1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/DebugInfo.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/IntegersSubsetMapping.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetFrameLowering.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetIntrinsicInfo.h" 58 #include "llvm/Target/TargetLibraryInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetOptions.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 /// LimitFloatPrecision - Generate low-precision inline sequences for 65 /// some float libcalls (6, 8 or 12 bits). 66 static unsigned LimitFloatPrecision; 67 68 static cl::opt<unsigned, true> 69 LimitFPPrecision("limit-float-precision", 70 cl::desc("Generate low-precision inline sequences " 71 "for some float libcalls"), 72 cl::location(LimitFloatPrecision), 73 cl::init(0)); 74 75 // Limit the width of DAG chains. This is important in general to prevent 76 // prevent DAG-based analysis from blowing up. For example, alias analysis and 77 // load clustering may not complete in reasonable time. It is difficult to 78 // recognize and avoid this situation within each individual analysis, and 79 // future analyses are likely to have the same behavior. Limiting DAG width is 80 // the safe approach, and will be especially important with global DAGs. 81 // 82 // MaxParallelChains default is arbitrarily high to avoid affecting 83 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 84 // sequence over this should have been converted to llvm.memcpy by the 85 // frontend. It easy to induce this behavior with .ll code such as: 86 // %buffer = alloca [4096 x i8] 87 // %data = load [4096 x i8]* %argPtr 88 // store [4096 x i8] %data, [4096 x i8]* %buffer 89 static const unsigned MaxParallelChains = 64; 90 91 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 92 const SDValue *Parts, unsigned NumParts, 93 MVT PartVT, EVT ValueVT, const Value *V); 94 95 /// getCopyFromParts - Create a value that contains the specified legal parts 96 /// combined into the value they represent. If the parts combine to a type 97 /// larger then ValueVT then AssertOp can be used to specify whether the extra 98 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 99 /// (ISD::AssertSext). 100 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 101 const SDValue *Parts, 102 unsigned NumParts, MVT PartVT, EVT ValueVT, 103 const Value *V, 104 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 105 if (ValueVT.isVector()) 106 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 107 PartVT, ValueVT, V); 108 109 assert(NumParts > 0 && "No parts to assemble!"); 110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 111 SDValue Val = Parts[0]; 112 113 if (NumParts > 1) { 114 // Assemble the value from multiple parts. 115 if (ValueVT.isInteger()) { 116 unsigned PartBits = PartVT.getSizeInBits(); 117 unsigned ValueBits = ValueVT.getSizeInBits(); 118 119 // Assemble the power of 2 part. 120 unsigned RoundParts = NumParts & (NumParts - 1) ? 121 1 << Log2_32(NumParts) : NumParts; 122 unsigned RoundBits = PartBits * RoundParts; 123 EVT RoundVT = RoundBits == ValueBits ? 124 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 125 SDValue Lo, Hi; 126 127 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 128 129 if (RoundParts > 2) { 130 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 131 PartVT, HalfVT, V); 132 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 133 RoundParts / 2, PartVT, HalfVT, V); 134 } else { 135 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 136 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 137 } 138 139 if (TLI.isBigEndian()) 140 std::swap(Lo, Hi); 141 142 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 143 144 if (RoundParts < NumParts) { 145 // Assemble the trailing non-power-of-2 part. 146 unsigned OddParts = NumParts - RoundParts; 147 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 148 Hi = getCopyFromParts(DAG, DL, 149 Parts + RoundParts, OddParts, PartVT, OddVT, V); 150 151 // Combine the round and odd parts. 152 Lo = Val; 153 if (TLI.isBigEndian()) 154 std::swap(Lo, Hi); 155 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 156 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 157 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 158 DAG.getConstant(Lo.getValueType().getSizeInBits(), 159 TLI.getPointerTy())); 160 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 161 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 162 } 163 } else if (PartVT.isFloatingPoint()) { 164 // FP split into multiple FP parts (for ppcf128) 165 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 166 "Unexpected split"); 167 SDValue Lo, Hi; 168 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 169 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 170 if (TLI.isBigEndian()) 171 std::swap(Lo, Hi); 172 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 173 } else { 174 // FP split into integer parts (soft fp) 175 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 176 !PartVT.isVector() && "Unexpected split"); 177 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 178 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 179 } 180 } 181 182 // There is now one part, held in Val. Correct it to match ValueVT. 183 EVT PartEVT = Val.getValueType(); 184 185 if (PartEVT == ValueVT) 186 return Val; 187 188 if (PartEVT.isInteger() && ValueVT.isInteger()) { 189 if (ValueVT.bitsLT(PartEVT)) { 190 // For a truncate, see if we have any information to 191 // indicate whether the truncated bits will always be 192 // zero or sign-extension. 193 if (AssertOp != ISD::DELETED_NODE) 194 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 195 DAG.getValueType(ValueVT)); 196 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 197 } 198 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 199 } 200 201 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 202 // FP_ROUND's are always exact here. 203 if (ValueVT.bitsLT(Val.getValueType())) 204 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 205 DAG.getTargetConstant(1, TLI.getPointerTy())); 206 207 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 208 } 209 210 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 211 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 212 213 llvm_unreachable("Unknown mismatch!"); 214 } 215 216 /// getCopyFromPartsVector - Create a value that contains the specified legal 217 /// parts combined into the value they represent. If the parts combine to a 218 /// type larger then ValueVT then AssertOp can be used to specify whether the 219 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 220 /// ValueVT (ISD::AssertSext). 221 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 222 const SDValue *Parts, unsigned NumParts, 223 MVT PartVT, EVT ValueVT, const Value *V) { 224 assert(ValueVT.isVector() && "Not a vector value"); 225 assert(NumParts > 0 && "No parts to assemble!"); 226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 227 SDValue Val = Parts[0]; 228 229 // Handle a multi-element vector. 230 if (NumParts > 1) { 231 EVT IntermediateVT; 232 MVT RegisterVT; 233 unsigned NumIntermediates; 234 unsigned NumRegs = 235 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 236 NumIntermediates, RegisterVT); 237 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 238 NumParts = NumRegs; // Silence a compiler warning. 239 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 240 assert(RegisterVT == Parts[0].getSimpleValueType() && 241 "Part type doesn't match part!"); 242 243 // Assemble the parts into intermediate operands. 244 SmallVector<SDValue, 8> Ops(NumIntermediates); 245 if (NumIntermediates == NumParts) { 246 // If the register was not expanded, truncate or copy the value, 247 // as appropriate. 248 for (unsigned i = 0; i != NumParts; ++i) 249 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 250 PartVT, IntermediateVT, V); 251 } else if (NumParts > 0) { 252 // If the intermediate type was expanded, build the intermediate 253 // operands from the parts. 254 assert(NumParts % NumIntermediates == 0 && 255 "Must expand into a divisible number of parts!"); 256 unsigned Factor = NumParts / NumIntermediates; 257 for (unsigned i = 0; i != NumIntermediates; ++i) 258 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 259 PartVT, IntermediateVT, V); 260 } 261 262 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 263 // intermediate operands. 264 Val = DAG.getNode(IntermediateVT.isVector() ? 265 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 266 ValueVT, &Ops[0], NumIntermediates); 267 } 268 269 // There is now one part, held in Val. Correct it to match ValueVT. 270 EVT PartEVT = Val.getValueType(); 271 272 if (PartEVT == ValueVT) 273 return Val; 274 275 if (PartEVT.isVector()) { 276 // If the element type of the source/dest vectors are the same, but the 277 // parts vector has more elements than the value vector, then we have a 278 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 279 // elements we want. 280 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 281 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 282 "Cannot narrow, it would be a lossy transformation"); 283 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 284 DAG.getConstant(0, TLI.getVectorIdxTy())); 285 } 286 287 // Vector/Vector bitcast. 288 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 289 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 290 291 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 292 "Cannot handle this kind of promotion"); 293 // Promoted vector extract 294 bool Smaller = ValueVT.bitsLE(PartEVT); 295 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 296 DL, ValueVT, Val); 297 298 } 299 300 // Trivial bitcast if the types are the same size and the destination 301 // vector type is legal. 302 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 303 TLI.isTypeLegal(ValueVT)) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 // Handle cases such as i8 -> <1 x i1> 307 if (ValueVT.getVectorNumElements() != 1) { 308 LLVMContext &Ctx = *DAG.getContext(); 309 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 310 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (isa<InlineAsm>(CI->getCalledValue())) 313 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 314 Ctx.emitError(I, ErrMsg); 315 } else { 316 Ctx.emitError(ErrMsg); 317 } 318 return DAG.getUNDEF(ValueVT); 319 } 320 321 if (ValueVT.getVectorNumElements() == 1 && 322 ValueVT.getVectorElementType() != PartEVT) { 323 bool Smaller = ValueVT.bitsLE(PartEVT); 324 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 325 DL, ValueVT.getScalarType(), Val); 326 } 327 328 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 329 } 330 331 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 332 SDValue Val, SDValue *Parts, unsigned NumParts, 333 MVT PartVT, const Value *V); 334 335 /// getCopyToParts - Create a series of nodes that contain the specified value 336 /// split into legal parts. If the parts contain more bits than Val, then, for 337 /// integers, ExtendKind can be used to specify how to generate the extra bits. 338 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 339 SDValue Val, SDValue *Parts, unsigned NumParts, 340 MVT PartVT, const Value *V, 341 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 342 EVT ValueVT = Val.getValueType(); 343 344 // Handle the vector case separately. 345 if (ValueVT.isVector()) 346 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 347 348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 349 unsigned PartBits = PartVT.getSizeInBits(); 350 unsigned OrigNumParts = NumParts; 351 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 352 353 if (NumParts == 0) 354 return; 355 356 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 357 EVT PartEVT = PartVT; 358 if (PartEVT == ValueVT) { 359 assert(NumParts == 1 && "No-op copy with multiple parts!"); 360 Parts[0] = Val; 361 return; 362 } 363 364 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 365 // If the parts cover more bits than the value has, promote the value. 366 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 367 assert(NumParts == 1 && "Do not know what to promote to!"); 368 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 369 } else { 370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 371 ValueVT.isInteger() && 372 "Unknown mismatch!"); 373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 374 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 375 if (PartVT == MVT::x86mmx) 376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 377 } 378 } else if (PartBits == ValueVT.getSizeInBits()) { 379 // Different types of the same size. 380 assert(NumParts == 1 && PartEVT != ValueVT); 381 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 382 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 383 // If the parts cover less bits than value has, truncate the value. 384 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 385 ValueVT.isInteger() && 386 "Unknown mismatch!"); 387 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 388 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 389 if (PartVT == MVT::x86mmx) 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } 392 393 // The value may have changed - recompute ValueVT. 394 ValueVT = Val.getValueType(); 395 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 396 "Failed to tile the value with PartVT!"); 397 398 if (NumParts == 1) { 399 if (PartEVT != ValueVT) { 400 LLVMContext &Ctx = *DAG.getContext(); 401 Twine ErrMsg("scalar-to-vector conversion failed"); 402 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 403 if (const CallInst *CI = dyn_cast<CallInst>(I)) 404 if (isa<InlineAsm>(CI->getCalledValue())) 405 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 406 Ctx.emitError(I, ErrMsg); 407 } else { 408 Ctx.emitError(ErrMsg); 409 } 410 } 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// areValueTypesLegal - Return true if types of all the values are legal. 630 bool areValueTypesLegal(const TargetLowering &TLI) { 631 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 632 MVT RegisterVT = RegVTs[Value]; 633 if (!TLI.isTypeLegal(RegisterVT)) 634 return false; 635 } 636 return true; 637 } 638 639 /// append - Add the specified values to this one. 640 void append(const RegsForValue &RHS) { 641 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 642 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 643 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 644 } 645 646 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 647 /// this value and returns the result as a ValueVTs value. This uses 648 /// Chain/Flag as the input and updates them for the output Chain/Flag. 649 /// If the Flag pointer is NULL, no flag is used. 650 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 651 SDLoc dl, 652 SDValue &Chain, SDValue *Flag, 653 const Value *V = 0) const; 654 655 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 656 /// specified value into the registers specified by this object. This uses 657 /// Chain/Flag as the input and updates them for the output Chain/Flag. 658 /// If the Flag pointer is NULL, no flag is used. 659 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 660 SDValue &Chain, SDValue *Flag, const Value *V) const; 661 662 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 663 /// operand list. This adds the code marker, matching input operand index 664 /// (if applicable), and includes the number of values added into it. 665 void AddInlineAsmOperands(unsigned Kind, 666 bool HasMatching, unsigned MatchingIdx, 667 SelectionDAG &DAG, 668 std::vector<SDValue> &Ops) const; 669 }; 670 } 671 672 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 673 /// this value and returns the result as a ValueVT value. This uses 674 /// Chain/Flag as the input and updates them for the output Chain/Flag. 675 /// If the Flag pointer is NULL, no flag is used. 676 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 677 FunctionLoweringInfo &FuncInfo, 678 SDLoc dl, 679 SDValue &Chain, SDValue *Flag, 680 const Value *V) const { 681 // A Value with type {} or [0 x %t] needs no registers. 682 if (ValueVTs.empty()) 683 return SDValue(); 684 685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 686 687 // Assemble the legal parts into the final values. 688 SmallVector<SDValue, 4> Values(ValueVTs.size()); 689 SmallVector<SDValue, 8> Parts; 690 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 691 // Copy the legal parts from the registers. 692 EVT ValueVT = ValueVTs[Value]; 693 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 694 MVT RegisterVT = RegVTs[Value]; 695 696 Parts.resize(NumRegs); 697 for (unsigned i = 0; i != NumRegs; ++i) { 698 SDValue P; 699 if (Flag == 0) { 700 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 701 } else { 702 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 703 *Flag = P.getValue(2); 704 } 705 706 Chain = P.getValue(1); 707 Parts[i] = P; 708 709 // If the source register was virtual and if we know something about it, 710 // add an assert node. 711 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 712 !RegisterVT.isInteger() || RegisterVT.isVector()) 713 continue; 714 715 const FunctionLoweringInfo::LiveOutInfo *LOI = 716 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 717 if (!LOI) 718 continue; 719 720 unsigned RegSize = RegisterVT.getSizeInBits(); 721 unsigned NumSignBits = LOI->NumSignBits; 722 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 723 724 if (NumZeroBits == RegSize) { 725 // The current value is a zero. 726 // Explicitly express that as it would be easier for 727 // optimizations to kick in. 728 Parts[i] = DAG.getConstant(0, RegisterVT); 729 continue; 730 } 731 732 // FIXME: We capture more information than the dag can represent. For 733 // now, just use the tightest assertzext/assertsext possible. 734 bool isSExt = true; 735 EVT FromVT(MVT::Other); 736 if (NumSignBits == RegSize) 737 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 738 else if (NumZeroBits >= RegSize-1) 739 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 740 else if (NumSignBits > RegSize-8) 741 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 742 else if (NumZeroBits >= RegSize-8) 743 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 744 else if (NumSignBits > RegSize-16) 745 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 746 else if (NumZeroBits >= RegSize-16) 747 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 748 else if (NumSignBits > RegSize-32) 749 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 750 else if (NumZeroBits >= RegSize-32) 751 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 752 else 753 continue; 754 755 // Add an assertion node. 756 assert(FromVT != MVT::Other); 757 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 758 RegisterVT, P, DAG.getValueType(FromVT)); 759 } 760 761 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 762 NumRegs, RegisterVT, ValueVT, V); 763 Part += NumRegs; 764 Parts.clear(); 765 } 766 767 return DAG.getNode(ISD::MERGE_VALUES, dl, 768 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 769 &Values[0], ValueVTs.size()); 770 } 771 772 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 773 /// specified value into the registers specified by this object. This uses 774 /// Chain/Flag as the input and updates them for the output Chain/Flag. 775 /// If the Flag pointer is NULL, no flag is used. 776 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 777 SDValue &Chain, SDValue *Flag, 778 const Value *V) const { 779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 780 781 // Get the list of the values's legal parts. 782 unsigned NumRegs = Regs.size(); 783 SmallVector<SDValue, 8> Parts(NumRegs); 784 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 785 EVT ValueVT = ValueVTs[Value]; 786 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 787 MVT RegisterVT = RegVTs[Value]; 788 ISD::NodeType ExtendKind = 789 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 790 791 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 792 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 793 Part += NumParts; 794 } 795 796 // Copy the parts into the registers. 797 SmallVector<SDValue, 8> Chains(NumRegs); 798 for (unsigned i = 0; i != NumRegs; ++i) { 799 SDValue Part; 800 if (Flag == 0) { 801 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 802 } else { 803 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 804 *Flag = Part.getValue(1); 805 } 806 807 Chains[i] = Part.getValue(0); 808 } 809 810 if (NumRegs == 1 || Flag) 811 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 812 // flagged to it. That is the CopyToReg nodes and the user are considered 813 // a single scheduling unit. If we create a TokenFactor and return it as 814 // chain, then the TokenFactor is both a predecessor (operand) of the 815 // user as well as a successor (the TF operands are flagged to the user). 816 // c1, f1 = CopyToReg 817 // c2, f2 = CopyToReg 818 // c3 = TokenFactor c1, c2 819 // ... 820 // = op c3, ..., f2 821 Chain = Chains[NumRegs-1]; 822 else 823 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 824 } 825 826 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 827 /// operand list. This adds the code marker and includes the number of 828 /// values added into it. 829 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 830 unsigned MatchingIdx, 831 SelectionDAG &DAG, 832 std::vector<SDValue> &Ops) const { 833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 834 835 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 836 if (HasMatching) 837 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 838 else if (!Regs.empty() && 839 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 840 // Put the register class of the virtual registers in the flag word. That 841 // way, later passes can recompute register class constraints for inline 842 // assembly as well as normal instructions. 843 // Don't do this for tied operands that can use the regclass information 844 // from the def. 845 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 846 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 847 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 848 } 849 850 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 851 Ops.push_back(Res); 852 853 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 854 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 855 MVT RegisterVT = RegVTs[Value]; 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 858 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 TD = DAG.getTarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = NULL; 885 HasTailCall = false; 886 } 887 888 /// clearDanglingDebugInfo - Clear the dangling debug information 889 /// map. This function is separated from the clear so that debug 890 /// information that is dangling in a basic block can be properly 891 /// resolved in a different basic block. This allows the 892 /// SelectionDAG to resolve dangling debug information attached 893 /// to PHI nodes. 894 void SelectionDAGBuilder::clearDanglingDebugInfo() { 895 DanglingDebugInfoMap.clear(); 896 } 897 898 /// getRoot - Return the current virtual root of the Selection DAG, 899 /// flushing any PendingLoad items. This must be done before emitting 900 /// a store or any other node that may need to be ordered after any 901 /// prior load instructions. 902 /// 903 SDValue SelectionDAGBuilder::getRoot() { 904 if (PendingLoads.empty()) 905 return DAG.getRoot(); 906 907 if (PendingLoads.size() == 1) { 908 SDValue Root = PendingLoads[0]; 909 DAG.setRoot(Root); 910 PendingLoads.clear(); 911 return Root; 912 } 913 914 // Otherwise, we have to make a token factor node. 915 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 916 &PendingLoads[0], PendingLoads.size()); 917 PendingLoads.clear(); 918 DAG.setRoot(Root); 919 return Root; 920 } 921 922 /// getControlRoot - Similar to getRoot, but instead of flushing all the 923 /// PendingLoad items, flush all the PendingExports items. It is necessary 924 /// to do this before emitting a terminator instruction. 925 /// 926 SDValue SelectionDAGBuilder::getControlRoot() { 927 SDValue Root = DAG.getRoot(); 928 929 if (PendingExports.empty()) 930 return Root; 931 932 // Turn all of the CopyToReg chains into one factored node. 933 if (Root.getOpcode() != ISD::EntryToken) { 934 unsigned i = 0, e = PendingExports.size(); 935 for (; i != e; ++i) { 936 assert(PendingExports[i].getNode()->getNumOperands() > 1); 937 if (PendingExports[i].getNode()->getOperand(0) == Root) 938 break; // Don't add the root if we already indirectly depend on it. 939 } 940 941 if (i == e) 942 PendingExports.push_back(Root); 943 } 944 945 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 946 &PendingExports[0], 947 PendingExports.size()); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = NULL; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 uint64_t Offset = DI->getOffset(); 997 SDDbgValue *SDV; 998 if (Val.getNode()) { 999 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 1000 SDV = DAG.getDbgValue(Variable, Val.getNode(), 1001 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 1002 DAG.AddDbgValue(SDV, Val.getNode(), false); 1003 } 1004 } else 1005 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1006 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1007 } 1008 } 1009 1010 /// getValue - Return an SDValue for the given Value. 1011 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1012 // If we already have an SDValue for this value, use it. It's important 1013 // to do this first, so that we don't create a CopyFromReg if we already 1014 // have a regular SDValue. 1015 SDValue &N = NodeMap[V]; 1016 if (N.getNode()) return N; 1017 1018 // If there's a virtual register allocated and initialized for this 1019 // value, use it. 1020 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1021 if (It != FuncInfo.ValueMap.end()) { 1022 unsigned InReg = It->second; 1023 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1024 InReg, V->getType()); 1025 SDValue Chain = DAG.getEntryNode(); 1026 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1027 resolveDanglingDebugInfo(V, N); 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getNonRegisterValue - Return an SDValue for the given Value, but 1039 /// don't look in FuncInfo.ValueMap for a virtual register. 1040 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1041 // If we already have an SDValue for this value, use it. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // Otherwise create a new SDValue and remember it. 1046 SDValue Val = getValueImpl(V); 1047 NodeMap[V] = Val; 1048 resolveDanglingDebugInfo(V, Val); 1049 return Val; 1050 } 1051 1052 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1053 /// Create an SDValue for the given value. 1054 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1055 const TargetLowering *TLI = TM.getTargetLowering(); 1056 1057 if (const Constant *C = dyn_cast<Constant>(V)) { 1058 EVT VT = TLI->getValueType(V->getType(), true); 1059 1060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1061 return DAG.getConstant(*CI, VT); 1062 1063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1064 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1065 1066 if (isa<ConstantPointerNull>(C)) 1067 return DAG.getConstant(0, TLI->getPointerTy()); 1068 1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1070 return DAG.getConstantFP(*CFP, VT); 1071 1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1073 return DAG.getUNDEF(VT); 1074 1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1076 visit(CE->getOpcode(), *CE); 1077 SDValue N1 = NodeMap[V]; 1078 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1079 return N1; 1080 } 1081 1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1083 SmallVector<SDValue, 4> Constants; 1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1085 OI != OE; ++OI) { 1086 SDNode *Val = getValue(*OI).getNode(); 1087 // If the operand is an empty aggregate, there are no values. 1088 if (!Val) continue; 1089 // Add each leaf value from the operand to the Constants list 1090 // to form a flattened list of all the values. 1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1092 Constants.push_back(SDValue(Val, i)); 1093 } 1094 1095 return DAG.getMergeValues(&Constants[0], Constants.size(), 1096 getCurSDLoc()); 1097 } 1098 1099 if (const ConstantDataSequential *CDS = 1100 dyn_cast<ConstantDataSequential>(C)) { 1101 SmallVector<SDValue, 4> Ops; 1102 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1103 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1104 // Add each leaf value from the operand to the Constants list 1105 // to form a flattened list of all the values. 1106 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1107 Ops.push_back(SDValue(Val, i)); 1108 } 1109 1110 if (isa<ArrayType>(CDS->getType())) 1111 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1112 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1113 VT, &Ops[0], Ops.size()); 1114 } 1115 1116 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1117 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1118 "Unknown struct or array constant!"); 1119 1120 SmallVector<EVT, 4> ValueVTs; 1121 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1122 unsigned NumElts = ValueVTs.size(); 1123 if (NumElts == 0) 1124 return SDValue(); // empty struct 1125 SmallVector<SDValue, 4> Constants(NumElts); 1126 for (unsigned i = 0; i != NumElts; ++i) { 1127 EVT EltVT = ValueVTs[i]; 1128 if (isa<UndefValue>(C)) 1129 Constants[i] = DAG.getUNDEF(EltVT); 1130 else if (EltVT.isFloatingPoint()) 1131 Constants[i] = DAG.getConstantFP(0, EltVT); 1132 else 1133 Constants[i] = DAG.getConstant(0, EltVT); 1134 } 1135 1136 return DAG.getMergeValues(&Constants[0], NumElts, 1137 getCurSDLoc()); 1138 } 1139 1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1141 return DAG.getBlockAddress(BA, VT); 1142 1143 VectorType *VecTy = cast<VectorType>(V->getType()); 1144 unsigned NumElements = VecTy->getNumElements(); 1145 1146 // Now that we know the number and type of the elements, get that number of 1147 // elements into the Ops array based on what kind of constant it is. 1148 SmallVector<SDValue, 16> Ops; 1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1150 for (unsigned i = 0; i != NumElements; ++i) 1151 Ops.push_back(getValue(CV->getOperand(i))); 1152 } else { 1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1154 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1155 1156 SDValue Op; 1157 if (EltVT.isFloatingPoint()) 1158 Op = DAG.getConstantFP(0, EltVT); 1159 else 1160 Op = DAG.getConstant(0, EltVT); 1161 Ops.assign(NumElements, Op); 1162 } 1163 1164 // Create a BUILD_VECTOR node. 1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1166 VT, &Ops[0], Ops.size()); 1167 } 1168 1169 // If this is a static alloca, generate it as the frameindex instead of 1170 // computation. 