->stripPointerCasts();
9478     const auto *AI = dyn_cast<AllocaInst>(V);
9479     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9480       return nullptr;
9481     auto Iter = StaticAllocas.insert({AI, Unknown});
9482     return &Iter.first->second;
9483   };
9484 
9485   // Look for stores of arguments to static allocas. Look through bitcasts and
9486   // GEPs to handle type coercions, as long as the alloca is fully initialized
9487   // by the store. Any non-store use of an alloca escapes it and any subsequent
9488   // unanalyzed store might write it.
9489   // FIXME: Handle structs initialized with multiple stores.
9490   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9491     // Look for stores, and handle non-store uses conservatively.
9492     const auto *SI = dyn_cast<StoreInst>(&I);
9493     if (!SI) {
9494       // We will look through cast uses, so ignore them completely.
9495       if (I.isCast())
9496         continue;
9497       // Ignore debug info intrinsics, they don't escape or store to allocas.
9498       if (isa<DbgInfoIntrinsic>(I))
9499         continue;
9500       // This is an unknown instruction. Assume it escapes or writes to all
9501       // static alloca operands.
9502       for (const Use &U : I.operands()) {
9503         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9504           *Info = StaticAllocaInfo::Clobbered;
9505       }
9506       continue;
9507     }
9508 
9509     // If the stored value is a static alloca, mark it as escaped.
9510     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9511       *Info = StaticAllocaInfo::Clobbered;
9512 
9513     // Check if the destination is a static alloca.
9514     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9515     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9516     if (!Info)
9517       continue;
9518     const AllocaInst *AI = cast<AllocaInst>(Dst);
9519 
9520     // Skip allocas that have been initialized or clobbered.
9521     if (*Info != StaticAllocaInfo::Unknown)
9522       continue;
9523 
9524     // Check if the stored value is an argument, and that this store fully
9525     // initializes the alloca. Don't elide copies from the same argument twice.
9526     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9527     const auto *Arg = dyn_cast<Argument>(Val);
9528     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9529         Arg->getType()->isEmptyTy() ||
9530         DL.getTypeStoreSize(Arg->getType()) !=
9531             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9532         ArgCopyElisionCandidates.count(Arg)) {
9533       *Info = StaticAllocaInfo::Clobbered;
9534       continue;
9535     }
9536 
9537     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9538                       << '\n');
9539 
9540     // Mark this alloca and store for argument copy elision.
9541     *Info = StaticAllocaInfo::Elidable;
9542     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9543 
9544     // Stop scanning if we've seen all arguments. This will happen early in -O0
9545     // builds, which is useful, because -O0 builds have large entry blocks and
9546     // many allocas.
9547     if (ArgCopyElisionCandidates.size() == NumArgs)
9548       break;
9549   }
9550 }
9551 
9552 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9553 /// ArgVal is a load from a suitable fixed stack object.
9554 static void tryToElideArgumentCopy(
9555     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9556     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9557     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9558     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9559     SDValue ArgVal, bool &ArgHasUses) {
9560   // Check if this is a load from a fixed stack object.
9561   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9562   if (!LNode)
9563     return;
9564   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9565   if (!FINode)
9566     return;
9567 
9568   // Check that the fixed stack object is the right size and alignment.
9569   // Look at the alignment that the user wrote on the alloca instead of looking
9570   // at the stack object.
9571   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9572   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9573   const AllocaInst *AI = ArgCopyIter->second.first;
9574   int FixedIndex = FINode->getIndex();
9575   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9576   int OldIndex = AllocaIndex;
9577   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9578   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9579     LLVM_DEBUG(
9580         dbgs() << "  argument copy elision failed due to bad fixed stack "
9581                   "object size\n");
9582     return;
9583   }
9584   Align RequiredAlignment = AI->getAlign();
9585   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9586     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9587                          "greater than stack argument alignment ("
9588                       << DebugStr(RequiredAlignment) << " vs "
9589                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9590     return;
9591   }
9592 
9593   // Perform the elision. Delete the old stack object and replace its only use
9594   // in the variable info map. Mark the stack object as mutable.
9595   LLVM_DEBUG({
9596     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9597            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9598            << '\n';
9599   });
9600   MFI.RemoveStackObject(OldIndex);
9601   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9602   AllocaIndex = FixedIndex;
9603   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9604   Chains.push_back(ArgVal.getValue(1));
9605 
9606   // Avoid emitting code for the store implementing the copy.
9607   const StoreInst *SI = ArgCopyIter->second.second;
9608   ElidedArgCopyInstrs.insert(SI);
9609 
9610   // Check for uses of the argument again so that we can avoid exporting ArgVal
9611   // if it is't used by anything other than the store.
9612   for (const Value *U : Arg.users()) {
9613     if (U != SI) {
9614       ArgHasUses = true;
9615       break;
9616     }
9617   }
9618 }
9619 
9620 void SelectionDAGISel::LowerArguments(const Function &F) {
9621   SelectionDAG &DAG = SDB->DAG;
9622   SDLoc dl = SDB->getCurSDLoc();
9623   const DataLayout &DL = DAG.getDataLayout();
9624   SmallVector<ISD::InputArg, 16> Ins;
9625 
9626   // In Naked functions we aren't going to save any registers.
