1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 439 // Bitcast Val back the original type and extract the corresponding 440 // vector we want. 441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 443 ValueVT.getVectorElementType(), Elts); 444 Val = DAG.getBitcast(WiderVecType, Val); 445 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 446 DAG.getVectorIdxConstant(0, DL)); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, 614 SDValue Val, const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isFixedLengthVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 unsigned PartNumElts = PartVT.getVectorNumElements(); 620 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 621 if (PartNumElts > ValueNumElts && 622 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 623 EVT ElementVT = PartVT.getVectorElementType(); 624 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 625 // undef elements. 626 SmallVector<SDValue, 16> Ops; 627 DAG.ExtractVectorElements(Val, Ops); 628 SDValue EltUndef = DAG.getUNDEF(ElementVT); 629 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 630 Ops.push_back(EltUndef); 631 632 // FIXME: Use CONCAT for 2x -> 4x. 633 return DAG.getBuildVector(PartVT, DL, Ops); 634 } 635 636 return SDValue(); 637 } 638 639 /// getCopyToPartsVector - Create a series of nodes that contain the specified 640 /// value split into legal parts. 641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 642 SDValue Val, SDValue *Parts, unsigned NumParts, 643 MVT PartVT, const Value *V, 644 Optional<CallingConv::ID> CallConv) { 645 EVT ValueVT = Val.getValueType(); 646 assert(ValueVT.isVector() && "Not a vector"); 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 const bool IsABIRegCopy = CallConv.hasValue(); 649 650 if (NumParts == 1) { 651 EVT PartEVT = PartVT; 652 if (PartEVT == ValueVT) { 653 // Nothing to do. 654 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 655 // Bitconvert vector->vector case. 656 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 657 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 658 Val = Widened; 659 } else if (PartVT.isVector() && 660 PartEVT.getVectorElementType().bitsGE( 661 ValueVT.getVectorElementType()) && 662 PartEVT.getVectorElementCount() == 663 ValueVT.getVectorElementCount()) { 664 665 // Promoted vector extract 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } else { 668 if (ValueVT.getVectorNumElements() == 1) { 669 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 670 DAG.getVectorIdxConstant(0, DL)); 671 } else { 672 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 673 "lossy conversion of vector to scalar type"); 674 EVT IntermediateType = 675 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 676 Val = DAG.getBitcast(IntermediateType, Val); 677 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 678 } 679 } 680 681 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 682 Parts[0] = Val; 683 return; 684 } 685 686 // Handle a multi-element vector. 687 EVT IntermediateVT; 688 MVT RegisterVT; 689 unsigned NumIntermediates; 690 unsigned NumRegs; 691 if (IsABIRegCopy) { 692 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 693 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 694 NumIntermediates, RegisterVT); 695 } else { 696 NumRegs = 697 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } 700 701 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 702 NumParts = NumRegs; // Silence a compiler warning. 703 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 704 705 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 706 "Mixing scalable and fixed vectors when copying in parts"); 707 708 Optional<ElementCount> DestEltCnt; 709 710 if (IntermediateVT.isVector()) 711 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 712 else 713 DestEltCnt = ElementCount::getFixed(NumIntermediates); 714 715 EVT BuiltVectorTy = EVT::getVectorVT( 716 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 717 if (ValueVT != BuiltVectorTy) { 718 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 719 Val = Widened; 720 721 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 722 } 723 724 // Split the vector into intermediate operands. 725 SmallVector<SDValue, 8> Ops(NumIntermediates); 726 for (unsigned i = 0; i != NumIntermediates; ++i) { 727 if (IntermediateVT.isVector()) { 728 // This does something sensible for scalable vectors - see the 729 // definition of EXTRACT_SUBVECTOR for further details. 730 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 731 Ops[i] = 732 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 734 } else { 735 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getVectorIdxConstant(i, DL)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!Register::isVirtualRegister(Regs[Part + i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 941 // Put the register class of the virtual registers in the flag word. That 942 // way, later passes can recompute register class constraints for inline 943 // assembly as well as normal instructions. 944 // Don't do this for tied operands that can use the regclass information 945 // from the def. 946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 949 } 950 951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 952 Ops.push_back(Res); 953 954 if (Code == InlineAsm::Kind_Clobber) { 955 // Clobbers should always have a 1:1 mapping with registers, and may 956 // reference registers that have illegal (e.g. vector) types. Hence, we 957 // shouldn't try to apply any sort of splitting logic to them. 958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 959 "No 1:1 mapping from clobbers to regs?"); 960 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 961 (void)SP; 962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 964 assert( 965 (Regs[I] != SP || 966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 967 "If we clobbered the stack pointer, MFI should know about it."); 968 } 969 return; 970 } 971 972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 974 MVT RegisterVT = RegVTs[Value]; 975 for (unsigned i = 0; i != NumRegs; ++i) { 976 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 977 unsigned TheReg = Regs[Reg++]; 978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 979 } 980 } 981 } 982 983 SmallVector<std::pair<unsigned, unsigned>, 4> 984 RegsForValue::getRegsAndSizes() const { 985 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 986 unsigned I = 0; 987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 988 unsigned RegCount = std::get<0>(CountAndVT); 989 MVT RegisterVT = std::get<1>(CountAndVT); 990 unsigned RegisterSize = RegisterVT.getSizeInBits(); 991 for (unsigned E = I + RegCount; I != E; ++I) 992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 993 } 994 return OutVec; 995 } 996 997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 998 const TargetLibraryInfo *li) { 999 AA = aa; 1000 GFI = gfi; 1001 LibInfo = li; 1002 DL = &DAG.getDataLayout(); 1003 Context = DAG.getContext(); 1004 LPadToCallSiteMap.clear(); 1005 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 PendingConstrainedFP.clear(); 1014 PendingConstrainedFPStrict.clear(); 1015 CurInst = nullptr; 1016 HasTailCall = false; 1017 SDNodeOrder = LowestSDNodeOrder; 1018 StatepointLowering.clear(); 1019 } 1020 1021 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1022 DanglingDebugInfoMap.clear(); 1023 } 1024 1025 // Update DAG root to include dependencies on Pending chains. 1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1027 SDValue Root = DAG.getRoot(); 1028 1029 if (Pending.empty()) 1030 return Root; 1031 1032 // Add current root to PendingChains, unless we already indirectly 1033 // depend on it. 1034 if (Root.getOpcode() != ISD::EntryToken) { 1035 unsigned i = 0, e = Pending.size(); 1036 for (; i != e; ++i) { 1037 assert(Pending[i].getNode()->getNumOperands() > 1); 1038 if (Pending[i].getNode()->getOperand(0) == Root) 1039 break; // Don't add the root if we already indirectly depend on it. 1040 } 1041 1042 if (i == e) 1043 Pending.push_back(Root); 1044 } 1045 1046 if (Pending.size() == 1) 1047 Root = Pending[0]; 1048 else 1049 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1050 1051 DAG.setRoot(Root); 1052 Pending.clear(); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getMemoryRoot() { 1057 return updateRoot(PendingLoads); 1058 } 1059 1060 SDValue SelectionDAGBuilder::getRoot() { 1061 // Chain up all pending constrained intrinsics together with all 1062 // pending loads, by simply appending them to PendingLoads and 1063 // then calling getMemoryRoot(). 1064 PendingLoads.reserve(PendingLoads.size() + 1065 PendingConstrainedFP.size() + 1066 PendingConstrainedFPStrict.size()); 1067 PendingLoads.append(PendingConstrainedFP.begin(), 1068 PendingConstrainedFP.end()); 1069 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1070 PendingConstrainedFPStrict.end()); 1071 PendingConstrainedFP.clear(); 1072 PendingConstrainedFPStrict.clear(); 1073 return getMemoryRoot(); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getControlRoot() { 1077 // We need to emit pending fpexcept.strict constrained intrinsics, 1078 // so append them to the PendingExports list. 1079 PendingExports.append(PendingConstrainedFPStrict.begin(), 1080 PendingConstrainedFPStrict.end()); 1081 PendingConstrainedFPStrict.clear(); 1082 return updateRoot(PendingExports); 1083 } 1084 1085 void SelectionDAGBuilder::visit(const Instruction &I) { 1086 // Set up outgoing PHI node register values before emitting the terminator. 1087 if (I.isTerminator()) { 1088 HandlePHINodesInSuccessorBlocks(I.getParent()); 1089 } 1090 1091 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1092 if (!isa<DbgInfoIntrinsic>(I)) 1093 ++SDNodeOrder; 1094 1095 CurInst = &I; 1096 1097 visit(I.getOpcode(), I); 1098 1099 if (!I.isTerminator() && !HasTailCall && 1100 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1101 CopyToExportRegsIfNeeded(&I); 1102 1103 CurInst = nullptr; 1104 } 1105 1106 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1107 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1108 } 1109 1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1111 // Note: this doesn't use InstVisitor, because it has to work with 1112 // ConstantExpr's in addition to instructions. 1113 switch (Opcode) { 1114 default: llvm_unreachable("Unknown instruction type encountered!"); 1115 // Build the switch statement using the Instruction.def file. 1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1117 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1118 #include "llvm/IR/Instruction.def" 1119 } 1120 } 1121 1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1123 const DIExpression *Expr) { 1124 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1125 const DbgValueInst *DI = DDI.getDI(); 1126 DIVariable *DanglingVariable = DI->getVariable(); 1127 DIExpression *DanglingExpr = DI->getExpression(); 1128 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1129 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1130 return true; 1131 } 1132 return false; 1133 }; 1134 1135 for (auto &DDIMI : DanglingDebugInfoMap) { 1136 DanglingDebugInfoVector &DDIV = DDIMI.second; 1137 1138 // If debug info is to be dropped, run it through final checks to see 1139 // whether it can be salvaged. 1140 for (auto &DDI : DDIV) 1141 if (isMatchingDbgValue(DDI)) 1142 salvageUnresolvedDbgValue(DDI); 1143 1144 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1145 } 1146 } 1147 1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1149 // generate the debug data structures now that we've seen its definition. 1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1151 SDValue Val) { 1152 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1153 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1154 return; 1155 1156 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1157 for (auto &DDI : DDIV) { 1158 const DbgValueInst *DI = DDI.getDI(); 1159 assert(DI && "Ill-formed DanglingDebugInfo"); 1160 DebugLoc dl = DDI.getdl(); 1161 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1162 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1163 DILocalVariable *Variable = DI->getVariable(); 1164 DIExpression *Expr = DI->getExpression(); 1165 assert(Variable->isValidLocationForIntrinsic(dl) && 1166 "Expected inlined-at fields to agree"); 1167 SDDbgValue *SDV; 1168 if (Val.getNode()) { 1169 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1170 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1171 // we couldn't resolve it directly when examining the DbgValue intrinsic 1172 // in the first place we should not be more successful here). Unless we 1173 // have some test case that prove this to be correct we should avoid 1174 // calling EmitFuncArgumentDbgValue here. 1175 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1176 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1177 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1178 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1179 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1180 // inserted after the definition of Val when emitting the instructions 1181 // after ISel. An alternative could be to teach 1182 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1183 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1184 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1185 << ValSDNodeOrder << "\n"); 1186 SDV = getDbgValue(Val, Variable, Expr, dl, 1187 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1188 DAG.AddDbgValue(SDV, Val.getNode(), false); 1189 } else 1190 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1191 << "in EmitFuncArgumentDbgValue\n"); 1192 } else { 1193 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1194 auto Undef = 1195 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1196 auto SDV = 1197 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1198 DAG.AddDbgValue(SDV, nullptr, false); 1199 } 1200 } 1201 DDIV.clear(); 1202 } 1203 1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1205 Value *V = DDI.getDI()->getValue(); 1206 DILocalVariable *Var = DDI.getDI()->getVariable(); 1207 DIExpression *Expr = DDI.getDI()->getExpression(); 1208 DebugLoc DL = DDI.getdl(); 1209 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1210 unsigned SDOrder = DDI.getSDNodeOrder(); 1211 1212 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1213 // that DW_OP_stack_value is desired. 1214 assert(isa<DbgValueInst>(DDI.getDI())); 1215 bool StackValue = true; 1216 1217 // Can this Value can be encoded without any further work? 1218 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1219 return; 1220 1221 // Attempt to salvage back through as many instructions as possible. Bail if 1222 // a non-instruction is seen, such as a constant expression or global 1223 // variable. FIXME: Further work could recover those too. 1224 while (isa<Instruction>(V)) { 1225 Instruction &VAsInst = *cast<Instruction>(V); 1226 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1227 1228 // If we cannot salvage any further, and haven't yet found a suitable debug 1229 // expression, bail out. 1230 if (!NewExpr) 1231 break; 1232 1233 // New value and expr now represent this debuginfo. 1234 V = VAsInst.getOperand(0); 1235 Expr = NewExpr; 1236 1237 // Some kind of simplification occurred: check whether the operand of the 1238 // salvaged debug expression can be encoded in this DAG. 1239 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1240 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1241 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1242 return; 1243 } 1244 } 1245 1246 // This was the final opportunity to salvage this debug information, and it 1247 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1248 // any earlier variable location. 1249 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1250 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1251 DAG.AddDbgValue(SDV, nullptr, false); 1252 1253 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1254 << "\n"); 1255 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1256 << "\n"); 1257 } 1258 1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1260 DIExpression *Expr, DebugLoc dl, 1261 DebugLoc InstDL, unsigned Order) { 1262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1263 SDDbgValue *SDV; 1264 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1265 isa<ConstantPointerNull>(V)) { 1266 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1267 DAG.AddDbgValue(SDV, nullptr, false); 1268 return true; 1269 } 1270 1271 // If the Value is a frame index, we can create a FrameIndex debug value 1272 // without relying on the DAG at all. 1273 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1274 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1275 if (SI != FuncInfo.StaticAllocaMap.end()) { 1276 auto SDV = 1277 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1278 /*IsIndirect*/ false, dl, SDNodeOrder); 1279 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1280 // is still available even if the SDNode gets optimized out. 1281 DAG.AddDbgValue(SDV, nullptr, false); 1282 return true; 1283 } 1284 } 1285 1286 // Do not use getValue() in here; we don't want to generate code at 1287 // this point if it hasn't been done yet. 1288 SDValue N = NodeMap[V]; 1289 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1290 N = UnusedArgNodeMap[V]; 1291 if (N.getNode()) { 1292 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1293 return true; 1294 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1295 DAG.AddDbgValue(SDV, N.getNode(), false); 1296 return true; 1297 } 1298 1299 // Special rules apply for the first dbg.values of parameter variables in a 1300 // function. Identify them by the fact they reference Argument Values, that 1301 // they're parameters, and they are parameters of the current function. We 1302 // need to let them dangle until they get an SDNode. 1303 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1304 !InstDL.getInlinedAt(); 1305 if (!IsParamOfFunc) { 1306 // The value is not used in this block yet (or it would have an SDNode). 1307 // We still want the value to appear for the user if possible -- if it has 1308 // an associated VReg, we can refer to that instead. 1309 auto VMI = FuncInfo.ValueMap.find(V); 1310 if (VMI != FuncInfo.ValueMap.end()) { 1311 unsigned Reg = VMI->second; 1312 // If this is a PHI node, it may be split up into several MI PHI nodes 1313 // (in FunctionLoweringInfo::set). 1314 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1315 V->getType(), None); 1316 if (RFV.occupiesMultipleRegs()) { 1317 unsigned Offset = 0; 1318 unsigned BitsToDescribe = 0; 1319 if (auto VarSize = Var->getSizeInBits()) 1320 BitsToDescribe = *VarSize; 1321 if (auto Fragment = Expr->getFragmentInfo()) 1322 BitsToDescribe = Fragment->SizeInBits; 1323 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1324 unsigned RegisterSize = RegAndSize.second; 1325 // Bail out if all bits are described already. 1326 if (Offset >= BitsToDescribe) 1327 break; 1328 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1329 ? BitsToDescribe - Offset 1330 : RegisterSize; 1331 auto FragmentExpr = DIExpression::createFragmentExpression( 1332 Expr, Offset, FragmentSize); 1333 if (!FragmentExpr) 1334 continue; 1335 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1336 false, dl, SDNodeOrder); 1337 DAG.AddDbgValue(SDV, nullptr, false); 1338 Offset += RegisterSize; 1339 } 1340 } else { 1341 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1342 DAG.AddDbgValue(SDV, nullptr, false); 1343 } 1344 return true; 1345 } 1346 } 1347 1348 return false; 1349 } 1350 1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1352 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1353 for (auto &Pair : DanglingDebugInfoMap) 1354 for (auto &DDI : Pair.second) 1355 salvageUnresolvedDbgValue(DDI); 1356 clearDanglingDebugInfo(); 1357 } 1358 1359 /// getCopyFromRegs - If there was virtual register allocated for the value V 1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1361 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1362 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1363 SDValue Result; 1364 1365 if (It != FuncInfo.ValueMap.end()) { 1366 Register InReg = It->second; 1367 1368 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1369 DAG.getDataLayout(), InReg, Ty, 1370 None); // This is not an ABI copy. 1371 SDValue Chain = DAG.getEntryNode(); 1372 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1373 V); 1374 resolveDanglingDebugInfo(V, Result); 1375 } 1376 1377 return Result; 1378 } 1379 1380 /// getValue - Return an SDValue for the given Value. 1381 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1382 // If we already have an SDValue for this value, use it. It's important 1383 // to do this first, so that we don't create a CopyFromReg if we already 1384 // have a regular SDValue. 1385 SDValue &N = NodeMap[V]; 1386 if (N.getNode()) return N; 1387 1388 // If there's a virtual register allocated and initialized for this 1389 // value, use it. 1390 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1391 return copyFromReg; 1392 1393 // Otherwise create a new SDValue and remember it. 1394 SDValue Val = getValueImpl(V); 1395 NodeMap[V] = Val; 1396 resolveDanglingDebugInfo(V, Val); 1397 return Val; 1398 } 1399 1400 /// getNonRegisterValue - Return an SDValue for the given Value, but 1401 /// don't look in FuncInfo.ValueMap for a virtual register. 1402 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1403 // If we already have an SDValue for this value, use it. 1404 SDValue &N = NodeMap[V]; 1405 if (N.getNode()) { 1406 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1407 // Remove the debug location from the node as the node is about to be used 1408 // in a location which may differ from the original debug location. This 1409 // is relevant to Constant and ConstantFP nodes because they can appear 1410 // as constant expressions inside PHI nodes. 1411 N->setDebugLoc(DebugLoc()); 1412 } 1413 return N; 1414 } 1415 1416 // Otherwise create a new SDValue and remember it. 1417 SDValue Val = getValueImpl(V); 1418 NodeMap[V] = Val; 1419 resolveDanglingDebugInfo(V, Val); 1420 return Val; 1421 } 1422 1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1424 /// Create an SDValue for the given value. 1425 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1427 1428 if (const Constant *C = dyn_cast<Constant>(V)) { 1429 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1430 1431 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1432 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1433 1434 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1435 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1436 1437 if (isa<ConstantPointerNull>(C)) { 1438 unsigned AS = V->getType()->getPointerAddressSpace(); 1439 return DAG.getConstant(0, getCurSDLoc(), 1440 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1441 } 1442 1443 if (match(C, m_VScale(DAG.getDataLayout()))) 1444 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1445 1446 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1447 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1448 1449 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1450 return DAG.getUNDEF(VT); 1451 1452 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1453 visit(CE->getOpcode(), *CE); 1454 SDValue N1 = NodeMap[V]; 1455 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1456 return N1; 1457 } 1458 1459 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1460 SmallVector<SDValue, 4> Constants; 1461 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1462 OI != OE; ++OI) { 1463 SDNode *Val = getValue(*OI).getNode(); 1464 // If the operand is an empty aggregate, there are no values. 1465 if (!Val) continue; 1466 // Add each leaf value from the operand to the Constants list 1467 // to form a flattened list of all the values. 1468 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1469 Constants.push_back(SDValue(Val, i)); 1470 } 1471 1472 return DAG.getMergeValues(Constants, getCurSDLoc()); 1473 } 1474 1475 if (const ConstantDataSequential *CDS = 1476 dyn_cast<ConstantDataSequential>(C)) { 1477 SmallVector<SDValue, 4> Ops; 1478 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1479 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1480 // Add each leaf value from the operand to the Constants list 1481 // to form a flattened list of all the values. 1482 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1483 Ops.push_back(SDValue(Val, i)); 1484 } 1485 1486 if (isa<ArrayType>(CDS->getType())) 1487 return DAG.getMergeValues(Ops, getCurSDLoc()); 1488 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1489 } 1490 1491 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1492 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1493 "Unknown struct or array constant!"); 1494 1495 SmallVector<EVT, 4> ValueVTs; 1496 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1497 unsigned NumElts = ValueVTs.size(); 1498 if (NumElts == 0) 1499 return SDValue(); // empty struct 1500 SmallVector<SDValue, 4> Constants(NumElts); 1501 for (unsigned i = 0; i != NumElts; ++i) { 1502 EVT EltVT = ValueVTs[i]; 1503 if (isa<UndefValue>(C)) 1504 Constants[i] = DAG.getUNDEF(EltVT); 1505 else if (EltVT.isFloatingPoint()) 1506 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1507 else 1508 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1509 } 1510 1511 return DAG.getMergeValues(Constants, getCurSDLoc()); 1512 } 1513 1514 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1515 return DAG.getBlockAddress(BA, VT); 1516 1517 VectorType *VecTy = cast<VectorType>(V->getType()); 1518 1519 // Now that we know the number and type of the elements, get that number of 1520 // elements into the Ops array based on what kind of constant it is. 1521 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1522 SmallVector<SDValue, 16> Ops; 1523 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1524 for (unsigned i = 0; i != NumElements; ++i) 1525 Ops.push_back(getValue(CV->getOperand(i))); 1526 1527 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1528 } else if (isa<ConstantAggregateZero>(C)) { 1529 EVT EltVT = 1530 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1531 1532 SDValue Op; 1533 if (EltVT.isFloatingPoint()) 1534 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1535 else 1536 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1537 1538 if (isa<ScalableVectorType>(VecTy)) 1539 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1540 else { 1541 SmallVector<SDValue, 16> Ops; 1542 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1543 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1544 } 1545 } 1546 llvm_unreachable("Unknown vector constant"); 1547 } 1548 1549 // If this is a static alloca, generate it as the frameindex instead of 1550 // computation. 1551 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1552 DenseMap<const AllocaInst*, int>::iterator SI = 1553 FuncInfo.StaticAllocaMap.find(AI); 1554 if (SI != FuncInfo.StaticAllocaMap.end()) 1555 return DAG.getFrameIndex(SI->second, 1556 TLI.getFrameIndexTy(DAG.getDataLayout())); 1557 } 1558 1559 // If this is an instruction which fast-isel has deferred, select it now. 1560 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1561 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1562 1563 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1564 Inst->getType(), None); 1565 SDValue Chain = DAG.getEntryNode(); 1566 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1567 } 1568 1569 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1570 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1571 } 1572 llvm_unreachable("Can't get register for value!"); 1573 } 1574 1575 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1576 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1577 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1578 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1579 bool IsSEH = isAsynchronousEHPersonality(Pers); 1580 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1581 if (!IsSEH) 1582 CatchPadMBB->setIsEHScopeEntry(); 1583 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1584 if (IsMSVCCXX || IsCoreCLR) 1585 CatchPadMBB->setIsEHFuncletEntry(); 1586 } 1587 1588 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1589 // Update machine-CFG edge. 1590 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1591 FuncInfo.MBB->addSuccessor(TargetMBB); 1592 1593 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1594 bool IsSEH = isAsynchronousEHPersonality(Pers); 1595 if (IsSEH) { 1596 // If this is not a fall-through branch or optimizations are switched off, 1597 // emit the branch. 1598 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1599 TM.getOptLevel() == CodeGenOpt::None) 1600 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1601 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1602 return; 1603 } 1604 1605 // Figure out the funclet membership for the catchret's successor. 1606 // This will be used by the FuncletLayout pass to determine how to order the 1607 // BB's. 1608 // A 'catchret' returns to the outer scope's color. 1609 Value *ParentPad = I.getCatchSwitchParentPad(); 1610 const BasicBlock *SuccessorColor; 1611 if (isa<ConstantTokenNone>(ParentPad)) 1612 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1613 else 1614 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1615 assert(SuccessorColor && "No parent funclet for catchret!"); 1616 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1617 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1618 1619 // Create the terminator node. 1620 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1621 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1622 DAG.getBasicBlock(SuccessorColorMBB)); 1623 DAG.setRoot(Ret); 1624 } 1625 1626 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1627 // Don't emit any special code for the cleanuppad instruction. It just marks 1628 // the start of an EH scope/funclet. 1629 FuncInfo.MBB->setIsEHScopeEntry(); 1630 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1631 if (Pers != EHPersonality::Wasm_CXX) { 1632 FuncInfo.MBB->setIsEHFuncletEntry(); 1633 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1634 } 1635 } 1636 1637 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1638 // the control flow always stops at the single catch pad, as it does for a 1639 // cleanup pad. In case the exception caught is not of the types the catch pad 1640 // catches, it will be rethrown by a rethrow. 1641 static void findWasmUnwindDestinations( 1642 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1643 BranchProbability Prob, 1644 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1645 &UnwindDests) { 1646 while (EHPadBB) { 1647 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1648 if (isa<CleanupPadInst>(Pad)) { 1649 // Stop on cleanup pads. 1650 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1651 UnwindDests.back().first->setIsEHScopeEntry(); 1652 break; 1653 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1654 // Add the catchpad handlers to the possible destinations. We don't 1655 // continue to the unwind destination of the catchswitch for wasm. 1656 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1657 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1658 UnwindDests.back().first->setIsEHScopeEntry(); 1659 } 1660 break; 1661 } else { 1662 continue; 1663 } 1664 } 1665 } 1666 1667 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1668 /// many places it could ultimately go. In the IR, we have a single unwind 1669 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1670 /// This function skips over imaginary basic blocks that hold catchswitch 1671 /// instructions, and finds all the "real" machine 1672 /// basic block destinations. As those destinations may not be successors of 1673 /// EHPadBB, here we also calculate the edge probability to those destinations. 1674 /// The passed-in Prob is the edge probability to EHPadBB. 1675 static void findUnwindDestinations( 1676 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1677 BranchProbability Prob, 1678 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1679 &UnwindDests) { 1680 EHPersonality Personality = 1681 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1682 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1683 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1684 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1685 bool IsSEH = isAsynchronousEHPersonality(Personality); 1686 1687 if (IsWasmCXX) { 1688 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1689 assert(UnwindDests.size() <= 1 && 1690 "There should be at most one unwind destination for wasm"); 1691 return; 1692 } 1693 1694 while (EHPadBB) { 1695 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1696 BasicBlock *NewEHPadBB = nullptr; 1697 if (isa<LandingPadInst>(Pad)) { 1698 // Stop on landingpads. They are not funclets. 1699 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1700 break; 1701 } else if (isa<CleanupPadInst>(Pad)) { 1702 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1703 // personalities. 1704 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1705 UnwindDests.back().first->setIsEHScopeEntry(); 1706 UnwindDests.back().first->setIsEHFuncletEntry(); 1707 break; 1708 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1709 // Add the catchpad handlers to the possible destinations. 1710 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1711 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1712 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1713 if (IsMSVCCXX || IsCoreCLR) 1714 UnwindDests.back().first->setIsEHFuncletEntry(); 1715 if (!IsSEH) 1716 UnwindDests.back().first->setIsEHScopeEntry(); 1717 } 1718 NewEHPadBB = CatchSwitch->getUnwindDest(); 1719 } else { 1720 continue; 1721 } 1722 1723 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1724 if (BPI && NewEHPadBB) 1725 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1726 EHPadBB = NewEHPadBB; 1727 } 1728 } 1729 1730 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1731 // Update successor info. 1732 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1733 auto UnwindDest = I.getUnwindDest(); 1734 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1735 BranchProbability UnwindDestProb = 1736 (BPI && UnwindDest) 1737 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1738 : BranchProbability::getZero(); 1739 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1740 for (auto &UnwindDest : UnwindDests) { 1741 UnwindDest.first->setIsEHPad(); 1742 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1743 } 1744 FuncInfo.MBB->normalizeSuccProbs(); 1745 1746 // Create the terminator node. 1747 SDValue Ret = 1748 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1749 DAG.setRoot(Ret); 1750 } 1751 1752 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1753 report_fatal_error("visitCatchSwitch not yet implemented!"); 1754 } 1755 1756 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1758 auto &DL = DAG.getDataLayout(); 1759 SDValue Chain = getControlRoot(); 1760 SmallVector<ISD::OutputArg, 8> Outs; 1761 SmallVector<SDValue, 8> OutVals; 1762 1763 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1764 // lower 1765 // 1766 // %val = call <ty> @llvm.experimental.deoptimize() 1767 // ret <ty> %val 1768 // 1769 // differently. 1770 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1771 LowerDeoptimizingReturn(); 1772 return; 1773 } 1774 1775 if (!FuncInfo.CanLowerReturn) { 1776 unsigned DemoteReg = FuncInfo.DemoteRegister; 1777 const Function *F = I.getParent()->getParent(); 1778 1779 // Emit a store of the return value through the virtual register. 1780 // Leave Outs empty so that LowerReturn won't try to load return 1781 // registers the usual way. 1782 SmallVector<EVT, 1> PtrValueVTs; 1783 ComputeValueVTs(TLI, DL, 1784 F->getReturnType()->getPointerTo( 1785 DAG.getDataLayout().getAllocaAddrSpace()), 1786 PtrValueVTs); 1787 1788 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1789 DemoteReg, PtrValueVTs[0]); 1790 SDValue RetOp = getValue(I.getOperand(0)); 1791 1792 SmallVector<EVT, 4> ValueVTs, MemVTs; 1793 SmallVector<uint64_t, 4> Offsets; 1794 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1795 &Offsets); 1796 unsigned NumValues = ValueVTs.size(); 1797 1798 SmallVector<SDValue, 4> Chains(NumValues); 1799 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1800 for (unsigned i = 0; i != NumValues; ++i) { 1801 // An aggregate return value cannot wrap around the address space, so 1802 // offsets to its parts don't wrap either. 1803 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1804 TypeSize::Fixed(Offsets[i])); 1805 1806 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1807 if (MemVTs[i] != ValueVTs[i]) 1808 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1809 Chains[i] = DAG.getStore( 1810 Chain, getCurSDLoc(), Val, 1811 // FIXME: better loc info would be nice. 1812 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1813 commonAlignment(BaseAlign, Offsets[i])); 1814 } 1815 1816 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1817 MVT::Other, Chains); 1818 } else if (I.getNumOperands() != 0) { 1819 SmallVector<EVT, 4> ValueVTs; 1820 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1821 unsigned NumValues = ValueVTs.size(); 1822 if (NumValues) { 1823 SDValue RetOp = getValue(I.getOperand(0)); 1824 1825 const Function *F = I.getParent()->getParent(); 1826 1827 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1828 I.getOperand(0)->getType(), F->getCallingConv(), 1829 /*IsVarArg*/ false); 1830 1831 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1832 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1833 Attribute::SExt)) 1834 ExtendKind = ISD::SIGN_EXTEND; 1835 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1836 Attribute::ZExt)) 1837 ExtendKind = ISD::ZERO_EXTEND; 1838 1839 LLVMContext &Context = F->getContext(); 1840 bool RetInReg = F->getAttributes().hasAttribute( 1841 AttributeList::ReturnIndex, Attribute::InReg); 1842 1843 for (unsigned j = 0; j != NumValues; ++j) { 1844 EVT VT = ValueVTs[j]; 1845 1846 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1847 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1848 1849 CallingConv::ID CC = F->getCallingConv(); 1850 1851 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1852 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1853 SmallVector<SDValue, 4> Parts(NumParts); 1854 getCopyToParts(DAG, getCurSDLoc(), 1855 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1856 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1857 1858 // 'inreg' on function refers to return value 1859 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1860 if (RetInReg) 1861 Flags.setInReg(); 1862 1863 if (I.getOperand(0)->getType()->isPointerTy()) { 1864 Flags.setPointer(); 1865 Flags.setPointerAddrSpace( 1866 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1867 } 1868 1869 if (NeedsRegBlock) { 1870 Flags.setInConsecutiveRegs(); 1871 if (j == NumValues - 1) 1872 Flags.setInConsecutiveRegsLast(); 1873 } 1874 1875 // Propagate extension type if any 1876 if (ExtendKind == ISD::SIGN_EXTEND) 1877 Flags.setSExt(); 1878 else if (ExtendKind == ISD::ZERO_EXTEND) 1879 Flags.setZExt(); 1880 1881 for (unsigned i = 0; i < NumParts; ++i) { 1882 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1883 VT, /*isfixed=*/true, 0, 0)); 1884 OutVals.push_back(Parts[i]); 1885 } 1886 } 1887 } 1888 } 1889 1890 // Push in swifterror virtual register as the last element of Outs. This makes 1891 // sure swifterror virtual register will be returned in the swifterror 1892 // physical register. 1893 const Function *F = I.getParent()->getParent(); 1894 if (TLI.supportSwiftError() && 1895 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1896 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1897 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1898 Flags.setSwiftError(); 1899 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1900 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1901 true /*isfixed*/, 1 /*origidx*/, 1902 0 /*partOffs*/)); 1903 // Create SDNode for the swifterror virtual register. 1904 OutVals.push_back( 1905 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1906 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1907 EVT(TLI.getPointerTy(DL)))); 1908 } 1909 1910 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1911 CallingConv::ID CallConv = 1912 DAG.getMachineFunction().getFunction().getCallingConv(); 1913 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1914 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1915 1916 // Verify that the target's LowerReturn behaved as expected. 1917 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1918 "LowerReturn didn't return a valid chain!"); 1919 1920 // Update the DAG with the new chain value resulting from return lowering. 1921 DAG.setRoot(Chain); 1922 } 1923 1924 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1925 /// created for it, emit nodes to copy the value into the virtual 1926 /// registers. 1927 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1928 // Skip empty types 1929 if (V->getType()->isEmptyTy()) 1930 return; 1931 1932 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1933 if (VMI != FuncInfo.ValueMap.end()) { 1934 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1935 CopyValueToVirtualRegister(V, VMI->second); 1936 } 1937 } 1938 1939 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1940 /// the current basic block, add it to ValueMap now so that we'll get a 1941 /// CopyTo/FromReg. 1942 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1943 // No need to export constants. 1944 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1945 1946 // Already exported? 1947 if (FuncInfo.isExportedInst(V)) return; 1948 1949 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1950 CopyValueToVirtualRegister(V, Reg); 1951 } 1952 1953 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1954 const BasicBlock *FromBB) { 1955 // The operands of the setcc have to be in this block. We don't know 1956 // how to export them from some other block. 1957 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1958 // Can export from current BB. 1959 if (VI->getParent() == FromBB) 1960 return true; 1961 1962 // Is already exported, noop. 1963 return FuncInfo.isExportedInst(V); 1964 } 1965 1966 // If this is an argument, we can export it if the BB is the entry block or 1967 // if it is already exported. 1968 if (isa<Argument>(V)) { 1969 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1970 return true; 1971 1972 // Otherwise, can only export this if it is already exported. 1973 return FuncInfo.isExportedInst(V); 1974 } 1975 1976 // Otherwise, constants can always be exported. 1977 return true; 1978 } 1979 1980 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1981 BranchProbability 1982 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1983 const MachineBasicBlock *Dst) const { 1984 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1985 const BasicBlock *SrcBB = Src->getBasicBlock(); 1986 const BasicBlock *DstBB = Dst->getBasicBlock(); 1987 if (!BPI) { 1988 // If BPI is not available, set the default probability as 1 / N, where N is 1989 // the number of successors. 1990 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1991 return BranchProbability(1, SuccSize); 1992 } 1993 return BPI->getEdgeProbability(SrcBB, DstBB); 1994 } 1995 1996 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1997 MachineBasicBlock *Dst, 1998 BranchProbability Prob) { 1999 if (!FuncInfo.BPI) 2000 Src->addSuccessorWithoutProb(Dst); 2001 else { 2002 if (Prob.isUnknown()) 2003 Prob = getEdgeProbability(Src, Dst); 2004 Src->addSuccessor(Dst, Prob); 2005 } 2006 } 2007 2008 static bool InBlock(const Value *V, const BasicBlock *BB) { 2009 if (const Instruction *I = dyn_cast<Instruction>(V)) 2010 return I->getParent() == BB; 2011 return true; 2012 } 2013 2014 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2015 /// This function emits a branch and is used at the leaves of an OR or an 2016 /// AND operator tree. 2017 void 2018 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2019 MachineBasicBlock *TBB, 2020 MachineBasicBlock *FBB, 2021 MachineBasicBlock *CurBB, 2022 MachineBasicBlock *SwitchBB, 2023 BranchProbability TProb, 2024 BranchProbability FProb, 2025 bool InvertCond) { 2026 const BasicBlock *BB = CurBB->getBasicBlock(); 2027 2028 // If the leaf of the tree is a comparison, merge the condition into 2029 // the caseblock. 2030 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2031 // The operands of the cmp have to be in this block. We don't know 2032 // how to export them from some other block. If this is the first block 2033 // of the sequence, no exporting is needed. 2034 if (CurBB == SwitchBB || 2035 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2036 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2037 ISD::CondCode Condition; 2038 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2039 ICmpInst::Predicate Pred = 2040 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2041 Condition = getICmpCondCode(Pred); 2042 } else { 2043 const FCmpInst *FC = cast<FCmpInst>(Cond); 2044 FCmpInst::Predicate Pred = 2045 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2046 Condition = getFCmpCondCode(Pred); 2047 if (TM.Options.NoNaNsFPMath) 2048 Condition = getFCmpCodeWithoutNaN(Condition); 2049 } 2050 2051 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2052 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2053 SL->SwitchCases.push_back(CB); 2054 return; 2055 } 2056 } 2057 2058 // Create a CaseBlock record representing this branch. 