1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GetElementPtrTypeIterator.h" 71 #include "llvm/IR/InlineAsm.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsAArch64.h" 77 #include "llvm/IR/IntrinsicsWebAssembly.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Statepoint.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/Support/AtomicOrdering.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Target/TargetIntrinsicInfo.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetOptions.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <cstddef> 100 #include <iterator> 101 #include <limits> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace PatternMatch; 106 using namespace SwitchCG; 107 108 #define DEBUG_TYPE "isel" 109 110 /// LimitFloatPrecision - Generate low-precision inline sequences for 111 /// some float libcalls (6, 8 or 12 bits). 112 static unsigned LimitFloatPrecision; 113 114 static cl::opt<bool> 115 InsertAssertAlign("insert-assert-align", cl::init(true), 116 cl::desc("Insert the experimental `assertalign` node."), 117 cl::ReallyHidden); 118 119 static cl::opt<unsigned, true> 120 LimitFPPrecision("limit-float-precision", 121 cl::desc("Generate low-precision inline sequences " 122 "for some float libcalls"), 123 cl::location(LimitFloatPrecision), cl::Hidden, 124 cl::init(0)); 125 126 static cl::opt<unsigned> SwitchPeelThreshold( 127 "switch-peel-threshold", cl::Hidden, cl::init(66), 128 cl::desc("Set the case probability threshold for peeling the case from a " 129 "switch statement. A value greater than 100 will void this " 130 "optimization")); 131 132 // Limit the width of DAG chains. This is important in general to prevent 133 // DAG-based analysis from blowing up. For example, alias analysis and 134 // load clustering may not complete in reasonable time. It is difficult to 135 // recognize and avoid this situation within each individual analysis, and 136 // future analyses are likely to have the same behavior. Limiting DAG width is 137 // the safe approach and will be especially important with global DAGs. 138 // 139 // MaxParallelChains default is arbitrarily high to avoid affecting 140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 141 // sequence over this should have been converted to llvm.memcpy by the 142 // frontend. It is easy to induce this behavior with .ll code such as: 143 // %buffer = alloca [4096 x i8] 144 // %data = load [4096 x i8]* %argPtr 145 // store [4096 x i8] %data, [4096 x i8]* %buffer 146 static const unsigned MaxParallelChains = 64; 147 148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 149 const SDValue *Parts, unsigned NumParts, 150 MVT PartVT, EVT ValueVT, const Value *V, 151 Optional<CallingConv::ID> CC); 152 153 /// getCopyFromParts - Create a value that contains the specified legal parts 154 /// combined into the value they represent. If the parts combine to a type 155 /// larger than ValueVT then AssertOp can be used to specify whether the extra 156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 157 /// (ISD::AssertSext). 158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 159 const SDValue *Parts, unsigned NumParts, 160 MVT PartVT, EVT ValueVT, const Value *V, 161 Optional<CallingConv::ID> CC = None, 162 Optional<ISD::NodeType> AssertOp = None) { 163 // Let the target assemble the parts if it wants to 164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 165 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 166 PartVT, ValueVT, CC)) 167 return Val; 168 169 if (ValueVT.isVector()) 170 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 171 CC); 172 173 assert(NumParts > 0 && "No parts to assemble!"); 174 SDValue Val = Parts[0]; 175 176 if (NumParts > 1) { 177 // Assemble the value from multiple parts. 178 if (ValueVT.isInteger()) { 179 unsigned PartBits = PartVT.getSizeInBits(); 180 unsigned ValueBits = ValueVT.getSizeInBits(); 181 182 // Assemble the power of 2 part. 183 unsigned RoundParts = 184 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 185 unsigned RoundBits = PartBits * RoundParts; 186 EVT RoundVT = RoundBits == ValueBits ? 187 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 188 SDValue Lo, Hi; 189 190 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 191 192 if (RoundParts > 2) { 193 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 194 PartVT, HalfVT, V); 195 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 196 RoundParts / 2, PartVT, HalfVT, V); 197 } else { 198 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 199 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 200 } 201 202 if (DAG.getDataLayout().isBigEndian()) 203 std::swap(Lo, Hi); 204 205 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 206 207 if (RoundParts < NumParts) { 208 // Assemble the trailing non-power-of-2 part. 209 unsigned OddParts = NumParts - RoundParts; 210 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 211 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 212 OddVT, V, CC); 213 214 // Combine the round and odd parts. 215 Lo = Val; 216 if (DAG.getDataLayout().isBigEndian()) 217 std::swap(Lo, Hi); 218 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 219 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 220 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueSizeInBits(), DL, 222 TLI.getShiftAmountTy( 223 TotalVT, DAG.getDataLayout()))); 224 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 225 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 226 } 227 } else if (PartVT.isFloatingPoint()) { 228 // FP split into multiple FP parts (for ppcf128) 229 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 230 "Unexpected split"); 231 SDValue Lo, Hi; 232 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 233 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 234 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 235 std::swap(Lo, Hi); 236 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 237 } else { 238 // FP split into integer parts (soft fp) 239 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 240 !PartVT.isVector() && "Unexpected split"); 241 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 242 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 243 } 244 } 245 246 // There is now one part, held in Val. Correct it to match ValueVT. 247 // PartEVT is the type of the register class that holds the value. 248 // ValueVT is the type of the inline asm operation. 249 EVT PartEVT = Val.getValueType(); 250 251 if (PartEVT == ValueVT) 252 return Val; 253 254 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 255 ValueVT.bitsLT(PartEVT)) { 256 // For an FP value in an integer part, we need to truncate to the right 257 // width first. 258 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 259 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 260 } 261 262 // Handle types that have the same size. 263 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 264 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 265 266 // Handle types with different sizes. 267 if (PartEVT.isInteger() && ValueVT.isInteger()) { 268 if (ValueVT.bitsLT(PartEVT)) { 269 // For a truncate, see if we have any information to 270 // indicate whether the truncated bits will always be 271 // zero or sign-extension. 272 if (AssertOp) 273 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 274 DAG.getValueType(ValueVT)); 275 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 276 } 277 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 278 } 279 280 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 281 // FP_ROUND's are always exact here. 282 if (ValueVT.bitsLT(Val.getValueType())) 283 return DAG.getNode( 284 ISD::FP_ROUND, DL, ValueVT, Val, 285 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 286 287 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 288 } 289 290 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 291 // then truncating. 292 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 293 ValueVT.bitsLT(PartEVT)) { 294 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 295 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 296 } 297 298 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 299 } 300 301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 302 const Twine &ErrMsg) { 303 const Instruction *I = dyn_cast_or_null<Instruction>(V); 304 if (!V) 305 return Ctx.emitError(ErrMsg); 306 307 const char *AsmError = ", possible invalid constraint for vector type"; 308 if (const CallInst *CI = dyn_cast<CallInst>(I)) 309 if (CI->isInlineAsm()) 310 return Ctx.emitError(I, ErrMsg + AsmError); 311 312 return Ctx.emitError(I, ErrMsg); 313 } 314 315 /// getCopyFromPartsVector - Create a value that contains the specified legal 316 /// parts combined into the value they represent. If the parts combine to a 317 /// type larger than ValueVT then AssertOp can be used to specify whether the 318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 319 /// ValueVT (ISD::AssertSext). 320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 321 const SDValue *Parts, unsigned NumParts, 322 MVT PartVT, EVT ValueVT, const Value *V, 323 Optional<CallingConv::ID> CallConv) { 324 assert(ValueVT.isVector() && "Not a vector value"); 325 assert(NumParts > 0 && "No parts to assemble!"); 326 const bool IsABIRegCopy = CallConv.has_value(); 327 328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 329 SDValue Val = Parts[0]; 330 331 // Handle a multi-element vector. 332 if (NumParts > 1) { 333 EVT IntermediateVT; 334 MVT RegisterVT; 335 unsigned NumIntermediates; 336 unsigned NumRegs; 337 338 if (IsABIRegCopy) { 339 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 340 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 341 NumIntermediates, RegisterVT); 342 } else { 343 NumRegs = 344 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 345 NumIntermediates, RegisterVT); 346 } 347 348 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 349 NumParts = NumRegs; // Silence a compiler warning. 350 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 351 assert(RegisterVT.getSizeInBits() == 352 Parts[0].getSimpleValueType().getSizeInBits() && 353 "Part type sizes don't match!"); 354 355 // Assemble the parts into intermediate operands. 356 SmallVector<SDValue, 8> Ops(NumIntermediates); 357 if (NumIntermediates == NumParts) { 358 // If the register was not expanded, truncate or copy the value, 359 // as appropriate. 360 for (unsigned i = 0; i != NumParts; ++i) 361 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 362 PartVT, IntermediateVT, V, CallConv); 363 } else if (NumParts > 0) { 364 // If the intermediate type was expanded, build the intermediate 365 // operands from the parts. 366 assert(NumParts % NumIntermediates == 0 && 367 "Must expand into a divisible number of parts!"); 368 unsigned Factor = NumParts / NumIntermediates; 369 for (unsigned i = 0; i != NumIntermediates; ++i) 370 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 371 PartVT, IntermediateVT, V, CallConv); 372 } 373 374 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 375 // intermediate operands. 376 EVT BuiltVectorTy = 377 IntermediateVT.isVector() 378 ? EVT::getVectorVT( 379 *DAG.getContext(), IntermediateVT.getScalarType(), 380 IntermediateVT.getVectorElementCount() * NumParts) 381 : EVT::getVectorVT(*DAG.getContext(), 382 IntermediateVT.getScalarType(), 383 NumIntermediates); 384 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 385 : ISD::BUILD_VECTOR, 386 DL, BuiltVectorTy, Ops); 387 } 388 389 // There is now one part, held in Val. Correct it to match ValueVT. 390 EVT PartEVT = Val.getValueType(); 391 392 if (PartEVT == ValueVT) 393 return Val; 394 395 if (PartEVT.isVector()) { 396 // Vector/Vector bitcast. 397 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 398 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 399 400 // If the element type of the source/dest vectors are the same, but the 401 // parts vector has more elements than the value vector, then we have a 402 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 403 // elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 } 418 419 // Promoted vector extract 420 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 421 } 422 423 // Trivial bitcast if the types are the same size and the destination 424 // vector type is legal. 425 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 426 TLI.isTypeLegal(ValueVT)) 427 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 428 429 if (ValueVT.getVectorNumElements() != 1) { 430 // Certain ABIs require that vectors are passed as integers. For vectors 431 // are the same size, this is an obvious bitcast. 432 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 433 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 434 } else if (ValueVT.bitsLT(PartEVT)) { 435 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 436 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 437 // Drop the extra bits. 438 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 439 return DAG.getBitcast(ValueVT, Val); 440 } 441 442 diagnosePossiblyInvalidConstraint( 443 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 444 return DAG.getUNDEF(ValueVT); 445 } 446 447 // Handle cases such as i8 -> <1 x i1> 448 EVT ValueSVT = ValueVT.getVectorElementType(); 449 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 450 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 451 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 452 else 453 Val = ValueVT.isFloatingPoint() 454 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 455 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 456 } 457 458 return DAG.getBuildVector(ValueVT, DL, Val); 459 } 460 461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 462 SDValue Val, SDValue *Parts, unsigned NumParts, 463 MVT PartVT, const Value *V, 464 Optional<CallingConv::ID> CallConv); 465 466 /// getCopyToParts - Create a series of nodes that contain the specified value 467 /// split into legal parts. If the parts contain more bits than Val, then, for 468 /// integers, ExtendKind can be used to specify how to generate the extra bits. 469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 470 SDValue *Parts, unsigned NumParts, MVT PartVT, 471 const Value *V, 472 Optional<CallingConv::ID> CallConv = None, 473 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 474 // Let the target split the parts if it wants to 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 477 CallConv)) 478 return; 479 EVT ValueVT = Val.getValueType(); 480 481 // Handle the vector case separately. 482 if (ValueVT.isVector()) 483 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 484 CallConv); 485 486 unsigned PartBits = PartVT.getSizeInBits(); 487 unsigned OrigNumParts = NumParts; 488 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 489 "Copying to an illegal type!"); 490 491 if (NumParts == 0) 492 return; 493 494 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 495 EVT PartEVT = PartVT; 496 if (PartEVT == ValueVT) { 497 assert(NumParts == 1 && "No-op copy with multiple parts!"); 498 Parts[0] = Val; 499 return; 500 } 501 502 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 503 // If the parts cover more bits than the value has, promote the value. 504 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 505 assert(NumParts == 1 && "Do not know what to promote to!"); 506 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 507 } else { 508 if (ValueVT.isFloatingPoint()) { 509 // FP values need to be bitcast, then extended if they are being put 510 // into a larger container. 511 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 512 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 513 } 514 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 515 ValueVT.isInteger() && 516 "Unknown mismatch!"); 517 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 518 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 519 if (PartVT == MVT::x86mmx) 520 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 521 } 522 } else if (PartBits == ValueVT.getSizeInBits()) { 523 // Different types of the same size. 524 assert(NumParts == 1 && PartEVT != ValueVT); 525 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 526 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 527 // If the parts cover less bits than value has, truncate the value. 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 537 // The value may have changed - recompute ValueVT. 538 ValueVT = Val.getValueType(); 539 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 540 "Failed to tile the value with PartVT!"); 541 542 if (NumParts == 1) { 543 if (PartEVT != ValueVT) { 544 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 545 "scalar-to-vector conversion failed"); 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 Parts[0] = Val; 550 return; 551 } 552 553 // Expand the value into multiple parts. 554 if (NumParts & (NumParts - 1)) { 555 // The number of parts is not a power of 2. Split off and copy the tail. 556 assert(PartVT.isInteger() && ValueVT.isInteger() && 557 "Do not know what to expand to!"); 558 unsigned RoundParts = 1 << Log2_32(NumParts); 559 unsigned RoundBits = RoundParts * PartBits; 560 unsigned OddParts = NumParts - RoundParts; 561 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 562 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 563 564 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 565 CallConv); 566 567 if (DAG.getDataLayout().isBigEndian()) 568 // The odd parts were reversed by getCopyToParts - unreverse them. 569 std::reverse(Parts + RoundParts, Parts + NumParts); 570 571 NumParts = RoundParts; 572 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 573 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 574 } 575 576 // The number of parts is a power of 2. Repeatedly bisect the value using 577 // EXTRACT_ELEMENT. 578 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 579 EVT::getIntegerVT(*DAG.getContext(), 580 ValueVT.getSizeInBits()), 581 Val); 582 583 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 584 for (unsigned i = 0; i < NumParts; i += StepSize) { 585 unsigned ThisBits = StepSize * PartBits / 2; 586 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 587 SDValue &Part0 = Parts[i]; 588 SDValue &Part1 = Parts[i+StepSize/2]; 589 590 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 591 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 592 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 594 595 if (ThisBits == PartBits && ThisVT != PartVT) { 596 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 597 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 598 } 599 } 600 } 601 602 if (DAG.getDataLayout().isBigEndian()) 603 std::reverse(Parts, Parts + OrigNumParts); 604 } 605 606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 607 const SDLoc &DL, EVT PartVT) { 608 if (!PartVT.isVector()) 609 return SDValue(); 610 611 EVT ValueVT = Val.getValueType(); 612 ElementCount PartNumElts = PartVT.getVectorElementCount(); 613 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 614 615 // We only support widening vectors with equivalent element types and 616 // fixed/scalable properties. If a target needs to widen a fixed-length type 617 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 618 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 619 PartNumElts.isScalable() != ValueNumElts.isScalable() || 620 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 621 return SDValue(); 622 623 // Widening a scalable vector to another scalable vector is done by inserting 624 // the vector into a larger undef one. 625 if (PartNumElts.isScalable()) 626 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 627 Val, DAG.getVectorIdxConstant(0, DL)); 628 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 DAG.ExtractVectorElements(Val, Ops); 634 SDValue EltUndef = DAG.getUNDEF(ElementVT); 635 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 636 637 // FIXME: Use CONCAT for 2x -> 4x. 638 return DAG.getBuildVector(PartVT, DL, Ops); 639 } 640 641 /// getCopyToPartsVector - Create a series of nodes that contain the specified 642 /// value split into legal parts. 643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 644 SDValue Val, SDValue *Parts, unsigned NumParts, 645 MVT PartVT, const Value *V, 646 Optional<CallingConv::ID> CallConv) { 647 EVT ValueVT = Val.getValueType(); 648 assert(ValueVT.isVector() && "Not a vector"); 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 const bool IsABIRegCopy = CallConv.has_value(); 651 652 if (NumParts == 1) { 653 EVT PartEVT = PartVT; 654 if (PartEVT == ValueVT) { 655 // Nothing to do. 656 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 657 // Bitconvert vector->vector case. 658 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 659 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 660 Val = Widened; 661 } else if (PartVT.isVector() && 662 PartEVT.getVectorElementType().bitsGE( 663 ValueVT.getVectorElementType()) && 664 PartEVT.getVectorElementCount() == 665 ValueVT.getVectorElementCount()) { 666 667 // Promoted vector extract 668 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 669 } else if (PartEVT.isVector() && 670 PartEVT.getVectorElementType() != 671 ValueVT.getVectorElementType() && 672 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 673 TargetLowering::TypeWidenVector) { 674 // Combination of widening and promotion. 675 EVT WidenVT = 676 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 677 PartVT.getVectorElementCount()); 678 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 679 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 680 } else { 681 if (ValueVT.getVectorElementCount().isScalar()) { 682 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 683 DAG.getVectorIdxConstant(0, DL)); 684 } else { 685 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 686 assert(PartVT.getFixedSizeInBits() > ValueSize && 687 "lossy conversion of vector to scalar type"); 688 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 689 Val = DAG.getBitcast(IntermediateType, Val); 690 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 691 } 692 } 693 694 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 695 Parts[0] = Val; 696 return; 697 } 698 699 // Handle a multi-element vector. 700 EVT IntermediateVT; 701 MVT RegisterVT; 702 unsigned NumIntermediates; 703 unsigned NumRegs; 704 if (IsABIRegCopy) { 705 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 706 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 707 NumIntermediates, RegisterVT); 708 } else { 709 NumRegs = 710 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } 713 714 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 715 NumParts = NumRegs; // Silence a compiler warning. 716 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 717 718 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 719 "Mixing scalable and fixed vectors when copying in parts"); 720 721 Optional<ElementCount> DestEltCnt; 722 723 if (IntermediateVT.isVector()) 724 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 725 else 726 DestEltCnt = ElementCount::getFixed(NumIntermediates); 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 730 731 if (ValueVT == BuiltVectorTy) { 732 // Nothing to do. 733 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 734 // Bitconvert vector->vector case. 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } else { 737 if (BuiltVectorTy.getVectorElementType().bitsGT( 738 ValueVT.getVectorElementType())) { 739 // Integer promotion. 740 ValueVT = EVT::getVectorVT(*DAG.getContext(), 741 BuiltVectorTy.getVectorElementType(), 742 ValueVT.getVectorElementCount()); 743 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 744 } 745 746 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 747 Val = Widened; 748 } 749 } 750 751 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 752 753 // Split the vector into intermediate operands. 754 SmallVector<SDValue, 8> Ops(NumIntermediates); 755 for (unsigned i = 0; i != NumIntermediates; ++i) { 756 if (IntermediateVT.isVector()) { 757 // This does something sensible for scalable vectors - see the 758 // definition of EXTRACT_SUBVECTOR for further details. 759 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 760 Ops[i] = 761 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 762 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 763 } else { 764 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 765 DAG.getVectorIdxConstant(i, DL)); 766 } 767 } 768 769 // Split the intermediate operands into legal parts. 770 if (NumParts == NumIntermediates) { 771 // If the register was not expanded, promote or copy the value, 772 // as appropriate. 773 for (unsigned i = 0; i != NumParts; ++i) 774 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 775 } else if (NumParts > 0) { 776 // If the intermediate type was expanded, split each the value into 777 // legal parts. 778 assert(NumIntermediates != 0 && "division by zero"); 779 assert(NumParts % NumIntermediates == 0 && 780 "Must expand into a divisible number of parts!"); 781 unsigned Factor = NumParts / NumIntermediates; 782 for (unsigned i = 0; i != NumIntermediates; ++i) 783 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 784 CallConv); 785 } 786 } 787 788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 789 EVT valuevt, Optional<CallingConv::ID> CC) 790 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 791 RegCount(1, regs.size()), CallConv(CC) {} 792 793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 794 const DataLayout &DL, unsigned Reg, Type *Ty, 795 Optional<CallingConv::ID> CC) { 796 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 797 798 CallConv = CC; 799 800 for (EVT ValueVT : ValueVTs) { 801 unsigned NumRegs = 802 isABIMangled() 803 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 804 : TLI.getNumRegisters(Context, ValueVT); 805 MVT RegisterVT = 806 isABIMangled() 807 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 808 : TLI.getRegisterType(Context, ValueVT); 809 for (unsigned i = 0; i != NumRegs; ++i) 810 Regs.push_back(Reg + i); 811 RegVTs.push_back(RegisterVT); 812 RegCount.push_back(NumRegs); 813 Reg += NumRegs; 814 } 815 } 816 817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 818 FunctionLoweringInfo &FuncInfo, 819 const SDLoc &dl, SDValue &Chain, 820 SDValue *Flag, const Value *V) const { 821 // A Value with type {} or [0 x %t] needs no registers. 822 if (ValueVTs.empty()) 823 return SDValue(); 824 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 // Assemble the legal parts into the final values. 828 SmallVector<SDValue, 4> Values(ValueVTs.size()); 829 SmallVector<SDValue, 8> Parts; 830 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 831 // Copy the legal parts from the registers. 832 EVT ValueVT = ValueVTs[Value]; 833 unsigned NumRegs = RegCount[Value]; 834 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 835 *DAG.getContext(), 836 CallConv.getValue(), RegVTs[Value]) 837 : RegVTs[Value]; 838 839 Parts.resize(NumRegs); 840 for (unsigned i = 0; i != NumRegs; ++i) { 841 SDValue P; 842 if (!Flag) { 843 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 844 } else { 845 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 846 *Flag = P.getValue(2); 847 } 848 849 Chain = P.getValue(1); 850 Parts[i] = P; 851 852 // If the source register was virtual and if we know something about it, 853 // add an assert node. 854 if (!Register::isVirtualRegister(Regs[Part + i]) || 855 !RegisterVT.isInteger()) 856 continue; 857 858 const FunctionLoweringInfo::LiveOutInfo *LOI = 859 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 860 if (!LOI) 861 continue; 862 863 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 864 unsigned NumSignBits = LOI->NumSignBits; 865 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 866 867 if (NumZeroBits == RegSize) { 868 // The current value is a zero. 869 // Explicitly express that as it would be easier for 870 // optimizations to kick in. 871 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 872 continue; 873 } 874 875 // FIXME: We capture more information than the dag can represent. For 876 // now, just use the tightest assertzext/assertsext possible. 877 bool isSExt; 878 EVT FromVT(MVT::Other); 879 if (NumZeroBits) { 880 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 881 isSExt = false; 882 } else if (NumSignBits > 1) { 883 FromVT = 884 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 885 isSExt = true; 886 } else { 887 continue; 888 } 889 // Add an assertion node. 890 assert(FromVT != MVT::Other); 891 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 892 RegisterVT, P, DAG.getValueType(FromVT)); 893 } 894 895 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 896 RegisterVT, ValueVT, V, CallConv); 897 Part += NumRegs; 898 Parts.clear(); 899 } 900 901 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 902 } 903 904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 905 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 906 const Value *V, 907 ISD::NodeType PreferredExtendType) const { 908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 909 ISD::NodeType ExtendKind = PreferredExtendType; 910 911 // Get the list of the values's legal parts. 912 unsigned NumRegs = Regs.size(); 913 SmallVector<SDValue, 8> Parts(NumRegs); 914 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 915 unsigned NumParts = RegCount[Value]; 916 917 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 918 *DAG.getContext(), 919 CallConv.getValue(), RegVTs[Value]) 920 : RegVTs[Value]; 921 922 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 923 ExtendKind = ISD::ZERO_EXTEND; 924 925 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 926 NumParts, RegisterVT, V, CallConv, ExtendKind); 927 Part += NumParts; 928 } 929 930 // Copy the parts into the registers. 931 SmallVector<SDValue, 8> Chains(NumRegs); 932 for (unsigned i = 0; i != NumRegs; ++i) { 933 SDValue Part; 934 if (!Flag) { 935 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 936 } else { 937 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 938 *Flag = Part.getValue(1); 939 } 940 941 Chains[i] = Part.getValue(0); 942 } 943 944 if (NumRegs == 1 || Flag) 945 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 946 // flagged to it. That is the CopyToReg nodes and the user are considered 947 // a single scheduling unit. If we create a TokenFactor and return it as 948 // chain, then the TokenFactor is both a predecessor (operand) of the 949 // user as well as a successor (the TF operands are flagged to the user). 950 // c1, f1 = CopyToReg 951 // c2, f2 = CopyToReg 952 // c3 = TokenFactor c1, c2 953 // ... 