9627   if (F.hasFnAttribute(Attribute::Naked))
9628     return;
9629 
9630   if (!FuncInfo->CanLowerReturn) {
9631     // Put in an sret pointer parameter before all the other parameters.
9632     SmallVector<EVT, 1> ValueVTs;
9633     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9634                     F.getReturnType()->getPointerTo(
9635                         DAG.getDataLayout().getAllocaAddrSpace()),
9636                     ValueVTs);
9637 
9638     // NOTE: Assuming that a pointer will never break down to more than one VT
9639     // or one register.
9640     ISD::ArgFlagsTy Flags;
9641     Flags.setSRet();
9642     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9643     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9644                          ISD::InputArg::NoArgIndex, 0);
9645     Ins.push_back(RetArg);
9646   }
9647 
9648   // Look for stores of arguments to static allocas. Mark such arguments with a
9649   // flag to ask the target to give us the memory location of that argument if
9650   // available.
9651   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9652   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9653                                     ArgCopyElisionCandidates);
9654 
9655   // Set up the incoming argument description vector.
9656   for (const Argument &Arg : F.args()) {
9657     unsigned ArgNo = Arg.getArgNo();
9658     SmallVector<EVT, 4> ValueVTs;
9659     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9660     bool isArgValueUsed = !Arg.use_empty();
9661     unsigned PartBase = 0;
9662     Type *FinalType = Arg.getType();
9663     if (Arg.hasAttribute(Attribute::ByVal))
9664       FinalType = Arg.getParamByValType();
9665     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9666         FinalType, F.getCallingConv(), F.isVarArg());
9667     for (unsigned Value = 0, NumValues = ValueVTs.size();
9668          Value != NumValues; ++Value) {
9669       EVT VT = ValueVTs[Value];
9670       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9671       ISD::ArgFlagsTy Flags;
9672 
9673       // Certain targets (such as MIPS), may have a different ABI alignment
9674       // for a type depending on the context. Give the target a chance to
9675       // specify the alignment it wants.
9676       const Align OriginalAlignment(
9677           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9678 
9679       if (Arg.getType()->isPointerTy()) {
9680         Flags.setPointer();
9681         Flags.setPointerAddrSpace(
9682             cast<PointerType>(Arg.getType())->getAddressSpace());
9683       }
9684       if (Arg.hasAttribute(Attribute::ZExt))
9685         Flags.setZExt();
9686       if (Arg.hasAttribute(Attribute::SExt))
9687         Flags.setSExt();
9688       if (Arg.hasAttribute(Attribute::InReg)) {
9689         // If we are using vectorcall calling convention, a structure that is
9690         // passed InReg - is surely an HVA
9691         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9692             isa<StructType>(Arg.getType())) {
9693           // The first value of a structure is marked
9694           if (0 == Value)
9695             Flags.setHvaStart();
9696           Flags.setHva();
9697         }
9698         // Set InReg Flag
9699         Flags.setInReg();
9700       }
9701       if (Arg.hasAttribute(Attribute::StructRet))
9702         Flags.setSRet();
9703       if (Arg.hasAttribute(Attribute::SwiftSelf))
9704         Flags.setSwiftSelf();
9705       if (Arg.hasAttribute(Attribute::SwiftError))
9706         Flags.setSwiftError();
9707       if (Arg.hasAttribute(Attribute::ByVal))
9708         Flags.setByVal();
9709       if (Arg.hasAttribute(Attribute::ByRef))
9710         Flags.setByRef();
9711       if (Arg.hasAttribute(Attribute::InAlloca)) {
9712         Flags.setInAlloca();
9713         // Set the byval flag for CCAssignFn callbacks that don't know about
9714         // inalloca.  This way we can know how many bytes we should've allocated
9715         // and how many bytes a callee cleanup function will pop.  If we port
9716         // inalloca to more targets, we'll have to add custom inalloca handling
9717         // in the various CC lowering callbacks.
9718         Flags.setByVal();
9719       }
9720       if (Arg.hasAttribute(Attribute::Preallocated)) {
9721         Flags.setPreallocated();
9722         // Set the byval flag for CCAssignFn callbacks that don't know about
9723         // preallocated.  This way we can know how many bytes we should've
9724         // allocated and how many bytes a callee cleanup function will pop.  If
9725         // we port preallocated to more targets, we'll have to add custom
9726         // preallocated handling in the various CC lowering callbacks.
9727         Flags.setByVal();
9728       }
9729 
9730       Type *ArgMemTy = nullptr;
9731       if (F.getCallingConv() == CallingConv::X86_INTR) {
9732         // IA Interrupt passes frame (1st parameter) by value in the stack.
9733         if (ArgNo == 0) {
9734           Flags.setByVal();
9735           // FIXME: Dependence on pointee element type. See bug 46672.
9736           ArgMemTy = Arg.getType()->getPointerElementType();
9737         }
9738       }
9739       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9740           Flags.isByRef()) {
9741         if (!ArgMemTy)
9742           ArgMemTy = Arg.getPointeeInMemoryValueType();
9743 
9744         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9745 
9746         // For in-memory arguments, size and alignment should be passed from FE.
9747         // BE will guess if this info is not there but there are cases it cannot
9748         // get right.