2059 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2060 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2061 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2062 SL->SwitchCases.push_back(CB); 2063 } 2064 2065 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2066 MachineBasicBlock *TBB, 2067 MachineBasicBlock *FBB, 2068 MachineBasicBlock *CurBB, 2069 MachineBasicBlock *SwitchBB, 2070 Instruction::BinaryOps Opc, 2071 BranchProbability TProb, 2072 BranchProbability FProb, 2073 bool InvertCond) { 2074 // Skip over not part of the tree and remember to invert op and operands at 2075 // next level. 2076 Value *NotCond; 2077 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2078 InBlock(NotCond, CurBB->getBasicBlock())) { 2079 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2080 !InvertCond); 2081 return; 2082 } 2083 2084 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2085 // Compute the effective opcode for Cond, taking into account whether it needs 2086 // to be inverted, e.g. 2087 // and (not (or A, B)), C 2088 // gets lowered as 2089 // and (and (not A, not B), C) 2090 unsigned BOpc = 0; 2091 if (BOp) { 2092 BOpc = BOp->getOpcode(); 2093 if (InvertCond) { 2094 if (BOpc == Instruction::And) 2095 BOpc = Instruction::Or; 2096 else if (BOpc == Instruction::Or) 2097 BOpc = Instruction::And; 2098 } 2099 } 2100 2101 // If this node is not part of the or/and tree, emit it as a branch. 2102 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2103 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2104 BOp->getParent() != CurBB->getBasicBlock() || 2105 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2106 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2107 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2108 TProb, FProb, InvertCond); 2109 return; 2110 } 2111 2112 // Create TmpBB after CurBB. 2113 MachineFunction::iterator BBI(CurBB); 2114 MachineFunction &MF = DAG.getMachineFunction(); 2115 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2116 CurBB->getParent()->insert(++BBI, TmpBB); 2117 2118 if (Opc == Instruction::Or) { 2119 // Codegen X | Y as: 2120 // BB1: 2121 // jmp_if_X TBB 2122 // jmp TmpBB 2123 // TmpBB: 2124 // jmp_if_Y TBB 2125 // jmp FBB 2126 // 2127 2128 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2129 // The requirement is that 2130 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2131 // = TrueProb for original BB. 2132 // Assuming the original probabilities are A and B, one choice is to set 2133 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2134 // A/(1+B) and 2B/(1+B). This choice assumes that 2135 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2136 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2137 // TmpBB, but the math is more complicated. 2138 2139 auto NewTrueProb = TProb / 2; 2140 auto NewFalseProb = TProb / 2 + FProb; 2141 // Emit the LHS condition. 2142 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2143 NewTrueProb, NewFalseProb, InvertCond); 2144 2145 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2146 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2147 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2148 // Emit the RHS condition into TmpBB. 2149 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2150 Probs[0], Probs[1], InvertCond); 2151 } else { 2152 assert(Opc == Instruction::And && "Unknown merge op!"); 2153 // Codegen X & Y as: 2154 // BB1: 2155 // jmp_if_X TmpBB 2156 // jmp FBB 2157 // TmpBB: 2158 // jmp_if_Y TBB 2159 // jmp FBB 2160 // 2161 // This requires creation of TmpBB after CurBB. 2162 2163 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2164 // The requirement is that 2165 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2166 // = FalseProb for original BB. 2167 // Assuming the original probabilities are A and B, one choice is to set 2168 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2169 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2170 // TrueProb for BB1 * FalseProb for TmpBB. 2171 2172 auto NewTrueProb = TProb + FProb / 2; 2173 auto NewFalseProb = FProb / 2; 2174 // Emit the LHS condition. 2175 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2176 NewTrueProb, NewFalseProb, InvertCond); 2177 2178 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2179 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2180 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2181 // Emit the RHS condition into TmpBB. 2182 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2183 Probs[0], Probs[1], InvertCond); 2184 } 2185 } 2186 2187 /// If the set of cases should be emitted as a series of branches, return true. 2188 /// If we should emit this as a bunch of and/or'd together conditions, return 2189 /// false. 2190 bool 2191 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2192 if (Cases.size() != 2) return true; 2193 2194 // If this is two comparisons of the same values or'd or and'd together, they 2195 // will get folded into a single comparison, so don't emit two blocks. 2196 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2197 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2198 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2199 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2200 return false; 2201 } 2202 2203 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2204 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2205 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2206 Cases[0].CC == Cases[1].CC && 2207 isa<Constant>(Cases[0].CmpRHS) && 2208 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2209 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2210 return false; 2211 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2212 return false; 2213 } 2214 2215 return true; 2216 } 2217 2218 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2219 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2220 2221 // Update machine-CFG edges. 2222 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2223 2224 if (I.isUnconditional()) { 2225 // Update machine-CFG edges. 2226 BrMBB->addSuccessor(Succ0MBB); 2227 2228 // If this is not a fall-through branch or optimizations are switched off, 2229 // emit the branch. 2230 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2231 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2232 MVT::Other, getControlRoot(), 2233 DAG.getBasicBlock(Succ0MBB))); 2234 2235 return; 2236 } 2237 2238 // If this condition is one of the special cases we handle, do special stuff 2239 // now. 2240 const Value *CondVal = I.getCondition(); 2241 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2242 2243 // If this is a series of conditions that are or'd or and'd together, emit 2244 // this as a sequence of branches instead of setcc's with and/or operations. 2245 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2246 // unpredictable branches, and vector extracts because those jumps are likely 2247 // expensive for any target), this should improve performance. 2248 // For example, instead of something like: 2249 // cmp A, B 2250 // C = seteq 2251 // cmp D, E 2252 // F = setle 2253 // or C, F 2254 // jnz foo 2255 // Emit: 2256 // cmp A, B 2257 // je foo 2258 // cmp D, E 2259 // jle foo 2260 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2261 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2262 Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1); 2263 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2264 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2265 (Opcode == Instruction::And || Opcode == Instruction::Or) && 2266 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2267 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2268 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2269 Opcode, 2270 getEdgeProbability(BrMBB, Succ0MBB), 2271 getEdgeProbability(BrMBB, Succ1MBB), 2272 /*InvertCond=*/false); 2273 // If the compares in later blocks need to use values not currently 2274 // exported from this block, export them now. This block should always 2275 // be the first entry. 2276 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2277 2278 // Allow some cases to be rejected. 2279 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2280 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2282 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2283 } 2284 2285 // Emit the branch for this block. 2286 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2287 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2288 return; 2289 } 2290 2291 // Okay, we decided not to do this, remove any inserted MBB's and clear 2292 // SwitchCases. 2293 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2294 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2295 2296 SL->SwitchCases.clear(); 2297 } 2298 } 2299 2300 // Create a CaseBlock record representing this branch. 2301 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2302 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2303 2304 // Use visitSwitchCase to actually insert the fast branch sequence for this 2305 // cond branch. 2306 visitSwitchCase(CB, BrMBB); 2307 } 2308 2309 /// visitSwitchCase - Emits the necessary code to represent a single node in 2310 /// the binary search tree resulting from lowering a switch instruction. 2311 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2312 MachineBasicBlock *SwitchBB) { 2313 SDValue Cond; 2314 SDValue CondLHS = getValue(CB.CmpLHS); 2315 SDLoc dl = CB.DL; 2316 2317 if (CB.CC == ISD::SETTRUE) { 2318 // Branch or fall through to TrueBB. 2319 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2320 SwitchBB->normalizeSuccProbs(); 2321 if (CB.TrueBB != NextBlock(SwitchBB)) { 2322 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2323 DAG.getBasicBlock(CB.TrueBB))); 2324 } 2325 return; 2326 } 2327 2328 auto &TLI = DAG.getTargetLoweringInfo(); 2329 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2330 2331 // Build the setcc now. 2332 if (!CB.CmpMHS) { 2333 // Fold "(X == true)" to X and "(X == false)" to !X to 2334 // handle common cases produced by branch lowering. 2335 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2336 CB.CC == ISD::SETEQ) 2337 Cond = CondLHS; 2338 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) { 2340 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2341 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2342 } else { 2343 SDValue CondRHS = getValue(CB.CmpRHS); 2344 2345 // If a pointer's DAG type is larger than its memory type then the DAG 2346 // values are zero-extended. This breaks signed comparisons so truncate 2347 // back to the underlying type before doing the compare. 2348 if (CondLHS.getValueType() != MemVT) { 2349 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2350 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2351 } 2352 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2353 } 2354 } else { 2355 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2356 2357 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2358 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2359 2360 SDValue CmpOp = getValue(CB.CmpMHS); 2361 EVT VT = CmpOp.getValueType(); 2362 2363 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2364 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2365 ISD::SETLE); 2366 } else { 2367 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2368 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2369 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2370 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2371 } 2372 } 2373 2374 // Update successor info 2375 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2376 // TrueBB and FalseBB are always different unless the incoming IR is 2377 // degenerate. This only happens when running llc on weird IR. 2378 if (CB.TrueBB != CB.FalseBB) 2379 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2380 SwitchBB->normalizeSuccProbs(); 2381 2382 // If the lhs block is the next block, invert the condition so that we can 2383 // fall through to the lhs instead of the rhs block. 2384 if (CB.TrueBB == NextBlock(SwitchBB)) { 2385 std::swap(CB.TrueBB, CB.FalseBB); 2386 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2387 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2388 } 2389 2390 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2391 MVT::Other, getControlRoot(), Cond, 2392 DAG.getBasicBlock(CB.TrueBB)); 2393 2394 // Insert the false branch. Do this even if it's a fall through branch, 2395 // this makes it easier to do DAG optimizations which require inverting 2396 // the branch condition. 2397 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2398 DAG.getBasicBlock(CB.FalseBB)); 2399 2400 DAG.setRoot(BrCond); 2401 } 2402 2403 /// visitJumpTable - Emit JumpTable node in the current MBB 2404 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2405 // Emit the code for the jump table 2406 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2407 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2408 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2409 JT.Reg, PTy); 2410 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2411 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2412 MVT::Other, Index.getValue(1), 2413 Table, Index); 2414 DAG.setRoot(BrJumpTable); 2415 } 2416 2417 /// visitJumpTableHeader - This function emits necessary code to produce index 2418 /// in the JumpTable from switch case. 2419 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2420 JumpTableHeader &JTH, 2421 MachineBasicBlock *SwitchBB) { 2422 SDLoc dl = getCurSDLoc(); 2423 2424 // Subtract the lowest switch case value from the value being switched on. 2425 SDValue SwitchOp = getValue(JTH.SValue); 2426 EVT VT = SwitchOp.getValueType(); 2427 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2428 DAG.getConstant(JTH.First, dl, VT)); 2429 2430 // The SDNode we just created, which holds the value being switched on minus 2431 // the smallest case value, needs to be copied to a virtual register so it 2432 // can be used as an index into the jump table in a subsequent basic block. 2433 // This value may be smaller or larger than the target's pointer type, and 2434 // therefore require extension or truncating. 2435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2436 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2437 2438 unsigned JumpTableReg = 2439 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2440 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2441 JumpTableReg, SwitchOp); 2442 JT.Reg = JumpTableReg; 2443 2444 if (!JTH.OmitRangeCheck) { 2445 // Emit the range check for the jump table, and branch to the default block 2446 // for the switch statement if the value being switched on exceeds the 2447 // largest case in the switch. 2448 SDValue CMP = DAG.getSetCC( 2449 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2450 Sub.getValueType()), 2451 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2452 2453 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2454 MVT::Other, CopyTo, CMP, 2455 DAG.getBasicBlock(JT.Default)); 2456 2457 // Avoid emitting unnecessary branches to the next block. 2458 if (JT.MBB != NextBlock(SwitchBB)) 2459 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2460 DAG.getBasicBlock(JT.MBB)); 2461 2462 DAG.setRoot(BrCond); 2463 } else { 2464 // Avoid emitting unnecessary branches to the next block. 2465 if (JT.MBB != NextBlock(SwitchBB)) 2466 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2467 DAG.getBasicBlock(JT.MBB))); 2468 else 2469 DAG.setRoot(CopyTo); 2470 } 2471 } 2472 2473 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2474 /// variable if there exists one. 2475 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2476 SDValue &Chain) { 2477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2478 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2479 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2480 MachineFunction &MF = DAG.getMachineFunction(); 2481 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2482 MachineSDNode *Node = 2483 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2484 if (Global) { 2485 MachinePointerInfo MPInfo(Global); 2486 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2487 MachineMemOperand::MODereferenceable; 2488 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2489 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2490 DAG.setNodeMemRefs(Node, {MemRef}); 2491 } 2492 if (PtrTy != PtrMemTy) 2493 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2494 return SDValue(Node, 0); 2495 } 2496 2497 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2498 /// tail spliced into a stack protector check success bb. 2499 /// 2500 /// For a high level explanation of how this fits into the stack protector 2501 /// generation see the comment on the declaration of class 2502 /// StackProtectorDescriptor. 2503 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2504 MachineBasicBlock *ParentBB) { 2505 2506 // First create the loads to the guard/stack slot for the comparison. 2507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2508 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2509 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2510 2511 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2512 int FI = MFI.getStackProtectorIndex(); 2513 2514 SDValue Guard; 2515 SDLoc dl = getCurSDLoc(); 2516 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2517 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2518 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2519 2520 // Generate code to load the content of the guard slot. 2521 SDValue GuardVal = DAG.getLoad( 2522 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2523 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2524 MachineMemOperand::MOVolatile); 2525 2526 if (TLI.useStackGuardXorFP()) 2527 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2528 2529 // Retrieve guard check function, nullptr if instrumentation is inlined. 2530 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2531 // The target provides a guard check function to validate the guard value. 2532 // Generate a call to that function with the content of the guard slot as 2533 // argument. 2534 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2535 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2536 2537 TargetLowering::ArgListTy Args; 2538 TargetLowering::ArgListEntry Entry; 2539 Entry.Node = GuardVal; 2540 Entry.Ty = FnTy->getParamType(0); 2541 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2542 Entry.IsInReg = true; 2543 Args.push_back(Entry); 2544 2545 TargetLowering::CallLoweringInfo CLI(DAG); 2546 CLI.setDebugLoc(getCurSDLoc()) 2547 .setChain(DAG.getEntryNode()) 2548 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2549 getValue(GuardCheckFn), std::move(Args)); 2550 2551 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2552 DAG.setRoot(Result.second); 2553 return; 2554 } 2555 2556 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2557 // Otherwise, emit a volatile load to retrieve the stack guard value. 2558 SDValue Chain = DAG.getEntryNode(); 2559 if (TLI.useLoadStackGuardNode()) { 2560 Guard = getLoadStackGuard(DAG, dl, Chain); 2561 } else { 2562 const Value *IRGuard = TLI.getSDagStackGuard(M); 2563 SDValue GuardPtr = getValue(IRGuard); 2564 2565 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2566 MachinePointerInfo(IRGuard, 0), Align, 2567 MachineMemOperand::MOVolatile); 2568 } 2569 2570 // Perform the comparison via a getsetcc. 2571 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2572 *DAG.getContext(), 2573 Guard.getValueType()), 2574 Guard, GuardVal, ISD::SETNE); 2575 2576 // If the guard/stackslot do not equal, branch to failure MBB. 2577 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2578 MVT::Other, GuardVal.getOperand(0), 2579 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2580 // Otherwise branch to success MBB. 2581 SDValue Br = DAG.getNode(ISD::BR, dl, 2582 MVT::Other, BrCond, 2583 DAG.getBasicBlock(SPD.getSuccessMBB())); 2584 2585 DAG.setRoot(Br); 2586 } 2587 2588 /// Codegen the failure basic block for a stack protector check. 2589 /// 2590 /// A failure stack protector machine basic block consists simply of a call to 2591 /// __stack_chk_fail(). 2592 /// 2593 /// For a high level explanation of how this fits into the stack protector 2594 /// generation see the comment on the declaration of class 2595 /// StackProtectorDescriptor. 2596 void 2597 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2599 TargetLowering::MakeLibCallOptions CallOptions; 2600 CallOptions.setDiscardResult(true); 2601 SDValue Chain = 2602 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2603 None, CallOptions, getCurSDLoc()).second; 2604 // On PS4, the "return address" must still be within the calling function, 2605 // even if it's at the very end, so emit an explicit TRAP here. 2606 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2607 if (TM.getTargetTriple().isPS4CPU()) 2608 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2609 // WebAssembly needs an unreachable instruction after a non-returning call, 2610 // because the function return type can be different from __stack_chk_fail's 2611 // return type (void). 2612 if (TM.getTargetTriple().isWasm()) 2613 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2614 2615 DAG.setRoot(Chain); 2616 } 2617 2618 /// visitBitTestHeader - This function emits necessary code to produce value 2619 /// suitable for "bit tests" 2620 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2621 MachineBasicBlock *SwitchBB) { 2622 SDLoc dl = getCurSDLoc(); 2623 2624 // Subtract the minimum value. 2625 SDValue SwitchOp = getValue(B.SValue); 2626 EVT VT = SwitchOp.getValueType(); 2627 SDValue RangeSub = 2628 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2629 2630 // Determine the type of the test operands. 2631 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2632 bool UsePtrType = false; 2633 if (!TLI.isTypeLegal(VT)) { 2634 UsePtrType = true; 2635 } else { 2636 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2637 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2638 // Switch table case range are encoded into series of masks. 2639 // Just use pointer type, it's guaranteed to fit. 2640 UsePtrType = true; 2641 break; 2642 } 2643 } 2644 SDValue Sub = RangeSub; 2645 if (UsePtrType) { 2646 VT = TLI.getPointerTy(DAG.getDataLayout()); 2647 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2648 } 2649 2650 B.RegVT = VT.getSimpleVT(); 2651 B.Reg = FuncInfo.CreateReg(B.RegVT); 2652 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2653 2654 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2655 2656 if (!B.OmitRangeCheck) 2657 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2658 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2659 SwitchBB->normalizeSuccProbs(); 2660 2661 SDValue Root = CopyTo; 2662 if (!B.OmitRangeCheck) { 2663 // Conditional branch to the default block. 2664 SDValue RangeCmp = DAG.getSetCC(dl, 2665 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2666 RangeSub.getValueType()), 2667 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2668 ISD::SETUGT); 2669 2670 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2671 DAG.getBasicBlock(B.Default)); 2672 } 2673 2674 // Avoid emitting unnecessary branches to the next block. 2675 if (MBB != NextBlock(SwitchBB)) 2676 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2677 2678 DAG.setRoot(Root); 2679 } 2680 2681 /// visitBitTestCase - this function produces one "bit test" 2682 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2683 MachineBasicBlock* NextMBB, 2684 BranchProbability BranchProbToNext, 2685 unsigned Reg, 2686 BitTestCase &B, 2687 MachineBasicBlock *SwitchBB) { 2688 SDLoc dl = getCurSDLoc(); 2689 MVT VT = BB.RegVT; 2690 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2691 SDValue Cmp; 2692 unsigned PopCount = countPopulation(B.Mask); 2693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2694 if (PopCount == 1) { 2695 // Testing for a single bit; just compare the shift count with what it 2696 // would need to be to shift a 1 bit in that position. 2697 Cmp = DAG.getSetCC( 2698 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2699 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2700 ISD::SETEQ); 2701 } else if (PopCount == BB.Range) { 2702 // There is only one zero bit in the range, test for it directly. 2703 Cmp = DAG.getSetCC( 2704 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2705 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2706 ISD::SETNE); 2707 } else { 2708 // Make desired shift 2709 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2710 DAG.getConstant(1, dl, VT), ShiftOp); 2711 2712 // Emit bit tests and jumps 2713 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2714 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2715 Cmp = DAG.getSetCC( 2716 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2717 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2718 } 2719 2720 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2721 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2722 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2723 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2724 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2725 // one as they are relative probabilities (and thus work more like weights), 2726 // and hence we need to normalize them to let the sum of them become one. 2727 SwitchBB->normalizeSuccProbs(); 2728 2729 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2730 MVT::Other, getControlRoot(), 2731 Cmp, DAG.getBasicBlock(B.TargetBB)); 2732 2733 // Avoid emitting unnecessary branches to the next block. 2734 if (NextMBB != NextBlock(SwitchBB)) 2735 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2736 DAG.getBasicBlock(NextMBB)); 2737 2738 DAG.setRoot(BrAnd); 2739 } 2740 2741 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2742 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2743 2744 // Retrieve successors. Look through artificial IR level blocks like 2745 // catchswitch for successors. 2746 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2747 const BasicBlock *EHPadBB = I.getSuccessor(1); 2748 2749 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2750 // have to do anything here to lower funclet bundles. 2751 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2752 LLVMContext::OB_gc_transition, 2753 LLVMContext::OB_gc_live, 2754 LLVMContext::OB_funclet, 2755 LLVMContext::OB_cfguardtarget}) && 2756 "Cannot lower invokes with arbitrary operand bundles yet!"); 2757 2758 const Value *Callee(I.getCalledOperand()); 2759 const Function *Fn = dyn_cast<Function>(Callee); 2760 if (isa<InlineAsm>(Callee)) 2761 visitInlineAsm(I); 2762 else if (Fn && Fn->isIntrinsic()) { 2763 switch (Fn->getIntrinsicID()) { 2764 default: 2765 llvm_unreachable("Cannot invoke this intrinsic"); 2766 case Intrinsic::donothing: 2767 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2768 break; 2769 case Intrinsic::experimental_patchpoint_void: 2770 case Intrinsic::experimental_patchpoint_i64: 2771 visitPatchpoint(I, EHPadBB); 2772 break; 2773 case Intrinsic::experimental_gc_statepoint: 2774 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2775 break; 2776 case Intrinsic::wasm_rethrow_in_catch: { 2777 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2778 // special because it can be invoked, so we manually lower it to a DAG 2779 // node here. 2780 SmallVector<SDValue, 8> Ops; 2781 Ops.push_back(getRoot()); // inchain 2782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2783 Ops.push_back( 2784 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2785 TLI.getPointerTy(DAG.getDataLayout()))); 2786 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2787 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2788 break; 2789 } 2790 } 2791 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2792 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2793 // Eventually we will support lowering the @llvm.experimental.deoptimize 2794 // intrinsic, and right now there are no plans to support other intrinsics 2795 // with deopt state. 2796 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2797 } else { 2798 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2799 } 2800 2801 // If the value of the invoke is used outside of its defining block, make it 2802 // available as a virtual register. 2803 // We already took care of the exported value for the statepoint instruction 2804 // during call to the LowerStatepoint. 2805 if (!isa<GCStatepointInst>(I)) { 2806 CopyToExportRegsIfNeeded(&I); 2807 } 2808 2809 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2810 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2811 BranchProbability EHPadBBProb = 2812 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2813 : BranchProbability::getZero(); 2814 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2815 2816 // Update successor info. 2817 addSuccessorWithProb(InvokeMBB, Return); 2818 for (auto &UnwindDest : UnwindDests) { 2819 UnwindDest.first->setIsEHPad(); 2820 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2821 } 2822 InvokeMBB->normalizeSuccProbs(); 2823 2824 // Drop into normal successor. 2825 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2826 DAG.getBasicBlock(Return))); 2827 } 2828 2829 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2830 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2831 2832 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2833 // have to do anything here to lower funclet bundles. 2834 assert(!I.hasOperandBundlesOtherThan( 2835 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2836 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2837 2838 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2839 visitInlineAsm(I); 2840 CopyToExportRegsIfNeeded(&I); 2841 2842 // Retrieve successors. 2843 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2844 2845 // Update successor info. 2846 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2847 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2848 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2849 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2850 Target->setIsInlineAsmBrIndirectTarget(); 2851 } 2852 CallBrMBB->normalizeSuccProbs(); 2853 2854 // Drop into default successor. 2855 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2856 MVT::Other, getControlRoot(), 2857 DAG.getBasicBlock(Return))); 2858 } 2859 2860 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2861 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2862 } 2863 2864 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2865 assert(FuncInfo.MBB->isEHPad() && 2866 "Call to landingpad not in landing pad!"); 2867 2868 // If there aren't registers to copy the values into (e.g., during SjLj 2869 // exceptions), then don't bother to create these DAG nodes. 2870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2871 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2872 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2873 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2874 return; 2875 2876 // If landingpad's return type is token type, we don't create DAG nodes 2877 // for its exception pointer and selector value. The extraction of exception 2878 // pointer or selector value from token type landingpads is not currently 2879 // supported. 2880 if (LP.getType()->isTokenTy()) 2881 return; 2882 2883 SmallVector<EVT, 2> ValueVTs; 2884 SDLoc dl = getCurSDLoc(); 2885 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2886 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2887 2888 // Get the two live-in registers as SDValues. The physregs have already been 2889 // copied into virtual registers. 2890 SDValue Ops[2]; 2891 if (FuncInfo.ExceptionPointerVirtReg) { 2892 Ops[0] = DAG.getZExtOrTrunc( 2893 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2894 FuncInfo.ExceptionPointerVirtReg, 2895 TLI.getPointerTy(DAG.getDataLayout())), 2896 dl, ValueVTs[0]); 2897 } else { 2898 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2899 } 2900 Ops[1] = DAG.getZExtOrTrunc( 2901 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2902 FuncInfo.ExceptionSelectorVirtReg, 2903 TLI.getPointerTy(DAG.getDataLayout())), 2904 dl, ValueVTs[1]); 2905 2906 // Merge into one. 2907 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2908 DAG.getVTList(ValueVTs), Ops); 2909 setValue(&LP, Res); 2910 } 2911 2912 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2913 MachineBasicBlock *Last) { 2914 // Update JTCases. 2915 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2916 if (SL->JTCases[i].first.HeaderBB == First) 2917 SL->JTCases[i].first.HeaderBB = Last; 2918 2919 // Update BitTestCases. 2920 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2921 if (SL->BitTestCases[i].Parent == First) 2922 SL->BitTestCases[i].Parent = Last; 2923 } 2924 2925 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2926 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2927 2928 // Update machine-CFG edges with unique successors. 2929 SmallSet<BasicBlock*, 32> Done; 2930 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2931 BasicBlock *BB = I.getSuccessor(i); 2932 bool Inserted = Done.insert(BB).second; 2933 if (!Inserted) 2934 continue; 2935 2936 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2937 addSuccessorWithProb(IndirectBrMBB, Succ); 2938 } 2939 IndirectBrMBB->normalizeSuccProbs(); 2940 2941 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2942 MVT::Other, getControlRoot(), 2943 getValue(I.getAddress()))); 2944 } 2945 2946 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2947 if (!DAG.getTarget().Options.TrapUnreachable) 2948 return; 2949 2950 // We may be able to ignore unreachable behind a noreturn call. 2951 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2952 const BasicBlock &BB = *I.getParent(); 2953 if (&I != &BB.front()) { 2954 BasicBlock::const_iterator PredI = 2955 std::prev(BasicBlock::const_iterator(&I)); 2956 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2957 if (Call->doesNotReturn()) 2958 return; 2959 } 2960 } 2961 } 2962 2963 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2964 } 2965 2966 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 2967 SDNodeFlags Flags; 2968 2969 SDValue Op = getValue(I.getOperand(0)); 2970 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 2971 Op, Flags); 2972 setValue(&I, UnNodeValue); 2973 } 2974 2975 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2976 SDNodeFlags Flags; 2977 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2978 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2979 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2980 } 2981 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 2982 Flags.setExact(ExactOp->isExact()); 2983 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 2984 Flags.copyFMF(*FPOp); 2985 2986 SDValue Op1 = getValue(I.getOperand(0)); 2987 SDValue Op2 = getValue(I.getOperand(1)); 2988 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2989 Op1, Op2, Flags); 2990 setValue(&I, BinNodeValue); 2991 } 2992 2993 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2994 SDValue Op1 = getValue(I.getOperand(0)); 2995 SDValue Op2 = getValue(I.getOperand(1)); 2996 2997 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2998 Op1.getValueType(), DAG.getDataLayout()); 2999 3000 // Coerce the shift amount to the right type if we can. 3001 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3002 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3003 unsigned Op2Size = Op2.getValueSizeInBits(); 3004 SDLoc DL = getCurSDLoc(); 3005 3006 // If the operand is smaller than the shift count type, promote it. 3007 if (ShiftSize > Op2Size) 3008 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3009 3010 // If the operand is larger than the shift count type but the shift 3011 // count type has enough bits to represent any shift value, truncate 3012 // it now. This is a common case and it exposes the truncate to 3013 // optimization early. 3014 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3015 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3016 // Otherwise we'll need to temporarily settle for some other convenient 3017 // type. Type legalization will make adjustments once the shiftee is split. 3018 else 3019 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3020 } 3021 3022 bool nuw = false; 3023 bool nsw = false; 3024 bool exact = false; 3025 3026 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3027 3028 if (const OverflowingBinaryOperator *OFBinOp = 3029 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3030 nuw = OFBinOp->hasNoUnsignedWrap(); 3031 nsw = OFBinOp->hasNoSignedWrap(); 3032 } 3033 if (const PossiblyExactOperator *ExactOp = 3034 dyn_cast<const PossiblyExactOperator>(&I)) 3035 exact = ExactOp->isExact(); 3036 } 3037 SDNodeFlags Flags; 3038 Flags.setExact(exact); 3039 Flags.setNoSignedWrap(nsw); 3040 Flags.setNoUnsignedWrap(nuw); 3041 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3042 Flags); 3043 setValue(&I, Res); 3044 } 3045 3046 void SelectionDAGBuilder::visitSDiv(const User &I) { 3047 SDValue Op1 = getValue(I.getOperand(0)); 3048 SDValue Op2 = getValue(I.getOperand(1)); 3049 3050 SDNodeFlags Flags; 3051 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3052 cast<PossiblyExactOperator>(&I)->isExact()); 3053 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3054 Op2, Flags)); 3055 } 3056 3057 void SelectionDAGBuilder::visitICmp(const User &I) { 3058 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3059 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3060 predicate = IC->getPredicate(); 3061 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3062 predicate = ICmpInst::Predicate(IC->getPredicate()); 3063 SDValue Op1 = getValue(I.getOperand(0)); 3064 SDValue Op2 = getValue(I.getOperand(1)); 3065 ISD::CondCode Opcode = getICmpCondCode(predicate); 3066 3067 auto &TLI = DAG.getTargetLoweringInfo(); 3068 EVT MemVT = 3069 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3070 3071 // If a pointer's DAG type is larger than its memory type then the DAG values 3072 // are zero-extended. This breaks signed comparisons so truncate back to the 3073 // underlying type before doing the compare. 3074 if (Op1.getValueType() != MemVT) { 3075 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3076 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3077 } 3078 3079 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3080 I.getType()); 3081 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3082 } 3083 3084 void SelectionDAGBuilder::visitFCmp(const User &I) { 3085 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3086 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3087 predicate = FC->getPredicate(); 3088 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3089 predicate = FCmpInst::Predicate(FC->getPredicate()); 3090 SDValue Op1 = getValue(I.getOperand(0)); 3091 SDValue Op2 = getValue(I.getOperand(1)); 3092 3093 ISD::CondCode Condition = getFCmpCondCode(predicate); 3094 auto *FPMO = cast<FPMathOperator>(&I); 3095 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3096 Condition = getFCmpCodeWithoutNaN(Condition); 3097 3098 SDNodeFlags Flags; 3099 Flags.copyFMF(*FPMO); 3100 3101 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3102 I.getType()); 3103 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition, Flags)); 3104 } 3105 3106 // Check if the condition of the select has one use or two users that are both 3107 // selects with the same condition. 3108 static bool hasOnlySelectUsers(const Value *Cond) { 3109 return llvm::all_of(Cond->users(), [](const Value *V) { 3110 return isa<SelectInst>(V); 3111 }); 3112 } 3113 3114 void SelectionDAGBuilder::visitSelect(const User &I) { 3115 SmallVector<EVT, 4> ValueVTs; 3116 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3117 ValueVTs); 3118 unsigned NumValues = ValueVTs.size(); 3119 if (NumValues == 0) return; 3120 3121 SmallVector<SDValue, 4> Values(NumValues); 3122 SDValue Cond = getValue(I.getOperand(0)); 3123 SDValue LHSVal = getValue(I.getOperand(1)); 3124 SDValue RHSVal = getValue(I.getOperand(2)); 3125 SmallVector<SDValue, 1> BaseOps(1, Cond); 3126 ISD::NodeType OpCode = 3127 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3128 3129 bool IsUnaryAbs = false; 3130 3131 SDNodeFlags Flags; 3132 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3133 Flags.copyFMF(*FPOp); 3134 3135 // Min/max matching is only viable if all output VTs are the same. 3136 if (is_splat(ValueVTs)) { 3137 EVT VT = ValueVTs[0]; 3138 LLVMContext &Ctx = *DAG.getContext(); 3139 auto &TLI = DAG.getTargetLoweringInfo(); 3140 3141 // We care about the legality of the operation after it has been type 3142 // legalized. 3143 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3144 VT = TLI.getTypeToTransformTo(Ctx, VT); 3145 3146 // If the vselect is legal, assume we want to leave this as a vector setcc + 3147 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3148 // min/max is legal on the scalar type. 3149 bool UseScalarMinMax = VT.isVector() && 3150 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3151 3152 Value *LHS, *RHS; 3153 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3154 ISD::NodeType Opc = ISD::DELETED_NODE; 3155 switch (SPR.Flavor) { 3156 case SPF_UMAX: Opc = ISD::UMAX; break; 3157 case SPF_UMIN: Opc = ISD::UMIN; break; 3158 case SPF_SMAX: Opc = ISD::SMAX; break; 3159 case SPF_SMIN: Opc = ISD::SMIN; break; 3160 case SPF_FMINNUM: 3161 switch (SPR.NaNBehavior) { 3162 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3163 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3164 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3165 case SPNB_RETURNS_ANY: { 3166 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3167 Opc = ISD::FMINNUM; 3168 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3169 Opc = ISD::FMINIMUM; 3170 else if (UseScalarMinMax) 3171 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3172 ISD::FMINNUM : ISD::FMINIMUM; 3173 break; 3174 } 3175 } 3176 break; 3177 case SPF_FMAXNUM: 3178 switch (SPR.NaNBehavior) { 3179 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3180 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3181 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3182 case SPNB_RETURNS_ANY: 3183 3184 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3185 Opc = ISD::FMAXNUM; 3186 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3187 Opc = ISD::FMAXIMUM; 3188 else if (UseScalarMinMax) 3189 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3190 ISD::FMAXNUM : ISD::FMAXIMUM; 3191 break; 3192 } 3193 break; 3194 case SPF_ABS: 3195 IsUnaryAbs = true; 3196 Opc = ISD::ABS; 3197 break; 3198 case SPF_NABS: 3199 // TODO: we need to produce sub(0, abs(X)). 3200 default: break; 3201 } 3202 3203 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3204 (TLI.isOperationLegalOrCustom(Opc, VT) || 3205 (UseScalarMinMax && 3206 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3207 // If the underlying comparison instruction is used by any other 3208 // instruction, the consumed instructions won't be destroyed, so it is 3209 // not profitable to convert to a min/max. 3210 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3211 OpCode = Opc; 3212 LHSVal = getValue(LHS); 3213 RHSVal = getValue(RHS); 3214 BaseOps.clear(); 3215 } 3216 3217 if (IsUnaryAbs) { 3218 OpCode = Opc; 3219 LHSVal = getValue(LHS); 3220 BaseOps.clear(); 3221 } 3222 } 3223 3224 if (IsUnaryAbs) { 3225 for (unsigned i = 0; i != NumValues; ++i) { 3226 Values[i] = 3227 DAG.getNode(OpCode, getCurSDLoc(), 3228 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3229 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3230 } 3231 } else { 3232 for (unsigned i = 0; i != NumValues; ++i) { 3233 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3234 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3235 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3236 Values[i] = DAG.getNode( 3237 OpCode, getCurSDLoc(), 3238 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3239 } 3240 } 3241 3242 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3243 DAG.getVTList(ValueVTs), Values)); 3244 } 3245 3246 void SelectionDAGBuilder::visitTrunc(const User &I) { 3247 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3248 SDValue N = getValue(I.getOperand(0)); 3249 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3250 I.getType()); 3251 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3252 } 3253 3254 void SelectionDAGBuilder::visitZExt(const User &I) { 3255 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3256 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3257 SDValue N = getValue(I.getOperand(0)); 3258 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3259 I.getType()); 3260 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3261 } 3262 3263 void SelectionDAGBuilder::visitSExt(const User &I) { 3264 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3265 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3266 SDValue N = getValue(I.getOperand(0)); 3267 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3268 I.getType()); 3269 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3270 } 3271 3272 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3273 // FPTrunc is never a no-op cast, no need to check 3274 SDValue N = getValue(I.getOperand(0)); 3275 SDLoc dl = getCurSDLoc(); 3276 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3277 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3278 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3279 DAG.getTargetConstant( 3280 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3281 } 3282 3283 void SelectionDAGBuilder::visitFPExt(const User &I) { 3284 // FPExt is never a no-op cast, no need to check 3285 SDValue N = getValue(I.getOperand(0)); 3286 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3287 I.getType()); 3288 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3289 } 3290 3291 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3292 // FPToUI is never a no-op cast, no need to check 3293 SDValue N = getValue(I.getOperand(0)); 3294 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3295 I.getType()); 3296 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3297 } 3298 3299 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3300 // FPToSI is never a no-op cast, no need to check 3301 SDValue N = getValue(I.getOperand(0)); 3302 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3303 I.getType()); 3304 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3305 } 3306 3307 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3308 // UIToFP is never a no-op cast, no need to check 3309 SDValue N = getValue(I.getOperand(0)); 3310 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3311 I.getType()); 3312 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3313 } 3314 3315 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3316 // SIToFP is never a no-op cast, no need to check 3317 SDValue N = getValue(I.getOperand(0)); 3318 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3319 I.getType()); 3320 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3321 } 3322 3323 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3324 // What to do depends on the size of the integer and the size of the pointer. 