1171 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1172 DenseMap<const AllocaInst*, int>::iterator SI = 1173 FuncInfo.StaticAllocaMap.find(AI); 1174 if (SI != FuncInfo.StaticAllocaMap.end()) 1175 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1176 } 1177 1178 // If this is an instruction which fast-isel has deferred, select it now. 1179 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1180 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1181 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1182 SDValue Chain = DAG.getEntryNode(); 1183 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1184 } 1185 1186 llvm_unreachable("Can't get register for value!"); 1187 } 1188 1189 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1190 const TargetLowering *TLI = TM.getTargetLowering(); 1191 SDValue Chain = getControlRoot(); 1192 SmallVector<ISD::OutputArg, 8> Outs; 1193 SmallVector<SDValue, 8> OutVals; 1194 1195 if (!FuncInfo.CanLowerReturn) { 1196 unsigned DemoteReg = FuncInfo.DemoteRegister; 1197 const Function *F = I.getParent()->getParent(); 1198 1199 // Emit a store of the return value through the virtual register. 1200 // Leave Outs empty so that LowerReturn won't try to load return 1201 // registers the usual way. 1202 SmallVector<EVT, 1> PtrValueVTs; 1203 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1204 PtrValueVTs); 1205 1206 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1207 SDValue RetOp = getValue(I.getOperand(0)); 1208 1209 SmallVector<EVT, 4> ValueVTs; 1210 SmallVector<uint64_t, 4> Offsets; 1211 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1212 unsigned NumValues = ValueVTs.size(); 1213 1214 SmallVector<SDValue, 4> Chains(NumValues); 1215 for (unsigned i = 0; i != NumValues; ++i) { 1216 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1217 RetPtr.getValueType(), RetPtr, 1218 DAG.getIntPtrConstant(Offsets[i])); 1219 Chains[i] = 1220 DAG.getStore(Chain, getCurSDLoc(), 1221 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1222 // FIXME: better loc info would be nice. 1223 Add, MachinePointerInfo(), false, false, 0); 1224 } 1225 1226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1227 MVT::Other, &Chains[0], NumValues); 1228 } else if (I.getNumOperands() != 0) { 1229 SmallVector<EVT, 4> ValueVTs; 1230 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1231 unsigned NumValues = ValueVTs.size(); 1232 if (NumValues) { 1233 SDValue RetOp = getValue(I.getOperand(0)); 1234 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1235 EVT VT = ValueVTs[j]; 1236 1237 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1238 1239 const Function *F = I.getParent()->getParent(); 1240 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1241 Attribute::SExt)) 1242 ExtendKind = ISD::SIGN_EXTEND; 1243 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::ZExt)) 1245 ExtendKind = ISD::ZERO_EXTEND; 1246 1247 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1248 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1249 1250 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1251 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1252 SmallVector<SDValue, 4> Parts(NumParts); 1253 getCopyToParts(DAG, getCurSDLoc(), 1254 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1255 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1256 1257 // 'inreg' on function refers to return value 1258 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1259 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1260 Attribute::InReg)) 1261 Flags.setInReg(); 1262 1263 // Propagate extension type if any 1264 if (ExtendKind == ISD::SIGN_EXTEND) 1265 Flags.setSExt(); 1266 else if (ExtendKind == ISD::ZERO_EXTEND) 1267 Flags.setZExt(); 1268 1269 for (unsigned i = 0; i < NumParts; ++i) { 1270 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1271 /*isfixed=*/true, 0, 0)); 1272 OutVals.push_back(Parts[i]); 1273 } 1274 } 1275 } 1276 } 1277 1278 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1279 CallingConv::ID CallConv = 1280 DAG.getMachineFunction().getFunction()->getCallingConv(); 1281 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1282 Outs, OutVals, getCurSDLoc(), 1283 DAG); 1284 1285 // Verify that the target's LowerReturn behaved as expected. 1286 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1287 "LowerReturn didn't return a valid chain!"); 1288 1289 // Update the DAG with the new chain value resulting from return lowering. 1290 DAG.setRoot(Chain); 1291 } 1292 1293 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1294 /// created for it, emit nodes to copy the value into the virtual 1295 /// registers. 1296 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1297 // Skip empty types 1298 if (V->getType()->isEmptyTy()) 1299 return; 1300 1301 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1302 if (VMI != FuncInfo.ValueMap.end()) { 1303 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1304 CopyValueToVirtualRegister(V, VMI->second); 1305 } 1306 } 1307 1308 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1309 /// the current basic block, add it to ValueMap now so that we'll get a 1310 /// CopyTo/FromReg. 1311 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1312 // No need to export constants. 1313 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1314 1315 // Already exported? 1316 if (FuncInfo.isExportedInst(V)) return; 1317 1318 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1319 CopyValueToVirtualRegister(V, Reg); 1320 } 1321 1322 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1323 const BasicBlock *FromBB) { 1324 // The operands of the setcc have to be in this block. We don't know 1325 // how to export them from some other block. 1326 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1327 // Can export from current BB. 1328 if (VI->getParent() == FromBB) 1329 return true; 1330 1331 // Is already exported, noop. 1332 return FuncInfo.isExportedInst(V); 1333 } 1334 1335 // If this is an argument, we can export it if the BB is the entry block or 1336 // if it is already exported. 1337 if (isa<Argument>(V)) { 1338 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1339 return true; 1340 1341 // Otherwise, can only export this if it is already exported. 1342 return FuncInfo.isExportedInst(V); 1343 } 1344 1345 // Otherwise, constants can always be exported. 1346 return true; 1347 } 1348 1349 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1350 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1351 const MachineBasicBlock *Dst) const { 1352 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1353 if (!BPI) 1354 return 0; 1355 const BasicBlock *SrcBB = Src->getBasicBlock(); 1356 const BasicBlock *DstBB = Dst->getBasicBlock(); 1357 return BPI->getEdgeWeight(SrcBB, DstBB); 1358 } 1359 1360 void SelectionDAGBuilder:: 1361 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1362 uint32_t Weight /* = 0 */) { 1363 if (!Weight) 1364 Weight = getEdgeWeight(Src, Dst); 1365 Src->addSuccessor(Dst, Weight); 1366 } 1367 1368 1369 static bool InBlock(const Value *V, const BasicBlock *BB) { 1370 if (const Instruction *I = dyn_cast<Instruction>(V)) 1371 return I->getParent() == BB; 1372 return true; 1373 } 1374 1375 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1376 /// This function emits a branch and is used at the leaves of an OR or an 1377 /// AND operator tree. 1378 /// 1379 void 1380 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1381 MachineBasicBlock *TBB, 1382 MachineBasicBlock *FBB, 1383 MachineBasicBlock *CurBB, 1384 MachineBasicBlock *SwitchBB) { 1385 const BasicBlock *BB = CurBB->getBasicBlock(); 1386 1387 // If the leaf of the tree is a comparison, merge the condition into 1388 // the caseblock. 1389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1390 // The operands of the cmp have to be in this block. We don't know 1391 // how to export them from some other block. If this is the first block 1392 // of the sequence, no exporting is needed. 1393 if (CurBB == SwitchBB || 1394 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1395 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1396 ISD::CondCode Condition; 1397 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1398 Condition = getICmpCondCode(IC->getPredicate()); 1399 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1400 Condition = getFCmpCondCode(FC->getPredicate()); 1401 if (TM.Options.NoNaNsFPMath) 1402 Condition = getFCmpCodeWithoutNaN(Condition); 1403 } else { 1404 Condition = ISD::SETEQ; // silence warning. 1405 llvm_unreachable("Unknown compare instruction"); 1406 } 1407 1408 CaseBlock CB(Condition, BOp->getOperand(0), 1409 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1410 SwitchCases.push_back(CB); 1411 return; 1412 } 1413 } 1414 1415 // Create a CaseBlock record representing this branch. 1416 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1417 NULL, TBB, FBB, CurBB); 1418 SwitchCases.push_back(CB); 1419 } 1420 1421 /// FindMergedConditions - If Cond is an expression like 1422 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1423 MachineBasicBlock *TBB, 1424 MachineBasicBlock *FBB, 1425 MachineBasicBlock *CurBB, 1426 MachineBasicBlock *SwitchBB, 1427 unsigned Opc) { 1428 // If this node is not part of the or/and tree, emit it as a branch. 1429 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1430 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1431 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1432 BOp->getParent() != CurBB->getBasicBlock() || 1433 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1434 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1435 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1436 return; 1437 } 1438 1439 // Create TmpBB after CurBB. 1440 MachineFunction::iterator BBI = CurBB; 1441 MachineFunction &MF = DAG.getMachineFunction(); 1442 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1443 CurBB->getParent()->insert(++BBI, TmpBB); 1444 1445 if (Opc == Instruction::Or) { 1446 // Codegen X | Y as: 1447 // jmp_if_X TBB 1448 // jmp TmpBB 1449 // TmpBB: 1450 // jmp_if_Y TBB 1451 // jmp FBB 1452 // 1453 1454 // Emit the LHS condition. 1455 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1456 1457 // Emit the RHS condition into TmpBB. 1458 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1459 } else { 1460 assert(Opc == Instruction::And && "Unknown merge op!"); 1461 // Codegen X & Y as: 1462 // jmp_if_X TmpBB 1463 // jmp FBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 // This requires creation of TmpBB after CurBB. 1469 1470 // Emit the LHS condition. 1471 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1472 1473 // Emit the RHS condition into TmpBB. 1474 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1475 } 1476 } 1477 1478 /// If the set of cases should be emitted as a series of branches, return true. 1479 /// If we should emit this as a bunch of and/or'd together conditions, return 1480 /// false. 1481 bool 1482 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1483 if (Cases.size() != 2) return true; 1484 1485 // If this is two comparisons of the same values or'd or and'd together, they 1486 // will get folded into a single comparison, so don't emit two blocks. 1487 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1488 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1489 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1490 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1491 return false; 1492 } 1493 1494 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1495 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1496 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1497 Cases[0].CC == Cases[1].CC && 1498 isa<Constant>(Cases[0].CmpRHS) && 1499 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1500 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1501 return false; 1502 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1503 return false; 1504 } 1505 1506 return true; 1507 } 1508 1509 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1510 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1511 1512 // Update machine-CFG edges. 1513 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1514 1515 // Figure out which block is immediately after the current one. 1516 MachineBasicBlock *NextBlock = 0; 1517 MachineFunction::iterator BBI = BrMBB; 1518 if (++BBI != FuncInfo.MF->end()) 1519 NextBlock = BBI; 1520 1521 if (I.isUnconditional()) { 1522 // Update machine-CFG edges. 1523 BrMBB->addSuccessor(Succ0MBB); 1524 1525 // If this is not a fall-through branch, emit the branch. 1526 if (Succ0MBB != NextBlock) 1527 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1528 MVT::Other, getControlRoot(), 1529 DAG.getBasicBlock(Succ0MBB))); 1530 1531 return; 1532 } 1533 1534 // If this condition is one of the special cases we handle, do special stuff 1535 // now. 1536 const Value *CondVal = I.getCondition(); 1537 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1538 1539 // If this is a series of conditions that are or'd or and'd together, emit 1540 // this as a sequence of branches instead of setcc's with and/or operations. 1541 // As long as jumps are not expensive, this should improve performance. 1542 // For example, instead of something like: 1543 // cmp A, B 1544 // C = seteq 1545 // cmp D, E 1546 // F = setle 1547 // or C, F 1548 // jnz foo 1549 // Emit: 1550 // cmp A, B 1551 // je foo 1552 // cmp D, E 1553 // jle foo 1554 // 1555 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1556 if (!TM.getTargetLowering()->isJumpExpensive() && 1557 BOp->hasOneUse() && 1558 (BOp->getOpcode() == Instruction::And || 1559 BOp->getOpcode() == Instruction::Or)) { 1560 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1561 BOp->getOpcode()); 1562 // If the compares in later blocks need to use values not currently 1563 // exported from this block, export them now. This block should always 1564 // be the first entry. 1565 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1566 1567 // Allow some cases to be rejected. 1568 if (ShouldEmitAsBranches(SwitchCases)) { 1569 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1570 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1571 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1572 } 1573 1574 // Emit the branch for this block. 1575 visitSwitchCase(SwitchCases[0], BrMBB); 1576 SwitchCases.erase(SwitchCases.begin()); 1577 return; 1578 } 1579 1580 // Okay, we decided not to do this, remove any inserted MBB's and clear 1581 // SwitchCases. 1582 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1583 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1584 1585 SwitchCases.clear(); 1586 } 1587 } 1588 1589 // Create a CaseBlock record representing this branch. 1590 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1591 NULL, Succ0MBB, Succ1MBB, BrMBB); 1592 1593 // Use visitSwitchCase to actually insert the fast branch sequence for this 1594 // cond branch. 1595 visitSwitchCase(CB, BrMBB); 1596 } 1597 1598 /// visitSwitchCase - Emits the necessary code to represent a single node in 1599 /// the binary search tree resulting from lowering a switch instruction. 1600 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1601 MachineBasicBlock *SwitchBB) { 1602 SDValue Cond; 1603 SDValue CondLHS = getValue(CB.CmpLHS); 1604 SDLoc dl = getCurSDLoc(); 1605 1606 // Build the setcc now. 1607 if (CB.CmpMHS == NULL) { 1608 // Fold "(X == true)" to X and "(X == false)" to !X to 1609 // handle common cases produced by branch lowering. 1610 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1611 CB.CC == ISD::SETEQ) 1612 Cond = CondLHS; 1613 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1614 CB.CC == ISD::SETEQ) { 1615 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1616 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1617 } else 1618 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1619 } else { 1620 assert(CB.CC == ISD::SETCC_INVALID && 1621 "Condition is undefined for to-the-range belonging check."); 1622 1623 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1624 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1625 1626 SDValue CmpOp = getValue(CB.CmpMHS); 1627 EVT VT = CmpOp.getValueType(); 1628 1629 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1630 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1631 ISD::SETULE); 1632 } else { 1633 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1634 VT, CmpOp, DAG.getConstant(Low, VT)); 1635 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1636 DAG.getConstant(High-Low, VT), ISD::SETULE); 1637 } 1638 } 1639 1640 // Update successor info 1641 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1642 // TrueBB and FalseBB are always different unless the incoming IR is 1643 // degenerate. This only happens when running llc on weird IR. 1644 if (CB.TrueBB != CB.FalseBB) 1645 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1646 1647 // Set NextBlock to be the MBB immediately after the current one, if any. 1648 // This is used to avoid emitting unnecessary branches to the next block. 1649 MachineBasicBlock *NextBlock = 0; 1650 MachineFunction::iterator BBI = SwitchBB; 1651 if (++BBI != FuncInfo.MF->end()) 1652 NextBlock = BBI; 1653 1654 // If the lhs block is the next block, invert the condition so that we can 1655 // fall through to the lhs instead of the rhs block. 1656 if (CB.TrueBB == NextBlock) { 1657 std::swap(CB.TrueBB, CB.FalseBB); 1658 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1659 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1660 } 1661 1662 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1663 MVT::Other, getControlRoot(), Cond, 1664 DAG.getBasicBlock(CB.TrueBB)); 1665 1666 // Insert the false branch. Do this even if it's a fall through branch, 1667 // this makes it easier to do DAG optimizations which require inverting 1668 // the branch condition. 1669 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1670 DAG.getBasicBlock(CB.FalseBB)); 1671 1672 DAG.setRoot(BrCond); 1673 } 1674 1675 /// visitJumpTable - Emit JumpTable node in the current MBB 1676 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1677 // Emit the code for the jump table 1678 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1679 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1680 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1681 JT.Reg, PTy); 1682 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1683 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1684 MVT::Other, Index.getValue(1), 1685 Table, Index); 1686 DAG.setRoot(BrJumpTable); 1687 } 1688 1689 /// visitJumpTableHeader - This function emits necessary code to produce index 1690 /// in the JumpTable from switch case. 1691 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1692 JumpTableHeader &JTH, 1693 MachineBasicBlock *SwitchBB) { 1694 // Subtract the lowest switch case value from the value being switched on and 1695 // conditional branch to default mbb if the result is greater than the 1696 // difference between smallest and largest cases. 1697 SDValue SwitchOp = getValue(JTH.SValue); 1698 EVT VT = SwitchOp.getValueType(); 1699 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1700 DAG.getConstant(JTH.First, VT)); 1701 1702 // The SDNode we just created, which holds the value being switched on minus 1703 // the smallest case value, needs to be copied to a virtual register so it 1704 // can be used as an index into the jump table in a subsequent basic block. 1705 // This value may be smaller or larger than the target's pointer type, and 1706 // therefore require extension or truncating. 1707 const TargetLowering *TLI = TM.getTargetLowering(); 1708 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1709 1710 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1711 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1712 JumpTableReg, SwitchOp); 1713 JT.Reg = JumpTableReg; 1714 1715 // Emit the range check for the jump table, and branch to the default block 1716 // for the switch statement if the value being switched on exceeds the largest 1717 // case in the switch. 1718 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1719 TLI->getSetCCResultType(*DAG.getContext(), 1720 Sub.getValueType()), 1721 Sub, 1722 DAG.getConstant(JTH.Last - JTH.First,VT), 1723 ISD::SETUGT); 1724 1725 // Set NextBlock to be the MBB immediately after the current one, if any. 1726 // This is used to avoid emitting unnecessary branches to the next block. 1727 MachineBasicBlock *NextBlock = 0; 1728 MachineFunction::iterator BBI = SwitchBB; 1729 1730 if (++BBI != FuncInfo.MF->end()) 1731 NextBlock = BBI; 1732 1733 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1734 MVT::Other, CopyTo, CMP, 1735 DAG.getBasicBlock(JT.Default)); 1736 1737 if (JT.MBB != NextBlock) 1738 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1739 DAG.getBasicBlock(JT.MBB)); 1740 1741 DAG.setRoot(BrCond); 1742 } 1743 1744 /// visitBitTestHeader - This function emits necessary code to produce value 1745 /// suitable for "bit tests" 1746 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1747 MachineBasicBlock *SwitchBB) { 1748 // Subtract the minimum value 1749 SDValue SwitchOp = getValue(B.SValue); 1750 EVT VT = SwitchOp.getValueType(); 1751 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1752 DAG.getConstant(B.First, VT)); 1753 1754 // Check range 1755 const TargetLowering *TLI = TM.getTargetLowering(); 1756 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1757 TLI->getSetCCResultType(*DAG.getContext(), 1758 Sub.getValueType()), 1759 Sub, DAG.getConstant(B.Range, VT), 1760 ISD::SETUGT); 1761 1762 // Determine the type of the test operands. 1763 bool UsePtrType = false; 1764 if (!TLI->isTypeLegal(VT)) 1765 UsePtrType = true; 1766 else { 1767 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1768 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1769 // Switch table case range are encoded into series of masks. 1770 // Just use pointer type, it's guaranteed to fit. 1771 UsePtrType = true; 1772 break; 1773 } 1774 } 1775 if (UsePtrType) { 1776 VT = TLI->getPointerTy(); 1777 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1778 } 1779 1780 B.RegVT = VT.getSimpleVT(); 1781 B.Reg = FuncInfo.CreateReg(B.RegVT); 1782 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1783 B.Reg, Sub); 1784 1785 // Set NextBlock to be the MBB immediately after the current one, if any. 1786 // This is used to avoid emitting unnecessary branches to the next block. 1787 MachineBasicBlock *NextBlock = 0; 1788 MachineFunction::iterator BBI = SwitchBB; 1789 if (++BBI != FuncInfo.MF->end()) 1790 NextBlock = BBI; 1791 1792 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1793 1794 addSuccessorWithWeight(SwitchBB, B.Default); 1795 addSuccessorWithWeight(SwitchBB, MBB); 1796 1797 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1798 MVT::Other, CopyTo, RangeCmp, 1799 DAG.getBasicBlock(B.Default)); 1800 1801 if (MBB != NextBlock) 1802 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1803 DAG.getBasicBlock(MBB)); 1804 1805 DAG.setRoot(BrRange); 1806 } 1807 1808 /// visitBitTestCase - this function produces one "bit test" 1809 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1810 MachineBasicBlock* NextMBB, 1811 uint32_t BranchWeightToNext, 1812 unsigned Reg, 1813 BitTestCase &B, 1814 MachineBasicBlock *SwitchBB) { 1815 MVT VT = BB.RegVT; 1816 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1817 Reg, VT); 1818 SDValue Cmp; 1819 unsigned PopCount = CountPopulation_64(B.Mask); 1820 const TargetLowering *TLI = TM.getTargetLowering(); 1821 if (PopCount == 1) { 1822 // Testing for a single bit; just compare the shift count with what it 1823 // would need to be to shift a 1 bit in that position. 1824 Cmp = DAG.getSetCC(getCurSDLoc(), 1825 TLI->getSetCCResultType(*DAG.getContext(), VT), 1826 ShiftOp, 1827 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1828 ISD::SETEQ); 1829 } else if (PopCount == BB.Range) { 1830 // There is only one zero bit in the range, test for it directly. 1831 Cmp = DAG.getSetCC(getCurSDLoc(), 1832 TLI->getSetCCResultType(*DAG.getContext(), VT), 1833 ShiftOp, 1834 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1835 ISD::SETNE); 1836 } else { 1837 // Make desired shift 1838 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1839 DAG.getConstant(1, VT), ShiftOp); 1840 1841 // Emit bit tests and jumps 1842 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1843 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1844 Cmp = DAG.getSetCC(getCurSDLoc(), 1845 TLI->getSetCCResultType(*DAG.getContext(), VT), 1846 AndOp, DAG.getConstant(0, VT), 1847 ISD::SETNE); 1848 } 1849 1850 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1851 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1852 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1853 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1854 1855 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1856 MVT::Other, getControlRoot(), 1857 Cmp, DAG.getBasicBlock(B.TargetBB)); 1858 1859 // Set NextBlock to be the MBB immediately after the current one, if any. 1860 // This is used to avoid emitting unnecessary branches to the next block. 1861 MachineBasicBlock *NextBlock = 0; 1862 MachineFunction::iterator BBI = SwitchBB; 1863 if (++BBI != FuncInfo.MF->end()) 1864 NextBlock = BBI; 1865 1866 if (NextMBB != NextBlock) 1867 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1868 DAG.getBasicBlock(NextMBB)); 1869 1870 DAG.setRoot(BrAnd); 1871 } 1872 1873 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1874 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1875 1876 // Retrieve successors. 1877 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1878 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1879 1880 const Value *Callee(I.getCalledValue()); 1881 const Function *Fn = dyn_cast<Function>(Callee); 1882 if (isa<InlineAsm>(Callee)) 1883 visitInlineAsm(&I); 1884 else if (Fn && Fn->isIntrinsic()) { 1885 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1886 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1887 } else 1888 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1889 1890 // If the value of the invoke is used outside of its defining block, make it 1891 // available as a virtual register. 1892 CopyToExportRegsIfNeeded(&I); 1893 1894 // Update successor info 1895 addSuccessorWithWeight(InvokeMBB, Return); 1896 addSuccessorWithWeight(InvokeMBB, LandingPad); 1897 1898 // Drop into normal successor. 1899 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1900 MVT::Other, getControlRoot(), 1901 DAG.getBasicBlock(Return))); 1902 } 1903 1904 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1905 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1906 } 1907 1908 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1909 assert(FuncInfo.MBB->isLandingPad() && 1910 "Call to landingpad not in landing pad!"); 1911 1912 MachineBasicBlock *MBB = FuncInfo.MBB; 1913 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1914 AddLandingPadInfo(LP, MMI, MBB); 1915 1916 // If there aren't registers to copy the values into (e.g., during SjLj 1917 // exceptions), then don't bother to create these DAG nodes. 1918 const TargetLowering *TLI = TM.getTargetLowering(); 1919 if (TLI->getExceptionPointerRegister() == 0 && 1920 TLI->getExceptionSelectorRegister() == 0) 1921 return; 1922 1923 SmallVector<EVT, 2> ValueVTs; 1924 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 1925 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 1926 1927 // Get the two live-in registers as SDValues. The physregs have already been 1928 // copied into virtual registers. 1929 SDValue Ops[2]; 1930 Ops[0] = DAG.getZExtOrTrunc( 1931 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1932 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 1933 getCurSDLoc(), ValueVTs[0]); 1934 Ops[1] = DAG.getZExtOrTrunc( 1935 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1936 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 1937 getCurSDLoc(), ValueVTs[1]); 1938 1939 // Merge into one. 1940 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 1941 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1942 &Ops[0], 2); 1943 setValue(&LP, Res); 1944 } 1945 1946 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1947 /// small case ranges). 1948 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1949 CaseRecVector& WorkList, 1950 const Value* SV, 1951 MachineBasicBlock *Default, 1952 MachineBasicBlock *SwitchBB) { 1953 // Size is the number of Cases represented by this range. 1954 size_t Size = CR.Range.second - CR.Range.first; 1955 if (Size > 3) 1956 return false; 1957 1958 // Get the MachineFunction which holds the current MBB. This is used when 1959 // inserting any additional MBBs necessary to represent the switch. 1960 MachineFunction *CurMF = FuncInfo.MF; 1961 1962 // Figure out which block is immediately after the current one. 1963 MachineBasicBlock *NextBlock = 0; 1964 MachineFunction::iterator BBI = CR.CaseBB; 1965 1966 if (++BBI != FuncInfo.MF->end()) 1967 NextBlock = BBI; 1968 1969 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1970 // If any two of the cases has the same destination, and if one value 1971 // is the same as the other, but has one bit unset that the other has set, 1972 // use bit manipulation to do two compares at once. For example: 1973 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1974 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1975 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1976 if (Size == 2 && CR.CaseBB == SwitchBB) { 1977 Case &Small = *CR.Range.first; 1978 Case &Big = *(CR.Range.second-1); 1979 1980 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1981 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1982 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1983 1984 // Check that there is only one bit different. 