9749         MaybeAlign MemAlign = Arg.getParamAlign();
9750         if (!MemAlign)
9751           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9752 
9753         if (Flags.isByRef()) {
9754           Flags.setByRefSize(MemSize);
9755           Flags.setByRefAlign(*MemAlign);
9756         } else {
9757           Flags.setByValSize(MemSize);
9758           Flags.setByValAlign(*MemAlign);
9759         }
9760       }
9761 
9762       if (Arg.hasAttribute(Attribute::Nest))
9763         Flags.setNest();
9764       if (NeedsRegBlock)
9765         Flags.setInConsecutiveRegs();
9766       Flags.setOrigAlign(OriginalAlignment);
9767       if (ArgCopyElisionCandidates.count(&Arg))
9768         Flags.setCopyElisionCandidate();
9769       if (Arg.hasAttribute(Attribute::Returned))
9770         Flags.setReturned();
9771 
9772       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9773           *CurDAG->getContext(), F.getCallingConv(), VT);
9774       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9775           *CurDAG->getContext(), F.getCallingConv(), VT);
9776       for (unsigned i = 0; i != NumRegs; ++i) {
9777         // For scalable vectors, use the minimum size; individual targets
9778         // are responsible for handling scalable vector arguments and
9779         // return values.
9780         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9781                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9782         if (NumRegs > 1 && i == 0)
9783           MyFlags.Flags.setSplit();
9784         // if it isn't first piece, alignment must be 1
9785         else if (i > 0) {
9786           MyFlags.Flags.setOrigAlign(Align(1));
9787           if (i == NumRegs - 1)
9788             MyFlags.Flags.setSplitEnd();
9789         }
9790         Ins.push_back(MyFlags);
9791       }
9792       if (NeedsRegBlock && Value == NumValues - 1)
9793         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9794       PartBase += VT.getStoreSize().getKnownMinSize();
9795     }
9796   }
9797 
9798   // Call the target to set up the argument values.
9799   SmallVector<SDValue, 8> InVals;
9800   SDValue NewRoot = TLI->LowerFormalArguments(
9801       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9802 
9803   // Verify that the target's LowerFormalArguments behaved as expected.
9804   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9805          "LowerFormalArguments didn't return a valid chain!");
9806   assert(InVals.size() == Ins.size() &&
9807          "LowerFormalArguments didn't emit the correct number of values!");
9808   LLVM_DEBUG({
9809     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9810       assert(InVals[i].getNode() &&
9811              "LowerFormalArguments emitted a null value!");
9812       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9813              "LowerFormalArguments emitted a value with the wrong type!");
9814     }
9815   });
9816 
9817   // Update the DAG with the new chain value resulting from argument lowering.
9818   DAG.setRoot(NewRoot);
9819 
9820   // Set up the argument values.
9821   unsigned i = 0;
9822   if (!FuncInfo->CanLowerReturn) {
9823     // Create a virtual register for the sret pointer, and put in a copy
9824     // from the sret argument into it.
9825     SmallVector<EVT, 1> ValueVTs;
9826     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9827                     F.getReturnType()->getPointerTo(
9828                         DAG.getDataLayout().getAllocaAddrSpace()),
9829                     ValueVTs);
9830     MVT VT = ValueVTs[0].getSimpleVT();
9831     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9832     Optional<ISD::NodeType> AssertOp = None;
9833     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9834                                         nullptr, F.getCallingConv(), AssertOp);
9835 
9836     MachineFunction& MF = SDB->DAG.getMachineFunction();
9837     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9838     Register SRetReg =
9839         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9840     FuncInfo->DemoteRegister = SRetReg;
9841     NewRoot =
9842         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9843     DAG.setRoot(NewRoot);
9844 
9845     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9846     ++i;
9847   }
9848 
9849   SmallVector<SDValue, 4> Chains;
9850   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9851   for (const Argument &Arg : F.args()) {
9852     SmallVector<SDValue, 4> ArgValues;
9853     SmallVector<EVT, 4> ValueVTs;
9854     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9855     unsigned NumValues = ValueVTs.size();
9856     if (NumValues == 0)
9857       continue;
9858 
9859     bool ArgHasUses = !Arg.use_empty();
9860 
9861     // Elide the copying store if the target loaded this argument from a
9862     // suitable fixed stack object.
9863     if (Ins[i].Flags.isCopyElisionCandidate()) {
9864       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9865                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9866                              InVals[i], ArgHasUses);
9867     }
9868 
9869     // If this argument is unused then remember its value. It is used to generate
9870     // debugging information.
9871     bool isSwiftErrorArg =
9872         TLI->supportSwiftError() &&
9873         Arg.hasAttribute(Attribute::SwiftError);
9874     if (!ArgHasUses && !isSwiftErrorArg) {
9875       SDB->setUnusedArgValue(&Arg, InVals[i]);
9876 
9877       // Also remember any frame index for use in FastISel.
9878       if (FrameIndexSDNode *FI =
9879           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9880         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9881     }
9882 
9883     for (unsigned Val = 0; Val != NumValues; ++Val) {
9884       EVT VT = ValueVTs[Val];
9885       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9886                                                       F.getCallingConv(), VT);
9887       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9888           *CurDAG->getContext(), F.getCallingConv(), VT);
9889 
9890       // Even an apparent 'unused' swifterror argument needs to be returned. So
9891       // we do generate a copy for it that can be used on return from the
9892       // function.