3325 // We can either truncate, zero extend, or no-op, accordingly. 3326 SDValue N = getValue(I.getOperand(0)); 3327 auto &TLI = DAG.getTargetLoweringInfo(); 3328 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3329 I.getType()); 3330 EVT PtrMemVT = 3331 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3332 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3333 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3334 setValue(&I, N); 3335 } 3336 3337 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3338 // What to do depends on the size of the integer and the size of the pointer. 3339 // We can either truncate, zero extend, or no-op, accordingly. 3340 SDValue N = getValue(I.getOperand(0)); 3341 auto &TLI = DAG.getTargetLoweringInfo(); 3342 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3343 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3344 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3345 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3346 setValue(&I, N); 3347 } 3348 3349 void SelectionDAGBuilder::visitBitCast(const User &I) { 3350 SDValue N = getValue(I.getOperand(0)); 3351 SDLoc dl = getCurSDLoc(); 3352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3353 I.getType()); 3354 3355 // BitCast assures us that source and destination are the same size so this is 3356 // either a BITCAST or a no-op. 3357 if (DestVT != N.getValueType()) 3358 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3359 DestVT, N)); // convert types. 3360 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3361 // might fold any kind of constant expression to an integer constant and that 3362 // is not what we are looking for. Only recognize a bitcast of a genuine 3363 // constant integer as an opaque constant. 3364 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3365 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3366 /*isOpaque*/true)); 3367 else 3368 setValue(&I, N); // noop cast. 3369 } 3370 3371 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3373 const Value *SV = I.getOperand(0); 3374 SDValue N = getValue(SV); 3375 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3376 3377 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3378 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3379 3380 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3381 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3382 3383 setValue(&I, N); 3384 } 3385 3386 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3387 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3388 SDValue InVec = getValue(I.getOperand(0)); 3389 SDValue InVal = getValue(I.getOperand(1)); 3390 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3391 TLI.getVectorIdxTy(DAG.getDataLayout())); 3392 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3393 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3394 InVec, InVal, InIdx)); 3395 } 3396 3397 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3399 SDValue InVec = getValue(I.getOperand(0)); 3400 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3401 TLI.getVectorIdxTy(DAG.getDataLayout())); 3402 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3403 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3404 InVec, InIdx)); 3405 } 3406 3407 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3408 SDValue Src1 = getValue(I.getOperand(0)); 3409 SDValue Src2 = getValue(I.getOperand(1)); 3410 ArrayRef<int> Mask; 3411 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3412 Mask = SVI->getShuffleMask(); 3413 else 3414 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3415 SDLoc DL = getCurSDLoc(); 3416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3417 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3418 EVT SrcVT = Src1.getValueType(); 3419 3420 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3421 VT.isScalableVector()) { 3422 // Canonical splat form of first element of first input vector. 3423 SDValue FirstElt = 3424 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3425 DAG.getVectorIdxConstant(0, DL)); 3426 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3427 return; 3428 } 3429 3430 // For now, we only handle splats for scalable vectors. 3431 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3432 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3433 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3434 3435 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3436 unsigned MaskNumElts = Mask.size(); 3437 3438 if (SrcNumElts == MaskNumElts) { 3439 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3440 return; 3441 } 3442 3443 // Normalize the shuffle vector since mask and vector length don't match. 3444 if (SrcNumElts < MaskNumElts) { 3445 // Mask is longer than the source vectors. We can use concatenate vector to 3446 // make the mask and vectors lengths match. 3447 3448 if (MaskNumElts % SrcNumElts == 0) { 3449 // Mask length is a multiple of the source vector length. 3450 // Check if the shuffle is some kind of concatenation of the input 3451 // vectors. 3452 unsigned NumConcat = MaskNumElts / SrcNumElts; 3453 bool IsConcat = true; 3454 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3455 for (unsigned i = 0; i != MaskNumElts; ++i) { 3456 int Idx = Mask[i]; 3457 if (Idx < 0) 3458 continue; 3459 // Ensure the indices in each SrcVT sized piece are sequential and that 3460 // the same source is used for the whole piece. 3461 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3462 (ConcatSrcs[i / SrcNumElts] >= 0 && 3463 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3464 IsConcat = false; 3465 break; 3466 } 3467 // Remember which source this index came from. 3468 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3469 } 3470 3471 // The shuffle is concatenating multiple vectors together. Just emit 3472 // a CONCAT_VECTORS operation. 3473 if (IsConcat) { 3474 SmallVector<SDValue, 8> ConcatOps; 3475 for (auto Src : ConcatSrcs) { 3476 if (Src < 0) 3477 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3478 else if (Src == 0) 3479 ConcatOps.push_back(Src1); 3480 else 3481 ConcatOps.push_back(Src2); 3482 } 3483 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3484 return; 3485 } 3486 } 3487 3488 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3489 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3490 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3491 PaddedMaskNumElts); 3492 3493 // Pad both vectors with undefs to make them the same length as the mask. 3494 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3495 3496 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3497 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3498 MOps1[0] = Src1; 3499 MOps2[0] = Src2; 3500 3501 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3502 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3503 3504 // Readjust mask for new input vector length. 3505 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3506 for (unsigned i = 0; i != MaskNumElts; ++i) { 3507 int Idx = Mask[i]; 3508 if (Idx >= (int)SrcNumElts) 3509 Idx -= SrcNumElts - PaddedMaskNumElts; 3510 MappedOps[i] = Idx; 3511 } 3512 3513 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3514 3515 // If the concatenated vector was padded, extract a subvector with the 3516 // correct number of elements. 3517 if (MaskNumElts != PaddedMaskNumElts) 3518 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3519 DAG.getVectorIdxConstant(0, DL)); 3520 3521 setValue(&I, Result); 3522 return; 3523 } 3524 3525 if (SrcNumElts > MaskNumElts) { 3526 // Analyze the access pattern of the vector to see if we can extract 3527 // two subvectors and do the shuffle. 3528 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3529 bool CanExtract = true; 3530 for (int Idx : Mask) { 3531 unsigned Input = 0; 3532 if (Idx < 0) 3533 continue; 3534 3535 if (Idx >= (int)SrcNumElts) { 3536 Input = 1; 3537 Idx -= SrcNumElts; 3538 } 3539 3540 // If all the indices come from the same MaskNumElts sized portion of 3541 // the sources we can use extract. Also make sure the extract wouldn't 3542 // extract past the end of the source. 3543 int NewStartIdx = alignDown(Idx, MaskNumElts); 3544 if (NewStartIdx + MaskNumElts > SrcNumElts || 3545 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3546 CanExtract = false; 3547 // Make sure we always update StartIdx as we use it to track if all 3548 // elements are undef. 3549 StartIdx[Input] = NewStartIdx; 3550 } 3551 3552 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3553 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3554 return; 3555 } 3556 if (CanExtract) { 3557 // Extract appropriate subvector and generate a vector shuffle 3558 for (unsigned Input = 0; Input < 2; ++Input) { 3559 SDValue &Src = Input == 0 ? Src1 : Src2; 3560 if (StartIdx[Input] < 0) 3561 Src = DAG.getUNDEF(VT); 3562 else { 3563 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3564 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3565 } 3566 } 3567 3568 // Calculate new mask. 3569 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3570 for (int &Idx : MappedOps) { 3571 if (Idx >= (int)SrcNumElts) 3572 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3573 else if (Idx >= 0) 3574 Idx -= StartIdx[0]; 3575 } 3576 3577 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3578 return; 3579 } 3580 } 3581 3582 // We can't use either concat vectors or extract subvectors so fall back to 3583 // replacing the shuffle with extract and build vector. 3584 // to insert and build vector. 3585 EVT EltVT = VT.getVectorElementType(); 3586 SmallVector<SDValue,8> Ops; 3587 for (int Idx : Mask) { 3588 SDValue Res; 3589 3590 if (Idx < 0) { 3591 Res = DAG.getUNDEF(EltVT); 3592 } else { 3593 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3594 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3595 3596 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3597 DAG.getVectorIdxConstant(Idx, DL)); 3598 } 3599 3600 Ops.push_back(Res); 3601 } 3602 3603 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3604 } 3605 3606 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3607 ArrayRef<unsigned> Indices; 3608 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3609 Indices = IV->getIndices(); 3610 else 3611 Indices = cast<ConstantExpr>(&I)->getIndices(); 3612 3613 const Value *Op0 = I.getOperand(0); 3614 const Value *Op1 = I.getOperand(1); 3615 Type *AggTy = I.getType(); 3616 Type *ValTy = Op1->getType(); 3617 bool IntoUndef = isa<UndefValue>(Op0); 3618 bool FromUndef = isa<UndefValue>(Op1); 3619 3620 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3621 3622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3623 SmallVector<EVT, 4> AggValueVTs; 3624 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3625 SmallVector<EVT, 4> ValValueVTs; 3626 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3627 3628 unsigned NumAggValues = AggValueVTs.size(); 3629 unsigned NumValValues = ValValueVTs.size(); 3630 SmallVector<SDValue, 4> Values(NumAggValues); 3631 3632 // Ignore an insertvalue that produces an empty object 3633 if (!NumAggValues) { 3634 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3635 return; 3636 } 3637 3638 SDValue Agg = getValue(Op0); 3639 unsigned i = 0; 3640 // Copy the beginning value(s) from the original aggregate. 3641 for (; i != LinearIndex; ++i) 3642 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3643 SDValue(Agg.getNode(), Agg.getResNo() + i); 3644 // Copy values from the inserted value(s). 3645 if (NumValValues) { 3646 SDValue Val = getValue(Op1); 3647 for (; i != LinearIndex + NumValValues; ++i) 3648 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3649 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3650 } 3651 // Copy remaining value(s) from the original aggregate. 3652 for (; i != NumAggValues; ++i) 3653 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3654 SDValue(Agg.getNode(), Agg.getResNo() + i); 3655 3656 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3657 DAG.getVTList(AggValueVTs), Values)); 3658 } 3659 3660 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3661 ArrayRef<unsigned> Indices; 3662 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3663 Indices = EV->getIndices(); 3664 else 3665 Indices = cast<ConstantExpr>(&I)->getIndices(); 3666 3667 const Value *Op0 = I.getOperand(0); 3668 Type *AggTy = Op0->getType(); 3669 Type *ValTy = I.getType(); 3670 bool OutOfUndef = isa<UndefValue>(Op0); 3671 3672 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3673 3674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3675 SmallVector<EVT, 4> ValValueVTs; 3676 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3677 3678 unsigned NumValValues = ValValueVTs.size(); 3679 3680 // Ignore a extractvalue that produces an empty object 3681 if (!NumValValues) { 3682 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3683 return; 3684 } 3685 3686 SmallVector<SDValue, 4> Values(NumValValues); 3687 3688 SDValue Agg = getValue(Op0); 3689 // Copy out the selected value(s). 3690 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3691 Values[i - LinearIndex] = 3692 OutOfUndef ? 3693 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3694 SDValue(Agg.getNode(), Agg.getResNo() + i); 3695 3696 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3697 DAG.getVTList(ValValueVTs), Values)); 3698 } 3699 3700 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3701 Value *Op0 = I.getOperand(0); 3702 // Note that the pointer operand may be a vector of pointers. Take the scalar 3703 // element which holds a pointer. 3704 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3705 SDValue N = getValue(Op0); 3706 SDLoc dl = getCurSDLoc(); 3707 auto &TLI = DAG.getTargetLoweringInfo(); 3708 3709 // Normalize Vector GEP - all scalar operands should be converted to the 3710 // splat vector. 3711 bool IsVectorGEP = I.getType()->isVectorTy(); 3712 ElementCount VectorElementCount = 3713 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3714 : ElementCount::getFixed(0); 3715 3716 if (IsVectorGEP && !N.getValueType().isVector()) { 3717 LLVMContext &Context = *DAG.getContext(); 3718 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3719 if (VectorElementCount.isScalable()) 3720 N = DAG.getSplatVector(VT, dl, N); 3721 else 3722 N = DAG.getSplatBuildVector(VT, dl, N); 3723 } 3724 3725 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3726 GTI != E; ++GTI) { 3727 const Value *Idx = GTI.getOperand(); 3728 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3729 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3730 if (Field) { 3731 // N = N + Offset 3732 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3733 3734 // In an inbounds GEP with an offset that is nonnegative even when 3735 // interpreted as signed, assume there is no unsigned overflow. 3736 SDNodeFlags Flags; 3737 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3738 Flags.setNoUnsignedWrap(true); 3739 3740 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3741 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3742 } 3743 } else { 3744 // IdxSize is the width of the arithmetic according to IR semantics. 3745 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3746 // (and fix up the result later). 3747 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3748 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3749 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3750 // We intentionally mask away the high bits here; ElementSize may not 3751 // fit in IdxTy. 3752 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3753 bool ElementScalable = ElementSize.isScalable(); 3754 3755 // If this is a scalar constant or a splat vector of constants, 3756 // handle it quickly. 3757 const auto *C = dyn_cast<Constant>(Idx); 3758 if (C && isa<VectorType>(C->getType())) 3759 C = C->getSplatValue(); 3760 3761 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3762 if (CI && CI->isZero()) 3763 continue; 3764 if (CI && !ElementScalable) { 3765 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3766 LLVMContext &Context = *DAG.getContext(); 3767 SDValue OffsVal; 3768 if (IsVectorGEP) 3769 OffsVal = DAG.getConstant( 3770 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3771 else 3772 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3773 3774 // In an inbounds GEP with an offset that is nonnegative even when 3775 // interpreted as signed, assume there is no unsigned overflow. 3776 SDNodeFlags Flags; 3777 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3778 Flags.setNoUnsignedWrap(true); 3779 3780 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3781 3782 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3783 continue; 3784 } 3785 3786 // N = N + Idx * ElementMul; 3787 SDValue IdxN = getValue(Idx); 3788 3789 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3790 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3791 VectorElementCount); 3792 if (VectorElementCount.isScalable()) 3793 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3794 else 3795 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3796 } 3797 3798 // If the index is smaller or larger than intptr_t, truncate or extend 3799 // it. 3800 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3801 3802 if (ElementScalable) { 3803 EVT VScaleTy = N.getValueType().getScalarType(); 3804 SDValue VScale = DAG.getNode( 3805 ISD::VSCALE, dl, VScaleTy, 3806 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3807 if (IsVectorGEP) 3808 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3809 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3810 } else { 3811 // If this is a multiply by a power of two, turn it into a shl 3812 // immediately. This is a very common case. 3813 if (ElementMul != 1) { 3814 if (ElementMul.isPowerOf2()) { 3815 unsigned Amt = ElementMul.logBase2(); 3816 IdxN = DAG.getNode(ISD::SHL, dl, 3817 N.getValueType(), IdxN, 3818 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3819 } else { 3820 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3821 IdxN.getValueType()); 3822 IdxN = DAG.getNode(ISD::MUL, dl, 3823 N.getValueType(), IdxN, Scale); 3824 } 3825 } 3826 } 3827 3828 N = DAG.getNode(ISD::ADD, dl, 3829 N.getValueType(), N, IdxN); 3830 } 3831 } 3832 3833 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3834 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3835 if (IsVectorGEP) { 3836 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3837 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3838 } 3839 3840 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3841 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3842 3843 setValue(&I, N); 3844 } 3845 3846 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3847 // If this is a fixed sized alloca in the entry block of the function, 3848 // allocate it statically on the stack. 3849 if (FuncInfo.StaticAllocaMap.count(&I)) 3850 return; // getValue will auto-populate this. 3851 3852 SDLoc dl = getCurSDLoc(); 3853 Type *Ty = I.getAllocatedType(); 3854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3855 auto &DL = DAG.getDataLayout(); 3856 uint64_t TySize = DL.getTypeAllocSize(Ty); 3857 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3858 3859 SDValue AllocSize = getValue(I.getArraySize()); 3860 3861 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3862 if (AllocSize.getValueType() != IntPtr) 3863 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3864 3865 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3866 AllocSize, 3867 DAG.getConstant(TySize, dl, IntPtr)); 3868 3869 // Handle alignment. If the requested alignment is less than or equal to 3870 // the stack alignment, ignore it. If the size is greater than or equal to 3871 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3872 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3873 if (*Alignment <= StackAlign) 3874 Alignment = None; 3875 3876 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3877 // Round the size of the allocation up to the stack alignment size 3878 // by add SA-1 to the size. This doesn't overflow because we're computing 3879 // an address inside an alloca. 3880 SDNodeFlags Flags; 3881 Flags.setNoUnsignedWrap(true); 3882 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3883 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3884 3885 // Mask out the low bits for alignment purposes. 3886 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3887 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3888 3889 SDValue Ops[] = { 3890 getRoot(), AllocSize, 3891 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3892 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3893 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3894 setValue(&I, DSA); 3895 DAG.setRoot(DSA.getValue(1)); 3896 3897 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3898 } 3899 3900 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3901 if (I.isAtomic()) 3902 return visitAtomicLoad(I); 3903 3904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3905 const Value *SV = I.getOperand(0); 3906 if (TLI.supportSwiftError()) { 3907 // Swifterror values can come from either a function parameter with 3908 // swifterror attribute or an alloca with swifterror attribute. 3909 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3910 if (Arg->hasSwiftErrorAttr()) 3911 return visitLoadFromSwiftError(I); 3912 } 3913 3914 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3915 if (Alloca->isSwiftError()) 3916 return visitLoadFromSwiftError(I); 3917 } 3918 } 3919 3920 SDValue Ptr = getValue(SV); 3921 3922 Type *Ty = I.getType(); 3923 Align Alignment = I.getAlign(); 3924 3925 AAMDNodes AAInfo; 3926 I.getAAMetadata(AAInfo); 3927 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3928 3929 SmallVector<EVT, 4> ValueVTs, MemVTs; 3930 SmallVector<uint64_t, 4> Offsets; 3931 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3932 unsigned NumValues = ValueVTs.size(); 3933 if (NumValues == 0) 3934 return; 3935 3936 bool isVolatile = I.isVolatile(); 3937 3938 SDValue Root; 3939 bool ConstantMemory = false; 3940 if (isVolatile) 3941 // Serialize volatile loads with other side effects. 3942 Root = getRoot(); 3943 else if (NumValues > MaxParallelChains) 3944 Root = getMemoryRoot(); 3945 else if (AA && 3946 AA->pointsToConstantMemory(MemoryLocation( 3947 SV, 3948 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3949 AAInfo))) { 3950 // Do not serialize (non-volatile) loads of constant memory with anything. 3951 Root = DAG.getEntryNode(); 3952 ConstantMemory = true; 3953 } else { 3954 // Do not serialize non-volatile loads against each other. 3955 Root = DAG.getRoot(); 3956 } 3957 3958 SDLoc dl = getCurSDLoc(); 3959 3960 if (isVolatile) 3961 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3962 3963 // An aggregate load cannot wrap around the address space, so offsets to its 3964 // parts don't wrap either. 3965 SDNodeFlags Flags; 3966 Flags.setNoUnsignedWrap(true); 3967 3968 SmallVector<SDValue, 4> Values(NumValues); 3969 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3970 EVT PtrVT = Ptr.getValueType(); 3971 3972 MachineMemOperand::Flags MMOFlags 3973 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 3974 3975 unsigned ChainI = 0; 3976 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3977 // Serializing loads here may result in excessive register pressure, and 3978 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3979 // could recover a bit by hoisting nodes upward in the chain by recognizing 3980 // they are side-effect free or do not alias. The optimizer should really 3981 // avoid this case by converting large object/array copies to llvm.memcpy 3982 // (MaxParallelChains should always remain as failsafe). 3983 if (ChainI == MaxParallelChains) { 3984 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3985 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3986 makeArrayRef(Chains.data(), ChainI)); 3987 Root = Chain; 3988 ChainI = 0; 3989 } 3990 SDValue A = DAG.getNode(ISD::ADD, dl, 3991 PtrVT, Ptr, 3992 DAG.getConstant(Offsets[i], dl, PtrVT), 3993 Flags); 3994 3995 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 3996 MachinePointerInfo(SV, Offsets[i]), Alignment, 3997 MMOFlags, AAInfo, Ranges); 3998 Chains[ChainI] = L.getValue(1); 3999 4000 if (MemVTs[i] != ValueVTs[i]) 4001 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4002 4003 Values[i] = L; 4004 } 4005 4006 if (!ConstantMemory) { 4007 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4008 makeArrayRef(Chains.data(), ChainI)); 4009 if (isVolatile) 4010 DAG.setRoot(Chain); 4011 else 4012 PendingLoads.push_back(Chain); 4013 } 4014 4015 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4016 DAG.getVTList(ValueVTs), Values)); 4017 } 4018 4019 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4020 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4021 "call visitStoreToSwiftError when backend supports swifterror"); 4022 4023 SmallVector<EVT, 4> ValueVTs; 4024 SmallVector<uint64_t, 4> Offsets; 4025 const Value *SrcV = I.getOperand(0); 4026 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4027 SrcV->getType(), ValueVTs, &Offsets); 4028 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4029 "expect a single EVT for swifterror"); 4030 4031 SDValue Src = getValue(SrcV); 4032 // Create a virtual register, then update the virtual register. 4033 Register VReg = 4034 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4035 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4036 // Chain can be getRoot or getControlRoot. 4037 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4038 SDValue(Src.getNode(), Src.getResNo())); 4039 DAG.setRoot(CopyNode); 4040 } 4041 4042 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4043 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4044 "call visitLoadFromSwiftError when backend supports swifterror"); 4045 4046 assert(!I.isVolatile() && 4047 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4048 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4049 "Support volatile, non temporal, invariant for load_from_swift_error"); 4050 4051 const Value *SV = I.getOperand(0); 4052 Type *Ty = I.getType(); 4053 AAMDNodes AAInfo; 4054 I.getAAMetadata(AAInfo); 4055 assert( 4056 (!AA || 4057 !AA->pointsToConstantMemory(MemoryLocation( 4058 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4059 AAInfo))) && 4060 "load_from_swift_error should not be constant memory"); 4061 4062 SmallVector<EVT, 4> ValueVTs; 4063 SmallVector<uint64_t, 4> Offsets; 4064 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4065 ValueVTs, &Offsets); 4066 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4067 "expect a single EVT for swifterror"); 4068 4069 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4070 SDValue L = DAG.getCopyFromReg( 4071 getRoot(), getCurSDLoc(), 4072 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4073 4074 setValue(&I, L); 4075 } 4076 4077 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4078 if (I.isAtomic()) 4079 return visitAtomicStore(I); 4080 4081 const Value *SrcV = I.getOperand(0); 4082 const Value *PtrV = I.getOperand(1); 4083 4084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4085 if (TLI.supportSwiftError()) { 4086 // Swifterror values can come from either a function parameter with 4087 // swifterror attribute or an alloca with swifterror attribute. 4088 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4089 if (Arg->hasSwiftErrorAttr()) 4090 return visitStoreToSwiftError(I); 4091 } 4092 4093 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4094 if (Alloca->isSwiftError()) 4095 return visitStoreToSwiftError(I); 4096 } 4097 } 4098 4099 SmallVector<EVT, 4> ValueVTs, MemVTs; 4100 SmallVector<uint64_t, 4> Offsets; 4101 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4102 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4103 unsigned NumValues = ValueVTs.size(); 4104 if (NumValues == 0) 4105 return; 4106 4107 // Get the lowered operands. Note that we do this after 4108 // checking if NumResults is zero, because with zero results 4109 // the operands won't have values in the map. 4110 SDValue Src = getValue(SrcV); 4111 SDValue Ptr = getValue(PtrV); 4112 4113 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4114 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4115 SDLoc dl = getCurSDLoc(); 4116 Align Alignment = I.getAlign(); 4117 AAMDNodes AAInfo; 4118 I.getAAMetadata(AAInfo); 4119 4120 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4121 4122 // An aggregate load cannot wrap around the address space, so offsets to its 4123 // parts don't wrap either. 4124 SDNodeFlags Flags; 4125 Flags.setNoUnsignedWrap(true); 4126 4127 unsigned ChainI = 0; 4128 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4129 // See visitLoad comments. 4130 if (ChainI == MaxParallelChains) { 4131 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4132 makeArrayRef(Chains.data(), ChainI)); 4133 Root = Chain; 4134 ChainI = 0; 4135 } 4136 SDValue Add = 4137 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4138 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4139 if (MemVTs[i] != ValueVTs[i]) 4140 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4141 SDValue St = 4142 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4143 Alignment, MMOFlags, AAInfo); 4144 Chains[ChainI] = St; 4145 } 4146 4147 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4148 makeArrayRef(Chains.data(), ChainI)); 4149 DAG.setRoot(StoreNode); 4150 } 4151 4152 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4153 bool IsCompressing) { 4154 SDLoc sdl = getCurSDLoc(); 4155 4156 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4157 MaybeAlign &Alignment) { 4158 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4159 Src0 = I.getArgOperand(0); 4160 Ptr = I.getArgOperand(1); 4161 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4162 Mask = I.getArgOperand(3); 4163 }; 4164 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4165 MaybeAlign &Alignment) { 4166 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4167 Src0 = I.getArgOperand(0); 4168 Ptr = I.getArgOperand(1); 4169 Mask = I.getArgOperand(2); 4170 Alignment = None; 4171 }; 4172 4173 Value *PtrOperand, *MaskOperand, *Src0Operand; 4174 MaybeAlign Alignment; 4175 if (IsCompressing) 4176 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4177 else 4178 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4179 4180 SDValue Ptr = getValue(PtrOperand); 4181 SDValue Src0 = getValue(Src0Operand); 4182 SDValue Mask = getValue(MaskOperand); 4183 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4184 4185 EVT VT = Src0.getValueType(); 4186 if (!Alignment) 4187 Alignment = DAG.getEVTAlign(VT); 4188 4189 AAMDNodes AAInfo; 4190 I.getAAMetadata(AAInfo); 4191 4192 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4193 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4194 // TODO: Make MachineMemOperands aware of scalable 4195 // vectors. 4196 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4197 SDValue StoreNode = 4198 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4199 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4200 DAG.setRoot(StoreNode); 4201 setValue(&I, StoreNode); 4202 } 4203 4204 // Get a uniform base for the Gather/Scatter intrinsic. 4205 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4206 // We try to represent it as a base pointer + vector of indices. 4207 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4208 // The first operand of the GEP may be a single pointer or a vector of pointers 4209 // Example: 4210 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4211 // or 4212 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4213 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4214 // 4215 // When the first GEP operand is a single pointer - it is the uniform base we 4216 // are looking for. If first operand of the GEP is a splat vector - we 4217 // extract the splat value and use it as a uniform base. 4218 // In all other cases the function returns 'false'. 4219 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4220 ISD::MemIndexType &IndexType, SDValue &Scale, 4221 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4222 SelectionDAG& DAG = SDB->DAG; 4223 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4224 const DataLayout &DL = DAG.getDataLayout(); 4225 4226 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4227 4228 // Handle splat constant pointer. 4229 if (auto *C = dyn_cast<Constant>(Ptr)) { 4230 C = C->getSplatValue(); 4231 if (!C) 4232 return false; 4233 4234 Base = SDB->getValue(C); 4235 4236 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4237 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4238 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4239 IndexType = ISD::SIGNED_SCALED; 4240 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4241 return true; 4242 } 4243 4244 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4245 if (!GEP || GEP->getParent() != CurBB) 4246 return false; 4247 4248 if (GEP->getNumOperands() != 2) 4249 return false; 4250 4251 const Value *BasePtr = GEP->getPointerOperand(); 4252 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4253 4254 // Make sure the base is scalar and the index is a vector. 4255 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4256 return false; 4257 4258 Base = SDB->getValue(BasePtr); 4259 Index = SDB->getValue(IndexVal); 4260 IndexType = ISD::SIGNED_SCALED; 4261 Scale = DAG.getTargetConstant( 4262 DL.getTypeAllocSize(GEP->getResultElementType()), 4263 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4264 return true; 4265 } 4266 4267 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4268 SDLoc sdl = getCurSDLoc(); 4269 4270 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4271 const Value *Ptr = I.getArgOperand(1); 4272 SDValue Src0 = getValue(I.getArgOperand(0)); 4273 SDValue Mask = getValue(I.getArgOperand(3)); 4274 EVT VT = Src0.getValueType(); 4275 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4276 ->getMaybeAlignValue() 4277 .getValueOr(DAG.getEVTAlign(VT)); 4278 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4279 4280 AAMDNodes AAInfo; 4281 I.getAAMetadata(AAInfo); 4282 4283 SDValue Base; 4284 SDValue Index; 4285 ISD::MemIndexType IndexType; 4286 SDValue Scale; 4287 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4288 I.getParent()); 4289 4290 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4291 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4292 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4293 // TODO: Make MachineMemOperands aware of scalable 4294 // vectors. 4295 MemoryLocation::UnknownSize, Alignment, AAInfo); 4296 if (!UniformBase) { 4297 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4298 Index = getValue(Ptr); 4299 IndexType = ISD::SIGNED_SCALED; 4300 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4301 } 4302 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4303 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4304 Ops, MMO, IndexType); 4305 DAG.setRoot(Scatter); 4306 setValue(&I, Scatter); 4307 } 4308 4309 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4310 SDLoc sdl = getCurSDLoc(); 4311 4312 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4313 MaybeAlign &Alignment) { 4314 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4315 Ptr = I.getArgOperand(0); 4316 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4317 Mask = I.getArgOperand(2); 4318 Src0 = I.getArgOperand(3); 4319 }; 4320 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4321 MaybeAlign &Alignment) { 4322 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4323 Ptr = I.getArgOperand(0); 4324 Alignment = None; 4325 Mask = I.getArgOperand(1); 4326 Src0 = I.getArgOperand(2); 4327 }; 4328 4329 Value *PtrOperand, *MaskOperand, *Src0Operand; 4330 MaybeAlign Alignment; 4331 if (IsExpanding) 4332 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4333 else 4334 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4335 4336 SDValue Ptr = getValue(PtrOperand); 4337 SDValue Src0 = getValue(Src0Operand); 4338 SDValue Mask = getValue(MaskOperand); 4339 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4340 4341 EVT VT = Src0.getValueType(); 4342 if (!Alignment) 4343 Alignment = DAG.getEVTAlign(VT); 4344 4345 AAMDNodes AAInfo; 4346 I.getAAMetadata(AAInfo); 4347 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4348 4349 // Do not serialize masked loads of constant memory with anything. 4350 MemoryLocation ML; 4351 if (VT.isScalableVector()) 4352 ML = MemoryLocation(PtrOperand); 4353 else 4354 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4355 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4356 AAInfo); 4357 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4358 4359 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4360 4361 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4362 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4363 // TODO: Make MachineMemOperands aware of scalable 4364 // vectors. 4365 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4366 4367 SDValue Load = 4368 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4369 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4370 if (AddToChain) 4371 PendingLoads.push_back(Load.getValue(1)); 4372 setValue(&I, Load); 4373 } 4374 4375 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4376 SDLoc sdl = getCurSDLoc(); 4377 4378 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4379 const Value *Ptr = I.getArgOperand(0); 4380 SDValue Src0 = getValue(I.getArgOperand(3)); 4381 SDValue Mask = getValue(I.getArgOperand(2)); 4382 4383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4384 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4385 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4386 ->getMaybeAlignValue() 4387 .getValueOr(DAG.getEVTAlign(VT)); 4388 4389 AAMDNodes AAInfo; 4390 I.getAAMetadata(AAInfo); 4391 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4392 4393 SDValue Root = DAG.getRoot(); 4394 SDValue Base; 4395 SDValue Index; 4396 ISD::MemIndexType IndexType; 4397 SDValue Scale; 4398 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4399 I.getParent()); 4400 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4401 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4402 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4403 // TODO: Make MachineMemOperands aware of scalable 4404 // vectors. 4405 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4406 4407 if (!UniformBase) { 4408 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4409 Index = getValue(Ptr); 4410 IndexType = ISD::SIGNED_SCALED; 4411 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4412 } 4413 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4414 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4415 Ops, MMO, IndexType); 4416 4417 PendingLoads.push_back(Gather.getValue(1)); 4418 setValue(&I, Gather); 4419 } 4420 4421 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4422 SDLoc dl = getCurSDLoc(); 4423 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4424 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4425 SyncScope::ID SSID = I.getSyncScopeID(); 4426 4427 SDValue InChain = getRoot(); 4428 4429 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4430 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4431 4432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4433 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4434 4435 MachineFunction &MF = DAG.getMachineFunction(); 4436 MachineMemOperand *MMO = MF.getMachineMemOperand( 4437 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4438 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4439 FailureOrdering); 4440 4441 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4442 dl, MemVT, VTs, InChain, 4443 getValue(I.getPointerOperand()), 4444 getValue(I.getCompareOperand()), 4445 getValue(I.getNewValOperand()), MMO); 4446 4447 SDValue OutChain = L.getValue(2); 4448 4449 setValue(&I, L); 4450 DAG.setRoot(OutChain); 4451 } 4452 4453 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4454 SDLoc dl = getCurSDLoc(); 4455 ISD::NodeType NT; 4456 switch (I.getOperation()) { 4457 default: llvm_unreachable("Unknown atomicrmw operation"); 4458 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4459 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4460 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4461 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4462 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4463 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4464 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4465 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4466 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4467 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4468 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4469 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4470 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4471 } 4472 AtomicOrdering Ordering = I.getOrdering(); 4473 SyncScope::ID SSID = I.getSyncScopeID(); 4474 4475 SDValue InChain = getRoot(); 4476 4477 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4479 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4480 4481 MachineFunction &MF = DAG.getMachineFunction(); 4482 MachineMemOperand *MMO = MF.getMachineMemOperand( 4483 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4484 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4485 4486 SDValue L = 4487 DAG.getAtomic(NT, dl, MemVT, InChain, 4488 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4489 MMO); 4490 4491 SDValue OutChain = L.getValue(1); 4492 4493 setValue(&I, L); 4494 DAG.setRoot(OutChain); 4495 } 4496 4497 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4498 SDLoc dl = getCurSDLoc(); 4499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4500 SDValue Ops[3]; 4501 Ops[0] = getRoot(); 4502 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4503 TLI.getFenceOperandTy(DAG.getDataLayout())); 4504 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4505 TLI.getFenceOperandTy(DAG.getDataLayout())); 4506 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4507 } 4508 4509 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4510 SDLoc dl = getCurSDLoc(); 4511 AtomicOrdering Order = I.getOrdering(); 4512 SyncScope::ID SSID = I.getSyncScopeID(); 4513 4514 SDValue InChain = getRoot(); 4515 4516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4517 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4518 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4519 4520 if (!TLI.supportsUnalignedAtomics() && 4521 I.getAlignment() < MemVT.getSizeInBits() / 8) 4522 report_fatal_error("Cannot generate unaligned atomic load"); 4523 4524 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4525 4526 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4527 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4528 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4529 4530 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4531 4532 SDValue Ptr = getValue(I.getPointerOperand()); 4533 4534 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4535 // TODO: Once this is better exercised by tests, it should be merged with 4536 // the normal path for loads to prevent future divergence. 