1985 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1986 (SmallValue | BigValue) == BigValue) { 1987 // Isolate the common bit. 1988 APInt CommonBit = BigValue & ~SmallValue; 1989 assert((SmallValue | CommonBit) == BigValue && 1990 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1991 1992 SDValue CondLHS = getValue(SV); 1993 EVT VT = CondLHS.getValueType(); 1994 SDLoc DL = getCurSDLoc(); 1995 1996 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1997 DAG.getConstant(CommonBit, VT)); 1998 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1999 Or, DAG.getConstant(BigValue, VT), 2000 ISD::SETEQ); 2001 2002 // Update successor info. 2003 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2004 addSuccessorWithWeight(SwitchBB, Small.BB, 2005 Small.ExtraWeight + Big.ExtraWeight); 2006 addSuccessorWithWeight(SwitchBB, Default, 2007 // The default destination is the first successor in IR. 2008 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2009 2010 // Insert the true branch. 2011 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2012 getControlRoot(), Cond, 2013 DAG.getBasicBlock(Small.BB)); 2014 2015 // Insert the false branch. 2016 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2017 DAG.getBasicBlock(Default)); 2018 2019 DAG.setRoot(BrCond); 2020 return true; 2021 } 2022 } 2023 } 2024 2025 // Order cases by weight so the most likely case will be checked first. 2026 uint32_t UnhandledWeights = 0; 2027 if (BPI) { 2028 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2029 uint32_t IWeight = I->ExtraWeight; 2030 UnhandledWeights += IWeight; 2031 for (CaseItr J = CR.Range.first; J < I; ++J) { 2032 uint32_t JWeight = J->ExtraWeight; 2033 if (IWeight > JWeight) 2034 std::swap(*I, *J); 2035 } 2036 } 2037 } 2038 // Rearrange the case blocks so that the last one falls through if possible. 2039 Case &BackCase = *(CR.Range.second-1); 2040 if (Size > 1 && 2041 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2042 // The last case block won't fall through into 'NextBlock' if we emit the 2043 // branches in this order. See if rearranging a case value would help. 2044 // We start at the bottom as it's the case with the least weight. 2045 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2046 if (I->BB == NextBlock) { 2047 std::swap(*I, BackCase); 2048 break; 2049 } 2050 } 2051 2052 // Create a CaseBlock record representing a conditional branch to 2053 // the Case's target mbb if the value being switched on SV is equal 2054 // to C. 2055 MachineBasicBlock *CurBlock = CR.CaseBB; 2056 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2057 MachineBasicBlock *FallThrough; 2058 if (I != E-1) { 2059 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2060 CurMF->insert(BBI, FallThrough); 2061 2062 // Put SV in a virtual register to make it available from the new blocks. 2063 ExportFromCurrentBlock(SV); 2064 } else { 2065 // If the last case doesn't match, go to the default block. 2066 FallThrough = Default; 2067 } 2068 2069 const Value *RHS, *LHS, *MHS; 2070 ISD::CondCode CC; 2071 if (I->High == I->Low) { 2072 // This is just small small case range :) containing exactly 1 case 2073 CC = ISD::SETEQ; 2074 LHS = SV; RHS = I->High; MHS = NULL; 2075 } else { 2076 CC = ISD::SETCC_INVALID; 2077 LHS = I->Low; MHS = SV; RHS = I->High; 2078 } 2079 2080 // The false weight should be sum of all un-handled cases. 2081 UnhandledWeights -= I->ExtraWeight; 2082 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2083 /* me */ CurBlock, 2084 /* trueweight */ I->ExtraWeight, 2085 /* falseweight */ UnhandledWeights); 2086 2087 // If emitting the first comparison, just call visitSwitchCase to emit the 2088 // code into the current block. Otherwise, push the CaseBlock onto the 2089 // vector to be later processed by SDISel, and insert the node's MBB 2090 // before the next MBB. 2091 if (CurBlock == SwitchBB) 2092 visitSwitchCase(CB, SwitchBB); 2093 else 2094 SwitchCases.push_back(CB); 2095 2096 CurBlock = FallThrough; 2097 } 2098 2099 return true; 2100 } 2101 2102 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2103 return TLI.supportJumpTables() && 2104 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2105 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2106 } 2107 2108 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2109 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2110 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2111 return (LastExt - FirstExt + 1ULL); 2112 } 2113 2114 /// handleJTSwitchCase - Emit jumptable for current switch case range 2115 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2116 CaseRecVector &WorkList, 2117 const Value *SV, 2118 MachineBasicBlock *Default, 2119 MachineBasicBlock *SwitchBB) { 2120 Case& FrontCase = *CR.Range.first; 2121 Case& BackCase = *(CR.Range.second-1); 2122 2123 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2124 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2125 2126 APInt TSize(First.getBitWidth(), 0); 2127 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2128 TSize += I->size(); 2129 2130 const TargetLowering *TLI = TM.getTargetLowering(); 2131 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2132 return false; 2133 2134 APInt Range = ComputeRange(First, Last); 2135 // The density is TSize / Range. Require at least 40%. 2136 // It should not be possible for IntTSize to saturate for sane code, but make 2137 // sure we handle Range saturation correctly. 2138 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2139 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2140 if (IntTSize * 10 < IntRange * 4) 2141 return false; 2142 2143 DEBUG(dbgs() << "Lowering jump table\n" 2144 << "First entry: " << First << ". Last entry: " << Last << '\n' 2145 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2146 2147 // Get the MachineFunction which holds the current MBB. This is used when 2148 // inserting any additional MBBs necessary to represent the switch. 2149 MachineFunction *CurMF = FuncInfo.MF; 2150 2151 // Figure out which block is immediately after the current one. 2152 MachineFunction::iterator BBI = CR.CaseBB; 2153 ++BBI; 2154 2155 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2156 2157 // Create a new basic block to hold the code for loading the address 2158 // of the jump table, and jumping to it. Update successor information; 2159 // we will either branch to the default case for the switch, or the jump 2160 // table. 2161 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2162 CurMF->insert(BBI, JumpTableBB); 2163 2164 addSuccessorWithWeight(CR.CaseBB, Default); 2165 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2166 2167 // Build a vector of destination BBs, corresponding to each target 2168 // of the jump table. If the value of the jump table slot corresponds to 2169 // a case statement, push the case's BB onto the vector, otherwise, push 2170 // the default BB. 2171 std::vector<MachineBasicBlock*> DestBBs; 2172 APInt TEI = First; 2173 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2174 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2175 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2176 2177 if (Low.ule(TEI) && TEI.ule(High)) { 2178 DestBBs.push_back(I->BB); 2179 if (TEI==High) 2180 ++I; 2181 } else { 2182 DestBBs.push_back(Default); 2183 } 2184 } 2185 2186 // Calculate weight for each unique destination in CR. 2187 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2188 if (FuncInfo.BPI) 2189 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2190 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2191 DestWeights.find(I->BB); 2192 if (Itr != DestWeights.end()) 2193 Itr->second += I->ExtraWeight; 2194 else 2195 DestWeights[I->BB] = I->ExtraWeight; 2196 } 2197 2198 // Update successor info. Add one edge to each unique successor. 2199 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2200 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2201 E = DestBBs.end(); I != E; ++I) { 2202 if (!SuccsHandled[(*I)->getNumber()]) { 2203 SuccsHandled[(*I)->getNumber()] = true; 2204 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2205 DestWeights.find(*I); 2206 addSuccessorWithWeight(JumpTableBB, *I, 2207 Itr != DestWeights.end() ? Itr->second : 0); 2208 } 2209 } 2210 2211 // Create a jump table index for this jump table. 2212 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2213 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2214 ->createJumpTableIndex(DestBBs); 2215 2216 // Set the jump table information so that we can codegen it as a second 2217 // MachineBasicBlock 2218 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2219 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2220 if (CR.CaseBB == SwitchBB) 2221 visitJumpTableHeader(JT, JTH, SwitchBB); 2222 2223 JTCases.push_back(JumpTableBlock(JTH, JT)); 2224 return true; 2225 } 2226 2227 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2228 /// 2 subtrees. 2229 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2230 CaseRecVector& WorkList, 2231 const Value* SV, 2232 MachineBasicBlock* Default, 2233 MachineBasicBlock* SwitchBB) { 2234 // Get the MachineFunction which holds the current MBB. This is used when 2235 // inserting any additional MBBs necessary to represent the switch. 2236 MachineFunction *CurMF = FuncInfo.MF; 2237 2238 // Figure out which block is immediately after the current one. 2239 MachineFunction::iterator BBI = CR.CaseBB; 2240 ++BBI; 2241 2242 Case& FrontCase = *CR.Range.first; 2243 Case& BackCase = *(CR.Range.second-1); 2244 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2245 2246 // Size is the number of Cases represented by this range. 2247 unsigned Size = CR.Range.second - CR.Range.first; 2248 2249 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2250 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2251 double FMetric = 0; 2252 CaseItr Pivot = CR.Range.first + Size/2; 2253 2254 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2255 // (heuristically) allow us to emit JumpTable's later. 2256 APInt TSize(First.getBitWidth(), 0); 2257 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2258 I!=E; ++I) 2259 TSize += I->size(); 2260 2261 APInt LSize = FrontCase.size(); 2262 APInt RSize = TSize-LSize; 2263 DEBUG(dbgs() << "Selecting best pivot: \n" 2264 << "First: " << First << ", Last: " << Last <<'\n' 2265 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2266 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2267 J!=E; ++I, ++J) { 2268 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2269 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2270 APInt Range = ComputeRange(LEnd, RBegin); 2271 assert((Range - 2ULL).isNonNegative() && 2272 "Invalid case distance"); 2273 // Use volatile double here to avoid excess precision issues on some hosts, 2274 // e.g. that use 80-bit X87 registers. 2275 volatile double LDensity = 2276 (double)LSize.roundToDouble() / 2277 (LEnd - First + 1ULL).roundToDouble(); 2278 volatile double RDensity = 2279 (double)RSize.roundToDouble() / 2280 (Last - RBegin + 1ULL).roundToDouble(); 2281 double Metric = Range.logBase2()*(LDensity+RDensity); 2282 // Should always split in some non-trivial place 2283 DEBUG(dbgs() <<"=>Step\n" 2284 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2285 << "LDensity: " << LDensity 2286 << ", RDensity: " << RDensity << '\n' 2287 << "Metric: " << Metric << '\n'); 2288 if (FMetric < Metric) { 2289 Pivot = J; 2290 FMetric = Metric; 2291 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2292 } 2293 2294 LSize += J->size(); 2295 RSize -= J->size(); 2296 } 2297 2298 const TargetLowering *TLI = TM.getTargetLowering(); 2299 if (areJTsAllowed(*TLI)) { 2300 // If our case is dense we *really* should handle it earlier! 2301 assert((FMetric > 0) && "Should handle dense range earlier!"); 2302 } else { 2303 Pivot = CR.Range.first + Size/2; 2304 } 2305 2306 CaseRange LHSR(CR.Range.first, Pivot); 2307 CaseRange RHSR(Pivot, CR.Range.second); 2308 const Constant *C = Pivot->Low; 2309 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2310 2311 // We know that we branch to the LHS if the Value being switched on is 2312 // less than the Pivot value, C. We use this to optimize our binary 2313 // tree a bit, by recognizing that if SV is greater than or equal to the 2314 // LHS's Case Value, and that Case Value is exactly one less than the 2315 // Pivot's Value, then we can branch directly to the LHS's Target, 2316 // rather than creating a leaf node for it. 2317 if ((LHSR.second - LHSR.first) == 1 && 2318 LHSR.first->High == CR.GE && 2319 cast<ConstantInt>(C)->getValue() == 2320 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2321 TrueBB = LHSR.first->BB; 2322 } else { 2323 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2324 CurMF->insert(BBI, TrueBB); 2325 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2326 2327 // Put SV in a virtual register to make it available from the new blocks. 2328 ExportFromCurrentBlock(SV); 2329 } 2330 2331 // Similar to the optimization above, if the Value being switched on is 2332 // known to be less than the Constant CR.LT, and the current Case Value 2333 // is CR.LT - 1, then we can branch directly to the target block for 2334 // the current Case Value, rather than emitting a RHS leaf node for it. 2335 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2336 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2337 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2338 FalseBB = RHSR.first->BB; 2339 } else { 2340 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2341 CurMF->insert(BBI, FalseBB); 2342 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2343 2344 // Put SV in a virtual register to make it available from the new blocks. 2345 ExportFromCurrentBlock(SV); 2346 } 2347 2348 // Create a CaseBlock record representing a conditional branch to 2349 // the LHS node if the value being switched on SV is less than C. 2350 // Otherwise, branch to LHS. 2351 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2352 2353 if (CR.CaseBB == SwitchBB) 2354 visitSwitchCase(CB, SwitchBB); 2355 else 2356 SwitchCases.push_back(CB); 2357 2358 return true; 2359 } 2360 2361 /// handleBitTestsSwitchCase - if current case range has few destination and 2362 /// range span less, than machine word bitwidth, encode case range into series 2363 /// of masks and emit bit tests with these masks. 2364 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2365 CaseRecVector& WorkList, 2366 const Value* SV, 2367 MachineBasicBlock* Default, 2368 MachineBasicBlock* SwitchBB) { 2369 const TargetLowering *TLI = TM.getTargetLowering(); 2370 EVT PTy = TLI->getPointerTy(); 2371 unsigned IntPtrBits = PTy.getSizeInBits(); 2372 2373 Case& FrontCase = *CR.Range.first; 2374 Case& BackCase = *(CR.Range.second-1); 2375 2376 // Get the MachineFunction which holds the current MBB. This is used when 2377 // inserting any additional MBBs necessary to represent the switch. 2378 MachineFunction *CurMF = FuncInfo.MF; 2379 2380 // If target does not have legal shift left, do not emit bit tests at all. 2381 if (!TLI->isOperationLegal(ISD::SHL, TLI->getPointerTy())) 2382 return false; 2383 2384 size_t numCmps = 0; 2385 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2386 I!=E; ++I) { 2387 // Single case counts one, case range - two. 2388 numCmps += (I->Low == I->High ? 1 : 2); 2389 } 2390 2391 // Count unique destinations 2392 SmallSet<MachineBasicBlock*, 4> Dests; 2393 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2394 Dests.insert(I->BB); 2395 if (Dests.size() > 3) 2396 // Don't bother the code below, if there are too much unique destinations 2397 return false; 2398 } 2399 DEBUG(dbgs() << "Total number of unique destinations: " 2400 << Dests.size() << '\n' 2401 << "Total number of comparisons: " << numCmps << '\n'); 2402 2403 // Compute span of values. 2404 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2405 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2406 APInt cmpRange = maxValue - minValue; 2407 2408 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2409 << "Low bound: " << minValue << '\n' 2410 << "High bound: " << maxValue << '\n'); 2411 2412 if (cmpRange.uge(IntPtrBits) || 2413 (!(Dests.size() == 1 && numCmps >= 3) && 2414 !(Dests.size() == 2 && numCmps >= 5) && 2415 !(Dests.size() >= 3 && numCmps >= 6))) 2416 return false; 2417 2418 DEBUG(dbgs() << "Emitting bit tests\n"); 2419 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2420 2421 // Optimize the case where all the case values fit in a 2422 // word without having to subtract minValue. In this case, 2423 // we can optimize away the subtraction. 2424 if (maxValue.ult(IntPtrBits)) { 2425 cmpRange = maxValue; 2426 } else { 2427 lowBound = minValue; 2428 } 2429 2430 CaseBitsVector CasesBits; 2431 unsigned i, count = 0; 2432 2433 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2434 MachineBasicBlock* Dest = I->BB; 2435 for (i = 0; i < count; ++i) 2436 if (Dest == CasesBits[i].BB) 2437 break; 2438 2439 if (i == count) { 2440 assert((count < 3) && "Too much destinations to test!"); 2441 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2442 count++; 2443 } 2444 2445 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2446 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2447 2448 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2449 uint64_t hi = (highValue - lowBound).getZExtValue(); 2450 CasesBits[i].ExtraWeight += I->ExtraWeight; 2451 2452 for (uint64_t j = lo; j <= hi; j++) { 2453 CasesBits[i].Mask |= 1ULL << j; 2454 CasesBits[i].Bits++; 2455 } 2456 2457 } 2458 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2459 2460 BitTestInfo BTC; 2461 2462 // Figure out which block is immediately after the current one. 2463 MachineFunction::iterator BBI = CR.CaseBB; 2464 ++BBI; 2465 2466 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2467 2468 DEBUG(dbgs() << "Cases:\n"); 2469 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2470 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2471 << ", Bits: " << CasesBits[i].Bits 2472 << ", BB: " << CasesBits[i].BB << '\n'); 2473 2474 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2475 CurMF->insert(BBI, CaseBB); 2476 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2477 CaseBB, 2478 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2479 2480 // Put SV in a virtual register to make it available from the new blocks. 2481 ExportFromCurrentBlock(SV); 2482 } 2483 2484 BitTestBlock BTB(lowBound, cmpRange, SV, 2485 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2486 CR.CaseBB, Default, BTC); 2487 2488 if (CR.CaseBB == SwitchBB) 2489 visitBitTestHeader(BTB, SwitchBB); 2490 2491 BitTestCases.push_back(BTB); 2492 2493 return true; 2494 } 2495 2496 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2497 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2498 const SwitchInst& SI) { 2499 2500 /// Use a shorter form of declaration, and also 2501 /// show the we want to use CRSBuilder as Clusterifier. 2502 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2503 2504 Clusterifier TheClusterifier; 2505 2506 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2507 // Start with "simple" cases 2508 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2509 i != e; ++i) { 2510 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2511 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2512 2513 TheClusterifier.add(i.getCaseValueEx(), SMBB, 2514 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0); 2515 } 2516 2517 TheClusterifier.optimize(); 2518 2519 size_t numCmps = 0; 2520 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2521 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2522 Clusterifier::Cluster &C = *i; 2523 // Update edge weight for the cluster. 2524 unsigned W = C.first.Weight; 2525 2526 // FIXME: Currently work with ConstantInt based numbers. 2527 // Changing it to APInt based is a pretty heavy for this commit. 2528 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2529 C.first.getHigh().toConstantInt(), C.second, W)); 2530 2531 if (C.first.getLow() != C.first.getHigh()) 2532 // A range counts double, since it requires two compares. 2533 ++numCmps; 2534 } 2535 2536 return numCmps; 2537 } 2538 2539 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2540 MachineBasicBlock *Last) { 2541 // Update JTCases. 2542 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2543 if (JTCases[i].first.HeaderBB == First) 2544 JTCases[i].first.HeaderBB = Last; 2545 2546 // Update BitTestCases. 2547 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2548 if (BitTestCases[i].Parent == First) 2549 BitTestCases[i].Parent = Last; 2550 } 2551 2552 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2553 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2554 2555 // Figure out which block is immediately after the current one. 2556 MachineBasicBlock *NextBlock = 0; 2557 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2558 2559 // If there is only the default destination, branch to it if it is not the 2560 // next basic block. Otherwise, just fall through. 2561 if (!SI.getNumCases()) { 2562 // Update machine-CFG edges. 2563 2564 // If this is not a fall-through branch, emit the branch. 2565 SwitchMBB->addSuccessor(Default); 2566 if (Default != NextBlock) 2567 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2568 MVT::Other, getControlRoot(), 2569 DAG.getBasicBlock(Default))); 2570 2571 return; 2572 } 2573 2574 // If there are any non-default case statements, create a vector of Cases 2575 // representing each one, and sort the vector so that we can efficiently 2576 // create a binary search tree from them. 2577 CaseVector Cases; 2578 size_t numCmps = Clusterify(Cases, SI); 2579 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2580 << ". Total compares: " << numCmps << '\n'); 2581 (void)numCmps; 2582 2583 // Get the Value to be switched on and default basic blocks, which will be 2584 // inserted into CaseBlock records, representing basic blocks in the binary 2585 // search tree. 2586 const Value *SV = SI.getCondition(); 2587 2588 // Push the initial CaseRec onto the worklist 2589 CaseRecVector WorkList; 2590 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2591 CaseRange(Cases.begin(),Cases.end()))); 2592 2593 while (!WorkList.empty()) { 2594 // Grab a record representing a case range to process off the worklist 2595 CaseRec CR = WorkList.back(); 2596 WorkList.pop_back(); 2597 2598 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2599 continue; 2600 2601 // If the range has few cases (two or less) emit a series of specific 2602 // tests. 2603 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2604 continue; 2605 2606 // If the switch has more than N blocks, and is at least 40% dense, and the 2607 // target supports indirect branches, then emit a jump table rather than 2608 // lowering the switch to a binary tree of conditional branches. 2609 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2610 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2611 continue; 2612 2613 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2614 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2615 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2616 } 2617 } 2618 2619 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2620 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2621 2622 // Update machine-CFG edges with unique successors. 2623 SmallSet<BasicBlock*, 32> Done; 2624 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2625 BasicBlock *BB = I.getSuccessor(i); 2626 bool Inserted = Done.insert(BB); 2627 if (!Inserted) 2628 continue; 2629 2630 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2631 addSuccessorWithWeight(IndirectBrMBB, Succ); 2632 } 2633 2634 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2635 MVT::Other, getControlRoot(), 2636 getValue(I.getAddress()))); 2637 } 2638 2639 void SelectionDAGBuilder::visitFSub(const User &I) { 2640 // -0.0 - X --> fneg 2641 Type *Ty = I.getType(); 2642 if (isa<Constant>(I.getOperand(0)) && 2643 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2644 SDValue Op2 = getValue(I.getOperand(1)); 2645 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2646 Op2.getValueType(), Op2)); 2647 return; 2648 } 2649 2650 visitBinary(I, ISD::FSUB); 2651 } 2652 2653 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2654 SDValue Op1 = getValue(I.getOperand(0)); 2655 SDValue Op2 = getValue(I.getOperand(1)); 2656 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2657 Op1.getValueType(), Op1, Op2)); 2658 } 2659 2660 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2661 SDValue Op1 = getValue(I.getOperand(0)); 2662 SDValue Op2 = getValue(I.getOperand(1)); 2663 2664 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2665 2666 // Coerce the shift amount to the right type if we can. 2667 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2668 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2669 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2670 SDLoc DL = getCurSDLoc(); 2671 2672 // If the operand is smaller than the shift count type, promote it. 2673 if (ShiftSize > Op2Size) 2674 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2675 2676 // If the operand is larger than the shift count type but the shift 2677 // count type has enough bits to represent any shift value, truncate 2678 // it now. This is a common case and it exposes the truncate to 2679 // optimization early. 2680 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2681 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2682 // Otherwise we'll need to temporarily settle for some other convenient 2683 // type. Type legalization will make adjustments once the shiftee is split. 2684 else 2685 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2686 } 2687 2688 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2689 Op1.getValueType(), Op1, Op2)); 2690 } 2691 2692 void SelectionDAGBuilder::visitSDiv(const User &I) { 2693 SDValue Op1 = getValue(I.getOperand(0)); 2694 SDValue Op2 = getValue(I.getOperand(1)); 2695 2696 // Turn exact SDivs into multiplications. 2697 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2698 // exact bit. 2699 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2700 !isa<ConstantSDNode>(Op1) && 2701 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2702 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2703 getCurSDLoc(), DAG)); 2704 else 2705 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2706 Op1, Op2)); 2707 } 2708 2709 void SelectionDAGBuilder::visitICmp(const User &I) { 2710 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2711 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2712 predicate = IC->getPredicate(); 2713 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2714 predicate = ICmpInst::Predicate(IC->getPredicate()); 2715 SDValue Op1 = getValue(I.getOperand(0)); 2716 SDValue Op2 = getValue(I.getOperand(1)); 2717 ISD::CondCode Opcode = getICmpCondCode(predicate); 2718 2719 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2720 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2721 } 2722 2723 void SelectionDAGBuilder::visitFCmp(const User &I) { 2724 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2725 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2726 predicate = FC->getPredicate(); 2727 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2728 predicate = FCmpInst::Predicate(FC->getPredicate()); 2729 SDValue Op1 = getValue(I.getOperand(0)); 2730 SDValue Op2 = getValue(I.getOperand(1)); 2731 ISD::CondCode Condition = getFCmpCondCode(predicate); 2732 if (TM.Options.NoNaNsFPMath) 2733 Condition = getFCmpCodeWithoutNaN(Condition); 2734 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2735 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2736 } 2737 2738 void SelectionDAGBuilder::visitSelect(const User &I) { 2739 SmallVector<EVT, 4> ValueVTs; 2740 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2741 unsigned NumValues = ValueVTs.size(); 2742 if (NumValues == 0) return; 2743 2744 SmallVector<SDValue, 4> Values(NumValues); 2745 SDValue Cond = getValue(I.getOperand(0)); 2746 SDValue TrueVal = getValue(I.getOperand(1)); 2747 SDValue FalseVal = getValue(I.getOperand(2)); 2748 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2749 ISD::VSELECT : ISD::SELECT; 2750 2751 for (unsigned i = 0; i != NumValues; ++i) 2752 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2753 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2754 Cond, 2755 SDValue(TrueVal.getNode(), 2756 TrueVal.getResNo() + i), 2757 SDValue(FalseVal.getNode(), 2758 FalseVal.getResNo() + i)); 2759 2760 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2761 DAG.getVTList(&ValueVTs[0], NumValues), 2762 &Values[0], NumValues)); 2763 } 2764 2765 void SelectionDAGBuilder::visitTrunc(const User &I) { 2766 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2767 SDValue N = getValue(I.getOperand(0)); 2768 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2769 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2770 } 2771 2772 void SelectionDAGBuilder::visitZExt(const User &I) { 2773 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2774 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2775 SDValue N = getValue(I.getOperand(0)); 2776 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2777 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2778 } 2779 2780 void SelectionDAGBuilder::visitSExt(const User &I) { 2781 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2782 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2783 SDValue N = getValue(I.getOperand(0)); 2784 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2785 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2786 } 2787 2788 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2789 // FPTrunc is never a no-op cast, no need to check 2790 SDValue N = getValue(I.getOperand(0)); 2791 const TargetLowering *TLI = TM.getTargetLowering(); 2792 EVT DestVT = TLI->getValueType(I.getType()); 2793 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2794 DestVT, N, 2795 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2796 } 2797 2798 void SelectionDAGBuilder::visitFPExt(const User &I) { 2799 // FPExt is never a no-op cast, no need to check 2800 SDValue N = getValue(I.getOperand(0)); 2801 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2802 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2803 } 2804 2805 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2806 // FPToUI is never a no-op cast, no need to check 2807 SDValue N = getValue(I.getOperand(0)); 2808 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2809 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2810 } 2811 2812 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2813 // FPToSI is never a no-op cast, no need to check 2814 SDValue N = getValue(I.getOperand(0)); 2815 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2816 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2817 } 2818 2819 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2820 // UIToFP is never a no-op cast, no need to check 2821 SDValue N = getValue(I.getOperand(0)); 2822 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2823 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2824 } 2825 2826 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2827 // SIToFP is never a no-op cast, no need to check 2828 SDValue N = getValue(I.getOperand(0)); 2829 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2830 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2831 } 2832 2833 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2834 // What to do depends on the size of the integer and the size of the pointer. 