9893       if (ArgHasUses || isSwiftErrorArg) {
9894         Optional<ISD::NodeType> AssertOp;
9895         if (Arg.hasAttribute(Attribute::SExt))
9896           AssertOp = ISD::AssertSext;
9897         else if (Arg.hasAttribute(Attribute::ZExt))
9898           AssertOp = ISD::AssertZext;
9899 
9900         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9901                                              PartVT, VT, nullptr,
9902                                              F.getCallingConv(), AssertOp));
9903       }
9904 
9905       i += NumParts;
9906     }
9907 
9908     // We don't need to do anything else for unused arguments.
9909     if (ArgValues.empty())
9910       continue;
9911 
9912     // Note down frame index.
9913     if (FrameIndexSDNode *FI =
9914         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9915       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9916 
9917     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9918                                      SDB->getCurSDLoc());
9919 
9920     SDB->setValue(&Arg, Res);
9921     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9922       // We want to associate the argument with the frame index, among
9923       // involved operands, that correspond to the lowest address. The
9924       // getCopyFromParts function, called earlier, is swapping the order of
9925       // the operands to BUILD_PAIR depending on endianness. The result of
9926       // that swapping is that the least significant bits of the argument will
9927       // be in the first operand of the BUILD_PAIR node, and the most
9928       // significant bits will be in the second operand.
9929       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9930       if (LoadSDNode *LNode =
9931           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9932         if (FrameIndexSDNode *FI =
9933             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9934           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9935     }
9936 
9937     // Analyses past this point are naive and don't expect an assertion.
9938     if (Res.getOpcode() == ISD::AssertZext)
9939       Res = Res.getOperand(0);
9940 
9941     // Update the SwiftErrorVRegDefMap.
9942     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9943       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9944       if (Register::isVirtualRegister(Reg))
9945         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9946                                    Reg);
9947     }
9948 
9949     // If this argument is live outside of the entry block, insert a copy from
9950     // wherever we got it to the vreg that other BB's will reference it as.
9951     if (Res.getOpcode() == ISD::CopyFromReg) {
9952       // If we can, though, try to skip creating an unnecessary vreg.
9953       // FIXME: This isn't very clean... it would be nice to make this more
9954       // general.
9955       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9956       if (Register::isVirtualRegister(Reg)) {
9957         FuncInfo->ValueMap[&Arg] = Reg;
9958         continue;
9959       }
9960     }
9961     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9962       FuncInfo->InitializeRegForValue(&Arg);
9963       SDB->CopyToExportRegsIfNeeded(&Arg);
9964     }
9965   }
9966 
9967   if (!Chains.empty()) {
9968     Chains.push_back(NewRoot);
9969     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9970   }
9971 
9972   DAG.setRoot(NewRoot);
9973 
9974   assert(i == InVals.size() && "Argument register count mismatch!");
9975 
9976   // If any argument copy elisions occurred and we have debug info, update the
9977   // stale frame indices used in the dbg.declare variable info table.
9978   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9979   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9980     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9981       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9982       if (I != ArgCopyElisionFrameIndexMap.end())
9983         VI.Slot = I->second;
9984     }
9985   }
9986 
9987   // Finally, if the target has anything special to do, allow it to do so.
9988   emitFunctionEntryCode();
9989 }
9990 
9991 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9992 /// ensure constants are generated when needed.  Remember the virtual registers
9993 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9994 /// directly add them, because expansion might result in multiple MBB's for one
9995 /// BB.  As such, the start of the BB might correspond to a different MBB than
9996 /// the end.
9997 void
9998 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9999   const Instruction *TI = LLVMBB->getTerminator();
10000 
10001   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10002 
10003   // Check PHI nodes in successors that expect a value to be available from this
10004   // block.
10005   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10006     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10007     if (!isa<PHINode>(SuccBB->begin())) continue;
10008     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10009 
10010     // If this terminator has multiple identical successors (common for
10011     // switches), only handle each succ once.
10012     if (!SuccsHandled.insert(SuccMBB).second)
10013       continue;
10014 
10015     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10016 
10017     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10018     // nodes and Machine PHI nodes, but the incoming operands have not been
10019     // emitted yet.
10020     for (const PHINode &PN : SuccBB->phis()) {
10021       // Ignore dead phi's.
10022       if (PN.use_empty())
10023         continue;
10024 
10025       // Skip empty types
10026       if (PN.getType()->isEmptyTy())
10027         continue;
10028 
10029       unsigned Reg;
10030       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10031 
10032       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10033         unsigned &RegOut = ConstantsOut[C];
10034         if (RegOut == 0) {
10035           RegOut = FuncInfo.CreateRegs(C);
10036           CopyValueToVirtualRegister(C, RegOut);
10037         }
10038         Reg = RegOut;
10039       } else {
10040         DenseMap<const Value *, Register>::iterator I =
10041           FuncInfo.ValueMap.find(PHIOp);
10042         if (I != FuncInfo.ValueMap.end())
10043           Reg = I->second;
10044         else {
10045           assert(isa<AllocaInst>(PHIOp) &&
10046                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10047                  "Didn't codegen value into a register!??");
10048           Reg = FuncInfo.CreateRegs(PHIOp);
10049           CopyValueToVirtualRegister(PHIOp, Reg);
10050         }
10051       }
10052 
10053       // Remember that this register needs to added to the machine PHI node as
10054       // the input for this MBB.