4537 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4538 if (MemVT != VT) 4539 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4540 4541 setValue(&I, L); 4542 SDValue OutChain = L.getValue(1); 4543 if (!I.isUnordered()) 4544 DAG.setRoot(OutChain); 4545 else 4546 PendingLoads.push_back(OutChain); 4547 return; 4548 } 4549 4550 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4551 Ptr, MMO); 4552 4553 SDValue OutChain = L.getValue(1); 4554 if (MemVT != VT) 4555 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4556 4557 setValue(&I, L); 4558 DAG.setRoot(OutChain); 4559 } 4560 4561 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4562 SDLoc dl = getCurSDLoc(); 4563 4564 AtomicOrdering Ordering = I.getOrdering(); 4565 SyncScope::ID SSID = I.getSyncScopeID(); 4566 4567 SDValue InChain = getRoot(); 4568 4569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4570 EVT MemVT = 4571 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4572 4573 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4574 report_fatal_error("Cannot generate unaligned atomic store"); 4575 4576 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4577 4578 MachineFunction &MF = DAG.getMachineFunction(); 4579 MachineMemOperand *MMO = MF.getMachineMemOperand( 4580 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4581 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4582 4583 SDValue Val = getValue(I.getValueOperand()); 4584 if (Val.getValueType() != MemVT) 4585 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4586 SDValue Ptr = getValue(I.getPointerOperand()); 4587 4588 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4589 // TODO: Once this is better exercised by tests, it should be merged with 4590 // the normal path for stores to prevent future divergence. 4591 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4592 DAG.setRoot(S); 4593 return; 4594 } 4595 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4596 Ptr, Val, MMO); 4597 4598 4599 DAG.setRoot(OutChain); 4600 } 4601 4602 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4603 /// node. 4604 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4605 unsigned Intrinsic) { 4606 // Ignore the callsite's attributes. A specific call site may be marked with 4607 // readnone, but the lowering code will expect the chain based on the 4608 // definition. 4609 const Function *F = I.getCalledFunction(); 4610 bool HasChain = !F->doesNotAccessMemory(); 4611 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4612 4613 // Build the operand list. 4614 SmallVector<SDValue, 8> Ops; 4615 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4616 if (OnlyLoad) { 4617 // We don't need to serialize loads against other loads. 4618 Ops.push_back(DAG.getRoot()); 4619 } else { 4620 Ops.push_back(getRoot()); 4621 } 4622 } 4623 4624 // Info is set by getTgtMemInstrinsic 4625 TargetLowering::IntrinsicInfo Info; 4626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4627 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4628 DAG.getMachineFunction(), 4629 Intrinsic); 4630 4631 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4632 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4633 Info.opc == ISD::INTRINSIC_W_CHAIN) 4634 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4635 TLI.getPointerTy(DAG.getDataLayout()))); 4636 4637 // Add all operands of the call to the operand list. 4638 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4639 const Value *Arg = I.getArgOperand(i); 4640 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4641 Ops.push_back(getValue(Arg)); 4642 continue; 4643 } 4644 4645 // Use TargetConstant instead of a regular constant for immarg. 4646 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4647 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4648 assert(CI->getBitWidth() <= 64 && 4649 "large intrinsic immediates not handled"); 4650 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4651 } else { 4652 Ops.push_back( 4653 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4654 } 4655 } 4656 4657 SmallVector<EVT, 4> ValueVTs; 4658 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4659 4660 if (HasChain) 4661 ValueVTs.push_back(MVT::Other); 4662 4663 SDVTList VTs = DAG.getVTList(ValueVTs); 4664 4665 // Create the node. 4666 SDValue Result; 4667 if (IsTgtIntrinsic) { 4668 // This is target intrinsic that touches memory 4669 AAMDNodes AAInfo; 4670 I.getAAMetadata(AAInfo); 4671 Result = 4672 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4673 MachinePointerInfo(Info.ptrVal, Info.offset), 4674 Info.align, Info.flags, Info.size, AAInfo); 4675 } else if (!HasChain) { 4676 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4677 } else if (!I.getType()->isVoidTy()) { 4678 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4679 } else { 4680 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4681 } 4682 4683 if (HasChain) { 4684 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4685 if (OnlyLoad) 4686 PendingLoads.push_back(Chain); 4687 else 4688 DAG.setRoot(Chain); 4689 } 4690 4691 if (!I.getType()->isVoidTy()) { 4692 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4693 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4694 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4695 } else 4696 Result = lowerRangeToAssertZExt(DAG, I, Result); 4697 4698 MaybeAlign Alignment = I.getRetAlign(); 4699 if (!Alignment) 4700 Alignment = F->getAttributes().getRetAlignment(); 4701 // Insert `assertalign` node if there's an alignment. 4702 if (InsertAssertAlign && Alignment) { 4703 Result = 4704 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4705 } 4706 4707 setValue(&I, Result); 4708 } 4709 } 4710 4711 /// GetSignificand - Get the significand and build it into a floating-point 4712 /// number with exponent of 1: 4713 /// 4714 /// Op = (Op & 0x007fffff) | 0x3f800000; 4715 /// 4716 /// where Op is the hexadecimal representation of floating point value. 4717 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4718 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4719 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4720 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4721 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4722 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4723 } 4724 4725 /// GetExponent - Get the exponent: 4726 /// 4727 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4728 /// 4729 /// where Op is the hexadecimal representation of floating point value. 4730 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4731 const TargetLowering &TLI, const SDLoc &dl) { 4732 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4733 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4734 SDValue t1 = DAG.getNode( 4735 ISD::SRL, dl, MVT::i32, t0, 4736 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4737 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4738 DAG.getConstant(127, dl, MVT::i32)); 4739 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4740 } 4741 4742 /// getF32Constant - Get 32-bit floating point constant. 4743 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4744 const SDLoc &dl) { 4745 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4746 MVT::f32); 4747 } 4748 4749 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4750 SelectionDAG &DAG) { 4751 // TODO: What fast-math-flags should be set on the floating-point nodes? 4752 4753 // IntegerPartOfX = ((int32_t)(t0); 4754 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4755 4756 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4757 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4758 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4759 4760 // IntegerPartOfX <<= 23; 4761 IntegerPartOfX = DAG.getNode( 4762 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4763 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4764 DAG.getDataLayout()))); 4765 4766 SDValue TwoToFractionalPartOfX; 4767 if (LimitFloatPrecision <= 6) { 4768 // For floating-point precision of 6: 4769 // 4770 // TwoToFractionalPartOfX = 4771 // 0.997535578f + 4772 // (0.735607626f + 0.252464424f * x) * x; 4773 // 4774 // error 0.0144103317, which is 6 bits 4775 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4776 getF32Constant(DAG, 0x3e814304, dl)); 4777 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4778 getF32Constant(DAG, 0x3f3c50c8, dl)); 4779 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4780 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4781 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4782 } else if (LimitFloatPrecision <= 12) { 4783 // For floating-point precision of 12: 4784 // 4785 // TwoToFractionalPartOfX = 4786 // 0.999892986f + 4787 // (0.696457318f + 4788 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4789 // 4790 // error 0.000107046256, which is 13 to 14 bits 4791 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4792 getF32Constant(DAG, 0x3da235e3, dl)); 4793 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4794 getF32Constant(DAG, 0x3e65b8f3, dl)); 4795 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4796 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4797 getF32Constant(DAG, 0x3f324b07, dl)); 4798 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4799 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4800 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4801 } else { // LimitFloatPrecision <= 18 4802 // For floating-point precision of 18: 4803 // 4804 // TwoToFractionalPartOfX = 4805 // 0.999999982f + 4806 // (0.693148872f + 4807 // (0.240227044f + 4808 // (0.554906021e-1f + 4809 // (0.961591928e-2f + 4810 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4811 // error 2.47208000*10^(-7), which is better than 18 bits 4812 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4813 getF32Constant(DAG, 0x3924b03e, dl)); 4814 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4815 getF32Constant(DAG, 0x3ab24b87, dl)); 4816 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4817 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4818 getF32Constant(DAG, 0x3c1d8c17, dl)); 4819 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4820 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4821 getF32Constant(DAG, 0x3d634a1d, dl)); 4822 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4823 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4824 getF32Constant(DAG, 0x3e75fe14, dl)); 4825 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4826 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4827 getF32Constant(DAG, 0x3f317234, dl)); 4828 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4829 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4830 getF32Constant(DAG, 0x3f800000, dl)); 4831 } 4832 4833 // Add the exponent into the result in integer domain. 4834 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4835 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4836 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4837 } 4838 4839 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4840 /// limited-precision mode. 4841 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4842 const TargetLowering &TLI, SDNodeFlags Flags) { 4843 if (Op.getValueType() == MVT::f32 && 4844 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4845 4846 // Put the exponent in the right bit position for later addition to the 4847 // final result: 4848 // 4849 // t0 = Op * log2(e) 4850 4851 // TODO: What fast-math-flags should be set here? 4852 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4853 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4854 return getLimitedPrecisionExp2(t0, dl, DAG); 4855 } 4856 4857 // No special expansion. 4858 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 4859 } 4860 4861 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4862 /// limited-precision mode. 4863 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4864 const TargetLowering &TLI, SDNodeFlags Flags) { 4865 // TODO: What fast-math-flags should be set on the floating-point nodes? 4866 4867 if (Op.getValueType() == MVT::f32 && 4868 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4869 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4870 4871 // Scale the exponent by log(2). 4872 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4873 SDValue LogOfExponent = 4874 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4875 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4876 4877 // Get the significand and build it into a floating-point number with 4878 // exponent of 1. 4879 SDValue X = GetSignificand(DAG, Op1, dl); 4880 4881 SDValue LogOfMantissa; 4882 if (LimitFloatPrecision <= 6) { 4883 // For floating-point precision of 6: 4884 // 4885 // LogofMantissa = 4886 // -1.1609546f + 4887 // (1.4034025f - 0.23903021f * x) * x; 4888 // 4889 // error 0.0034276066, which is better than 8 bits 4890 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4891 getF32Constant(DAG, 0xbe74c456, dl)); 4892 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4893 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4895 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4896 getF32Constant(DAG, 0x3f949a29, dl)); 4897 } else if (LimitFloatPrecision <= 12) { 4898 // For floating-point precision of 12: 4899 // 4900 // LogOfMantissa = 4901 // -1.7417939f + 4902 // (2.8212026f + 4903 // (-1.4699568f + 4904 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4905 // 4906 // error 0.000061011436, which is 14 bits 4907 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4908 getF32Constant(DAG, 0xbd67b6d6, dl)); 4909 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4910 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4911 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4912 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4913 getF32Constant(DAG, 0x3fbc278b, dl)); 4914 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4915 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4916 getF32Constant(DAG, 0x40348e95, dl)); 4917 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4918 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4919 getF32Constant(DAG, 0x3fdef31a, dl)); 4920 } else { // LimitFloatPrecision <= 18 4921 // For floating-point precision of 18: 4922 // 4923 // LogOfMantissa = 4924 // -2.1072184f + 4925 // (4.2372794f + 4926 // (-3.7029485f + 4927 // (2.2781945f + 4928 // (-0.87823314f + 4929 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4930 // 4931 // error 0.0000023660568, which is better than 18 bits 4932 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4933 getF32Constant(DAG, 0xbc91e5ac, dl)); 4934 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4935 getF32Constant(DAG, 0x3e4350aa, dl)); 4936 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4937 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4938 getF32Constant(DAG, 0x3f60d3e3, dl)); 4939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4940 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4941 getF32Constant(DAG, 0x4011cdf0, dl)); 4942 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4943 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4944 getF32Constant(DAG, 0x406cfd1c, dl)); 4945 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4946 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4947 getF32Constant(DAG, 0x408797cb, dl)); 4948 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4949 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4950 getF32Constant(DAG, 0x4006dcab, dl)); 4951 } 4952 4953 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4954 } 4955 4956 // No special expansion. 4957 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 4958 } 4959 4960 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4961 /// limited-precision mode. 4962 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4963 const TargetLowering &TLI, SDNodeFlags Flags) { 4964 // TODO: What fast-math-flags should be set on the floating-point nodes? 4965 4966 if (Op.getValueType() == MVT::f32 && 4967 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4968 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4969 4970 // Get the exponent. 4971 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4972 4973 // Get the significand and build it into a floating-point number with 4974 // exponent of 1. 4975 SDValue X = GetSignificand(DAG, Op1, dl); 4976 4977 // Different possible minimax approximations of significand in 4978 // floating-point for various degrees of accuracy over [1,2]. 4979 SDValue Log2ofMantissa; 4980 if (LimitFloatPrecision <= 6) { 4981 // For floating-point precision of 6: 4982 // 4983 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4984 // 4985 // error 0.0049451742, which is more than 7 bits 4986 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4987 getF32Constant(DAG, 0xbeb08fe0, dl)); 4988 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4989 getF32Constant(DAG, 0x40019463, dl)); 4990 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4991 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4992 getF32Constant(DAG, 0x3fd6633d, dl)); 4993 } else if (LimitFloatPrecision <= 12) { 4994 // For floating-point precision of 12: 4995 // 4996 // Log2ofMantissa = 4997 // -2.51285454f + 4998 // (4.07009056f + 4999 // (-2.12067489f + 5000 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5001 // 5002 // error 0.0000876136000, which is better than 13 bits 5003 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5004 getF32Constant(DAG, 0xbda7262e, dl)); 5005 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5006 getF32Constant(DAG, 0x3f25280b, dl)); 5007 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5008 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5009 getF32Constant(DAG, 0x4007b923, dl)); 5010 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5011 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5012 getF32Constant(DAG, 0x40823e2f, dl)); 5013 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5014 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5015 getF32Constant(DAG, 0x4020d29c, dl)); 5016 } else { // LimitFloatPrecision <= 18 5017 // For floating-point precision of 18: 5018 // 5019 // Log2ofMantissa = 5020 // -3.0400495f + 5021 // (6.1129976f + 5022 // (-5.3420409f + 5023 // (3.2865683f + 5024 // (-1.2669343f + 5025 // (0.27515199f - 5026 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5027 // 5028 // error 0.0000018516, which is better than 18 bits 5029 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5030 getF32Constant(DAG, 0xbcd2769e, dl)); 5031 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5032 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5033 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5034 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5035 getF32Constant(DAG, 0x3fa22ae7, dl)); 5036 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5037 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5038 getF32Constant(DAG, 0x40525723, dl)); 5039 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5040 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5041 getF32Constant(DAG, 0x40aaf200, dl)); 5042 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5043 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5044 getF32Constant(DAG, 0x40c39dad, dl)); 5045 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5046 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5047 getF32Constant(DAG, 0x4042902c, dl)); 5048 } 5049 5050 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5051 } 5052 5053 // No special expansion. 5054 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5055 } 5056 5057 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5058 /// limited-precision mode. 5059 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5060 const TargetLowering &TLI, SDNodeFlags Flags) { 5061 // TODO: What fast-math-flags should be set on the floating-point nodes? 5062 5063 if (Op.getValueType() == MVT::f32 && 5064 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5065 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5066 5067 // Scale the exponent by log10(2) [0.30102999f]. 5068 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5069 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5070 getF32Constant(DAG, 0x3e9a209a, dl)); 5071 5072 // Get the significand and build it into a floating-point number with 5073 // exponent of 1. 5074 SDValue X = GetSignificand(DAG, Op1, dl); 5075 5076 SDValue Log10ofMantissa; 5077 if (LimitFloatPrecision <= 6) { 5078 // For floating-point precision of 6: 5079 // 5080 // Log10ofMantissa = 5081 // -0.50419619f + 5082 // (0.60948995f - 0.10380950f * x) * x; 5083 // 5084 // error 0.0014886165, which is 6 bits 5085 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5086 getF32Constant(DAG, 0xbdd49a13, dl)); 5087 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5088 getF32Constant(DAG, 0x3f1c0789, dl)); 5089 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5090 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5091 getF32Constant(DAG, 0x3f011300, dl)); 5092 } else if (LimitFloatPrecision <= 12) { 5093 // For floating-point precision of 12: 5094 // 5095 // Log10ofMantissa = 5096 // -0.64831180f + 5097 // (0.91751397f + 5098 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5099 // 5100 // error 0.00019228036, which is better than 12 bits 5101 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5102 getF32Constant(DAG, 0x3d431f31, dl)); 5103 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5104 getF32Constant(DAG, 0x3ea21fb2, dl)); 5105 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5106 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5107 getF32Constant(DAG, 0x3f6ae232, dl)); 5108 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5109 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5110 getF32Constant(DAG, 0x3f25f7c3, dl)); 5111 } else { // LimitFloatPrecision <= 18 5112 // For floating-point precision of 18: 5113 // 5114 // Log10ofMantissa = 5115 // -0.84299375f + 5116 // (1.5327582f + 5117 // (-1.0688956f + 5118 // (0.49102474f + 5119 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5120 // 5121 // error 0.0000037995730, which is better than 18 bits 5122 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5123 getF32Constant(DAG, 0x3c5d51ce, dl)); 5124 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5125 getF32Constant(DAG, 0x3e00685a, dl)); 5126 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5127 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5128 getF32Constant(DAG, 0x3efb6798, dl)); 5129 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5130 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5131 getF32Constant(DAG, 0x3f88d192, dl)); 5132 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5133 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5134 getF32Constant(DAG, 0x3fc4316c, dl)); 5135 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5136 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5137 getF32Constant(DAG, 0x3f57ce70, dl)); 5138 } 5139 5140 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5141 } 5142 5143 // No special expansion. 5144 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5145 } 5146 5147 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5148 /// limited-precision mode. 5149 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5150 const TargetLowering &TLI, SDNodeFlags Flags) { 5151 if (Op.getValueType() == MVT::f32 && 5152 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5153 return getLimitedPrecisionExp2(Op, dl, DAG); 5154 5155 // No special expansion. 5156 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5157 } 5158 5159 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5160 /// limited-precision mode with x == 10.0f. 5161 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5162 SelectionDAG &DAG, const TargetLowering &TLI, 5163 SDNodeFlags Flags) { 5164 bool IsExp10 = false; 5165 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5166 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5167 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5168 APFloat Ten(10.0f); 5169 IsExp10 = LHSC->isExactlyValue(Ten); 5170 } 5171 } 5172 5173 // TODO: What fast-math-flags should be set on the FMUL node? 5174 if (IsExp10) { 5175 // Put the exponent in the right bit position for later addition to the 5176 // final result: 5177 // 5178 // #define LOG2OF10 3.3219281f 5179 // t0 = Op * LOG2OF10; 5180 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5181 getF32Constant(DAG, 0x40549a78, dl)); 5182 return getLimitedPrecisionExp2(t0, dl, DAG); 5183 } 5184 5185 // No special expansion. 5186 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5187 } 5188 5189 /// ExpandPowI - Expand a llvm.powi intrinsic. 5190 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5191 SelectionDAG &DAG) { 5192 // If RHS is a constant, we can expand this out to a multiplication tree, 5193 // otherwise we end up lowering to a call to __powidf2 (for example). When 5194 // optimizing for size, we only want to do this if the expansion would produce 5195 // a small number of multiplies, otherwise we do the full expansion. 5196 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5197 // Get the exponent as a positive value. 5198 unsigned Val = RHSC->getSExtValue(); 5199 if ((int)Val < 0) Val = -Val; 5200 5201 // powi(x, 0) -> 1.0 5202 if (Val == 0) 5203 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5204 5205 bool OptForSize = DAG.shouldOptForSize(); 5206 if (!OptForSize || 5207 // If optimizing for size, don't insert too many multiplies. 5208 // This inserts up to 5 multiplies. 5209 countPopulation(Val) + Log2_32(Val) < 7) { 5210 // We use the simple binary decomposition method to generate the multiply 5211 // sequence. There are more optimal ways to do this (for example, 5212 // powi(x,15) generates one more multiply than it should), but this has 5213 // the benefit of being both really simple and much better than a libcall. 5214 SDValue Res; // Logically starts equal to 1.0 5215 SDValue CurSquare = LHS; 5216 // TODO: Intrinsics should have fast-math-flags that propagate to these 5217 // nodes. 5218 while (Val) { 5219 if (Val & 1) { 5220 if (Res.getNode()) 5221 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5222 else 5223 Res = CurSquare; // 1.0*CurSquare. 5224 } 5225 5226 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5227 CurSquare, CurSquare); 5228 Val >>= 1; 5229 } 5230 5231 // If the original was negative, invert the result, producing 1/(x*x*x). 5232 if (RHSC->getSExtValue() < 0) 5233 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5234 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5235 return Res; 5236 } 5237 } 5238 5239 // Otherwise, expand to a libcall. 5240 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5241 } 5242 5243 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5244 SDValue LHS, SDValue RHS, SDValue Scale, 5245 SelectionDAG &DAG, const TargetLowering &TLI) { 5246 EVT VT = LHS.getValueType(); 5247 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5248 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5249 LLVMContext &Ctx = *DAG.getContext(); 5250 5251 // If the type is legal but the operation isn't, this node might survive all 5252 // the way to operation legalization. If we end up there and we do not have 5253 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5254 // node. 5255 5256 // Coax the legalizer into expanding the node during type legalization instead 5257 // by bumping the size by one bit. This will force it to Promote, enabling the 5258 // early expansion and avoiding the need to expand later. 5259 5260 // We don't have to do this if Scale is 0; that can always be expanded, unless 5261 // it's a saturating signed operation. Those can experience true integer 5262 // division overflow, a case which we must avoid. 5263 5264 // FIXME: We wouldn't have to do this (or any of the early 5265 // expansion/promotion) if it was possible to expand a libcall of an 5266 // illegal type during operation legalization. But it's not, so things 5267 // get a bit hacky. 5268 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5269 if ((ScaleInt > 0 || (Saturating && Signed)) && 5270 (TLI.isTypeLegal(VT) || 5271 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5272 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5273 Opcode, VT, ScaleInt); 5274 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5275 EVT PromVT; 5276 if (VT.isScalarInteger()) 5277 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5278 else if (VT.isVector()) { 5279 PromVT = VT.getVectorElementType(); 5280 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5281 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5282 } else 5283 llvm_unreachable("Wrong VT for DIVFIX?"); 5284 if (Signed) { 5285 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5286 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5287 } else { 5288 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5289 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5290 } 5291 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5292 // For saturating operations, we need to shift up the LHS to get the 5293 // proper saturation width, and then shift down again afterwards. 5294 if (Saturating) 5295 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5296 DAG.getConstant(1, DL, ShiftTy)); 5297 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5298 if (Saturating) 5299 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5300 DAG.getConstant(1, DL, ShiftTy)); 5301 return DAG.getZExtOrTrunc(Res, DL, VT); 5302 } 5303 } 5304 5305 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5306 } 5307 5308 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5309 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5310 static void 5311 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5312 const SDValue &N) { 5313 switch (N.getOpcode()) { 5314 case ISD::CopyFromReg: { 5315 SDValue Op = N.getOperand(1); 5316 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5317 Op.getValueType().getSizeInBits()); 5318 return; 5319 } 5320 case ISD::BITCAST: 5321 case ISD::AssertZext: 5322 case ISD::AssertSext: 5323 case ISD::TRUNCATE: 5324 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5325 return; 5326 case ISD::BUILD_PAIR: 5327 case ISD::BUILD_VECTOR: 5328 case ISD::CONCAT_VECTORS: 5329 for (SDValue Op : N->op_values()) 5330 getUnderlyingArgRegs(Regs, Op); 5331 return; 5332 default: 5333 return; 5334 } 5335 } 5336 5337 /// If the DbgValueInst is a dbg_value of a function argument, create the 5338 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5339 /// instruction selection, they will be inserted to the entry BB. 5340 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5341 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5342 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5343 const Argument *Arg = dyn_cast<Argument>(V); 5344 if (!Arg) 5345 return false; 5346 5347 if (!IsDbgDeclare) { 5348 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5349 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5350 // the entry block. 5351 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5352 if (!IsInEntryBlock) 5353 return false; 5354 5355 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5356 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5357 // variable that also is a param. 5358 // 5359 // Although, if we are at the top of the entry block already, we can still 5360 // emit using ArgDbgValue. This might catch some situations when the 5361 // dbg.value refers to an argument that isn't used in the entry block, so 5362 // any CopyToReg node would be optimized out and the only way to express 5363 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5364 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5365 // we should only emit as ArgDbgValue if the Variable is an argument to the 5366 // current function, and the dbg.value intrinsic is found in the entry 5367 // block. 5368 bool VariableIsFunctionInputArg = Variable->isParameter() && 5369 !DL->getInlinedAt(); 5370 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5371 if (!IsInPrologue && !VariableIsFunctionInputArg) 5372 return false; 5373 5374 // Here we assume that a function argument on IR level only can be used to 5375 // describe one input parameter on source level. If we for example have 5376 // source code like this 5377 // 5378 // struct A { long x, y; }; 5379 // void foo(struct A a, long b) { 5380 // ... 5381 // b = a.x; 5382 // ... 5383 // } 5384 // 5385 // and IR like this 5386 // 5387 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5388 // entry: 5389 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5390 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5391 // call void @llvm.dbg.value(metadata i32 %b, "b", 5392 // ... 5393 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5394 // ... 5395 // 5396 // then the last dbg.value is describing a parameter "b" using a value that 5397 // is an argument. But since we already has used %a1 to describe a parameter 5398 // we should not handle that last dbg.value here (that would result in an 5399 // incorrect hoisting of the DBG_VALUE to the function entry). 5400 // Notice that we allow one dbg.value per IR level argument, to accommodate 5401 // for the situation with fragments above. 5402 if (VariableIsFunctionInputArg) { 5403 unsigned ArgNo = Arg->getArgNo(); 5404 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5405 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5406 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5407 return false; 5408 FuncInfo.DescribedArgs.set(ArgNo); 5409 } 5410 } 5411 5412 MachineFunction &MF = DAG.getMachineFunction(); 5413 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5414 5415 bool IsIndirect = false; 5416 Optional<MachineOperand> Op; 5417 // Some arguments' frame index is recorded during argument lowering. 5418 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5419 if (FI != std::numeric_limits<int>::max()) 5420 Op = MachineOperand::CreateFI(FI); 5421 5422 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5423 if (!Op && N.getNode()) { 5424 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5425 Register Reg; 5426 if (ArgRegsAndSizes.size() == 1) 5427 Reg = ArgRegsAndSizes.front().first; 5428 5429 if (Reg && Reg.isVirtual()) { 5430 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5431 Register PR = RegInfo.getLiveInPhysReg(Reg); 5432 if (PR) 5433 Reg = PR; 5434 } 5435 if (Reg) { 5436 Op = MachineOperand::CreateReg(Reg, false); 5437 IsIndirect = IsDbgDeclare; 5438 } 5439 } 5440 5441 if (!Op && N.getNode()) { 5442 // Check if frame index is available. 5443 SDValue LCandidate = peekThroughBitcasts(N); 5444 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5445 if (FrameIndexSDNode *FINode = 5446 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5447 Op = MachineOperand::CreateFI(FINode->getIndex()); 5448 } 5449 5450 if (!Op) { 5451 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5452 auto splitMultiRegDbgValue 5453 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5454 unsigned Offset = 0; 5455 for (auto RegAndSize : SplitRegs) { 5456 // If the expression is already a fragment, the current register 5457 // offset+size might extend beyond the fragment. In this case, only 5458 // the register bits that are inside the fragment are relevant. 5459 int RegFragmentSizeInBits = RegAndSize.second; 5460 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5461 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5462 // The register is entirely outside the expression fragment, 5463 // so is irrelevant for debug info. 5464 if (Offset >= ExprFragmentSizeInBits) 5465 break; 5466 // The register is partially outside the expression fragment, only 5467 // the low bits within the fragment are relevant for debug info. 5468 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5469 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5470 } 5471 } 5472 5473 auto FragmentExpr = DIExpression::createFragmentExpression( 5474 Expr, Offset, RegFragmentSizeInBits); 5475 Offset += RegAndSize.second; 5476 // If a valid fragment expression cannot be created, the variable's 5477 // correct value cannot be determined and so it is set as Undef. 5478 if (!FragmentExpr) { 5479 SDDbgValue *SDV = DAG.getConstantDbgValue( 5480 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5481 DAG.AddDbgValue(SDV, nullptr, false); 5482 continue; 5483 } 5484 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5485 FuncInfo.ArgDbgValues.push_back( 5486 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5487 RegAndSize.first, Variable, *FragmentExpr)); 5488 } 5489 }; 5490 5491 // Check if ValueMap has reg number. 5492 DenseMap<const Value *, Register>::const_iterator 5493 VMI = FuncInfo.ValueMap.find(V); 5494 if (VMI != FuncInfo.ValueMap.end()) { 5495 const auto &TLI = DAG.getTargetLoweringInfo(); 5496 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5497 V->getType(), None); 5498 if (RFV.occupiesMultipleRegs()) { 5499 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5500 return true; 5501 } 5502 5503 Op = MachineOperand::CreateReg(VMI->second, false); 5504 IsIndirect = IsDbgDeclare; 5505 } else if (ArgRegsAndSizes.size() > 1) { 5506 // This was split due to the calling convention, and no virtual register 5507 // mapping exists for the value. 5508 splitMultiRegDbgValue(ArgRegsAndSizes); 5509 return true; 5510 } 5511 } 5512 5513 if (!Op) 5514 return false; 5515 5516 assert(Variable->isValidLocationForIntrinsic(DL) && 5517 "Expected inlined-at fields to agree"); 5518 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5519 FuncInfo.ArgDbgValues.push_back( 5520 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5521 *Op, Variable, Expr)); 5522 5523 return true; 5524 } 5525 5526 /// Return the appropriate SDDbgValue based on N. 5527 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5528 DILocalVariable *Variable, 5529 DIExpression *Expr, 5530 const DebugLoc &dl, 5531 unsigned DbgSDNodeOrder) { 5532 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5533 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5534 // stack slot locations. 5535 // 5536 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5537 // debug values here after optimization: 5538 // 5539 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5540 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5541 // 5542 // Both describe the direct values of their associated variables. 5543 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5544 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5545 } 5546 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5547 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5548 } 5549 5550 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5551 switch (Intrinsic) { 5552 case Intrinsic::smul_fix: 5553 return ISD::SMULFIX; 5554 case Intrinsic::umul_fix: 5555 return ISD::UMULFIX; 5556 case Intrinsic::smul_fix_sat: 5557 return ISD::SMULFIXSAT; 5558 case Intrinsic::umul_fix_sat: 5559 return ISD::UMULFIXSAT; 5560 case Intrinsic::sdiv_fix: 5561 return ISD::SDIVFIX; 5562 case Intrinsic::udiv_fix: 5563 return ISD::UDIVFIX; 5564 case Intrinsic::sdiv_fix_sat: 5565 return ISD::SDIVFIXSAT; 5566 case Intrinsic::udiv_fix_sat: 5567 return ISD::UDIVFIXSAT; 5568 default: 5569 llvm_unreachable("Unhandled fixed point intrinsic"); 5570 } 5571 } 5572 5573 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5574 const char *FunctionName) { 5575 assert(FunctionName && "FunctionName must not be nullptr"); 5576 SDValue Callee = DAG.getExternalSymbol( 5577 FunctionName, 5578 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5579 LowerCallTo(I, Callee, I.isTailCall()); 5580 } 5581 5582 /// Given a @llvm.call.preallocated.setup, return the corresponding 5583 /// preallocated call. 5584 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5585 assert(cast<CallBase>(PreallocatedSetup) 5586 ->getCalledFunction() 5587 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5588 "expected call_preallocated_setup Value"); 5589 for (auto *U : PreallocatedSetup->users()) { 5590 auto *UseCall = cast<CallBase>(U); 5591 const Function *Fn = UseCall->getCalledFunction(); 5592 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5593 return UseCall; 5594 } 5595 } 5596 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5597 } 5598 5599 /// Lower the call to the specified intrinsic function. 5600 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5601 unsigned Intrinsic) { 5602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5603 SDLoc sdl = getCurSDLoc(); 5604 DebugLoc dl = getCurDebugLoc(); 5605 SDValue Res; 5606 5607 SDNodeFlags Flags; 5608 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5609 Flags.copyFMF(*FPOp); 5610 5611 switch (Intrinsic) { 5612 default: 5613 // By default, turn this into a target intrinsic node. 5614 visitTargetIntrinsic(I, Intrinsic); 5615 return; 5616 case Intrinsic::vscale: { 5617 match(&I, m_VScale(DAG.getDataLayout())); 5618 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5619 setValue(&I, 5620 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5621 return; 5622 } 5623 case Intrinsic::vastart: visitVAStart(I); return; 5624 case Intrinsic::vaend: visitVAEnd(I); return; 5625 case Intrinsic::vacopy: visitVACopy(I); return; 5626 case Intrinsic::returnaddress: 5627 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5628 TLI.getPointerTy(DAG.getDataLayout()), 5629 getValue(I.getArgOperand(0)))); 5630 return; 5631 case Intrinsic::addressofreturnaddress: 5632 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5633 TLI.getPointerTy(DAG.getDataLayout()))); 5634 return; 5635 case Intrinsic::sponentry: 5636 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5637 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5638 return; 5639 case Intrinsic::frameaddress: 5640 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5641 TLI.getFrameIndexTy(DAG.getDataLayout()), 5642 getValue(I.getArgOperand(0)))); 5643 return; 5644 case Intrinsic::read_volatile_register: 5645 case Intrinsic::read_register: { 5646 Value *Reg = I.getArgOperand(0); 5647 SDValue Chain = getRoot(); 5648 SDValue RegName = 5649 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5650 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5651 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5652 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5653 setValue(&I, Res); 5654 DAG.setRoot(Res.getValue(1)); 5655 return; 5656 } 5657 case Intrinsic::write_register: { 5658 Value *Reg = I.getArgOperand(0); 5659 Value *RegValue = I.getArgOperand(1); 5660 SDValue Chain = getRoot(); 5661 SDValue RegName = 5662 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5663 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5664 RegName, getValue(RegValue))); 5665 return; 5666 } 5667 case Intrinsic::memcpy: { 5668 const auto &MCI = cast<MemCpyInst>(I); 5669 SDValue Op1 = getValue(I.getArgOperand(0)); 5670 SDValue Op2 = getValue(I.getArgOperand(1)); 5671 SDValue Op3 = getValue(I.getArgOperand(2)); 5672 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5673 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5674 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5675 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5676 bool isVol = MCI.isVolatile(); 5677 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5678 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5679 // node. 5680 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5681 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5682 /* AlwaysInline */ false, isTC, 5683 MachinePointerInfo(I.getArgOperand(0)), 5684 MachinePointerInfo(I.getArgOperand(1))); 5685 updateDAGForMaybeTailCall(MC); 5686 return; 5687 } 5688 case Intrinsic::memcpy_inline: { 5689 const auto &MCI = cast<MemCpyInlineInst>(I); 5690 SDValue Dst = getValue(I.getArgOperand(0)); 5691 SDValue Src = getValue(I.getArgOperand(1)); 5692 SDValue Size = getValue(I.getArgOperand(2)); 5693 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5694 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5695 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5696 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5697 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5698 bool isVol = MCI.isVolatile(); 5699 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5700 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5701 // node. 5702 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5703 /* AlwaysInline */ true, isTC, 5704 MachinePointerInfo(I.getArgOperand(0)), 5705 MachinePointerInfo(I.getArgOperand(1))); 5706 updateDAGForMaybeTailCall(MC); 5707 return; 5708 } 5709 case Intrinsic::memset: { 5710 const auto &MSI = cast<MemSetInst>(I); 5711 SDValue Op1 = getValue(I.getArgOperand(0)); 5712 SDValue Op2 = getValue(I.getArgOperand(1)); 5713 SDValue Op3 = getValue(I.getArgOperand(2)); 5714 // @llvm.memset defines 0 and 1 to both mean no alignment. 