2835 // We can either truncate, zero extend, or no-op, accordingly. 2836 SDValue N = getValue(I.getOperand(0)); 2837 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2838 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2839 } 2840 2841 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2842 // What to do depends on the size of the integer and the size of the pointer. 2843 // We can either truncate, zero extend, or no-op, accordingly. 2844 SDValue N = getValue(I.getOperand(0)); 2845 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2846 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2847 } 2848 2849 void SelectionDAGBuilder::visitBitCast(const User &I) { 2850 SDValue N = getValue(I.getOperand(0)); 2851 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2852 2853 // BitCast assures us that source and destination are the same size so this is 2854 // either a BITCAST or a no-op. 2855 if (DestVT != N.getValueType()) 2856 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2857 DestVT, N)); // convert types. 2858 else 2859 setValue(&I, N); // noop cast. 2860 } 2861 2862 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2864 SDValue InVec = getValue(I.getOperand(0)); 2865 SDValue InVal = getValue(I.getOperand(1)); 2866 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2867 getCurSDLoc(), TLI.getVectorIdxTy()); 2868 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2869 TM.getTargetLowering()->getValueType(I.getType()), 2870 InVec, InVal, InIdx)); 2871 } 2872 2873 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2875 SDValue InVec = getValue(I.getOperand(0)); 2876 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2877 getCurSDLoc(), TLI.getVectorIdxTy()); 2878 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2879 TM.getTargetLowering()->getValueType(I.getType()), 2880 InVec, InIdx)); 2881 } 2882 2883 // Utility for visitShuffleVector - Return true if every element in Mask, 2884 // beginning from position Pos and ending in Pos+Size, falls within the 2885 // specified sequential range [L, L+Pos). or is undef. 2886 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2887 unsigned Pos, unsigned Size, int Low) { 2888 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2889 if (Mask[i] >= 0 && Mask[i] != Low) 2890 return false; 2891 return true; 2892 } 2893 2894 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2895 SDValue Src1 = getValue(I.getOperand(0)); 2896 SDValue Src2 = getValue(I.getOperand(1)); 2897 2898 SmallVector<int, 8> Mask; 2899 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2900 unsigned MaskNumElts = Mask.size(); 2901 2902 const TargetLowering *TLI = TM.getTargetLowering(); 2903 EVT VT = TLI->getValueType(I.getType()); 2904 EVT SrcVT = Src1.getValueType(); 2905 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2906 2907 if (SrcNumElts == MaskNumElts) { 2908 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2909 &Mask[0])); 2910 return; 2911 } 2912 2913 // Normalize the shuffle vector since mask and vector length don't match. 2914 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2915 // Mask is longer than the source vectors and is a multiple of the source 2916 // vectors. We can use concatenate vector to make the mask and vectors 2917 // lengths match. 2918 if (SrcNumElts*2 == MaskNumElts) { 2919 // First check for Src1 in low and Src2 in high 2920 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2921 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2922 // The shuffle is concatenating two vectors together. 2923 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2924 VT, Src1, Src2)); 2925 return; 2926 } 2927 // Then check for Src2 in low and Src1 in high 2928 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2929 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2930 // The shuffle is concatenating two vectors together. 2931 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2932 VT, Src2, Src1)); 2933 return; 2934 } 2935 } 2936 2937 // Pad both vectors with undefs to make them the same length as the mask. 2938 unsigned NumConcat = MaskNumElts / SrcNumElts; 2939 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2940 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2941 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2942 2943 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2944 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2945 MOps1[0] = Src1; 2946 MOps2[0] = Src2; 2947 2948 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2949 getCurSDLoc(), VT, 2950 &MOps1[0], NumConcat); 2951 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2952 getCurSDLoc(), VT, 2953 &MOps2[0], NumConcat); 2954 2955 // Readjust mask for new input vector length. 2956 SmallVector<int, 8> MappedOps; 2957 for (unsigned i = 0; i != MaskNumElts; ++i) { 2958 int Idx = Mask[i]; 2959 if (Idx >= (int)SrcNumElts) 2960 Idx -= SrcNumElts - MaskNumElts; 2961 MappedOps.push_back(Idx); 2962 } 2963 2964 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2965 &MappedOps[0])); 2966 return; 2967 } 2968 2969 if (SrcNumElts > MaskNumElts) { 2970 // Analyze the access pattern of the vector to see if we can extract 2971 // two subvectors and do the shuffle. The analysis is done by calculating 2972 // the range of elements the mask access on both vectors. 2973 int MinRange[2] = { static_cast<int>(SrcNumElts), 2974 static_cast<int>(SrcNumElts)}; 2975 int MaxRange[2] = {-1, -1}; 2976 2977 for (unsigned i = 0; i != MaskNumElts; ++i) { 2978 int Idx = Mask[i]; 2979 unsigned Input = 0; 2980 if (Idx < 0) 2981 continue; 2982 2983 if (Idx >= (int)SrcNumElts) { 2984 Input = 1; 2985 Idx -= SrcNumElts; 2986 } 2987 if (Idx > MaxRange[Input]) 2988 MaxRange[Input] = Idx; 2989 if (Idx < MinRange[Input]) 2990 MinRange[Input] = Idx; 2991 } 2992 2993 // Check if the access is smaller than the vector size and can we find 2994 // a reasonable extract index. 2995 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2996 // Extract. 2997 int StartIdx[2]; // StartIdx to extract from 2998 for (unsigned Input = 0; Input < 2; ++Input) { 2999 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3000 RangeUse[Input] = 0; // Unused 3001 StartIdx[Input] = 0; 3002 continue; 3003 } 3004 3005 // Find a good start index that is a multiple of the mask length. Then 3006 // see if the rest of the elements are in range. 3007 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3008 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3009 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3010 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3011 } 3012 3013 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3014 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3015 return; 3016 } 3017 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3018 // Extract appropriate subvector and generate a vector shuffle 3019 for (unsigned Input = 0; Input < 2; ++Input) { 3020 SDValue &Src = Input == 0 ? Src1 : Src2; 3021 if (RangeUse[Input] == 0) 3022 Src = DAG.getUNDEF(VT); 3023 else 3024 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3025 Src, DAG.getConstant(StartIdx[Input], 3026 TLI->getVectorIdxTy())); 3027 } 3028 3029 // Calculate new mask. 3030 SmallVector<int, 8> MappedOps; 3031 for (unsigned i = 0; i != MaskNumElts; ++i) { 3032 int Idx = Mask[i]; 3033 if (Idx >= 0) { 3034 if (Idx < (int)SrcNumElts) 3035 Idx -= StartIdx[0]; 3036 else 3037 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3038 } 3039 MappedOps.push_back(Idx); 3040 } 3041 3042 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3043 &MappedOps[0])); 3044 return; 3045 } 3046 } 3047 3048 // We can't use either concat vectors or extract subvectors so fall back to 3049 // replacing the shuffle with extract and build vector. 3050 // to insert and build vector. 3051 EVT EltVT = VT.getVectorElementType(); 3052 EVT IdxVT = TLI->getVectorIdxTy(); 3053 SmallVector<SDValue,8> Ops; 3054 for (unsigned i = 0; i != MaskNumElts; ++i) { 3055 int Idx = Mask[i]; 3056 SDValue Res; 3057 3058 if (Idx < 0) { 3059 Res = DAG.getUNDEF(EltVT); 3060 } else { 3061 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3062 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3063 3064 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3065 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3066 } 3067 3068 Ops.push_back(Res); 3069 } 3070 3071 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3072 VT, &Ops[0], Ops.size())); 3073 } 3074 3075 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3076 const Value *Op0 = I.getOperand(0); 3077 const Value *Op1 = I.getOperand(1); 3078 Type *AggTy = I.getType(); 3079 Type *ValTy = Op1->getType(); 3080 bool IntoUndef = isa<UndefValue>(Op0); 3081 bool FromUndef = isa<UndefValue>(Op1); 3082 3083 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3084 3085 const TargetLowering *TLI = TM.getTargetLowering(); 3086 SmallVector<EVT, 4> AggValueVTs; 3087 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3088 SmallVector<EVT, 4> ValValueVTs; 3089 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3090 3091 unsigned NumAggValues = AggValueVTs.size(); 3092 unsigned NumValValues = ValValueVTs.size(); 3093 SmallVector<SDValue, 4> Values(NumAggValues); 3094 3095 SDValue Agg = getValue(Op0); 3096 unsigned i = 0; 3097 // Copy the beginning value(s) from the original aggregate. 3098 for (; i != LinearIndex; ++i) 3099 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3100 SDValue(Agg.getNode(), Agg.getResNo() + i); 3101 // Copy values from the inserted value(s). 3102 if (NumValValues) { 3103 SDValue Val = getValue(Op1); 3104 for (; i != LinearIndex + NumValValues; ++i) 3105 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3106 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3107 } 3108 // Copy remaining value(s) from the original aggregate. 3109 for (; i != NumAggValues; ++i) 3110 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3111 SDValue(Agg.getNode(), Agg.getResNo() + i); 3112 3113 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3114 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3115 &Values[0], NumAggValues)); 3116 } 3117 3118 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3119 const Value *Op0 = I.getOperand(0); 3120 Type *AggTy = Op0->getType(); 3121 Type *ValTy = I.getType(); 3122 bool OutOfUndef = isa<UndefValue>(Op0); 3123 3124 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3125 3126 const TargetLowering *TLI = TM.getTargetLowering(); 3127 SmallVector<EVT, 4> ValValueVTs; 3128 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3129 3130 unsigned NumValValues = ValValueVTs.size(); 3131 3132 // Ignore a extractvalue that produces an empty object 3133 if (!NumValValues) { 3134 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3135 return; 3136 } 3137 3138 SmallVector<SDValue, 4> Values(NumValValues); 3139 3140 SDValue Agg = getValue(Op0); 3141 // Copy out the selected value(s). 3142 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3143 Values[i - LinearIndex] = 3144 OutOfUndef ? 3145 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3146 SDValue(Agg.getNode(), Agg.getResNo() + i); 3147 3148 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3149 DAG.getVTList(&ValValueVTs[0], NumValValues), 3150 &Values[0], NumValValues)); 3151 } 3152 3153 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3154 SDValue N = getValue(I.getOperand(0)); 3155 // Note that the pointer operand may be a vector of pointers. Take the scalar 3156 // element which holds a pointer. 3157 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3158 3159 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3160 OI != E; ++OI) { 3161 const Value *Idx = *OI; 3162 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3163 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3164 if (Field) { 3165 // N = N + Offset 3166 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3167 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3168 DAG.getConstant(Offset, N.getValueType())); 3169 } 3170 3171 Ty = StTy->getElementType(Field); 3172 } else { 3173 Ty = cast<SequentialType>(Ty)->getElementType(); 3174 3175 // If this is a constant subscript, handle it quickly. 3176 const TargetLowering *TLI = TM.getTargetLowering(); 3177 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3178 if (CI->isZero()) continue; 3179 uint64_t Offs = 3180 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3181 SDValue OffsVal; 3182 EVT PTy = TLI->getPointerTy(); 3183 unsigned PtrBits = PTy.getSizeInBits(); 3184 if (PtrBits < 64) 3185 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), 3186 TLI->getPointerTy(), 3187 DAG.getConstant(Offs, MVT::i64)); 3188 else 3189 OffsVal = DAG.getIntPtrConstant(Offs); 3190 3191 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3192 OffsVal); 3193 continue; 3194 } 3195 3196 // N = N + Idx * ElementSize; 3197 APInt ElementSize = APInt(TLI->getPointerTy().getSizeInBits(), 3198 TD->getTypeAllocSize(Ty)); 3199 SDValue IdxN = getValue(Idx); 3200 3201 // If the index is smaller or larger than intptr_t, truncate or extend 3202 // it. 3203 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3204 3205 // If this is a multiply by a power of two, turn it into a shl 3206 // immediately. This is a very common case. 3207 if (ElementSize != 1) { 3208 if (ElementSize.isPowerOf2()) { 3209 unsigned Amt = ElementSize.logBase2(); 3210 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3211 N.getValueType(), IdxN, 3212 DAG.getConstant(Amt, IdxN.getValueType())); 3213 } else { 3214 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3215 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3216 N.getValueType(), IdxN, Scale); 3217 } 3218 } 3219 3220 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3221 N.getValueType(), N, IdxN); 3222 } 3223 } 3224 3225 setValue(&I, N); 3226 } 3227 3228 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3229 // If this is a fixed sized alloca in the entry block of the function, 3230 // allocate it statically on the stack. 3231 if (FuncInfo.StaticAllocaMap.count(&I)) 3232 return; // getValue will auto-populate this. 3233 3234 Type *Ty = I.getAllocatedType(); 3235 const TargetLowering *TLI = TM.getTargetLowering(); 3236 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3237 unsigned Align = 3238 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3239 I.getAlignment()); 3240 3241 SDValue AllocSize = getValue(I.getArraySize()); 3242 3243 EVT IntPtr = TLI->getPointerTy(); 3244 if (AllocSize.getValueType() != IntPtr) 3245 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3246 3247 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3248 AllocSize, 3249 DAG.getConstant(TySize, IntPtr)); 3250 3251 // Handle alignment. If the requested alignment is less than or equal to 3252 // the stack alignment, ignore it. If the size is greater than or equal to 3253 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3254 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3255 if (Align <= StackAlign) 3256 Align = 0; 3257 3258 // Round the size of the allocation up to the stack alignment size 3259 // by add SA-1 to the size. 3260 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3261 AllocSize.getValueType(), AllocSize, 3262 DAG.getIntPtrConstant(StackAlign-1)); 3263 3264 // Mask out the low bits for alignment purposes. 3265 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3266 AllocSize.getValueType(), AllocSize, 3267 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3268 3269 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3270 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3271 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3272 VTs, Ops, 3); 3273 setValue(&I, DSA); 3274 DAG.setRoot(DSA.getValue(1)); 3275 3276 // Inform the Frame Information that we have just allocated a variable-sized 3277 // object. 3278 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3279 } 3280 3281 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3282 if (I.isAtomic()) 3283 return visitAtomicLoad(I); 3284 3285 const Value *SV = I.getOperand(0); 3286 SDValue Ptr = getValue(SV); 3287 3288 Type *Ty = I.getType(); 3289 3290 bool isVolatile = I.isVolatile(); 3291 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3292 bool isInvariant = I.getMetadata("invariant.load") != 0; 3293 unsigned Alignment = I.getAlignment(); 3294 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3295 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3296 3297 SmallVector<EVT, 4> ValueVTs; 3298 SmallVector<uint64_t, 4> Offsets; 3299 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3300 unsigned NumValues = ValueVTs.size(); 3301 if (NumValues == 0) 3302 return; 3303 3304 SDValue Root; 3305 bool ConstantMemory = false; 3306 if (I.isVolatile() || NumValues > MaxParallelChains) 3307 // Serialize volatile loads with other side effects. 3308 Root = getRoot(); 3309 else if (AA->pointsToConstantMemory( 3310 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3311 // Do not serialize (non-volatile) loads of constant memory with anything. 3312 Root = DAG.getEntryNode(); 3313 ConstantMemory = true; 3314 } else { 3315 // Do not serialize non-volatile loads against each other. 3316 Root = DAG.getRoot(); 3317 } 3318 3319 SmallVector<SDValue, 4> Values(NumValues); 3320 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3321 NumValues)); 3322 EVT PtrVT = Ptr.getValueType(); 3323 unsigned ChainI = 0; 3324 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3325 // Serializing loads here may result in excessive register pressure, and 3326 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3327 // could recover a bit by hoisting nodes upward in the chain by recognizing 3328 // they are side-effect free or do not alias. The optimizer should really 3329 // avoid this case by converting large object/array copies to llvm.memcpy 3330 // (MaxParallelChains should always remain as failsafe). 3331 if (ChainI == MaxParallelChains) { 3332 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3333 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3334 MVT::Other, &Chains[0], ChainI); 3335 Root = Chain; 3336 ChainI = 0; 3337 } 3338 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3339 PtrVT, Ptr, 3340 DAG.getConstant(Offsets[i], PtrVT)); 3341 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3342 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3343 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3344 Ranges); 3345 3346 Values[i] = L; 3347 Chains[ChainI] = L.getValue(1); 3348 } 3349 3350 if (!ConstantMemory) { 3351 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3352 MVT::Other, &Chains[0], ChainI); 3353 if (isVolatile) 3354 DAG.setRoot(Chain); 3355 else 3356 PendingLoads.push_back(Chain); 3357 } 3358 3359 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3360 DAG.getVTList(&ValueVTs[0], NumValues), 3361 &Values[0], NumValues)); 3362 } 3363 3364 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3365 if (I.isAtomic()) 3366 return visitAtomicStore(I); 3367 3368 const Value *SrcV = I.getOperand(0); 3369 const Value *PtrV = I.getOperand(1); 3370 3371 SmallVector<EVT, 4> ValueVTs; 3372 SmallVector<uint64_t, 4> Offsets; 3373 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3374 unsigned NumValues = ValueVTs.size(); 3375 if (NumValues == 0) 3376 return; 3377 3378 // Get the lowered operands. Note that we do this after 3379 // checking if NumResults is zero, because with zero results 3380 // the operands won't have values in the map. 3381 SDValue Src = getValue(SrcV); 3382 SDValue Ptr = getValue(PtrV); 3383 3384 SDValue Root = getRoot(); 3385 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3386 NumValues)); 3387 EVT PtrVT = Ptr.getValueType(); 3388 bool isVolatile = I.isVolatile(); 3389 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3390 unsigned Alignment = I.getAlignment(); 3391 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3392 3393 unsigned ChainI = 0; 3394 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3395 // See visitLoad comments. 3396 if (ChainI == MaxParallelChains) { 3397 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3398 MVT::Other, &Chains[0], ChainI); 3399 Root = Chain; 3400 ChainI = 0; 3401 } 3402 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3403 DAG.getConstant(Offsets[i], PtrVT)); 3404 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3405 SDValue(Src.getNode(), Src.getResNo() + i), 3406 Add, MachinePointerInfo(PtrV, Offsets[i]), 3407 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3408 Chains[ChainI] = St; 3409 } 3410 3411 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3412 MVT::Other, &Chains[0], ChainI); 3413 DAG.setRoot(StoreNode); 3414 } 3415 3416 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3417 SynchronizationScope Scope, 3418 bool Before, SDLoc dl, 3419 SelectionDAG &DAG, 3420 const TargetLowering &TLI) { 3421 // Fence, if necessary 3422 if (Before) { 3423 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3424 Order = Release; 3425 else if (Order == Acquire || Order == Monotonic) 3426 return Chain; 3427 } else { 3428 if (Order == AcquireRelease) 3429 Order = Acquire; 3430 else if (Order == Release || Order == Monotonic) 3431 return Chain; 3432 } 3433 SDValue Ops[3]; 3434 Ops[0] = Chain; 3435 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3436 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3437 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3438 } 3439 3440 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3441 SDLoc dl = getCurSDLoc(); 3442 AtomicOrdering Order = I.getOrdering(); 3443 SynchronizationScope Scope = I.getSynchScope(); 3444 3445 SDValue InChain = getRoot(); 3446 3447 const TargetLowering *TLI = TM.getTargetLowering(); 3448 if (TLI->getInsertFencesForAtomic()) 3449 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3450 DAG, *TLI); 3451 3452 SDValue L = 3453 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3454 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3455 InChain, 3456 getValue(I.getPointerOperand()), 3457 getValue(I.getCompareOperand()), 3458 getValue(I.getNewValOperand()), 3459 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3460 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3461 Scope); 3462 3463 SDValue OutChain = L.getValue(1); 3464 3465 if (TLI->getInsertFencesForAtomic()) 3466 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3467 DAG, *TLI); 3468 3469 setValue(&I, L); 3470 DAG.setRoot(OutChain); 3471 } 3472 3473 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3474 SDLoc dl = getCurSDLoc(); 3475 ISD::NodeType NT; 3476 switch (I.getOperation()) { 3477 default: llvm_unreachable("Unknown atomicrmw operation"); 3478 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3479 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3480 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3481 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3482 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3483 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3484 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3485 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3486 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3487 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3488 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3489 } 3490 AtomicOrdering Order = I.getOrdering(); 3491 SynchronizationScope Scope = I.getSynchScope(); 3492 3493 SDValue InChain = getRoot(); 3494 3495 const TargetLowering *TLI = TM.getTargetLowering(); 3496 if (TLI->getInsertFencesForAtomic()) 3497 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3498 DAG, *TLI); 3499 3500 SDValue L = 3501 DAG.getAtomic(NT, dl, 3502 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3503 InChain, 3504 getValue(I.getPointerOperand()), 3505 getValue(I.getValOperand()), 3506 I.getPointerOperand(), 0 /* Alignment */, 3507 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3508 Scope); 3509 3510 SDValue OutChain = L.getValue(1); 3511 3512 if (TLI->getInsertFencesForAtomic()) 3513 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3514 DAG, *TLI); 3515 3516 setValue(&I, L); 3517 DAG.setRoot(OutChain); 3518 } 3519 3520 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3521 SDLoc dl = getCurSDLoc(); 3522 const TargetLowering *TLI = TM.getTargetLowering(); 3523 SDValue Ops[3]; 3524 Ops[0] = getRoot(); 3525 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3526 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3527 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3528 } 3529 3530 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3531 SDLoc dl = getCurSDLoc(); 3532 AtomicOrdering Order = I.getOrdering(); 3533 SynchronizationScope Scope = I.getSynchScope(); 3534 3535 SDValue InChain = getRoot(); 3536 3537 const TargetLowering *TLI = TM.getTargetLowering(); 3538 EVT VT = TLI->getValueType(I.getType()); 3539 3540 if (I.getAlignment() < VT.getSizeInBits() / 8) 3541 report_fatal_error("Cannot generate unaligned atomic load"); 3542 3543 SDValue L = 3544 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3545 getValue(I.getPointerOperand()), 3546 I.getPointerOperand(), I.getAlignment(), 3547 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3548 Scope); 3549 3550 SDValue OutChain = L.getValue(1); 3551 3552 if (TLI->getInsertFencesForAtomic()) 3553 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3554 DAG, *TLI); 3555 3556 setValue(&I, L); 3557 DAG.setRoot(OutChain); 3558 } 3559 3560 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3561 SDLoc dl = getCurSDLoc(); 3562 3563 AtomicOrdering Order = I.getOrdering(); 3564 SynchronizationScope Scope = I.getSynchScope(); 3565 3566 SDValue InChain = getRoot(); 3567 3568 const TargetLowering *TLI = TM.getTargetLowering(); 3569 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3570 3571 if (I.getAlignment() < VT.getSizeInBits() / 8) 3572 report_fatal_error("Cannot generate unaligned atomic store"); 3573 3574 if (TLI->getInsertFencesForAtomic()) 3575 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3576 DAG, *TLI); 3577 3578 SDValue OutChain = 3579 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3580 InChain, 3581 getValue(I.getPointerOperand()), 3582 getValue(I.getValueOperand()), 3583 I.getPointerOperand(), I.getAlignment(), 3584 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3585 Scope); 3586 3587 if (TLI->getInsertFencesForAtomic()) 3588 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3589 DAG, *TLI); 3590 3591 DAG.setRoot(OutChain); 3592 } 3593 3594 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3595 /// node. 3596 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3597 unsigned Intrinsic) { 3598 bool HasChain = !I.doesNotAccessMemory(); 3599 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3600 3601 // Build the operand list. 3602 SmallVector<SDValue, 8> Ops; 3603 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3604 if (OnlyLoad) { 3605 // We don't need to serialize loads against other loads. 3606 Ops.push_back(DAG.getRoot()); 3607 } else { 3608 Ops.push_back(getRoot()); 3609 } 3610 } 3611 3612 // Info is set by getTgtMemInstrinsic 3613 TargetLowering::IntrinsicInfo Info; 3614 const TargetLowering *TLI = TM.getTargetLowering(); 3615 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3616 3617 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3618 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3619 Info.opc == ISD::INTRINSIC_W_CHAIN) 3620 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3621 3622 // Add all operands of the call to the operand list. 3623 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3624 SDValue Op = getValue(I.getArgOperand(i)); 3625 Ops.push_back(Op); 3626 } 3627 3628 SmallVector<EVT, 4> ValueVTs; 3629 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3630 3631 if (HasChain) 3632 ValueVTs.push_back(MVT::Other); 3633 3634 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3635 3636 // Create the node. 3637 SDValue Result; 3638 if (IsTgtIntrinsic) { 3639 // This is target intrinsic that touches memory 3640 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3641 VTs, &Ops[0], Ops.size(), 3642 Info.memVT, 3643 MachinePointerInfo(Info.ptrVal, Info.offset), 3644 Info.align, Info.vol, 3645 Info.readMem, Info.writeMem); 3646 } else if (!HasChain) { 3647 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3648 VTs, &Ops[0], Ops.size()); 3649 } else if (!I.getType()->isVoidTy()) { 3650 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3651 VTs, &Ops[0], Ops.size()); 3652 } else { 3653 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3654 VTs, &Ops[0], Ops.size()); 3655 } 3656 3657 if (HasChain) { 3658 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3659 if (OnlyLoad) 3660 PendingLoads.push_back(Chain); 3661 else 3662 DAG.setRoot(Chain); 3663 } 3664 3665 if (!I.getType()->isVoidTy()) { 3666 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3667 EVT VT = TLI->getValueType(PTy); 3668 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3669 } 3670 3671 setValue(&I, Result); 3672 } 3673 } 3674 3675 /// GetSignificand - Get the significand and build it into a floating-point 3676 /// number with exponent of 1: 3677 /// 3678 /// Op = (Op & 0x007fffff) | 0x3f800000; 3679 /// 3680 /// where Op is the hexadecimal representation of floating point value. 