954 // = op c3, ..., f2 955 Chain = Chains[NumRegs-1]; 956 else 957 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 958 } 959 960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 961 unsigned MatchingIdx, const SDLoc &dl, 962 SelectionDAG &DAG, 963 std::vector<SDValue> &Ops) const { 964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 965 966 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 967 if (HasMatching) 968 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 969 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 970 // Put the register class of the virtual registers in the flag word. That 971 // way, later passes can recompute register class constraints for inline 972 // assembly as well as normal instructions. 973 // Don't do this for tied operands that can use the regclass information 974 // from the def. 975 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 976 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 977 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 978 } 979 980 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 981 Ops.push_back(Res); 982 983 if (Code == InlineAsm::Kind_Clobber) { 984 // Clobbers should always have a 1:1 mapping with registers, and may 985 // reference registers that have illegal (e.g. vector) types. Hence, we 986 // shouldn't try to apply any sort of splitting logic to them. 987 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 988 "No 1:1 mapping from clobbers to regs?"); 989 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 990 (void)SP; 991 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 992 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 993 assert( 994 (Regs[I] != SP || 995 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 996 "If we clobbered the stack pointer, MFI should know about it."); 997 } 998 return; 999 } 1000 1001 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1002 MVT RegisterVT = RegVTs[Value]; 1003 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1004 RegisterVT); 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1007 unsigned TheReg = Regs[Reg++]; 1008 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1009 } 1010 } 1011 } 1012 1013 SmallVector<std::pair<unsigned, TypeSize>, 4> 1014 RegsForValue::getRegsAndSizes() const { 1015 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1016 unsigned I = 0; 1017 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1018 unsigned RegCount = std::get<0>(CountAndVT); 1019 MVT RegisterVT = std::get<1>(CountAndVT); 1020 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1021 for (unsigned E = I + RegCount; I != E; ++I) 1022 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1023 } 1024 return OutVec; 1025 } 1026 1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1028 const TargetLibraryInfo *li) { 1029 AA = aa; 1030 GFI = gfi; 1031 LibInfo = li; 1032 Context = DAG.getContext(); 1033 LPadToCallSiteMap.clear(); 1034 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1035 } 1036 1037 void SelectionDAGBuilder::clear() { 1038 NodeMap.clear(); 1039 UnusedArgNodeMap.clear(); 1040 PendingLoads.clear(); 1041 PendingExports.clear(); 1042 PendingConstrainedFP.clear(); 1043 PendingConstrainedFPStrict.clear(); 1044 CurInst = nullptr; 1045 HasTailCall = false; 1046 SDNodeOrder = LowestSDNodeOrder; 1047 StatepointLowering.clear(); 1048 } 1049 1050 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1051 DanglingDebugInfoMap.clear(); 1052 } 1053 1054 // Update DAG root to include dependencies on Pending chains. 1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1056 SDValue Root = DAG.getRoot(); 1057 1058 if (Pending.empty()) 1059 return Root; 1060 1061 // Add current root to PendingChains, unless we already indirectly 1062 // depend on it. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = Pending.size(); 1065 for (; i != e; ++i) { 1066 assert(Pending[i].getNode()->getNumOperands() > 1); 1067 if (Pending[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 Pending.push_back(Root); 1073 } 1074 1075 if (Pending.size() == 1) 1076 Root = Pending[0]; 1077 else 1078 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1079 1080 DAG.setRoot(Root); 1081 Pending.clear(); 1082 return Root; 1083 } 1084 1085 SDValue SelectionDAGBuilder::getMemoryRoot() { 1086 return updateRoot(PendingLoads); 1087 } 1088 1089 SDValue SelectionDAGBuilder::getRoot() { 1090 // Chain up all pending constrained intrinsics together with all 1091 // pending loads, by simply appending them to PendingLoads and 1092 // then calling getMemoryRoot(). 1093 PendingLoads.reserve(PendingLoads.size() + 1094 PendingConstrainedFP.size() + 1095 PendingConstrainedFPStrict.size()); 1096 PendingLoads.append(PendingConstrainedFP.begin(), 1097 PendingConstrainedFP.end()); 1098 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFP.clear(); 1101 PendingConstrainedFPStrict.clear(); 1102 return getMemoryRoot(); 1103 } 1104 1105 SDValue SelectionDAGBuilder::getControlRoot() { 1106 // We need to emit pending fpexcept.strict constrained intrinsics, 1107 // so append them to the PendingExports list. 1108 PendingExports.append(PendingConstrainedFPStrict.begin(), 1109 PendingConstrainedFPStrict.end()); 1110 PendingConstrainedFPStrict.clear(); 1111 return updateRoot(PendingExports); 1112 } 1113 1114 void SelectionDAGBuilder::visit(const Instruction &I) { 1115 // Set up outgoing PHI node register values before emitting the terminator. 1116 if (I.isTerminator()) { 1117 HandlePHINodesInSuccessorBlocks(I.getParent()); 1118 } 1119 1120 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1121 if (!isa<DbgInfoIntrinsic>(I)) 1122 ++SDNodeOrder; 1123 1124 CurInst = &I; 1125 1126 visit(I.getOpcode(), I); 1127 1128 if (!I.isTerminator() && !HasTailCall && 1129 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1130 CopyToExportRegsIfNeeded(&I); 1131 1132 CurInst = nullptr; 1133 } 1134 1135 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1136 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1137 } 1138 1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1140 // Note: this doesn't use InstVisitor, because it has to work with 1141 // ConstantExpr's in addition to instructions. 1142 switch (Opcode) { 1143 default: llvm_unreachable("Unknown instruction type encountered!"); 1144 // Build the switch statement using the Instruction.def file. 1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1146 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1147 #include "llvm/IR/Instruction.def" 1148 } 1149 } 1150 1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1152 DebugLoc DL, unsigned Order) { 1153 // We treat variadic dbg_values differently at this stage. 1154 if (DI->hasArgList()) { 1155 // For variadic dbg_values we will now insert an undef. 1156 // FIXME: We can potentially recover these! 1157 SmallVector<SDDbgOperand, 2> Locs; 1158 for (const Value *V : DI->getValues()) { 1159 auto Undef = UndefValue::get(V->getType()); 1160 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1161 } 1162 SDDbgValue *SDV = DAG.getDbgValueList( 1163 DI->getVariable(), DI->getExpression(), Locs, {}, 1164 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1165 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1166 } else { 1167 // TODO: Dangling debug info will eventually either be resolved or produce 1168 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1169 // between the original dbg.value location and its resolved DBG_VALUE, 1170 // which we should ideally fill with an extra Undef DBG_VALUE. 1171 assert(DI->getNumVariableLocationOps() == 1 && 1172 "DbgValueInst without an ArgList should have a single location " 1173 "operand."); 1174 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1175 } 1176 } 1177 1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1179 const DIExpression *Expr) { 1180 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1181 const DbgValueInst *DI = DDI.getDI(); 1182 DIVariable *DanglingVariable = DI->getVariable(); 1183 DIExpression *DanglingExpr = DI->getExpression(); 1184 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1185 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1186 return true; 1187 } 1188 return false; 1189 }; 1190 1191 for (auto &DDIMI : DanglingDebugInfoMap) { 1192 DanglingDebugInfoVector &DDIV = DDIMI.second; 1193 1194 // If debug info is to be dropped, run it through final checks to see 1195 // whether it can be salvaged. 1196 for (auto &DDI : DDIV) 1197 if (isMatchingDbgValue(DDI)) 1198 salvageUnresolvedDbgValue(DDI); 1199 1200 erase_if(DDIV, isMatchingDbgValue); 1201 } 1202 } 1203 1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1205 // generate the debug data structures now that we've seen its definition. 1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1207 SDValue Val) { 1208 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1209 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1210 return; 1211 1212 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1213 for (auto &DDI : DDIV) { 1214 const DbgValueInst *DI = DDI.getDI(); 1215 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1216 assert(DI && "Ill-formed DanglingDebugInfo"); 1217 DebugLoc dl = DDI.getdl(); 1218 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1219 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1220 DILocalVariable *Variable = DI->getVariable(); 1221 DIExpression *Expr = DI->getExpression(); 1222 assert(Variable->isValidLocationForIntrinsic(dl) && 1223 "Expected inlined-at fields to agree"); 1224 SDDbgValue *SDV; 1225 if (Val.getNode()) { 1226 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1227 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1228 // we couldn't resolve it directly when examining the DbgValue intrinsic 1229 // in the first place we should not be more successful here). Unless we 1230 // have some test case that prove this to be correct we should avoid 1231 // calling EmitFuncArgumentDbgValue here. 1232 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, 1233 FuncArgumentDbgValueKind::Value, Val)) { 1234 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1235 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1236 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1237 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1238 // inserted after the definition of Val when emitting the instructions 1239 // after ISel. An alternative could be to teach 1240 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1241 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1242 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1243 << ValSDNodeOrder << "\n"); 1244 SDV = getDbgValue(Val, Variable, Expr, dl, 1245 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1246 DAG.AddDbgValue(SDV, false); 1247 } else 1248 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1249 << "in EmitFuncArgumentDbgValue\n"); 1250 } else { 1251 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1252 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1253 auto SDV = 1254 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1255 DAG.AddDbgValue(SDV, false); 1256 } 1257 } 1258 DDIV.clear(); 1259 } 1260 1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1262 // TODO: For the variadic implementation, instead of only checking the fail 1263 // state of `handleDebugValue`, we need know specifically which values were 1264 // invalid, so that we attempt to salvage only those values when processing 1265 // a DIArgList. 1266 assert(!DDI.getDI()->hasArgList() && 1267 "Not implemented for variadic dbg_values"); 1268 Value *V = DDI.getDI()->getValue(0); 1269 DILocalVariable *Var = DDI.getDI()->getVariable(); 1270 DIExpression *Expr = DDI.getDI()->getExpression(); 1271 DebugLoc DL = DDI.getdl(); 1272 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1273 unsigned SDOrder = DDI.getSDNodeOrder(); 1274 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1275 // that DW_OP_stack_value is desired. 1276 assert(isa<DbgValueInst>(DDI.getDI())); 1277 bool StackValue = true; 1278 1279 // Can this Value can be encoded without any further work? 1280 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1281 return; 1282 1283 // Attempt to salvage back through as many instructions as possible. Bail if 1284 // a non-instruction is seen, such as a constant expression or global 1285 // variable. FIXME: Further work could recover those too. 1286 while (isa<Instruction>(V)) { 1287 Instruction &VAsInst = *cast<Instruction>(V); 1288 // Temporary "0", awaiting real implementation. 1289 SmallVector<uint64_t, 16> Ops; 1290 SmallVector<Value *, 4> AdditionalValues; 1291 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1292 AdditionalValues); 1293 // If we cannot salvage any further, and haven't yet found a suitable debug 1294 // expression, bail out. 1295 if (!V) 1296 break; 1297 1298 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1299 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1300 // here for variadic dbg_values, remove that condition. 1301 if (!AdditionalValues.empty()) 1302 break; 1303 1304 // New value and expr now represent this debuginfo. 1305 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1306 1307 // Some kind of simplification occurred: check whether the operand of the 1308 // salvaged debug expression can be encoded in this DAG. 1309 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1310 /*IsVariadic=*/false)) { 1311 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1312 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1313 return; 1314 } 1315 } 1316 1317 // This was the final opportunity to salvage this debug information, and it 1318 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1319 // any earlier variable location. 1320 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1321 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1322 DAG.AddDbgValue(SDV, false); 1323 1324 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1325 << "\n"); 1326 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1327 << "\n"); 1328 } 1329 1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1331 DILocalVariable *Var, 1332 DIExpression *Expr, DebugLoc dl, 1333 DebugLoc InstDL, unsigned Order, 1334 bool IsVariadic) { 1335 if (Values.empty()) 1336 return true; 1337 SmallVector<SDDbgOperand> LocationOps; 1338 SmallVector<SDNode *> Dependencies; 1339 for (const Value *V : Values) { 1340 // Constant value. 1341 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1342 isa<ConstantPointerNull>(V)) { 1343 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1344 continue; 1345 } 1346 1347 // If the Value is a frame index, we can create a FrameIndex debug value 1348 // without relying on the DAG at all. 1349 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1350 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1351 if (SI != FuncInfo.StaticAllocaMap.end()) { 1352 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1353 continue; 1354 } 1355 } 1356 1357 // Do not use getValue() in here; we don't want to generate code at 1358 // this point if it hasn't been done yet. 1359 SDValue N = NodeMap[V]; 1360 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1361 N = UnusedArgNodeMap[V]; 1362 if (N.getNode()) { 1363 // Only emit func arg dbg value for non-variadic dbg.values for now. 1364 if (!IsVariadic && 1365 EmitFuncArgumentDbgValue(V, Var, Expr, dl, 1366 FuncArgumentDbgValueKind::Value, N)) 1367 return true; 1368 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1369 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1370 // describe stack slot locations. 1371 // 1372 // Consider "int x = 0; int *px = &x;". There are two kinds of 1373 // interesting debug values here after optimization: 1374 // 1375 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1376 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1377 // 1378 // Both describe the direct values of their associated variables. 1379 Dependencies.push_back(N.getNode()); 1380 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1381 continue; 1382 } 1383 LocationOps.emplace_back( 1384 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1385 continue; 1386 } 1387 1388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1389 // Special rules apply for the first dbg.values of parameter variables in a 1390 // function. Identify them by the fact they reference Argument Values, that 1391 // they're parameters, and they are parameters of the current function. We 1392 // need to let them dangle until they get an SDNode. 1393 bool IsParamOfFunc = 1394 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1395 if (IsParamOfFunc) 1396 return false; 1397 1398 // The value is not used in this block yet (or it would have an SDNode). 1399 // We still want the value to appear for the user if possible -- if it has 1400 // an associated VReg, we can refer to that instead. 1401 auto VMI = FuncInfo.ValueMap.find(V); 1402 if (VMI != FuncInfo.ValueMap.end()) { 1403 unsigned Reg = VMI->second; 1404 // If this is a PHI node, it may be split up into several MI PHI nodes 1405 // (in FunctionLoweringInfo::set). 1406 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1407 V->getType(), None); 1408 if (RFV.occupiesMultipleRegs()) { 1409 // FIXME: We could potentially support variadic dbg_values here. 1410 if (IsVariadic) 1411 return false; 1412 unsigned Offset = 0; 1413 unsigned BitsToDescribe = 0; 1414 if (auto VarSize = Var->getSizeInBits()) 1415 BitsToDescribe = *VarSize; 1416 if (auto Fragment = Expr->getFragmentInfo()) 1417 BitsToDescribe = Fragment->SizeInBits; 1418 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1419 // Bail out if all bits are described already. 1420 if (Offset >= BitsToDescribe) 1421 break; 1422 // TODO: handle scalable vectors. 1423 unsigned RegisterSize = RegAndSize.second; 1424 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1425 ? BitsToDescribe - Offset 1426 : RegisterSize; 1427 auto FragmentExpr = DIExpression::createFragmentExpression( 1428 Expr, Offset, FragmentSize); 1429 if (!FragmentExpr) 1430 continue; 1431 SDDbgValue *SDV = DAG.getVRegDbgValue( 1432 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1433 DAG.AddDbgValue(SDV, false); 1434 Offset += RegisterSize; 1435 } 1436 return true; 1437 } 1438 // We can use simple vreg locations for variadic dbg_values as well. 1439 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1440 continue; 1441 } 1442 // We failed to create a SDDbgOperand for V. 1443 return false; 1444 } 1445 1446 // We have created a SDDbgOperand for each Value in Values. 1447 // Should use Order instead of SDNodeOrder? 1448 assert(!LocationOps.empty()); 1449 SDDbgValue *SDV = 1450 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1451 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1452 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1453 return true; 1454 } 1455 1456 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1457 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1458 for (auto &Pair : DanglingDebugInfoMap) 1459 for (auto &DDI : Pair.second) 1460 salvageUnresolvedDbgValue(DDI); 1461 clearDanglingDebugInfo(); 1462 } 1463 1464 /// getCopyFromRegs - If there was virtual register allocated for the value V 1465 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1466 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1467 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1468 SDValue Result; 1469 1470 if (It != FuncInfo.ValueMap.end()) { 1471 Register InReg = It->second; 1472 1473 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1474 DAG.getDataLayout(), InReg, Ty, 1475 None); // This is not an ABI copy. 1476 SDValue Chain = DAG.getEntryNode(); 1477 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1478 V); 1479 resolveDanglingDebugInfo(V, Result); 1480 } 1481 1482 return Result; 1483 } 1484 1485 /// getValue - Return an SDValue for the given Value. 1486 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1487 // If we already have an SDValue for this value, use it. It's important 1488 // to do this first, so that we don't create a CopyFromReg if we already 1489 // have a regular SDValue. 1490 SDValue &N = NodeMap[V]; 1491 if (N.getNode()) return N; 1492 1493 // If there's a virtual register allocated and initialized for this 1494 // value, use it. 1495 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1496 return copyFromReg; 1497 1498 // Otherwise create a new SDValue and remember it. 1499 SDValue Val = getValueImpl(V); 1500 NodeMap[V] = Val; 1501 resolveDanglingDebugInfo(V, Val); 1502 return Val; 1503 } 1504 1505 /// getNonRegisterValue - Return an SDValue for the given Value, but 1506 /// don't look in FuncInfo.ValueMap for a virtual register. 1507 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1508 // If we already have an SDValue for this value, use it. 1509 SDValue &N = NodeMap[V]; 1510 if (N.getNode()) { 1511 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1512 // Remove the debug location from the node as the node is about to be used 1513 // in a location which may differ from the original debug location. This 1514 // is relevant to Constant and ConstantFP nodes because they can appear 1515 // as constant expressions inside PHI nodes. 1516 N->setDebugLoc(DebugLoc()); 1517 } 1518 return N; 1519 } 1520 1521 // Otherwise create a new SDValue and remember it. 1522 SDValue Val = getValueImpl(V); 1523 NodeMap[V] = Val; 1524 resolveDanglingDebugInfo(V, Val); 1525 return Val; 1526 } 1527 1528 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1529 /// Create an SDValue for the given value. 1530 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1532 1533 if (const Constant *C = dyn_cast<Constant>(V)) { 1534 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1535 1536 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1537 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1538 1539 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1540 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1541 1542 if (isa<ConstantPointerNull>(C)) { 1543 unsigned AS = V->getType()->getPointerAddressSpace(); 1544 return DAG.getConstant(0, getCurSDLoc(), 1545 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1546 } 1547 1548 if (match(C, m_VScale(DAG.getDataLayout()))) 1549 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1550 1551 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1552 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1553 1554 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1555 return DAG.getUNDEF(VT); 1556 1557 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1558 visit(CE->getOpcode(), *CE); 1559 SDValue N1 = NodeMap[V]; 1560 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1561 return N1; 1562 } 1563 1564 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1565 SmallVector<SDValue, 4> Constants; 1566 for (const Use &U : C->operands()) { 1567 SDNode *Val = getValue(U).getNode(); 1568 // If the operand is an empty aggregate, there are no values. 1569 if (!Val) continue; 1570 // Add each leaf value from the operand to the Constants list 1571 // to form a flattened list of all the values. 1572 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1573 Constants.push_back(SDValue(Val, i)); 1574 } 1575 1576 return DAG.getMergeValues(Constants, getCurSDLoc()); 1577 } 1578 1579 if (const ConstantDataSequential *CDS = 1580 dyn_cast<ConstantDataSequential>(C)) { 1581 SmallVector<SDValue, 4> Ops; 1582 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1583 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1584 // Add each leaf value from the operand to the Constants list 1585 // to form a flattened list of all the values. 1586 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1587 Ops.push_back(SDValue(Val, i)); 1588 } 1589 1590 if (isa<ArrayType>(CDS->getType())) 1591 return DAG.getMergeValues(Ops, getCurSDLoc()); 1592 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1593 } 1594 1595 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1596 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1597 "Unknown struct or array constant!"); 1598 1599 SmallVector<EVT, 4> ValueVTs; 1600 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1601 unsigned NumElts = ValueVTs.size(); 1602 if (NumElts == 0) 1603 return SDValue(); // empty struct 1604 SmallVector<SDValue, 4> Constants(NumElts); 1605 for (unsigned i = 0; i != NumElts; ++i) { 1606 EVT EltVT = ValueVTs[i]; 1607 if (isa<UndefValue>(C)) 1608 Constants[i] = DAG.getUNDEF(EltVT); 1609 else if (EltVT.isFloatingPoint()) 1610 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1611 else 1612 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1613 } 1614 1615 return DAG.getMergeValues(Constants, getCurSDLoc()); 1616 } 1617 1618 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1619 return DAG.getBlockAddress(BA, VT); 1620 1621 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1622 return getValue(Equiv->getGlobalValue()); 1623 1624 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1625 return getValue(NC->getGlobalValue()); 1626 1627 VectorType *VecTy = cast<VectorType>(V->getType()); 1628 1629 // Now that we know the number and type of the elements, get that number of 1630 // elements into the Ops array based on what kind of constant it is. 1631 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1632 SmallVector<SDValue, 16> Ops; 1633 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1634 for (unsigned i = 0; i != NumElements; ++i) 1635 Ops.push_back(getValue(CV->getOperand(i))); 1636 1637 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1638 } 1639 1640 if (isa<ConstantAggregateZero>(C)) { 1641 EVT EltVT = 1642 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1643 1644 SDValue Op; 1645 if (EltVT.isFloatingPoint()) 1646 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1647 else 1648 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1649 1650 if (isa<ScalableVectorType>(VecTy)) 1651 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1652 1653 SmallVector<SDValue, 16> Ops; 1654 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1655 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1656 } 1657 1658 llvm_unreachable("Unknown vector constant"); 1659 } 1660 1661 // If this is a static alloca, generate it as the frameindex instead of 1662 // computation. 1663 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1664 DenseMap<const AllocaInst*, int>::iterator SI = 1665 FuncInfo.StaticAllocaMap.find(AI); 1666 if (SI != FuncInfo.StaticAllocaMap.end()) 1667 return DAG.getFrameIndex(SI->second, 1668 TLI.getFrameIndexTy(DAG.getDataLayout())); 1669 } 1670 1671 // If this is an instruction which fast-isel has deferred, select it now. 1672 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1673 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1674 1675 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1676 Inst->getType(), None); 1677 SDValue Chain = DAG.getEntryNode(); 1678 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1679 } 1680 1681 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1682 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1683 1684 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1685 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1686 1687 llvm_unreachable("Can't get register for value!"); 1688 } 1689 1690 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1691 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1692 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1693 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1694 bool IsSEH = isAsynchronousEHPersonality(Pers); 1695 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1696 if (!IsSEH) 1697 CatchPadMBB->setIsEHScopeEntry(); 1698 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1699 if (IsMSVCCXX || IsCoreCLR) 1700 CatchPadMBB->setIsEHFuncletEntry(); 1701 } 1702 1703 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1704 // Update machine-CFG edge. 1705 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1706 FuncInfo.MBB->addSuccessor(TargetMBB); 1707 TargetMBB->setIsEHCatchretTarget(true); 1708 DAG.getMachineFunction().setHasEHCatchret(true); 1709 1710 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1711 bool IsSEH = isAsynchronousEHPersonality(Pers); 1712 if (IsSEH) { 1713 // If this is not a fall-through branch or optimizations are switched off, 1714 // emit the branch. 1715 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1716 TM.getOptLevel() == CodeGenOpt::None) 1717 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1718 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1719 return; 1720 } 1721 1722 // Figure out the funclet membership for the catchret's successor. 1723 // This will be used by the FuncletLayout pass to determine how to order the 1724 // BB's. 1725 // A 'catchret' returns to the outer scope's color. 1726 Value *ParentPad = I.getCatchSwitchParentPad(); 1727 const BasicBlock *SuccessorColor; 1728 if (isa<ConstantTokenNone>(ParentPad)) 1729 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1730 else 1731 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1732 assert(SuccessorColor && "No parent funclet for catchret!"); 1733 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1734 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1735 1736 // Create the terminator node. 1737 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1738 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1739 DAG.getBasicBlock(SuccessorColorMBB)); 1740 DAG.setRoot(Ret); 1741 } 1742 1743 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1744 // Don't emit any special code for the cleanuppad instruction. It just marks 1745 // the start of an EH scope/funclet. 1746 FuncInfo.MBB->setIsEHScopeEntry(); 1747 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1748 if (Pers != EHPersonality::Wasm_CXX) { 1749 FuncInfo.MBB->setIsEHFuncletEntry(); 1750 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1751 } 1752 } 1753 1754 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1755 // not match, it is OK to add only the first unwind destination catchpad to the 1756 // successors, because there will be at least one invoke instruction within the 1757 // catch scope that points to the next unwind destination, if one exists, so 1758 // CFGSort cannot mess up with BB sorting order. 1759 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1760 // call within them, and catchpads only consisting of 'catch (...)' have a 1761 // '__cxa_end_catch' call within them, both of which generate invokes in case 1762 // the next unwind destination exists, i.e., the next unwind destination is not 1763 // the caller.) 1764 // 1765 // Having at most one EH pad successor is also simpler and helps later 1766 // transformations. 1767 // 1768 // For example, 1769 // current: 1770 // invoke void @foo to ... unwind label %catch.dispatch 1771 // catch.dispatch: 1772 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1773 // catch.start: 1774 // ... 1775 // ... in this BB or some other child BB dominated by this BB there will be an 1776 // invoke that points to 'next' BB as an unwind destination 1777 // 1778 // next: ; We don't need to add this to 'current' BB's successor 1779 // ... 