5715 Align Alignment = MSI.getDestAlign().valueOrOne(); 5716 bool isVol = MSI.isVolatile(); 5717 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5718 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5719 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5720 MachinePointerInfo(I.getArgOperand(0))); 5721 updateDAGForMaybeTailCall(MS); 5722 return; 5723 } 5724 case Intrinsic::memmove: { 5725 const auto &MMI = cast<MemMoveInst>(I); 5726 SDValue Op1 = getValue(I.getArgOperand(0)); 5727 SDValue Op2 = getValue(I.getArgOperand(1)); 5728 SDValue Op3 = getValue(I.getArgOperand(2)); 5729 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5730 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5731 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5732 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5733 bool isVol = MMI.isVolatile(); 5734 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5735 // FIXME: Support passing different dest/src alignments to the memmove DAG 5736 // node. 5737 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5738 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5739 isTC, MachinePointerInfo(I.getArgOperand(0)), 5740 MachinePointerInfo(I.getArgOperand(1))); 5741 updateDAGForMaybeTailCall(MM); 5742 return; 5743 } 5744 case Intrinsic::memcpy_element_unordered_atomic: { 5745 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5746 SDValue Dst = getValue(MI.getRawDest()); 5747 SDValue Src = getValue(MI.getRawSource()); 5748 SDValue Length = getValue(MI.getLength()); 5749 5750 unsigned DstAlign = MI.getDestAlignment(); 5751 unsigned SrcAlign = MI.getSourceAlignment(); 5752 Type *LengthTy = MI.getLength()->getType(); 5753 unsigned ElemSz = MI.getElementSizeInBytes(); 5754 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5755 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5756 SrcAlign, Length, LengthTy, ElemSz, isTC, 5757 MachinePointerInfo(MI.getRawDest()), 5758 MachinePointerInfo(MI.getRawSource())); 5759 updateDAGForMaybeTailCall(MC); 5760 return; 5761 } 5762 case Intrinsic::memmove_element_unordered_atomic: { 5763 auto &MI = cast<AtomicMemMoveInst>(I); 5764 SDValue Dst = getValue(MI.getRawDest()); 5765 SDValue Src = getValue(MI.getRawSource()); 5766 SDValue Length = getValue(MI.getLength()); 5767 5768 unsigned DstAlign = MI.getDestAlignment(); 5769 unsigned SrcAlign = MI.getSourceAlignment(); 5770 Type *LengthTy = MI.getLength()->getType(); 5771 unsigned ElemSz = MI.getElementSizeInBytes(); 5772 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5773 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5774 SrcAlign, Length, LengthTy, ElemSz, isTC, 5775 MachinePointerInfo(MI.getRawDest()), 5776 MachinePointerInfo(MI.getRawSource())); 5777 updateDAGForMaybeTailCall(MC); 5778 return; 5779 } 5780 case Intrinsic::memset_element_unordered_atomic: { 5781 auto &MI = cast<AtomicMemSetInst>(I); 5782 SDValue Dst = getValue(MI.getRawDest()); 5783 SDValue Val = getValue(MI.getValue()); 5784 SDValue Length = getValue(MI.getLength()); 5785 5786 unsigned DstAlign = MI.getDestAlignment(); 5787 Type *LengthTy = MI.getLength()->getType(); 5788 unsigned ElemSz = MI.getElementSizeInBytes(); 5789 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5790 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5791 LengthTy, ElemSz, isTC, 5792 MachinePointerInfo(MI.getRawDest())); 5793 updateDAGForMaybeTailCall(MC); 5794 return; 5795 } 5796 case Intrinsic::call_preallocated_setup: { 5797 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5798 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5799 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5800 getRoot(), SrcValue); 5801 setValue(&I, Res); 5802 DAG.setRoot(Res); 5803 return; 5804 } 5805 case Intrinsic::call_preallocated_arg: { 5806 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5807 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5808 SDValue Ops[3]; 5809 Ops[0] = getRoot(); 5810 Ops[1] = SrcValue; 5811 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5812 MVT::i32); // arg index 5813 SDValue Res = DAG.getNode( 5814 ISD::PREALLOCATED_ARG, sdl, 5815 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5816 setValue(&I, Res); 5817 DAG.setRoot(Res.getValue(1)); 5818 return; 5819 } 5820 case Intrinsic::dbg_addr: 5821 case Intrinsic::dbg_declare: { 5822 const auto &DI = cast<DbgVariableIntrinsic>(I); 5823 DILocalVariable *Variable = DI.getVariable(); 5824 DIExpression *Expression = DI.getExpression(); 5825 dropDanglingDebugInfo(Variable, Expression); 5826 assert(Variable && "Missing variable"); 5827 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5828 << "\n"); 5829 // Check if address has undef value. 5830 const Value *Address = DI.getVariableLocation(); 5831 if (!Address || isa<UndefValue>(Address) || 5832 (Address->use_empty() && !isa<Argument>(Address))) { 5833 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5834 << " (bad/undef/unused-arg address)\n"); 5835 return; 5836 } 5837 5838 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5839 5840 // Check if this variable can be described by a frame index, typically 5841 // either as a static alloca or a byval parameter. 5842 int FI = std::numeric_limits<int>::max(); 5843 if (const auto *AI = 5844 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5845 if (AI->isStaticAlloca()) { 5846 auto I = FuncInfo.StaticAllocaMap.find(AI); 5847 if (I != FuncInfo.StaticAllocaMap.end()) 5848 FI = I->second; 5849 } 5850 } else if (const auto *Arg = dyn_cast<Argument>( 5851 Address->stripInBoundsConstantOffsets())) { 5852 FI = FuncInfo.getArgumentFrameIndex(Arg); 5853 } 5854 5855 // llvm.dbg.addr is control dependent and always generates indirect 5856 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5857 // the MachineFunction variable table. 5858 if (FI != std::numeric_limits<int>::max()) { 5859 if (Intrinsic == Intrinsic::dbg_addr) { 5860 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5861 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5862 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5863 } else { 5864 LLVM_DEBUG(dbgs() << "Skipping " << DI 5865 << " (variable info stashed in MF side table)\n"); 5866 } 5867 return; 5868 } 5869 5870 SDValue &N = NodeMap[Address]; 5871 if (!N.getNode() && isa<Argument>(Address)) 5872 // Check unused arguments map. 5873 N = UnusedArgNodeMap[Address]; 5874 SDDbgValue *SDV; 5875 if (N.getNode()) { 5876 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5877 Address = BCI->getOperand(0); 5878 // Parameters are handled specially. 5879 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5880 if (isParameter && FINode) { 5881 // Byval parameter. We have a frame index at this point. 5882 SDV = 5883 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5884 /*IsIndirect*/ true, dl, SDNodeOrder); 5885 } else if (isa<Argument>(Address)) { 5886 // Address is an argument, so try to emit its dbg value using 5887 // virtual register info from the FuncInfo.ValueMap. 5888 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5889 return; 5890 } else { 5891 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5892 true, dl, SDNodeOrder); 5893 } 5894 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5895 } else { 5896 // If Address is an argument then try to emit its dbg value using 5897 // virtual register info from the FuncInfo.ValueMap. 5898 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5899 N)) { 5900 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5901 << " (could not emit func-arg dbg_value)\n"); 5902 } 5903 } 5904 return; 5905 } 5906 case Intrinsic::dbg_label: { 5907 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5908 DILabel *Label = DI.getLabel(); 5909 assert(Label && "Missing label"); 5910 5911 SDDbgLabel *SDV; 5912 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5913 DAG.AddDbgLabel(SDV); 5914 return; 5915 } 5916 case Intrinsic::dbg_value: { 5917 const DbgValueInst &DI = cast<DbgValueInst>(I); 5918 assert(DI.getVariable() && "Missing variable"); 5919 5920 DILocalVariable *Variable = DI.getVariable(); 5921 DIExpression *Expression = DI.getExpression(); 5922 dropDanglingDebugInfo(Variable, Expression); 5923 const Value *V = DI.getValue(); 5924 if (!V) 5925 return; 5926 5927 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5928 SDNodeOrder)) 5929 return; 5930 5931 // TODO: Dangling debug info will eventually either be resolved or produce 5932 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5933 // between the original dbg.value location and its resolved DBG_VALUE, which 5934 // we should ideally fill with an extra Undef DBG_VALUE. 5935 5936 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5937 return; 5938 } 5939 5940 case Intrinsic::eh_typeid_for: { 5941 // Find the type id for the given typeinfo. 5942 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5943 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5944 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5945 setValue(&I, Res); 5946 return; 5947 } 5948 5949 case Intrinsic::eh_return_i32: 5950 case Intrinsic::eh_return_i64: 5951 DAG.getMachineFunction().setCallsEHReturn(true); 5952 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5953 MVT::Other, 5954 getControlRoot(), 5955 getValue(I.getArgOperand(0)), 5956 getValue(I.getArgOperand(1)))); 5957 return; 5958 case Intrinsic::eh_unwind_init: 5959 DAG.getMachineFunction().setCallsUnwindInit(true); 5960 return; 5961 case Intrinsic::eh_dwarf_cfa: 5962 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5963 TLI.getPointerTy(DAG.getDataLayout()), 5964 getValue(I.getArgOperand(0)))); 5965 return; 5966 case Intrinsic::eh_sjlj_callsite: { 5967 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5968 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5969 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5970 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5971 5972 MMI.setCurrentCallSite(CI->getZExtValue()); 5973 return; 5974 } 5975 case Intrinsic::eh_sjlj_functioncontext: { 5976 // Get and store the index of the function context. 5977 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5978 AllocaInst *FnCtx = 5979 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5980 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5981 MFI.setFunctionContextIndex(FI); 5982 return; 5983 } 5984 case Intrinsic::eh_sjlj_setjmp: { 5985 SDValue Ops[2]; 5986 Ops[0] = getRoot(); 5987 Ops[1] = getValue(I.getArgOperand(0)); 5988 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5989 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5990 setValue(&I, Op.getValue(0)); 5991 DAG.setRoot(Op.getValue(1)); 5992 return; 5993 } 5994 case Intrinsic::eh_sjlj_longjmp: 5995 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5996 getRoot(), getValue(I.getArgOperand(0)))); 5997 return; 5998 case Intrinsic::eh_sjlj_setup_dispatch: 5999 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6000 getRoot())); 6001 return; 6002 case Intrinsic::masked_gather: 6003 visitMaskedGather(I); 6004 return; 6005 case Intrinsic::masked_load: 6006 visitMaskedLoad(I); 6007 return; 6008 case Intrinsic::masked_scatter: 6009 visitMaskedScatter(I); 6010 return; 6011 case Intrinsic::masked_store: 6012 visitMaskedStore(I); 6013 return; 6014 case Intrinsic::masked_expandload: 6015 visitMaskedLoad(I, true /* IsExpanding */); 6016 return; 6017 case Intrinsic::masked_compressstore: 6018 visitMaskedStore(I, true /* IsCompressing */); 6019 return; 6020 case Intrinsic::powi: 6021 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6022 getValue(I.getArgOperand(1)), DAG)); 6023 return; 6024 case Intrinsic::log: 6025 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6026 return; 6027 case Intrinsic::log2: 6028 setValue(&I, 6029 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6030 return; 6031 case Intrinsic::log10: 6032 setValue(&I, 6033 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6034 return; 6035 case Intrinsic::exp: 6036 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6037 return; 6038 case Intrinsic::exp2: 6039 setValue(&I, 6040 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6041 return; 6042 case Intrinsic::pow: 6043 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6044 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6045 return; 6046 case Intrinsic::sqrt: 6047 case Intrinsic::fabs: 6048 case Intrinsic::sin: 6049 case Intrinsic::cos: 6050 case Intrinsic::floor: 6051 case Intrinsic::ceil: 6052 case Intrinsic::trunc: 6053 case Intrinsic::rint: 6054 case Intrinsic::nearbyint: 6055 case Intrinsic::round: 6056 case Intrinsic::roundeven: 6057 case Intrinsic::canonicalize: { 6058 unsigned Opcode; 6059 switch (Intrinsic) { 6060 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6061 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6062 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6063 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6064 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6065 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6066 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6067 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6068 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6069 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6070 case Intrinsic::round: Opcode = ISD::FROUND; break; 6071 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6072 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6073 } 6074 6075 setValue(&I, DAG.getNode(Opcode, sdl, 6076 getValue(I.getArgOperand(0)).getValueType(), 6077 getValue(I.getArgOperand(0)), Flags)); 6078 return; 6079 } 6080 case Intrinsic::lround: 6081 case Intrinsic::llround: 6082 case Intrinsic::lrint: 6083 case Intrinsic::llrint: { 6084 unsigned Opcode; 6085 switch (Intrinsic) { 6086 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6087 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6088 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6089 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6090 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6091 } 6092 6093 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6094 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6095 getValue(I.getArgOperand(0)))); 6096 return; 6097 } 6098 case Intrinsic::minnum: 6099 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6100 getValue(I.getArgOperand(0)).getValueType(), 6101 getValue(I.getArgOperand(0)), 6102 getValue(I.getArgOperand(1)), Flags)); 6103 return; 6104 case Intrinsic::maxnum: 6105 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6106 getValue(I.getArgOperand(0)).getValueType(), 6107 getValue(I.getArgOperand(0)), 6108 getValue(I.getArgOperand(1)), Flags)); 6109 return; 6110 case Intrinsic::minimum: 6111 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6112 getValue(I.getArgOperand(0)).getValueType(), 6113 getValue(I.getArgOperand(0)), 6114 getValue(I.getArgOperand(1)), Flags)); 6115 return; 6116 case Intrinsic::maximum: 6117 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6118 getValue(I.getArgOperand(0)).getValueType(), 6119 getValue(I.getArgOperand(0)), 6120 getValue(I.getArgOperand(1)), Flags)); 6121 return; 6122 case Intrinsic::copysign: 6123 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6124 getValue(I.getArgOperand(0)).getValueType(), 6125 getValue(I.getArgOperand(0)), 6126 getValue(I.getArgOperand(1)), Flags)); 6127 return; 6128 case Intrinsic::fma: 6129 setValue(&I, DAG.getNode( 6130 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6131 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6132 getValue(I.getArgOperand(2)), Flags)); 6133 return; 6134 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6135 case Intrinsic::INTRINSIC: 6136 #include "llvm/IR/ConstrainedOps.def" 6137 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6138 return; 6139 case Intrinsic::fmuladd: { 6140 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6141 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6142 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6143 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6144 getValue(I.getArgOperand(0)).getValueType(), 6145 getValue(I.getArgOperand(0)), 6146 getValue(I.getArgOperand(1)), 6147 getValue(I.getArgOperand(2)), Flags)); 6148 } else { 6149 // TODO: Intrinsic calls should have fast-math-flags. 6150 SDValue Mul = DAG.getNode( 6151 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6152 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6153 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6154 getValue(I.getArgOperand(0)).getValueType(), 6155 Mul, getValue(I.getArgOperand(2)), Flags); 6156 setValue(&I, Add); 6157 } 6158 return; 6159 } 6160 case Intrinsic::convert_to_fp16: 6161 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6162 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6163 getValue(I.getArgOperand(0)), 6164 DAG.getTargetConstant(0, sdl, 6165 MVT::i32)))); 6166 return; 6167 case Intrinsic::convert_from_fp16: 6168 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6169 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6170 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6171 getValue(I.getArgOperand(0))))); 6172 return; 6173 case Intrinsic::pcmarker: { 6174 SDValue Tmp = getValue(I.getArgOperand(0)); 6175 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6176 return; 6177 } 6178 case Intrinsic::readcyclecounter: { 6179 SDValue Op = getRoot(); 6180 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6181 DAG.getVTList(MVT::i64, MVT::Other), Op); 6182 setValue(&I, Res); 6183 DAG.setRoot(Res.getValue(1)); 6184 return; 6185 } 6186 case Intrinsic::bitreverse: 6187 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6188 getValue(I.getArgOperand(0)).getValueType(), 6189 getValue(I.getArgOperand(0)))); 6190 return; 6191 case Intrinsic::bswap: 6192 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6193 getValue(I.getArgOperand(0)).getValueType(), 6194 getValue(I.getArgOperand(0)))); 6195 return; 6196 case Intrinsic::cttz: { 6197 SDValue Arg = getValue(I.getArgOperand(0)); 6198 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6199 EVT Ty = Arg.getValueType(); 6200 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6201 sdl, Ty, Arg)); 6202 return; 6203 } 6204 case Intrinsic::ctlz: { 6205 SDValue Arg = getValue(I.getArgOperand(0)); 6206 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6207 EVT Ty = Arg.getValueType(); 6208 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6209 sdl, Ty, Arg)); 6210 return; 6211 } 6212 case Intrinsic::ctpop: { 6213 SDValue Arg = getValue(I.getArgOperand(0)); 6214 EVT Ty = Arg.getValueType(); 6215 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6216 return; 6217 } 6218 case Intrinsic::fshl: 6219 case Intrinsic::fshr: { 6220 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6221 SDValue X = getValue(I.getArgOperand(0)); 6222 SDValue Y = getValue(I.getArgOperand(1)); 6223 SDValue Z = getValue(I.getArgOperand(2)); 6224 EVT VT = X.getValueType(); 6225 6226 if (X == Y) { 6227 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6228 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6229 } else { 6230 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6231 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6232 } 6233 return; 6234 } 6235 case Intrinsic::sadd_sat: { 6236 SDValue Op1 = getValue(I.getArgOperand(0)); 6237 SDValue Op2 = getValue(I.getArgOperand(1)); 6238 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6239 return; 6240 } 6241 case Intrinsic::uadd_sat: { 6242 SDValue Op1 = getValue(I.getArgOperand(0)); 6243 SDValue Op2 = getValue(I.getArgOperand(1)); 6244 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6245 return; 6246 } 6247 case Intrinsic::ssub_sat: { 6248 SDValue Op1 = getValue(I.getArgOperand(0)); 6249 SDValue Op2 = getValue(I.getArgOperand(1)); 6250 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6251 return; 6252 } 6253 case Intrinsic::usub_sat: { 6254 SDValue Op1 = getValue(I.getArgOperand(0)); 6255 SDValue Op2 = getValue(I.getArgOperand(1)); 6256 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6257 return; 6258 } 6259 case Intrinsic::sshl_sat: { 6260 SDValue Op1 = getValue(I.getArgOperand(0)); 6261 SDValue Op2 = getValue(I.getArgOperand(1)); 6262 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6263 return; 6264 } 6265 case Intrinsic::ushl_sat: { 6266 SDValue Op1 = getValue(I.getArgOperand(0)); 6267 SDValue Op2 = getValue(I.getArgOperand(1)); 6268 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6269 return; 6270 } 6271 case Intrinsic::smul_fix: 6272 case Intrinsic::umul_fix: 6273 case Intrinsic::smul_fix_sat: 6274 case Intrinsic::umul_fix_sat: { 6275 SDValue Op1 = getValue(I.getArgOperand(0)); 6276 SDValue Op2 = getValue(I.getArgOperand(1)); 6277 SDValue Op3 = getValue(I.getArgOperand(2)); 6278 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6279 Op1.getValueType(), Op1, Op2, Op3)); 6280 return; 6281 } 6282 case Intrinsic::sdiv_fix: 6283 case Intrinsic::udiv_fix: 6284 case Intrinsic::sdiv_fix_sat: 6285 case Intrinsic::udiv_fix_sat: { 6286 SDValue Op1 = getValue(I.getArgOperand(0)); 6287 SDValue Op2 = getValue(I.getArgOperand(1)); 6288 SDValue Op3 = getValue(I.getArgOperand(2)); 6289 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6290 Op1, Op2, Op3, DAG, TLI)); 6291 return; 6292 } 6293 case Intrinsic::smax: { 6294 SDValue Op1 = getValue(I.getArgOperand(0)); 6295 SDValue Op2 = getValue(I.getArgOperand(1)); 6296 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6297 return; 6298 } 6299 case Intrinsic::smin: { 6300 SDValue Op1 = getValue(I.getArgOperand(0)); 6301 SDValue Op2 = getValue(I.getArgOperand(1)); 6302 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6303 return; 6304 } 6305 case Intrinsic::umax: { 6306 SDValue Op1 = getValue(I.getArgOperand(0)); 6307 SDValue Op2 = getValue(I.getArgOperand(1)); 6308 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6309 return; 6310 } 6311 case Intrinsic::umin: { 6312 SDValue Op1 = getValue(I.getArgOperand(0)); 6313 SDValue Op2 = getValue(I.getArgOperand(1)); 6314 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6315 return; 6316 } 6317 case Intrinsic::abs: { 6318 // TODO: Preserve "int min is poison" arg in SDAG? 6319 SDValue Op1 = getValue(I.getArgOperand(0)); 6320 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6321 return; 6322 } 6323 case Intrinsic::stacksave: { 6324 SDValue Op = getRoot(); 6325 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6326 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6327 setValue(&I, Res); 6328 DAG.setRoot(Res.getValue(1)); 6329 return; 6330 } 6331 case Intrinsic::stackrestore: 6332 Res = getValue(I.getArgOperand(0)); 6333 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6334 return; 6335 case Intrinsic::get_dynamic_area_offset: { 6336 SDValue Op = getRoot(); 6337 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6338 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6339 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6340 // target. 6341 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6342 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6343 " intrinsic!"); 6344 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6345 Op); 6346 DAG.setRoot(Op); 6347 setValue(&I, Res); 6348 return; 6349 } 6350 case Intrinsic::stackguard: { 6351 MachineFunction &MF = DAG.getMachineFunction(); 6352 const Module &M = *MF.getFunction().getParent(); 6353 SDValue Chain = getRoot(); 6354 if (TLI.useLoadStackGuardNode()) { 6355 Res = getLoadStackGuard(DAG, sdl, Chain); 6356 } else { 6357 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6358 const Value *Global = TLI.getSDagStackGuard(M); 6359 Align Align = DL->getPrefTypeAlign(Global->getType()); 6360 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6361 MachinePointerInfo(Global, 0), Align, 6362 MachineMemOperand::MOVolatile); 6363 } 6364 if (TLI.useStackGuardXorFP()) 6365 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6366 DAG.setRoot(Chain); 6367 setValue(&I, Res); 6368 return; 6369 } 6370 case Intrinsic::stackprotector: { 6371 // Emit code into the DAG to store the stack guard onto the stack. 6372 MachineFunction &MF = DAG.getMachineFunction(); 6373 MachineFrameInfo &MFI = MF.getFrameInfo(); 6374 SDValue Src, Chain = getRoot(); 6375 6376 if (TLI.useLoadStackGuardNode()) 6377 Src = getLoadStackGuard(DAG, sdl, Chain); 6378 else 6379 Src = getValue(I.getArgOperand(0)); // The guard's value. 6380 6381 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6382 6383 int FI = FuncInfo.StaticAllocaMap[Slot]; 6384 MFI.setStackProtectorIndex(FI); 6385 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6386 6387 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6388 6389 // Store the stack protector onto the stack. 6390 Res = DAG.getStore( 6391 Chain, sdl, Src, FIN, 6392 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6393 MaybeAlign(), MachineMemOperand::MOVolatile); 6394 setValue(&I, Res); 6395 DAG.setRoot(Res); 6396 return; 6397 } 6398 case Intrinsic::objectsize: 6399 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6400 6401 case Intrinsic::is_constant: 6402 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6403 6404 case Intrinsic::annotation: 6405 case Intrinsic::ptr_annotation: 6406 case Intrinsic::launder_invariant_group: 6407 case Intrinsic::strip_invariant_group: 6408 // Drop the intrinsic, but forward the value 6409 setValue(&I, getValue(I.getOperand(0))); 6410 return; 6411 case Intrinsic::assume: 6412 case Intrinsic::var_annotation: 6413 case Intrinsic::sideeffect: 6414 // Discard annotate attributes, assumptions, and artificial side-effects. 6415 return; 6416 6417 case Intrinsic::codeview_annotation: { 6418 // Emit a label associated with this metadata. 6419 MachineFunction &MF = DAG.getMachineFunction(); 6420 MCSymbol *Label = 6421 MF.getMMI().getContext().createTempSymbol("annotation", true); 6422 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6423 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6424 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6425 DAG.setRoot(Res); 6426 return; 6427 } 6428 6429 case Intrinsic::init_trampoline: { 6430 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6431 6432 SDValue Ops[6]; 6433 Ops[0] = getRoot(); 6434 Ops[1] = getValue(I.getArgOperand(0)); 6435 Ops[2] = getValue(I.getArgOperand(1)); 6436 Ops[3] = getValue(I.getArgOperand(2)); 6437 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6438 Ops[5] = DAG.getSrcValue(F); 6439 6440 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6441 6442 DAG.setRoot(Res); 6443 return; 6444 } 6445 case Intrinsic::adjust_trampoline: 6446 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6447 TLI.getPointerTy(DAG.getDataLayout()), 6448 getValue(I.getArgOperand(0)))); 6449 return; 6450 case Intrinsic::gcroot: { 6451 assert(DAG.getMachineFunction().getFunction().hasGC() && 6452 "only valid in functions with gc specified, enforced by Verifier"); 6453 assert(GFI && "implied by previous"); 6454 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6455 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6456 6457 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6458 GFI->addStackRoot(FI->getIndex(), TypeMap); 6459 return; 6460 } 6461 case Intrinsic::gcread: 6462 case Intrinsic::gcwrite: 6463 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6464 case Intrinsic::flt_rounds: 6465 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6466 setValue(&I, Res); 6467 DAG.setRoot(Res.getValue(1)); 6468 return; 6469 6470 case Intrinsic::expect: 6471 // Just replace __builtin_expect(exp, c) with EXP. 6472 setValue(&I, getValue(I.getArgOperand(0))); 6473 return; 6474 6475 case Intrinsic::debugtrap: 6476 case Intrinsic::trap: { 6477 StringRef TrapFuncName = 6478 I.getAttributes() 6479 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6480 .getValueAsString(); 6481 if (TrapFuncName.empty()) { 6482 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6483 ISD::TRAP : ISD::DEBUGTRAP; 6484 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6485 return; 6486 } 6487 TargetLowering::ArgListTy Args; 6488 6489 TargetLowering::CallLoweringInfo CLI(DAG); 6490 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6491 CallingConv::C, I.getType(), 6492 DAG.getExternalSymbol(TrapFuncName.data(), 6493 TLI.getPointerTy(DAG.getDataLayout())), 6494 std::move(Args)); 6495 6496 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6497 DAG.setRoot(Result.second); 6498 return; 6499 } 6500 6501 case Intrinsic::uadd_with_overflow: 6502 case Intrinsic::sadd_with_overflow: 6503 case Intrinsic::usub_with_overflow: 6504 case Intrinsic::ssub_with_overflow: 6505 case Intrinsic::umul_with_overflow: 6506 case Intrinsic::smul_with_overflow: { 6507 ISD::NodeType Op; 6508 switch (Intrinsic) { 6509 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6510 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6511 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6512 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6513 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6514 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6515 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6516 } 6517 SDValue Op1 = getValue(I.getArgOperand(0)); 6518 SDValue Op2 = getValue(I.getArgOperand(1)); 6519 6520 EVT ResultVT = Op1.getValueType(); 6521 EVT OverflowVT = MVT::i1; 6522 if (ResultVT.isVector()) 6523 OverflowVT = EVT::getVectorVT( 6524 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6525 6526 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6527 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6528 return; 6529 } 6530 case Intrinsic::prefetch: { 6531 SDValue Ops[5]; 6532 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6533 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6534 Ops[0] = DAG.getRoot(); 6535 Ops[1] = getValue(I.getArgOperand(0)); 6536 Ops[2] = getValue(I.getArgOperand(1)); 6537 Ops[3] = getValue(I.getArgOperand(2)); 6538 Ops[4] = getValue(I.getArgOperand(3)); 6539 SDValue Result = DAG.getMemIntrinsicNode( 6540 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6541 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6542 /* align */ None, Flags); 6543 6544 // Chain the prefetch in parallell with any pending loads, to stay out of 6545 // the way of later optimizations. 6546 PendingLoads.push_back(Result); 6547 Result = getRoot(); 6548 DAG.setRoot(Result); 6549 return; 6550 } 6551 case Intrinsic::lifetime_start: 6552 case Intrinsic::lifetime_end: { 6553 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6554 // Stack coloring is not enabled in O0, discard region information. 6555 if (TM.getOptLevel() == CodeGenOpt::None) 6556 return; 6557 6558 const int64_t ObjectSize = 6559 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6560 Value *const ObjectPtr = I.getArgOperand(1); 6561 SmallVector<const Value *, 4> Allocas; 6562 getUnderlyingObjects(ObjectPtr, Allocas); 6563 6564 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6565 E = Allocas.end(); Object != E; ++Object) { 6566 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6567 6568 // Could not find an Alloca. 6569 if (!LifetimeObject) 6570 continue; 6571 6572 // First check that the Alloca is static, otherwise it won't have a 6573 // valid frame index. 6574 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6575 if (SI == FuncInfo.StaticAllocaMap.end()) 6576 return; 6577 6578 const int FrameIndex = SI->second; 6579 int64_t Offset; 6580 if (GetPointerBaseWithConstantOffset( 6581 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6582 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6583 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6584 Offset); 6585 DAG.setRoot(Res); 6586 } 6587 return; 6588 } 6589 case Intrinsic::invariant_start: 6590 // Discard region information. 6591 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6592 return; 6593 case Intrinsic::invariant_end: 6594 // Discard region information. 6595 return; 6596 case Intrinsic::clear_cache: 6597 /// FunctionName may be null. 6598 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6599 lowerCallToExternalSymbol(I, FunctionName); 6600 return; 6601 case Intrinsic::donothing: 6602 // ignore 6603 return; 6604 case Intrinsic::experimental_stackmap: 6605 visitStackmap(I); 6606 return; 6607 case Intrinsic::experimental_patchpoint_void: 6608 case Intrinsic::experimental_patchpoint_i64: 6609 visitPatchpoint(I); 6610 return; 6611 case Intrinsic::experimental_gc_statepoint: 6612 LowerStatepoint(cast<GCStatepointInst>(I)); 6613 return; 6614 case Intrinsic::experimental_gc_result: 6615 visitGCResult(cast<GCResultInst>(I)); 6616 return; 6617 case Intrinsic::experimental_gc_relocate: 6618 visitGCRelocate(cast<GCRelocateInst>(I)); 6619 return; 6620 case Intrinsic::instrprof_increment: 6621 llvm_unreachable("instrprof failed to lower an increment"); 6622 case Intrinsic::instrprof_value_profile: 6623 llvm_unreachable("instrprof failed to lower a value profiling call"); 6624 case Intrinsic::localescape: { 6625 MachineFunction &MF = DAG.getMachineFunction(); 6626 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6627 6628 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6629 // is the same on all targets. 6630 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6631 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6632 if (isa<ConstantPointerNull>(Arg)) 6633 continue; // Skip null pointers. They represent a hole in index space. 6634 AllocaInst *Slot = cast<AllocaInst>(Arg); 6635 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6636 "can only escape static allocas"); 6637 int FI = FuncInfo.StaticAllocaMap[Slot]; 6638 MCSymbol *FrameAllocSym = 6639 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6640 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6641 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6642 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6643 .addSym(FrameAllocSym) 6644 .addFrameIndex(FI); 6645 } 6646 6647 return; 6648 } 6649 6650 case Intrinsic::localrecover: { 6651 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6652 MachineFunction &MF = DAG.getMachineFunction(); 6653 6654 // Get the symbol that defines the frame offset. 6655 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6656 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6657 unsigned IdxVal = 6658 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6659 MCSymbol *FrameAllocSym = 6660 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6661 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6662 6663 Value *FP = I.getArgOperand(1); 6664 SDValue FPVal = getValue(FP); 6665 EVT PtrVT = FPVal.getValueType(); 6666 6667 // Create a MCSymbol for the label to avoid any target lowering 6668 // that would make this PC relative. 6669 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6670 SDValue OffsetVal = 6671 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6672 6673 // Add the offset to the FP. 6674 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6675 setValue(&I, Add); 6676 6677 return; 6678 } 6679 6680 case Intrinsic::eh_exceptionpointer: 6681 case Intrinsic::eh_exceptioncode: { 6682 // Get the exception pointer vreg, copy from it, and resize it to fit. 6683 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6684 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6685 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6686 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6687 SDValue N = 6688 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6689 if (Intrinsic == Intrinsic::eh_exceptioncode) 6690 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6691 setValue(&I, N); 6692 return; 6693 } 6694 case Intrinsic::xray_customevent: { 6695 // Here we want to make sure that the intrinsic behaves as if it has a 6696 // specific calling convention, and only for x86_64. 6697 // FIXME: Support other platforms later. 6698 const auto &Triple = DAG.getTarget().getTargetTriple(); 6699 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6700 return; 6701 6702 SDLoc DL = getCurSDLoc(); 6703 SmallVector<SDValue, 8> Ops; 6704 6705 // We want to say that we always want the arguments in registers. 6706 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6707 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6708 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6709 SDValue Chain = getRoot(); 6710 Ops.push_back(LogEntryVal); 6711 Ops.push_back(StrSizeVal); 6712 Ops.push_back(Chain); 6713 6714 // We need to enforce the calling convention for the callsite, so that 6715 // argument ordering is enforced correctly, and that register allocation can 6716 // see that some registers may be assumed clobbered and have to preserve 6717 // them across calls to the intrinsic. 6718 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6719 DL, NodeTys, Ops); 6720 SDValue patchableNode = SDValue(MN, 0); 6721 DAG.setRoot(patchableNode); 6722 setValue(&I, patchableNode); 6723 return; 6724 } 6725 case Intrinsic::xray_typedevent: { 6726 // Here we want to make sure that the intrinsic behaves as if it has a 6727 // specific calling convention, and only for x86_64. 6728 // FIXME: Support other platforms later. 6729 const auto &Triple = DAG.getTarget().getTargetTriple(); 6730 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6731 return; 6732 6733 SDLoc DL = getCurSDLoc(); 6734 SmallVector<SDValue, 8> Ops; 6735 6736 // We want to say that we always want the arguments in registers. 6737 // It's unclear to me how manipulating the selection DAG here forces callers 6738 // to provide arguments in registers instead of on the stack. 6739 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6740 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6741 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6742 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6743 SDValue Chain = getRoot(); 6744 Ops.push_back(LogTypeId); 6745 Ops.push_back(LogEntryVal); 6746 Ops.push_back(StrSizeVal); 6747 Ops.push_back(Chain); 6748 6749 // We need to enforce the calling convention for the callsite, so that 6750 // argument ordering is enforced correctly, and that register allocation can 6751 // see that some registers may be assumed clobbered and have to preserve 6752 // them across calls to the intrinsic. 6753 MachineSDNode *MN = DAG.getMachineNode( 6754 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6755 SDValue patchableNode = SDValue(MN, 0); 6756 DAG.setRoot(patchableNode); 6757 setValue(&I, patchableNode); 6758 return; 6759 } 6760 case Intrinsic::experimental_deoptimize: 6761 LowerDeoptimizeCall(&I); 6762 return; 6763 6764 case Intrinsic::experimental_vector_reduce_v2_fadd: 6765 case Intrinsic::experimental_vector_reduce_v2_fmul: 6766 case Intrinsic::experimental_vector_reduce_add: 6767 case Intrinsic::experimental_vector_reduce_mul: 6768 case Intrinsic::experimental_vector_reduce_and: 6769 case Intrinsic::experimental_vector_reduce_or: 6770 case Intrinsic::experimental_vector_reduce_xor: 6771 case Intrinsic::experimental_vector_reduce_smax: 6772 case Intrinsic::experimental_vector_reduce_smin: 6773 case Intrinsic::experimental_vector_reduce_umax: 6774 case Intrinsic::experimental_vector_reduce_umin: 6775 case Intrinsic::experimental_vector_reduce_fmax: 6776 case Intrinsic::experimental_vector_reduce_fmin: 6777 visitVectorReduce(I, Intrinsic); 6778 return; 6779 6780 case Intrinsic::icall_branch_funnel: { 6781 SmallVector<SDValue, 16> Ops; 6782 Ops.push_back(getValue(I.getArgOperand(0))); 6783 6784 int64_t Offset; 6785 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6786 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6787 if (!Base) 6788 report_fatal_error( 6789 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6790 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6791 6792 struct BranchFunnelTarget { 6793 int64_t Offset; 6794 SDValue Target; 6795 }; 6796 SmallVector<BranchFunnelTarget, 8> Targets; 6797 6798 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6799 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6800 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6801 if (ElemBase != Base) 6802 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6803 "to the same GlobalValue"); 6804 6805 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6806 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6807 if (!GA) 6808 report_fatal_error( 6809 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6810 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6811 GA->getGlobal(), getCurSDLoc(), 6812 Val.getValueType(), GA->getOffset())}); 6813 } 6814 llvm::sort(Targets, 6815 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6816 return T1.Offset < T2.Offset; 6817 }); 6818 6819 for (auto &T : Targets) { 6820 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6821 Ops.push_back(T.Target); 6822 } 6823 6824 Ops.push_back(DAG.getRoot()); // Chain 6825 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6826 getCurSDLoc(), MVT::Other, Ops), 6827 0); 6828 DAG.setRoot(N); 6829 setValue(&I, N); 6830 HasTailCall = true; 6831 return; 6832 } 6833 6834 case Intrinsic::wasm_landingpad_index: 6835 // Information this intrinsic contained has been transferred to 6836 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6837 // delete it now. 6838 return; 6839 6840 case Intrinsic::aarch64_settag: 6841 case Intrinsic::aarch64_settag_zero: { 6842 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6843 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6844 SDValue Val = TSI.EmitTargetCodeForSetTag( 6845 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6846 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6847 ZeroMemory); 6848 DAG.setRoot(Val); 6849 setValue(&I, Val); 6850 return; 6851 } 6852 case Intrinsic::ptrmask: { 6853 SDValue Ptr = getValue(I.getOperand(0)); 6854 SDValue Const = getValue(I.getOperand(1)); 6855 6856 EVT PtrVT = Ptr.getValueType(); 6857 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6858 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6859 return; 6860 } 6861 case Intrinsic::get_active_lane_mask: { 6862 auto DL = getCurSDLoc(); 6863 SDValue Index = getValue(I.getOperand(0)); 6864 SDValue TripCount = getValue(I.getOperand(1)); 6865 Type *ElementTy = I.getOperand(0)->getType(); 6866 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6867 unsigned VecWidth = VT.getVectorNumElements(); 6868 6869 SmallVector<SDValue, 16> OpsTripCount; 6870 SmallVector<SDValue, 16> OpsIndex; 6871 SmallVector<SDValue, 16> OpsStepConstants; 6872 for (unsigned i = 0; i < VecWidth; i++) { 6873 OpsTripCount.push_back(TripCount); 6874 OpsIndex.push_back(Index); 6875 OpsStepConstants.push_back( 6876 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 6877 } 6878 6879 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 6880 6881 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 6882 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6883 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6884 SDValue VectorInduction = DAG.getNode( 6885 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6886 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 6887 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 6888 VectorTripCount, ISD::CondCode::SETULT); 6889 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 6890 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 6891 SetCC)); 6892 return; 6893 } 6894 } 6895 } 6896 6897 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6898 const ConstrainedFPIntrinsic &FPI) { 6899 SDLoc sdl = getCurSDLoc(); 6900 6901 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6902 SmallVector<EVT, 4> ValueVTs; 6903 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6904 ValueVTs.push_back(MVT::Other); // Out chain 6905 6906 // We do not need to serialize constrained FP intrinsics against 6907 // each other or against (nonvolatile) loads, so they can be 6908 // chained like loads. 6909 SDValue Chain = DAG.getRoot(); 6910 SmallVector<SDValue, 4> Opers; 6911 Opers.push_back(Chain); 6912 if (FPI.isUnaryOp()) { 6913 Opers.push_back(getValue(FPI.getArgOperand(0))); 6914 } else if (FPI.isTernaryOp()) { 6915 Opers.push_back(getValue(FPI.getArgOperand(0))); 6916 Opers.push_back(getValue(FPI.getArgOperand(1))); 6917 Opers.push_back(getValue(FPI.getArgOperand(2))); 6918 } else { 6919 Opers.push_back(getValue(FPI.getArgOperand(0))); 6920 Opers.push_back(getValue(FPI.getArgOperand(1))); 6921 } 6922 6923 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6924 assert(Result.getNode()->getNumValues() == 2); 6925 6926 // Push node to the appropriate list so that future instructions can be 6927 // chained up correctly. 6928 SDValue OutChain = Result.getValue(1); 6929 switch (EB) { 6930 case fp::ExceptionBehavior::ebIgnore: 6931 // The only reason why ebIgnore nodes still need to be chained is that 6932 // they might depend on the current rounding mode, and therefore must 6933 // not be moved across instruction that may change that mode. 6934 LLVM_FALLTHROUGH; 6935 case fp::ExceptionBehavior::ebMayTrap: 6936 // These must not be moved across calls or instructions that may change 6937 // floating-point exception masks. 6938 PendingConstrainedFP.push_back(OutChain); 6939 break; 6940 case fp::ExceptionBehavior::ebStrict: 6941 // These must not be moved across calls or instructions that may change 6942 // floating-point exception masks or read floating-point exception flags. 6943 // In addition, they cannot be optimized out even if unused. 6944 PendingConstrainedFPStrict.push_back(OutChain); 6945 break; 6946 } 6947 }; 6948 6949 SDVTList VTs = DAG.getVTList(ValueVTs); 6950 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6951 6952 SDNodeFlags Flags; 6953 if (EB == fp::ExceptionBehavior::ebIgnore) 6954 Flags.setNoFPExcept(true); 6955 6956 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6957 Flags.copyFMF(*FPOp); 6958 6959 unsigned Opcode; 6960 switch (FPI.getIntrinsicID()) { 6961 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6962 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6963 case Intrinsic::INTRINSIC: \ 6964 Opcode = ISD::STRICT_##DAGN; \ 6965 break; 6966 #include "llvm/IR/ConstrainedOps.def" 6967 case Intrinsic::experimental_constrained_fmuladd: { 6968 Opcode = ISD::STRICT_FMA; 6969 // Break fmuladd into fmul and fadd. 6970 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6971 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6972 ValueVTs[0])) { 6973 Opers.pop_back(); 6974 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6975 pushOutChain(Mul, EB); 6976 Opcode = ISD::STRICT_FADD; 6977 Opers.clear(); 6978 Opers.push_back(Mul.getValue(1)); 6979 Opers.push_back(Mul.getValue(0)); 6980 Opers.push_back(getValue(FPI.getArgOperand(2))); 6981 } 6982 break; 6983 } 6984 } 6985 6986 // A few strict DAG nodes carry additional operands that are not 6987 // set up by the default code above. 