10055       SmallVector<EVT, 4> ValueVTs;
10056       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10057       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10058       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10059         EVT VT = ValueVTs[vti];
10060         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10061         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10062           FuncInfo.PHINodesToUpdate.push_back(
10063               std::make_pair(&*MBBI++, Reg + i));
10064         Reg += NumRegisters;
10065       }
10066     }
10067   }
10068 
10069   ConstantsOut.clear();
10070 }
10071 
10072 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10073 /// is 0.
10074 MachineBasicBlock *
10075 SelectionDAGBuilder::StackProtectorDescriptor::
10076 AddSuccessorMBB(const BasicBlock *BB,
10077                 MachineBasicBlock *ParentMBB,
10078                 bool IsLikely,
10079                 MachineBasicBlock *SuccMBB) {
10080   // If SuccBB has not been created yet, create it.
10081   if (!SuccMBB) {
10082     MachineFunction *MF = ParentMBB->getParent();
10083     MachineFunction::iterator BBI(ParentMBB);
10084     SuccMBB = MF->CreateMachineBasicBlock(BB);
10085     MF->insert(++BBI, SuccMBB);
10086   }
10087   // Add it as a successor of ParentMBB.
10088   ParentMBB->addSuccessor(
10089       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10090   return SuccMBB;
10091 }
10092 
10093 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10094   MachineFunction::iterator I(MBB);
10095   if (++I == FuncInfo.MF->end())
10096     return nullptr;
10097   return &*I;
10098 }
10099 
10100 /// During lowering new call nodes can be created (such as memset, etc.).
10101 /// Those will become new roots of the current DAG, but complications arise
10102 /// when they are tail calls. In such cases, the call lowering will update
10103 /// the root, but the builder still needs to know that a tail call has been
10104 /// lowered in order to avoid generating an additional return.
10105 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10106   // If the node is null, we do have a tail call.
10107   if (MaybeTC.getNode() != nullptr)
10108     DAG.setRoot(MaybeTC);
10109   else
10110     HasTailCall = true;
10111 }
10112 
10113 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10114                                         MachineBasicBlock *SwitchMBB,
10115                                         MachineBasicBlock *DefaultMBB) {
10116   MachineFunction *CurMF = FuncInfo.MF;
10117   MachineBasicBlock *NextMBB = nullptr;
10118   MachineFunction::iterator BBI(W.MBB);
10119   if (++BBI != FuncInfo.MF->end())
10120     NextMBB = &*BBI;
10121 
10122   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10123 
10124   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10125 
10126   if (Size == 2 && W.MBB == SwitchMBB) {
10127     // If any two of the cases has the same destination, and if one value
10128     // is the same as the other, but has one bit unset that the other has set,
10129     // use bit manipulation to do two compares at once.  For example:
10130     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10131     // TODO: This could be extended to merge any 2 cases in switches with 3
10132     // cases.
10133     // TODO: Handle cases where W.CaseBB != SwitchBB.
10134     CaseCluster &Small = *W.FirstCluster;
10135     CaseCluster &Big = *W.LastCluster;
10136 
10137     if (Small.Low == Small.High && Big.Low == Big.High &&
10138         Small.MBB == Big.MBB) {
10139       const APInt &SmallValue = Small.Low->getValue();
10140       const APInt &BigValue = Big.Low->getValue();
10141 
10142       // Check that there is only one bit different.
10143       APInt CommonBit = BigValue ^ SmallValue;
10144       if (CommonBit.isPowerOf2()) {
10145         SDValue CondLHS = getValue(Cond);
10146         EVT VT = CondLHS.getValueType();
10147         SDLoc DL = getCurSDLoc();
10148 
10149         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10150                                  DAG.getConstant(CommonBit, DL, VT));
10151         SDValue Cond = DAG.getSetCC(
10152             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10153             ISD::SETEQ);
10154 
10155         // Update successor info.
10156         // Both Small and Big will jump to Small.BB, so we sum up the
10157         // probabilities.
10158         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10159         if (BPI)
10160           addSuccessorWithProb(
10161               SwitchMBB, DefaultMBB,
10162               // The default destination is the first successor in IR.
10163               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10164         else
10165           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10166 
10167         // Insert the true branch.
10168         SDValue BrCond =
10169             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10170                         DAG.getBasicBlock(Small.MBB));
10171         // Insert the false branch.
10172         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10173                              DAG.getBasicBlock(DefaultMBB));
10174 
10175         DAG.setRoot(BrCond);
10176         return;
10177       }
10178     }
10179   }
10180 
10181   if (TM.getOptLevel() != CodeGenOpt::None) {
10182     // Here, we order cases by probability so the most likely case will be
10183     // checked first. However, two clusters can have the same probability in
10184     // which case their relative ordering is non-deterministic. So we use Low
10185     // as a tie-breaker as clusters are guaranteed to never overlap.
10186     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10187                [](const CaseCluster &a, const CaseCluster &b) {
10188       return a.Prob != b.Prob ?
10189              a.Prob > b.Prob :
10190              a.Low->getValue().slt(b.Low->getValue());
10191     });
10192 
10193     // Rearrange the case blocks so that the last one falls through if possible
10194     // without changing the order of probabilities.