1780 static void findWasmUnwindDestinations( 1781 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1782 BranchProbability Prob, 1783 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1784 &UnwindDests) { 1785 while (EHPadBB) { 1786 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1787 if (isa<CleanupPadInst>(Pad)) { 1788 // Stop on cleanup pads. 1789 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1790 UnwindDests.back().first->setIsEHScopeEntry(); 1791 break; 1792 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1793 // Add the catchpad handlers to the possible destinations. We don't 1794 // continue to the unwind destination of the catchswitch for wasm. 1795 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1796 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1797 UnwindDests.back().first->setIsEHScopeEntry(); 1798 } 1799 break; 1800 } else { 1801 continue; 1802 } 1803 } 1804 } 1805 1806 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1807 /// many places it could ultimately go. In the IR, we have a single unwind 1808 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1809 /// This function skips over imaginary basic blocks that hold catchswitch 1810 /// instructions, and finds all the "real" machine 1811 /// basic block destinations. As those destinations may not be successors of 1812 /// EHPadBB, here we also calculate the edge probability to those destinations. 1813 /// The passed-in Prob is the edge probability to EHPadBB. 1814 static void findUnwindDestinations( 1815 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1816 BranchProbability Prob, 1817 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1818 &UnwindDests) { 1819 EHPersonality Personality = 1820 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1821 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1822 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1823 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1824 bool IsSEH = isAsynchronousEHPersonality(Personality); 1825 1826 if (IsWasmCXX) { 1827 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1828 assert(UnwindDests.size() <= 1 && 1829 "There should be at most one unwind destination for wasm"); 1830 return; 1831 } 1832 1833 while (EHPadBB) { 1834 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1835 BasicBlock *NewEHPadBB = nullptr; 1836 if (isa<LandingPadInst>(Pad)) { 1837 // Stop on landingpads. They are not funclets. 1838 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1839 break; 1840 } else if (isa<CleanupPadInst>(Pad)) { 1841 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1842 // personalities. 1843 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1844 UnwindDests.back().first->setIsEHScopeEntry(); 1845 UnwindDests.back().first->setIsEHFuncletEntry(); 1846 break; 1847 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1848 // Add the catchpad handlers to the possible destinations. 1849 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1850 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1851 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1852 if (IsMSVCCXX || IsCoreCLR) 1853 UnwindDests.back().first->setIsEHFuncletEntry(); 1854 if (!IsSEH) 1855 UnwindDests.back().first->setIsEHScopeEntry(); 1856 } 1857 NewEHPadBB = CatchSwitch->getUnwindDest(); 1858 } else { 1859 continue; 1860 } 1861 1862 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1863 if (BPI && NewEHPadBB) 1864 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1865 EHPadBB = NewEHPadBB; 1866 } 1867 } 1868 1869 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1870 // Update successor info. 1871 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1872 auto UnwindDest = I.getUnwindDest(); 1873 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1874 BranchProbability UnwindDestProb = 1875 (BPI && UnwindDest) 1876 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1877 : BranchProbability::getZero(); 1878 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1879 for (auto &UnwindDest : UnwindDests) { 1880 UnwindDest.first->setIsEHPad(); 1881 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1882 } 1883 FuncInfo.MBB->normalizeSuccProbs(); 1884 1885 // Create the terminator node. 1886 SDValue Ret = 1887 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1888 DAG.setRoot(Ret); 1889 } 1890 1891 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1892 report_fatal_error("visitCatchSwitch not yet implemented!"); 1893 } 1894 1895 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1897 auto &DL = DAG.getDataLayout(); 1898 SDValue Chain = getControlRoot(); 1899 SmallVector<ISD::OutputArg, 8> Outs; 1900 SmallVector<SDValue, 8> OutVals; 1901 1902 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1903 // lower 1904 // 1905 // %val = call <ty> @llvm.experimental.deoptimize() 1906 // ret <ty> %val 1907 // 1908 // differently. 1909 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1910 LowerDeoptimizingReturn(); 1911 return; 1912 } 1913 1914 if (!FuncInfo.CanLowerReturn) { 1915 unsigned DemoteReg = FuncInfo.DemoteRegister; 1916 const Function *F = I.getParent()->getParent(); 1917 1918 // Emit a store of the return value through the virtual register. 1919 // Leave Outs empty so that LowerReturn won't try to load return 1920 // registers the usual way. 1921 SmallVector<EVT, 1> PtrValueVTs; 1922 ComputeValueVTs(TLI, DL, 1923 F->getReturnType()->getPointerTo( 1924 DAG.getDataLayout().getAllocaAddrSpace()), 1925 PtrValueVTs); 1926 1927 SDValue RetPtr = 1928 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1929 SDValue RetOp = getValue(I.getOperand(0)); 1930 1931 SmallVector<EVT, 4> ValueVTs, MemVTs; 1932 SmallVector<uint64_t, 4> Offsets; 1933 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1934 &Offsets); 1935 unsigned NumValues = ValueVTs.size(); 1936 1937 SmallVector<SDValue, 4> Chains(NumValues); 1938 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1939 for (unsigned i = 0; i != NumValues; ++i) { 1940 // An aggregate return value cannot wrap around the address space, so 1941 // offsets to its parts don't wrap either. 1942 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1943 TypeSize::Fixed(Offsets[i])); 1944 1945 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1946 if (MemVTs[i] != ValueVTs[i]) 1947 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1948 Chains[i] = DAG.getStore( 1949 Chain, getCurSDLoc(), Val, 1950 // FIXME: better loc info would be nice. 1951 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1952 commonAlignment(BaseAlign, Offsets[i])); 1953 } 1954 1955 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1956 MVT::Other, Chains); 1957 } else if (I.getNumOperands() != 0) { 1958 SmallVector<EVT, 4> ValueVTs; 1959 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1960 unsigned NumValues = ValueVTs.size(); 1961 if (NumValues) { 1962 SDValue RetOp = getValue(I.getOperand(0)); 1963 1964 const Function *F = I.getParent()->getParent(); 1965 1966 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1967 I.getOperand(0)->getType(), F->getCallingConv(), 1968 /*IsVarArg*/ false, DL); 1969 1970 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1971 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1972 ExtendKind = ISD::SIGN_EXTEND; 1973 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1974 ExtendKind = ISD::ZERO_EXTEND; 1975 1976 LLVMContext &Context = F->getContext(); 1977 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1978 1979 for (unsigned j = 0; j != NumValues; ++j) { 1980 EVT VT = ValueVTs[j]; 1981 1982 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1983 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1984 1985 CallingConv::ID CC = F->getCallingConv(); 1986 1987 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1988 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1989 SmallVector<SDValue, 4> Parts(NumParts); 1990 getCopyToParts(DAG, getCurSDLoc(), 1991 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1992 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1993 1994 // 'inreg' on function refers to return value 1995 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1996 if (RetInReg) 1997 Flags.setInReg(); 1998 1999 if (I.getOperand(0)->getType()->isPointerTy()) { 2000 Flags.setPointer(); 2001 Flags.setPointerAddrSpace( 2002 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2003 } 2004 2005 if (NeedsRegBlock) { 2006 Flags.setInConsecutiveRegs(); 2007 if (j == NumValues - 1) 2008 Flags.setInConsecutiveRegsLast(); 2009 } 2010 2011 // Propagate extension type if any 2012 if (ExtendKind == ISD::SIGN_EXTEND) 2013 Flags.setSExt(); 2014 else if (ExtendKind == ISD::ZERO_EXTEND) 2015 Flags.setZExt(); 2016 2017 for (unsigned i = 0; i < NumParts; ++i) { 2018 Outs.push_back(ISD::OutputArg(Flags, 2019 Parts[i].getValueType().getSimpleVT(), 2020 VT, /*isfixed=*/true, 0, 0)); 2021 OutVals.push_back(Parts[i]); 2022 } 2023 } 2024 } 2025 } 2026 2027 // Push in swifterror virtual register as the last element of Outs. This makes 2028 // sure swifterror virtual register will be returned in the swifterror 2029 // physical register. 2030 const Function *F = I.getParent()->getParent(); 2031 if (TLI.supportSwiftError() && 2032 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2033 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2034 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2035 Flags.setSwiftError(); 2036 Outs.push_back(ISD::OutputArg( 2037 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2038 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2039 // Create SDNode for the swifterror virtual register. 2040 OutVals.push_back( 2041 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2042 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2043 EVT(TLI.getPointerTy(DL)))); 2044 } 2045 2046 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2047 CallingConv::ID CallConv = 2048 DAG.getMachineFunction().getFunction().getCallingConv(); 2049 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2050 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2051 2052 // Verify that the target's LowerReturn behaved as expected. 2053 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2054 "LowerReturn didn't return a valid chain!"); 2055 2056 // Update the DAG with the new chain value resulting from return lowering. 2057 DAG.setRoot(Chain); 2058 } 2059 2060 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2061 /// created for it, emit nodes to copy the value into the virtual 2062 /// registers. 2063 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2064 // Skip empty types 2065 if (V->getType()->isEmptyTy()) 2066 return; 2067 2068 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2069 if (VMI != FuncInfo.ValueMap.end()) { 2070 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2071 CopyValueToVirtualRegister(V, VMI->second); 2072 } 2073 } 2074 2075 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2076 /// the current basic block, add it to ValueMap now so that we'll get a 2077 /// CopyTo/FromReg. 2078 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2079 // No need to export constants. 2080 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2081 2082 // Already exported? 2083 if (FuncInfo.isExportedInst(V)) return; 2084 2085 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2086 CopyValueToVirtualRegister(V, Reg); 2087 } 2088 2089 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2090 const BasicBlock *FromBB) { 2091 // The operands of the setcc have to be in this block. We don't know 2092 // how to export them from some other block. 2093 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2094 // Can export from current BB. 2095 if (VI->getParent() == FromBB) 2096 return true; 2097 2098 // Is already exported, noop. 2099 return FuncInfo.isExportedInst(V); 2100 } 2101 2102 // If this is an argument, we can export it if the BB is the entry block or 2103 // if it is already exported. 2104 if (isa<Argument>(V)) { 2105 if (FromBB->isEntryBlock()) 2106 return true; 2107 2108 // Otherwise, can only export this if it is already exported. 2109 return FuncInfo.isExportedInst(V); 2110 } 2111 2112 // Otherwise, constants can always be exported. 2113 return true; 2114 } 2115 2116 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2117 BranchProbability 2118 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2119 const MachineBasicBlock *Dst) const { 2120 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2121 const BasicBlock *SrcBB = Src->getBasicBlock(); 2122 const BasicBlock *DstBB = Dst->getBasicBlock(); 2123 if (!BPI) { 2124 // If BPI is not available, set the default probability as 1 / N, where N is 2125 // the number of successors. 2126 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2127 return BranchProbability(1, SuccSize); 2128 } 2129 return BPI->getEdgeProbability(SrcBB, DstBB); 2130 } 2131 2132 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2133 MachineBasicBlock *Dst, 2134 BranchProbability Prob) { 2135 if (!FuncInfo.BPI) 2136 Src->addSuccessorWithoutProb(Dst); 2137 else { 2138 if (Prob.isUnknown()) 2139 Prob = getEdgeProbability(Src, Dst); 2140 Src->addSuccessor(Dst, Prob); 2141 } 2142 } 2143 2144 static bool InBlock(const Value *V, const BasicBlock *BB) { 2145 if (const Instruction *I = dyn_cast<Instruction>(V)) 2146 return I->getParent() == BB; 2147 return true; 2148 } 2149 2150 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2151 /// This function emits a branch and is used at the leaves of an OR or an 2152 /// AND operator tree. 2153 void 2154 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2155 MachineBasicBlock *TBB, 2156 MachineBasicBlock *FBB, 2157 MachineBasicBlock *CurBB, 2158 MachineBasicBlock *SwitchBB, 2159 BranchProbability TProb, 2160 BranchProbability FProb, 2161 bool InvertCond) { 2162 const BasicBlock *BB = CurBB->getBasicBlock(); 2163 2164 // If the leaf of the tree is a comparison, merge the condition into 2165 // the caseblock. 2166 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2167 // The operands of the cmp have to be in this block. We don't know 2168 // how to export them from some other block. If this is the first block 2169 // of the sequence, no exporting is needed. 2170 if (CurBB == SwitchBB || 2171 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2172 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2173 ISD::CondCode Condition; 2174 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2175 ICmpInst::Predicate Pred = 2176 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2177 Condition = getICmpCondCode(Pred); 2178 } else { 2179 const FCmpInst *FC = cast<FCmpInst>(Cond); 2180 FCmpInst::Predicate Pred = 2181 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2182 Condition = getFCmpCondCode(Pred); 2183 if (TM.Options.NoNaNsFPMath) 2184 Condition = getFCmpCodeWithoutNaN(Condition); 2185 } 2186 2187 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2188 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2189 SL->SwitchCases.push_back(CB); 2190 return; 2191 } 2192 } 2193 2194 // Create a CaseBlock record representing this branch. 2195 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2196 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2197 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2198 SL->SwitchCases.push_back(CB); 2199 } 2200 2201 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2202 MachineBasicBlock *TBB, 2203 MachineBasicBlock *FBB, 2204 MachineBasicBlock *CurBB, 2205 MachineBasicBlock *SwitchBB, 2206 Instruction::BinaryOps Opc, 2207 BranchProbability TProb, 2208 BranchProbability FProb, 2209 bool InvertCond) { 2210 // Skip over not part of the tree and remember to invert op and operands at 2211 // next level. 2212 Value *NotCond; 2213 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2214 InBlock(NotCond, CurBB->getBasicBlock())) { 2215 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2216 !InvertCond); 2217 return; 2218 } 2219 2220 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2221 const Value *BOpOp0, *BOpOp1; 2222 // Compute the effective opcode for Cond, taking into account whether it needs 2223 // to be inverted, e.g. 2224 // and (not (or A, B)), C 2225 // gets lowered as 2226 // and (and (not A, not B), C) 2227 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2228 if (BOp) { 2229 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2230 ? Instruction::And 2231 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2232 ? Instruction::Or 2233 : (Instruction::BinaryOps)0); 2234 if (InvertCond) { 2235 if (BOpc == Instruction::And) 2236 BOpc = Instruction::Or; 2237 else if (BOpc == Instruction::Or) 2238 BOpc = Instruction::And; 2239 } 2240 } 2241 2242 // If this node is not part of the or/and tree, emit it as a branch. 2243 // Note that all nodes in the tree should have same opcode. 2244 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2245 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2246 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2247 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2248 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2249 TProb, FProb, InvertCond); 2250 return; 2251 } 2252 2253 // Create TmpBB after CurBB. 2254 MachineFunction::iterator BBI(CurBB); 2255 MachineFunction &MF = DAG.getMachineFunction(); 2256 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2257 CurBB->getParent()->insert(++BBI, TmpBB); 2258 2259 if (Opc == Instruction::Or) { 2260 // Codegen X | Y as: 2261 // BB1: 2262 // jmp_if_X TBB 2263 // jmp TmpBB 2264 // TmpBB: 2265 // jmp_if_Y TBB 2266 // jmp FBB 2267 // 2268 2269 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2270 // The requirement is that 2271 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2272 // = TrueProb for original BB. 2273 // Assuming the original probabilities are A and B, one choice is to set 2274 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2275 // A/(1+B) and 2B/(1+B). This choice assumes that 2276 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2277 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2278 // TmpBB, but the math is more complicated. 2279 2280 auto NewTrueProb = TProb / 2; 2281 auto NewFalseProb = TProb / 2 + FProb; 2282 // Emit the LHS condition. 2283 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2284 NewFalseProb, InvertCond); 2285 2286 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2287 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2288 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2289 // Emit the RHS condition into TmpBB. 2290 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2291 Probs[1], InvertCond); 2292 } else { 2293 assert(Opc == Instruction::And && "Unknown merge op!"); 2294 // Codegen X & Y as: 2295 // BB1: 2296 // jmp_if_X TmpBB 2297 // jmp FBB 2298 // TmpBB: 2299 // jmp_if_Y TBB 2300 // jmp FBB 2301 // 2302 // This requires creation of TmpBB after CurBB. 2303 2304 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2305 // The requirement is that 2306 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2307 // = FalseProb for original BB. 2308 // Assuming the original probabilities are A and B, one choice is to set 2309 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2310 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2311 // TrueProb for BB1 * FalseProb for TmpBB. 2312 2313 auto NewTrueProb = TProb + FProb / 2; 2314 auto NewFalseProb = FProb / 2; 2315 // Emit the LHS condition. 2316 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2317 NewFalseProb, InvertCond); 2318 2319 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2320 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2321 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2322 // Emit the RHS condition into TmpBB. 2323 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2324 Probs[1], InvertCond); 2325 } 2326 } 2327 2328 /// If the set of cases should be emitted as a series of branches, return true. 2329 /// If we should emit this as a bunch of and/or'd together conditions, return 2330 /// false. 2331 bool 2332 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2333 if (Cases.size() != 2) return true; 2334 2335 // If this is two comparisons of the same values or'd or and'd together, they 2336 // will get folded into a single comparison, so don't emit two blocks. 2337 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2338 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2339 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2340 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2341 return false; 2342 } 2343 2344 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2345 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2346 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2347 Cases[0].CC == Cases[1].CC && 2348 isa<Constant>(Cases[0].CmpRHS) && 2349 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2350 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2351 return false; 2352 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2353 return false; 2354 } 2355 2356 return true; 2357 } 2358 2359 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2360 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2361 2362 // Update machine-CFG edges. 2363 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2364 2365 if (I.isUnconditional()) { 2366 // Update machine-CFG edges. 2367 BrMBB->addSuccessor(Succ0MBB); 2368 2369 // If this is not a fall-through branch or optimizations are switched off, 2370 // emit the branch. 2371 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2372 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2373 MVT::Other, getControlRoot(), 2374 DAG.getBasicBlock(Succ0MBB))); 2375 2376 return; 2377 } 2378 2379 // If this condition is one of the special cases we handle, do special stuff 2380 // now. 2381 const Value *CondVal = I.getCondition(); 2382 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2383 2384 // If this is a series of conditions that are or'd or and'd together, emit 2385 // this as a sequence of branches instead of setcc's with and/or operations. 2386 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2387 // unpredictable branches, and vector extracts because those jumps are likely 2388 // expensive for any target), this should improve performance. 2389 // For example, instead of something like: 2390 // cmp A, B 2391 // C = seteq 2392 // cmp D, E 2393 // F = setle 2394 // or C, F 2395 // jnz foo 2396 // Emit: 2397 // cmp A, B 2398 // je foo 2399 // cmp D, E 2400 // jle foo 2401 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2402 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2403 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2404 Value *Vec; 2405 const Value *BOp0, *BOp1; 2406 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2407 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2408 Opcode = Instruction::And; 2409 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2410 Opcode = Instruction::Or; 2411 2412 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2413 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2414 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2415 getEdgeProbability(BrMBB, Succ0MBB), 2416 getEdgeProbability(BrMBB, Succ1MBB), 2417 /*InvertCond=*/false); 2418 // If the compares in later blocks need to use values not currently 2419 // exported from this block, export them now. This block should always 2420 // be the first entry. 2421 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2422 2423 // Allow some cases to be rejected. 2424 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2425 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2426 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2427 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2428 } 2429 2430 // Emit the branch for this block. 2431 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2432 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2433 return; 2434 } 2435 2436 // Okay, we decided not to do this, remove any inserted MBB's and clear 2437 // SwitchCases. 2438 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2439 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2440 2441 SL->SwitchCases.clear(); 2442 } 2443 } 2444 2445 // Create a CaseBlock record representing this branch. 2446 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2447 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2448 2449 // Use visitSwitchCase to actually insert the fast branch sequence for this 2450 // cond branch. 2451 visitSwitchCase(CB, BrMBB); 2452 } 2453 2454 /// visitSwitchCase - Emits the necessary code to represent a single node in 2455 /// the binary search tree resulting from lowering a switch instruction. 2456 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2457 MachineBasicBlock *SwitchBB) { 2458 SDValue Cond; 2459 SDValue CondLHS = getValue(CB.CmpLHS); 2460 SDLoc dl = CB.DL; 2461 2462 if (CB.CC == ISD::SETTRUE) { 2463 // Branch or fall through to TrueBB. 2464 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2465 SwitchBB->normalizeSuccProbs(); 2466 if (CB.TrueBB != NextBlock(SwitchBB)) { 2467 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2468 DAG.getBasicBlock(CB.TrueBB))); 2469 } 2470 return; 2471 } 2472 2473 auto &TLI = DAG.getTargetLoweringInfo(); 2474 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2475 2476 // Build the setcc now. 2477 if (!CB.CmpMHS) { 2478 // Fold "(X == true)" to X and "(X == false)" to !X to 2479 // handle common cases produced by branch lowering. 2480 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2481 CB.CC == ISD::SETEQ) 2482 Cond = CondLHS; 2483 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2484 CB.CC == ISD::SETEQ) { 2485 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2486 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2487 } else { 2488 SDValue CondRHS = getValue(CB.CmpRHS); 2489 2490 // If a pointer's DAG type is larger than its memory type then the DAG 2491 // values are zero-extended. This breaks signed comparisons so truncate 2492 // back to the underlying type before doing the compare. 2493 if (CondLHS.getValueType() != MemVT) { 2494 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2495 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2496 } 2497 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2498 } 2499 } else { 2500 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2501 2502 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2503 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2504 2505 SDValue CmpOp = getValue(CB.CmpMHS); 2506 EVT VT = CmpOp.getValueType(); 2507 2508 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2509 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2510 ISD::SETLE); 2511 } else { 2512 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2513 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2514 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2515 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2516 } 2517 } 2518 2519 // Update successor info 2520 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2521 // TrueBB and FalseBB are always different unless the incoming IR is 2522 // degenerate. This only happens when running llc on weird IR. 2523 if (CB.TrueBB != CB.FalseBB) 2524 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2525 SwitchBB->normalizeSuccProbs(); 2526 2527 // If the lhs block is the next block, invert the condition so that we can 2528 // fall through to the lhs instead of the rhs block. 2529 if (CB.TrueBB == NextBlock(SwitchBB)) { 2530 std::swap(CB.TrueBB, CB.FalseBB); 2531 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2532 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2533 } 2534 2535 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2536 MVT::Other, getControlRoot(), Cond, 2537 DAG.getBasicBlock(CB.TrueBB)); 2538 2539 // Insert the false branch. Do this even if it's a fall through branch, 2540 // this makes it easier to do DAG optimizations which require inverting 2541 // the branch condition. 2542 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2543 DAG.getBasicBlock(CB.FalseBB)); 2544 2545 DAG.setRoot(BrCond); 2546 } 2547 2548 /// visitJumpTable - Emit JumpTable node in the current MBB 2549 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2550 // Emit the code for the jump table 2551 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2552 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2553 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2554 JT.Reg, PTy); 2555 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2556 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2557 MVT::Other, Index.getValue(1), 2558 Table, Index); 2559 DAG.setRoot(BrJumpTable); 2560 } 2561 2562 /// visitJumpTableHeader - This function emits necessary code to produce index 2563 /// in the JumpTable from switch case. 2564 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2565 JumpTableHeader &JTH, 2566 MachineBasicBlock *SwitchBB) { 2567 SDLoc dl = getCurSDLoc(); 2568 2569 // Subtract the lowest switch case value from the value being switched on. 2570 SDValue SwitchOp = getValue(JTH.SValue); 2571 EVT VT = SwitchOp.getValueType(); 2572 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2573 DAG.getConstant(JTH.First, dl, VT)); 2574 2575 // The SDNode we just created, which holds the value being switched on minus 2576 // the smallest case value, needs to be copied to a virtual register so it 2577 // can be used as an index into the jump table in a subsequent basic block. 2578 // This value may be smaller or larger than the target's pointer type, and 2579 // therefore require extension or truncating. 2580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2581 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2582 2583 unsigned JumpTableReg = 2584 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2585 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2586 JumpTableReg, SwitchOp); 2587 JT.Reg = JumpTableReg; 2588 2589 if (!JTH.FallthroughUnreachable) { 2590 // Emit the range check for the jump table, and branch to the default block 2591 // for the switch statement if the value being switched on exceeds the 2592 // largest case in the switch. 2593 SDValue CMP = DAG.getSetCC( 2594 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2595 Sub.getValueType()), 2596 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2597 2598 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2599 MVT::Other, CopyTo, CMP, 2600 DAG.getBasicBlock(JT.Default)); 2601 2602 // Avoid emitting unnecessary branches to the next block. 2603 if (JT.MBB != NextBlock(SwitchBB)) 2604 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2605 DAG.getBasicBlock(JT.MBB)); 2606 2607 DAG.setRoot(BrCond); 2608 } else { 2609 // Avoid emitting unnecessary branches to the next block. 