3681 static SDValue 3682 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3683 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3684 DAG.getConstant(0x007fffff, MVT::i32)); 3685 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3686 DAG.getConstant(0x3f800000, MVT::i32)); 3687 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3688 } 3689 3690 /// GetExponent - Get the exponent: 3691 /// 3692 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3693 /// 3694 /// where Op is the hexadecimal representation of floating point value. 3695 static SDValue 3696 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3697 SDLoc dl) { 3698 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3699 DAG.getConstant(0x7f800000, MVT::i32)); 3700 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3701 DAG.getConstant(23, TLI.getPointerTy())); 3702 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3703 DAG.getConstant(127, MVT::i32)); 3704 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3705 } 3706 3707 /// getF32Constant - Get 32-bit floating point constant. 3708 static SDValue 3709 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3710 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3711 MVT::f32); 3712 } 3713 3714 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3715 /// limited-precision mode. 3716 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3717 const TargetLowering &TLI) { 3718 if (Op.getValueType() == MVT::f32 && 3719 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3720 3721 // Put the exponent in the right bit position for later addition to the 3722 // final result: 3723 // 3724 // #define LOG2OFe 1.4426950f 3725 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3726 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3727 getF32Constant(DAG, 0x3fb8aa3b)); 3728 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3729 3730 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3731 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3732 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3733 3734 // IntegerPartOfX <<= 23; 3735 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3736 DAG.getConstant(23, TLI.getPointerTy())); 3737 3738 SDValue TwoToFracPartOfX; 3739 if (LimitFloatPrecision <= 6) { 3740 // For floating-point precision of 6: 3741 // 3742 // TwoToFractionalPartOfX = 3743 // 0.997535578f + 3744 // (0.735607626f + 0.252464424f * x) * x; 3745 // 3746 // error 0.0144103317, which is 6 bits 3747 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3748 getF32Constant(DAG, 0x3e814304)); 3749 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3750 getF32Constant(DAG, 0x3f3c50c8)); 3751 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3752 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3753 getF32Constant(DAG, 0x3f7f5e7e)); 3754 } else if (LimitFloatPrecision <= 12) { 3755 // For floating-point precision of 12: 3756 // 3757 // TwoToFractionalPartOfX = 3758 // 0.999892986f + 3759 // (0.696457318f + 3760 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3761 // 3762 // 0.000107046256 error, which is 13 to 14 bits 3763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3764 getF32Constant(DAG, 0x3da235e3)); 3765 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3766 getF32Constant(DAG, 0x3e65b8f3)); 3767 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3768 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3769 getF32Constant(DAG, 0x3f324b07)); 3770 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3771 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3772 getF32Constant(DAG, 0x3f7ff8fd)); 3773 } else { // LimitFloatPrecision <= 18 3774 // For floating-point precision of 18: 3775 // 3776 // TwoToFractionalPartOfX = 3777 // 0.999999982f + 3778 // (0.693148872f + 3779 // (0.240227044f + 3780 // (0.554906021e-1f + 3781 // (0.961591928e-2f + 3782 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3783 // 3784 // error 2.47208000*10^(-7), which is better than 18 bits 3785 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3786 getF32Constant(DAG, 0x3924b03e)); 3787 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3788 getF32Constant(DAG, 0x3ab24b87)); 3789 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3790 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3791 getF32Constant(DAG, 0x3c1d8c17)); 3792 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3793 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3794 getF32Constant(DAG, 0x3d634a1d)); 3795 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3796 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3797 getF32Constant(DAG, 0x3e75fe14)); 3798 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3799 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3800 getF32Constant(DAG, 0x3f317234)); 3801 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3802 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3803 getF32Constant(DAG, 0x3f800000)); 3804 } 3805 3806 // Add the exponent into the result in integer domain. 3807 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3808 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3809 DAG.getNode(ISD::ADD, dl, MVT::i32, 3810 t13, IntegerPartOfX)); 3811 } 3812 3813 // No special expansion. 3814 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3815 } 3816 3817 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3818 /// limited-precision mode. 3819 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3820 const TargetLowering &TLI) { 3821 if (Op.getValueType() == MVT::f32 && 3822 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3823 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3824 3825 // Scale the exponent by log(2) [0.69314718f]. 3826 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3827 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3828 getF32Constant(DAG, 0x3f317218)); 3829 3830 // Get the significand and build it into a floating-point number with 3831 // exponent of 1. 3832 SDValue X = GetSignificand(DAG, Op1, dl); 3833 3834 SDValue LogOfMantissa; 3835 if (LimitFloatPrecision <= 6) { 3836 // For floating-point precision of 6: 3837 // 3838 // LogofMantissa = 3839 // -1.1609546f + 3840 // (1.4034025f - 0.23903021f * x) * x; 3841 // 3842 // error 0.0034276066, which is better than 8 bits 3843 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3844 getF32Constant(DAG, 0xbe74c456)); 3845 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3846 getF32Constant(DAG, 0x3fb3a2b1)); 3847 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3848 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3849 getF32Constant(DAG, 0x3f949a29)); 3850 } else if (LimitFloatPrecision <= 12) { 3851 // For floating-point precision of 12: 3852 // 3853 // LogOfMantissa = 3854 // -1.7417939f + 3855 // (2.8212026f + 3856 // (-1.4699568f + 3857 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3858 // 3859 // error 0.000061011436, which is 14 bits 3860 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3861 getF32Constant(DAG, 0xbd67b6d6)); 3862 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3863 getF32Constant(DAG, 0x3ee4f4b8)); 3864 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3865 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3866 getF32Constant(DAG, 0x3fbc278b)); 3867 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3868 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3869 getF32Constant(DAG, 0x40348e95)); 3870 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3871 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3872 getF32Constant(DAG, 0x3fdef31a)); 3873 } else { // LimitFloatPrecision <= 18 3874 // For floating-point precision of 18: 3875 // 3876 // LogOfMantissa = 3877 // -2.1072184f + 3878 // (4.2372794f + 3879 // (-3.7029485f + 3880 // (2.2781945f + 3881 // (-0.87823314f + 3882 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3883 // 3884 // error 0.0000023660568, which is better than 18 bits 3885 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3886 getF32Constant(DAG, 0xbc91e5ac)); 3887 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3888 getF32Constant(DAG, 0x3e4350aa)); 3889 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3890 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3891 getF32Constant(DAG, 0x3f60d3e3)); 3892 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3893 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3894 getF32Constant(DAG, 0x4011cdf0)); 3895 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3896 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3897 getF32Constant(DAG, 0x406cfd1c)); 3898 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3899 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3900 getF32Constant(DAG, 0x408797cb)); 3901 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3902 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3903 getF32Constant(DAG, 0x4006dcab)); 3904 } 3905 3906 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3907 } 3908 3909 // No special expansion. 3910 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3911 } 3912 3913 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3914 /// limited-precision mode. 3915 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3916 const TargetLowering &TLI) { 3917 if (Op.getValueType() == MVT::f32 && 3918 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3919 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3920 3921 // Get the exponent. 3922 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3923 3924 // Get the significand and build it into a floating-point number with 3925 // exponent of 1. 3926 SDValue X = GetSignificand(DAG, Op1, dl); 3927 3928 // Different possible minimax approximations of significand in 3929 // floating-point for various degrees of accuracy over [1,2]. 3930 SDValue Log2ofMantissa; 3931 if (LimitFloatPrecision <= 6) { 3932 // For floating-point precision of 6: 3933 // 3934 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3935 // 3936 // error 0.0049451742, which is more than 7 bits 3937 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3938 getF32Constant(DAG, 0xbeb08fe0)); 3939 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3940 getF32Constant(DAG, 0x40019463)); 3941 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3942 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3943 getF32Constant(DAG, 0x3fd6633d)); 3944 } else if (LimitFloatPrecision <= 12) { 3945 // For floating-point precision of 12: 3946 // 3947 // Log2ofMantissa = 3948 // -2.51285454f + 3949 // (4.07009056f + 3950 // (-2.12067489f + 3951 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3952 // 3953 // error 0.0000876136000, which is better than 13 bits 3954 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3955 getF32Constant(DAG, 0xbda7262e)); 3956 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3957 getF32Constant(DAG, 0x3f25280b)); 3958 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3959 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3960 getF32Constant(DAG, 0x4007b923)); 3961 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3962 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3963 getF32Constant(DAG, 0x40823e2f)); 3964 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3965 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3966 getF32Constant(DAG, 0x4020d29c)); 3967 } else { // LimitFloatPrecision <= 18 3968 // For floating-point precision of 18: 3969 // 3970 // Log2ofMantissa = 3971 // -3.0400495f + 3972 // (6.1129976f + 3973 // (-5.3420409f + 3974 // (3.2865683f + 3975 // (-1.2669343f + 3976 // (0.27515199f - 3977 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3978 // 3979 // error 0.0000018516, which is better than 18 bits 3980 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3981 getF32Constant(DAG, 0xbcd2769e)); 3982 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3983 getF32Constant(DAG, 0x3e8ce0b9)); 3984 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3985 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3986 getF32Constant(DAG, 0x3fa22ae7)); 3987 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3988 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3989 getF32Constant(DAG, 0x40525723)); 3990 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3991 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3992 getF32Constant(DAG, 0x40aaf200)); 3993 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3994 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3995 getF32Constant(DAG, 0x40c39dad)); 3996 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3997 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3998 getF32Constant(DAG, 0x4042902c)); 3999 } 4000 4001 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4002 } 4003 4004 // No special expansion. 4005 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4006 } 4007 4008 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4009 /// limited-precision mode. 4010 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4011 const TargetLowering &TLI) { 4012 if (Op.getValueType() == MVT::f32 && 4013 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4014 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4015 4016 // Scale the exponent by log10(2) [0.30102999f]. 4017 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4018 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4019 getF32Constant(DAG, 0x3e9a209a)); 4020 4021 // Get the significand and build it into a floating-point number with 4022 // exponent of 1. 4023 SDValue X = GetSignificand(DAG, Op1, dl); 4024 4025 SDValue Log10ofMantissa; 4026 if (LimitFloatPrecision <= 6) { 4027 // For floating-point precision of 6: 4028 // 4029 // Log10ofMantissa = 4030 // -0.50419619f + 4031 // (0.60948995f - 0.10380950f * x) * x; 4032 // 4033 // error 0.0014886165, which is 6 bits 4034 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4035 getF32Constant(DAG, 0xbdd49a13)); 4036 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4037 getF32Constant(DAG, 0x3f1c0789)); 4038 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4039 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4040 getF32Constant(DAG, 0x3f011300)); 4041 } else if (LimitFloatPrecision <= 12) { 4042 // For floating-point precision of 12: 4043 // 4044 // Log10ofMantissa = 4045 // -0.64831180f + 4046 // (0.91751397f + 4047 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4048 // 4049 // error 0.00019228036, which is better than 12 bits 4050 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4051 getF32Constant(DAG, 0x3d431f31)); 4052 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4053 getF32Constant(DAG, 0x3ea21fb2)); 4054 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4055 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4056 getF32Constant(DAG, 0x3f6ae232)); 4057 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4058 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4059 getF32Constant(DAG, 0x3f25f7c3)); 4060 } else { // LimitFloatPrecision <= 18 4061 // For floating-point precision of 18: 4062 // 4063 // Log10ofMantissa = 4064 // -0.84299375f + 4065 // (1.5327582f + 4066 // (-1.0688956f + 4067 // (0.49102474f + 4068 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4069 // 4070 // error 0.0000037995730, which is better than 18 bits 4071 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4072 getF32Constant(DAG, 0x3c5d51ce)); 4073 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4074 getF32Constant(DAG, 0x3e00685a)); 4075 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4076 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4077 getF32Constant(DAG, 0x3efb6798)); 4078 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4079 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4080 getF32Constant(DAG, 0x3f88d192)); 4081 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4082 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4083 getF32Constant(DAG, 0x3fc4316c)); 4084 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4085 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4086 getF32Constant(DAG, 0x3f57ce70)); 4087 } 4088 4089 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4090 } 4091 4092 // No special expansion. 4093 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4094 } 4095 4096 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4097 /// limited-precision mode. 4098 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4099 const TargetLowering &TLI) { 4100 if (Op.getValueType() == MVT::f32 && 4101 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4102 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4103 4104 // FractionalPartOfX = x - (float)IntegerPartOfX; 4105 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4106 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4107 4108 // IntegerPartOfX <<= 23; 4109 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4110 DAG.getConstant(23, TLI.getPointerTy())); 4111 4112 SDValue TwoToFractionalPartOfX; 4113 if (LimitFloatPrecision <= 6) { 4114 // For floating-point precision of 6: 4115 // 4116 // TwoToFractionalPartOfX = 4117 // 0.997535578f + 4118 // (0.735607626f + 0.252464424f * x) * x; 4119 // 4120 // error 0.0144103317, which is 6 bits 4121 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4122 getF32Constant(DAG, 0x3e814304)); 4123 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4124 getF32Constant(DAG, 0x3f3c50c8)); 4125 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4126 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4127 getF32Constant(DAG, 0x3f7f5e7e)); 4128 } else if (LimitFloatPrecision <= 12) { 4129 // For floating-point precision of 12: 4130 // 4131 // TwoToFractionalPartOfX = 4132 // 0.999892986f + 4133 // (0.696457318f + 4134 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4135 // 4136 // error 0.000107046256, which is 13 to 14 bits 4137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4138 getF32Constant(DAG, 0x3da235e3)); 4139 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4140 getF32Constant(DAG, 0x3e65b8f3)); 4141 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4142 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4143 getF32Constant(DAG, 0x3f324b07)); 4144 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4145 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4146 getF32Constant(DAG, 0x3f7ff8fd)); 4147 } else { // LimitFloatPrecision <= 18 4148 // For floating-point precision of 18: 4149 // 4150 // TwoToFractionalPartOfX = 4151 // 0.999999982f + 4152 // (0.693148872f + 4153 // (0.240227044f + 4154 // (0.554906021e-1f + 4155 // (0.961591928e-2f + 4156 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4157 // error 2.47208000*10^(-7), which is better than 18 bits 4158 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4159 getF32Constant(DAG, 0x3924b03e)); 4160 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4161 getF32Constant(DAG, 0x3ab24b87)); 4162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4163 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4164 getF32Constant(DAG, 0x3c1d8c17)); 4165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4166 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4167 getF32Constant(DAG, 0x3d634a1d)); 4168 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4169 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4170 getF32Constant(DAG, 0x3e75fe14)); 4171 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4172 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4173 getF32Constant(DAG, 0x3f317234)); 4174 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4175 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4176 getF32Constant(DAG, 0x3f800000)); 4177 } 4178 4179 // Add the exponent into the result in integer domain. 4180 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4181 TwoToFractionalPartOfX); 4182 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4183 DAG.getNode(ISD::ADD, dl, MVT::i32, 4184 t13, IntegerPartOfX)); 4185 } 4186 4187 // No special expansion. 4188 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4189 } 4190 4191 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4192 /// limited-precision mode with x == 10.0f. 4193 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4194 SelectionDAG &DAG, const TargetLowering &TLI) { 4195 bool IsExp10 = false; 4196 if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 && 4197 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4198 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4199 APFloat Ten(10.0f); 4200 IsExp10 = LHSC->isExactlyValue(Ten); 4201 } 4202 } 4203 4204 if (IsExp10) { 4205 // Put the exponent in the right bit position for later addition to the 4206 // final result: 4207 // 4208 // #define LOG2OF10 3.3219281f 4209 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4210 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4211 getF32Constant(DAG, 0x40549a78)); 4212 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4213 4214 // FractionalPartOfX = x - (float)IntegerPartOfX; 4215 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4216 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4217 4218 // IntegerPartOfX <<= 23; 4219 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4220 DAG.getConstant(23, TLI.getPointerTy())); 4221 4222 SDValue TwoToFractionalPartOfX; 4223 if (LimitFloatPrecision <= 6) { 4224 // For floating-point precision of 6: 4225 // 4226 // twoToFractionalPartOfX = 4227 // 0.997535578f + 4228 // (0.735607626f + 0.252464424f * x) * x; 4229 // 4230 // error 0.0144103317, which is 6 bits 4231 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4232 getF32Constant(DAG, 0x3e814304)); 4233 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4234 getF32Constant(DAG, 0x3f3c50c8)); 4235 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4236 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4237 getF32Constant(DAG, 0x3f7f5e7e)); 4238 } else if (LimitFloatPrecision <= 12) { 4239 // For floating-point precision of 12: 4240 // 4241 // TwoToFractionalPartOfX = 4242 // 0.999892986f + 4243 // (0.696457318f + 4244 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4245 // 4246 // error 0.000107046256, which is 13 to 14 bits 4247 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4248 getF32Constant(DAG, 0x3da235e3)); 4249 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4250 getF32Constant(DAG, 0x3e65b8f3)); 4251 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4252 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4253 getF32Constant(DAG, 0x3f324b07)); 4254 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4255 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4256 getF32Constant(DAG, 0x3f7ff8fd)); 4257 } else { // LimitFloatPrecision <= 18 4258 // For floating-point precision of 18: 4259 // 4260 // TwoToFractionalPartOfX = 4261 // 0.999999982f + 4262 // (0.693148872f + 4263 // (0.240227044f + 4264 // (0.554906021e-1f + 4265 // (0.961591928e-2f + 4266 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4267 // error 2.47208000*10^(-7), which is better than 18 bits 4268 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4269 getF32Constant(DAG, 0x3924b03e)); 4270 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4271 getF32Constant(DAG, 0x3ab24b87)); 4272 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4273 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4274 getF32Constant(DAG, 0x3c1d8c17)); 4275 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4276 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4277 getF32Constant(DAG, 0x3d634a1d)); 4278 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4279 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4280 getF32Constant(DAG, 0x3e75fe14)); 4281 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4282 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4283 getF32Constant(DAG, 0x3f317234)); 4284 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4285 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4286 getF32Constant(DAG, 0x3f800000)); 4287 } 4288 4289 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4290 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4291 DAG.getNode(ISD::ADD, dl, MVT::i32, 4292 t13, IntegerPartOfX)); 4293 } 4294 4295 // No special expansion. 4296 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4297 } 4298 4299 4300 /// ExpandPowI - Expand a llvm.powi intrinsic. 4301 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4302 SelectionDAG &DAG) { 4303 // If RHS is a constant, we can expand this out to a multiplication tree, 4304 // otherwise we end up lowering to a call to __powidf2 (for example). When 4305 // optimizing for size, we only want to do this if the expansion would produce 4306 // a small number of multiplies, otherwise we do the full expansion. 4307 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4308 // Get the exponent as a positive value. 4309 unsigned Val = RHSC->getSExtValue(); 4310 if ((int)Val < 0) Val = -Val; 4311 4312 // powi(x, 0) -> 1.0 4313 if (Val == 0) 4314 return DAG.getConstantFP(1.0, LHS.getValueType()); 4315 4316 const Function *F = DAG.getMachineFunction().getFunction(); 4317 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4318 Attribute::OptimizeForSize) || 4319 // If optimizing for size, don't insert too many multiplies. This 4320 // inserts up to 5 multiplies. 4321 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4322 // We use the simple binary decomposition method to generate the multiply 4323 // sequence. There are more optimal ways to do this (for example, 4324 // powi(x,15) generates one more multiply than it should), but this has 4325 // the benefit of being both really simple and much better than a libcall. 4326 SDValue Res; // Logically starts equal to 1.0 4327 SDValue CurSquare = LHS; 4328 while (Val) { 4329 if (Val & 1) { 4330 if (Res.getNode()) 4331 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4332 else 4333 Res = CurSquare; // 1.0*CurSquare. 4334 } 4335 4336 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4337 CurSquare, CurSquare); 4338 Val >>= 1; 4339 } 4340 4341 // If the original was negative, invert the result, producing 1/(x*x*x). 4342 if (RHSC->getSExtValue() < 0) 4343 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4344 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4345 return Res; 4346 } 4347 } 4348 4349 // Otherwise, expand to a libcall. 4350 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4351 } 4352 4353 // getTruncatedArgReg - Find underlying register used for an truncated 4354 // argument. 4355 static unsigned getTruncatedArgReg(const SDValue &N) { 4356 if (N.getOpcode() != ISD::TRUNCATE) 4357 return 0; 4358 4359 const SDValue &Ext = N.getOperand(0); 4360 if (Ext.getOpcode() == ISD::AssertZext || 4361 Ext.getOpcode() == ISD::AssertSext) { 4362 const SDValue &CFR = Ext.getOperand(0); 4363 if (CFR.getOpcode() == ISD::CopyFromReg) 4364 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4365 if (CFR.getOpcode() == ISD::TRUNCATE) 4366 return getTruncatedArgReg(CFR); 4367 } 4368 return 0; 4369 } 4370 4371 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4372 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4373 /// At the end of instruction selection, they will be inserted to the entry BB. 4374 bool 4375 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4376 int64_t Offset, 4377 const SDValue &N) { 4378 const Argument *Arg = dyn_cast<Argument>(V); 4379 if (!Arg) 4380 return false; 4381 4382 MachineFunction &MF = DAG.getMachineFunction(); 4383 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4384 4385 // Ignore inlined function arguments here. 4386 DIVariable DV(Variable); 4387 if (DV.isInlinedFnArgument(MF.getFunction())) 4388 return false; 4389 4390 Optional<MachineOperand> Op; 4391 // Some arguments' frame index is recorded during argument lowering. 4392 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4393 Op = MachineOperand::CreateFI(FI); 4394 4395 if (!Op && N.getNode()) { 4396 unsigned Reg; 4397 if (N.getOpcode() == ISD::CopyFromReg) 4398 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4399 else 4400 Reg = getTruncatedArgReg(N); 4401 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4402 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4403 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4404 if (PR) 4405 Reg = PR; 4406 } 4407 if (Reg) 4408 Op = MachineOperand::CreateReg(Reg, false); 4409 } 4410 4411 if (!Op) { 4412 // Check if ValueMap has reg number. 4413 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4414 if (VMI != FuncInfo.ValueMap.end()) 4415 Op = MachineOperand::CreateReg(VMI->second, false); 4416 } 4417 4418 if (!Op && N.getNode()) 4419 // Check if frame index is available. 4420 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4421 if (FrameIndexSDNode *FINode = 4422 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4423 Op = MachineOperand::CreateFI(FINode->getIndex()); 4424 4425 if (!Op) 4426 return false; 4427 4428 // FIXME: This does not handle register-indirect values at offset 0. 