10195     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10196       --I;
10197       if (I->Prob > W.LastCluster->Prob)
10198         break;
10199       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10200         std::swap(*I, *W.LastCluster);
10201         break;
10202       }
10203     }
10204   }
10205 
10206   // Compute total probability.
10207   BranchProbability DefaultProb = W.DefaultProb;
10208   BranchProbability UnhandledProbs = DefaultProb;
10209   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10210     UnhandledProbs += I->Prob;
10211 
10212   MachineBasicBlock *CurMBB = W.MBB;
10213   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10214     bool FallthroughUnreachable = false;
10215     MachineBasicBlock *Fallthrough;
10216     if (I == W.LastCluster) {
10217       // For the last cluster, fall through to the default destination.
10218       Fallthrough = DefaultMBB;
10219       FallthroughUnreachable = isa<UnreachableInst>(
10220           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10221     } else {
10222       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10223       CurMF->insert(BBI, Fallthrough);
10224       // Put Cond in a virtual register to make it available from the new blocks.
10225       ExportFromCurrentBlock(Cond);
10226     }
10227     UnhandledProbs -= I->Prob;
10228 
10229     switch (I->Kind) {
10230       case CC_JumpTable: {
10231         // FIXME: Optimize away range check based on pivot comparisons.
10232         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10233         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10234 
10235         // The jump block hasn't been inserted yet; insert it here.
10236         MachineBasicBlock *JumpMBB = JT->MBB;
10237         CurMF->insert(BBI, JumpMBB);
10238 
10239         auto JumpProb = I->Prob;
10240         auto FallthroughProb = UnhandledProbs;
10241 
10242         // If the default statement is a target of the jump table, we evenly
10243         // distribute the default probability to successors of CurMBB. Also
10244         // update the probability on the edge from JumpMBB to Fallthrough.
10245         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10246                                               SE = JumpMBB->succ_end();
10247              SI != SE; ++SI) {
10248           if (*SI == DefaultMBB) {
10249             JumpProb += DefaultProb / 2;
10250             FallthroughProb -= DefaultProb / 2;
10251             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10252             JumpMBB->normalizeSuccProbs();
10253             break;
10254           }
10255         }
10256 
10257         if (FallthroughUnreachable) {
10258           // Skip the range check if the fallthrough block is unreachable.
10259           JTH->OmitRangeCheck = true;
10260         }
10261 
10262         if (!JTH->OmitRangeCheck)
10263           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10264         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10265         CurMBB->normalizeSuccProbs();
10266 
10267         // The jump table header will be inserted in our current block, do the
10268         // range check, and fall through to our fallthrough block.
10269         JTH->HeaderBB = CurMBB;
10270         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10271 
10272         // If we're in the right place, emit the jump table header right now.
10273         if (CurMBB == SwitchMBB) {
10274           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10275           JTH->Emitted = true;
10276         }
10277         break;
10278       }
10279       case CC_BitTests: {
10280         // FIXME: Optimize away range check based on pivot comparisons.
10281         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10282 
10283         // The bit test blocks haven't been inserted yet; insert them here.
10284         for (BitTestCase &BTC : BTB->Cases)
10285           CurMF->insert(BBI, BTC.ThisBB);
10286 
10287         // Fill in fields of the BitTestBlock.
10288         BTB->Parent = CurMBB;
10289         BTB->Default = Fallthrough;
10290 
10291         BTB->DefaultProb = UnhandledProbs;
10292         // If the cases in bit test don't form a contiguous range, we evenly
10293         // distribute the probability on the edge to Fallthrough to two
10294         // successors of CurMBB.
10295         if (!BTB->ContiguousRange) {
10296           BTB->Prob += DefaultProb / 2;
10297           BTB->DefaultProb -= DefaultProb / 2;
10298         }
10299 
10300         if (FallthroughUnreachable) {
10301           // Skip the range check if the fallthrough block is unreachable.
10302           BTB->OmitRangeCheck = true;
10303         }
10304 
10305         // If we're in the right place, emit the bit test header right now.
10306         if (CurMBB == SwitchMBB) {
10307           visitBitTestHeader(*BTB, SwitchMBB);
10308           BTB->Emitted = true;
10309         }
10310         break;
10311       }
10312       case CC_Range: {
10313         const Value *RHS, *LHS, *MHS;
10314         ISD::CondCode CC;
10315         if (I->Low == I->High) {
10316           // Check Cond == I->Low.
10317           CC = ISD::SETEQ;
10318           LHS = Cond;
10319           RHS=I->Low;
10320           MHS = nullptr;
10321         } else {
10322           // Check I->Low <= Cond <= I->High.
10323           CC = ISD::SETLE;
10324           LHS = I->Low;
10325           MHS = Cond;
10326           RHS = I->High;
10327         }
10328 
10329         // If Fallthrough is unreachable, fold away the comparison.
10330         if (FallthroughUnreachable)
10331           CC = ISD::SETTRUE;
10332 
10333         // The false probability is the sum of all unhandled cases.
10334         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10335                      getCurSDLoc(), I->Prob, UnhandledProbs);
10336 
10337         if (CurMBB == SwitchMBB)
10338           visitSwitchCase(CB, SwitchMBB);
10339         else
10340           SL->SwitchCases.push_back(CB);
10341 
10342         break;
10343       }
10344     }
10345     CurMBB = Fallthrough;
10346   }
10347 }
10348 
10349 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10350                                               CaseClusterIt First,
10351                                               CaseClusterIt Last) {
10352   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10353     if (X.Prob != CC.Prob)
10354       return X.Prob > CC.Prob;
10355 
10356     // Ties are broken by comparing the case value.