6988 switch (Opcode) { 6989 default: break; 6990 case ISD::STRICT_FP_ROUND: 6991 Opers.push_back( 6992 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6993 break; 6994 case ISD::STRICT_FSETCC: 6995 case ISD::STRICT_FSETCCS: { 6996 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6997 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6998 break; 6999 } 7000 } 7001 7002 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7003 pushOutChain(Result, EB); 7004 7005 SDValue FPResult = Result.getValue(0); 7006 setValue(&FPI, FPResult); 7007 } 7008 7009 std::pair<SDValue, SDValue> 7010 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7011 const BasicBlock *EHPadBB) { 7012 MachineFunction &MF = DAG.getMachineFunction(); 7013 MachineModuleInfo &MMI = MF.getMMI(); 7014 MCSymbol *BeginLabel = nullptr; 7015 7016 if (EHPadBB) { 7017 // Insert a label before the invoke call to mark the try range. This can be 7018 // used to detect deletion of the invoke via the MachineModuleInfo. 7019 BeginLabel = MMI.getContext().createTempSymbol(); 7020 7021 // For SjLj, keep track of which landing pads go with which invokes 7022 // so as to maintain the ordering of pads in the LSDA. 7023 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7024 if (CallSiteIndex) { 7025 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7026 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7027 7028 // Now that the call site is handled, stop tracking it. 7029 MMI.setCurrentCallSite(0); 7030 } 7031 7032 // Both PendingLoads and PendingExports must be flushed here; 7033 // this call might not return. 7034 (void)getRoot(); 7035 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7036 7037 CLI.setChain(getRoot()); 7038 } 7039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7040 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7041 7042 assert((CLI.IsTailCall || Result.second.getNode()) && 7043 "Non-null chain expected with non-tail call!"); 7044 assert((Result.second.getNode() || !Result.first.getNode()) && 7045 "Null value expected with tail call!"); 7046 7047 if (!Result.second.getNode()) { 7048 // As a special case, a null chain means that a tail call has been emitted 7049 // and the DAG root is already updated. 7050 HasTailCall = true; 7051 7052 // Since there's no actual continuation from this block, nothing can be 7053 // relying on us setting vregs for them. 7054 PendingExports.clear(); 7055 } else { 7056 DAG.setRoot(Result.second); 7057 } 7058 7059 if (EHPadBB) { 7060 // Insert a label at the end of the invoke call to mark the try range. This 7061 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7062 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7063 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7064 7065 // Inform MachineModuleInfo of range. 7066 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7067 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7068 // actually use outlined funclets and their LSDA info style. 7069 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7070 assert(CLI.CB); 7071 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7072 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7073 } else if (!isScopedEHPersonality(Pers)) { 7074 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7075 } 7076 } 7077 7078 return Result; 7079 } 7080 7081 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7082 bool isTailCall, 7083 const BasicBlock *EHPadBB) { 7084 auto &DL = DAG.getDataLayout(); 7085 FunctionType *FTy = CB.getFunctionType(); 7086 Type *RetTy = CB.getType(); 7087 7088 TargetLowering::ArgListTy Args; 7089 Args.reserve(CB.arg_size()); 7090 7091 const Value *SwiftErrorVal = nullptr; 7092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7093 7094 if (isTailCall) { 7095 // Avoid emitting tail calls in functions with the disable-tail-calls 7096 // attribute. 7097 auto *Caller = CB.getParent()->getParent(); 7098 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7099 "true") 7100 isTailCall = false; 7101 7102 // We can't tail call inside a function with a swifterror argument. Lowering 7103 // does not support this yet. It would have to move into the swifterror 7104 // register before the call. 7105 if (TLI.supportSwiftError() && 7106 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7107 isTailCall = false; 7108 } 7109 7110 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7111 TargetLowering::ArgListEntry Entry; 7112 const Value *V = *I; 7113 7114 // Skip empty types 7115 if (V->getType()->isEmptyTy()) 7116 continue; 7117 7118 SDValue ArgNode = getValue(V); 7119 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7120 7121 Entry.setAttributes(&CB, I - CB.arg_begin()); 7122 7123 // Use swifterror virtual register as input to the call. 7124 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7125 SwiftErrorVal = V; 7126 // We find the virtual register for the actual swifterror argument. 7127 // Instead of using the Value, we use the virtual register instead. 7128 Entry.Node = 7129 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7130 EVT(TLI.getPointerTy(DL))); 7131 } 7132 7133 Args.push_back(Entry); 7134 7135 // If we have an explicit sret argument that is an Instruction, (i.e., it 7136 // might point to function-local memory), we can't meaningfully tail-call. 7137 if (Entry.IsSRet && isa<Instruction>(V)) 7138 isTailCall = false; 7139 } 7140 7141 // If call site has a cfguardtarget operand bundle, create and add an 7142 // additional ArgListEntry. 7143 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7144 TargetLowering::ArgListEntry Entry; 7145 Value *V = Bundle->Inputs[0]; 7146 SDValue ArgNode = getValue(V); 7147 Entry.Node = ArgNode; 7148 Entry.Ty = V->getType(); 7149 Entry.IsCFGuardTarget = true; 7150 Args.push_back(Entry); 7151 } 7152 7153 // Check if target-independent constraints permit a tail call here. 7154 // Target-dependent constraints are checked within TLI->LowerCallTo. 7155 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7156 isTailCall = false; 7157 7158 // Disable tail calls if there is an swifterror argument. Targets have not 7159 // been updated to support tail calls. 7160 if (TLI.supportSwiftError() && SwiftErrorVal) 7161 isTailCall = false; 7162 7163 TargetLowering::CallLoweringInfo CLI(DAG); 7164 CLI.setDebugLoc(getCurSDLoc()) 7165 .setChain(getRoot()) 7166 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7167 .setTailCall(isTailCall) 7168 .setConvergent(CB.isConvergent()) 7169 .setIsPreallocated( 7170 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7171 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7172 7173 if (Result.first.getNode()) { 7174 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7175 setValue(&CB, Result.first); 7176 } 7177 7178 // The last element of CLI.InVals has the SDValue for swifterror return. 7179 // Here we copy it to a virtual register and update SwiftErrorMap for 7180 // book-keeping. 7181 if (SwiftErrorVal && TLI.supportSwiftError()) { 7182 // Get the last element of InVals. 7183 SDValue Src = CLI.InVals.back(); 7184 Register VReg = 7185 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7186 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7187 DAG.setRoot(CopyNode); 7188 } 7189 } 7190 7191 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7192 SelectionDAGBuilder &Builder) { 7193 // Check to see if this load can be trivially constant folded, e.g. if the 7194 // input is from a string literal. 7195 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7196 // Cast pointer to the type we really want to load. 7197 Type *LoadTy = 7198 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7199 if (LoadVT.isVector()) 7200 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7201 7202 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7203 PointerType::getUnqual(LoadTy)); 7204 7205 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7206 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7207 return Builder.getValue(LoadCst); 7208 } 7209 7210 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7211 // still constant memory, the input chain can be the entry node. 7212 SDValue Root; 7213 bool ConstantMemory = false; 7214 7215 // Do not serialize (non-volatile) loads of constant memory with anything. 7216 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7217 Root = Builder.DAG.getEntryNode(); 7218 ConstantMemory = true; 7219 } else { 7220 // Do not serialize non-volatile loads against each other. 7221 Root = Builder.DAG.getRoot(); 7222 } 7223 7224 SDValue Ptr = Builder.getValue(PtrVal); 7225 SDValue LoadVal = 7226 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7227 MachinePointerInfo(PtrVal), Align(1)); 7228 7229 if (!ConstantMemory) 7230 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7231 return LoadVal; 7232 } 7233 7234 /// Record the value for an instruction that produces an integer result, 7235 /// converting the type where necessary. 7236 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7237 SDValue Value, 7238 bool IsSigned) { 7239 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7240 I.getType(), true); 7241 if (IsSigned) 7242 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7243 else 7244 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7245 setValue(&I, Value); 7246 } 7247 7248 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7249 /// true and lower it. Otherwise return false, and it will be lowered like a 7250 /// normal call. 7251 /// The caller already checked that \p I calls the appropriate LibFunc with a 7252 /// correct prototype. 7253 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7254 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7255 const Value *Size = I.getArgOperand(2); 7256 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7257 if (CSize && CSize->getZExtValue() == 0) { 7258 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7259 I.getType(), true); 7260 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7261 return true; 7262 } 7263 7264 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7265 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7266 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7267 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7268 if (Res.first.getNode()) { 7269 processIntegerCallValue(I, Res.first, true); 7270 PendingLoads.push_back(Res.second); 7271 return true; 7272 } 7273 7274 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7275 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7276 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7277 return false; 7278 7279 // If the target has a fast compare for the given size, it will return a 7280 // preferred load type for that size. Require that the load VT is legal and 7281 // that the target supports unaligned loads of that type. Otherwise, return 7282 // INVALID. 7283 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7284 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7285 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7286 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7287 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7288 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7289 // TODO: Check alignment of src and dest ptrs. 7290 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7291 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7292 if (!TLI.isTypeLegal(LVT) || 7293 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7294 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7295 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7296 } 7297 7298 return LVT; 7299 }; 7300 7301 // This turns into unaligned loads. We only do this if the target natively 7302 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7303 // we'll only produce a small number of byte loads. 7304 MVT LoadVT; 7305 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7306 switch (NumBitsToCompare) { 7307 default: 7308 return false; 7309 case 16: 7310 LoadVT = MVT::i16; 7311 break; 7312 case 32: 7313 LoadVT = MVT::i32; 7314 break; 7315 case 64: 7316 case 128: 7317 case 256: 7318 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7319 break; 7320 } 7321 7322 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7323 return false; 7324 7325 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7326 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7327 7328 // Bitcast to a wide integer type if the loads are vectors. 7329 if (LoadVT.isVector()) { 7330 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7331 LoadL = DAG.getBitcast(CmpVT, LoadL); 7332 LoadR = DAG.getBitcast(CmpVT, LoadR); 7333 } 7334 7335 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7336 processIntegerCallValue(I, Cmp, false); 7337 return true; 7338 } 7339 7340 /// See if we can lower a memchr call into an optimized form. If so, return 7341 /// true and lower it. Otherwise return false, and it will be lowered like a 7342 /// normal call. 7343 /// The caller already checked that \p I calls the appropriate LibFunc with a 7344 /// correct prototype. 7345 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7346 const Value *Src = I.getArgOperand(0); 7347 const Value *Char = I.getArgOperand(1); 7348 const Value *Length = I.getArgOperand(2); 7349 7350 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7351 std::pair<SDValue, SDValue> Res = 7352 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7353 getValue(Src), getValue(Char), getValue(Length), 7354 MachinePointerInfo(Src)); 7355 if (Res.first.getNode()) { 7356 setValue(&I, Res.first); 7357 PendingLoads.push_back(Res.second); 7358 return true; 7359 } 7360 7361 return false; 7362 } 7363 7364 /// See if we can lower a mempcpy call into an optimized form. If so, return 7365 /// true and lower it. Otherwise return false, and it will be lowered like a 7366 /// normal call. 7367 /// The caller already checked that \p I calls the appropriate LibFunc with a 7368 /// correct prototype. 7369 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7370 SDValue Dst = getValue(I.getArgOperand(0)); 7371 SDValue Src = getValue(I.getArgOperand(1)); 7372 SDValue Size = getValue(I.getArgOperand(2)); 7373 7374 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7375 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7376 // DAG::getMemcpy needs Alignment to be defined. 7377 Align Alignment = std::min(DstAlign, SrcAlign); 7378 7379 bool isVol = false; 7380 SDLoc sdl = getCurSDLoc(); 7381 7382 // In the mempcpy context we need to pass in a false value for isTailCall 7383 // because the return pointer needs to be adjusted by the size of 7384 // the copied memory. 7385 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7386 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7387 /*isTailCall=*/false, 7388 MachinePointerInfo(I.getArgOperand(0)), 7389 MachinePointerInfo(I.getArgOperand(1))); 7390 assert(MC.getNode() != nullptr && 7391 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7392 DAG.setRoot(MC); 7393 7394 // Check if Size needs to be truncated or extended. 7395 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7396 7397 // Adjust return pointer to point just past the last dst byte. 7398 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7399 Dst, Size); 7400 setValue(&I, DstPlusSize); 7401 return true; 7402 } 7403 7404 /// See if we can lower a strcpy call into an optimized form. If so, return 7405 /// true and lower it, otherwise return false and it will be lowered like a 7406 /// normal call. 7407 /// The caller already checked that \p I calls the appropriate LibFunc with a 7408 /// correct prototype. 7409 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7410 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7411 7412 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7413 std::pair<SDValue, SDValue> Res = 7414 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7415 getValue(Arg0), getValue(Arg1), 7416 MachinePointerInfo(Arg0), 7417 MachinePointerInfo(Arg1), isStpcpy); 7418 if (Res.first.getNode()) { 7419 setValue(&I, Res.first); 7420 DAG.setRoot(Res.second); 7421 return true; 7422 } 7423 7424 return false; 7425 } 7426 7427 /// See if we can lower a strcmp call into an optimized form. If so, return 7428 /// true and lower it, otherwise return false and it will be lowered like a 7429 /// normal call. 7430 /// The caller already checked that \p I calls the appropriate LibFunc with a 7431 /// correct prototype. 7432 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7433 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7434 7435 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7436 std::pair<SDValue, SDValue> Res = 7437 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7438 getValue(Arg0), getValue(Arg1), 7439 MachinePointerInfo(Arg0), 7440 MachinePointerInfo(Arg1)); 7441 if (Res.first.getNode()) { 7442 processIntegerCallValue(I, Res.first, true); 7443 PendingLoads.push_back(Res.second); 7444 return true; 7445 } 7446 7447 return false; 7448 } 7449 7450 /// See if we can lower a strlen call into an optimized form. If so, return 7451 /// true and lower it, otherwise return false and it will be lowered like a 7452 /// normal call. 7453 /// The caller already checked that \p I calls the appropriate LibFunc with a 7454 /// correct prototype. 7455 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7456 const Value *Arg0 = I.getArgOperand(0); 7457 7458 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7459 std::pair<SDValue, SDValue> Res = 7460 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7461 getValue(Arg0), MachinePointerInfo(Arg0)); 7462 if (Res.first.getNode()) { 7463 processIntegerCallValue(I, Res.first, false); 7464 PendingLoads.push_back(Res.second); 7465 return true; 7466 } 7467 7468 return false; 7469 } 7470 7471 /// See if we can lower a strnlen call into an optimized form. If so, return 7472 /// true and lower it, otherwise return false and it will be lowered like a 7473 /// normal call. 7474 /// The caller already checked that \p I calls the appropriate LibFunc with a 7475 /// correct prototype. 7476 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7477 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7478 7479 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7480 std::pair<SDValue, SDValue> Res = 7481 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7482 getValue(Arg0), getValue(Arg1), 7483 MachinePointerInfo(Arg0)); 7484 if (Res.first.getNode()) { 7485 processIntegerCallValue(I, Res.first, false); 7486 PendingLoads.push_back(Res.second); 7487 return true; 7488 } 7489 7490 return false; 7491 } 7492 7493 /// See if we can lower a unary floating-point operation into an SDNode with 7494 /// the specified Opcode. If so, return true and lower it, otherwise return 7495 /// false and it will be lowered like a normal call. 7496 /// The caller already checked that \p I calls the appropriate LibFunc with a 7497 /// correct prototype. 7498 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7499 unsigned Opcode) { 7500 // We already checked this call's prototype; verify it doesn't modify errno. 7501 if (!I.onlyReadsMemory()) 7502 return false; 7503 7504 SDNodeFlags Flags; 7505 Flags.copyFMF(cast<FPMathOperator>(I)); 7506 7507 SDValue Tmp = getValue(I.getArgOperand(0)); 7508 setValue(&I, 7509 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7510 return true; 7511 } 7512 7513 /// See if we can lower a binary floating-point operation into an SDNode with 7514 /// the specified Opcode. If so, return true and lower it. Otherwise return 7515 /// false, and it will be lowered like a normal call. 7516 /// The caller already checked that \p I calls the appropriate LibFunc with a 7517 /// correct prototype. 7518 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7519 unsigned Opcode) { 7520 // We already checked this call's prototype; verify it doesn't modify errno. 7521 if (!I.onlyReadsMemory()) 7522 return false; 7523 7524 SDNodeFlags Flags; 7525 Flags.copyFMF(cast<FPMathOperator>(I)); 7526 7527 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7528 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7529 EVT VT = Tmp0.getValueType(); 7530 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7531 return true; 7532 } 7533 7534 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7535 // Handle inline assembly differently. 7536 if (I.isInlineAsm()) { 7537 visitInlineAsm(I); 7538 return; 7539 } 7540 7541 if (Function *F = I.getCalledFunction()) { 7542 if (F->isDeclaration()) { 7543 // Is this an LLVM intrinsic or a target-specific intrinsic? 7544 unsigned IID = F->getIntrinsicID(); 7545 if (!IID) 7546 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7547 IID = II->getIntrinsicID(F); 7548 7549 if (IID) { 7550 visitIntrinsicCall(I, IID); 7551 return; 7552 } 7553 } 7554 7555 // Check for well-known libc/libm calls. If the function is internal, it 7556 // can't be a library call. Don't do the check if marked as nobuiltin for 7557 // some reason or the call site requires strict floating point semantics. 7558 LibFunc Func; 7559 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7560 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7561 LibInfo->hasOptimizedCodeGen(Func)) { 7562 switch (Func) { 7563 default: break; 7564 case LibFunc_bcmp: 7565 if (visitMemCmpBCmpCall(I)) 7566 return; 7567 break; 7568 case LibFunc_copysign: 7569 case LibFunc_copysignf: 7570 case LibFunc_copysignl: 7571 // We already checked this call's prototype; verify it doesn't modify 7572 // errno. 7573 if (I.onlyReadsMemory()) { 7574 SDValue LHS = getValue(I.getArgOperand(0)); 7575 SDValue RHS = getValue(I.getArgOperand(1)); 7576 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7577 LHS.getValueType(), LHS, RHS)); 7578 return; 7579 } 7580 break; 7581 case LibFunc_fabs: 7582 case LibFunc_fabsf: 7583 case LibFunc_fabsl: 7584 if (visitUnaryFloatCall(I, ISD::FABS)) 7585 return; 7586 break; 7587 case LibFunc_fmin: 7588 case LibFunc_fminf: 7589 case LibFunc_fminl: 7590 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7591 return; 7592 break; 7593 case LibFunc_fmax: 7594 case LibFunc_fmaxf: 7595 case LibFunc_fmaxl: 7596 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7597 return; 7598 break; 7599 case LibFunc_sin: 7600 case LibFunc_sinf: 7601 case LibFunc_sinl: 7602 if (visitUnaryFloatCall(I, ISD::FSIN)) 7603 return; 7604 break; 7605 case LibFunc_cos: 7606 case LibFunc_cosf: 7607 case LibFunc_cosl: 7608 if (visitUnaryFloatCall(I, ISD::FCOS)) 7609 return; 7610 break; 7611 case LibFunc_sqrt: 7612 case LibFunc_sqrtf: 7613 case LibFunc_sqrtl: 7614 case LibFunc_sqrt_finite: 7615 case LibFunc_sqrtf_finite: 7616 case LibFunc_sqrtl_finite: 7617 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7618 return; 7619 break; 7620 case LibFunc_floor: 7621 case LibFunc_floorf: 7622 case LibFunc_floorl: 7623 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7624 return; 7625 break; 7626 case LibFunc_nearbyint: 7627 case LibFunc_nearbyintf: 7628 case LibFunc_nearbyintl: 7629 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7630 return; 7631 break; 7632 case LibFunc_ceil: 7633 case LibFunc_ceilf: 7634 case LibFunc_ceill: 7635 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7636 return; 7637 break; 7638 case LibFunc_rint: 7639 case LibFunc_rintf: 7640 case LibFunc_rintl: 7641 if (visitUnaryFloatCall(I, ISD::FRINT)) 7642 return; 7643 break; 7644 case LibFunc_round: 7645 case LibFunc_roundf: 7646 case LibFunc_roundl: 7647 if (visitUnaryFloatCall(I, ISD::FROUND)) 7648 return; 7649 break; 7650 case LibFunc_trunc: 7651 case LibFunc_truncf: 7652 case LibFunc_truncl: 7653 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7654 return; 7655 break; 7656 case LibFunc_log2: 7657 case LibFunc_log2f: 7658 case LibFunc_log2l: 7659 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7660 return; 7661 break; 7662 case LibFunc_exp2: 7663 case LibFunc_exp2f: 7664 case LibFunc_exp2l: 7665 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7666 return; 7667 break; 7668 case LibFunc_memcmp: 7669 if (visitMemCmpBCmpCall(I)) 7670 return; 7671 break; 7672 case LibFunc_mempcpy: 7673 if (visitMemPCpyCall(I)) 7674 return; 7675 break; 7676 case LibFunc_memchr: 7677 if (visitMemChrCall(I)) 7678 return; 7679 break; 7680 case LibFunc_strcpy: 7681 if (visitStrCpyCall(I, false)) 7682 return; 7683 break; 7684 case LibFunc_stpcpy: 7685 if (visitStrCpyCall(I, true)) 7686 return; 7687 break; 7688 case LibFunc_strcmp: 7689 if (visitStrCmpCall(I)) 7690 return; 7691 break; 7692 case LibFunc_strlen: 7693 if (visitStrLenCall(I)) 7694 return; 7695 break; 7696 case LibFunc_strnlen: 7697 if (visitStrNLenCall(I)) 7698 return; 7699 break; 7700 } 7701 } 7702 } 7703 7704 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7705 // have to do anything here to lower funclet bundles. 7706 // CFGuardTarget bundles are lowered in LowerCallTo. 7707 assert(!I.hasOperandBundlesOtherThan( 7708 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7709 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7710 "Cannot lower calls with arbitrary operand bundles!"); 7711 7712 SDValue Callee = getValue(I.getCalledOperand()); 7713 7714 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7715 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7716 else 7717 // Check if we can potentially perform a tail call. More detailed checking 7718 // is be done within LowerCallTo, after more information about the call is 7719 // known. 7720 LowerCallTo(I, Callee, I.isTailCall()); 7721 } 7722 7723 namespace { 7724 7725 /// AsmOperandInfo - This contains information for each constraint that we are 7726 /// lowering. 7727 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7728 public: 7729 /// CallOperand - If this is the result output operand or a clobber 7730 /// this is null, otherwise it is the incoming operand to the CallInst. 7731 /// This gets modified as the asm is processed. 7732 SDValue CallOperand; 7733 7734 /// AssignedRegs - If this is a register or register class operand, this 7735 /// contains the set of register corresponding to the operand. 7736 RegsForValue AssignedRegs; 7737 7738 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7739 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7740 } 7741 7742 /// Whether or not this operand accesses memory 7743 bool hasMemory(const TargetLowering &TLI) const { 7744 // Indirect operand accesses access memory. 7745 if (isIndirect) 7746 return true; 7747 7748 for (const auto &Code : Codes) 7749 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7750 return true; 7751 7752 return false; 7753 } 7754 7755 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7756 /// corresponds to. If there is no Value* for this operand, it returns 7757 /// MVT::Other. 7758 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7759 const DataLayout &DL) const { 7760 if (!CallOperandVal) return MVT::Other; 7761 7762 if (isa<BasicBlock>(CallOperandVal)) 7763 return TLI.getProgramPointerTy(DL); 7764 7765 llvm::Type *OpTy = CallOperandVal->getType(); 7766 7767 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7768 // If this is an indirect operand, the operand is a pointer to the 7769 // accessed type. 7770 if (isIndirect) { 7771 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7772 if (!PtrTy) 7773 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7774 OpTy = PtrTy->getElementType(); 7775 } 7776 7777 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7778 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7779 if (STy->getNumElements() == 1) 7780 OpTy = STy->getElementType(0); 7781 7782 // If OpTy is not a single value, it may be a struct/union that we 7783 // can tile with integers. 7784 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7785 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7786 switch (BitSize) { 7787 default: break; 7788 case 1: 7789 case 8: 7790 case 16: 7791 case 32: 7792 case 64: 7793 case 128: 7794 OpTy = IntegerType::get(Context, BitSize); 7795 break; 7796 } 7797 } 7798 7799 return TLI.getValueType(DL, OpTy, true); 7800 } 7801 }; 7802 7803 7804 } // end anonymous namespace 7805 7806 /// Make sure that the output operand \p OpInfo and its corresponding input 7807 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7808 /// out). 7809 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7810 SDISelAsmOperandInfo &MatchingOpInfo, 7811 SelectionDAG &DAG) { 7812 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7813 return; 7814 7815 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7816 const auto &TLI = DAG.getTargetLoweringInfo(); 7817 7818 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7819 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7820 OpInfo.ConstraintVT); 7821 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7822 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7823 MatchingOpInfo.ConstraintVT); 7824 if ((OpInfo.ConstraintVT.isInteger() != 7825 MatchingOpInfo.ConstraintVT.isInteger()) || 7826 (MatchRC.second != InputRC.second)) { 7827 // FIXME: error out in a more elegant fashion 7828 report_fatal_error("Unsupported asm: input constraint" 7829 " with a matching output constraint of" 7830 " incompatible type!"); 7831 } 7832 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7833 } 7834 7835 /// Get a direct memory input to behave well as an indirect operand. 7836 /// This may introduce stores, hence the need for a \p Chain. 7837 /// \return The (possibly updated) chain. 7838 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7839 SDISelAsmOperandInfo &OpInfo, 7840 SelectionDAG &DAG) { 7841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7842 7843 // If we don't have an indirect input, put it in the constpool if we can, 7844 // otherwise spill it to a stack slot. 7845 // TODO: This isn't quite right. We need to handle these according to 7846 // the addressing mode that the constraint wants. Also, this may take 7847 // an additional register for the computation and we don't want that 7848 // either. 7849 7850 // If the operand is a float, integer, or vector constant, spill to a 7851 // constant pool entry to get its address. 7852 const Value *OpVal = OpInfo.CallOperandVal; 7853 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7854 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7855 OpInfo.CallOperand = DAG.getConstantPool( 7856 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7857 return Chain; 7858 } 7859 7860 // Otherwise, create a stack slot and emit a store to it before the asm. 7861 Type *Ty = OpVal->getType(); 7862 auto &DL = DAG.getDataLayout(); 7863 uint64_t TySize = DL.getTypeAllocSize(Ty); 7864 MachineFunction &MF = DAG.getMachineFunction(); 7865 int SSFI = MF.getFrameInfo().CreateStackObject( 7866 TySize, DL.getPrefTypeAlign(Ty), false); 7867 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7868 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7869 MachinePointerInfo::getFixedStack(MF, SSFI), 7870 TLI.getMemValueType(DL, Ty)); 7871 OpInfo.CallOperand = StackSlot; 7872 7873 return Chain; 7874 } 7875 7876 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7877 /// specified operand. We prefer to assign virtual registers, to allow the 7878 /// register allocator to handle the assignment process. However, if the asm 7879 /// uses features that we can't model on machineinstrs, we have SDISel do the 7880 /// allocation. This produces generally horrible, but correct, code. 7881 /// 7882 /// OpInfo describes the operand 7883 /// RefOpInfo describes the matching operand if any, the operand otherwise 7884 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7885 SDISelAsmOperandInfo &OpInfo, 7886 SDISelAsmOperandInfo &RefOpInfo) { 7887 LLVMContext &Context = *DAG.getContext(); 7888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7889 7890 MachineFunction &MF = DAG.getMachineFunction(); 7891 SmallVector<unsigned, 4> Regs; 7892 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7893 7894 // No work to do for memory operations. 7895 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7896 return; 7897 7898 // If this is a constraint for a single physreg, or a constraint for a 7899 // register class, find it. 7900 unsigned AssignedReg; 7901 const TargetRegisterClass *RC; 7902 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7903 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7904 // RC is unset only on failure. Return immediately. 7905 if (!RC) 7906 return; 7907 7908 // Get the actual register value type. This is important, because the user 7909 // may have asked for (e.g.) the AX register in i32 type. We need to 7910 // remember that AX is actually i16 to get the right extension. 7911 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7912 7913 if (OpInfo.ConstraintVT != MVT::Other) { 7914 // If this is an FP operand in an integer register (or visa versa), or more 7915 // generally if the operand value disagrees with the register class we plan 7916 // to stick it in, fix the operand type. 7917 // 7918 // If this is an input value, the bitcast to the new type is done now. 7919 // Bitcast for output value is done at the end of visitInlineAsm(). 7920 if ((OpInfo.Type == InlineAsm::isOutput || 7921 OpInfo.Type == InlineAsm::isInput) && 7922 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7923 // Try to convert to the first EVT that the reg class contains. If the 7924 // types are identical size, use a bitcast to convert (e.g. two differing 7925 // vector types). Note: output bitcast is done at the end of 7926 // visitInlineAsm(). 7927 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7928 // Exclude indirect inputs while they are unsupported because the code 7929 // to perform the load is missing and thus OpInfo.CallOperand still 7930 // refers to the input address rather than the pointed-to value. 7931 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7932 OpInfo.CallOperand = 7933 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7934 OpInfo.ConstraintVT = RegVT; 7935 // If the operand is an FP value and we want it in integer registers, 7936 // use the corresponding integer type. This turns an f64 value into 7937 // i64, which can be passed with two i32 values on a 32-bit machine. 7938 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7939 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7940 if (OpInfo.Type == InlineAsm::isInput) 7941 OpInfo.CallOperand = 7942 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7943 OpInfo.ConstraintVT = VT; 7944 } 7945 } 7946 } 7947 7948 // No need to allocate a matching input constraint since the constraint it's 7949 // matching to has already been allocated. 7950 if (OpInfo.isMatchingInputConstraint()) 7951 return; 7952 7953 EVT ValueVT = OpInfo.ConstraintVT; 7954 if (OpInfo.ConstraintVT == MVT::Other) 7955 ValueVT = RegVT; 7956 7957 // Initialize NumRegs. 7958 unsigned NumRegs = 1; 7959 if (OpInfo.ConstraintVT != MVT::Other) 7960 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7961 7962 // If this is a constraint for a specific physical register, like {r17}, 7963 // assign it now. 7964 7965 // If this associated to a specific register, initialize iterator to correct 7966 // place. If virtual, make sure we have enough registers 7967 7968 // Initialize iterator if necessary 7969 TargetRegisterClass::iterator I = RC->begin(); 7970 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7971 7972 // Do not check for single registers. 7973 if (AssignedReg) { 7974 for (; *I != AssignedReg; ++I) 7975 assert(I != RC->end() && "AssignedReg should be member of RC"); 7976 } 7977 7978 for (; NumRegs; --NumRegs, ++I) { 7979 assert(I != RC->end() && "Ran out of registers to allocate!"); 7980 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7981 Regs.push_back(R); 7982 } 7983 7984 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7985 } 7986 7987 static unsigned 7988 findMatchingInlineAsmOperand(unsigned OperandNo, 7989 const std::vector<SDValue> &AsmNodeOperands) { 7990 // Scan until we find the definition we already emitted of this operand. 7991 unsigned CurOp = InlineAsm::Op_FirstOperand; 7992 for (; OperandNo; --OperandNo) { 7993 // Advance to the next operand. 7994 unsigned OpFlag = 7995 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7996 assert((InlineAsm::isRegDefKind(OpFlag) || 7997 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7998 InlineAsm::isMemKind(OpFlag)) && 7999 "Skipped past definitions?"); 8000 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8001 } 8002 return CurOp; 8003 } 8004 8005 namespace { 8006 8007 class ExtraFlags { 8008 unsigned Flags = 0; 8009 8010 public: 8011 explicit ExtraFlags(const CallBase &Call) { 8012 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8013 if (IA->hasSideEffects()) 8014 Flags |= InlineAsm::Extra_HasSideEffects; 8015 if (IA->isAlignStack()) 8016 Flags |= InlineAsm::Extra_IsAlignStack; 8017 if (Call.isConvergent()) 8018 Flags |= InlineAsm::Extra_IsConvergent; 8019 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8020 } 8021 8022 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8023 // Ideally, we would only check against memory constraints. However, the 8024 // meaning of an Other constraint can be target-specific and we can't easily 8025 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8026 // for Other constraints as well. 8027 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8028 OpInfo.ConstraintType == TargetLowering::C_Other) { 8029 if (OpInfo.Type == InlineAsm::isInput) 8030 Flags |= InlineAsm::Extra_MayLoad; 8031 else if (OpInfo.Type == InlineAsm::isOutput) 8032 Flags |= InlineAsm::Extra_MayStore; 8033 else if (OpInfo.Type == InlineAsm::isClobber) 8034 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8035 } 8036 } 8037 8038 unsigned get() const { return Flags; } 8039 }; 8040 8041 } // end anonymous namespace 8042 8043 /// visitInlineAsm - Handle a call to an InlineAsm object. 8044 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8045 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8046 8047 /// ConstraintOperands - Information about all of the constraints. 8048 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8049 8050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8051 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8052 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8053 8054 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8055 // AsmDialect, MayLoad, MayStore). 8056 bool HasSideEffect = IA->hasSideEffects(); 8057 ExtraFlags ExtraInfo(Call); 8058 8059 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8060 unsigned ResNo = 0; // ResNo - The result number of the next output. 8061 unsigned NumMatchingOps = 0; 8062 for (auto &T : TargetConstraints) { 8063 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8064 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8065 8066 // Compute the value type for each operand. 8067 if (OpInfo.Type == InlineAsm::isInput || 8068 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8069 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8070 8071 // Process the call argument. BasicBlocks are labels, currently appearing 8072 // only in asm's. 8073 if (isa<CallBrInst>(Call) && 8074 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8075 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8076 NumMatchingOps) && 8077 (NumMatchingOps == 0 || 8078 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8079 NumMatchingOps))) { 8080 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8081 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8082 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8083 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8084 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8085 } else { 8086 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8087 } 8088 8089 OpInfo.ConstraintVT = 8090 OpInfo 8091 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8092 .getSimpleVT(); 8093 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8094 // The return value of the call is this value. As such, there is no 8095 // corresponding argument. 8096 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8097 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8098 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8099 DAG.getDataLayout(), STy->getElementType(ResNo)); 8100 } else { 8101 assert(ResNo == 0 && "Asm only has one result!"); 8102 OpInfo.ConstraintVT = 8103 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8104 } 8105 ++ResNo; 8106 } else { 8107 OpInfo.ConstraintVT = MVT::Other; 8108 } 8109 8110 if (OpInfo.hasMatchingInput()) 8111 ++NumMatchingOps; 8112 8113 if (!HasSideEffect) 8114 HasSideEffect = OpInfo.hasMemory(TLI); 8115 8116 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8117 // FIXME: Could we compute this on OpInfo rather than T? 8118 8119 // Compute the constraint code and ConstraintType to use. 8120 TLI.ComputeConstraintToUse(T, SDValue()); 8121 8122 if (T.ConstraintType == TargetLowering::C_Immediate && 8123 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8124 // We've delayed emitting a diagnostic like the "n" constraint because 8125 // inlining could cause an integer showing up. 8126 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8127 "' expects an integer constant " 8128 "expression"); 8129 8130 ExtraInfo.update(T); 8131 } 8132 8133 8134 // We won't need to flush pending loads if this asm doesn't touch 8135 // memory and is nonvolatile. 8136 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8137 8138 bool IsCallBr = isa<CallBrInst>(Call); 8139 if (IsCallBr) { 8140 // If this is a callbr we need to flush pending exports since inlineasm_br 8141 // is a terminator. We need to do this before nodes are glued to 8142 // the inlineasm_br node. 8143 Chain = getControlRoot(); 8144 } 8145 8146 // Second pass over the constraints: compute which constraint option to use. 8147 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8148 // If this is an output operand with a matching input operand, look up the 8149 // matching input. If their types mismatch, e.g. one is an integer, the 8150 // other is floating point, or their sizes are different, flag it as an 8151 // error. 8152 if (OpInfo.hasMatchingInput()) { 8153 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8154 patchMatchingInput(OpInfo, Input, DAG); 8155 } 8156 8157 // Compute the constraint code and ConstraintType to use. 8158 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8159 8160 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8161 OpInfo.Type == InlineAsm::isClobber) 8162 continue; 8163 8164 // If this is a memory input, and if the operand is not indirect, do what we 8165 // need to provide an address for the memory input. 8166 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8167 !OpInfo.isIndirect) { 8168 assert((OpInfo.isMultipleAlternative || 8169 (OpInfo.Type == InlineAsm::isInput)) && 8170 "Can only indirectify direct input operands!"); 8171 8172 // Memory operands really want the address of the value. 8173 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8174 8175 // There is no longer a Value* corresponding to this operand. 8176 OpInfo.CallOperandVal = nullptr; 8177 8178 // It is now an indirect operand. 8179 OpInfo.isIndirect = true; 8180 } 8181 8182 } 8183 8184 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8185 std::vector<SDValue> AsmNodeOperands; 8186 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8187 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8188 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8189 8190 // If we have a !srcloc metadata node associated with it, we want to attach 8191 // this to the ultimately generated inline asm machineinstr. To do this, we 8192 // pass in the third operand as this (potentially null) inline asm MDNode. 8193 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8194 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8195 8196 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8197 // bits as operand 3. 8198 AsmNodeOperands.push_back(DAG.getTargetConstant( 8199 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8200 8201 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8202 // this, assign virtual and physical registers for inputs and otput. 8203 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8204 // Assign Registers. 8205 SDISelAsmOperandInfo &RefOpInfo = 8206 OpInfo.isMatchingInputConstraint() 8207 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8208 : OpInfo; 8209 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8210 8211 auto DetectWriteToReservedRegister = [&]() { 8212 const MachineFunction &MF = DAG.getMachineFunction(); 8213 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8214 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8215 if (Register::isPhysicalRegister(Reg) && 8216 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8217 const char *RegName = TRI.getName(Reg); 8218 emitInlineAsmError(Call, "write to reserved register '" + 8219 Twine(RegName) + "'"); 8220 return true; 8221 } 8222 } 8223 return false; 8224 }; 8225 8226 switch (OpInfo.Type) { 8227 case InlineAsm::isOutput: 8228 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8229 unsigned ConstraintID = 8230 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8231 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8232 "Failed to convert memory constraint code to constraint id."); 8233 8234 // Add information to the INLINEASM node to know about this output. 