2610 if (JT.MBB != NextBlock(SwitchBB)) 2611 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2612 DAG.getBasicBlock(JT.MBB))); 2613 else 2614 DAG.setRoot(CopyTo); 2615 } 2616 } 2617 2618 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2619 /// variable if there exists one. 2620 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2621 SDValue &Chain) { 2622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2623 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2624 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2625 MachineFunction &MF = DAG.getMachineFunction(); 2626 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2627 MachineSDNode *Node = 2628 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2629 if (Global) { 2630 MachinePointerInfo MPInfo(Global); 2631 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2632 MachineMemOperand::MODereferenceable; 2633 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2634 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2635 DAG.setNodeMemRefs(Node, {MemRef}); 2636 } 2637 if (PtrTy != PtrMemTy) 2638 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2639 return SDValue(Node, 0); 2640 } 2641 2642 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2643 /// tail spliced into a stack protector check success bb. 2644 /// 2645 /// For a high level explanation of how this fits into the stack protector 2646 /// generation see the comment on the declaration of class 2647 /// StackProtectorDescriptor. 2648 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2649 MachineBasicBlock *ParentBB) { 2650 2651 // First create the loads to the guard/stack slot for the comparison. 2652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2653 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2654 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2655 2656 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2657 int FI = MFI.getStackProtectorIndex(); 2658 2659 SDValue Guard; 2660 SDLoc dl = getCurSDLoc(); 2661 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2662 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2663 Align Align = 2664 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2665 2666 // Generate code to load the content of the guard slot. 2667 SDValue GuardVal = DAG.getLoad( 2668 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2669 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2670 MachineMemOperand::MOVolatile); 2671 2672 if (TLI.useStackGuardXorFP()) 2673 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2674 2675 // Retrieve guard check function, nullptr if instrumentation is inlined. 2676 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2677 // The target provides a guard check function to validate the guard value. 2678 // Generate a call to that function with the content of the guard slot as 2679 // argument. 2680 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2681 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2682 2683 TargetLowering::ArgListTy Args; 2684 TargetLowering::ArgListEntry Entry; 2685 Entry.Node = GuardVal; 2686 Entry.Ty = FnTy->getParamType(0); 2687 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2688 Entry.IsInReg = true; 2689 Args.push_back(Entry); 2690 2691 TargetLowering::CallLoweringInfo CLI(DAG); 2692 CLI.setDebugLoc(getCurSDLoc()) 2693 .setChain(DAG.getEntryNode()) 2694 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2695 getValue(GuardCheckFn), std::move(Args)); 2696 2697 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2698 DAG.setRoot(Result.second); 2699 return; 2700 } 2701 2702 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2703 // Otherwise, emit a volatile load to retrieve the stack guard value. 2704 SDValue Chain = DAG.getEntryNode(); 2705 if (TLI.useLoadStackGuardNode()) { 2706 Guard = getLoadStackGuard(DAG, dl, Chain); 2707 } else { 2708 const Value *IRGuard = TLI.getSDagStackGuard(M); 2709 SDValue GuardPtr = getValue(IRGuard); 2710 2711 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2712 MachinePointerInfo(IRGuard, 0), Align, 2713 MachineMemOperand::MOVolatile); 2714 } 2715 2716 // Perform the comparison via a getsetcc. 2717 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2718 *DAG.getContext(), 2719 Guard.getValueType()), 2720 Guard, GuardVal, ISD::SETNE); 2721 2722 // If the guard/stackslot do not equal, branch to failure MBB. 2723 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2724 MVT::Other, GuardVal.getOperand(0), 2725 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2726 // Otherwise branch to success MBB. 2727 SDValue Br = DAG.getNode(ISD::BR, dl, 2728 MVT::Other, BrCond, 2729 DAG.getBasicBlock(SPD.getSuccessMBB())); 2730 2731 DAG.setRoot(Br); 2732 } 2733 2734 /// Codegen the failure basic block for a stack protector check. 2735 /// 2736 /// A failure stack protector machine basic block consists simply of a call to 2737 /// __stack_chk_fail(). 2738 /// 2739 /// For a high level explanation of how this fits into the stack protector 2740 /// generation see the comment on the declaration of class 2741 /// StackProtectorDescriptor. 2742 void 2743 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2745 TargetLowering::MakeLibCallOptions CallOptions; 2746 CallOptions.setDiscardResult(true); 2747 SDValue Chain = 2748 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2749 None, CallOptions, getCurSDLoc()).second; 2750 // On PS4/PS5, the "return address" must still be within the calling 2751 // function, even if it's at the very end, so emit an explicit TRAP here. 2752 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2753 if (TM.getTargetTriple().isPS()) 2754 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2755 // WebAssembly needs an unreachable instruction after a non-returning call, 2756 // because the function return type can be different from __stack_chk_fail's 2757 // return type (void). 2758 if (TM.getTargetTriple().isWasm()) 2759 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2760 2761 DAG.setRoot(Chain); 2762 } 2763 2764 /// visitBitTestHeader - This function emits necessary code to produce value 2765 /// suitable for "bit tests" 2766 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2767 MachineBasicBlock *SwitchBB) { 2768 SDLoc dl = getCurSDLoc(); 2769 2770 // Subtract the minimum value. 2771 SDValue SwitchOp = getValue(B.SValue); 2772 EVT VT = SwitchOp.getValueType(); 2773 SDValue RangeSub = 2774 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2775 2776 // Determine the type of the test operands. 2777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2778 bool UsePtrType = false; 2779 if (!TLI.isTypeLegal(VT)) { 2780 UsePtrType = true; 2781 } else { 2782 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2783 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2784 // Switch table case range are encoded into series of masks. 2785 // Just use pointer type, it's guaranteed to fit. 2786 UsePtrType = true; 2787 break; 2788 } 2789 } 2790 SDValue Sub = RangeSub; 2791 if (UsePtrType) { 2792 VT = TLI.getPointerTy(DAG.getDataLayout()); 2793 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2794 } 2795 2796 B.RegVT = VT.getSimpleVT(); 2797 B.Reg = FuncInfo.CreateReg(B.RegVT); 2798 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2799 2800 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2801 2802 if (!B.FallthroughUnreachable) 2803 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2804 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2805 SwitchBB->normalizeSuccProbs(); 2806 2807 SDValue Root = CopyTo; 2808 if (!B.FallthroughUnreachable) { 2809 // Conditional branch to the default block. 2810 SDValue RangeCmp = DAG.getSetCC(dl, 2811 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2812 RangeSub.getValueType()), 2813 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2814 ISD::SETUGT); 2815 2816 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2817 DAG.getBasicBlock(B.Default)); 2818 } 2819 2820 // Avoid emitting unnecessary branches to the next block. 2821 if (MBB != NextBlock(SwitchBB)) 2822 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2823 2824 DAG.setRoot(Root); 2825 } 2826 2827 /// visitBitTestCase - this function produces one "bit test" 2828 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2829 MachineBasicBlock* NextMBB, 2830 BranchProbability BranchProbToNext, 2831 unsigned Reg, 2832 BitTestCase &B, 2833 MachineBasicBlock *SwitchBB) { 2834 SDLoc dl = getCurSDLoc(); 2835 MVT VT = BB.RegVT; 2836 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2837 SDValue Cmp; 2838 unsigned PopCount = countPopulation(B.Mask); 2839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2840 if (PopCount == 1) { 2841 // Testing for a single bit; just compare the shift count with what it 2842 // would need to be to shift a 1 bit in that position. 2843 Cmp = DAG.getSetCC( 2844 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2845 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2846 ISD::SETEQ); 2847 } else if (PopCount == BB.Range) { 2848 // There is only one zero bit in the range, test for it directly. 2849 Cmp = DAG.getSetCC( 2850 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2851 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2852 ISD::SETNE); 2853 } else { 2854 // Make desired shift 2855 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2856 DAG.getConstant(1, dl, VT), ShiftOp); 2857 2858 // Emit bit tests and jumps 2859 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2860 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2861 Cmp = DAG.getSetCC( 2862 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2863 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2864 } 2865 2866 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2867 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2868 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2869 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2870 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2871 // one as they are relative probabilities (and thus work more like weights), 2872 // and hence we need to normalize them to let the sum of them become one. 2873 SwitchBB->normalizeSuccProbs(); 2874 2875 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2876 MVT::Other, getControlRoot(), 2877 Cmp, DAG.getBasicBlock(B.TargetBB)); 2878 2879 // Avoid emitting unnecessary branches to the next block. 2880 if (NextMBB != NextBlock(SwitchBB)) 2881 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2882 DAG.getBasicBlock(NextMBB)); 2883 2884 DAG.setRoot(BrAnd); 2885 } 2886 2887 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2888 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2889 2890 // Retrieve successors. Look through artificial IR level blocks like 2891 // catchswitch for successors. 2892 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2893 const BasicBlock *EHPadBB = I.getSuccessor(1); 2894 2895 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2896 // have to do anything here to lower funclet bundles. 2897 assert(!I.hasOperandBundlesOtherThan( 2898 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2899 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2900 LLVMContext::OB_cfguardtarget, 2901 LLVMContext::OB_clang_arc_attachedcall}) && 2902 "Cannot lower invokes with arbitrary operand bundles yet!"); 2903 2904 const Value *Callee(I.getCalledOperand()); 2905 const Function *Fn = dyn_cast<Function>(Callee); 2906 if (isa<InlineAsm>(Callee)) 2907 visitInlineAsm(I, EHPadBB); 2908 else if (Fn && Fn->isIntrinsic()) { 2909 switch (Fn->getIntrinsicID()) { 2910 default: 2911 llvm_unreachable("Cannot invoke this intrinsic"); 2912 case Intrinsic::donothing: 2913 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2914 case Intrinsic::seh_try_begin: 2915 case Intrinsic::seh_scope_begin: 2916 case Intrinsic::seh_try_end: 2917 case Intrinsic::seh_scope_end: 2918 break; 2919 case Intrinsic::experimental_patchpoint_void: 2920 case Intrinsic::experimental_patchpoint_i64: 2921 visitPatchpoint(I, EHPadBB); 2922 break; 2923 case Intrinsic::experimental_gc_statepoint: 2924 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2925 break; 2926 case Intrinsic::wasm_rethrow: { 2927 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2928 // special because it can be invoked, so we manually lower it to a DAG 2929 // node here. 2930 SmallVector<SDValue, 8> Ops; 2931 Ops.push_back(getRoot()); // inchain 2932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2933 Ops.push_back( 2934 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2935 TLI.getPointerTy(DAG.getDataLayout()))); 2936 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2937 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2938 break; 2939 } 2940 } 2941 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2942 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2943 // Eventually we will support lowering the @llvm.experimental.deoptimize 2944 // intrinsic, and right now there are no plans to support other intrinsics 2945 // with deopt state. 2946 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2947 } else { 2948 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2949 } 2950 2951 // If the value of the invoke is used outside of its defining block, make it 2952 // available as a virtual register. 2953 // We already took care of the exported value for the statepoint instruction 2954 // during call to the LowerStatepoint. 2955 if (!isa<GCStatepointInst>(I)) { 2956 CopyToExportRegsIfNeeded(&I); 2957 } 2958 2959 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2960 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2961 BranchProbability EHPadBBProb = 2962 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2963 : BranchProbability::getZero(); 2964 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2965 2966 // Update successor info. 2967 addSuccessorWithProb(InvokeMBB, Return); 2968 for (auto &UnwindDest : UnwindDests) { 2969 UnwindDest.first->setIsEHPad(); 2970 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2971 } 2972 InvokeMBB->normalizeSuccProbs(); 2973 2974 // Drop into normal successor. 2975 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2976 DAG.getBasicBlock(Return))); 2977 } 2978 2979 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2980 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2981 2982 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2983 // have to do anything here to lower funclet bundles. 2984 assert(!I.hasOperandBundlesOtherThan( 2985 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2986 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2987 2988 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2989 visitInlineAsm(I); 2990 CopyToExportRegsIfNeeded(&I); 2991 2992 // Retrieve successors. 2993 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2994 2995 // Update successor info. 2996 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2997 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2998 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2999 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3000 Target->setIsInlineAsmBrIndirectTarget(); 3001 } 3002 CallBrMBB->normalizeSuccProbs(); 3003 3004 // Drop into default successor. 3005 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3006 MVT::Other, getControlRoot(), 3007 DAG.getBasicBlock(Return))); 3008 } 3009 3010 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3011 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3012 } 3013 3014 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3015 assert(FuncInfo.MBB->isEHPad() && 3016 "Call to landingpad not in landing pad!"); 3017 3018 // If there aren't registers to copy the values into (e.g., during SjLj 3019 // exceptions), then don't bother to create these DAG nodes. 3020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3021 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3022 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3023 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3024 return; 3025 3026 // If landingpad's return type is token type, we don't create DAG nodes 3027 // for its exception pointer and selector value. The extraction of exception 3028 // pointer or selector value from token type landingpads is not currently 3029 // supported. 3030 if (LP.getType()->isTokenTy()) 3031 return; 3032 3033 SmallVector<EVT, 2> ValueVTs; 3034 SDLoc dl = getCurSDLoc(); 3035 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3036 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3037 3038 // Get the two live-in registers as SDValues. The physregs have already been 3039 // copied into virtual registers. 3040 SDValue Ops[2]; 3041 if (FuncInfo.ExceptionPointerVirtReg) { 3042 Ops[0] = DAG.getZExtOrTrunc( 3043 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3044 FuncInfo.ExceptionPointerVirtReg, 3045 TLI.getPointerTy(DAG.getDataLayout())), 3046 dl, ValueVTs[0]); 3047 } else { 3048 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3049 } 3050 Ops[1] = DAG.getZExtOrTrunc( 3051 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3052 FuncInfo.ExceptionSelectorVirtReg, 3053 TLI.getPointerTy(DAG.getDataLayout())), 3054 dl, ValueVTs[1]); 3055 3056 // Merge into one. 3057 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3058 DAG.getVTList(ValueVTs), Ops); 3059 setValue(&LP, Res); 3060 } 3061 3062 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3063 MachineBasicBlock *Last) { 3064 // Update JTCases. 3065 for (JumpTableBlock &JTB : SL->JTCases) 3066 if (JTB.first.HeaderBB == First) 3067 JTB.first.HeaderBB = Last; 3068 3069 // Update BitTestCases. 3070 for (BitTestBlock &BTB : SL->BitTestCases) 3071 if (BTB.Parent == First) 3072 BTB.Parent = Last; 3073 } 3074 3075 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3076 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3077 3078 // Update machine-CFG edges with unique successors. 3079 SmallSet<BasicBlock*, 32> Done; 3080 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3081 BasicBlock *BB = I.getSuccessor(i); 3082 bool Inserted = Done.insert(BB).second; 3083 if (!Inserted) 3084 continue; 3085 3086 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3087 addSuccessorWithProb(IndirectBrMBB, Succ); 3088 } 3089 IndirectBrMBB->normalizeSuccProbs(); 3090 3091 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3092 MVT::Other, getControlRoot(), 3093 getValue(I.getAddress()))); 3094 } 3095 3096 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3097 if (!DAG.getTarget().Options.TrapUnreachable) 3098 return; 3099 3100 // We may be able to ignore unreachable behind a noreturn call. 3101 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3102 const BasicBlock &BB = *I.getParent(); 3103 if (&I != &BB.front()) { 3104 BasicBlock::const_iterator PredI = 3105 std::prev(BasicBlock::const_iterator(&I)); 3106 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3107 if (Call->doesNotReturn()) 3108 return; 3109 } 3110 } 3111 } 3112 3113 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3114 } 3115 3116 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3117 SDNodeFlags Flags; 3118 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3119 Flags.copyFMF(*FPOp); 3120 3121 SDValue Op = getValue(I.getOperand(0)); 3122 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3123 Op, Flags); 3124 setValue(&I, UnNodeValue); 3125 } 3126 3127 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3128 SDNodeFlags Flags; 3129 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3130 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3131 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3132 } 3133 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3134 Flags.setExact(ExactOp->isExact()); 3135 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3136 Flags.copyFMF(*FPOp); 3137 3138 SDValue Op1 = getValue(I.getOperand(0)); 3139 SDValue Op2 = getValue(I.getOperand(1)); 3140 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3141 Op1, Op2, Flags); 3142 setValue(&I, BinNodeValue); 3143 } 3144 3145 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3146 SDValue Op1 = getValue(I.getOperand(0)); 3147 SDValue Op2 = getValue(I.getOperand(1)); 3148 3149 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3150 Op1.getValueType(), DAG.getDataLayout()); 3151 3152 // Coerce the shift amount to the right type if we can. This exposes the 3153 // truncate or zext to optimization early. 3154 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3155 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3156 "Unexpected shift type"); 3157 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3158 } 3159 3160 bool nuw = false; 3161 bool nsw = false; 3162 bool exact = false; 3163 3164 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3165 3166 if (const OverflowingBinaryOperator *OFBinOp = 3167 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3168 nuw = OFBinOp->hasNoUnsignedWrap(); 3169 nsw = OFBinOp->hasNoSignedWrap(); 3170 } 3171 if (const PossiblyExactOperator *ExactOp = 3172 dyn_cast<const PossiblyExactOperator>(&I)) 3173 exact = ExactOp->isExact(); 3174 } 3175 SDNodeFlags Flags; 3176 Flags.setExact(exact); 3177 Flags.setNoSignedWrap(nsw); 3178 Flags.setNoUnsignedWrap(nuw); 3179 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3180 Flags); 3181 setValue(&I, Res); 3182 } 3183 3184 void SelectionDAGBuilder::visitSDiv(const User &I) { 3185 SDValue Op1 = getValue(I.getOperand(0)); 3186 SDValue Op2 = getValue(I.getOperand(1)); 3187 3188 SDNodeFlags Flags; 3189 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3190 cast<PossiblyExactOperator>(&I)->isExact()); 3191 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3192 Op2, Flags)); 3193 } 3194 3195 void SelectionDAGBuilder::visitICmp(const User &I) { 3196 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3197 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3198 predicate = IC->getPredicate(); 3199 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3200 predicate = ICmpInst::Predicate(IC->getPredicate()); 3201 SDValue Op1 = getValue(I.getOperand(0)); 3202 SDValue Op2 = getValue(I.getOperand(1)); 3203 ISD::CondCode Opcode = getICmpCondCode(predicate); 3204 3205 auto &TLI = DAG.getTargetLoweringInfo(); 3206 EVT MemVT = 3207 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3208 3209 // If a pointer's DAG type is larger than its memory type then the DAG values 3210 // are zero-extended. This breaks signed comparisons so truncate back to the 3211 // underlying type before doing the compare. 3212 if (Op1.getValueType() != MemVT) { 3213 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3214 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3215 } 3216 3217 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3218 I.getType()); 3219 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3220 } 3221 3222 void SelectionDAGBuilder::visitFCmp(const User &I) { 3223 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3224 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3225 predicate = FC->getPredicate(); 3226 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3227 predicate = FCmpInst::Predicate(FC->getPredicate()); 3228 SDValue Op1 = getValue(I.getOperand(0)); 3229 SDValue Op2 = getValue(I.getOperand(1)); 3230 3231 ISD::CondCode Condition = getFCmpCondCode(predicate); 3232 auto *FPMO = cast<FPMathOperator>(&I); 3233 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3234 Condition = getFCmpCodeWithoutNaN(Condition); 3235 3236 SDNodeFlags Flags; 3237 Flags.copyFMF(*FPMO); 3238 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3239 3240 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3241 I.getType()); 3242 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3243 } 3244 3245 // Check if the condition of the select has one use or two users that are both 3246 // selects with the same condition. 3247 static bool hasOnlySelectUsers(const Value *Cond) { 3248 return llvm::all_of(Cond->users(), [](const Value *V) { 3249 return isa<SelectInst>(V); 3250 }); 3251 } 3252 3253 void SelectionDAGBuilder::visitSelect(const User &I) { 3254 SmallVector<EVT, 4> ValueVTs; 3255 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3256 ValueVTs); 3257 unsigned NumValues = ValueVTs.size(); 3258 if (NumValues == 0) return; 3259 3260 SmallVector<SDValue, 4> Values(NumValues); 3261 SDValue Cond = getValue(I.getOperand(0)); 3262 SDValue LHSVal = getValue(I.getOperand(1)); 3263 SDValue RHSVal = getValue(I.getOperand(2)); 3264 SmallVector<SDValue, 1> BaseOps(1, Cond); 3265 ISD::NodeType OpCode = 3266 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3267 3268 bool IsUnaryAbs = false; 3269 bool Negate = false; 3270 3271 SDNodeFlags Flags; 3272 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3273 Flags.copyFMF(*FPOp); 3274 3275 // Min/max matching is only viable if all output VTs are the same. 3276 if (is_splat(ValueVTs)) { 3277 EVT VT = ValueVTs[0]; 3278 LLVMContext &Ctx = *DAG.getContext(); 3279 auto &TLI = DAG.getTargetLoweringInfo(); 3280 3281 // We care about the legality of the operation after it has been type 3282 // legalized. 3283 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3284 VT = TLI.getTypeToTransformTo(Ctx, VT); 3285 3286 // If the vselect is legal, assume we want to leave this as a vector setcc + 3287 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3288 // min/max is legal on the scalar type. 3289 bool UseScalarMinMax = VT.isVector() && 3290 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3291 3292 Value *LHS, *RHS; 3293 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3294 ISD::NodeType Opc = ISD::DELETED_NODE; 3295 switch (SPR.Flavor) { 3296 case SPF_UMAX: Opc = ISD::UMAX; break; 3297 case SPF_UMIN: Opc = ISD::UMIN; break; 3298 case SPF_SMAX: Opc = ISD::SMAX; break; 3299 case SPF_SMIN: Opc = ISD::SMIN; break; 3300 case SPF_FMINNUM: 3301 switch (SPR.NaNBehavior) { 3302 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3303 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3304 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3305 case SPNB_RETURNS_ANY: { 3306 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3307 Opc = ISD::FMINNUM; 3308 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3309 Opc = ISD::FMINIMUM; 3310 else if (UseScalarMinMax) 3311 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3312 ISD::FMINNUM : ISD::FMINIMUM; 3313 break; 3314 } 3315 } 3316 break; 3317 case SPF_FMAXNUM: 3318 switch (SPR.NaNBehavior) { 3319 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3320 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3321 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3322 case SPNB_RETURNS_ANY: 3323 3324 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3325 Opc = ISD::FMAXNUM; 3326 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3327 Opc = ISD::FMAXIMUM; 3328 else if (UseScalarMinMax) 3329 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3330 ISD::FMAXNUM : ISD::FMAXIMUM; 3331 break; 3332 } 3333 break; 3334 case SPF_NABS: 3335 Negate = true; 3336 LLVM_FALLTHROUGH; 3337 case SPF_ABS: 3338 IsUnaryAbs = true; 3339 Opc = ISD::ABS; 3340 break; 3341 default: break; 3342 } 3343 3344 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3345 (TLI.isOperationLegalOrCustom(Opc, VT) || 3346 (UseScalarMinMax && 3347 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3348 // If the underlying comparison instruction is used by any other 3349 // instruction, the consumed instructions won't be destroyed, so it is 3350 // not profitable to convert to a min/max. 3351 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3352 OpCode = Opc; 3353 LHSVal = getValue(LHS); 3354 RHSVal = getValue(RHS); 3355 BaseOps.clear(); 3356 } 3357 3358 if (IsUnaryAbs) { 3359 OpCode = Opc; 3360 LHSVal = getValue(LHS); 3361 BaseOps.clear(); 3362 } 3363 } 3364 3365 if (IsUnaryAbs) { 3366 for (unsigned i = 0; i != NumValues; ++i) { 3367 SDLoc dl = getCurSDLoc(); 3368 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3369 Values[i] = 3370 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3371 if (Negate) 3372 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3373 Values[i]); 3374 } 3375 } else { 3376 for (unsigned i = 0; i != NumValues; ++i) { 3377 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3378 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3379 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3380 Values[i] = DAG.getNode( 3381 OpCode, getCurSDLoc(), 3382 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3383 } 3384 } 3385 3386 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3387 DAG.getVTList(ValueVTs), Values)); 3388 } 3389 3390 void SelectionDAGBuilder::visitTrunc(const User &I) { 3391 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3392 SDValue N = getValue(I.getOperand(0)); 3393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3394 I.getType()); 3395 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3396 } 3397 3398 void SelectionDAGBuilder::visitZExt(const User &I) { 3399 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3400 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3401 SDValue N = getValue(I.getOperand(0)); 3402 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3403 I.getType()); 3404 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3405 } 3406 3407 void SelectionDAGBuilder::visitSExt(const User &I) { 3408 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3409 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3410 SDValue N = getValue(I.getOperand(0)); 3411 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3412 I.getType()); 3413 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3414 } 3415 3416 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3417 // FPTrunc is never a no-op cast, no need to check 3418 SDValue N = getValue(I.getOperand(0)); 3419 SDLoc dl = getCurSDLoc(); 3420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3421 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3422 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3423 DAG.getTargetConstant( 3424 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3425 } 3426 3427 void SelectionDAGBuilder::visitFPExt(const User &I) { 3428 // FPExt is never a no-op cast, no need to check 3429 SDValue N = getValue(I.getOperand(0)); 3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3431 I.getType()); 3432 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3433 } 3434 3435 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3436 // FPToUI is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3444 // FPToSI is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3452 // UIToFP is never a no-op cast, no need to check 3453 SDValue N = getValue(I.getOperand(0)); 3454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3455 I.getType()); 3456 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3457 } 3458 3459 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3460 // SIToFP is never a no-op cast, no need to check 3461 SDValue N = getValue(I.getOperand(0)); 3462 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3463 I.getType()); 3464 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3465 } 3466 3467 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3468 // What to do depends on the size of the integer and the size of the pointer. 