10357     return X.Low->getValue().slt(CC.Low->getValue());
10358   });
10359 }
10360 
10361 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10362                                         const SwitchWorkListItem &W,
10363                                         Value *Cond,
10364                                         MachineBasicBlock *SwitchMBB) {
10365   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10366          "Clusters not sorted?");
10367 
10368   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10369 
10370   // Balance the tree based on branch probabilities to create a near-optimal (in
10371   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10372   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10373   CaseClusterIt LastLeft = W.FirstCluster;
10374   CaseClusterIt FirstRight = W.LastCluster;
10375   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10376   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10377 
10378   // Move LastLeft and FirstRight towards each other from opposite directions to
10379   // find a partitioning of the clusters which balances the probability on both
10380   // sides. If LeftProb and RightProb are equal, alternate which side is
10381   // taken to ensure 0-probability nodes are distributed evenly.
10382   unsigned I = 0;
10383   while (LastLeft + 1 < FirstRight) {
10384     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10385       LeftProb += (++LastLeft)->Prob;
10386     else
10387       RightProb += (--FirstRight)->Prob;
10388     I++;
10389   }
10390 
10391   while (true) {
10392     // Our binary search tree differs from a typical BST in that ours can have up
10393     // to three values in each leaf. The pivot selection above doesn't take that
10394     // into account, which means the tree might require more nodes and be less
10395     // efficient. We compensate for this here.
10396 
10397     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10398     unsigned NumRight = W.LastCluster - FirstRight + 1;
10399 
10400     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10401       // If one side has less than 3 clusters, and the other has more than 3,
10402       // consider taking a cluster from the other side.
10403 
10404       if (NumLeft < NumRight) {
10405         // Consider moving the first cluster on the right to the left side.
10406         CaseCluster &CC = *FirstRight;
10407         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10408         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10409         if (LeftSideRank <= RightSideRank) {
10410           // Moving the cluster to the left does not demote it.
10411           ++LastLeft;
10412           ++FirstRight;
10413           continue;
10414         }
10415       } else {
10416         assert(NumRight < NumLeft);
10417         // Consider moving the last element on the left to the right side.
10418         CaseCluster &CC = *LastLeft;
10419         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10420         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10421         if (RightSideRank <= LeftSideRank) {
10422           // Moving the cluster to the right does not demot it.
10423           --LastLeft;
10424           --FirstRight;
10425           continue;
10426         }
10427       }
10428     }
10429     break;
10430   }
10431 
10432   assert(LastLeft + 1 == FirstRight);
10433   assert(LastLeft >= W.FirstCluster);
10434   assert(FirstRight <= W.LastCluster);
10435 
10436   // Use the first element on the right as pivot since we will make less-than
10437   // comparisons against it.
10438   CaseClusterIt PivotCluster = FirstRight;
10439   assert(PivotCluster > W.FirstCluster);
10440   assert(PivotCluster <= W.LastCluster);
10441 
10442   CaseClusterIt FirstLeft = W.FirstCluster;
10443   CaseClusterIt LastRight = W.LastCluster;
10444 
10445   const ConstantInt *Pivot = PivotCluster->Low;
10446 
10447   // New blocks will be inserted immediately after the current one.
10448   MachineFunction::iterator BBI(W.MBB);
10449   ++BBI;
10450 
10451   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10452   // we can branch to its destination directly if it's squeezed exactly in
10453   // between the known lower bound and Pivot - 1.
10454   MachineBasicBlock *LeftMBB;
10455   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10456       FirstLeft->Low == W.GE &&
10457       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10458     LeftMBB = FirstLeft->MBB;
10459   } else {
10460     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10461     FuncInfo.MF->insert(BBI, LeftMBB);
10462     WorkList.push_back(
10463         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10464     // Put Cond in a virtual register to make it available from the new blocks.
10465     ExportFromCurrentBlock(Cond);
10466   }
10467 
10468   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10469   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10470   // directly if RHS.High equals the current upper bound.
10471   MachineBasicBlock *RightMBB;
10472   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10473       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10474     RightMBB = FirstRight->MBB;
10475   } else {
10476     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10477     FuncInfo.MF->insert(BBI, RightMBB);
10478     WorkList.push_back(
10479         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10480     // Put Cond in a virtual register to make it available from the new blocks.
10481     ExportFromCurrentBlock(Cond);
10482   }
10483 
10484   // Create the CaseBlock record that will be used to lower the branch.
10485   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10486                getCurSDLoc(), LeftProb, RightProb);
10487 
10488   if (W.MBB == SwitchMBB)
10489     visitSwitchCase(CB, SwitchMBB);
10490   else
10491     SL->SwitchCases.push_back(CB);
10492 }
10493 
10494 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10495 // from the swith statement.
10496 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10497                                             BranchProbability PeeledCaseProb) {
10498   if (PeeledCaseProb == BranchProbability::getOne())
10499     return BranchProbability::getZero();
10500   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10501 
10502   uint32_t Numerator = CaseProb.getNumerator();
10503   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10504   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10505 }
10506 
10507 // Try to peel the top probability case if it exceeds the threshold.