4429 bool IsIndirect = Offset != 0; 4430 if (Op->isReg()) 4431 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4432 TII->get(TargetOpcode::DBG_VALUE), 4433 IsIndirect, 4434 Op->getReg(), Offset, Variable)); 4435 else 4436 FuncInfo.ArgDbgValues.push_back( 4437 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4438 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4439 4440 return true; 4441 } 4442 4443 // VisualStudio defines setjmp as _setjmp 4444 #if defined(_MSC_VER) && defined(setjmp) && \ 4445 !defined(setjmp_undefined_for_msvc) 4446 # pragma push_macro("setjmp") 4447 # undef setjmp 4448 # define setjmp_undefined_for_msvc 4449 #endif 4450 4451 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4452 /// we want to emit this as a call to a named external function, return the name 4453 /// otherwise lower it and return null. 4454 const char * 4455 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4456 const TargetLowering *TLI = TM.getTargetLowering(); 4457 SDLoc sdl = getCurSDLoc(); 4458 DebugLoc dl = getCurDebugLoc(); 4459 SDValue Res; 4460 4461 switch (Intrinsic) { 4462 default: 4463 // By default, turn this into a target intrinsic node. 4464 visitTargetIntrinsic(I, Intrinsic); 4465 return 0; 4466 case Intrinsic::vastart: visitVAStart(I); return 0; 4467 case Intrinsic::vaend: visitVAEnd(I); return 0; 4468 case Intrinsic::vacopy: visitVACopy(I); return 0; 4469 case Intrinsic::returnaddress: 4470 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4471 getValue(I.getArgOperand(0)))); 4472 return 0; 4473 case Intrinsic::frameaddress: 4474 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4475 getValue(I.getArgOperand(0)))); 4476 return 0; 4477 case Intrinsic::setjmp: 4478 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4479 case Intrinsic::longjmp: 4480 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4481 case Intrinsic::memcpy: { 4482 // Assert for address < 256 since we support only user defined address 4483 // spaces. 4484 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4485 < 256 && 4486 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4487 < 256 && 4488 "Unknown address space"); 4489 SDValue Op1 = getValue(I.getArgOperand(0)); 4490 SDValue Op2 = getValue(I.getArgOperand(1)); 4491 SDValue Op3 = getValue(I.getArgOperand(2)); 4492 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4493 if (!Align) 4494 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4495 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4496 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4497 MachinePointerInfo(I.getArgOperand(0)), 4498 MachinePointerInfo(I.getArgOperand(1)))); 4499 return 0; 4500 } 4501 case Intrinsic::memset: { 4502 // Assert for address < 256 since we support only user defined address 4503 // spaces. 4504 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4505 < 256 && 4506 "Unknown address space"); 4507 SDValue Op1 = getValue(I.getArgOperand(0)); 4508 SDValue Op2 = getValue(I.getArgOperand(1)); 4509 SDValue Op3 = getValue(I.getArgOperand(2)); 4510 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4511 if (!Align) 4512 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4513 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4514 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4515 MachinePointerInfo(I.getArgOperand(0)))); 4516 return 0; 4517 } 4518 case Intrinsic::memmove: { 4519 // Assert for address < 256 since we support only user defined address 4520 // spaces. 4521 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4522 < 256 && 4523 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4524 < 256 && 4525 "Unknown address space"); 4526 SDValue Op1 = getValue(I.getArgOperand(0)); 4527 SDValue Op2 = getValue(I.getArgOperand(1)); 4528 SDValue Op3 = getValue(I.getArgOperand(2)); 4529 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4530 if (!Align) 4531 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4532 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4533 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4534 MachinePointerInfo(I.getArgOperand(0)), 4535 MachinePointerInfo(I.getArgOperand(1)))); 4536 return 0; 4537 } 4538 case Intrinsic::dbg_declare: { 4539 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4540 MDNode *Variable = DI.getVariable(); 4541 const Value *Address = DI.getAddress(); 4542 DIVariable DIVar(Variable); 4543 assert((!DIVar || DIVar.isVariable()) && 4544 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4545 if (!Address || !DIVar) { 4546 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4547 return 0; 4548 } 4549 4550 // Check if address has undef value. 4551 if (isa<UndefValue>(Address) || 4552 (Address->use_empty() && !isa<Argument>(Address))) { 4553 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4554 return 0; 4555 } 4556 4557 SDValue &N = NodeMap[Address]; 4558 if (!N.getNode() && isa<Argument>(Address)) 4559 // Check unused arguments map. 4560 N = UnusedArgNodeMap[Address]; 4561 SDDbgValue *SDV; 4562 if (N.getNode()) { 4563 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4564 Address = BCI->getOperand(0); 4565 // Parameters are handled specially. 4566 bool isParameter = 4567 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4568 isa<Argument>(Address)); 4569 4570 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4571 4572 if (isParameter && !AI) { 4573 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4574 if (FINode) 4575 // Byval parameter. We have a frame index at this point. 4576 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4577 0, dl, SDNodeOrder); 4578 else { 4579 // Address is an argument, so try to emit its dbg value using 4580 // virtual register info from the FuncInfo.ValueMap. 4581 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4582 return 0; 4583 } 4584 } else if (AI) 4585 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4586 0, dl, SDNodeOrder); 4587 else { 4588 // Can't do anything with other non-AI cases yet. 4589 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4590 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4591 DEBUG(Address->dump()); 4592 return 0; 4593 } 4594 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4595 } else { 4596 // If Address is an argument then try to emit its dbg value using 4597 // virtual register info from the FuncInfo.ValueMap. 4598 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4599 // If variable is pinned by a alloca in dominating bb then 4600 // use StaticAllocaMap. 4601 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4602 if (AI->getParent() != DI.getParent()) { 4603 DenseMap<const AllocaInst*, int>::iterator SI = 4604 FuncInfo.StaticAllocaMap.find(AI); 4605 if (SI != FuncInfo.StaticAllocaMap.end()) { 4606 SDV = DAG.getDbgValue(Variable, SI->second, 4607 0, dl, SDNodeOrder); 4608 DAG.AddDbgValue(SDV, 0, false); 4609 return 0; 4610 } 4611 } 4612 } 4613 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4614 } 4615 } 4616 return 0; 4617 } 4618 case Intrinsic::dbg_value: { 4619 const DbgValueInst &DI = cast<DbgValueInst>(I); 4620 DIVariable DIVar(DI.getVariable()); 4621 assert((!DIVar || DIVar.isVariable()) && 4622 "Variable in DbgValueInst should be either null or a DIVariable."); 4623 if (!DIVar) 4624 return 0; 4625 4626 MDNode *Variable = DI.getVariable(); 4627 uint64_t Offset = DI.getOffset(); 4628 const Value *V = DI.getValue(); 4629 if (!V) 4630 return 0; 4631 4632 SDDbgValue *SDV; 4633 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4634 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4635 DAG.AddDbgValue(SDV, 0, false); 4636 } else { 4637 // Do not use getValue() in here; we don't want to generate code at 4638 // this point if it hasn't been done yet. 4639 SDValue N = NodeMap[V]; 4640 if (!N.getNode() && isa<Argument>(V)) 4641 // Check unused arguments map. 4642 N = UnusedArgNodeMap[V]; 4643 if (N.getNode()) { 4644 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4645 SDV = DAG.getDbgValue(Variable, N.getNode(), 4646 N.getResNo(), Offset, dl, SDNodeOrder); 4647 DAG.AddDbgValue(SDV, N.getNode(), false); 4648 } 4649 } else if (!V->use_empty() ) { 4650 // Do not call getValue(V) yet, as we don't want to generate code. 4651 // Remember it for later. 4652 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4653 DanglingDebugInfoMap[V] = DDI; 4654 } else { 4655 // We may expand this to cover more cases. One case where we have no 4656 // data available is an unreferenced parameter. 4657 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4658 } 4659 } 4660 4661 // Build a debug info table entry. 4662 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4663 V = BCI->getOperand(0); 4664 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4665 // Don't handle byval struct arguments or VLAs, for example. 4666 if (!AI) { 4667 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4668 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4669 return 0; 4670 } 4671 DenseMap<const AllocaInst*, int>::iterator SI = 4672 FuncInfo.StaticAllocaMap.find(AI); 4673 if (SI == FuncInfo.StaticAllocaMap.end()) 4674 return 0; // VLAs. 4675 int FI = SI->second; 4676 4677 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4678 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4679 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4680 return 0; 4681 } 4682 4683 case Intrinsic::eh_typeid_for: { 4684 // Find the type id for the given typeinfo. 4685 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4686 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4687 Res = DAG.getConstant(TypeID, MVT::i32); 4688 setValue(&I, Res); 4689 return 0; 4690 } 4691 4692 case Intrinsic::eh_return_i32: 4693 case Intrinsic::eh_return_i64: 4694 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4695 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4696 MVT::Other, 4697 getControlRoot(), 4698 getValue(I.getArgOperand(0)), 4699 getValue(I.getArgOperand(1)))); 4700 return 0; 4701 case Intrinsic::eh_unwind_init: 4702 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4703 return 0; 4704 case Intrinsic::eh_dwarf_cfa: { 4705 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4706 TLI->getPointerTy()); 4707 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4708 TLI->getPointerTy(), 4709 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4710 TLI->getPointerTy()), 4711 CfaArg); 4712 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4713 TLI->getPointerTy(), 4714 DAG.getConstant(0, TLI->getPointerTy())); 4715 setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI->getPointerTy(), 4716 FA, Offset)); 4717 return 0; 4718 } 4719 case Intrinsic::eh_sjlj_callsite: { 4720 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4721 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4722 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4723 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4724 4725 MMI.setCurrentCallSite(CI->getZExtValue()); 4726 return 0; 4727 } 4728 case Intrinsic::eh_sjlj_functioncontext: { 4729 // Get and store the index of the function context. 4730 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4731 AllocaInst *FnCtx = 4732 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4733 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4734 MFI->setFunctionContextIndex(FI); 4735 return 0; 4736 } 4737 case Intrinsic::eh_sjlj_setjmp: { 4738 SDValue Ops[2]; 4739 Ops[0] = getRoot(); 4740 Ops[1] = getValue(I.getArgOperand(0)); 4741 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4742 DAG.getVTList(MVT::i32, MVT::Other), 4743 Ops, 2); 4744 setValue(&I, Op.getValue(0)); 4745 DAG.setRoot(Op.getValue(1)); 4746 return 0; 4747 } 4748 case Intrinsic::eh_sjlj_longjmp: { 4749 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4750 getRoot(), getValue(I.getArgOperand(0)))); 4751 return 0; 4752 } 4753 4754 case Intrinsic::x86_mmx_pslli_w: 4755 case Intrinsic::x86_mmx_pslli_d: 4756 case Intrinsic::x86_mmx_pslli_q: 4757 case Intrinsic::x86_mmx_psrli_w: 4758 case Intrinsic::x86_mmx_psrli_d: 4759 case Intrinsic::x86_mmx_psrli_q: 4760 case Intrinsic::x86_mmx_psrai_w: 4761 case Intrinsic::x86_mmx_psrai_d: { 4762 SDValue ShAmt = getValue(I.getArgOperand(1)); 4763 if (isa<ConstantSDNode>(ShAmt)) { 4764 visitTargetIntrinsic(I, Intrinsic); 4765 return 0; 4766 } 4767 unsigned NewIntrinsic = 0; 4768 EVT ShAmtVT = MVT::v2i32; 4769 switch (Intrinsic) { 4770 case Intrinsic::x86_mmx_pslli_w: 4771 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4772 break; 4773 case Intrinsic::x86_mmx_pslli_d: 4774 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4775 break; 4776 case Intrinsic::x86_mmx_pslli_q: 4777 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4778 break; 4779 case Intrinsic::x86_mmx_psrli_w: 4780 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4781 break; 4782 case Intrinsic::x86_mmx_psrli_d: 4783 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4784 break; 4785 case Intrinsic::x86_mmx_psrli_q: 4786 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4787 break; 4788 case Intrinsic::x86_mmx_psrai_w: 4789 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4790 break; 4791 case Intrinsic::x86_mmx_psrai_d: 4792 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4793 break; 4794 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4795 } 4796 4797 // The vector shift intrinsics with scalars uses 32b shift amounts but 4798 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4799 // to be zero. 4800 // We must do this early because v2i32 is not a legal type. 4801 SDValue ShOps[2]; 4802 ShOps[0] = ShAmt; 4803 ShOps[1] = DAG.getConstant(0, MVT::i32); 4804 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4805 EVT DestVT = TLI->getValueType(I.getType()); 4806 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4807 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4808 DAG.getConstant(NewIntrinsic, MVT::i32), 4809 getValue(I.getArgOperand(0)), ShAmt); 4810 setValue(&I, Res); 4811 return 0; 4812 } 4813 case Intrinsic::x86_avx_vinsertf128_pd_256: 4814 case Intrinsic::x86_avx_vinsertf128_ps_256: 4815 case Intrinsic::x86_avx_vinsertf128_si_256: 4816 case Intrinsic::x86_avx2_vinserti128: { 4817 EVT DestVT = TLI->getValueType(I.getType()); 4818 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4819 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4820 ElVT.getVectorNumElements(); 4821 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4822 getValue(I.getArgOperand(0)), 4823 getValue(I.getArgOperand(1)), 4824 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4825 setValue(&I, Res); 4826 return 0; 4827 } 4828 case Intrinsic::x86_avx_vextractf128_pd_256: 4829 case Intrinsic::x86_avx_vextractf128_ps_256: 4830 case Intrinsic::x86_avx_vextractf128_si_256: 4831 case Intrinsic::x86_avx2_vextracti128: { 4832 EVT DestVT = TLI->getValueType(I.getType()); 4833 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4834 DestVT.getVectorNumElements(); 4835 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4836 getValue(I.getArgOperand(0)), 4837 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4838 setValue(&I, Res); 4839 return 0; 4840 } 4841 case Intrinsic::convertff: 4842 case Intrinsic::convertfsi: 4843 case Intrinsic::convertfui: 4844 case Intrinsic::convertsif: 4845 case Intrinsic::convertuif: 4846 case Intrinsic::convertss: 4847 case Intrinsic::convertsu: 4848 case Intrinsic::convertus: 4849 case Intrinsic::convertuu: { 4850 ISD::CvtCode Code = ISD::CVT_INVALID; 4851 switch (Intrinsic) { 4852 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4853 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4854 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4855 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4856 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4857 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4858 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4859 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4860 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4861 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4862 } 4863 EVT DestVT = TLI->getValueType(I.getType()); 4864 const Value *Op1 = I.getArgOperand(0); 4865 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4866 DAG.getValueType(DestVT), 4867 DAG.getValueType(getValue(Op1).getValueType()), 4868 getValue(I.getArgOperand(1)), 4869 getValue(I.getArgOperand(2)), 4870 Code); 4871 setValue(&I, Res); 4872 return 0; 4873 } 4874 case Intrinsic::powi: 4875 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4876 getValue(I.getArgOperand(1)), DAG)); 4877 return 0; 4878 case Intrinsic::log: 4879 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4880 return 0; 4881 case Intrinsic::log2: 4882 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4883 return 0; 4884 case Intrinsic::log10: 4885 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4886 return 0; 4887 case Intrinsic::exp: 4888 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4889 return 0; 4890 case Intrinsic::exp2: 4891 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4892 return 0; 4893 case Intrinsic::pow: 4894 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4895 getValue(I.getArgOperand(1)), DAG, *TLI)); 4896 return 0; 4897 case Intrinsic::sqrt: 4898 case Intrinsic::fabs: 4899 case Intrinsic::sin: 4900 case Intrinsic::cos: 4901 case Intrinsic::floor: 4902 case Intrinsic::ceil: 4903 case Intrinsic::trunc: 4904 case Intrinsic::rint: 4905 case Intrinsic::nearbyint: 4906 case Intrinsic::round: { 4907 unsigned Opcode; 4908 switch (Intrinsic) { 4909 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4910 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4911 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4912 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4913 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4914 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4915 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4916 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4917 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4918 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4919 case Intrinsic::round: Opcode = ISD::FROUND; break; 4920 } 4921 4922 setValue(&I, DAG.getNode(Opcode, sdl, 4923 getValue(I.getArgOperand(0)).getValueType(), 4924 getValue(I.getArgOperand(0)))); 4925 return 0; 4926 } 4927 case Intrinsic::fma: 4928 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4929 getValue(I.getArgOperand(0)).getValueType(), 4930 getValue(I.getArgOperand(0)), 4931 getValue(I.getArgOperand(1)), 4932 getValue(I.getArgOperand(2)))); 4933 return 0; 4934 case Intrinsic::fmuladd: { 4935 EVT VT = TLI->getValueType(I.getType()); 4936 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4937 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 4938 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4939 getValue(I.getArgOperand(0)).getValueType(), 4940 getValue(I.getArgOperand(0)), 4941 getValue(I.getArgOperand(1)), 4942 getValue(I.getArgOperand(2)))); 4943 } else { 4944 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4945 getValue(I.getArgOperand(0)).getValueType(), 4946 getValue(I.getArgOperand(0)), 4947 getValue(I.getArgOperand(1))); 4948 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4949 getValue(I.getArgOperand(0)).getValueType(), 4950 Mul, 4951 getValue(I.getArgOperand(2))); 4952 setValue(&I, Add); 4953 } 4954 return 0; 4955 } 4956 case Intrinsic::convert_to_fp16: 4957 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 4958 MVT::i16, getValue(I.getArgOperand(0)))); 4959 return 0; 4960 case Intrinsic::convert_from_fp16: 4961 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 4962 MVT::f32, getValue(I.getArgOperand(0)))); 4963 return 0; 4964 case Intrinsic::pcmarker: { 4965 SDValue Tmp = getValue(I.getArgOperand(0)); 4966 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4967 return 0; 4968 } 4969 case Intrinsic::readcyclecounter: { 4970 SDValue Op = getRoot(); 4971 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4972 DAG.getVTList(MVT::i64, MVT::Other), 4973 &Op, 1); 4974 setValue(&I, Res); 4975 DAG.setRoot(Res.getValue(1)); 4976 return 0; 4977 } 4978 case Intrinsic::bswap: 4979 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4980 getValue(I.getArgOperand(0)).getValueType(), 4981 getValue(I.getArgOperand(0)))); 4982 return 0; 4983 case Intrinsic::cttz: { 4984 SDValue Arg = getValue(I.getArgOperand(0)); 4985 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4986 EVT Ty = Arg.getValueType(); 4987 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4988 sdl, Ty, Arg)); 4989 return 0; 4990 } 4991 case Intrinsic::ctlz: { 4992 SDValue Arg = getValue(I.getArgOperand(0)); 4993 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4994 EVT Ty = Arg.getValueType(); 4995 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4996 sdl, Ty, Arg)); 4997 return 0; 4998 } 4999 case Intrinsic::ctpop: { 5000 SDValue Arg = getValue(I.getArgOperand(0)); 5001 EVT Ty = Arg.getValueType(); 5002 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5003 return 0; 5004 } 5005 case Intrinsic::stacksave: { 5006 SDValue Op = getRoot(); 5007 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5008 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5009 setValue(&I, Res); 5010 DAG.setRoot(Res.getValue(1)); 5011 return 0; 5012 } 5013 case Intrinsic::stackrestore: { 5014 Res = getValue(I.getArgOperand(0)); 5015 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5016 return 0; 5017 } 5018 case Intrinsic::stackprotector: { 5019 // Emit code into the DAG to store the stack guard onto the stack. 5020 MachineFunction &MF = DAG.getMachineFunction(); 5021 MachineFrameInfo *MFI = MF.getFrameInfo(); 5022 EVT PtrTy = TLI->getPointerTy(); 5023 5024 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5025 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5026 5027 int FI = FuncInfo.StaticAllocaMap[Slot]; 5028 MFI->setStackProtectorIndex(FI); 5029 5030 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5031 5032 // Store the stack protector onto the stack. 5033 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5034 MachinePointerInfo::getFixedStack(FI), 5035 true, false, 0); 5036 setValue(&I, Res); 5037 DAG.setRoot(Res); 5038 return 0; 5039 } 5040 case Intrinsic::objectsize: { 5041 // If we don't know by now, we're never going to know. 5042 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5043 5044 assert(CI && "Non-constant type in __builtin_object_size?"); 5045 5046 SDValue Arg = getValue(I.getCalledValue()); 5047 EVT Ty = Arg.getValueType(); 5048 5049 if (CI->isZero()) 5050 Res = DAG.getConstant(-1ULL, Ty); 5051 else 5052 Res = DAG.getConstant(0, Ty); 5053 5054 setValue(&I, Res); 5055 return 0; 5056 } 5057 case Intrinsic::annotation: 5058 case Intrinsic::ptr_annotation: 5059 // Drop the intrinsic, but forward the value 5060 setValue(&I, getValue(I.getOperand(0))); 5061 return 0; 5062 case Intrinsic::var_annotation: 5063 // Discard annotate attributes 5064 return 0; 5065 5066 case Intrinsic::init_trampoline: { 5067 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5068 5069 SDValue Ops[6]; 5070 Ops[0] = getRoot(); 5071 Ops[1] = getValue(I.getArgOperand(0)); 5072 Ops[2] = getValue(I.getArgOperand(1)); 5073 Ops[3] = getValue(I.getArgOperand(2)); 5074 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5075 Ops[5] = DAG.getSrcValue(F); 5076 5077 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5078 5079 DAG.setRoot(Res); 5080 return 0; 5081 } 5082 case Intrinsic::adjust_trampoline: { 5083 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5084 TLI->getPointerTy(), 5085 getValue(I.getArgOperand(0)))); 5086 return 0; 5087 } 5088 case Intrinsic::gcroot: 5089 if (GFI) { 5090 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5091 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5092 5093 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5094 GFI->addStackRoot(FI->getIndex(), TypeMap); 5095 } 5096 return 0; 5097 case Intrinsic::gcread: 5098 case Intrinsic::gcwrite: 5099 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5100 case Intrinsic::flt_rounds: 5101 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5102 return 0; 5103 5104 case Intrinsic::expect: { 5105 // Just replace __builtin_expect(exp, c) with EXP. 5106 setValue(&I, getValue(I.getArgOperand(0))); 5107 return 0; 5108 } 5109 5110 case Intrinsic::debugtrap: 5111 case Intrinsic::trap: { 5112 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5113 if (TrapFuncName.empty()) { 5114 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5115 ISD::TRAP : ISD::DEBUGTRAP; 5116 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5117 return 0; 5118 } 5119 TargetLowering::ArgListTy Args; 5120 TargetLowering:: 5121 CallLoweringInfo CLI(getRoot(), I.getType(), 5122 false, false, false, false, 0, CallingConv::C, 5123 /*isTailCall=*/false, 5124 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5125 DAG.getExternalSymbol(TrapFuncName.data(), 5126 TLI->getPointerTy()), 5127 Args, DAG, sdl); 5128 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5129 DAG.setRoot(Result.second); 5130 return 0; 5131 } 5132 5133 case Intrinsic::uadd_with_overflow: 5134 case Intrinsic::sadd_with_overflow: 5135 case Intrinsic::usub_with_overflow: 5136 case Intrinsic::ssub_with_overflow: 5137 case Intrinsic::umul_with_overflow: 5138 case Intrinsic::smul_with_overflow: { 5139 ISD::NodeType Op; 5140 switch (Intrinsic) { 5141 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5142 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5143 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5144 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5145 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5146 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5147 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5148 } 5149 SDValue Op1 = getValue(I.getArgOperand(0)); 5150 SDValue Op2 = getValue(I.getArgOperand(1)); 5151 5152 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5153 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5154 return 0; 5155 } 5156 case Intrinsic::prefetch: { 5157 SDValue Ops[5]; 5158 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5159 Ops[0] = getRoot(); 5160 Ops[1] = getValue(I.getArgOperand(0)); 5161 Ops[2] = getValue(I.getArgOperand(1)); 5162 Ops[3] = getValue(I.getArgOperand(2)); 5163 Ops[4] = getValue(I.getArgOperand(3)); 5164 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5165 DAG.getVTList(MVT::Other), 5166 &Ops[0], 5, 5167 EVT::getIntegerVT(*Context, 8), 5168 MachinePointerInfo(I.getArgOperand(0)), 5169 0, /* align */ 5170 false, /* volatile */ 5171 rw==0, /* read */ 5172 rw==1)); /* write */ 5173 return 0; 5174 } 5175 case Intrinsic::lifetime_start: 5176 case Intrinsic::lifetime_end: { 5177 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5178 // Stack coloring is not enabled in O0, discard region information. 5179 if (TM.getOptLevel() == CodeGenOpt::None) 5180 return 0; 5181 5182 SmallVector<Value *, 4> Allocas; 5183 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5184 5185 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5186 E = Allocas.end(); Object != E; ++Object) { 5187 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5188 5189 // Could not find an Alloca. 5190 if (!LifetimeObject) 5191 continue; 5192 5193 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5194 5195 SDValue Ops[2]; 5196 Ops[0] = getRoot(); 5197 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5198 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5199 5200 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5201 DAG.setRoot(Res); 5202 } 5203 return 0; 5204 } 5205 case Intrinsic::invariant_start: 5206 // Discard region information. 5207 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5208 return 0; 5209 case Intrinsic::invariant_end: 5210 // Discard region information. 5211 return 0; 5212 case Intrinsic::donothing: 5213 // ignore 5214 return 0; 5215 } 5216 } 5217 5218 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5219 bool isTailCall, 5220 MachineBasicBlock *LandingPad) { 5221 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5222 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5223 Type *RetTy = FTy->getReturnType(); 5224 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5225 MCSymbol *BeginLabel = 0; 5226 5227 TargetLowering::ArgListTy Args; 5228 TargetLowering::ArgListEntry Entry; 5229 Args.reserve(CS.arg_size()); 5230 5231 // Check whether the function can return without sret-demotion. 5232 SmallVector<ISD::OutputArg, 4> Outs; 5233 const TargetLowering *TLI = TM.getTargetLowering(); 5234 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5235 5236 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5237 DAG.getMachineFunction(), 5238 FTy->isVarArg(), Outs, 5239 FTy->getContext()); 5240 5241 SDValue DemoteStackSlot; 5242 int DemoteStackIdx = -100; 5243 5244 if (!CanLowerReturn) { 5245 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5246 FTy->getReturnType()); 5247 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5248 FTy->getReturnType()); 5249 MachineFunction &MF = DAG.getMachineFunction(); 5250 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5251 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5252 5253 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5254 Entry.Node = DemoteStackSlot; 5255 Entry.Ty = StackSlotPtrType; 5256 Entry.isSExt = false; 5257 Entry.isZExt = false; 5258 Entry.isInReg = false; 5259 Entry.isSRet = true; 5260 Entry.isNest = false; 5261 Entry.isByVal = false; 5262 Entry.isReturned = false; 5263 Entry.Alignment = Align; 5264 Args.push_back(Entry); 5265 RetTy = Type::getVoidTy(FTy->getContext()); 5266 } 5267 5268 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5269 i != e; ++i) { 5270 const Value *V = *i; 5271 5272 // Skip empty types 5273 if (V->getType()->isEmptyTy()) 5274 continue; 5275 5276 SDValue ArgNode = getValue(V); 5277 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5278 5279 unsigned attrInd = i - CS.arg_begin() + 1; 5280 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5281 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5282 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5283 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5284 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5285 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5286 Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned); 5287 Entry.Alignment = CS.getParamAlignment(attrInd); 5288 Args.push_back(Entry); 5289 } 5290 5291 if (LandingPad) { 5292 // Insert a label before the invoke call to mark the try range. This can be 5293 // used to detect deletion of the invoke via the MachineModuleInfo. 