3469 // We can either truncate, zero extend, or no-op, accordingly. 3470 SDValue N = getValue(I.getOperand(0)); 3471 auto &TLI = DAG.getTargetLoweringInfo(); 3472 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3473 I.getType()); 3474 EVT PtrMemVT = 3475 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3476 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3477 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3478 setValue(&I, N); 3479 } 3480 3481 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3482 // What to do depends on the size of the integer and the size of the pointer. 3483 // We can either truncate, zero extend, or no-op, accordingly. 3484 SDValue N = getValue(I.getOperand(0)); 3485 auto &TLI = DAG.getTargetLoweringInfo(); 3486 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3487 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3488 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3489 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3490 setValue(&I, N); 3491 } 3492 3493 void SelectionDAGBuilder::visitBitCast(const User &I) { 3494 SDValue N = getValue(I.getOperand(0)); 3495 SDLoc dl = getCurSDLoc(); 3496 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3497 I.getType()); 3498 3499 // BitCast assures us that source and destination are the same size so this is 3500 // either a BITCAST or a no-op. 3501 if (DestVT != N.getValueType()) 3502 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3503 DestVT, N)); // convert types. 3504 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3505 // might fold any kind of constant expression to an integer constant and that 3506 // is not what we are looking for. Only recognize a bitcast of a genuine 3507 // constant integer as an opaque constant. 3508 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3509 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3510 /*isOpaque*/true)); 3511 else 3512 setValue(&I, N); // noop cast. 3513 } 3514 3515 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3517 const Value *SV = I.getOperand(0); 3518 SDValue N = getValue(SV); 3519 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3520 3521 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3522 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3523 3524 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3525 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3526 3527 setValue(&I, N); 3528 } 3529 3530 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3532 SDValue InVec = getValue(I.getOperand(0)); 3533 SDValue InVal = getValue(I.getOperand(1)); 3534 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3535 TLI.getVectorIdxTy(DAG.getDataLayout())); 3536 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3537 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3538 InVec, InVal, InIdx)); 3539 } 3540 3541 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3542 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3543 SDValue InVec = getValue(I.getOperand(0)); 3544 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3545 TLI.getVectorIdxTy(DAG.getDataLayout())); 3546 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3547 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3548 InVec, InIdx)); 3549 } 3550 3551 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3552 SDValue Src1 = getValue(I.getOperand(0)); 3553 SDValue Src2 = getValue(I.getOperand(1)); 3554 ArrayRef<int> Mask; 3555 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3556 Mask = SVI->getShuffleMask(); 3557 else 3558 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3559 SDLoc DL = getCurSDLoc(); 3560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3561 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3562 EVT SrcVT = Src1.getValueType(); 3563 3564 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3565 VT.isScalableVector()) { 3566 // Canonical splat form of first element of first input vector. 3567 SDValue FirstElt = 3568 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3569 DAG.getVectorIdxConstant(0, DL)); 3570 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3571 return; 3572 } 3573 3574 // For now, we only handle splats for scalable vectors. 3575 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3576 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3577 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3578 3579 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3580 unsigned MaskNumElts = Mask.size(); 3581 3582 if (SrcNumElts == MaskNumElts) { 3583 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3584 return; 3585 } 3586 3587 // Normalize the shuffle vector since mask and vector length don't match. 3588 if (SrcNumElts < MaskNumElts) { 3589 // Mask is longer than the source vectors. We can use concatenate vector to 3590 // make the mask and vectors lengths match. 3591 3592 if (MaskNumElts % SrcNumElts == 0) { 3593 // Mask length is a multiple of the source vector length. 3594 // Check if the shuffle is some kind of concatenation of the input 3595 // vectors. 3596 unsigned NumConcat = MaskNumElts / SrcNumElts; 3597 bool IsConcat = true; 3598 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3599 for (unsigned i = 0; i != MaskNumElts; ++i) { 3600 int Idx = Mask[i]; 3601 if (Idx < 0) 3602 continue; 3603 // Ensure the indices in each SrcVT sized piece are sequential and that 3604 // the same source is used for the whole piece. 3605 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3606 (ConcatSrcs[i / SrcNumElts] >= 0 && 3607 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3608 IsConcat = false; 3609 break; 3610 } 3611 // Remember which source this index came from. 3612 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3613 } 3614 3615 // The shuffle is concatenating multiple vectors together. Just emit 3616 // a CONCAT_VECTORS operation. 3617 if (IsConcat) { 3618 SmallVector<SDValue, 8> ConcatOps; 3619 for (auto Src : ConcatSrcs) { 3620 if (Src < 0) 3621 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3622 else if (Src == 0) 3623 ConcatOps.push_back(Src1); 3624 else 3625 ConcatOps.push_back(Src2); 3626 } 3627 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3628 return; 3629 } 3630 } 3631 3632 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3633 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3634 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3635 PaddedMaskNumElts); 3636 3637 // Pad both vectors with undefs to make them the same length as the mask. 3638 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3639 3640 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3641 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3642 MOps1[0] = Src1; 3643 MOps2[0] = Src2; 3644 3645 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3646 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3647 3648 // Readjust mask for new input vector length. 3649 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3650 for (unsigned i = 0; i != MaskNumElts; ++i) { 3651 int Idx = Mask[i]; 3652 if (Idx >= (int)SrcNumElts) 3653 Idx -= SrcNumElts - PaddedMaskNumElts; 3654 MappedOps[i] = Idx; 3655 } 3656 3657 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3658 3659 // If the concatenated vector was padded, extract a subvector with the 3660 // correct number of elements. 3661 if (MaskNumElts != PaddedMaskNumElts) 3662 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3663 DAG.getVectorIdxConstant(0, DL)); 3664 3665 setValue(&I, Result); 3666 return; 3667 } 3668 3669 if (SrcNumElts > MaskNumElts) { 3670 // Analyze the access pattern of the vector to see if we can extract 3671 // two subvectors and do the shuffle. 3672 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3673 bool CanExtract = true; 3674 for (int Idx : Mask) { 3675 unsigned Input = 0; 3676 if (Idx < 0) 3677 continue; 3678 3679 if (Idx >= (int)SrcNumElts) { 3680 Input = 1; 3681 Idx -= SrcNumElts; 3682 } 3683 3684 // If all the indices come from the same MaskNumElts sized portion of 3685 // the sources we can use extract. Also make sure the extract wouldn't 3686 // extract past the end of the source. 3687 int NewStartIdx = alignDown(Idx, MaskNumElts); 3688 if (NewStartIdx + MaskNumElts > SrcNumElts || 3689 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3690 CanExtract = false; 3691 // Make sure we always update StartIdx as we use it to track if all 3692 // elements are undef. 3693 StartIdx[Input] = NewStartIdx; 3694 } 3695 3696 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3697 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3698 return; 3699 } 3700 if (CanExtract) { 3701 // Extract appropriate subvector and generate a vector shuffle 3702 for (unsigned Input = 0; Input < 2; ++Input) { 3703 SDValue &Src = Input == 0 ? Src1 : Src2; 3704 if (StartIdx[Input] < 0) 3705 Src = DAG.getUNDEF(VT); 3706 else { 3707 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3708 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3709 } 3710 } 3711 3712 // Calculate new mask. 3713 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3714 for (int &Idx : MappedOps) { 3715 if (Idx >= (int)SrcNumElts) 3716 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3717 else if (Idx >= 0) 3718 Idx -= StartIdx[0]; 3719 } 3720 3721 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3722 return; 3723 } 3724 } 3725 3726 // We can't use either concat vectors or extract subvectors so fall back to 3727 // replacing the shuffle with extract and build vector. 3728 // to insert and build vector. 3729 EVT EltVT = VT.getVectorElementType(); 3730 SmallVector<SDValue,8> Ops; 3731 for (int Idx : Mask) { 3732 SDValue Res; 3733 3734 if (Idx < 0) { 3735 Res = DAG.getUNDEF(EltVT); 3736 } else { 3737 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3738 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3739 3740 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3741 DAG.getVectorIdxConstant(Idx, DL)); 3742 } 3743 3744 Ops.push_back(Res); 3745 } 3746 3747 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3748 } 3749 3750 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3751 ArrayRef<unsigned> Indices; 3752 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3753 Indices = IV->getIndices(); 3754 else 3755 Indices = cast<ConstantExpr>(&I)->getIndices(); 3756 3757 const Value *Op0 = I.getOperand(0); 3758 const Value *Op1 = I.getOperand(1); 3759 Type *AggTy = I.getType(); 3760 Type *ValTy = Op1->getType(); 3761 bool IntoUndef = isa<UndefValue>(Op0); 3762 bool FromUndef = isa<UndefValue>(Op1); 3763 3764 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3765 3766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3767 SmallVector<EVT, 4> AggValueVTs; 3768 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3769 SmallVector<EVT, 4> ValValueVTs; 3770 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3771 3772 unsigned NumAggValues = AggValueVTs.size(); 3773 unsigned NumValValues = ValValueVTs.size(); 3774 SmallVector<SDValue, 4> Values(NumAggValues); 3775 3776 // Ignore an insertvalue that produces an empty object 3777 if (!NumAggValues) { 3778 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3779 return; 3780 } 3781 3782 SDValue Agg = getValue(Op0); 3783 unsigned i = 0; 3784 // Copy the beginning value(s) from the original aggregate. 3785 for (; i != LinearIndex; ++i) 3786 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3787 SDValue(Agg.getNode(), Agg.getResNo() + i); 3788 // Copy values from the inserted value(s). 3789 if (NumValValues) { 3790 SDValue Val = getValue(Op1); 3791 for (; i != LinearIndex + NumValValues; ++i) 3792 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3793 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3794 } 3795 // Copy remaining value(s) from the original aggregate. 3796 for (; i != NumAggValues; ++i) 3797 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3798 SDValue(Agg.getNode(), Agg.getResNo() + i); 3799 3800 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3801 DAG.getVTList(AggValueVTs), Values)); 3802 } 3803 3804 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3805 ArrayRef<unsigned> Indices = I.getIndices(); 3806 const Value *Op0 = I.getOperand(0); 3807 Type *AggTy = Op0->getType(); 3808 Type *ValTy = I.getType(); 3809 bool OutOfUndef = isa<UndefValue>(Op0); 3810 3811 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3812 3813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3814 SmallVector<EVT, 4> ValValueVTs; 3815 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3816 3817 unsigned NumValValues = ValValueVTs.size(); 3818 3819 // Ignore a extractvalue that produces an empty object 3820 if (!NumValValues) { 3821 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3822 return; 3823 } 3824 3825 SmallVector<SDValue, 4> Values(NumValValues); 3826 3827 SDValue Agg = getValue(Op0); 3828 // Copy out the selected value(s). 3829 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3830 Values[i - LinearIndex] = 3831 OutOfUndef ? 3832 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3833 SDValue(Agg.getNode(), Agg.getResNo() + i); 3834 3835 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3836 DAG.getVTList(ValValueVTs), Values)); 3837 } 3838 3839 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3840 Value *Op0 = I.getOperand(0); 3841 // Note that the pointer operand may be a vector of pointers. Take the scalar 3842 // element which holds a pointer. 3843 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3844 SDValue N = getValue(Op0); 3845 SDLoc dl = getCurSDLoc(); 3846 auto &TLI = DAG.getTargetLoweringInfo(); 3847 3848 // Normalize Vector GEP - all scalar operands should be converted to the 3849 // splat vector. 3850 bool IsVectorGEP = I.getType()->isVectorTy(); 3851 ElementCount VectorElementCount = 3852 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3853 : ElementCount::getFixed(0); 3854 3855 if (IsVectorGEP && !N.getValueType().isVector()) { 3856 LLVMContext &Context = *DAG.getContext(); 3857 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3858 if (VectorElementCount.isScalable()) 3859 N = DAG.getSplatVector(VT, dl, N); 3860 else 3861 N = DAG.getSplatBuildVector(VT, dl, N); 3862 } 3863 3864 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3865 GTI != E; ++GTI) { 3866 const Value *Idx = GTI.getOperand(); 3867 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3868 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3869 if (Field) { 3870 // N = N + Offset 3871 uint64_t Offset = 3872 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3873 3874 // In an inbounds GEP with an offset that is nonnegative even when 3875 // interpreted as signed, assume there is no unsigned overflow. 3876 SDNodeFlags Flags; 3877 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3878 Flags.setNoUnsignedWrap(true); 3879 3880 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3881 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3882 } 3883 } else { 3884 // IdxSize is the width of the arithmetic according to IR semantics. 3885 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3886 // (and fix up the result later). 3887 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3888 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3889 TypeSize ElementSize = 3890 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3891 // We intentionally mask away the high bits here; ElementSize may not 3892 // fit in IdxTy. 3893 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3894 bool ElementScalable = ElementSize.isScalable(); 3895 3896 // If this is a scalar constant or a splat vector of constants, 3897 // handle it quickly. 3898 const auto *C = dyn_cast<Constant>(Idx); 3899 if (C && isa<VectorType>(C->getType())) 3900 C = C->getSplatValue(); 3901 3902 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3903 if (CI && CI->isZero()) 3904 continue; 3905 if (CI && !ElementScalable) { 3906 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3907 LLVMContext &Context = *DAG.getContext(); 3908 SDValue OffsVal; 3909 if (IsVectorGEP) 3910 OffsVal = DAG.getConstant( 3911 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3912 else 3913 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3914 3915 // In an inbounds GEP with an offset that is nonnegative even when 3916 // interpreted as signed, assume there is no unsigned overflow. 3917 SDNodeFlags Flags; 3918 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3919 Flags.setNoUnsignedWrap(true); 3920 3921 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3922 3923 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3924 continue; 3925 } 3926 3927 // N = N + Idx * ElementMul; 3928 SDValue IdxN = getValue(Idx); 3929 3930 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3931 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3932 VectorElementCount); 3933 if (VectorElementCount.isScalable()) 3934 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3935 else 3936 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3937 } 3938 3939 // If the index is smaller or larger than intptr_t, truncate or extend 3940 // it. 3941 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3942 3943 if (ElementScalable) { 3944 EVT VScaleTy = N.getValueType().getScalarType(); 3945 SDValue VScale = DAG.getNode( 3946 ISD::VSCALE, dl, VScaleTy, 3947 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3948 if (IsVectorGEP) 3949 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3950 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3951 } else { 3952 // If this is a multiply by a power of two, turn it into a shl 3953 // immediately. This is a very common case. 3954 if (ElementMul != 1) { 3955 if (ElementMul.isPowerOf2()) { 3956 unsigned Amt = ElementMul.logBase2(); 3957 IdxN = DAG.getNode(ISD::SHL, dl, 3958 N.getValueType(), IdxN, 3959 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3960 } else { 3961 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3962 IdxN.getValueType()); 3963 IdxN = DAG.getNode(ISD::MUL, dl, 3964 N.getValueType(), IdxN, Scale); 3965 } 3966 } 3967 } 3968 3969 N = DAG.getNode(ISD::ADD, dl, 3970 N.getValueType(), N, IdxN); 3971 } 3972 } 3973 3974 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3975 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3976 if (IsVectorGEP) { 3977 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3978 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3979 } 3980 3981 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3982 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3983 3984 setValue(&I, N); 3985 } 3986 3987 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3988 // If this is a fixed sized alloca in the entry block of the function, 3989 // allocate it statically on the stack. 3990 if (FuncInfo.StaticAllocaMap.count(&I)) 3991 return; // getValue will auto-populate this. 3992 3993 SDLoc dl = getCurSDLoc(); 3994 Type *Ty = I.getAllocatedType(); 3995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3996 auto &DL = DAG.getDataLayout(); 3997 TypeSize TySize = DL.getTypeAllocSize(Ty); 3998 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3999 4000 SDValue AllocSize = getValue(I.getArraySize()); 4001 4002 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4003 if (AllocSize.getValueType() != IntPtr) 4004 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4005 4006 if (TySize.isScalable()) 4007 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4008 DAG.getVScale(dl, IntPtr, 4009 APInt(IntPtr.getScalarSizeInBits(), 4010 TySize.getKnownMinValue()))); 4011 else 4012 AllocSize = 4013 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4014 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4015 4016 // Handle alignment. If the requested alignment is less than or equal to 4017 // the stack alignment, ignore it. If the size is greater than or equal to 4018 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4019 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4020 if (*Alignment <= StackAlign) 4021 Alignment = None; 4022 4023 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4024 // Round the size of the allocation up to the stack alignment size 4025 // by add SA-1 to the size. This doesn't overflow because we're computing 4026 // an address inside an alloca. 4027 SDNodeFlags Flags; 4028 Flags.setNoUnsignedWrap(true); 4029 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4030 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4031 4032 // Mask out the low bits for alignment purposes. 4033 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4034 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4035 4036 SDValue Ops[] = { 4037 getRoot(), AllocSize, 4038 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4039 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4040 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4041 setValue(&I, DSA); 4042 DAG.setRoot(DSA.getValue(1)); 4043 4044 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4045 } 4046 4047 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4048 if (I.isAtomic()) 4049 return visitAtomicLoad(I); 4050 4051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4052 const Value *SV = I.getOperand(0); 4053 if (TLI.supportSwiftError()) { 4054 // Swifterror values can come from either a function parameter with 4055 // swifterror attribute or an alloca with swifterror attribute. 4056 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4057 if (Arg->hasSwiftErrorAttr()) 4058 return visitLoadFromSwiftError(I); 4059 } 4060 4061 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4062 if (Alloca->isSwiftError()) 4063 return visitLoadFromSwiftError(I); 4064 } 4065 } 4066 4067 SDValue Ptr = getValue(SV); 4068 4069 Type *Ty = I.getType(); 4070 Align Alignment = I.getAlign(); 4071 4072 AAMDNodes AAInfo = I.getAAMetadata(); 4073 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4074 4075 SmallVector<EVT, 4> ValueVTs, MemVTs; 4076 SmallVector<uint64_t, 4> Offsets; 4077 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4078 unsigned NumValues = ValueVTs.size(); 4079 if (NumValues == 0) 4080 return; 4081 4082 bool isVolatile = I.isVolatile(); 4083 4084 SDValue Root; 4085 bool ConstantMemory = false; 4086 if (isVolatile) 4087 // Serialize volatile loads with other side effects. 4088 Root = getRoot(); 4089 else if (NumValues > MaxParallelChains) 4090 Root = getMemoryRoot(); 4091 else if (AA && 4092 AA->pointsToConstantMemory(MemoryLocation( 4093 SV, 4094 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4095 AAInfo))) { 4096 // Do not serialize (non-volatile) loads of constant memory with anything. 4097 Root = DAG.getEntryNode(); 4098 ConstantMemory = true; 4099 } else { 4100 // Do not serialize non-volatile loads against each other. 4101 Root = DAG.getRoot(); 4102 } 4103 4104 SDLoc dl = getCurSDLoc(); 4105 4106 if (isVolatile) 4107 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4108 4109 // An aggregate load cannot wrap around the address space, so offsets to its 4110 // parts don't wrap either. 4111 SDNodeFlags Flags; 4112 Flags.setNoUnsignedWrap(true); 4113 4114 SmallVector<SDValue, 4> Values(NumValues); 4115 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4116 EVT PtrVT = Ptr.getValueType(); 4117 4118 MachineMemOperand::Flags MMOFlags 4119 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4120 4121 unsigned ChainI = 0; 4122 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4123 // Serializing loads here may result in excessive register pressure, and 4124 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4125 // could recover a bit by hoisting nodes upward in the chain by recognizing 4126 // they are side-effect free or do not alias. The optimizer should really 4127 // avoid this case by converting large object/array copies to llvm.memcpy 4128 // (MaxParallelChains should always remain as failsafe). 4129 if (ChainI == MaxParallelChains) { 4130 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4131 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4132 makeArrayRef(Chains.data(), ChainI)); 4133 Root = Chain; 4134 ChainI = 0; 4135 } 4136 SDValue A = DAG.getNode(ISD::ADD, dl, 4137 PtrVT, Ptr, 4138 DAG.getConstant(Offsets[i], dl, PtrVT), 4139 Flags); 4140 4141 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4142 MachinePointerInfo(SV, Offsets[i]), Alignment, 4143 MMOFlags, AAInfo, Ranges); 4144 Chains[ChainI] = L.getValue(1); 4145 4146 if (MemVTs[i] != ValueVTs[i]) 4147 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4148 4149 Values[i] = L; 4150 } 4151 4152 if (!ConstantMemory) { 4153 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4154 makeArrayRef(Chains.data(), ChainI)); 4155 if (isVolatile) 4156 DAG.setRoot(Chain); 4157 else 4158 PendingLoads.push_back(Chain); 4159 } 4160 4161 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4162 DAG.getVTList(ValueVTs), Values)); 4163 } 4164 4165 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4166 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4167 "call visitStoreToSwiftError when backend supports swifterror"); 4168 4169 SmallVector<EVT, 4> ValueVTs; 4170 SmallVector<uint64_t, 4> Offsets; 4171 const Value *SrcV = I.getOperand(0); 4172 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4173 SrcV->getType(), ValueVTs, &Offsets); 4174 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4175 "expect a single EVT for swifterror"); 4176 4177 SDValue Src = getValue(SrcV); 4178 // Create a virtual register, then update the virtual register. 4179 Register VReg = 4180 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4181 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4182 // Chain can be getRoot or getControlRoot. 4183 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4184 SDValue(Src.getNode(), Src.getResNo())); 4185 DAG.setRoot(CopyNode); 4186 } 4187 4188 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4189 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4190 "call visitLoadFromSwiftError when backend supports swifterror"); 4191 4192 assert(!I.isVolatile() && 4193 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4194 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4195 "Support volatile, non temporal, invariant for load_from_swift_error"); 4196 4197 const Value *SV = I.getOperand(0); 4198 Type *Ty = I.getType(); 4199 assert( 4200 (!AA || 4201 !AA->pointsToConstantMemory(MemoryLocation( 4202 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4203 I.getAAMetadata()))) && 4204 "load_from_swift_error should not be constant memory"); 4205 4206 SmallVector<EVT, 4> ValueVTs; 4207 SmallVector<uint64_t, 4> Offsets; 4208 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4209 ValueVTs, &Offsets); 4210 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4211 "expect a single EVT for swifterror"); 4212 4213 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4214 SDValue L = DAG.getCopyFromReg( 4215 getRoot(), getCurSDLoc(), 4216 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4217 4218 setValue(&I, L); 4219 } 4220 4221 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4222 if (I.isAtomic()) 4223 return visitAtomicStore(I); 4224 4225 const Value *SrcV = I.getOperand(0); 4226 const Value *PtrV = I.getOperand(1); 4227 4228 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4229 if (TLI.supportSwiftError()) { 4230 // Swifterror values can come from either a function parameter with 4231 // swifterror attribute or an alloca with swifterror attribute. 4232 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4233 if (Arg->hasSwiftErrorAttr()) 4234 return visitStoreToSwiftError(I); 4235 } 4236 4237 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4238 if (Alloca->isSwiftError()) 4239 return visitStoreToSwiftError(I); 4240 } 4241 } 4242 4243 SmallVector<EVT, 4> ValueVTs, MemVTs; 4244 SmallVector<uint64_t, 4> Offsets; 4245 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4246 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4247 unsigned NumValues = ValueVTs.size(); 4248 if (NumValues == 0) 4249 return; 4250 4251 // Get the lowered operands. Note that we do this after 4252 // checking if NumResults is zero, because with zero results 4253 // the operands won't have values in the map. 4254 SDValue Src = getValue(SrcV); 4255 SDValue Ptr = getValue(PtrV); 4256 4257 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4258 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4259 SDLoc dl = getCurSDLoc(); 4260 Align Alignment = I.getAlign(); 4261 AAMDNodes AAInfo = I.getAAMetadata(); 4262 4263 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4264 4265 // An aggregate load cannot wrap around the address space, so offsets to its 4266 // parts don't wrap either. 4267 SDNodeFlags Flags; 4268 Flags.setNoUnsignedWrap(true); 4269 4270 unsigned ChainI = 0; 4271 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4272 // See visitLoad comments. 4273 if (ChainI == MaxParallelChains) { 4274 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4275 makeArrayRef(Chains.data(), ChainI)); 4276 Root = Chain; 4277 ChainI = 0; 4278 } 4279 SDValue Add = 4280 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4281 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4282 if (MemVTs[i] != ValueVTs[i]) 4283 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4284 SDValue St = 4285 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4286 Alignment, MMOFlags, AAInfo); 4287 Chains[ChainI] = St; 4288 } 4289 4290 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4291 makeArrayRef(Chains.data(), ChainI)); 4292 DAG.setRoot(StoreNode); 4293 } 4294 4295 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4296 bool IsCompressing) { 4297 SDLoc sdl = getCurSDLoc(); 4298 4299 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4300 MaybeAlign &Alignment) { 4301 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4302 Src0 = I.getArgOperand(0); 4303 Ptr = I.getArgOperand(1); 4304 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4305 Mask = I.getArgOperand(3); 4306 }; 4307 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4308 MaybeAlign &Alignment) { 4309 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4310 Src0 = I.getArgOperand(0); 4311 Ptr = I.getArgOperand(1); 4312 Mask = I.getArgOperand(2); 4313 Alignment = None; 4314 }; 4315 4316 Value *PtrOperand, *MaskOperand, *Src0Operand; 4317 MaybeAlign Alignment; 4318 if (IsCompressing) 4319 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4320 else 4321 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4322 4323 SDValue Ptr = getValue(PtrOperand); 4324 SDValue Src0 = getValue(Src0Operand); 4325 SDValue Mask = getValue(MaskOperand); 4326 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4327 4328 EVT VT = Src0.getValueType(); 4329 if (!Alignment) 4330 Alignment = DAG.getEVTAlign(VT); 4331 4332 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4333 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4334 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4335 SDValue StoreNode = 4336 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4337 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4338 DAG.setRoot(StoreNode); 4339 setValue(&I, StoreNode); 4340 } 4341 4342 // Get a uniform base for the Gather/Scatter intrinsic. 