10508 // Return current MachineBasicBlock for the switch statement if the peeling
10509 // does not occur.
10510 // If the peeling is performed, return the newly created MachineBasicBlock
10511 // for the peeled switch statement. Also update Clusters to remove the peeled
10512 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10513 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10514     const SwitchInst &SI, CaseClusterVector &Clusters,
10515     BranchProbability &PeeledCaseProb) {
10516   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10517   // Don't perform if there is only one cluster or optimizing for size.
10518   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10519       TM.getOptLevel() == CodeGenOpt::None ||
10520       SwitchMBB->getParent()->getFunction().hasMinSize())
10521     return SwitchMBB;
10522 
10523   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10524   unsigned PeeledCaseIndex = 0;
10525   bool SwitchPeeled = false;
10526   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10527     CaseCluster &CC = Clusters[Index];
10528     if (CC.Prob < TopCaseProb)
10529       continue;
10530     TopCaseProb = CC.Prob;
10531     PeeledCaseIndex = Index;
10532     SwitchPeeled = true;
10533   }
10534   if (!SwitchPeeled)
10535     return SwitchMBB;
10536 
10537   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10538                     << TopCaseProb << "\n");
10539 
10540   // Record the MBB for the peeled switch statement.
10541   MachineFunction::iterator BBI(SwitchMBB);
10542   ++BBI;
10543   MachineBasicBlock *PeeledSwitchMBB =
10544       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10545   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10546 
10547   ExportFromCurrentBlock(SI.getCondition());
10548   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10549   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10550                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10551   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10552 
10553   Clusters.erase(PeeledCaseIt);
10554   for (CaseCluster &CC : Clusters) {
10555     LLVM_DEBUG(
10556         dbgs() << "Scale the probablity for one cluster, before scaling: "
10557                << CC.Prob << "\n");
10558     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10559     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10560   }
10561   PeeledCaseProb = TopCaseProb;
10562   return PeeledSwitchMBB;
10563 }
10564 
10565 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10566   // Extract cases from the switch.
10567   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10568   CaseClusterVector Clusters;
10569   Clusters.reserve(SI.getNumCases());
10570   for (auto I : SI.cases()) {
10571     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10572     const ConstantInt *CaseVal = I.getCaseValue();
10573     BranchProbability Prob =
10574         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10575             : BranchProbability(1, SI.getNumCases() + 1);
10576     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10577   }
10578 
10579   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10580 
10581   // Cluster adjacent cases with the same destination. We do this at all
10582   // optimization levels because it's cheap to do and will make codegen faster
10583   // if there are many clusters.
10584   sortAndRangeify(Clusters);
10585 
10586   // The branch probablity of the peeled case.
10587   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10588   MachineBasicBlock *PeeledSwitchMBB =
10589       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10590 
10591   // If there is only the default destination, jump there directly.
10592   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10593   if (Clusters.empty()) {
10594     assert(PeeledSwitchMBB == SwitchMBB);
10595     SwitchMBB->addSuccessor(DefaultMBB);
10596     if (DefaultMBB != NextBlock(SwitchMBB)) {
10597       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10598                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10599     }
10600     return;
10601   }
10602 
10603   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10604   SL->findBitTestClusters(Clusters, &SI);
10605 
10606   LLVM_DEBUG({
10607     dbgs() << "Case clusters: ";
10608     for (const CaseCluster &C : Clusters) {
10609       if (C.Kind == CC_JumpTable)
10610         dbgs() << "JT:";
10611       if (C.Kind == CC_BitTests)
10612         dbgs() << "BT:";
10613 
10614       C.Low->getValue().print(dbgs(), true);
10615       if (C.Low != C.High) {
10616         dbgs() << '-';
10617         C.High->getValue().print(dbgs(), true);
10618       }
10619       dbgs() << ' ';
10620     }
10621     dbgs() << '\n';
10622   });
10623 
10624   assert(!Clusters.empty());
10625   SwitchWorkList WorkList;
10626   CaseClusterIt First = Clusters.begin();
10627   CaseClusterIt Last = Clusters.end() - 1;
10628   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10629   // Scale the branchprobability for DefaultMBB if the peel occurs and
10630   // DefaultMBB is not replaced.
10631   if (PeeledCaseProb != BranchProbability::getZero() &&
10632       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10633     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10634   WorkList.push_back(
10635       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10636 
10637   while (!WorkList.empty()) {
10638     SwitchWorkListItem W = WorkList.back();
10639     WorkList.pop_back();
10640     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10641 
10642     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10643         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10644       // For optimized builds, lower large range as a balanced binary tree.
10645       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10646       continue;
10647     }
10648 
10649     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10650   }
10651 }
10652 
10653 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10654   SmallVector<EVT, 4> ValueVTs;
10655   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10656                   ValueVTs);
10657   unsigned NumValues = ValueVTs.size();
10658   if (NumValues == 0) return;
10659 
10660   SmallVector<SDValue, 4> Values(NumValues);
10661   SDValue Op = getValue(I.getOperand(0));
10662 
10663   for (unsigned i = 0; i != NumValues; ++i)
10664     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10665                             SDValue(Op.getNode(), Op.getResNo() + i));
10666 
10667   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10668                            DAG.getVTList(ValueVTs), Values));
10669 }
10670