5294 BeginLabel = MMI.getContext().CreateTempSymbol(); 5295 5296 // For SjLj, keep track of which landing pads go with which invokes 5297 // so as to maintain the ordering of pads in the LSDA. 5298 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5299 if (CallSiteIndex) { 5300 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5301 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5302 5303 // Now that the call site is handled, stop tracking it. 5304 MMI.setCurrentCallSite(0); 5305 } 5306 5307 // Both PendingLoads and PendingExports must be flushed here; 5308 // this call might not return. 5309 (void)getRoot(); 5310 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5311 } 5312 5313 // Check if target-independent constraints permit a tail call here. 5314 // Target-dependent constraints are checked within TLI->LowerCallTo. 5315 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5316 isTailCall = false; 5317 5318 TargetLowering:: 5319 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5320 getCurSDLoc(), CS); 5321 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5322 assert((isTailCall || Result.second.getNode()) && 5323 "Non-null chain expected with non-tail call!"); 5324 assert((Result.second.getNode() || !Result.first.getNode()) && 5325 "Null value expected with tail call!"); 5326 if (Result.first.getNode()) { 5327 setValue(CS.getInstruction(), Result.first); 5328 } else if (!CanLowerReturn && Result.second.getNode()) { 5329 // The instruction result is the result of loading from the 5330 // hidden sret parameter. 5331 SmallVector<EVT, 1> PVTs; 5332 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5333 5334 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5335 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5336 EVT PtrVT = PVTs[0]; 5337 5338 SmallVector<EVT, 4> RetTys; 5339 SmallVector<uint64_t, 4> Offsets; 5340 RetTy = FTy->getReturnType(); 5341 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5342 5343 unsigned NumValues = RetTys.size(); 5344 SmallVector<SDValue, 4> Values(NumValues); 5345 SmallVector<SDValue, 4> Chains(NumValues); 5346 5347 for (unsigned i = 0; i < NumValues; ++i) { 5348 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5349 DemoteStackSlot, 5350 DAG.getConstant(Offsets[i], PtrVT)); 5351 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5352 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5353 false, false, false, 1); 5354 Values[i] = L; 5355 Chains[i] = L.getValue(1); 5356 } 5357 5358 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5359 MVT::Other, &Chains[0], NumValues); 5360 PendingLoads.push_back(Chain); 5361 5362 setValue(CS.getInstruction(), 5363 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5364 DAG.getVTList(&RetTys[0], RetTys.size()), 5365 &Values[0], Values.size())); 5366 } 5367 5368 if (!Result.second.getNode()) { 5369 // As a special case, a null chain means that a tail call has been emitted and 5370 // the DAG root is already updated. 5371 HasTailCall = true; 5372 5373 // Since there's no actual continuation from this block, nothing can be 5374 // relying on us setting vregs for them. 5375 PendingExports.clear(); 5376 } else { 5377 DAG.setRoot(Result.second); 5378 } 5379 5380 if (LandingPad) { 5381 // Insert a label at the end of the invoke call to mark the try range. This 5382 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5383 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5384 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5385 5386 // Inform MachineModuleInfo of range. 5387 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5388 } 5389 } 5390 5391 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5392 /// value is equal or not-equal to zero. 5393 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5394 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5395 UI != E; ++UI) { 5396 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5397 if (IC->isEquality()) 5398 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5399 if (C->isNullValue()) 5400 continue; 5401 // Unknown instruction. 5402 return false; 5403 } 5404 return true; 5405 } 5406 5407 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5408 Type *LoadTy, 5409 SelectionDAGBuilder &Builder) { 5410 5411 // Check to see if this load can be trivially constant folded, e.g. if the 5412 // input is from a string literal. 5413 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5414 // Cast pointer to the type we really want to load. 5415 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5416 PointerType::getUnqual(LoadTy)); 5417 5418 if (const Constant *LoadCst = 5419 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5420 Builder.TD)) 5421 return Builder.getValue(LoadCst); 5422 } 5423 5424 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5425 // still constant memory, the input chain can be the entry node. 5426 SDValue Root; 5427 bool ConstantMemory = false; 5428 5429 // Do not serialize (non-volatile) loads of constant memory with anything. 5430 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5431 Root = Builder.DAG.getEntryNode(); 5432 ConstantMemory = true; 5433 } else { 5434 // Do not serialize non-volatile loads against each other. 5435 Root = Builder.DAG.getRoot(); 5436 } 5437 5438 SDValue Ptr = Builder.getValue(PtrVal); 5439 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5440 Ptr, MachinePointerInfo(PtrVal), 5441 false /*volatile*/, 5442 false /*nontemporal*/, 5443 false /*isinvariant*/, 1 /* align=1 */); 5444 5445 if (!ConstantMemory) 5446 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5447 return LoadVal; 5448 } 5449 5450 5451 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5452 /// If so, return true and lower it, otherwise return false and it will be 5453 /// lowered like a normal call. 5454 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5455 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5456 if (I.getNumArgOperands() != 3) 5457 return false; 5458 5459 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5460 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5461 !I.getArgOperand(2)->getType()->isIntegerTy() || 5462 !I.getType()->isIntegerTy()) 5463 return false; 5464 5465 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5466 5467 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5468 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5469 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5470 bool ActuallyDoIt = true; 5471 MVT LoadVT; 5472 Type *LoadTy; 5473 switch (Size->getZExtValue()) { 5474 default: 5475 LoadVT = MVT::Other; 5476 LoadTy = 0; 5477 ActuallyDoIt = false; 5478 break; 5479 case 2: 5480 LoadVT = MVT::i16; 5481 LoadTy = Type::getInt16Ty(Size->getContext()); 5482 break; 5483 case 4: 5484 LoadVT = MVT::i32; 5485 LoadTy = Type::getInt32Ty(Size->getContext()); 5486 break; 5487 case 8: 5488 LoadVT = MVT::i64; 5489 LoadTy = Type::getInt64Ty(Size->getContext()); 5490 break; 5491 /* 5492 case 16: 5493 LoadVT = MVT::v4i32; 5494 LoadTy = Type::getInt32Ty(Size->getContext()); 5495 LoadTy = VectorType::get(LoadTy, 4); 5496 break; 5497 */ 5498 } 5499 5500 // This turns into unaligned loads. We only do this if the target natively 5501 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5502 // we'll only produce a small number of byte loads. 5503 5504 // Require that we can find a legal MVT, and only do this if the target 5505 // supports unaligned loads of that type. Expanding into byte loads would 5506 // bloat the code. 5507 const TargetLowering *TLI = TM.getTargetLowering(); 5508 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5509 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5510 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5511 if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT)) 5512 ActuallyDoIt = false; 5513 } 5514 5515 if (ActuallyDoIt) { 5516 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5517 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5518 5519 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5520 ISD::SETNE); 5521 EVT CallVT = TLI->getValueType(I.getType(), true); 5522 setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT)); 5523 return true; 5524 } 5525 } 5526 5527 5528 return false; 5529 } 5530 5531 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5532 /// operation (as expected), translate it to an SDNode with the specified opcode 5533 /// and return true. 5534 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5535 unsigned Opcode) { 5536 // Sanity check that it really is a unary floating-point call. 5537 if (I.getNumArgOperands() != 1 || 5538 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5539 I.getType() != I.getArgOperand(0)->getType() || 5540 !I.onlyReadsMemory()) 5541 return false; 5542 5543 SDValue Tmp = getValue(I.getArgOperand(0)); 5544 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5545 return true; 5546 } 5547 5548 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5549 // Handle inline assembly differently. 5550 if (isa<InlineAsm>(I.getCalledValue())) { 5551 visitInlineAsm(&I); 5552 return; 5553 } 5554 5555 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5556 ComputeUsesVAFloatArgument(I, &MMI); 5557 5558 const char *RenameFn = 0; 5559 if (Function *F = I.getCalledFunction()) { 5560 if (F->isDeclaration()) { 5561 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5562 if (unsigned IID = II->getIntrinsicID(F)) { 5563 RenameFn = visitIntrinsicCall(I, IID); 5564 if (!RenameFn) 5565 return; 5566 } 5567 } 5568 if (unsigned IID = F->getIntrinsicID()) { 5569 RenameFn = visitIntrinsicCall(I, IID); 5570 if (!RenameFn) 5571 return; 5572 } 5573 } 5574 5575 // Check for well-known libc/libm calls. If the function is internal, it 5576 // can't be a library call. 5577 LibFunc::Func Func; 5578 if (!F->hasLocalLinkage() && F->hasName() && 5579 LibInfo->getLibFunc(F->getName(), Func) && 5580 LibInfo->hasOptimizedCodeGen(Func)) { 5581 switch (Func) { 5582 default: break; 5583 case LibFunc::copysign: 5584 case LibFunc::copysignf: 5585 case LibFunc::copysignl: 5586 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5587 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5588 I.getType() == I.getArgOperand(0)->getType() && 5589 I.getType() == I.getArgOperand(1)->getType() && 5590 I.onlyReadsMemory()) { 5591 SDValue LHS = getValue(I.getArgOperand(0)); 5592 SDValue RHS = getValue(I.getArgOperand(1)); 5593 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5594 LHS.getValueType(), LHS, RHS)); 5595 return; 5596 } 5597 break; 5598 case LibFunc::fabs: 5599 case LibFunc::fabsf: 5600 case LibFunc::fabsl: 5601 if (visitUnaryFloatCall(I, ISD::FABS)) 5602 return; 5603 break; 5604 case LibFunc::sin: 5605 case LibFunc::sinf: 5606 case LibFunc::sinl: 5607 if (visitUnaryFloatCall(I, ISD::FSIN)) 5608 return; 5609 break; 5610 case LibFunc::cos: 5611 case LibFunc::cosf: 5612 case LibFunc::cosl: 5613 if (visitUnaryFloatCall(I, ISD::FCOS)) 5614 return; 5615 break; 5616 case LibFunc::sqrt: 5617 case LibFunc::sqrtf: 5618 case LibFunc::sqrtl: 5619 case LibFunc::sqrt_finite: 5620 case LibFunc::sqrtf_finite: 5621 case LibFunc::sqrtl_finite: 5622 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5623 return; 5624 break; 5625 case LibFunc::floor: 5626 case LibFunc::floorf: 5627 case LibFunc::floorl: 5628 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5629 return; 5630 break; 5631 case LibFunc::nearbyint: 5632 case LibFunc::nearbyintf: 5633 case LibFunc::nearbyintl: 5634 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5635 return; 5636 break; 5637 case LibFunc::ceil: 5638 case LibFunc::ceilf: 5639 case LibFunc::ceill: 5640 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5641 return; 5642 break; 5643 case LibFunc::rint: 5644 case LibFunc::rintf: 5645 case LibFunc::rintl: 5646 if (visitUnaryFloatCall(I, ISD::FRINT)) 5647 return; 5648 break; 5649 case LibFunc::round: 5650 case LibFunc::roundf: 5651 case LibFunc::roundl: 5652 if (visitUnaryFloatCall(I, ISD::FROUND)) 5653 return; 5654 break; 5655 case LibFunc::trunc: 5656 case LibFunc::truncf: 5657 case LibFunc::truncl: 5658 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5659 return; 5660 break; 5661 case LibFunc::log2: 5662 case LibFunc::log2f: 5663 case LibFunc::log2l: 5664 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5665 return; 5666 break; 5667 case LibFunc::exp2: 5668 case LibFunc::exp2f: 5669 case LibFunc::exp2l: 5670 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5671 return; 5672 break; 5673 case LibFunc::memcmp: 5674 if (visitMemCmpCall(I)) 5675 return; 5676 break; 5677 } 5678 } 5679 } 5680 5681 SDValue Callee; 5682 if (!RenameFn) 5683 Callee = getValue(I.getCalledValue()); 5684 else 5685 Callee = DAG.getExternalSymbol(RenameFn, 5686 TM.getTargetLowering()->getPointerTy()); 5687 5688 // Check if we can potentially perform a tail call. More detailed checking is 5689 // be done within LowerCallTo, after more information about the call is known. 5690 LowerCallTo(&I, Callee, I.isTailCall()); 5691 } 5692 5693 namespace { 5694 5695 /// AsmOperandInfo - This contains information for each constraint that we are 5696 /// lowering. 5697 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5698 public: 5699 /// CallOperand - If this is the result output operand or a clobber 5700 /// this is null, otherwise it is the incoming operand to the CallInst. 5701 /// This gets modified as the asm is processed. 5702 SDValue CallOperand; 5703 5704 /// AssignedRegs - If this is a register or register class operand, this 5705 /// contains the set of register corresponding to the operand. 5706 RegsForValue AssignedRegs; 5707 5708 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5709 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5710 } 5711 5712 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5713 /// corresponds to. If there is no Value* for this operand, it returns 5714 /// MVT::Other. 5715 EVT getCallOperandValEVT(LLVMContext &Context, 5716 const TargetLowering &TLI, 5717 const DataLayout *TD) const { 5718 if (CallOperandVal == 0) return MVT::Other; 5719 5720 if (isa<BasicBlock>(CallOperandVal)) 5721 return TLI.getPointerTy(); 5722 5723 llvm::Type *OpTy = CallOperandVal->getType(); 5724 5725 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5726 // If this is an indirect operand, the operand is a pointer to the 5727 // accessed type. 5728 if (isIndirect) { 5729 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5730 if (!PtrTy) 5731 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5732 OpTy = PtrTy->getElementType(); 5733 } 5734 5735 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5736 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5737 if (STy->getNumElements() == 1) 5738 OpTy = STy->getElementType(0); 5739 5740 // If OpTy is not a single value, it may be a struct/union that we 5741 // can tile with integers. 5742 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5743 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5744 switch (BitSize) { 5745 default: break; 5746 case 1: 5747 case 8: 5748 case 16: 5749 case 32: 5750 case 64: 5751 case 128: 5752 OpTy = IntegerType::get(Context, BitSize); 5753 break; 5754 } 5755 } 5756 5757 return TLI.getValueType(OpTy, true); 5758 } 5759 }; 5760 5761 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5762 5763 } // end anonymous namespace 5764 5765 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5766 /// specified operand. We prefer to assign virtual registers, to allow the 5767 /// register allocator to handle the assignment process. However, if the asm 5768 /// uses features that we can't model on machineinstrs, we have SDISel do the 5769 /// allocation. This produces generally horrible, but correct, code. 5770 /// 5771 /// OpInfo describes the operand. 5772 /// 5773 static void GetRegistersForValue(SelectionDAG &DAG, 5774 const TargetLowering &TLI, 5775 SDLoc DL, 5776 SDISelAsmOperandInfo &OpInfo) { 5777 LLVMContext &Context = *DAG.getContext(); 5778 5779 MachineFunction &MF = DAG.getMachineFunction(); 5780 SmallVector<unsigned, 4> Regs; 5781 5782 // If this is a constraint for a single physreg, or a constraint for a 5783 // register class, find it. 5784 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5785 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5786 OpInfo.ConstraintVT); 5787 5788 unsigned NumRegs = 1; 5789 if (OpInfo.ConstraintVT != MVT::Other) { 5790 // If this is a FP input in an integer register (or visa versa) insert a bit 5791 // cast of the input value. More generally, handle any case where the input 5792 // value disagrees with the register class we plan to stick this in. 5793 if (OpInfo.Type == InlineAsm::isInput && 5794 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5795 // Try to convert to the first EVT that the reg class contains. If the 5796 // types are identical size, use a bitcast to convert (e.g. two differing 5797 // vector types). 5798 MVT RegVT = *PhysReg.second->vt_begin(); 5799 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5800 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5801 RegVT, OpInfo.CallOperand); 5802 OpInfo.ConstraintVT = RegVT; 5803 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5804 // If the input is a FP value and we want it in FP registers, do a 5805 // bitcast to the corresponding integer type. This turns an f64 value 5806 // into i64, which can be passed with two i32 values on a 32-bit 5807 // machine. 5808 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5809 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5810 RegVT, OpInfo.CallOperand); 5811 OpInfo.ConstraintVT = RegVT; 5812 } 5813 } 5814 5815 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5816 } 5817 5818 MVT RegVT; 5819 EVT ValueVT = OpInfo.ConstraintVT; 5820 5821 // If this is a constraint for a specific physical register, like {r17}, 5822 // assign it now. 5823 if (unsigned AssignedReg = PhysReg.first) { 5824 const TargetRegisterClass *RC = PhysReg.second; 5825 if (OpInfo.ConstraintVT == MVT::Other) 5826 ValueVT = *RC->vt_begin(); 5827 5828 // Get the actual register value type. This is important, because the user 5829 // may have asked for (e.g.) the AX register in i32 type. We need to 5830 // remember that AX is actually i16 to get the right extension. 5831 RegVT = *RC->vt_begin(); 5832 5833 // This is a explicit reference to a physical register. 5834 Regs.push_back(AssignedReg); 5835 5836 // If this is an expanded reference, add the rest of the regs to Regs. 5837 if (NumRegs != 1) { 5838 TargetRegisterClass::iterator I = RC->begin(); 5839 for (; *I != AssignedReg; ++I) 5840 assert(I != RC->end() && "Didn't find reg!"); 5841 5842 // Already added the first reg. 5843 --NumRegs; ++I; 5844 for (; NumRegs; --NumRegs, ++I) { 5845 assert(I != RC->end() && "Ran out of registers to allocate!"); 5846 Regs.push_back(*I); 5847 } 5848 } 5849 5850 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5851 return; 5852 } 5853 5854 // Otherwise, if this was a reference to an LLVM register class, create vregs 5855 // for this reference. 5856 if (const TargetRegisterClass *RC = PhysReg.second) { 5857 RegVT = *RC->vt_begin(); 5858 if (OpInfo.ConstraintVT == MVT::Other) 5859 ValueVT = RegVT; 5860 5861 // Create the appropriate number of virtual registers. 5862 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5863 for (; NumRegs; --NumRegs) 5864 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5865 5866 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5867 return; 5868 } 5869 5870 // Otherwise, we couldn't allocate enough registers for this. 5871 } 5872 5873 /// visitInlineAsm - Handle a call to an InlineAsm object. 5874 /// 5875 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5876 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5877 5878 /// ConstraintOperands - Information about all of the constraints. 5879 SDISelAsmOperandInfoVector ConstraintOperands; 5880 5881 const TargetLowering *TLI = TM.getTargetLowering(); 5882 TargetLowering::AsmOperandInfoVector 5883 TargetConstraints = TLI->ParseConstraints(CS); 5884 5885 bool hasMemory = false; 5886 5887 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5888 unsigned ResNo = 0; // ResNo - The result number of the next output. 5889 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5890 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5891 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5892 5893 MVT OpVT = MVT::Other; 5894 5895 // Compute the value type for each operand. 5896 switch (OpInfo.Type) { 5897 case InlineAsm::isOutput: 5898 // Indirect outputs just consume an argument. 5899 if (OpInfo.isIndirect) { 5900 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5901 break; 5902 } 5903 5904 // The return value of the call is this value. As such, there is no 5905 // corresponding argument. 5906 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5907 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5908 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 5909 } else { 5910 assert(ResNo == 0 && "Asm only has one result!"); 5911 OpVT = TLI->getSimpleValueType(CS.getType()); 5912 } 5913 ++ResNo; 5914 break; 5915 case InlineAsm::isInput: 5916 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5917 break; 5918 case InlineAsm::isClobber: 5919 // Nothing to do. 5920 break; 5921 } 5922 5923 // If this is an input or an indirect output, process the call argument. 5924 // BasicBlocks are labels, currently appearing only in asm's. 5925 if (OpInfo.CallOperandVal) { 5926 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5927 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5928 } else { 5929 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5930 } 5931 5932 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD). 5933 getSimpleVT(); 5934 } 5935 5936 OpInfo.ConstraintVT = OpVT; 5937 5938 // Indirect operand accesses access memory. 5939 if (OpInfo.isIndirect) 5940 hasMemory = true; 5941 else { 5942 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5943 TargetLowering::ConstraintType 5944 CType = TLI->getConstraintType(OpInfo.Codes[j]); 5945 if (CType == TargetLowering::C_Memory) { 5946 hasMemory = true; 5947 break; 5948 } 5949 } 5950 } 5951 } 5952 5953 SDValue Chain, Flag; 5954 5955 // We won't need to flush pending loads if this asm doesn't touch 5956 // memory and is nonvolatile. 5957 if (hasMemory || IA->hasSideEffects()) 5958 Chain = getRoot(); 5959 else 5960 Chain = DAG.getRoot(); 5961 5962 // Second pass over the constraints: compute which constraint option to use 5963 // and assign registers to constraints that want a specific physreg. 5964 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5965 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5966 5967 // If this is an output operand with a matching input operand, look up the 5968 // matching input. If their types mismatch, e.g. one is an integer, the 5969 // other is floating point, or their sizes are different, flag it as an 5970 // error. 5971 if (OpInfo.hasMatchingInput()) { 5972 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5973 5974 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5975 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5976 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5977 OpInfo.ConstraintVT); 5978 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5979 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 5980 Input.ConstraintVT); 5981 if ((OpInfo.ConstraintVT.isInteger() != 5982 Input.ConstraintVT.isInteger()) || 5983 (MatchRC.second != InputRC.second)) { 5984 report_fatal_error("Unsupported asm: input constraint" 5985 " with a matching output constraint of" 5986 " incompatible type!"); 5987 } 5988 Input.ConstraintVT = OpInfo.ConstraintVT; 5989 } 5990 } 5991 5992 // Compute the constraint code and ConstraintType to use. 5993 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5994 5995 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5996 OpInfo.Type == InlineAsm::isClobber) 5997 continue; 5998 5999 // If this is a memory input, and if the operand is not indirect, do what we 6000 // need to to provide an address for the memory input. 6001 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6002 !OpInfo.isIndirect) { 6003 assert((OpInfo.isMultipleAlternative || 6004 (OpInfo.Type == InlineAsm::isInput)) && 6005 "Can only indirectify direct input operands!"); 6006 6007 // Memory operands really want the address of the value. If we don't have 6008 // an indirect input, put it in the constpool if we can, otherwise spill 6009 // it to a stack slot. 6010 // TODO: This isn't quite right. We need to handle these according to 6011 // the addressing mode that the constraint wants. Also, this may take 6012 // an additional register for the computation and we don't want that 6013 // either. 6014 6015 // If the operand is a float, integer, or vector constant, spill to a 6016 // constant pool entry to get its address. 6017 const Value *OpVal = OpInfo.CallOperandVal; 6018 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6019 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6020 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6021 TLI->getPointerTy()); 6022 } else { 6023 // Otherwise, create a stack slot and emit a store to it before the 6024 // asm. 6025 Type *Ty = OpVal->getType(); 6026 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6027 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6028 MachineFunction &MF = DAG.getMachineFunction(); 6029 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6030 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6031 Chain = DAG.getStore(Chain, getCurSDLoc(), 6032 OpInfo.CallOperand, StackSlot, 6033 MachinePointerInfo::getFixedStack(SSFI), 6034 false, false, 0); 6035 OpInfo.CallOperand = StackSlot; 6036 } 6037 6038 // There is no longer a Value* corresponding to this operand. 6039 OpInfo.CallOperandVal = 0; 6040 6041 // It is now an indirect operand. 6042 OpInfo.isIndirect = true; 6043 } 6044 6045 // If this constraint is for a specific register, allocate it before 6046 // anything else. 6047 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6048 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6049 } 6050 6051 // Second pass - Loop over all of the operands, assigning virtual or physregs 6052 // to register class operands. 6053 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6054 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6055 6056 // C_Register operands have already been allocated, Other/Memory don't need 6057 // to be. 6058 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6059 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6060 } 6061 6062 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6063 std::vector<SDValue> AsmNodeOperands; 6064 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6065 AsmNodeOperands.push_back( 6066 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6067 TLI->getPointerTy())); 6068 6069 // If we have a !srcloc metadata node associated with it, we want to attach 6070 // this to the ultimately generated inline asm machineinstr. To do this, we 6071 // pass in the third operand as this (potentially null) inline asm MDNode. 6072 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6073 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6074 6075 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6076 // bits as operand 3. 6077 unsigned ExtraInfo = 0; 6078 if (IA->hasSideEffects()) 6079 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6080 if (IA->isAlignStack()) 6081 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6082 // Set the asm dialect. 6083 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6084 6085 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6086 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6087 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6088 6089 // Compute the constraint code and ConstraintType to use. 6090 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6091 6092 // Ideally, we would only check against memory constraints. However, the 6093 // meaning of an other constraint can be target-specific and we can't easily 6094 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6095 // for other constriants as well. 6096 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6097 OpInfo.ConstraintType == TargetLowering::C_Other) { 6098 if (OpInfo.Type == InlineAsm::isInput) 6099 ExtraInfo |= InlineAsm::Extra_MayLoad; 6100 else if (OpInfo.Type == InlineAsm::isOutput) 6101 ExtraInfo |= InlineAsm::Extra_MayStore; 6102 else if (OpInfo.Type == InlineAsm::isClobber) 6103 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6104 } 6105 } 6106 6107 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6108 TLI->getPointerTy())); 6109 6110 // Loop over all of the inputs, copying the operand values into the 6111 // appropriate registers and processing the output regs. 6112 RegsForValue RetValRegs; 6113 6114 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6115 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6116 6117 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6118 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6119 6120 switch (OpInfo.Type) { 6121 case InlineAsm::isOutput: { 6122 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6123 OpInfo.ConstraintType != TargetLowering::C_Register) { 6124 // Memory output, or 'other' output (e.g. 'X' constraint). 6125 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6126 6127 // Add information to the INLINEASM node to know about this output. 6128 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6129 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6130 TLI->getPointerTy())); 6131 AsmNodeOperands.push_back(OpInfo.CallOperand); 6132 break; 6133 } 6134 6135 // Otherwise, this is a register or register class output. 