4343 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4344 // We try to represent it as a base pointer + vector of indices. 4345 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4346 // The first operand of the GEP may be a single pointer or a vector of pointers 4347 // Example: 4348 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4349 // or 4350 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4351 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4352 // 4353 // When the first GEP operand is a single pointer - it is the uniform base we 4354 // are looking for. If first operand of the GEP is a splat vector - we 4355 // extract the splat value and use it as a uniform base. 4356 // In all other cases the function returns 'false'. 4357 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4358 ISD::MemIndexType &IndexType, SDValue &Scale, 4359 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4360 uint64_t ElemSize) { 4361 SelectionDAG& DAG = SDB->DAG; 4362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4363 const DataLayout &DL = DAG.getDataLayout(); 4364 4365 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4366 4367 // Handle splat constant pointer. 4368 if (auto *C = dyn_cast<Constant>(Ptr)) { 4369 C = C->getSplatValue(); 4370 if (!C) 4371 return false; 4372 4373 Base = SDB->getValue(C); 4374 4375 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4376 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4377 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4378 IndexType = ISD::SIGNED_SCALED; 4379 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4380 return true; 4381 } 4382 4383 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4384 if (!GEP || GEP->getParent() != CurBB) 4385 return false; 4386 4387 if (GEP->getNumOperands() != 2) 4388 return false; 4389 4390 const Value *BasePtr = GEP->getPointerOperand(); 4391 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4392 4393 // Make sure the base is scalar and the index is a vector. 4394 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4395 return false; 4396 4397 Base = SDB->getValue(BasePtr); 4398 Index = SDB->getValue(IndexVal); 4399 IndexType = ISD::SIGNED_SCALED; 4400 4401 // MGATHER/MSCATTER are only required to support scaling by one or by the 4402 // element size. Other scales may be produced using target-specific DAG 4403 // combines. 4404 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4405 if (ScaleVal != ElemSize && ScaleVal != 1) 4406 return false; 4407 4408 Scale = 4409 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4410 return true; 4411 } 4412 4413 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4414 SDLoc sdl = getCurSDLoc(); 4415 4416 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4417 const Value *Ptr = I.getArgOperand(1); 4418 SDValue Src0 = getValue(I.getArgOperand(0)); 4419 SDValue Mask = getValue(I.getArgOperand(3)); 4420 EVT VT = Src0.getValueType(); 4421 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4422 ->getMaybeAlignValue() 4423 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4425 4426 SDValue Base; 4427 SDValue Index; 4428 ISD::MemIndexType IndexType; 4429 SDValue Scale; 4430 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4431 I.getParent(), VT.getScalarStoreSize()); 4432 4433 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4434 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4435 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4436 // TODO: Make MachineMemOperands aware of scalable 4437 // vectors. 4438 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4439 if (!UniformBase) { 4440 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4441 Index = getValue(Ptr); 4442 IndexType = ISD::SIGNED_SCALED; 4443 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4444 } 4445 4446 EVT IdxVT = Index.getValueType(); 4447 EVT EltTy = IdxVT.getVectorElementType(); 4448 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4449 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4450 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4451 } 4452 4453 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4454 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4455 Ops, MMO, IndexType, false); 4456 DAG.setRoot(Scatter); 4457 setValue(&I, Scatter); 4458 } 4459 4460 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4461 SDLoc sdl = getCurSDLoc(); 4462 4463 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4464 MaybeAlign &Alignment) { 4465 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4466 Ptr = I.getArgOperand(0); 4467 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4468 Mask = I.getArgOperand(2); 4469 Src0 = I.getArgOperand(3); 4470 }; 4471 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4472 MaybeAlign &Alignment) { 4473 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4474 Ptr = I.getArgOperand(0); 4475 Alignment = None; 4476 Mask = I.getArgOperand(1); 4477 Src0 = I.getArgOperand(2); 4478 }; 4479 4480 Value *PtrOperand, *MaskOperand, *Src0Operand; 4481 MaybeAlign Alignment; 4482 if (IsExpanding) 4483 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4484 else 4485 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4486 4487 SDValue Ptr = getValue(PtrOperand); 4488 SDValue Src0 = getValue(Src0Operand); 4489 SDValue Mask = getValue(MaskOperand); 4490 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4491 4492 EVT VT = Src0.getValueType(); 4493 if (!Alignment) 4494 Alignment = DAG.getEVTAlign(VT); 4495 4496 AAMDNodes AAInfo = I.getAAMetadata(); 4497 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4498 4499 // Do not serialize masked loads of constant memory with anything. 4500 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4501 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4502 4503 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4504 4505 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4506 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4507 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4508 4509 SDValue Load = 4510 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4511 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4512 if (AddToChain) 4513 PendingLoads.push_back(Load.getValue(1)); 4514 setValue(&I, Load); 4515 } 4516 4517 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4518 SDLoc sdl = getCurSDLoc(); 4519 4520 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4521 const Value *Ptr = I.getArgOperand(0); 4522 SDValue Src0 = getValue(I.getArgOperand(3)); 4523 SDValue Mask = getValue(I.getArgOperand(2)); 4524 4525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4526 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4527 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4528 ->getMaybeAlignValue() 4529 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4530 4531 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4532 4533 SDValue Root = DAG.getRoot(); 4534 SDValue Base; 4535 SDValue Index; 4536 ISD::MemIndexType IndexType; 4537 SDValue Scale; 4538 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4539 I.getParent(), VT.getScalarStoreSize()); 4540 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4541 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4542 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4543 // TODO: Make MachineMemOperands aware of scalable 4544 // vectors. 4545 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4546 4547 if (!UniformBase) { 4548 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4549 Index = getValue(Ptr); 4550 IndexType = ISD::SIGNED_SCALED; 4551 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4552 } 4553 4554 EVT IdxVT = Index.getValueType(); 4555 EVT EltTy = IdxVT.getVectorElementType(); 4556 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4557 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4558 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4559 } 4560 4561 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4562 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4563 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4564 4565 PendingLoads.push_back(Gather.getValue(1)); 4566 setValue(&I, Gather); 4567 } 4568 4569 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4570 SDLoc dl = getCurSDLoc(); 4571 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4572 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4573 SyncScope::ID SSID = I.getSyncScopeID(); 4574 4575 SDValue InChain = getRoot(); 4576 4577 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4578 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4579 4580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4581 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4582 4583 MachineFunction &MF = DAG.getMachineFunction(); 4584 MachineMemOperand *MMO = MF.getMachineMemOperand( 4585 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4586 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4587 FailureOrdering); 4588 4589 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4590 dl, MemVT, VTs, InChain, 4591 getValue(I.getPointerOperand()), 4592 getValue(I.getCompareOperand()), 4593 getValue(I.getNewValOperand()), MMO); 4594 4595 SDValue OutChain = L.getValue(2); 4596 4597 setValue(&I, L); 4598 DAG.setRoot(OutChain); 4599 } 4600 4601 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4602 SDLoc dl = getCurSDLoc(); 4603 ISD::NodeType NT; 4604 switch (I.getOperation()) { 4605 default: llvm_unreachable("Unknown atomicrmw operation"); 4606 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4607 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4608 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4609 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4610 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4611 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4612 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4613 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4614 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4615 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4616 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4617 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4618 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4619 } 4620 AtomicOrdering Ordering = I.getOrdering(); 4621 SyncScope::ID SSID = I.getSyncScopeID(); 4622 4623 SDValue InChain = getRoot(); 4624 4625 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4627 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4628 4629 MachineFunction &MF = DAG.getMachineFunction(); 4630 MachineMemOperand *MMO = MF.getMachineMemOperand( 4631 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4632 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4633 4634 SDValue L = 4635 DAG.getAtomic(NT, dl, MemVT, InChain, 4636 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4637 MMO); 4638 4639 SDValue OutChain = L.getValue(1); 4640 4641 setValue(&I, L); 4642 DAG.setRoot(OutChain); 4643 } 4644 4645 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4646 SDLoc dl = getCurSDLoc(); 4647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4648 SDValue Ops[3]; 4649 Ops[0] = getRoot(); 4650 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4651 TLI.getFenceOperandTy(DAG.getDataLayout())); 4652 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4653 TLI.getFenceOperandTy(DAG.getDataLayout())); 4654 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4655 } 4656 4657 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4658 SDLoc dl = getCurSDLoc(); 4659 AtomicOrdering Order = I.getOrdering(); 4660 SyncScope::ID SSID = I.getSyncScopeID(); 4661 4662 SDValue InChain = getRoot(); 4663 4664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4665 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4666 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4667 4668 if (!TLI.supportsUnalignedAtomics() && 4669 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4670 report_fatal_error("Cannot generate unaligned atomic load"); 4671 4672 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4673 4674 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4675 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4676 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4677 4678 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4679 4680 SDValue Ptr = getValue(I.getPointerOperand()); 4681 4682 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4683 // TODO: Once this is better exercised by tests, it should be merged with 4684 // the normal path for loads to prevent future divergence. 4685 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4686 if (MemVT != VT) 4687 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4688 4689 setValue(&I, L); 4690 SDValue OutChain = L.getValue(1); 4691 if (!I.isUnordered()) 4692 DAG.setRoot(OutChain); 4693 else 4694 PendingLoads.push_back(OutChain); 4695 return; 4696 } 4697 4698 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4699 Ptr, MMO); 4700 4701 SDValue OutChain = L.getValue(1); 4702 if (MemVT != VT) 4703 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4704 4705 setValue(&I, L); 4706 DAG.setRoot(OutChain); 4707 } 4708 4709 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4710 SDLoc dl = getCurSDLoc(); 4711 4712 AtomicOrdering Ordering = I.getOrdering(); 4713 SyncScope::ID SSID = I.getSyncScopeID(); 4714 4715 SDValue InChain = getRoot(); 4716 4717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4718 EVT MemVT = 4719 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4720 4721 if (I.getAlign().value() < MemVT.getSizeInBits() / 8) 4722 report_fatal_error("Cannot generate unaligned atomic store"); 4723 4724 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4725 4726 MachineFunction &MF = DAG.getMachineFunction(); 4727 MachineMemOperand *MMO = MF.getMachineMemOperand( 4728 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4729 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4730 4731 SDValue Val = getValue(I.getValueOperand()); 4732 if (Val.getValueType() != MemVT) 4733 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4734 SDValue Ptr = getValue(I.getPointerOperand()); 4735 4736 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4737 // TODO: Once this is better exercised by tests, it should be merged with 4738 // the normal path for stores to prevent future divergence. 4739 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4740 DAG.setRoot(S); 4741 return; 4742 } 4743 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4744 Ptr, Val, MMO); 4745 4746 4747 DAG.setRoot(OutChain); 4748 } 4749 4750 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4751 /// node. 4752 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4753 unsigned Intrinsic) { 4754 // Ignore the callsite's attributes. A specific call site may be marked with 4755 // readnone, but the lowering code will expect the chain based on the 4756 // definition. 4757 const Function *F = I.getCalledFunction(); 4758 bool HasChain = !F->doesNotAccessMemory(); 4759 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4760 4761 // Build the operand list. 4762 SmallVector<SDValue, 8> Ops; 4763 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4764 if (OnlyLoad) { 4765 // We don't need to serialize loads against other loads. 4766 Ops.push_back(DAG.getRoot()); 4767 } else { 4768 Ops.push_back(getRoot()); 4769 } 4770 } 4771 4772 // Info is set by getTgtMemIntrinsic 4773 TargetLowering::IntrinsicInfo Info; 4774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4775 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4776 DAG.getMachineFunction(), 4777 Intrinsic); 4778 4779 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4780 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4781 Info.opc == ISD::INTRINSIC_W_CHAIN) 4782 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4783 TLI.getPointerTy(DAG.getDataLayout()))); 4784 4785 // Add all operands of the call to the operand list. 4786 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4787 const Value *Arg = I.getArgOperand(i); 4788 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4789 Ops.push_back(getValue(Arg)); 4790 continue; 4791 } 4792 4793 // Use TargetConstant instead of a regular constant for immarg. 4794 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4795 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4796 assert(CI->getBitWidth() <= 64 && 4797 "large intrinsic immediates not handled"); 4798 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4799 } else { 4800 Ops.push_back( 4801 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4802 } 4803 } 4804 4805 SmallVector<EVT, 4> ValueVTs; 4806 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4807 4808 if (HasChain) 4809 ValueVTs.push_back(MVT::Other); 4810 4811 SDVTList VTs = DAG.getVTList(ValueVTs); 4812 4813 // Propagate fast-math-flags from IR to node(s). 4814 SDNodeFlags Flags; 4815 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4816 Flags.copyFMF(*FPMO); 4817 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4818 4819 // Create the node. 4820 SDValue Result; 4821 if (IsTgtIntrinsic) { 4822 // This is target intrinsic that touches memory 4823 Result = 4824 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4825 MachinePointerInfo(Info.ptrVal, Info.offset), 4826 Info.align, Info.flags, Info.size, 4827 I.getAAMetadata()); 4828 } else if (!HasChain) { 4829 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4830 } else if (!I.getType()->isVoidTy()) { 4831 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4832 } else { 4833 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4834 } 4835 4836 if (HasChain) { 4837 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4838 if (OnlyLoad) 4839 PendingLoads.push_back(Chain); 4840 else 4841 DAG.setRoot(Chain); 4842 } 4843 4844 if (!I.getType()->isVoidTy()) { 4845 if (!isa<VectorType>(I.getType())) 4846 Result = lowerRangeToAssertZExt(DAG, I, Result); 4847 4848 MaybeAlign Alignment = I.getRetAlign(); 4849 if (!Alignment) 4850 Alignment = F->getAttributes().getRetAlignment(); 4851 // Insert `assertalign` node if there's an alignment. 4852 if (InsertAssertAlign && Alignment) { 4853 Result = 4854 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4855 } 4856 4857 setValue(&I, Result); 4858 } 4859 } 4860 4861 /// GetSignificand - Get the significand and build it into a floating-point 4862 /// number with exponent of 1: 4863 /// 4864 /// Op = (Op & 0x007fffff) | 0x3f800000; 4865 /// 4866 /// where Op is the hexadecimal representation of floating point value. 4867 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4868 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4869 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4870 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4871 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4872 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4873 } 4874 4875 /// GetExponent - Get the exponent: 4876 /// 4877 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4878 /// 4879 /// where Op is the hexadecimal representation of floating point value. 4880 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4881 const TargetLowering &TLI, const SDLoc &dl) { 4882 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4883 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4884 SDValue t1 = DAG.getNode( 4885 ISD::SRL, dl, MVT::i32, t0, 4886 DAG.getConstant(23, dl, 4887 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4888 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4889 DAG.getConstant(127, dl, MVT::i32)); 4890 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4891 } 4892 4893 /// getF32Constant - Get 32-bit floating point constant. 4894 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4895 const SDLoc &dl) { 4896 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4897 MVT::f32); 4898 } 4899 4900 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4901 SelectionDAG &DAG) { 4902 // TODO: What fast-math-flags should be set on the floating-point nodes? 4903 4904 // IntegerPartOfX = ((int32_t)(t0); 4905 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4906 4907 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4908 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4909 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4910 4911 // IntegerPartOfX <<= 23; 4912 IntegerPartOfX = 4913 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4914 DAG.getConstant(23, dl, 4915 DAG.getTargetLoweringInfo().getShiftAmountTy( 4916 MVT::i32, DAG.getDataLayout()))); 4917 4918 SDValue TwoToFractionalPartOfX; 4919 if (LimitFloatPrecision <= 6) { 4920 // For floating-point precision of 6: 4921 // 4922 // TwoToFractionalPartOfX = 4923 // 0.997535578f + 4924 // (0.735607626f + 0.252464424f * x) * x; 4925 // 4926 // error 0.0144103317, which is 6 bits 4927 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4928 getF32Constant(DAG, 0x3e814304, dl)); 4929 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4930 getF32Constant(DAG, 0x3f3c50c8, dl)); 4931 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4932 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4933 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4934 } else if (LimitFloatPrecision <= 12) { 4935 // For floating-point precision of 12: 4936 // 4937 // TwoToFractionalPartOfX = 4938 // 0.999892986f + 4939 // (0.696457318f + 4940 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4941 // 4942 // error 0.000107046256, which is 13 to 14 bits 4943 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4944 getF32Constant(DAG, 0x3da235e3, dl)); 4945 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4946 getF32Constant(DAG, 0x3e65b8f3, dl)); 4947 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4948 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4949 getF32Constant(DAG, 0x3f324b07, dl)); 4950 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4951 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4952 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4953 } else { // LimitFloatPrecision <= 18 4954 // For floating-point precision of 18: 4955 // 4956 // TwoToFractionalPartOfX = 4957 // 0.999999982f + 4958 // (0.693148872f + 4959 // (0.240227044f + 4960 // (0.554906021e-1f + 4961 // (0.961591928e-2f + 4962 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4963 // error 2.47208000*10^(-7), which is better than 18 bits 4964 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4965 getF32Constant(DAG, 0x3924b03e, dl)); 4966 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4967 getF32Constant(DAG, 0x3ab24b87, dl)); 4968 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4969 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4970 getF32Constant(DAG, 0x3c1d8c17, dl)); 4971 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4972 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4973 getF32Constant(DAG, 0x3d634a1d, dl)); 4974 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4975 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4976 getF32Constant(DAG, 0x3e75fe14, dl)); 4977 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4978 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4979 getF32Constant(DAG, 0x3f317234, dl)); 4980 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4981 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4982 getF32Constant(DAG, 0x3f800000, dl)); 4983 } 4984 4985 // Add the exponent into the result in integer domain. 4986 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4987 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4988 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4989 } 4990 4991 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4992 /// limited-precision mode. 4993 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4994 const TargetLowering &TLI, SDNodeFlags Flags) { 4995 if (Op.getValueType() == MVT::f32 && 4996 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4997 4998 // Put the exponent in the right bit position for later addition to the 4999 // final result: 5000 // 5001 // t0 = Op * log2(e) 5002 5003 // TODO: What fast-math-flags should be set here? 5004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5005 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5006 return getLimitedPrecisionExp2(t0, dl, DAG); 5007 } 5008 5009 // No special expansion. 5010 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5011 } 5012 5013 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5014 /// limited-precision mode. 5015 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5016 const TargetLowering &TLI, SDNodeFlags Flags) { 5017 // TODO: What fast-math-flags should be set on the floating-point nodes? 5018 5019 if (Op.getValueType() == MVT::f32 && 5020 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5021 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5022 5023 // Scale the exponent by log(2). 5024 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5025 SDValue LogOfExponent = 5026 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5027 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5028 5029 // Get the significand and build it into a floating-point number with 5030 // exponent of 1. 5031 SDValue X = GetSignificand(DAG, Op1, dl); 5032 5033 SDValue LogOfMantissa; 5034 if (LimitFloatPrecision <= 6) { 5035 // For floating-point precision of 6: 5036 // 5037 // LogofMantissa = 5038 // -1.1609546f + 5039 // (1.4034025f - 0.23903021f * x) * x; 5040 // 5041 // error 0.0034276066, which is better than 8 bits 5042 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5043 getF32Constant(DAG, 0xbe74c456, dl)); 5044 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5045 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5046 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5047 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5048 getF32Constant(DAG, 0x3f949a29, dl)); 5049 } else if (LimitFloatPrecision <= 12) { 5050 // For floating-point precision of 12: 5051 // 5052 // LogOfMantissa = 5053 // -1.7417939f + 5054 // (2.8212026f + 5055 // (-1.4699568f + 5056 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5057 // 5058 // error 0.000061011436, which is 14 bits 5059 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5060 getF32Constant(DAG, 0xbd67b6d6, dl)); 5061 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5062 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5064 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5065 getF32Constant(DAG, 0x3fbc278b, dl)); 5066 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5067 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5068 getF32Constant(DAG, 0x40348e95, dl)); 5069 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5070 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5071 getF32Constant(DAG, 0x3fdef31a, dl)); 5072 } else { // LimitFloatPrecision <= 18 5073 // For floating-point precision of 18: 5074 // 5075 // LogOfMantissa = 5076 // -2.1072184f + 5077 // (4.2372794f + 5078 // (-3.7029485f + 5079 // (2.2781945f + 5080 // (-0.87823314f + 5081 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5082 // 5083 // error 0.0000023660568, which is better than 18 bits 5084 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5085 getF32Constant(DAG, 0xbc91e5ac, dl)); 5086 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5087 getF32Constant(DAG, 0x3e4350aa, dl)); 5088 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5089 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5090 getF32Constant(DAG, 0x3f60d3e3, dl)); 5091 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5092 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5093 getF32Constant(DAG, 0x4011cdf0, dl)); 5094 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5095 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5096 getF32Constant(DAG, 0x406cfd1c, dl)); 5097 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5098 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5099 getF32Constant(DAG, 0x408797cb, dl)); 5100 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5101 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5102 getF32Constant(DAG, 0x4006dcab, dl)); 5103 } 5104 5105 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5106 } 5107 5108 // No special expansion. 5109 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5110 } 5111 5112 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5113 /// limited-precision mode. 5114 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5115 const TargetLowering &TLI, SDNodeFlags Flags) { 5116 // TODO: What fast-math-flags should be set on the floating-point nodes? 5117 5118 if (Op.getValueType() == MVT::f32 && 5119 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5120 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5121 5122 // Get the exponent. 5123 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5124 5125 // Get the significand and build it into a floating-point number with 5126 // exponent of 1. 5127 SDValue X = GetSignificand(DAG, Op1, dl); 5128 5129 // Different possible minimax approximations of significand in 5130 // floating-point for various degrees of accuracy over [1,2]. 5131 SDValue Log2ofMantissa; 5132 if (LimitFloatPrecision <= 6) { 5133 // For floating-point precision of 6: 5134 // 5135 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5136 // 5137 // error 0.0049451742, which is more than 7 bits 5138 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5139 getF32Constant(DAG, 0xbeb08fe0, dl)); 5140 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5141 getF32Constant(DAG, 0x40019463, dl)); 5142 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5143 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5144 getF32Constant(DAG, 0x3fd6633d, dl)); 5145 } else if (LimitFloatPrecision <= 12) { 5146 // For floating-point precision of 12: 5147 // 5148 // Log2ofMantissa = 5149 // -2.51285454f + 5150 // (4.07009056f + 5151 // (-2.12067489f + 5152 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5153 // 5154 // error 0.0000876136000, which is better than 13 bits 5155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5156 getF32Constant(DAG, 0xbda7262e, dl)); 5157 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5158 getF32Constant(DAG, 0x3f25280b, dl)); 5159 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5160 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5161 getF32Constant(DAG, 0x4007b923, dl)); 5162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5163 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5164 getF32Constant(DAG, 0x40823e2f, dl)); 5165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5166 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5167 getF32Constant(DAG, 0x4020d29c, dl)); 5168 } else { // LimitFloatPrecision <= 18 5169 // For floating-point precision of 18: 5170 // 5171 // Log2ofMantissa = 5172 // -3.0400495f + 5173 // (6.1129976f + 5174 // (-5.3420409f + 5175 // (3.2865683f + 5176 // (-1.2669343f + 5177 // (0.27515199f - 5178 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5179 // 5180 // error 0.0000018516, which is better than 18 bits 5181 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5182 getF32Constant(DAG, 0xbcd2769e, dl)); 5183 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5184 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5185 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5186 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5187 getF32Constant(DAG, 0x3fa22ae7, dl)); 5188 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5189 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5190 getF32Constant(DAG, 0x40525723, dl)); 5191 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5192 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5193 getF32Constant(DAG, 0x40aaf200, dl)); 5194 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5195 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5196 getF32Constant(DAG, 0x40c39dad, dl)); 5197 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5198 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5199 getF32Constant(DAG, 0x4042902c, dl)); 5200 } 5201 5202 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5203 } 5204 5205 // No special expansion. 