8235 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8236 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8237 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8238 MVT::i32)); 8239 AsmNodeOperands.push_back(OpInfo.CallOperand); 8240 } else { 8241 // Otherwise, this outputs to a register (directly for C_Register / 8242 // C_RegisterClass, and a target-defined fashion for 8243 // C_Immediate/C_Other). Find a register that we can use. 8244 if (OpInfo.AssignedRegs.Regs.empty()) { 8245 emitInlineAsmError( 8246 Call, "couldn't allocate output register for constraint '" + 8247 Twine(OpInfo.ConstraintCode) + "'"); 8248 return; 8249 } 8250 8251 if (DetectWriteToReservedRegister()) 8252 return; 8253 8254 // Add information to the INLINEASM node to know that this register is 8255 // set. 8256 OpInfo.AssignedRegs.AddInlineAsmOperands( 8257 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8258 : InlineAsm::Kind_RegDef, 8259 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8260 } 8261 break; 8262 8263 case InlineAsm::isInput: { 8264 SDValue InOperandVal = OpInfo.CallOperand; 8265 8266 if (OpInfo.isMatchingInputConstraint()) { 8267 // If this is required to match an output register we have already set, 8268 // just use its register. 8269 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8270 AsmNodeOperands); 8271 unsigned OpFlag = 8272 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8273 if (InlineAsm::isRegDefKind(OpFlag) || 8274 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8275 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8276 if (OpInfo.isIndirect) { 8277 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8278 emitInlineAsmError(Call, "inline asm not supported yet: " 8279 "don't know how to handle tied " 8280 "indirect register inputs"); 8281 return; 8282 } 8283 8284 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8285 SmallVector<unsigned, 4> Regs; 8286 8287 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8288 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8289 MachineRegisterInfo &RegInfo = 8290 DAG.getMachineFunction().getRegInfo(); 8291 for (unsigned i = 0; i != NumRegs; ++i) 8292 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8293 } else { 8294 emitInlineAsmError(Call, 8295 "inline asm error: This value type register " 8296 "class is not natively supported!"); 8297 return; 8298 } 8299 8300 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8301 8302 SDLoc dl = getCurSDLoc(); 8303 // Use the produced MatchedRegs object to 8304 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8305 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8306 true, OpInfo.getMatchedOperand(), dl, 8307 DAG, AsmNodeOperands); 8308 break; 8309 } 8310 8311 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8312 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8313 "Unexpected number of operands"); 8314 // Add information to the INLINEASM node to know about this input. 8315 // See InlineAsm.h isUseOperandTiedToDef. 8316 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8317 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8318 OpInfo.getMatchedOperand()); 8319 AsmNodeOperands.push_back(DAG.getTargetConstant( 8320 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8321 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8322 break; 8323 } 8324 8325 // Treat indirect 'X' constraint as memory. 8326 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8327 OpInfo.isIndirect) 8328 OpInfo.ConstraintType = TargetLowering::C_Memory; 8329 8330 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8331 OpInfo.ConstraintType == TargetLowering::C_Other) { 8332 std::vector<SDValue> Ops; 8333 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8334 Ops, DAG); 8335 if (Ops.empty()) { 8336 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8337 if (isa<ConstantSDNode>(InOperandVal)) { 8338 emitInlineAsmError(Call, "value out of range for constraint '" + 8339 Twine(OpInfo.ConstraintCode) + "'"); 8340 return; 8341 } 8342 8343 emitInlineAsmError(Call, 8344 "invalid operand for inline asm constraint '" + 8345 Twine(OpInfo.ConstraintCode) + "'"); 8346 return; 8347 } 8348 8349 // Add information to the INLINEASM node to know about this input. 8350 unsigned ResOpType = 8351 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8352 AsmNodeOperands.push_back(DAG.getTargetConstant( 8353 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8354 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8355 break; 8356 } 8357 8358 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8359 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8360 assert(InOperandVal.getValueType() == 8361 TLI.getPointerTy(DAG.getDataLayout()) && 8362 "Memory operands expect pointer values"); 8363 8364 unsigned ConstraintID = 8365 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8366 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8367 "Failed to convert memory constraint code to constraint id."); 8368 8369 // Add information to the INLINEASM node to know about this input. 8370 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8371 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8372 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8373 getCurSDLoc(), 8374 MVT::i32)); 8375 AsmNodeOperands.push_back(InOperandVal); 8376 break; 8377 } 8378 8379 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8380 OpInfo.ConstraintType == TargetLowering::C_Register) && 8381 "Unknown constraint type!"); 8382 8383 // TODO: Support this. 8384 if (OpInfo.isIndirect) { 8385 emitInlineAsmError( 8386 Call, "Don't know how to handle indirect register inputs yet " 8387 "for constraint '" + 8388 Twine(OpInfo.ConstraintCode) + "'"); 8389 return; 8390 } 8391 8392 // Copy the input into the appropriate registers. 8393 if (OpInfo.AssignedRegs.Regs.empty()) { 8394 emitInlineAsmError(Call, 8395 "couldn't allocate input reg for constraint '" + 8396 Twine(OpInfo.ConstraintCode) + "'"); 8397 return; 8398 } 8399 8400 if (DetectWriteToReservedRegister()) 8401 return; 8402 8403 SDLoc dl = getCurSDLoc(); 8404 8405 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8406 &Call); 8407 8408 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8409 dl, DAG, AsmNodeOperands); 8410 break; 8411 } 8412 case InlineAsm::isClobber: 8413 // Add the clobbered value to the operand list, so that the register 8414 // allocator is aware that the physreg got clobbered. 8415 if (!OpInfo.AssignedRegs.Regs.empty()) 8416 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8417 false, 0, getCurSDLoc(), DAG, 8418 AsmNodeOperands); 8419 break; 8420 } 8421 } 8422 8423 // Finish up input operands. Set the input chain and add the flag last. 8424 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8425 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8426 8427 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8428 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8429 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8430 Flag = Chain.getValue(1); 8431 8432 // Do additional work to generate outputs. 8433 8434 SmallVector<EVT, 1> ResultVTs; 8435 SmallVector<SDValue, 1> ResultValues; 8436 SmallVector<SDValue, 8> OutChains; 8437 8438 llvm::Type *CallResultType = Call.getType(); 8439 ArrayRef<Type *> ResultTypes; 8440 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8441 ResultTypes = StructResult->elements(); 8442 else if (!CallResultType->isVoidTy()) 8443 ResultTypes = makeArrayRef(CallResultType); 8444 8445 auto CurResultType = ResultTypes.begin(); 8446 auto handleRegAssign = [&](SDValue V) { 8447 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8448 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8449 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8450 ++CurResultType; 8451 // If the type of the inline asm call site return value is different but has 8452 // same size as the type of the asm output bitcast it. One example of this 8453 // is for vectors with different width / number of elements. This can 8454 // happen for register classes that can contain multiple different value 8455 // types. The preg or vreg allocated may not have the same VT as was 8456 // expected. 8457 // 8458 // This can also happen for a return value that disagrees with the register 8459 // class it is put in, eg. a double in a general-purpose register on a 8460 // 32-bit machine. 8461 if (ResultVT != V.getValueType() && 8462 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8463 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8464 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8465 V.getValueType().isInteger()) { 8466 // If a result value was tied to an input value, the computed result 8467 // may have a wider width than the expected result. Extract the 8468 // relevant portion. 8469 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8470 } 8471 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8472 ResultVTs.push_back(ResultVT); 8473 ResultValues.push_back(V); 8474 }; 8475 8476 // Deal with output operands. 8477 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8478 if (OpInfo.Type == InlineAsm::isOutput) { 8479 SDValue Val; 8480 // Skip trivial output operands. 8481 if (OpInfo.AssignedRegs.Regs.empty()) 8482 continue; 8483 8484 switch (OpInfo.ConstraintType) { 8485 case TargetLowering::C_Register: 8486 case TargetLowering::C_RegisterClass: 8487 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8488 Chain, &Flag, &Call); 8489 break; 8490 case TargetLowering::C_Immediate: 8491 case TargetLowering::C_Other: 8492 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8493 OpInfo, DAG); 8494 break; 8495 case TargetLowering::C_Memory: 8496 break; // Already handled. 8497 case TargetLowering::C_Unknown: 8498 assert(false && "Unexpected unknown constraint"); 8499 } 8500 8501 // Indirect output manifest as stores. Record output chains. 8502 if (OpInfo.isIndirect) { 8503 const Value *Ptr = OpInfo.CallOperandVal; 8504 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8505 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8506 MachinePointerInfo(Ptr)); 8507 OutChains.push_back(Store); 8508 } else { 8509 // generate CopyFromRegs to associated registers. 8510 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8511 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8512 for (const SDValue &V : Val->op_values()) 8513 handleRegAssign(V); 8514 } else 8515 handleRegAssign(Val); 8516 } 8517 } 8518 } 8519 8520 // Set results. 8521 if (!ResultValues.empty()) { 8522 assert(CurResultType == ResultTypes.end() && 8523 "Mismatch in number of ResultTypes"); 8524 assert(ResultValues.size() == ResultTypes.size() && 8525 "Mismatch in number of output operands in asm result"); 8526 8527 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8528 DAG.getVTList(ResultVTs), ResultValues); 8529 setValue(&Call, V); 8530 } 8531 8532 // Collect store chains. 8533 if (!OutChains.empty()) 8534 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8535 8536 // Only Update Root if inline assembly has a memory effect. 8537 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8538 DAG.setRoot(Chain); 8539 } 8540 8541 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8542 const Twine &Message) { 8543 LLVMContext &Ctx = *DAG.getContext(); 8544 Ctx.emitError(&Call, Message); 8545 8546 // Make sure we leave the DAG in a valid state 8547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8548 SmallVector<EVT, 1> ValueVTs; 8549 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8550 8551 if (ValueVTs.empty()) 8552 return; 8553 8554 SmallVector<SDValue, 1> Ops; 8555 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8556 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8557 8558 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8559 } 8560 8561 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8562 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8563 MVT::Other, getRoot(), 8564 getValue(I.getArgOperand(0)), 8565 DAG.getSrcValue(I.getArgOperand(0)))); 8566 } 8567 8568 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8570 const DataLayout &DL = DAG.getDataLayout(); 8571 SDValue V = DAG.getVAArg( 8572 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8573 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8574 DL.getABITypeAlign(I.getType()).value()); 8575 DAG.setRoot(V.getValue(1)); 8576 8577 if (I.getType()->isPointerTy()) 8578 V = DAG.getPtrExtOrTrunc( 8579 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8580 setValue(&I, V); 8581 } 8582 8583 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8584 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8585 MVT::Other, getRoot(), 8586 getValue(I.getArgOperand(0)), 8587 DAG.getSrcValue(I.getArgOperand(0)))); 8588 } 8589 8590 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8591 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8592 MVT::Other, getRoot(), 8593 getValue(I.getArgOperand(0)), 8594 getValue(I.getArgOperand(1)), 8595 DAG.getSrcValue(I.getArgOperand(0)), 8596 DAG.getSrcValue(I.getArgOperand(1)))); 8597 } 8598 8599 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8600 const Instruction &I, 8601 SDValue Op) { 8602 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8603 if (!Range) 8604 return Op; 8605 8606 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8607 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8608 return Op; 8609 8610 APInt Lo = CR.getUnsignedMin(); 8611 if (!Lo.isMinValue()) 8612 return Op; 8613 8614 APInt Hi = CR.getUnsignedMax(); 8615 unsigned Bits = std::max(Hi.getActiveBits(), 8616 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8617 8618 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8619 8620 SDLoc SL = getCurSDLoc(); 8621 8622 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8623 DAG.getValueType(SmallVT)); 8624 unsigned NumVals = Op.getNode()->getNumValues(); 8625 if (NumVals == 1) 8626 return ZExt; 8627 8628 SmallVector<SDValue, 4> Ops; 8629 8630 Ops.push_back(ZExt); 8631 for (unsigned I = 1; I != NumVals; ++I) 8632 Ops.push_back(Op.getValue(I)); 8633 8634 return DAG.getMergeValues(Ops, SL); 8635 } 8636 8637 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8638 /// the call being lowered. 8639 /// 8640 /// This is a helper for lowering intrinsics that follow a target calling 8641 /// convention or require stack pointer adjustment. Only a subset of the 8642 /// intrinsic's operands need to participate in the calling convention. 8643 void SelectionDAGBuilder::populateCallLoweringInfo( 8644 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8645 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8646 bool IsPatchPoint) { 8647 TargetLowering::ArgListTy Args; 8648 Args.reserve(NumArgs); 8649 8650 // Populate the argument list. 8651 // Attributes for args start at offset 1, after the return attribute. 8652 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8653 ArgI != ArgE; ++ArgI) { 8654 const Value *V = Call->getOperand(ArgI); 8655 8656 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8657 8658 TargetLowering::ArgListEntry Entry; 8659 Entry.Node = getValue(V); 8660 Entry.Ty = V->getType(); 8661 Entry.setAttributes(Call, ArgI); 8662 Args.push_back(Entry); 8663 } 8664 8665 CLI.setDebugLoc(getCurSDLoc()) 8666 .setChain(getRoot()) 8667 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8668 .setDiscardResult(Call->use_empty()) 8669 .setIsPatchPoint(IsPatchPoint) 8670 .setIsPreallocated( 8671 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8672 } 8673 8674 /// Add a stack map intrinsic call's live variable operands to a stackmap 8675 /// or patchpoint target node's operand list. 8676 /// 8677 /// Constants are converted to TargetConstants purely as an optimization to 8678 /// avoid constant materialization and register allocation. 8679 /// 8680 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8681 /// generate addess computation nodes, and so FinalizeISel can convert the 8682 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8683 /// address materialization and register allocation, but may also be required 8684 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8685 /// alloca in the entry block, then the runtime may assume that the alloca's 8686 /// StackMap location can be read immediately after compilation and that the 8687 /// location is valid at any point during execution (this is similar to the 8688 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8689 /// only available in a register, then the runtime would need to trap when 8690 /// execution reaches the StackMap in order to read the alloca's location. 8691 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8692 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8693 SelectionDAGBuilder &Builder) { 8694 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8695 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8696 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8697 Ops.push_back( 8698 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8699 Ops.push_back( 8700 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8701 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8702 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8703 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8704 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8705 } else 8706 Ops.push_back(OpVal); 8707 } 8708 } 8709 8710 /// Lower llvm.experimental.stackmap directly to its target opcode. 8711 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8712 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8713 // [live variables...]) 8714 8715 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8716 8717 SDValue Chain, InFlag, Callee, NullPtr; 8718 SmallVector<SDValue, 32> Ops; 8719 8720 SDLoc DL = getCurSDLoc(); 8721 Callee = getValue(CI.getCalledOperand()); 8722 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8723 8724 // The stackmap intrinsic only records the live variables (the arguments 8725 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8726 // intrinsic, this won't be lowered to a function call. This means we don't 8727 // have to worry about calling conventions and target specific lowering code. 8728 // Instead we perform the call lowering right here. 8729 // 8730 // chain, flag = CALLSEQ_START(chain, 0, 0) 8731 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8732 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8733 // 8734 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8735 InFlag = Chain.getValue(1); 8736 8737 // Add the <id> and <numBytes> constants. 8738 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8739 Ops.push_back(DAG.getTargetConstant( 8740 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8741 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8742 Ops.push_back(DAG.getTargetConstant( 8743 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8744 MVT::i32)); 8745 8746 // Push live variables for the stack map. 8747 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8748 8749 // We are not pushing any register mask info here on the operands list, 8750 // because the stackmap doesn't clobber anything. 8751 8752 // Push the chain and the glue flag. 8753 Ops.push_back(Chain); 8754 Ops.push_back(InFlag); 8755 8756 // Create the STACKMAP node. 8757 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8758 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8759 Chain = SDValue(SM, 0); 8760 InFlag = Chain.getValue(1); 8761 8762 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8763 8764 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8765 8766 // Set the root to the target-lowered call chain. 8767 DAG.setRoot(Chain); 8768 8769 // Inform the Frame Information that we have a stackmap in this function. 8770 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8771 } 8772 8773 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8774 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8775 const BasicBlock *EHPadBB) { 8776 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8777 // i32 <numBytes>, 8778 // i8* <target>, 8779 // i32 <numArgs>, 8780 // [Args...], 8781 // [live variables...]) 8782 8783 CallingConv::ID CC = CB.getCallingConv(); 8784 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8785 bool HasDef = !CB.getType()->isVoidTy(); 8786 SDLoc dl = getCurSDLoc(); 8787 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8788 8789 // Handle immediate and symbolic callees. 8790 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8791 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8792 /*isTarget=*/true); 8793 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8794 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8795 SDLoc(SymbolicCallee), 8796 SymbolicCallee->getValueType(0)); 8797 8798 // Get the real number of arguments participating in the call <numArgs> 8799 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8800 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8801 8802 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8803 // Intrinsics include all meta-operands up to but not including CC. 8804 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8805 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8806 "Not enough arguments provided to the patchpoint intrinsic"); 8807 8808 // For AnyRegCC the arguments are lowered later on manually. 8809 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8810 Type *ReturnTy = 8811 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8812 8813 TargetLowering::CallLoweringInfo CLI(DAG); 8814 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8815 ReturnTy, true); 8816 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8817 8818 SDNode *CallEnd = Result.second.getNode(); 8819 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8820 CallEnd = CallEnd->getOperand(0).getNode(); 8821 8822 /// Get a call instruction from the call sequence chain. 8823 /// Tail calls are not allowed. 8824 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8825 "Expected a callseq node."); 8826 SDNode *Call = CallEnd->getOperand(0).getNode(); 8827 bool HasGlue = Call->getGluedNode(); 8828 8829 // Replace the target specific call node with the patchable intrinsic. 8830 SmallVector<SDValue, 8> Ops; 8831 8832 // Add the <id> and <numBytes> constants. 8833 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8834 Ops.push_back(DAG.getTargetConstant( 8835 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8836 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8837 Ops.push_back(DAG.getTargetConstant( 8838 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8839 MVT::i32)); 8840 8841 // Add the callee. 8842 Ops.push_back(Callee); 8843 8844 // Adjust <numArgs> to account for any arguments that have been passed on the 8845 // stack instead. 8846 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8847 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8848 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8849 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8850 8851 // Add the calling convention 8852 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8853 8854 // Add the arguments we omitted previously. The register allocator should 8855 // place these in any free register. 8856 if (IsAnyRegCC) 8857 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8858 Ops.push_back(getValue(CB.getArgOperand(i))); 8859 8860 // Push the arguments from the call instruction up to the register mask. 8861 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8862 Ops.append(Call->op_begin() + 2, e); 8863 8864 // Push live variables for the stack map. 8865 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8866 8867 // Push the register mask info. 8868 if (HasGlue) 8869 Ops.push_back(*(Call->op_end()-2)); 8870 else 8871 Ops.push_back(*(Call->op_end()-1)); 8872 8873 // Push the chain (this is originally the first operand of the call, but 8874 // becomes now the last or second to last operand). 8875 Ops.push_back(*(Call->op_begin())); 8876 8877 // Push the glue flag (last operand). 8878 if (HasGlue) 8879 Ops.push_back(*(Call->op_end()-1)); 8880 8881 SDVTList NodeTys; 8882 if (IsAnyRegCC && HasDef) { 8883 // Create the return types based on the intrinsic definition 8884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8885 SmallVector<EVT, 3> ValueVTs; 8886 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8887 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8888 8889 // There is always a chain and a glue type at the end 8890 ValueVTs.push_back(MVT::Other); 8891 ValueVTs.push_back(MVT::Glue); 8892 NodeTys = DAG.getVTList(ValueVTs); 8893 } else 8894 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8895 8896 // Replace the target specific call node with a PATCHPOINT node. 8897 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8898 dl, NodeTys, Ops); 8899 8900 // Update the NodeMap. 8901 if (HasDef) { 8902 if (IsAnyRegCC) 8903 setValue(&CB, SDValue(MN, 0)); 8904 else 8905 setValue(&CB, Result.first); 8906 } 8907 8908 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8909 // call sequence. Furthermore the location of the chain and glue can change 8910 // when the AnyReg calling convention is used and the intrinsic returns a 8911 // value. 8912 if (IsAnyRegCC && HasDef) { 8913 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8914 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8915 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8916 } else 8917 DAG.ReplaceAllUsesWith(Call, MN); 8918 DAG.DeleteNode(Call); 8919 8920 // Inform the Frame Information that we have a patchpoint in this function. 8921 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8922 } 8923 8924 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8925 unsigned Intrinsic) { 8926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8927 SDValue Op1 = getValue(I.getArgOperand(0)); 8928 SDValue Op2; 8929 if (I.getNumArgOperands() > 1) 8930 Op2 = getValue(I.getArgOperand(1)); 8931 SDLoc dl = getCurSDLoc(); 8932 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8933 SDValue Res; 8934 SDNodeFlags SDFlags; 8935 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 8936 SDFlags.copyFMF(*FPMO); 8937 8938 switch (Intrinsic) { 8939 case Intrinsic::experimental_vector_reduce_v2_fadd: 8940 if (SDFlags.hasAllowReassociation()) 8941 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8942 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 8943 SDFlags); 8944 else 8945 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2, SDFlags); 8946 break; 8947 case Intrinsic::experimental_vector_reduce_v2_fmul: 8948 if (SDFlags.hasAllowReassociation()) 8949 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8950 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 8951 SDFlags); 8952 else 8953 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2, SDFlags); 8954 break; 8955 case Intrinsic::experimental_vector_reduce_add: 8956 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8957 break; 8958 case Intrinsic::experimental_vector_reduce_mul: 8959 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8960 break; 8961 case Intrinsic::experimental_vector_reduce_and: 8962 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8963 break; 8964 case Intrinsic::experimental_vector_reduce_or: 8965 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8966 break; 8967 case Intrinsic::experimental_vector_reduce_xor: 8968 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8969 break; 8970 case Intrinsic::experimental_vector_reduce_smax: 8971 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8972 break; 8973 case Intrinsic::experimental_vector_reduce_smin: 8974 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8975 break; 8976 case Intrinsic::experimental_vector_reduce_umax: 8977 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8978 break; 8979 case Intrinsic::experimental_vector_reduce_umin: 8980 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8981 break; 8982 case Intrinsic::experimental_vector_reduce_fmax: 8983 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8984 break; 8985 case Intrinsic::experimental_vector_reduce_fmin: 8986 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8987 break; 8988 default: 8989 llvm_unreachable("Unhandled vector reduce intrinsic"); 8990 } 8991 setValue(&I, Res); 8992 } 8993 8994 /// Returns an AttributeList representing the attributes applied to the return 8995 /// value of the given call. 8996 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8997 SmallVector<Attribute::AttrKind, 2> Attrs; 8998 if (CLI.RetSExt) 8999 Attrs.push_back(Attribute::SExt); 9000 if (CLI.RetZExt) 9001 Attrs.push_back(Attribute::ZExt); 9002 if (CLI.IsInReg) 9003 Attrs.push_back(Attribute::InReg); 9004 9005 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9006 Attrs); 9007 } 9008 9009 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9010 /// implementation, which just calls LowerCall. 9011 /// FIXME: When all targets are 9012 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9013 std::pair<SDValue, SDValue> 9014 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9015 // Handle the incoming return values from the call. 9016 CLI.Ins.clear(); 9017 Type *OrigRetTy = CLI.RetTy; 9018 SmallVector<EVT, 4> RetTys; 9019 SmallVector<uint64_t, 4> Offsets; 9020 auto &DL = CLI.DAG.getDataLayout(); 9021 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9022 9023 if (CLI.IsPostTypeLegalization) { 9024 // If we are lowering a libcall after legalization, split the return type. 9025 SmallVector<EVT, 4> OldRetTys; 9026 SmallVector<uint64_t, 4> OldOffsets; 9027 RetTys.swap(OldRetTys); 9028 Offsets.swap(OldOffsets); 9029 9030 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9031 EVT RetVT = OldRetTys[i]; 9032 uint64_t Offset = OldOffsets[i]; 9033 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9034 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9035 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9036 RetTys.append(NumRegs, RegisterVT); 9037 for (unsigned j = 0; j != NumRegs; ++j) 9038 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9039 } 9040 } 9041 9042 SmallVector<ISD::OutputArg, 4> Outs; 9043 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9044 9045 bool CanLowerReturn = 9046 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9047 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9048 9049 SDValue DemoteStackSlot; 9050 int DemoteStackIdx = -100; 9051 if (!CanLowerReturn) { 9052 // FIXME: equivalent assert? 9053 // assert(!CS.hasInAllocaArgument() && 9054 // "sret demotion is incompatible with inalloca"); 9055 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9056 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9057 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9058 DemoteStackIdx = 9059 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9060 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9061 DL.getAllocaAddrSpace()); 9062 9063 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9064 ArgListEntry Entry; 9065 Entry.Node = DemoteStackSlot; 9066 Entry.Ty = StackSlotPtrType; 9067 Entry.IsSExt = false; 9068 Entry.IsZExt = false; 9069 Entry.IsInReg = false; 9070 Entry.IsSRet = true; 9071 Entry.IsNest = false; 9072 Entry.IsByVal = false; 9073 Entry.IsByRef = false; 9074 Entry.IsReturned = false; 9075 Entry.IsSwiftSelf = false; 9076 Entry.IsSwiftError = false; 9077 Entry.IsCFGuardTarget = false; 9078 Entry.Alignment = Alignment; 9079 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9080 CLI.NumFixedArgs += 1; 9081 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9082 9083 // sret demotion isn't compatible with tail-calls, since the sret argument 9084 // points into the callers stack frame. 9085 CLI.IsTailCall = false; 9086 } else { 9087 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9088 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9089 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9090 ISD::ArgFlagsTy Flags; 9091 if (NeedsRegBlock) { 9092 Flags.setInConsecutiveRegs(); 9093 if (I == RetTys.size() - 1) 9094 Flags.setInConsecutiveRegsLast(); 9095 } 9096 EVT VT = RetTys[I]; 9097 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9098 CLI.CallConv, VT); 9099 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9100 CLI.CallConv, VT); 9101 for (unsigned i = 0; i != NumRegs; ++i) { 9102 ISD::InputArg MyFlags; 9103 MyFlags.Flags = Flags; 9104 MyFlags.VT = RegisterVT; 9105 MyFlags.ArgVT = VT; 9106 MyFlags.Used = CLI.IsReturnValueUsed; 9107 if (CLI.RetTy->isPointerTy()) { 9108 MyFlags.Flags.setPointer(); 9109 MyFlags.Flags.setPointerAddrSpace( 9110 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9111 } 9112 if (CLI.RetSExt) 9113 MyFlags.Flags.setSExt(); 9114 if (CLI.RetZExt) 9115 MyFlags.Flags.setZExt(); 9116 if (CLI.IsInReg) 9117 MyFlags.Flags.setInReg(); 9118 CLI.Ins.push_back(MyFlags); 9119 } 9120 } 9121 } 9122 9123 // We push in swifterror return as the last element of CLI.Ins. 9124 ArgListTy &Args = CLI.getArgs(); 9125 if (supportSwiftError()) { 9126 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9127 if (Args[i].IsSwiftError) { 9128 ISD::InputArg MyFlags; 9129 MyFlags.VT = getPointerTy(DL); 9130 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9131 MyFlags.Flags.setSwiftError(); 9132 CLI.Ins.push_back(MyFlags); 9133 } 9134 } 9135 } 9136 9137 // Handle all of the outgoing arguments. 9138 CLI.Outs.clear(); 9139 CLI.OutVals.clear(); 9140 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9141 SmallVector<EVT, 4> ValueVTs; 9142 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9143 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9144 Type *FinalType = Args[i].Ty; 9145 if (Args[i].IsByVal) 9146 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9147 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9148 FinalType, CLI.CallConv, CLI.IsVarArg); 9149 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9150 ++Value) { 9151 EVT VT = ValueVTs[Value]; 9152 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9153 SDValue Op = SDValue(Args[i].Node.getNode(), 9154 Args[i].Node.getResNo() + Value); 9155 ISD::ArgFlagsTy Flags; 9156 9157 // Certain targets (such as MIPS), may have a different ABI alignment 9158 // for a type depending on the context. Give the target a chance to 9159 // specify the alignment it wants. 9160 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9161 9162 if (Args[i].Ty->isPointerTy()) { 9163 Flags.setPointer(); 9164 Flags.setPointerAddrSpace( 9165 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9166 } 9167 if (Args[i].IsZExt) 9168 Flags.setZExt(); 9169 if (Args[i].IsSExt) 9170 Flags.setSExt(); 9171 if (Args[i].IsInReg) { 9172 // If we are using vectorcall calling convention, a structure that is 9173 // passed InReg - is surely an HVA 9174 if (CLI.CallConv == CallingConv::X86_VectorCall && 9175 isa<StructType>(FinalType)) { 9176 // The first value of a structure is marked 9177 if (0 == Value) 9178 Flags.setHvaStart(); 9179 Flags.setHva(); 9180 } 9181 // Set InReg Flag 9182 Flags.setInReg(); 9183 } 9184 if (Args[i].IsSRet) 9185 Flags.setSRet(); 9186 if (Args[i].IsSwiftSelf) 9187 Flags.setSwiftSelf(); 9188 if (Args[i].IsSwiftError) 9189 Flags.setSwiftError(); 9190 if (Args[i].IsCFGuardTarget) 9191 Flags.setCFGuardTarget(); 9192 if (Args[i].IsByVal) 9193 Flags.setByVal(); 9194 if (Args[i].IsByRef) 9195 Flags.setByRef(); 9196 if (Args[i].IsPreallocated) { 9197 Flags.setPreallocated(); 9198 // Set the byval flag for CCAssignFn callbacks that don't know about 9199 // preallocated. This way we can know how many bytes we should've 9200 // allocated and how many bytes a callee cleanup function will pop. If 9201 // we port preallocated to more targets, we'll have to add custom 9202 // preallocated handling in the various CC lowering callbacks. 9203 Flags.setByVal(); 9204 } 9205 if (Args[i].IsInAlloca) { 9206 Flags.setInAlloca(); 9207 // Set the byval flag for CCAssignFn callbacks that don't know about 9208 // inalloca. This way we can know how many bytes we should've allocated 9209 // and how many bytes a callee cleanup function will pop. If we port 9210 // inalloca to more targets, we'll have to add custom inalloca handling 9211 // in the various CC lowering callbacks. 9212 Flags.setByVal(); 9213 } 9214 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9215 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9216 Type *ElementTy = Ty->getElementType(); 9217 9218 unsigned FrameSize = DL.getTypeAllocSize( 9219 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9220 Flags.setByValSize(FrameSize); 9221 9222 // info is not there but there are cases it cannot get right. 9223 Align FrameAlign; 9224 if (auto MA = Args[i].Alignment) 9225 FrameAlign = *MA; 9226 else 9227 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9228 Flags.setByValAlign(FrameAlign); 9229 } 9230 if (Args[i].IsNest) 9231 Flags.setNest(); 9232 if (NeedsRegBlock) 9233 Flags.setInConsecutiveRegs(); 9234 Flags.setOrigAlign(OriginalAlignment); 9235 9236 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9237 CLI.CallConv, VT); 9238 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9239 CLI.CallConv, VT); 9240 SmallVector<SDValue, 4> Parts(NumParts); 9241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9242 9243 if (Args[i].IsSExt) 9244 ExtendKind = ISD::SIGN_EXTEND; 9245 else if (Args[i].IsZExt) 9246 ExtendKind = ISD::ZERO_EXTEND; 9247 9248 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9249 // for now. 9250 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9251 CanLowerReturn) { 9252 assert((CLI.RetTy == Args[i].Ty || 9253 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9254 CLI.RetTy->getPointerAddressSpace() == 9255 Args[i].Ty->getPointerAddressSpace())) && 9256 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9257 // Before passing 'returned' to the target lowering code, ensure that 9258 // either the register MVT and the actual EVT are the same size or that 9259 // the return value and argument are extended in the same way; in these 9260 // cases it's safe to pass the argument register value unchanged as the 9261 // return register value (although it's at the target's option whether 9262 // to do so) 9263 // TODO: allow code generation to take advantage of partially preserved 9264 // registers rather than clobbering the entire register when the 9265 // parameter extension method is not compatible with the return 9266 // extension method 9267 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9268 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9269 CLI.RetZExt == Args[i].IsZExt)) 9270 Flags.setReturned(); 9271 } 9272 9273 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9274 CLI.CallConv, ExtendKind); 9275 9276 for (unsigned j = 0; j != NumParts; ++j) { 9277 // if it isn't first piece, alignment must be 1 9278 // For scalable vectors the scalable part is currently handled 9279 // by individual targets, so we just use the known minimum size here. 9280 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9281 i < CLI.NumFixedArgs, i, 9282 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9283 if (NumParts > 1 && j == 0) 9284 MyFlags.Flags.setSplit(); 9285 else if (j != 0) { 9286 MyFlags.Flags.setOrigAlign(Align(1)); 9287 if (j == NumParts - 1) 9288 MyFlags.Flags.setSplitEnd(); 9289 } 9290 9291 CLI.Outs.push_back(MyFlags); 9292 CLI.OutVals.push_back(Parts[j]); 9293 } 9294 9295 if (NeedsRegBlock && Value == NumValues - 1) 9296 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9297 } 9298 } 9299 9300 SmallVector<SDValue, 4> InVals; 9301 CLI.Chain = LowerCall(CLI, InVals); 9302 9303 // Update CLI.InVals to use outside of this function. 9304 CLI.InVals = InVals; 9305 9306 // Verify that the target's LowerCall behaved as expected. 9307 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9308 "LowerCall didn't return a valid chain!"); 9309 assert((!CLI.IsTailCall || InVals.empty()) && 9310 "LowerCall emitted a return value for a tail call!"); 9311 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9312 "LowerCall didn't emit the correct number of values!"); 9313 9314 // For a tail call, the return value is merely live-out and there aren't 9315 // any nodes in the DAG representing it. Return a special value to 9316 // indicate that a tail call has been emitted and no more Instructions 9317 // should be processed in the current block. 9318 if (CLI.IsTailCall) { 9319 CLI.DAG.setRoot(CLI.Chain); 9320 return std::make_pair(SDValue(), SDValue()); 9321 } 9322 9323 #ifndef NDEBUG 9324 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9325 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9326 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9327 "LowerCall emitted a value with the wrong type!"); 9328 } 9329 #endif 9330 9331 SmallVector<SDValue, 4> ReturnValues; 9332 if (!CanLowerReturn) { 9333 // The instruction result is the result of loading from the 9334 // hidden sret parameter. 9335 SmallVector<EVT, 1> PVTs; 9336 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9337 9338 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9339 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9340 EVT PtrVT = PVTs[0]; 9341 9342 unsigned NumValues = RetTys.size(); 9343 ReturnValues.resize(NumValues); 9344 SmallVector<SDValue, 4> Chains(NumValues); 9345 9346 // An aggregate return value cannot wrap around the address space, so 9347 // offsets to its parts don't wrap either. 9348 SDNodeFlags Flags; 9349 Flags.setNoUnsignedWrap(true); 9350 9351 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9352 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9353 for (unsigned i = 0; i < NumValues; ++i) { 9354 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9355 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9356 PtrVT), Flags); 9357 SDValue L = CLI.DAG.getLoad( 9358 RetTys[i], CLI.DL, CLI.Chain, Add, 9359 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9360 DemoteStackIdx, Offsets[i]), 9361 HiddenSRetAlign); 9362 ReturnValues[i] = L; 9363 Chains[i] = L.getValue(1); 9364 } 9365 9366 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9367 } else { 9368 // Collect the legal value parts into potentially illegal values 9369 // that correspond to the original function's return values. 9370 Optional<ISD::NodeType> AssertOp; 9371 if (CLI.RetSExt) 9372 AssertOp = ISD::AssertSext; 9373 else if (CLI.RetZExt) 9374 AssertOp = ISD::AssertZext; 9375 unsigned CurReg = 0; 9376 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9377 EVT VT = RetTys[I]; 9378 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9379 CLI.CallConv, VT); 9380 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9381 CLI.CallConv, VT); 9382 9383 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9384 NumRegs, RegisterVT, VT, nullptr, 9385 CLI.CallConv, AssertOp)); 9386 CurReg += NumRegs; 9387 } 9388 9389 // For a function returning void, there is no return value. We can't create 9390 // such a node, so we just return a null return value in that case. In 9391 // that case, nothing will actually look at the value. 9392 if (ReturnValues.empty()) 9393 return std::make_pair(SDValue(), CLI.Chain); 9394 } 9395 9396 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9397 CLI.DAG.getVTList(RetTys), ReturnValues); 9398 return std::make_pair(Res, CLI.Chain); 9399 } 9400 9401 void TargetLowering::LowerOperationWrapper(SDNode *N, 9402 SmallVectorImpl<SDValue> &Results, 9403 SelectionDAG &DAG) const { 9404 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9405 Results.push_back(Res); 9406 } 9407 9408 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9409 llvm_unreachable("LowerOperation not implemented for this target!"); 9410 } 9411 9412 void 9413 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9414 SDValue Op = getNonRegisterValue(V); 9415 assert((Op.getOpcode() != ISD::CopyFromReg || 9416 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9417 "Copy from a reg to the same reg!"); 9418 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9419 9420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9421 // If this is an InlineAsm we have to match the registers required, not the 9422 // notional registers required by the type. 9423 9424 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9425 None); // This is not an ABI copy. 9426 SDValue Chain = DAG.getEntryNode(); 9427 9428 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9429 FuncInfo.PreferredExtendType.end()) 9430 ? ISD::ANY_EXTEND 9431 : FuncInfo.PreferredExtendType[V]; 9432 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9433 PendingExports.push_back(Chain); 9434 } 9435 9436 #include "llvm/CodeGen/SelectionDAGISel.h" 9437 9438 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9439 /// entry block, return true. This includes arguments used by switches, since 9440 /// the switch may expand into multiple basic blocks. 9441 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9442 // With FastISel active, we may be splitting blocks, so force creation 9443 // of virtual registers for all non-dead arguments. 9444 if (FastISel) 9445 return A->use_empty(); 9446 9447 const BasicBlock &Entry = A->getParent()->front(); 9448 for (const User *U : A->users()) 9449 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9450 return false; // Use not in entry block. 9451 9452 return true; 9453 } 9454 9455 using ArgCopyElisionMapTy = 9456 DenseMap<const Argument *, 9457 std::pair<const AllocaInst *, const StoreInst *>>; 9458 9459 /// Scan the entry block of the function in FuncInfo for arguments that look 9460 /// like copies into a local alloca. Record any copied arguments in 9461 /// ArgCopyElisionCandidates. 