6136 6137 // Copy the output from the appropriate register. Find a register that 6138 // we can use. 6139 if (OpInfo.AssignedRegs.Regs.empty()) { 6140 LLVMContext &Ctx = *DAG.getContext(); 6141 Ctx.emitError(CS.getInstruction(), 6142 "couldn't allocate output register for constraint '" + 6143 Twine(OpInfo.ConstraintCode) + "'"); 6144 return; 6145 } 6146 6147 // If this is an indirect operand, store through the pointer after the 6148 // asm. 6149 if (OpInfo.isIndirect) { 6150 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6151 OpInfo.CallOperandVal)); 6152 } else { 6153 // This is the result value of the call. 6154 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6155 // Concatenate this output onto the outputs list. 6156 RetValRegs.append(OpInfo.AssignedRegs); 6157 } 6158 6159 // Add information to the INLINEASM node to know that this register is 6160 // set. 6161 OpInfo.AssignedRegs 6162 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6163 ? InlineAsm::Kind_RegDefEarlyClobber 6164 : InlineAsm::Kind_RegDef, 6165 false, 0, DAG, AsmNodeOperands); 6166 break; 6167 } 6168 case InlineAsm::isInput: { 6169 SDValue InOperandVal = OpInfo.CallOperand; 6170 6171 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6172 // If this is required to match an output register we have already set, 6173 // just use its register. 6174 unsigned OperandNo = OpInfo.getMatchedOperand(); 6175 6176 // Scan until we find the definition we already emitted of this operand. 6177 // When we find it, create a RegsForValue operand. 6178 unsigned CurOp = InlineAsm::Op_FirstOperand; 6179 for (; OperandNo; --OperandNo) { 6180 // Advance to the next operand. 6181 unsigned OpFlag = 6182 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6183 assert((InlineAsm::isRegDefKind(OpFlag) || 6184 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6185 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6186 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6187 } 6188 6189 unsigned OpFlag = 6190 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6191 if (InlineAsm::isRegDefKind(OpFlag) || 6192 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6193 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6194 if (OpInfo.isIndirect) { 6195 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6196 LLVMContext &Ctx = *DAG.getContext(); 6197 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6198 " don't know how to handle tied " 6199 "indirect register inputs"); 6200 return; 6201 } 6202 6203 RegsForValue MatchedRegs; 6204 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6205 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6206 MatchedRegs.RegVTs.push_back(RegVT); 6207 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6208 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6209 i != e; ++i) { 6210 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6211 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6212 else { 6213 LLVMContext &Ctx = *DAG.getContext(); 6214 Ctx.emitError(CS.getInstruction(), 6215 "inline asm error: This value" 6216 " type register class is not natively supported!"); 6217 return; 6218 } 6219 } 6220 // Use the produced MatchedRegs object to 6221 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6222 Chain, &Flag, CS.getInstruction()); 6223 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6224 true, OpInfo.getMatchedOperand(), 6225 DAG, AsmNodeOperands); 6226 break; 6227 } 6228 6229 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6230 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6231 "Unexpected number of operands"); 6232 // Add information to the INLINEASM node to know about this input. 6233 // See InlineAsm.h isUseOperandTiedToDef. 6234 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6235 OpInfo.getMatchedOperand()); 6236 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6237 TLI->getPointerTy())); 6238 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6239 break; 6240 } 6241 6242 // Treat indirect 'X' constraint as memory. 6243 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6244 OpInfo.isIndirect) 6245 OpInfo.ConstraintType = TargetLowering::C_Memory; 6246 6247 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6248 std::vector<SDValue> Ops; 6249 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6250 Ops, DAG); 6251 if (Ops.empty()) { 6252 LLVMContext &Ctx = *DAG.getContext(); 6253 Ctx.emitError(CS.getInstruction(), 6254 "invalid operand for inline asm constraint '" + 6255 Twine(OpInfo.ConstraintCode) + "'"); 6256 return; 6257 } 6258 6259 // Add information to the INLINEASM node to know about this input. 6260 unsigned ResOpType = 6261 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6262 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6263 TLI->getPointerTy())); 6264 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6265 break; 6266 } 6267 6268 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6269 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6270 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6271 "Memory operands expect pointer values"); 6272 6273 // Add information to the INLINEASM node to know about this input. 6274 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6275 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6276 TLI->getPointerTy())); 6277 AsmNodeOperands.push_back(InOperandVal); 6278 break; 6279 } 6280 6281 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6282 OpInfo.ConstraintType == TargetLowering::C_Register) && 6283 "Unknown constraint type!"); 6284 6285 // TODO: Support this. 6286 if (OpInfo.isIndirect) { 6287 LLVMContext &Ctx = *DAG.getContext(); 6288 Ctx.emitError(CS.getInstruction(), 6289 "Don't know how to handle indirect register inputs yet " 6290 "for constraint '" + 6291 Twine(OpInfo.ConstraintCode) + "'"); 6292 return; 6293 } 6294 6295 // Copy the input into the appropriate registers. 6296 if (OpInfo.AssignedRegs.Regs.empty()) { 6297 LLVMContext &Ctx = *DAG.getContext(); 6298 Ctx.emitError(CS.getInstruction(), 6299 "couldn't allocate input reg for constraint '" + 6300 Twine(OpInfo.ConstraintCode) + "'"); 6301 return; 6302 } 6303 6304 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6305 Chain, &Flag, CS.getInstruction()); 6306 6307 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6308 DAG, AsmNodeOperands); 6309 break; 6310 } 6311 case InlineAsm::isClobber: { 6312 // Add the clobbered value to the operand list, so that the register 6313 // allocator is aware that the physreg got clobbered. 6314 if (!OpInfo.AssignedRegs.Regs.empty()) 6315 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6316 false, 0, DAG, 6317 AsmNodeOperands); 6318 break; 6319 } 6320 } 6321 } 6322 6323 // Finish up input operands. Set the input chain and add the flag last. 6324 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6325 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6326 6327 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6328 DAG.getVTList(MVT::Other, MVT::Glue), 6329 &AsmNodeOperands[0], AsmNodeOperands.size()); 6330 Flag = Chain.getValue(1); 6331 6332 // If this asm returns a register value, copy the result from that register 6333 // and set it as the value of the call. 6334 if (!RetValRegs.Regs.empty()) { 6335 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6336 Chain, &Flag, CS.getInstruction()); 6337 6338 // FIXME: Why don't we do this for inline asms with MRVs? 6339 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6340 EVT ResultType = TLI->getValueType(CS.getType()); 6341 6342 // If any of the results of the inline asm is a vector, it may have the 6343 // wrong width/num elts. This can happen for register classes that can 6344 // contain multiple different value types. The preg or vreg allocated may 6345 // not have the same VT as was expected. Convert it to the right type 6346 // with bit_convert. 6347 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6348 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6349 ResultType, Val); 6350 6351 } else if (ResultType != Val.getValueType() && 6352 ResultType.isInteger() && Val.getValueType().isInteger()) { 6353 // If a result value was tied to an input value, the computed result may 6354 // have a wider width than the expected result. Extract the relevant 6355 // portion. 6356 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6357 } 6358 6359 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6360 } 6361 6362 setValue(CS.getInstruction(), Val); 6363 // Don't need to use this as a chain in this case. 6364 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6365 return; 6366 } 6367 6368 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6369 6370 // Process indirect outputs, first output all of the flagged copies out of 6371 // physregs. 6372 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6373 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6374 const Value *Ptr = IndirectStoresToEmit[i].second; 6375 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6376 Chain, &Flag, IA); 6377 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6378 } 6379 6380 // Emit the non-flagged stores from the physregs. 6381 SmallVector<SDValue, 8> OutChains; 6382 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6383 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6384 StoresToEmit[i].first, 6385 getValue(StoresToEmit[i].second), 6386 MachinePointerInfo(StoresToEmit[i].second), 6387 false, false, 0); 6388 OutChains.push_back(Val); 6389 } 6390 6391 if (!OutChains.empty()) 6392 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6393 &OutChains[0], OutChains.size()); 6394 6395 DAG.setRoot(Chain); 6396 } 6397 6398 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6399 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6400 MVT::Other, getRoot(), 6401 getValue(I.getArgOperand(0)), 6402 DAG.getSrcValue(I.getArgOperand(0)))); 6403 } 6404 6405 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6406 const TargetLowering *TLI = TM.getTargetLowering(); 6407 const DataLayout &TD = *TLI->getDataLayout(); 6408 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6409 getRoot(), getValue(I.getOperand(0)), 6410 DAG.getSrcValue(I.getOperand(0)), 6411 TD.getABITypeAlignment(I.getType())); 6412 setValue(&I, V); 6413 DAG.setRoot(V.getValue(1)); 6414 } 6415 6416 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6417 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6418 MVT::Other, getRoot(), 6419 getValue(I.getArgOperand(0)), 6420 DAG.getSrcValue(I.getArgOperand(0)))); 6421 } 6422 6423 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6424 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6425 MVT::Other, getRoot(), 6426 getValue(I.getArgOperand(0)), 6427 getValue(I.getArgOperand(1)), 6428 DAG.getSrcValue(I.getArgOperand(0)), 6429 DAG.getSrcValue(I.getArgOperand(1)))); 6430 } 6431 6432 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6433 /// implementation, which just calls LowerCall. 6434 /// FIXME: When all targets are 6435 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6436 std::pair<SDValue, SDValue> 6437 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6438 // Handle the incoming return values from the call. 6439 CLI.Ins.clear(); 6440 SmallVector<EVT, 4> RetTys; 6441 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6442 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6443 EVT VT = RetTys[I]; 6444 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6445 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6446 for (unsigned i = 0; i != NumRegs; ++i) { 6447 ISD::InputArg MyFlags; 6448 MyFlags.VT = RegisterVT; 6449 MyFlags.Used = CLI.IsReturnValueUsed; 6450 if (CLI.RetSExt) 6451 MyFlags.Flags.setSExt(); 6452 if (CLI.RetZExt) 6453 MyFlags.Flags.setZExt(); 6454 if (CLI.IsInReg) 6455 MyFlags.Flags.setInReg(); 6456 CLI.Ins.push_back(MyFlags); 6457 } 6458 } 6459 6460 // Handle all of the outgoing arguments. 6461 CLI.Outs.clear(); 6462 CLI.OutVals.clear(); 6463 ArgListTy &Args = CLI.Args; 6464 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6465 SmallVector<EVT, 4> ValueVTs; 6466 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6467 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6468 Value != NumValues; ++Value) { 6469 EVT VT = ValueVTs[Value]; 6470 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6471 SDValue Op = SDValue(Args[i].Node.getNode(), 6472 Args[i].Node.getResNo() + Value); 6473 ISD::ArgFlagsTy Flags; 6474 unsigned OriginalAlignment = 6475 getDataLayout()->getABITypeAlignment(ArgTy); 6476 6477 if (Args[i].isZExt) 6478 Flags.setZExt(); 6479 if (Args[i].isSExt) 6480 Flags.setSExt(); 6481 if (Args[i].isInReg) 6482 Flags.setInReg(); 6483 if (Args[i].isSRet) 6484 Flags.setSRet(); 6485 if (Args[i].isByVal) { 6486 Flags.setByVal(); 6487 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6488 Type *ElementTy = Ty->getElementType(); 6489 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6490 // For ByVal, alignment should come from FE. BE will guess if this 6491 // info is not there but there are cases it cannot get right. 6492 unsigned FrameAlign; 6493 if (Args[i].Alignment) 6494 FrameAlign = Args[i].Alignment; 6495 else 6496 FrameAlign = getByValTypeAlignment(ElementTy); 6497 Flags.setByValAlign(FrameAlign); 6498 } 6499 if (Args[i].isNest) 6500 Flags.setNest(); 6501 Flags.setOrigAlign(OriginalAlignment); 6502 6503 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6504 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6505 SmallVector<SDValue, 4> Parts(NumParts); 6506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6507 6508 if (Args[i].isSExt) 6509 ExtendKind = ISD::SIGN_EXTEND; 6510 else if (Args[i].isZExt) 6511 ExtendKind = ISD::ZERO_EXTEND; 6512 6513 // Conservatively only handle 'returned' on non-vectors for now 6514 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6515 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6516 "unexpected use of 'returned'"); 6517 // Before passing 'returned' to the target lowering code, ensure that 6518 // either the register MVT and the actual EVT are the same size or that 6519 // the return value and argument are extended in the same way; in these 6520 // cases it's safe to pass the argument register value unchanged as the 6521 // return register value (although it's at the target's option whether 6522 // to do so) 6523 // TODO: allow code generation to take advantage of partially preserved 6524 // registers rather than clobbering the entire register when the 6525 // parameter extension method is not compatible with the return 6526 // extension method 6527 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6528 (ExtendKind != ISD::ANY_EXTEND && 6529 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6530 Flags.setReturned(); 6531 } 6532 6533 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6534 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 6535 6536 for (unsigned j = 0; j != NumParts; ++j) { 6537 // if it isn't first piece, alignment must be 1 6538 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6539 i < CLI.NumFixedArgs, 6540 i, j*Parts[j].getValueType().getStoreSize()); 6541 if (NumParts > 1 && j == 0) 6542 MyFlags.Flags.setSplit(); 6543 else if (j != 0) 6544 MyFlags.Flags.setOrigAlign(1); 6545 6546 CLI.Outs.push_back(MyFlags); 6547 CLI.OutVals.push_back(Parts[j]); 6548 } 6549 } 6550 } 6551 6552 SmallVector<SDValue, 4> InVals; 6553 CLI.Chain = LowerCall(CLI, InVals); 6554 6555 // Verify that the target's LowerCall behaved as expected. 6556 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6557 "LowerCall didn't return a valid chain!"); 6558 assert((!CLI.IsTailCall || InVals.empty()) && 6559 "LowerCall emitted a return value for a tail call!"); 6560 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6561 "LowerCall didn't emit the correct number of values!"); 6562 6563 // For a tail call, the return value is merely live-out and there aren't 6564 // any nodes in the DAG representing it. Return a special value to 6565 // indicate that a tail call has been emitted and no more Instructions 6566 // should be processed in the current block. 6567 if (CLI.IsTailCall) { 6568 CLI.DAG.setRoot(CLI.Chain); 6569 return std::make_pair(SDValue(), SDValue()); 6570 } 6571 6572 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6573 assert(InVals[i].getNode() && 6574 "LowerCall emitted a null value!"); 6575 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6576 "LowerCall emitted a value with the wrong type!"); 6577 }); 6578 6579 // Collect the legal value parts into potentially illegal values 6580 // that correspond to the original function's return values. 6581 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6582 if (CLI.RetSExt) 6583 AssertOp = ISD::AssertSext; 6584 else if (CLI.RetZExt) 6585 AssertOp = ISD::AssertZext; 6586 SmallVector<SDValue, 4> ReturnValues; 6587 unsigned CurReg = 0; 6588 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6589 EVT VT = RetTys[I]; 6590 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6591 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6592 6593 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6594 NumRegs, RegisterVT, VT, NULL, 6595 AssertOp)); 6596 CurReg += NumRegs; 6597 } 6598 6599 // For a function returning void, there is no return value. We can't create 6600 // such a node, so we just return a null return value in that case. In 6601 // that case, nothing will actually look at the value. 6602 if (ReturnValues.empty()) 6603 return std::make_pair(SDValue(), CLI.Chain); 6604 6605 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6606 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6607 &ReturnValues[0], ReturnValues.size()); 6608 return std::make_pair(Res, CLI.Chain); 6609 } 6610 6611 void TargetLowering::LowerOperationWrapper(SDNode *N, 6612 SmallVectorImpl<SDValue> &Results, 6613 SelectionDAG &DAG) const { 6614 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6615 if (Res.getNode()) 6616 Results.push_back(Res); 6617 } 6618 6619 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6620 llvm_unreachable("LowerOperation not implemented for this target!"); 6621 } 6622 6623 void 6624 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6625 SDValue Op = getNonRegisterValue(V); 6626 assert((Op.getOpcode() != ISD::CopyFromReg || 6627 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6628 "Copy from a reg to the same reg!"); 6629 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6630 6631 const TargetLowering *TLI = TM.getTargetLowering(); 6632 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 6633 SDValue Chain = DAG.getEntryNode(); 6634 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); 6635 PendingExports.push_back(Chain); 6636 } 6637 6638 #include "llvm/CodeGen/SelectionDAGISel.h" 6639 6640 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6641 /// entry block, return true. This includes arguments used by switches, since 6642 /// the switch may expand into multiple basic blocks. 6643 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6644 // With FastISel active, we may be splitting blocks, so force creation 6645 // of virtual registers for all non-dead arguments. 6646 if (FastISel) 6647 return A->use_empty(); 6648 6649 const BasicBlock *Entry = A->getParent()->begin(); 6650 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6651 UI != E; ++UI) { 6652 const User *U = *UI; 6653 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6654 return false; // Use not in entry block. 6655 } 6656 return true; 6657 } 6658 6659 void SelectionDAGISel::LowerArguments(const Function &F) { 6660 SelectionDAG &DAG = SDB->DAG; 6661 SDLoc dl = SDB->getCurSDLoc(); 6662 const TargetLowering *TLI = getTargetLowering(); 6663 const DataLayout *TD = TLI->getDataLayout(); 6664 SmallVector<ISD::InputArg, 16> Ins; 6665 6666 if (!FuncInfo->CanLowerReturn) { 6667 // Put in an sret pointer parameter before all the other parameters. 6668 SmallVector<EVT, 1> ValueVTs; 6669 ComputeValueVTs(*getTargetLowering(), 6670 PointerType::getUnqual(F.getReturnType()), ValueVTs); 6671 6672 // NOTE: Assuming that a pointer will never break down to more than one VT 6673 // or one register. 6674 ISD::ArgFlagsTy Flags; 6675 Flags.setSRet(); 6676 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 6677 ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0); 6678 Ins.push_back(RetArg); 6679 } 6680 6681 // Set up the incoming argument description vector. 6682 unsigned Idx = 1; 6683 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6684 I != E; ++I, ++Idx) { 6685 SmallVector<EVT, 4> ValueVTs; 6686 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6687 bool isArgValueUsed = !I->use_empty(); 6688 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6689 Value != NumValues; ++Value) { 6690 EVT VT = ValueVTs[Value]; 6691 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6692 ISD::ArgFlagsTy Flags; 6693 unsigned OriginalAlignment = 6694 TD->getABITypeAlignment(ArgTy); 6695 6696 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 6697 Flags.setZExt(); 6698 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 6699 Flags.setSExt(); 6700 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 6701 Flags.setInReg(); 6702 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 6703 Flags.setSRet(); 6704 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) { 6705 Flags.setByVal(); 6706 PointerType *Ty = cast<PointerType>(I->getType()); 6707 Type *ElementTy = Ty->getElementType(); 6708 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6709 // For ByVal, alignment should be passed from FE. BE will guess if 6710 // this info is not there but there are cases it cannot get right. 6711 unsigned FrameAlign; 6712 if (F.getParamAlignment(Idx)) 6713 FrameAlign = F.getParamAlignment(Idx); 6714 else 6715 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 6716 Flags.setByValAlign(FrameAlign); 6717 } 6718 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 6719 Flags.setNest(); 6720 Flags.setOrigAlign(OriginalAlignment); 6721 6722 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6723 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 6724 for (unsigned i = 0; i != NumRegs; ++i) { 6725 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed, 6726 Idx-1, i*RegisterVT.getStoreSize()); 6727 if (NumRegs > 1 && i == 0) 6728 MyFlags.Flags.setSplit(); 6729 // if it isn't first piece, alignment must be 1 6730 else if (i > 0) 6731 MyFlags.Flags.setOrigAlign(1); 6732 Ins.push_back(MyFlags); 6733 } 6734 } 6735 } 6736 6737 // Call the target to set up the argument values. 6738 SmallVector<SDValue, 8> InVals; 6739 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6740 F.isVarArg(), Ins, 6741 dl, DAG, InVals); 6742 6743 // Verify that the target's LowerFormalArguments behaved as expected. 6744 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6745 "LowerFormalArguments didn't return a valid chain!"); 6746 assert(InVals.size() == Ins.size() && 6747 "LowerFormalArguments didn't emit the correct number of values!"); 6748 DEBUG({ 6749 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6750 assert(InVals[i].getNode() && 6751 "LowerFormalArguments emitted a null value!"); 6752 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6753 "LowerFormalArguments emitted a value with the wrong type!"); 6754 } 6755 }); 6756 6757 // Update the DAG with the new chain value resulting from argument lowering. 6758 DAG.setRoot(NewRoot); 6759 6760 // Set up the argument values. 6761 unsigned i = 0; 6762 Idx = 1; 6763 if (!FuncInfo->CanLowerReturn) { 6764 // Create a virtual register for the sret pointer, and put in a copy 6765 // from the sret argument into it. 6766 SmallVector<EVT, 1> ValueVTs; 6767 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6768 MVT VT = ValueVTs[0].getSimpleVT(); 6769 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6770 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6771 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6772 RegVT, VT, NULL, AssertOp); 6773 6774 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6775 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6776 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 6777 FuncInfo->DemoteRegister = SRetReg; 6778 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 6779 SRetReg, ArgValue); 6780 DAG.setRoot(NewRoot); 6781 6782 // i indexes lowered arguments. Bump it past the hidden sret argument. 6783 // Idx indexes LLVM arguments. Don't touch it. 6784 ++i; 6785 } 6786 6787 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6788 ++I, ++Idx) { 6789 SmallVector<SDValue, 4> ArgValues; 6790 SmallVector<EVT, 4> ValueVTs; 6791 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6792 unsigned NumValues = ValueVTs.size(); 6793 6794 // If this argument is unused then remember its value. It is used to generate 6795 // debugging information. 6796 if (I->use_empty() && NumValues) { 6797 SDB->setUnusedArgValue(I, InVals[i]); 6798 6799 // Also remember any frame index for use in FastISel. 6800 if (FrameIndexSDNode *FI = 6801 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 6802 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6803 } 6804 6805 for (unsigned Val = 0; Val != NumValues; ++Val) { 6806 EVT VT = ValueVTs[Val]; 6807 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6808 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 6809 6810 if (!I->use_empty()) { 6811 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6812 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 6813 AssertOp = ISD::AssertSext; 6814 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 6815 AssertOp = ISD::AssertZext; 6816 6817 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6818 NumParts, PartVT, VT, 6819 NULL, AssertOp)); 6820 } 6821 6822 i += NumParts; 6823 } 6824 6825 // We don't need to do anything else for unused arguments. 6826 if (ArgValues.empty()) 6827 continue; 6828 6829 // Note down frame index. 6830 if (FrameIndexSDNode *FI = 6831 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6832 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6833 6834 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6835 SDB->getCurSDLoc()); 6836 6837 SDB->setValue(I, Res); 6838 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6839 if (LoadSDNode *LNode = 6840 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6841 if (FrameIndexSDNode *FI = 6842 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6843 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6844 } 6845 6846 // If this argument is live outside of the entry block, insert a copy from 6847 // wherever we got it to the vreg that other BB's will reference it as. 6848 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6849 // If we can, though, try to skip creating an unnecessary vreg. 6850 // FIXME: This isn't very clean... it would be nice to make this more 6851 // general. It's also subtly incompatible with the hacks FastISel 6852 // uses with vregs. 6853 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6854 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6855 FuncInfo->ValueMap[I] = Reg; 6856 continue; 6857 } 6858 } 6859 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6860 FuncInfo->InitializeRegForValue(I); 6861 SDB->CopyToExportRegsIfNeeded(I); 6862 } 6863 } 6864 6865 assert(i == InVals.size() && "Argument register count mismatch!"); 6866 6867 // Finally, if the target has anything special to do, allow it to do so. 6868 // FIXME: this should insert code into the DAG! 6869 EmitFunctionEntryCode(); 6870 } 6871 6872 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6873 /// ensure constants are generated when needed. Remember the virtual registers 6874 /// that need to be added to the Machine PHI nodes as input. We cannot just 6875 /// directly add them, because expansion might result in multiple MBB's for one 6876 /// BB. As such, the start of the BB might correspond to a different MBB than 6877 /// the end. 6878 /// 6879 void 6880 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6881 const TerminatorInst *TI = LLVMBB->getTerminator(); 6882 6883 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6884 6885 // Check successor nodes' PHI nodes that expect a constant to be available 6886 // from this block. 6887 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6888 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6889 if (!isa<PHINode>(SuccBB->begin())) continue; 6890 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6891 6892 // If this terminator has multiple identical successors (common for 6893 // switches), only handle each succ once. 6894 if (!SuccsHandled.insert(SuccMBB)) continue; 6895 6896 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6897 6898 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6899 // nodes and Machine PHI nodes, but the incoming operands have not been 6900 // emitted yet. 6901 for (BasicBlock::const_iterator I = SuccBB->begin(); 6902 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6903 // Ignore dead phi's. 6904 if (PN->use_empty()) continue; 6905 6906 // Skip empty types 6907 if (PN->getType()->isEmptyTy()) 6908 continue; 6909 6910 unsigned Reg; 6911 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6912 6913 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6914 unsigned &RegOut = ConstantsOut[C]; 6915 if (RegOut == 0) { 6916 RegOut = FuncInfo.CreateRegs(C->getType()); 6917 CopyValueToVirtualRegister(C, RegOut); 6918 } 6919 Reg = RegOut; 6920 } else { 6921 DenseMap<const Value *, unsigned>::iterator I = 6922 FuncInfo.ValueMap.find(PHIOp); 6923 if (I != FuncInfo.ValueMap.end()) 6924 Reg = I->second; 6925 else { 6926 assert(isa<AllocaInst>(PHIOp) && 6927 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6928 "Didn't codegen value into a register!??"); 6929 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6930 CopyValueToVirtualRegister(PHIOp, Reg); 6931 } 6932 } 6933 6934 // Remember that this register needs to added to the machine PHI node as 6935 // the input for this MBB. 6936 SmallVector<EVT, 4> ValueVTs; 6937 const TargetLowering *TLI = TM.getTargetLowering(); 6938 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 6939 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6940 EVT VT = ValueVTs[vti]; 6941 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 6942 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6943 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6944 Reg += NumRegisters; 6945 } 6946 } 6947 } 6948 6949 ConstantsOut.clear(); 6950 } 6951