5206 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5207 } 5208 5209 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5210 /// limited-precision mode. 5211 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5212 const TargetLowering &TLI, SDNodeFlags Flags) { 5213 // TODO: What fast-math-flags should be set on the floating-point nodes? 5214 5215 if (Op.getValueType() == MVT::f32 && 5216 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5217 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5218 5219 // Scale the exponent by log10(2) [0.30102999f]. 5220 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5221 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5222 getF32Constant(DAG, 0x3e9a209a, dl)); 5223 5224 // Get the significand and build it into a floating-point number with 5225 // exponent of 1. 5226 SDValue X = GetSignificand(DAG, Op1, dl); 5227 5228 SDValue Log10ofMantissa; 5229 if (LimitFloatPrecision <= 6) { 5230 // For floating-point precision of 6: 5231 // 5232 // Log10ofMantissa = 5233 // -0.50419619f + 5234 // (0.60948995f - 0.10380950f * x) * x; 5235 // 5236 // error 0.0014886165, which is 6 bits 5237 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5238 getF32Constant(DAG, 0xbdd49a13, dl)); 5239 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5240 getF32Constant(DAG, 0x3f1c0789, dl)); 5241 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5242 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5243 getF32Constant(DAG, 0x3f011300, dl)); 5244 } else if (LimitFloatPrecision <= 12) { 5245 // For floating-point precision of 12: 5246 // 5247 // Log10ofMantissa = 5248 // -0.64831180f + 5249 // (0.91751397f + 5250 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5251 // 5252 // error 0.00019228036, which is better than 12 bits 5253 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5254 getF32Constant(DAG, 0x3d431f31, dl)); 5255 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5256 getF32Constant(DAG, 0x3ea21fb2, dl)); 5257 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5258 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5259 getF32Constant(DAG, 0x3f6ae232, dl)); 5260 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5261 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5262 getF32Constant(DAG, 0x3f25f7c3, dl)); 5263 } else { // LimitFloatPrecision <= 18 5264 // For floating-point precision of 18: 5265 // 5266 // Log10ofMantissa = 5267 // -0.84299375f + 5268 // (1.5327582f + 5269 // (-1.0688956f + 5270 // (0.49102474f + 5271 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5272 // 5273 // error 0.0000037995730, which is better than 18 bits 5274 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5275 getF32Constant(DAG, 0x3c5d51ce, dl)); 5276 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5277 getF32Constant(DAG, 0x3e00685a, dl)); 5278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5279 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5280 getF32Constant(DAG, 0x3efb6798, dl)); 5281 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5282 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5283 getF32Constant(DAG, 0x3f88d192, dl)); 5284 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5285 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5286 getF32Constant(DAG, 0x3fc4316c, dl)); 5287 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5288 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5289 getF32Constant(DAG, 0x3f57ce70, dl)); 5290 } 5291 5292 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5293 } 5294 5295 // No special expansion. 5296 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5297 } 5298 5299 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5300 /// limited-precision mode. 5301 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5302 const TargetLowering &TLI, SDNodeFlags Flags) { 5303 if (Op.getValueType() == MVT::f32 && 5304 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5305 return getLimitedPrecisionExp2(Op, dl, DAG); 5306 5307 // No special expansion. 5308 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5309 } 5310 5311 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5312 /// limited-precision mode with x == 10.0f. 5313 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5314 SelectionDAG &DAG, const TargetLowering &TLI, 5315 SDNodeFlags Flags) { 5316 bool IsExp10 = false; 5317 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5318 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5319 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5320 APFloat Ten(10.0f); 5321 IsExp10 = LHSC->isExactlyValue(Ten); 5322 } 5323 } 5324 5325 // TODO: What fast-math-flags should be set on the FMUL node? 5326 if (IsExp10) { 5327 // Put the exponent in the right bit position for later addition to the 5328 // final result: 5329 // 5330 // #define LOG2OF10 3.3219281f 5331 // t0 = Op * LOG2OF10; 5332 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5333 getF32Constant(DAG, 0x40549a78, dl)); 5334 return getLimitedPrecisionExp2(t0, dl, DAG); 5335 } 5336 5337 // No special expansion. 5338 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5339 } 5340 5341 /// ExpandPowI - Expand a llvm.powi intrinsic. 5342 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5343 SelectionDAG &DAG) { 5344 // If RHS is a constant, we can expand this out to a multiplication tree if 5345 // it's beneficial on the target, otherwise we end up lowering to a call to 5346 // __powidf2 (for example). 5347 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5348 unsigned Val = RHSC->getSExtValue(); 5349 5350 // powi(x, 0) -> 1.0 5351 if (Val == 0) 5352 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5353 5354 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5355 Val, DAG.shouldOptForSize())) { 5356 // Get the exponent as a positive value. 5357 if ((int)Val < 0) 5358 Val = -Val; 5359 // We use the simple binary decomposition method to generate the multiply 5360 // sequence. There are more optimal ways to do this (for example, 5361 // powi(x,15) generates one more multiply than it should), but this has 5362 // the benefit of being both really simple and much better than a libcall. 5363 SDValue Res; // Logically starts equal to 1.0 5364 SDValue CurSquare = LHS; 5365 // TODO: Intrinsics should have fast-math-flags that propagate to these 5366 // nodes. 5367 while (Val) { 5368 if (Val & 1) { 5369 if (Res.getNode()) 5370 Res = 5371 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5372 else 5373 Res = CurSquare; // 1.0*CurSquare. 5374 } 5375 5376 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5377 CurSquare, CurSquare); 5378 Val >>= 1; 5379 } 5380 5381 // If the original was negative, invert the result, producing 1/(x*x*x). 5382 if (RHSC->getSExtValue() < 0) 5383 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5384 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5385 return Res; 5386 } 5387 } 5388 5389 // Otherwise, expand to a libcall. 5390 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5391 } 5392 5393 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5394 SDValue LHS, SDValue RHS, SDValue Scale, 5395 SelectionDAG &DAG, const TargetLowering &TLI) { 5396 EVT VT = LHS.getValueType(); 5397 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5398 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5399 LLVMContext &Ctx = *DAG.getContext(); 5400 5401 // If the type is legal but the operation isn't, this node might survive all 5402 // the way to operation legalization. If we end up there and we do not have 5403 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5404 // node. 5405 5406 // Coax the legalizer into expanding the node during type legalization instead 5407 // by bumping the size by one bit. This will force it to Promote, enabling the 5408 // early expansion and avoiding the need to expand later. 5409 5410 // We don't have to do this if Scale is 0; that can always be expanded, unless 5411 // it's a saturating signed operation. Those can experience true integer 5412 // division overflow, a case which we must avoid. 5413 5414 // FIXME: We wouldn't have to do this (or any of the early 5415 // expansion/promotion) if it was possible to expand a libcall of an 5416 // illegal type during operation legalization. But it's not, so things 5417 // get a bit hacky. 5418 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5419 if ((ScaleInt > 0 || (Saturating && Signed)) && 5420 (TLI.isTypeLegal(VT) || 5421 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5422 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5423 Opcode, VT, ScaleInt); 5424 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5425 EVT PromVT; 5426 if (VT.isScalarInteger()) 5427 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5428 else if (VT.isVector()) { 5429 PromVT = VT.getVectorElementType(); 5430 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5431 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5432 } else 5433 llvm_unreachable("Wrong VT for DIVFIX?"); 5434 if (Signed) { 5435 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5436 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5437 } else { 5438 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5439 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5440 } 5441 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5442 // For saturating operations, we need to shift up the LHS to get the 5443 // proper saturation width, and then shift down again afterwards. 5444 if (Saturating) 5445 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5446 DAG.getConstant(1, DL, ShiftTy)); 5447 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5448 if (Saturating) 5449 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5450 DAG.getConstant(1, DL, ShiftTy)); 5451 return DAG.getZExtOrTrunc(Res, DL, VT); 5452 } 5453 } 5454 5455 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5456 } 5457 5458 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5459 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5460 static void 5461 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5462 const SDValue &N) { 5463 switch (N.getOpcode()) { 5464 case ISD::CopyFromReg: { 5465 SDValue Op = N.getOperand(1); 5466 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5467 Op.getValueType().getSizeInBits()); 5468 return; 5469 } 5470 case ISD::BITCAST: 5471 case ISD::AssertZext: 5472 case ISD::AssertSext: 5473 case ISD::TRUNCATE: 5474 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5475 return; 5476 case ISD::BUILD_PAIR: 5477 case ISD::BUILD_VECTOR: 5478 case ISD::CONCAT_VECTORS: 5479 for (SDValue Op : N->op_values()) 5480 getUnderlyingArgRegs(Regs, Op); 5481 return; 5482 default: 5483 return; 5484 } 5485 } 5486 5487 /// If the DbgValueInst is a dbg_value of a function argument, create the 5488 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5489 /// instruction selection, they will be inserted to the entry BB. 5490 /// We don't currently support this for variadic dbg_values, as they shouldn't 5491 /// appear for function arguments or in the prologue. 5492 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5493 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5494 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5495 const Argument *Arg = dyn_cast<Argument>(V); 5496 if (!Arg) 5497 return false; 5498 5499 MachineFunction &MF = DAG.getMachineFunction(); 5500 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5501 5502 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5503 // we've been asked to pursue. 5504 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5505 bool Indirect) { 5506 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5507 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5508 // pointing at the VReg, which will be patched up later. 5509 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5510 auto MIB = BuildMI(MF, DL, Inst); 5511 MIB.addReg(Reg); 5512 MIB.addImm(0); 5513 MIB.addMetadata(Variable); 5514 auto *NewDIExpr = FragExpr; 5515 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5516 // the DIExpression. 5517 if (Indirect) 5518 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5519 MIB.addMetadata(NewDIExpr); 5520 return MIB; 5521 } else { 5522 // Create a completely standard DBG_VALUE. 5523 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5524 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5525 } 5526 }; 5527 5528 if (Kind == FuncArgumentDbgValueKind::Value) { 5529 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5530 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5531 // the entry block. 5532 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5533 if (!IsInEntryBlock) 5534 return false; 5535 5536 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5537 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5538 // variable that also is a param. 5539 // 5540 // Although, if we are at the top of the entry block already, we can still 5541 // emit using ArgDbgValue. This might catch some situations when the 5542 // dbg.value refers to an argument that isn't used in the entry block, so 5543 // any CopyToReg node would be optimized out and the only way to express 5544 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5545 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5546 // we should only emit as ArgDbgValue if the Variable is an argument to the 5547 // current function, and the dbg.value intrinsic is found in the entry 5548 // block. 5549 bool VariableIsFunctionInputArg = Variable->isParameter() && 5550 !DL->getInlinedAt(); 5551 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5552 if (!IsInPrologue && !VariableIsFunctionInputArg) 5553 return false; 5554 5555 // Here we assume that a function argument on IR level only can be used to 5556 // describe one input parameter on source level. If we for example have 5557 // source code like this 5558 // 5559 // struct A { long x, y; }; 5560 // void foo(struct A a, long b) { 5561 // ... 5562 // b = a.x; 5563 // ... 5564 // } 5565 // 5566 // and IR like this 5567 // 5568 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5569 // entry: 5570 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5571 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5572 // call void @llvm.dbg.value(metadata i32 %b, "b", 5573 // ... 5574 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5575 // ... 5576 // 5577 // then the last dbg.value is describing a parameter "b" using a value that 5578 // is an argument. But since we already has used %a1 to describe a parameter 5579 // we should not handle that last dbg.value here (that would result in an 5580 // incorrect hoisting of the DBG_VALUE to the function entry). 5581 // Notice that we allow one dbg.value per IR level argument, to accommodate 5582 // for the situation with fragments above. 5583 if (VariableIsFunctionInputArg) { 5584 unsigned ArgNo = Arg->getArgNo(); 5585 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5586 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5587 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5588 return false; 5589 FuncInfo.DescribedArgs.set(ArgNo); 5590 } 5591 } 5592 5593 bool IsIndirect = false; 5594 Optional<MachineOperand> Op; 5595 // Some arguments' frame index is recorded during argument lowering. 5596 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5597 if (FI != std::numeric_limits<int>::max()) 5598 Op = MachineOperand::CreateFI(FI); 5599 5600 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5601 if (!Op && N.getNode()) { 5602 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5603 Register Reg; 5604 if (ArgRegsAndSizes.size() == 1) 5605 Reg = ArgRegsAndSizes.front().first; 5606 5607 if (Reg && Reg.isVirtual()) { 5608 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5609 Register PR = RegInfo.getLiveInPhysReg(Reg); 5610 if (PR) 5611 Reg = PR; 5612 } 5613 if (Reg) { 5614 Op = MachineOperand::CreateReg(Reg, false); 5615 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5616 } 5617 } 5618 5619 if (!Op && N.getNode()) { 5620 // Check if frame index is available. 5621 SDValue LCandidate = peekThroughBitcasts(N); 5622 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5623 if (FrameIndexSDNode *FINode = 5624 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5625 Op = MachineOperand::CreateFI(FINode->getIndex()); 5626 } 5627 5628 if (!Op) { 5629 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5630 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5631 SplitRegs) { 5632 unsigned Offset = 0; 5633 for (const auto &RegAndSize : SplitRegs) { 5634 // If the expression is already a fragment, the current register 5635 // offset+size might extend beyond the fragment. In this case, only 5636 // the register bits that are inside the fragment are relevant. 5637 int RegFragmentSizeInBits = RegAndSize.second; 5638 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5639 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5640 // The register is entirely outside the expression fragment, 5641 // so is irrelevant for debug info. 5642 if (Offset >= ExprFragmentSizeInBits) 5643 break; 5644 // The register is partially outside the expression fragment, only 5645 // the low bits within the fragment are relevant for debug info. 5646 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5647 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5648 } 5649 } 5650 5651 auto FragmentExpr = DIExpression::createFragmentExpression( 5652 Expr, Offset, RegFragmentSizeInBits); 5653 Offset += RegAndSize.second; 5654 // If a valid fragment expression cannot be created, the variable's 5655 // correct value cannot be determined and so it is set as Undef. 5656 if (!FragmentExpr) { 5657 SDDbgValue *SDV = DAG.getConstantDbgValue( 5658 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5659 DAG.AddDbgValue(SDV, false); 5660 continue; 5661 } 5662 MachineInstr *NewMI = 5663 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5664 Kind != FuncArgumentDbgValueKind::Value); 5665 FuncInfo.ArgDbgValues.push_back(NewMI); 5666 } 5667 }; 5668 5669 // Check if ValueMap has reg number. 5670 DenseMap<const Value *, Register>::const_iterator 5671 VMI = FuncInfo.ValueMap.find(V); 5672 if (VMI != FuncInfo.ValueMap.end()) { 5673 const auto &TLI = DAG.getTargetLoweringInfo(); 5674 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5675 V->getType(), None); 5676 if (RFV.occupiesMultipleRegs()) { 5677 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5678 return true; 5679 } 5680 5681 Op = MachineOperand::CreateReg(VMI->second, false); 5682 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5683 } else if (ArgRegsAndSizes.size() > 1) { 5684 // This was split due to the calling convention, and no virtual register 5685 // mapping exists for the value. 5686 splitMultiRegDbgValue(ArgRegsAndSizes); 5687 return true; 5688 } 5689 } 5690 5691 if (!Op) 5692 return false; 5693 5694 assert(Variable->isValidLocationForIntrinsic(DL) && 5695 "Expected inlined-at fields to agree"); 5696 MachineInstr *NewMI = nullptr; 5697 5698 if (Op->isReg()) 5699 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5700 else 5701 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5702 Variable, Expr); 5703 5704 // Otherwise, use ArgDbgValues. 5705 FuncInfo.ArgDbgValues.push_back(NewMI); 5706 return true; 5707 } 5708 5709 /// Return the appropriate SDDbgValue based on N. 5710 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5711 DILocalVariable *Variable, 5712 DIExpression *Expr, 5713 const DebugLoc &dl, 5714 unsigned DbgSDNodeOrder) { 5715 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5716 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5717 // stack slot locations. 5718 // 5719 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5720 // debug values here after optimization: 5721 // 5722 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5723 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5724 // 5725 // Both describe the direct values of their associated variables. 5726 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5727 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5728 } 5729 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5730 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5731 } 5732 5733 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5734 switch (Intrinsic) { 5735 case Intrinsic::smul_fix: 5736 return ISD::SMULFIX; 5737 case Intrinsic::umul_fix: 5738 return ISD::UMULFIX; 5739 case Intrinsic::smul_fix_sat: 5740 return ISD::SMULFIXSAT; 5741 case Intrinsic::umul_fix_sat: 5742 return ISD::UMULFIXSAT; 5743 case Intrinsic::sdiv_fix: 5744 return ISD::SDIVFIX; 5745 case Intrinsic::udiv_fix: 5746 return ISD::UDIVFIX; 5747 case Intrinsic::sdiv_fix_sat: 5748 return ISD::SDIVFIXSAT; 5749 case Intrinsic::udiv_fix_sat: 5750 return ISD::UDIVFIXSAT; 5751 default: 5752 llvm_unreachable("Unhandled fixed point intrinsic"); 5753 } 5754 } 5755 5756 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5757 const char *FunctionName) { 5758 assert(FunctionName && "FunctionName must not be nullptr"); 5759 SDValue Callee = DAG.getExternalSymbol( 5760 FunctionName, 5761 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5762 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5763 } 5764 5765 /// Given a @llvm.call.preallocated.setup, return the corresponding 5766 /// preallocated call. 5767 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5768 assert(cast<CallBase>(PreallocatedSetup) 5769 ->getCalledFunction() 5770 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5771 "expected call_preallocated_setup Value"); 5772 for (auto *U : PreallocatedSetup->users()) { 5773 auto *UseCall = cast<CallBase>(U); 5774 const Function *Fn = UseCall->getCalledFunction(); 5775 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5776 return UseCall; 5777 } 5778 } 5779 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5780 } 5781 5782 /// Lower the call to the specified intrinsic function. 5783 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5784 unsigned Intrinsic) { 5785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5786 SDLoc sdl = getCurSDLoc(); 5787 DebugLoc dl = getCurDebugLoc(); 5788 SDValue Res; 5789 5790 SDNodeFlags Flags; 5791 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5792 Flags.copyFMF(*FPOp); 5793 5794 switch (Intrinsic) { 5795 default: 5796 // By default, turn this into a target intrinsic node. 5797 visitTargetIntrinsic(I, Intrinsic); 5798 return; 5799 case Intrinsic::vscale: { 5800 match(&I, m_VScale(DAG.getDataLayout())); 5801 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5802 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5803 return; 5804 } 5805 case Intrinsic::vastart: visitVAStart(I); return; 5806 case Intrinsic::vaend: visitVAEnd(I); return; 5807 case Intrinsic::vacopy: visitVACopy(I); return; 5808 case Intrinsic::returnaddress: 5809 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5810 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5811 getValue(I.getArgOperand(0)))); 5812 return; 5813 case Intrinsic::addressofreturnaddress: 5814 setValue(&I, 5815 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5816 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5817 return; 5818 case Intrinsic::sponentry: 5819 setValue(&I, 5820 DAG.getNode(ISD::SPONENTRY, sdl, 5821 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5822 return; 5823 case Intrinsic::frameaddress: 5824 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5825 TLI.getFrameIndexTy(DAG.getDataLayout()), 5826 getValue(I.getArgOperand(0)))); 5827 return; 5828 case Intrinsic::read_volatile_register: 5829 case Intrinsic::read_register: { 5830 Value *Reg = I.getArgOperand(0); 5831 SDValue Chain = getRoot(); 5832 SDValue RegName = 5833 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5834 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5835 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5836 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5837 setValue(&I, Res); 5838 DAG.setRoot(Res.getValue(1)); 5839 return; 5840 } 5841 case Intrinsic::write_register: { 5842 Value *Reg = I.getArgOperand(0); 5843 Value *RegValue = I.getArgOperand(1); 5844 SDValue Chain = getRoot(); 5845 SDValue RegName = 5846 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5847 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5848 RegName, getValue(RegValue))); 5849 return; 5850 } 5851 case Intrinsic::memcpy: { 5852 const auto &MCI = cast<MemCpyInst>(I); 5853 SDValue Op1 = getValue(I.getArgOperand(0)); 5854 SDValue Op2 = getValue(I.getArgOperand(1)); 5855 SDValue Op3 = getValue(I.getArgOperand(2)); 5856 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5857 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5858 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5859 Align Alignment = std::min(DstAlign, SrcAlign); 5860 bool isVol = MCI.isVolatile(); 5861 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5862 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5863 // node. 5864 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5865 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5866 /* AlwaysInline */ false, isTC, 5867 MachinePointerInfo(I.getArgOperand(0)), 5868 MachinePointerInfo(I.getArgOperand(1)), 5869 I.getAAMetadata()); 5870 updateDAGForMaybeTailCall(MC); 5871 return; 5872 } 5873 case Intrinsic::memcpy_inline: { 5874 const auto &MCI = cast<MemCpyInlineInst>(I); 5875 SDValue Dst = getValue(I.getArgOperand(0)); 5876 SDValue Src = getValue(I.getArgOperand(1)); 5877 SDValue Size = getValue(I.getArgOperand(2)); 5878 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5879 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5880 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5881 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5882 Align Alignment = std::min(DstAlign, SrcAlign); 5883 bool isVol = MCI.isVolatile(); 5884 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5885 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5886 // node. 5887 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5888 /* AlwaysInline */ true, isTC, 5889 MachinePointerInfo(I.getArgOperand(0)), 5890 MachinePointerInfo(I.getArgOperand(1)), 5891 I.getAAMetadata()); 5892 updateDAGForMaybeTailCall(MC); 5893 return; 5894 } 5895 case Intrinsic::memset: { 5896 const auto &MSI = cast<MemSetInst>(I); 5897 SDValue Op1 = getValue(I.getArgOperand(0)); 5898 SDValue Op2 = getValue(I.getArgOperand(1)); 5899 SDValue Op3 = getValue(I.getArgOperand(2)); 5900 // @llvm.memset defines 0 and 1 to both mean no alignment. 5901 Align Alignment = MSI.getDestAlign().valueOrOne(); 5902 bool isVol = MSI.isVolatile(); 5903 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5904 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5905 SDValue MS = DAG.getMemset( 5906 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5907 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5908 updateDAGForMaybeTailCall(MS); 5909 return; 5910 } 5911 case Intrinsic::memset_inline: { 5912 const auto &MSII = cast<MemSetInlineInst>(I); 5913 SDValue Dst = getValue(I.getArgOperand(0)); 5914 SDValue Value = getValue(I.getArgOperand(1)); 5915 SDValue Size = getValue(I.getArgOperand(2)); 5916 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5917 // @llvm.memset defines 0 and 1 to both mean no alignment. 5918 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5919 bool isVol = MSII.isVolatile(); 5920 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5921 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5922 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5923 /* AlwaysInline */ true, isTC, 5924 MachinePointerInfo(I.getArgOperand(0)), 5925 I.getAAMetadata()); 5926 updateDAGForMaybeTailCall(MC); 5927 return; 5928 } 5929 case Intrinsic::memmove: { 5930 const auto &MMI = cast<MemMoveInst>(I); 5931 SDValue Op1 = getValue(I.getArgOperand(0)); 5932 SDValue Op2 = getValue(I.getArgOperand(1)); 5933 SDValue Op3 = getValue(I.getArgOperand(2)); 5934 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5935 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5936 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5937 Align Alignment = std::min(DstAlign, SrcAlign); 5938 bool isVol = MMI.isVolatile(); 5939 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5940 // FIXME: Support passing different dest/src alignments to the memmove DAG 5941 // node. 5942 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5943 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5944 isTC, MachinePointerInfo(I.getArgOperand(0)), 5945 MachinePointerInfo(I.getArgOperand(1)), 5946 I.getAAMetadata()); 5947 updateDAGForMaybeTailCall(MM); 5948 return; 5949 } 5950 case Intrinsic::memcpy_element_unordered_atomic: { 5951 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5952 SDValue Dst = getValue(MI.getRawDest()); 5953 SDValue Src = getValue(MI.getRawSource()); 5954 SDValue Length = getValue(MI.getLength()); 5955 5956 Type *LengthTy = MI.getLength()->getType(); 5957 unsigned ElemSz = MI.getElementSizeInBytes(); 5958 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5959 SDValue MC = 5960 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 5961 isTC, MachinePointerInfo(MI.getRawDest()), 5962 MachinePointerInfo(MI.getRawSource())); 5963 updateDAGForMaybeTailCall(MC); 5964 return; 5965 } 5966 case Intrinsic::memmove_element_unordered_atomic: { 5967 auto &MI = cast<AtomicMemMoveInst>(I); 5968 SDValue Dst = getValue(MI.getRawDest()); 5969 SDValue Src = getValue(MI.getRawSource()); 5970 SDValue Length = getValue(MI.getLength()); 5971 5972 Type *LengthTy = MI.getLength()->getType(); 5973 unsigned ElemSz = MI.getElementSizeInBytes(); 5974 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5975 SDValue MC = 5976 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 5977 isTC, MachinePointerInfo(MI.getRawDest()), 5978 MachinePointerInfo(MI.getRawSource())); 5979 updateDAGForMaybeTailCall(MC); 5980 return; 5981 } 5982 case Intrinsic::memset_element_unordered_atomic: { 5983 auto &MI = cast<AtomicMemSetInst>(I); 5984 SDValue Dst = getValue(MI.getRawDest()); 5985 SDValue Val = getValue(MI.getValue()); 5986 SDValue Length = getValue(MI.getLength()); 5987 5988 Type *LengthTy = MI.getLength()->getType(); 5989 unsigned ElemSz = MI.getElementSizeInBytes(); 5990 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5991 SDValue MC = 5992 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 5993 isTC, MachinePointerInfo(MI.getRawDest())); 5994 updateDAGForMaybeTailCall(MC); 5995 return; 5996 } 5997 case Intrinsic::call_preallocated_setup: { 5998 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5999 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6000 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6001 getRoot(), SrcValue); 6002 setValue(&I, Res); 6003 DAG.setRoot(Res); 6004 return; 6005 } 6006 case Intrinsic::call_preallocated_arg: { 6007 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6008 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6009 SDValue Ops[3]; 6010 Ops[0] = getRoot(); 6011 Ops[1] = SrcValue; 6012 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6013 MVT::i32); // arg index 6014 SDValue Res = DAG.getNode( 6015 ISD::PREALLOCATED_ARG, sdl, 6016 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6017 setValue(&I, Res); 6018 DAG.setRoot(Res.getValue(1)); 6019 return; 6020 } 6021 case Intrinsic::dbg_addr: 6022 case Intrinsic::dbg_declare: { 6023 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6024 // they are non-variadic. 