9462 static void 9463 findArgumentCopyElisionCandidates(const DataLayout &DL, 9464 FunctionLoweringInfo *FuncInfo, 9465 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9466 // Record the state of every static alloca used in the entry block. Argument 9467 // allocas are all used in the entry block, so we need approximately as many 9468 // entries as we have arguments. 9469 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9470 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9471 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9472 StaticAllocas.reserve(NumArgs * 2); 9473 9474 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9475 if (!V) 9476 return nullptr; 9477 V = V->stripPointerCasts(); 9478 const auto *AI = dyn_cast<AllocaInst>(V); 9479 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9480 return nullptr; 9481 auto Iter = StaticAllocas.insert({AI, Unknown}); 9482 return &Iter.first->second; 9483 }; 9484 9485 // Look for stores of arguments to static allocas. Look through bitcasts and 9486 // GEPs to handle type coercions, as long as the alloca is fully initialized 9487 // by the store. Any non-store use of an alloca escapes it and any subsequent 9488 // unanalyzed store might write it. 9489 // FIXME: Handle structs initialized with multiple stores. 9490 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9491 // Look for stores, and handle non-store uses conservatively. 9492 const auto *SI = dyn_cast<StoreInst>(&I); 9493 if (!SI) { 9494 // We will look through cast uses, so ignore them completely. 9495 if (I.isCast()) 9496 continue; 9497 // Ignore debug info intrinsics, they don't escape or store to allocas. 9498 if (isa<DbgInfoIntrinsic>(I)) 9499 continue; 9500 // This is an unknown instruction. Assume it escapes or writes to all 9501 // static alloca operands. 9502 for (const Use &U : I.operands()) { 9503 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9504 *Info = StaticAllocaInfo::Clobbered; 9505 } 9506 continue; 9507 } 9508 9509 // If the stored value is a static alloca, mark it as escaped. 9510 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9511 *Info = StaticAllocaInfo::Clobbered; 9512 9513 // Check if the destination is a static alloca. 9514 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9515 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9516 if (!Info) 9517 continue; 9518 const AllocaInst *AI = cast<AllocaInst>(Dst); 9519 9520 // Skip allocas that have been initialized or clobbered. 9521 if (*Info != StaticAllocaInfo::Unknown) 9522 continue; 9523 9524 // Check if the stored value is an argument, and that this store fully 9525 // initializes the alloca. Don't elide copies from the same argument twice. 9526 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9527 const auto *Arg = dyn_cast<Argument>(Val); 9528 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9529 Arg->getType()->isEmptyTy() || 9530 DL.getTypeStoreSize(Arg->getType()) != 9531 DL.getTypeAllocSize(AI->getAllocatedType()) || 9532 ArgCopyElisionCandidates.count(Arg)) { 9533 *Info = StaticAllocaInfo::Clobbered; 9534 continue; 9535 } 9536 9537 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9538 << '\n'); 9539 9540 // Mark this alloca and store for argument copy elision. 9541 *Info = StaticAllocaInfo::Elidable; 9542 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9543 9544 // Stop scanning if we've seen all arguments. This will happen early in -O0 9545 // builds, which is useful, because -O0 builds have large entry blocks and 9546 // many allocas. 9547 if (ArgCopyElisionCandidates.size() == NumArgs) 9548 break; 9549 } 9550 } 9551 9552 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9553 /// ArgVal is a load from a suitable fixed stack object. 9554 static void tryToElideArgumentCopy( 9555 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9556 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9557 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9558 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9559 SDValue ArgVal, bool &ArgHasUses) { 9560 // Check if this is a load from a fixed stack object. 9561 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9562 if (!LNode) 9563 return; 9564 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9565 if (!FINode) 9566 return; 9567 9568 // Check that the fixed stack object is the right size and alignment. 9569 // Look at the alignment that the user wrote on the alloca instead of looking 9570 // at the stack object. 9571 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9572 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9573 const AllocaInst *AI = ArgCopyIter->second.first; 9574 int FixedIndex = FINode->getIndex(); 9575 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9576 int OldIndex = AllocaIndex; 9577 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9578 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9579 LLVM_DEBUG( 9580 dbgs() << " argument copy elision failed due to bad fixed stack " 9581 "object size\n"); 9582 return; 9583 } 9584 Align RequiredAlignment = AI->getAlign(); 9585 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9586 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9587 "greater than stack argument alignment (" 9588 << DebugStr(RequiredAlignment) << " vs " 9589 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9590 return; 9591 } 9592 9593 // Perform the elision. Delete the old stack object and replace its only use 9594 // in the variable info map. Mark the stack object as mutable. 9595 LLVM_DEBUG({ 9596 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9597 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9598 << '\n'; 9599 }); 9600 MFI.RemoveStackObject(OldIndex); 9601 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9602 AllocaIndex = FixedIndex; 9603 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9604 Chains.push_back(ArgVal.getValue(1)); 9605 9606 // Avoid emitting code for the store implementing the copy. 9607 const StoreInst *SI = ArgCopyIter->second.second; 9608 ElidedArgCopyInstrs.insert(SI); 9609 9610 // Check for uses of the argument again so that we can avoid exporting ArgVal 9611 // if it is't used by anything other than the store. 9612 for (const Value *U : Arg.users()) { 9613 if (U != SI) { 9614 ArgHasUses = true; 9615 break; 9616 } 9617 } 9618 } 9619 9620 void SelectionDAGISel::LowerArguments(const Function &F) { 9621 SelectionDAG &DAG = SDB->DAG; 9622 SDLoc dl = SDB->getCurSDLoc(); 9623 const DataLayout &DL = DAG.getDataLayout(); 9624 SmallVector<ISD::InputArg, 16> Ins; 9625 9626 // In Naked functions we aren't going to save any registers. 9627 if (F.hasFnAttribute(Attribute::Naked)) 9628 return; 9629 9630 if (!FuncInfo->CanLowerReturn) { 9631 // Put in an sret pointer parameter before all the other parameters. 9632 SmallVector<EVT, 1> ValueVTs; 9633 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9634 F.getReturnType()->getPointerTo( 9635 DAG.getDataLayout().getAllocaAddrSpace()), 9636 ValueVTs); 9637 9638 // NOTE: Assuming that a pointer will never break down to more than one VT 9639 // or one register. 9640 ISD::ArgFlagsTy Flags; 9641 Flags.setSRet(); 9642 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9643 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9644 ISD::InputArg::NoArgIndex, 0); 9645 Ins.push_back(RetArg); 9646 } 9647 9648 // Look for stores of arguments to static allocas. Mark such arguments with a 9649 // flag to ask the target to give us the memory location of that argument if 9650 // available. 9651 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9652 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9653 ArgCopyElisionCandidates); 9654 9655 // Set up the incoming argument description vector. 9656 for (const Argument &Arg : F.args()) { 9657 unsigned ArgNo = Arg.getArgNo(); 9658 SmallVector<EVT, 4> ValueVTs; 9659 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9660 bool isArgValueUsed = !Arg.use_empty(); 9661 unsigned PartBase = 0; 9662 Type *FinalType = Arg.getType(); 9663 if (Arg.hasAttribute(Attribute::ByVal)) 9664 FinalType = Arg.getParamByValType(); 9665 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9666 FinalType, F.getCallingConv(), F.isVarArg()); 9667 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9668 Value != NumValues; ++Value) { 9669 EVT VT = ValueVTs[Value]; 9670 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9671 ISD::ArgFlagsTy Flags; 9672 9673 // Certain targets (such as MIPS), may have a different ABI alignment 9674 // for a type depending on the context. Give the target a chance to 9675 // specify the alignment it wants. 9676 const Align OriginalAlignment( 9677 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9678 9679 if (Arg.getType()->isPointerTy()) { 9680 Flags.setPointer(); 9681 Flags.setPointerAddrSpace( 9682 cast<PointerType>(Arg.getType())->getAddressSpace()); 9683 } 9684 if (Arg.hasAttribute(Attribute::ZExt)) 9685 Flags.setZExt(); 9686 if (Arg.hasAttribute(Attribute::SExt)) 9687 Flags.setSExt(); 9688 if (Arg.hasAttribute(Attribute::InReg)) { 9689 // If we are using vectorcall calling convention, a structure that is 9690 // passed InReg - is surely an HVA 9691 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9692 isa<StructType>(Arg.getType())) { 9693 // The first value of a structure is marked 9694 if (0 == Value) 9695 Flags.setHvaStart(); 9696 Flags.setHva(); 9697 } 9698 // Set InReg Flag 9699 Flags.setInReg(); 9700 } 9701 if (Arg.hasAttribute(Attribute::StructRet)) 9702 Flags.setSRet(); 9703 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9704 Flags.setSwiftSelf(); 9705 if (Arg.hasAttribute(Attribute::SwiftError)) 9706 Flags.setSwiftError(); 9707 if (Arg.hasAttribute(Attribute::ByVal)) 9708 Flags.setByVal(); 9709 if (Arg.hasAttribute(Attribute::ByRef)) 9710 Flags.setByRef(); 9711 if (Arg.hasAttribute(Attribute::InAlloca)) { 9712 Flags.setInAlloca(); 9713 // Set the byval flag for CCAssignFn callbacks that don't know about 9714 // inalloca. This way we can know how many bytes we should've allocated 9715 // and how many bytes a callee cleanup function will pop. If we port 9716 // inalloca to more targets, we'll have to add custom inalloca handling 9717 // in the various CC lowering callbacks. 9718 Flags.setByVal(); 9719 } 9720 if (Arg.hasAttribute(Attribute::Preallocated)) { 9721 Flags.setPreallocated(); 9722 // Set the byval flag for CCAssignFn callbacks that don't know about 9723 // preallocated. This way we can know how many bytes we should've 9724 // allocated and how many bytes a callee cleanup function will pop. If 9725 // we port preallocated to more targets, we'll have to add custom 9726 // preallocated handling in the various CC lowering callbacks. 9727 Flags.setByVal(); 9728 } 9729 9730 Type *ArgMemTy = nullptr; 9731 if (F.getCallingConv() == CallingConv::X86_INTR) { 9732 // IA Interrupt passes frame (1st parameter) by value in the stack. 9733 if (ArgNo == 0) { 9734 Flags.setByVal(); 9735 // FIXME: Dependence on pointee element type. See bug 46672. 9736 ArgMemTy = Arg.getType()->getPointerElementType(); 9737 } 9738 } 9739 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 9740 Flags.isByRef()) { 9741 if (!ArgMemTy) 9742 ArgMemTy = Arg.getPointeeInMemoryValueType(); 9743 9744 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 9745 9746 // For in-memory arguments, size and alignment should be passed from FE. 9747 // BE will guess if this info is not there but there are cases it cannot 9748 // get right. 9749 MaybeAlign MemAlign = Arg.getParamAlign(); 9750 if (!MemAlign) 9751 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 9752 9753 if (Flags.isByRef()) { 9754 Flags.setByRefSize(MemSize); 9755 Flags.setByRefAlign(*MemAlign); 9756 } else { 9757 Flags.setByValSize(MemSize); 9758 Flags.setByValAlign(*MemAlign); 9759 } 9760 } 9761 9762 if (Arg.hasAttribute(Attribute::Nest)) 9763 Flags.setNest(); 9764 if (NeedsRegBlock) 9765 Flags.setInConsecutiveRegs(); 9766 Flags.setOrigAlign(OriginalAlignment); 9767 if (ArgCopyElisionCandidates.count(&Arg)) 9768 Flags.setCopyElisionCandidate(); 9769 if (Arg.hasAttribute(Attribute::Returned)) 9770 Flags.setReturned(); 9771 9772 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9773 *CurDAG->getContext(), F.getCallingConv(), VT); 9774 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9775 *CurDAG->getContext(), F.getCallingConv(), VT); 9776 for (unsigned i = 0; i != NumRegs; ++i) { 9777 // For scalable vectors, use the minimum size; individual targets 9778 // are responsible for handling scalable vector arguments and 9779 // return values. 9780 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9781 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9782 if (NumRegs > 1 && i == 0) 9783 MyFlags.Flags.setSplit(); 9784 // if it isn't first piece, alignment must be 1 9785 else if (i > 0) { 9786 MyFlags.Flags.setOrigAlign(Align(1)); 9787 if (i == NumRegs - 1) 9788 MyFlags.Flags.setSplitEnd(); 9789 } 9790 Ins.push_back(MyFlags); 9791 } 9792 if (NeedsRegBlock && Value == NumValues - 1) 9793 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9794 PartBase += VT.getStoreSize().getKnownMinSize(); 9795 } 9796 } 9797 9798 // Call the target to set up the argument values. 9799 SmallVector<SDValue, 8> InVals; 9800 SDValue NewRoot = TLI->LowerFormalArguments( 9801 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9802 9803 // Verify that the target's LowerFormalArguments behaved as expected. 9804 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9805 "LowerFormalArguments didn't return a valid chain!"); 9806 assert(InVals.size() == Ins.size() && 9807 "LowerFormalArguments didn't emit the correct number of values!"); 9808 LLVM_DEBUG({ 9809 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9810 assert(InVals[i].getNode() && 9811 "LowerFormalArguments emitted a null value!"); 9812 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9813 "LowerFormalArguments emitted a value with the wrong type!"); 9814 } 9815 }); 9816 9817 // Update the DAG with the new chain value resulting from argument lowering. 9818 DAG.setRoot(NewRoot); 9819 9820 // Set up the argument values. 9821 unsigned i = 0; 9822 if (!FuncInfo->CanLowerReturn) { 9823 // Create a virtual register for the sret pointer, and put in a copy 9824 // from the sret argument into it. 9825 SmallVector<EVT, 1> ValueVTs; 9826 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9827 F.getReturnType()->getPointerTo( 9828 DAG.getDataLayout().getAllocaAddrSpace()), 9829 ValueVTs); 9830 MVT VT = ValueVTs[0].getSimpleVT(); 9831 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9832 Optional<ISD::NodeType> AssertOp = None; 9833 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9834 nullptr, F.getCallingConv(), AssertOp); 9835 9836 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9837 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9838 Register SRetReg = 9839 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9840 FuncInfo->DemoteRegister = SRetReg; 9841 NewRoot = 9842 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9843 DAG.setRoot(NewRoot); 9844 9845 // i indexes lowered arguments. Bump it past the hidden sret argument. 9846 ++i; 9847 } 9848 9849 SmallVector<SDValue, 4> Chains; 9850 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9851 for (const Argument &Arg : F.args()) { 9852 SmallVector<SDValue, 4> ArgValues; 9853 SmallVector<EVT, 4> ValueVTs; 9854 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9855 unsigned NumValues = ValueVTs.size(); 9856 if (NumValues == 0) 9857 continue; 9858 9859 bool ArgHasUses = !Arg.use_empty(); 9860 9861 // Elide the copying store if the target loaded this argument from a 9862 // suitable fixed stack object. 9863 if (Ins[i].Flags.isCopyElisionCandidate()) { 9864 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9865 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9866 InVals[i], ArgHasUses); 9867 } 9868 9869 // If this argument is unused then remember its value. It is used to generate 9870 // debugging information. 9871 bool isSwiftErrorArg = 9872 TLI->supportSwiftError() && 9873 Arg.hasAttribute(Attribute::SwiftError); 9874 if (!ArgHasUses && !isSwiftErrorArg) { 9875 SDB->setUnusedArgValue(&Arg, InVals[i]); 9876 9877 // Also remember any frame index for use in FastISel. 9878 if (FrameIndexSDNode *FI = 9879 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9880 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9881 } 9882 9883 for (unsigned Val = 0; Val != NumValues; ++Val) { 9884 EVT VT = ValueVTs[Val]; 9885 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9886 F.getCallingConv(), VT); 9887 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9888 *CurDAG->getContext(), F.getCallingConv(), VT); 9889 9890 // Even an apparent 'unused' swifterror argument needs to be returned. So 9891 // we do generate a copy for it that can be used on return from the 9892 // function. 9893 if (ArgHasUses || isSwiftErrorArg) { 9894 Optional<ISD::NodeType> AssertOp; 9895 if (Arg.hasAttribute(Attribute::SExt)) 9896 AssertOp = ISD::AssertSext; 9897 else if (Arg.hasAttribute(Attribute::ZExt)) 9898 AssertOp = ISD::AssertZext; 9899 9900 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9901 PartVT, VT, nullptr, 9902 F.getCallingConv(), AssertOp)); 9903 } 9904 9905 i += NumParts; 9906 } 9907 9908 // We don't need to do anything else for unused arguments. 9909 if (ArgValues.empty()) 9910 continue; 9911 9912 // Note down frame index. 9913 if (FrameIndexSDNode *FI = 9914 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9915 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9916 9917 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9918 SDB->getCurSDLoc()); 9919 9920 SDB->setValue(&Arg, Res); 9921 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9922 // We want to associate the argument with the frame index, among 9923 // involved operands, that correspond to the lowest address. The 9924 // getCopyFromParts function, called earlier, is swapping the order of 9925 // the operands to BUILD_PAIR depending on endianness. The result of 9926 // that swapping is that the least significant bits of the argument will 9927 // be in the first operand of the BUILD_PAIR node, and the most 9928 // significant bits will be in the second operand. 9929 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9930 if (LoadSDNode *LNode = 9931 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9932 if (FrameIndexSDNode *FI = 9933 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9934 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9935 } 9936 9937 // Analyses past this point are naive and don't expect an assertion. 9938 if (Res.getOpcode() == ISD::AssertZext) 9939 Res = Res.getOperand(0); 9940 9941 // Update the SwiftErrorVRegDefMap. 9942 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9943 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9944 if (Register::isVirtualRegister(Reg)) 9945 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9946 Reg); 9947 } 9948 9949 // If this argument is live outside of the entry block, insert a copy from 9950 // wherever we got it to the vreg that other BB's will reference it as. 9951 if (Res.getOpcode() == ISD::CopyFromReg) { 9952 // If we can, though, try to skip creating an unnecessary vreg. 9953 // FIXME: This isn't very clean... it would be nice to make this more 9954 // general. 9955 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9956 if (Register::isVirtualRegister(Reg)) { 9957 FuncInfo->ValueMap[&Arg] = Reg; 9958 continue; 9959 } 9960 } 9961 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9962 FuncInfo->InitializeRegForValue(&Arg); 9963 SDB->CopyToExportRegsIfNeeded(&Arg); 9964 } 9965 } 9966 9967 if (!Chains.empty()) { 9968 Chains.push_back(NewRoot); 9969 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9970 } 9971 9972 DAG.setRoot(NewRoot); 9973 9974 assert(i == InVals.size() && "Argument register count mismatch!"); 9975 9976 // If any argument copy elisions occurred and we have debug info, update the 9977 // stale frame indices used in the dbg.declare variable info table. 9978 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9979 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9980 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9981 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9982 if (I != ArgCopyElisionFrameIndexMap.end()) 9983 VI.Slot = I->second; 9984 } 9985 } 9986 9987 // Finally, if the target has anything special to do, allow it to do so. 9988 emitFunctionEntryCode(); 9989 } 9990 9991 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9992 /// ensure constants are generated when needed. Remember the virtual registers 9993 /// that need to be added to the Machine PHI nodes as input. We cannot just 9994 /// directly add them, because expansion might result in multiple MBB's for one 9995 /// BB. As such, the start of the BB might correspond to a different MBB than 9996 /// the end. 9997 void 9998 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9999 const Instruction *TI = LLVMBB->getTerminator(); 10000 10001 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10002 10003 // Check PHI nodes in successors that expect a value to be available from this 10004 // block. 10005 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10006 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10007 if (!isa<PHINode>(SuccBB->begin())) continue; 10008 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10009 10010 // If this terminator has multiple identical successors (common for 10011 // switches), only handle each succ once. 10012 if (!SuccsHandled.insert(SuccMBB).second) 10013 continue; 10014 10015 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10016 10017 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10018 // nodes and Machine PHI nodes, but the incoming operands have not been 10019 // emitted yet. 10020 for (const PHINode &PN : SuccBB->phis()) { 10021 // Ignore dead phi's. 10022 if (PN.use_empty()) 10023 continue; 10024 10025 // Skip empty types 10026 if (PN.getType()->isEmptyTy()) 10027 continue; 10028 10029 unsigned Reg; 10030 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10031 10032 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10033 unsigned &RegOut = ConstantsOut[C]; 10034 if (RegOut == 0) { 10035 RegOut = FuncInfo.CreateRegs(C); 10036 CopyValueToVirtualRegister(C, RegOut); 10037 } 10038 Reg = RegOut; 10039 } else { 10040 DenseMap<const Value *, Register>::iterator I = 10041 FuncInfo.ValueMap.find(PHIOp); 10042 if (I != FuncInfo.ValueMap.end()) 10043 Reg = I->second; 10044 else { 10045 assert(isa<AllocaInst>(PHIOp) && 10046 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10047 "Didn't codegen value into a register!??"); 10048 Reg = FuncInfo.CreateRegs(PHIOp); 10049 CopyValueToVirtualRegister(PHIOp, Reg); 10050 } 10051 } 10052 10053 // Remember that this register needs to added to the machine PHI node as 10054 // the input for this MBB. 10055 SmallVector<EVT, 4> ValueVTs; 10056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10057 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10058 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10059 EVT VT = ValueVTs[vti]; 10060 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10061 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10062 FuncInfo.PHINodesToUpdate.push_back( 10063 std::make_pair(&*MBBI++, Reg + i)); 10064 Reg += NumRegisters; 10065 } 10066 } 10067 } 10068 10069 ConstantsOut.clear(); 10070 } 10071 10072 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10073 /// is 0. 10074 MachineBasicBlock * 10075 SelectionDAGBuilder::StackProtectorDescriptor:: 10076 AddSuccessorMBB(const BasicBlock *BB, 10077 MachineBasicBlock *ParentMBB, 10078 bool IsLikely, 10079 MachineBasicBlock *SuccMBB) { 10080 // If SuccBB has not been created yet, create it. 10081 if (!SuccMBB) { 10082 MachineFunction *MF = ParentMBB->getParent(); 10083 MachineFunction::iterator BBI(ParentMBB); 10084 SuccMBB = MF->CreateMachineBasicBlock(BB); 10085 MF->insert(++BBI, SuccMBB); 10086 } 10087 // Add it as a successor of ParentMBB. 10088 ParentMBB->addSuccessor( 10089 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10090 return SuccMBB; 10091 } 10092 10093 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10094 MachineFunction::iterator I(MBB); 10095 if (++I == FuncInfo.MF->end()) 10096 return nullptr; 10097 return &*I; 10098 } 10099 10100 /// During lowering new call nodes can be created (such as memset, etc.). 10101 /// Those will become new roots of the current DAG, but complications arise 10102 /// when they are tail calls. In such cases, the call lowering will update 10103 /// the root, but the builder still needs to know that a tail call has been 10104 /// lowered in order to avoid generating an additional return. 10105 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10106 // If the node is null, we do have a tail call. 10107 if (MaybeTC.getNode() != nullptr) 10108 DAG.setRoot(MaybeTC); 10109 else 10110 HasTailCall = true; 10111 } 10112 10113 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10114 MachineBasicBlock *SwitchMBB, 10115 MachineBasicBlock *DefaultMBB) { 10116 MachineFunction *CurMF = FuncInfo.MF; 10117 MachineBasicBlock *NextMBB = nullptr; 10118 MachineFunction::iterator BBI(W.MBB); 10119 if (++BBI != FuncInfo.MF->end()) 10120 NextMBB = &*BBI; 10121 10122 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10123 10124 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10125 10126 if (Size == 2 && W.MBB == SwitchMBB) { 10127 // If any two of the cases has the same destination, and if one value 10128 // is the same as the other, but has one bit unset that the other has set, 10129 // use bit manipulation to do two compares at once. For example: 10130 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10131 // TODO: This could be extended to merge any 2 cases in switches with 3 10132 // cases. 10133 // TODO: Handle cases where W.CaseBB != SwitchBB. 10134 CaseCluster &Small = *W.FirstCluster; 10135 CaseCluster &Big = *W.LastCluster; 10136 10137 if (Small.Low == Small.High && Big.Low == Big.High && 10138 Small.MBB == Big.MBB) { 10139 const APInt &SmallValue = Small.Low->getValue(); 10140 const APInt &BigValue = Big.Low->getValue(); 10141 10142 // Check that there is only one bit different. 10143 APInt CommonBit = BigValue ^ SmallValue; 10144 if (CommonBit.isPowerOf2()) { 10145 SDValue CondLHS = getValue(Cond); 10146 EVT VT = CondLHS.getValueType(); 10147 SDLoc DL = getCurSDLoc(); 10148 10149 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10150 DAG.getConstant(CommonBit, DL, VT)); 10151 SDValue Cond = DAG.getSetCC( 10152 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10153 ISD::SETEQ); 10154 10155 // Update successor info. 10156 // Both Small and Big will jump to Small.BB, so we sum up the 10157 // probabilities. 10158 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10159 if (BPI) 10160 addSuccessorWithProb( 10161 SwitchMBB, DefaultMBB, 10162 // The default destination is the first successor in IR. 10163 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10164 else 10165 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10166 10167 // Insert the true branch. 10168 SDValue BrCond = 10169 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10170 DAG.getBasicBlock(Small.MBB)); 10171 // Insert the false branch. 10172 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10173 DAG.getBasicBlock(DefaultMBB)); 10174 10175 DAG.setRoot(BrCond); 10176 return; 10177 } 10178 } 10179 } 10180 10181 if (TM.getOptLevel() != CodeGenOpt::None) { 10182 // Here, we order cases by probability so the most likely case will be 10183 // checked first. However, two clusters can have the same probability in 10184 // which case their relative ordering is non-deterministic. So we use Low 10185 // as a tie-breaker as clusters are guaranteed to never overlap. 10186 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10187 [](const CaseCluster &a, const CaseCluster &b) { 10188 return a.Prob != b.Prob ? 10189 a.Prob > b.Prob : 10190 a.Low->getValue().slt(b.Low->getValue()); 10191 }); 10192 10193 // Rearrange the case blocks so that the last one falls through if possible 10194 // without changing the order of probabilities. 10195 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10196 --I; 10197 if (I->Prob > W.LastCluster->Prob) 10198 break; 10199 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10200 std::swap(*I, *W.LastCluster); 10201 break; 10202 } 10203 } 10204 } 10205 10206 // Compute total probability. 10207 BranchProbability DefaultProb = W.DefaultProb; 10208 BranchProbability UnhandledProbs = DefaultProb; 10209 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10210 UnhandledProbs += I->Prob; 10211 10212 MachineBasicBlock *CurMBB = W.MBB; 10213 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10214 bool FallthroughUnreachable = false; 10215 MachineBasicBlock *Fallthrough; 10216 if (I == W.LastCluster) { 10217 // For the last cluster, fall through to the default destination. 10218 Fallthrough = DefaultMBB; 10219 FallthroughUnreachable = isa<UnreachableInst>( 10220 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10221 } else { 10222 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10223 CurMF->insert(BBI, Fallthrough); 10224 // Put Cond in a virtual register to make it available from the new blocks. 10225 ExportFromCurrentBlock(Cond); 10226 } 10227 UnhandledProbs -= I->Prob; 10228 10229 switch (I->Kind) { 10230 case CC_JumpTable: { 10231 // FIXME: Optimize away range check based on pivot comparisons. 10232 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10233 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10234 10235 // The jump block hasn't been inserted yet; insert it here. 10236 MachineBasicBlock *JumpMBB = JT->MBB; 10237 CurMF->insert(BBI, JumpMBB); 10238 10239 auto JumpProb = I->Prob; 10240 auto FallthroughProb = UnhandledProbs; 10241 10242 // If the default statement is a target of the jump table, we evenly 10243 // distribute the default probability to successors of CurMBB. Also 10244 // update the probability on the edge from JumpMBB to Fallthrough. 10245 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10246 SE = JumpMBB->succ_end(); 10247 SI != SE; ++SI) { 10248 if (*SI == DefaultMBB) { 10249 JumpProb += DefaultProb / 2; 10250 FallthroughProb -= DefaultProb / 2; 10251 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10252 JumpMBB->normalizeSuccProbs(); 10253 break; 10254 } 10255 } 10256 10257 if (FallthroughUnreachable) { 10258 // Skip the range check if the fallthrough block is unreachable. 10259 JTH->OmitRangeCheck = true; 10260 } 10261 10262 if (!JTH->OmitRangeCheck) 10263 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10264 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10265 CurMBB->normalizeSuccProbs(); 10266 10267 // The jump table header will be inserted in our current block, do the 10268 // range check, and fall through to our fallthrough block. 10269 JTH->HeaderBB = CurMBB; 10270 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10271 10272 // If we're in the right place, emit the jump table header right now. 10273 if (CurMBB == SwitchMBB) { 10274 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10275 JTH->Emitted = true; 10276 } 10277 break; 10278 } 10279 case CC_BitTests: { 10280 // FIXME: Optimize away range check based on pivot comparisons. 10281 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10282 10283 // The bit test blocks haven't been inserted yet; insert them here. 10284 for (BitTestCase &BTC : BTB->Cases) 10285 CurMF->insert(BBI, BTC.ThisBB); 10286 10287 // Fill in fields of the BitTestBlock. 10288 BTB->Parent = CurMBB; 10289 BTB->Default = Fallthrough; 10290 10291 BTB->DefaultProb = UnhandledProbs; 10292 // If the cases in bit test don't form a contiguous range, we evenly 10293 // distribute the probability on the edge to Fallthrough to two 10294 // successors of CurMBB. 10295 if (!BTB->ContiguousRange) { 10296 BTB->Prob += DefaultProb / 2; 10297 BTB->DefaultProb -= DefaultProb / 2; 10298 } 10299 10300 if (FallthroughUnreachable) { 10301 // Skip the range check if the fallthrough block is unreachable. 10302 BTB->OmitRangeCheck = true; 10303 } 10304 10305 // If we're in the right place, emit the bit test header right now. 10306 if (CurMBB == SwitchMBB) { 10307 visitBitTestHeader(*BTB, SwitchMBB); 10308 BTB->Emitted = true; 10309 } 10310 break; 10311 } 10312 case CC_Range: { 10313 const Value *RHS, *LHS, *MHS; 10314 ISD::CondCode CC; 10315 if (I->Low == I->High) { 10316 // Check Cond == I->Low. 10317 CC = ISD::SETEQ; 10318 LHS = Cond; 10319 RHS=I->Low; 10320 MHS = nullptr; 10321 } else { 10322 // Check I->Low <= Cond <= I->High. 10323 CC = ISD::SETLE; 10324 LHS = I->Low; 10325 MHS = Cond; 10326 RHS = I->High; 10327 } 10328 10329 // If Fallthrough is unreachable, fold away the comparison. 10330 if (FallthroughUnreachable) 10331 CC = ISD::SETTRUE; 10332 10333 // The false probability is the sum of all unhandled cases. 10334 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10335 getCurSDLoc(), I->Prob, UnhandledProbs); 10336 10337 if (CurMBB == SwitchMBB) 10338 visitSwitchCase(CB, SwitchMBB); 10339 else 10340 SL->SwitchCases.push_back(CB); 10341 10342 break; 10343 } 10344 } 10345 CurMBB = Fallthrough; 10346 } 10347 } 10348 10349 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10350 CaseClusterIt First, 10351 CaseClusterIt Last) { 10352 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10353 if (X.Prob != CC.Prob) 10354 return X.Prob > CC.Prob; 10355 10356 // Ties are broken by comparing the case value. 10357 return X.Low->getValue().slt(CC.Low->getValue()); 10358 }); 10359 } 10360 10361 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10362 const SwitchWorkListItem &W, 10363 Value *Cond, 10364 MachineBasicBlock *SwitchMBB) { 10365 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10366 "Clusters not sorted?"); 10367 10368 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10369 10370 // Balance the tree based on branch probabilities to create a near-optimal (in 10371 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10372 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10373 CaseClusterIt LastLeft = W.FirstCluster; 10374 CaseClusterIt FirstRight = W.LastCluster; 10375 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10376 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10377 10378 // Move LastLeft and FirstRight towards each other from opposite directions to 10379 // find a partitioning of the clusters which balances the probability on both 10380 // sides. If LeftProb and RightProb are equal, alternate which side is 10381 // taken to ensure 0-probability nodes are distributed evenly. 10382 unsigned I = 0; 10383 while (LastLeft + 1 < FirstRight) { 10384 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10385 LeftProb += (++LastLeft)->Prob; 10386 else 10387 RightProb += (--FirstRight)->Prob; 10388 I++; 10389 } 10390 10391 while (true) { 10392 // Our binary search tree differs from a typical BST in that ours can have up 10393 // to three values in each leaf. The pivot selection above doesn't take that 10394 // into account, which means the tree might require more nodes and be less 10395 // efficient. We compensate for this here. 10396 10397 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10398 unsigned NumRight = W.LastCluster - FirstRight + 1; 10399 10400 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10401 // If one side has less than 3 clusters, and the other has more than 3, 10402 // consider taking a cluster from the other side. 10403 10404 if (NumLeft < NumRight) { 10405 // Consider moving the first cluster on the right to the left side. 10406 CaseCluster &CC = *FirstRight; 10407 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10408 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10409 if (LeftSideRank <= RightSideRank) { 10410 // Moving the cluster to the left does not demote it. 10411 ++LastLeft; 10412 ++FirstRight; 10413 continue; 10414 } 10415 } else { 10416 assert(NumRight < NumLeft); 10417 // Consider moving the last element on the left to the right side. 10418 CaseCluster &CC = *LastLeft; 10419 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10420 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10421 if (RightSideRank <= LeftSideRank) { 10422 // Moving the cluster to the right does not demot it. 10423 --LastLeft; 10424 --FirstRight; 10425 continue; 10426 } 10427 } 10428 } 10429 break; 10430 } 10431 10432 assert(LastLeft + 1 == FirstRight); 10433 assert(LastLeft >= W.FirstCluster); 10434 assert(FirstRight <= W.LastCluster); 10435 10436 // Use the first element on the right as pivot since we will make less-than 10437 // comparisons against it. 10438 CaseClusterIt PivotCluster = FirstRight; 10439 assert(PivotCluster > W.FirstCluster); 10440 assert(PivotCluster <= W.LastCluster); 10441 10442 CaseClusterIt FirstLeft = W.FirstCluster; 10443 CaseClusterIt LastRight = W.LastCluster; 10444 10445 const ConstantInt *Pivot = PivotCluster->Low; 10446 10447 // New blocks will be inserted immediately after the current one. 10448 MachineFunction::iterator BBI(W.MBB); 10449 ++BBI; 10450 10451 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10452 // we can branch to its destination directly if it's squeezed exactly in 10453 // between the known lower bound and Pivot - 1. 10454 MachineBasicBlock *LeftMBB; 10455 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10456 FirstLeft->Low == W.GE && 10457 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10458 LeftMBB = FirstLeft->MBB; 10459 } else { 10460 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10461 FuncInfo.MF->insert(BBI, LeftMBB); 10462 WorkList.push_back( 10463 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10464 // Put Cond in a virtual register to make it available from the new blocks. 10465 ExportFromCurrentBlock(Cond); 10466 } 10467 10468 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10469 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10470 // directly if RHS.High equals the current upper bound. 10471 MachineBasicBlock *RightMBB; 10472 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10473 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10474 RightMBB = FirstRight->MBB; 10475 } else { 10476 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10477 FuncInfo.MF->insert(BBI, RightMBB); 10478 WorkList.push_back( 10479 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10480 // Put Cond in a virtual register to make it available from the new blocks. 10481 ExportFromCurrentBlock(Cond); 10482 } 10483 10484 // Create the CaseBlock record that will be used to lower the branch. 10485 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10486 getCurSDLoc(), LeftProb, RightProb); 10487 10488 if (W.MBB == SwitchMBB) 10489 visitSwitchCase(CB, SwitchMBB); 10490 else 10491 SL->SwitchCases.push_back(CB); 10492 } 10493 10494 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10495 // from the swith statement. 10496 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10497 BranchProbability PeeledCaseProb) { 10498 if (PeeledCaseProb == BranchProbability::getOne()) 10499 return BranchProbability::getZero(); 10500 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10501 10502 uint32_t Numerator = CaseProb.getNumerator(); 10503 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10504 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10505 } 10506 10507 // Try to peel the top probability case if it exceeds the threshold. 10508 // Return current MachineBasicBlock for the switch statement if the peeling 10509 // does not occur. 10510 // If the peeling is performed, return the newly created MachineBasicBlock 10511 // for the peeled switch statement. Also update Clusters to remove the peeled 10512 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10513 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10514 const SwitchInst &SI, CaseClusterVector &Clusters, 10515 BranchProbability &PeeledCaseProb) { 10516 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10517 // Don't perform if there is only one cluster or optimizing for size. 10518 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10519 TM.getOptLevel() == CodeGenOpt::None || 10520 SwitchMBB->getParent()->getFunction().hasMinSize()) 10521 return SwitchMBB; 10522 10523 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10524 unsigned PeeledCaseIndex = 0; 10525 bool SwitchPeeled = false; 10526 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10527 CaseCluster &CC = Clusters[Index]; 10528 if (CC.Prob < TopCaseProb) 10529 continue; 10530 TopCaseProb = CC.Prob; 10531 PeeledCaseIndex = Index; 10532 SwitchPeeled = true; 10533 } 10534 if (!SwitchPeeled) 10535 return SwitchMBB; 10536 10537 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10538 << TopCaseProb << "\n"); 10539 10540 // Record the MBB for the peeled switch statement. 10541 MachineFunction::iterator BBI(SwitchMBB); 10542 ++BBI; 10543 MachineBasicBlock *PeeledSwitchMBB = 10544 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10545 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10546 10547 ExportFromCurrentBlock(SI.getCondition()); 10548 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10549 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10550 nullptr, nullptr, TopCaseProb.getCompl()}; 10551 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10552 10553 Clusters.erase(PeeledCaseIt); 10554 for (CaseCluster &CC : Clusters) { 10555 LLVM_DEBUG( 10556 dbgs() << "Scale the probablity for one cluster, before scaling: " 10557 << CC.Prob << "\n"); 10558 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10559 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10560 } 10561 PeeledCaseProb = TopCaseProb; 10562 return PeeledSwitchMBB; 10563 } 10564 10565 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10566 // Extract cases from the switch. 10567 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10568 CaseClusterVector Clusters; 10569 Clusters.reserve(SI.getNumCases()); 10570 for (auto I : SI.cases()) { 10571 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10572 const ConstantInt *CaseVal = I.getCaseValue(); 10573 BranchProbability Prob = 10574 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10575 : BranchProbability(1, SI.getNumCases() + 1); 10576 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10577 } 10578 10579 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10580 10581 // Cluster adjacent cases with the same destination. We do this at all 10582 // optimization levels because it's cheap to do and will make codegen faster 10583 // if there are many clusters. 10584 sortAndRangeify(Clusters); 10585 10586 // The branch probablity of the peeled case. 10587 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10588 MachineBasicBlock *PeeledSwitchMBB = 10589 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10590 10591 // If there is only the default destination, jump there directly. 10592 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10593 if (Clusters.empty()) { 10594 assert(PeeledSwitchMBB == SwitchMBB); 10595 SwitchMBB->addSuccessor(DefaultMBB); 10596 if (DefaultMBB != NextBlock(SwitchMBB)) { 10597 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10598 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10599 } 10600 return; 10601 } 10602 10603 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10604 SL->findBitTestClusters(Clusters, &SI); 10605 10606 LLVM_DEBUG({ 10607 dbgs() << "Case clusters: "; 10608 for (const CaseCluster &C : Clusters) { 10609 if (C.Kind == CC_JumpTable) 10610 dbgs() << "JT:"; 10611 if (C.Kind == CC_BitTests) 10612 dbgs() << "BT:"; 10613 10614 C.Low->getValue().print(dbgs(), true); 10615 if (C.Low != C.High) { 10616 dbgs() << '-'; 10617 C.High->getValue().print(dbgs(), true); 10618 } 10619 dbgs() << ' '; 10620 } 10621 dbgs() << '\n'; 10622 }); 10623 10624 assert(!Clusters.empty()); 10625 SwitchWorkList WorkList; 10626 CaseClusterIt First = Clusters.begin(); 10627 CaseClusterIt Last = Clusters.end() - 1; 10628 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10629 // Scale the branchprobability for DefaultMBB if the peel occurs and 10630 // DefaultMBB is not replaced. 10631 if (PeeledCaseProb != BranchProbability::getZero() && 10632 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10633 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10634 WorkList.push_back( 10635 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10636 10637 while (!WorkList.empty()) { 10638 SwitchWorkListItem W = WorkList.back(); 10639 WorkList.pop_back(); 10640 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10641 10642 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10643 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10644 // For optimized builds, lower large range as a balanced binary tree. 10645 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10646 continue; 10647 } 10648 10649 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10650 } 10651 } 10652 10653 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10654 SmallVector<EVT, 4> ValueVTs; 10655 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10656 ValueVTs); 10657 unsigned NumValues = ValueVTs.size(); 10658 if (NumValues == 0) return; 10659 10660 SmallVector<SDValue, 4> Values(NumValues); 10661 SDValue Op = getValue(I.getOperand(0)); 10662 10663 for (unsigned i = 0; i != NumValues; ++i) 10664 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10665 SDValue(Op.getNode(), Op.getResNo() + i)); 10666 10667 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10668 DAG.getVTList(ValueVTs), Values)); 10669 } 10670