6025 const auto &DI = cast<DbgVariableIntrinsic>(I); 6026 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6027 DILocalVariable *Variable = DI.getVariable(); 6028 DIExpression *Expression = DI.getExpression(); 6029 dropDanglingDebugInfo(Variable, Expression); 6030 assert(Variable && "Missing variable"); 6031 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6032 << "\n"); 6033 // Check if address has undef value. 6034 const Value *Address = DI.getVariableLocationOp(0); 6035 if (!Address || isa<UndefValue>(Address) || 6036 (Address->use_empty() && !isa<Argument>(Address))) { 6037 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6038 << " (bad/undef/unused-arg address)\n"); 6039 return; 6040 } 6041 6042 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6043 6044 // Check if this variable can be described by a frame index, typically 6045 // either as a static alloca or a byval parameter. 6046 int FI = std::numeric_limits<int>::max(); 6047 if (const auto *AI = 6048 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6049 if (AI->isStaticAlloca()) { 6050 auto I = FuncInfo.StaticAllocaMap.find(AI); 6051 if (I != FuncInfo.StaticAllocaMap.end()) 6052 FI = I->second; 6053 } 6054 } else if (const auto *Arg = dyn_cast<Argument>( 6055 Address->stripInBoundsConstantOffsets())) { 6056 FI = FuncInfo.getArgumentFrameIndex(Arg); 6057 } 6058 6059 // llvm.dbg.addr is control dependent and always generates indirect 6060 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6061 // the MachineFunction variable table. 6062 if (FI != std::numeric_limits<int>::max()) { 6063 if (Intrinsic == Intrinsic::dbg_addr) { 6064 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6065 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6066 dl, SDNodeOrder); 6067 DAG.AddDbgValue(SDV, isParameter); 6068 } else { 6069 LLVM_DEBUG(dbgs() << "Skipping " << DI 6070 << " (variable info stashed in MF side table)\n"); 6071 } 6072 return; 6073 } 6074 6075 SDValue &N = NodeMap[Address]; 6076 if (!N.getNode() && isa<Argument>(Address)) 6077 // Check unused arguments map. 6078 N = UnusedArgNodeMap[Address]; 6079 SDDbgValue *SDV; 6080 if (N.getNode()) { 6081 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6082 Address = BCI->getOperand(0); 6083 // Parameters are handled specially. 6084 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6085 if (isParameter && FINode) { 6086 // Byval parameter. We have a frame index at this point. 6087 SDV = 6088 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6089 /*IsIndirect*/ true, dl, SDNodeOrder); 6090 } else if (isa<Argument>(Address)) { 6091 // Address is an argument, so try to emit its dbg value using 6092 // virtual register info from the FuncInfo.ValueMap. 6093 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6094 FuncArgumentDbgValueKind::Declare, N); 6095 return; 6096 } else { 6097 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6098 true, dl, SDNodeOrder); 6099 } 6100 DAG.AddDbgValue(SDV, isParameter); 6101 } else { 6102 // If Address is an argument then try to emit its dbg value using 6103 // virtual register info from the FuncInfo.ValueMap. 6104 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6105 FuncArgumentDbgValueKind::Declare, N)) { 6106 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6107 << " (could not emit func-arg dbg_value)\n"); 6108 } 6109 } 6110 return; 6111 } 6112 case Intrinsic::dbg_label: { 6113 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6114 DILabel *Label = DI.getLabel(); 6115 assert(Label && "Missing label"); 6116 6117 SDDbgLabel *SDV; 6118 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6119 DAG.AddDbgLabel(SDV); 6120 return; 6121 } 6122 case Intrinsic::dbg_value: { 6123 const DbgValueInst &DI = cast<DbgValueInst>(I); 6124 assert(DI.getVariable() && "Missing variable"); 6125 6126 DILocalVariable *Variable = DI.getVariable(); 6127 DIExpression *Expression = DI.getExpression(); 6128 dropDanglingDebugInfo(Variable, Expression); 6129 SmallVector<Value *, 4> Values(DI.getValues()); 6130 if (Values.empty()) 6131 return; 6132 6133 if (llvm::is_contained(Values, nullptr)) 6134 return; 6135 6136 bool IsVariadic = DI.hasArgList(); 6137 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6138 SDNodeOrder, IsVariadic)) 6139 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6140 return; 6141 } 6142 6143 case Intrinsic::eh_typeid_for: { 6144 // Find the type id for the given typeinfo. 6145 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6146 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6147 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6148 setValue(&I, Res); 6149 return; 6150 } 6151 6152 case Intrinsic::eh_return_i32: 6153 case Intrinsic::eh_return_i64: 6154 DAG.getMachineFunction().setCallsEHReturn(true); 6155 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6156 MVT::Other, 6157 getControlRoot(), 6158 getValue(I.getArgOperand(0)), 6159 getValue(I.getArgOperand(1)))); 6160 return; 6161 case Intrinsic::eh_unwind_init: 6162 DAG.getMachineFunction().setCallsUnwindInit(true); 6163 return; 6164 case Intrinsic::eh_dwarf_cfa: 6165 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6166 TLI.getPointerTy(DAG.getDataLayout()), 6167 getValue(I.getArgOperand(0)))); 6168 return; 6169 case Intrinsic::eh_sjlj_callsite: { 6170 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6171 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6172 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6173 6174 MMI.setCurrentCallSite(CI->getZExtValue()); 6175 return; 6176 } 6177 case Intrinsic::eh_sjlj_functioncontext: { 6178 // Get and store the index of the function context. 6179 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6180 AllocaInst *FnCtx = 6181 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6182 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6183 MFI.setFunctionContextIndex(FI); 6184 return; 6185 } 6186 case Intrinsic::eh_sjlj_setjmp: { 6187 SDValue Ops[2]; 6188 Ops[0] = getRoot(); 6189 Ops[1] = getValue(I.getArgOperand(0)); 6190 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6191 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6192 setValue(&I, Op.getValue(0)); 6193 DAG.setRoot(Op.getValue(1)); 6194 return; 6195 } 6196 case Intrinsic::eh_sjlj_longjmp: 6197 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6198 getRoot(), getValue(I.getArgOperand(0)))); 6199 return; 6200 case Intrinsic::eh_sjlj_setup_dispatch: 6201 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6202 getRoot())); 6203 return; 6204 case Intrinsic::masked_gather: 6205 visitMaskedGather(I); 6206 return; 6207 case Intrinsic::masked_load: 6208 visitMaskedLoad(I); 6209 return; 6210 case Intrinsic::masked_scatter: 6211 visitMaskedScatter(I); 6212 return; 6213 case Intrinsic::masked_store: 6214 visitMaskedStore(I); 6215 return; 6216 case Intrinsic::masked_expandload: 6217 visitMaskedLoad(I, true /* IsExpanding */); 6218 return; 6219 case Intrinsic::masked_compressstore: 6220 visitMaskedStore(I, true /* IsCompressing */); 6221 return; 6222 case Intrinsic::powi: 6223 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6224 getValue(I.getArgOperand(1)), DAG)); 6225 return; 6226 case Intrinsic::log: 6227 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6228 return; 6229 case Intrinsic::log2: 6230 setValue(&I, 6231 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6232 return; 6233 case Intrinsic::log10: 6234 setValue(&I, 6235 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6236 return; 6237 case Intrinsic::exp: 6238 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6239 return; 6240 case Intrinsic::exp2: 6241 setValue(&I, 6242 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6243 return; 6244 case Intrinsic::pow: 6245 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6246 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6247 return; 6248 case Intrinsic::sqrt: 6249 case Intrinsic::fabs: 6250 case Intrinsic::sin: 6251 case Intrinsic::cos: 6252 case Intrinsic::floor: 6253 case Intrinsic::ceil: 6254 case Intrinsic::trunc: 6255 case Intrinsic::rint: 6256 case Intrinsic::nearbyint: 6257 case Intrinsic::round: 6258 case Intrinsic::roundeven: 6259 case Intrinsic::canonicalize: { 6260 unsigned Opcode; 6261 switch (Intrinsic) { 6262 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6263 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6264 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6265 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6266 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6267 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6268 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6269 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6270 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6271 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6272 case Intrinsic::round: Opcode = ISD::FROUND; break; 6273 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6274 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6275 } 6276 6277 setValue(&I, DAG.getNode(Opcode, sdl, 6278 getValue(I.getArgOperand(0)).getValueType(), 6279 getValue(I.getArgOperand(0)), Flags)); 6280 return; 6281 } 6282 case Intrinsic::lround: 6283 case Intrinsic::llround: 6284 case Intrinsic::lrint: 6285 case Intrinsic::llrint: { 6286 unsigned Opcode; 6287 switch (Intrinsic) { 6288 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6289 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6290 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6291 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6292 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6293 } 6294 6295 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6296 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6297 getValue(I.getArgOperand(0)))); 6298 return; 6299 } 6300 case Intrinsic::minnum: 6301 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6302 getValue(I.getArgOperand(0)).getValueType(), 6303 getValue(I.getArgOperand(0)), 6304 getValue(I.getArgOperand(1)), Flags)); 6305 return; 6306 case Intrinsic::maxnum: 6307 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6308 getValue(I.getArgOperand(0)).getValueType(), 6309 getValue(I.getArgOperand(0)), 6310 getValue(I.getArgOperand(1)), Flags)); 6311 return; 6312 case Intrinsic::minimum: 6313 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6314 getValue(I.getArgOperand(0)).getValueType(), 6315 getValue(I.getArgOperand(0)), 6316 getValue(I.getArgOperand(1)), Flags)); 6317 return; 6318 case Intrinsic::maximum: 6319 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6320 getValue(I.getArgOperand(0)).getValueType(), 6321 getValue(I.getArgOperand(0)), 6322 getValue(I.getArgOperand(1)), Flags)); 6323 return; 6324 case Intrinsic::copysign: 6325 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6326 getValue(I.getArgOperand(0)).getValueType(), 6327 getValue(I.getArgOperand(0)), 6328 getValue(I.getArgOperand(1)), Flags)); 6329 return; 6330 case Intrinsic::arithmetic_fence: { 6331 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6332 getValue(I.getArgOperand(0)).getValueType(), 6333 getValue(I.getArgOperand(0)), Flags)); 6334 return; 6335 } 6336 case Intrinsic::fma: 6337 setValue(&I, DAG.getNode( 6338 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6339 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6340 getValue(I.getArgOperand(2)), Flags)); 6341 return; 6342 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6343 case Intrinsic::INTRINSIC: 6344 #include "llvm/IR/ConstrainedOps.def" 6345 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6346 return; 6347 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6348 #include "llvm/IR/VPIntrinsics.def" 6349 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6350 return; 6351 case Intrinsic::fptrunc_round: { 6352 // Get the last argument, the metadata and convert it to an integer in the 6353 // call 6354 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6355 Optional<RoundingMode> RoundMode = 6356 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6357 6358 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6359 6360 // Propagate fast-math-flags from IR to node(s). 6361 SDNodeFlags Flags; 6362 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6363 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6364 6365 SDValue Result; 6366 Result = DAG.getNode( 6367 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6368 DAG.getTargetConstant((int)*RoundMode, sdl, 6369 TLI.getPointerTy(DAG.getDataLayout()))); 6370 setValue(&I, Result); 6371 6372 return; 6373 } 6374 case Intrinsic::fmuladd: { 6375 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6376 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6377 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6378 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6379 getValue(I.getArgOperand(0)).getValueType(), 6380 getValue(I.getArgOperand(0)), 6381 getValue(I.getArgOperand(1)), 6382 getValue(I.getArgOperand(2)), Flags)); 6383 } else { 6384 // TODO: Intrinsic calls should have fast-math-flags. 6385 SDValue Mul = DAG.getNode( 6386 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6387 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6388 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6389 getValue(I.getArgOperand(0)).getValueType(), 6390 Mul, getValue(I.getArgOperand(2)), Flags); 6391 setValue(&I, Add); 6392 } 6393 return; 6394 } 6395 case Intrinsic::convert_to_fp16: 6396 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6397 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6398 getValue(I.getArgOperand(0)), 6399 DAG.getTargetConstant(0, sdl, 6400 MVT::i32)))); 6401 return; 6402 case Intrinsic::convert_from_fp16: 6403 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6404 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6405 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6406 getValue(I.getArgOperand(0))))); 6407 return; 6408 case Intrinsic::fptosi_sat: { 6409 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6410 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6411 getValue(I.getArgOperand(0)), 6412 DAG.getValueType(VT.getScalarType()))); 6413 return; 6414 } 6415 case Intrinsic::fptoui_sat: { 6416 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6417 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6418 getValue(I.getArgOperand(0)), 6419 DAG.getValueType(VT.getScalarType()))); 6420 return; 6421 } 6422 case Intrinsic::set_rounding: 6423 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6424 {getRoot(), getValue(I.getArgOperand(0))}); 6425 setValue(&I, Res); 6426 DAG.setRoot(Res.getValue(0)); 6427 return; 6428 case Intrinsic::is_fpclass: { 6429 const DataLayout DLayout = DAG.getDataLayout(); 6430 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6431 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6432 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6433 MachineFunction &MF = DAG.getMachineFunction(); 6434 const Function &F = MF.getFunction(); 6435 SDValue Op = getValue(I.getArgOperand(0)); 6436 SDNodeFlags Flags; 6437 Flags.setNoFPExcept( 6438 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6439 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6440 // expansion can use illegal types. Making expansion early allows 6441 // legalizing these types prior to selection. 6442 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6443 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6444 setValue(&I, Result); 6445 return; 6446 } 6447 6448 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6449 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6450 setValue(&I, V); 6451 return; 6452 } 6453 case Intrinsic::pcmarker: { 6454 SDValue Tmp = getValue(I.getArgOperand(0)); 6455 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6456 return; 6457 } 6458 case Intrinsic::readcyclecounter: { 6459 SDValue Op = getRoot(); 6460 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6461 DAG.getVTList(MVT::i64, MVT::Other), Op); 6462 setValue(&I, Res); 6463 DAG.setRoot(Res.getValue(1)); 6464 return; 6465 } 6466 case Intrinsic::bitreverse: 6467 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6468 getValue(I.getArgOperand(0)).getValueType(), 6469 getValue(I.getArgOperand(0)))); 6470 return; 6471 case Intrinsic::bswap: 6472 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6473 getValue(I.getArgOperand(0)).getValueType(), 6474 getValue(I.getArgOperand(0)))); 6475 return; 6476 case Intrinsic::cttz: { 6477 SDValue Arg = getValue(I.getArgOperand(0)); 6478 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6479 EVT Ty = Arg.getValueType(); 6480 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6481 sdl, Ty, Arg)); 6482 return; 6483 } 6484 case Intrinsic::ctlz: { 6485 SDValue Arg = getValue(I.getArgOperand(0)); 6486 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6487 EVT Ty = Arg.getValueType(); 6488 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6489 sdl, Ty, Arg)); 6490 return; 6491 } 6492 case Intrinsic::ctpop: { 6493 SDValue Arg = getValue(I.getArgOperand(0)); 6494 EVT Ty = Arg.getValueType(); 6495 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6496 return; 6497 } 6498 case Intrinsic::fshl: 6499 case Intrinsic::fshr: { 6500 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6501 SDValue X = getValue(I.getArgOperand(0)); 6502 SDValue Y = getValue(I.getArgOperand(1)); 6503 SDValue Z = getValue(I.getArgOperand(2)); 6504 EVT VT = X.getValueType(); 6505 6506 if (X == Y) { 6507 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6508 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6509 } else { 6510 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6511 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6512 } 6513 return; 6514 } 6515 case Intrinsic::sadd_sat: { 6516 SDValue Op1 = getValue(I.getArgOperand(0)); 6517 SDValue Op2 = getValue(I.getArgOperand(1)); 6518 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6519 return; 6520 } 6521 case Intrinsic::uadd_sat: { 6522 SDValue Op1 = getValue(I.getArgOperand(0)); 6523 SDValue Op2 = getValue(I.getArgOperand(1)); 6524 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6525 return; 6526 } 6527 case Intrinsic::ssub_sat: { 6528 SDValue Op1 = getValue(I.getArgOperand(0)); 6529 SDValue Op2 = getValue(I.getArgOperand(1)); 6530 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6531 return; 6532 } 6533 case Intrinsic::usub_sat: { 6534 SDValue Op1 = getValue(I.getArgOperand(0)); 6535 SDValue Op2 = getValue(I.getArgOperand(1)); 6536 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6537 return; 6538 } 6539 case Intrinsic::sshl_sat: { 6540 SDValue Op1 = getValue(I.getArgOperand(0)); 6541 SDValue Op2 = getValue(I.getArgOperand(1)); 6542 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6543 return; 6544 } 6545 case Intrinsic::ushl_sat: { 6546 SDValue Op1 = getValue(I.getArgOperand(0)); 6547 SDValue Op2 = getValue(I.getArgOperand(1)); 6548 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6549 return; 6550 } 6551 case Intrinsic::smul_fix: 6552 case Intrinsic::umul_fix: 6553 case Intrinsic::smul_fix_sat: 6554 case Intrinsic::umul_fix_sat: { 6555 SDValue Op1 = getValue(I.getArgOperand(0)); 6556 SDValue Op2 = getValue(I.getArgOperand(1)); 6557 SDValue Op3 = getValue(I.getArgOperand(2)); 6558 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6559 Op1.getValueType(), Op1, Op2, Op3)); 6560 return; 6561 } 6562 case Intrinsic::sdiv_fix: 6563 case Intrinsic::udiv_fix: 6564 case Intrinsic::sdiv_fix_sat: 6565 case Intrinsic::udiv_fix_sat: { 6566 SDValue Op1 = getValue(I.getArgOperand(0)); 6567 SDValue Op2 = getValue(I.getArgOperand(1)); 6568 SDValue Op3 = getValue(I.getArgOperand(2)); 6569 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6570 Op1, Op2, Op3, DAG, TLI)); 6571 return; 6572 } 6573 case Intrinsic::smax: { 6574 SDValue Op1 = getValue(I.getArgOperand(0)); 6575 SDValue Op2 = getValue(I.getArgOperand(1)); 6576 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6577 return; 6578 } 6579 case Intrinsic::smin: { 6580 SDValue Op1 = getValue(I.getArgOperand(0)); 6581 SDValue Op2 = getValue(I.getArgOperand(1)); 6582 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6583 return; 6584 } 6585 case Intrinsic::umax: { 6586 SDValue Op1 = getValue(I.getArgOperand(0)); 6587 SDValue Op2 = getValue(I.getArgOperand(1)); 6588 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6589 return; 6590 } 6591 case Intrinsic::umin: { 6592 SDValue Op1 = getValue(I.getArgOperand(0)); 6593 SDValue Op2 = getValue(I.getArgOperand(1)); 6594 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6595 return; 6596 } 6597 case Intrinsic::abs: { 6598 // TODO: Preserve "int min is poison" arg in SDAG? 6599 SDValue Op1 = getValue(I.getArgOperand(0)); 6600 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6601 return; 6602 } 6603 case Intrinsic::stacksave: { 6604 SDValue Op = getRoot(); 6605 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6606 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6607 setValue(&I, Res); 6608 DAG.setRoot(Res.getValue(1)); 6609 return; 6610 } 6611 case Intrinsic::stackrestore: 6612 Res = getValue(I.getArgOperand(0)); 6613 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6614 return; 6615 case Intrinsic::get_dynamic_area_offset: { 6616 SDValue Op = getRoot(); 6617 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6618 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6619 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6620 // target. 6621 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6622 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6623 " intrinsic!"); 6624 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6625 Op); 6626 DAG.setRoot(Op); 6627 setValue(&I, Res); 6628 return; 6629 } 6630 case Intrinsic::stackguard: { 6631 MachineFunction &MF = DAG.getMachineFunction(); 6632 const Module &M = *MF.getFunction().getParent(); 6633 SDValue Chain = getRoot(); 6634 if (TLI.useLoadStackGuardNode()) { 6635 Res = getLoadStackGuard(DAG, sdl, Chain); 6636 } else { 6637 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6638 const Value *Global = TLI.getSDagStackGuard(M); 6639 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6640 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6641 MachinePointerInfo(Global, 0), Align, 6642 MachineMemOperand::MOVolatile); 6643 } 6644 if (TLI.useStackGuardXorFP()) 6645 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6646 DAG.setRoot(Chain); 6647 setValue(&I, Res); 6648 return; 6649 } 6650 case Intrinsic::stackprotector: { 6651 // Emit code into the DAG to store the stack guard onto the stack. 6652 MachineFunction &MF = DAG.getMachineFunction(); 6653 MachineFrameInfo &MFI = MF.getFrameInfo(); 6654 SDValue Src, Chain = getRoot(); 6655 6656 if (TLI.useLoadStackGuardNode()) 6657 Src = getLoadStackGuard(DAG, sdl, Chain); 6658 else 6659 Src = getValue(I.getArgOperand(0)); // The guard's value. 6660 6661 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6662 6663 int FI = FuncInfo.StaticAllocaMap[Slot]; 6664 MFI.setStackProtectorIndex(FI); 6665 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6666 6667 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6668 6669 // Store the stack protector onto the stack. 6670 Res = DAG.getStore( 6671 Chain, sdl, Src, FIN, 6672 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6673 MaybeAlign(), MachineMemOperand::MOVolatile); 6674 setValue(&I, Res); 6675 DAG.setRoot(Res); 6676 return; 6677 } 6678 case Intrinsic::objectsize: 6679 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6680 6681 case Intrinsic::is_constant: 6682 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6683 6684 case Intrinsic::annotation: 6685 case Intrinsic::ptr_annotation: 6686 case Intrinsic::launder_invariant_group: 6687 case Intrinsic::strip_invariant_group: 6688 // Drop the intrinsic, but forward the value 6689 setValue(&I, getValue(I.getOperand(0))); 6690 return; 6691 6692 case Intrinsic::assume: 6693 case Intrinsic::experimental_noalias_scope_decl: 6694 case Intrinsic::var_annotation: 6695 case Intrinsic::sideeffect: 6696 // Discard annotate attributes, noalias scope declarations, assumptions, and 6697 // artificial side-effects. 6698 return; 6699 6700 case Intrinsic::codeview_annotation: { 6701 // Emit a label associated with this metadata. 6702 MachineFunction &MF = DAG.getMachineFunction(); 6703 MCSymbol *Label = 6704 MF.getMMI().getContext().createTempSymbol("annotation", true); 6705 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6706 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6707 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6708 DAG.setRoot(Res); 6709 return; 6710 } 6711 6712 case Intrinsic::init_trampoline: { 6713 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6714 6715 SDValue Ops[6]; 6716 Ops[0] = getRoot(); 6717 Ops[1] = getValue(I.getArgOperand(0)); 6718 Ops[2] = getValue(I.getArgOperand(1)); 6719 Ops[3] = getValue(I.getArgOperand(2)); 6720 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6721 Ops[5] = DAG.getSrcValue(F); 6722 6723 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6724 6725 DAG.setRoot(Res); 6726 return; 6727 } 6728 case Intrinsic::adjust_trampoline: 6729 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6730 TLI.getPointerTy(DAG.getDataLayout()), 6731 getValue(I.getArgOperand(0)))); 6732 return; 6733 case Intrinsic::gcroot: { 6734 assert(DAG.getMachineFunction().getFunction().hasGC() && 6735 "only valid in functions with gc specified, enforced by Verifier"); 6736 assert(GFI && "implied by previous"); 6737 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6738 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6739 6740 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6741 GFI->addStackRoot(FI->getIndex(), TypeMap); 6742 return; 6743 } 6744 case Intrinsic::gcread: 6745 case Intrinsic::gcwrite: 6746 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6747 case Intrinsic::flt_rounds: 6748 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6749 setValue(&I, Res); 6750 DAG.setRoot(Res.getValue(1)); 6751 return; 6752 6753 case Intrinsic::expect: 6754 // Just replace __builtin_expect(exp, c) with EXP. 6755 setValue(&I, getValue(I.getArgOperand(0))); 6756 return; 6757 6758 case Intrinsic::ubsantrap: 6759 case Intrinsic::debugtrap: 6760 case Intrinsic::trap: { 6761 StringRef TrapFuncName = 6762 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6763 if (TrapFuncName.empty()) { 6764 switch (Intrinsic) { 6765 case Intrinsic::trap: 6766 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6767 break; 6768 case Intrinsic::debugtrap: 6769 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6770 break; 6771 case Intrinsic::ubsantrap: 6772 DAG.setRoot(DAG.getNode( 6773 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6774 DAG.getTargetConstant( 6775 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6776 MVT::i32))); 6777 break; 6778 default: llvm_unreachable("unknown trap intrinsic"); 6779 } 6780 return; 6781 } 6782 TargetLowering::ArgListTy Args; 6783 if (Intrinsic == Intrinsic::ubsantrap) { 6784 Args.push_back(TargetLoweringBase::ArgListEntry()); 6785 Args[0].Val = I.getArgOperand(0); 6786 Args[0].Node = getValue(Args[0].Val); 6787 Args[0].Ty = Args[0].Val->getType(); 6788 } 6789 6790 TargetLowering::CallLoweringInfo CLI(DAG); 6791 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6792 CallingConv::C, I.getType(), 6793 DAG.getExternalSymbol(TrapFuncName.data(), 6794 TLI.getPointerTy(DAG.getDataLayout())), 6795 std::move(Args)); 6796 6797 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6798 DAG.setRoot(Result.second); 6799 return; 6800 } 6801 6802 case Intrinsic::uadd_with_overflow: 6803 case Intrinsic::sadd_with_overflow: 6804 case Intrinsic::usub_with_overflow: 6805 case Intrinsic::ssub_with_overflow: 6806 case Intrinsic::umul_with_overflow: 6807 case Intrinsic::smul_with_overflow: { 6808 ISD::NodeType Op; 6809 switch (Intrinsic) { 6810 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6811 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6812 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6813 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6814 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6815 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6816 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6817 } 6818 SDValue Op1 = getValue(I.getArgOperand(0)); 6819 SDValue Op2 = getValue(I.getArgOperand(1)); 6820 6821 EVT ResultVT = Op1.getValueType(); 6822 EVT OverflowVT = MVT::i1; 6823 if (ResultVT.isVector()) 6824 OverflowVT = EVT::getVectorVT( 6825 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6826 6827 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6828 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6829 return; 6830 } 6831 case Intrinsic::prefetch: { 6832 SDValue Ops[5]; 6833 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6834 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6835 Ops[0] = DAG.getRoot(); 6836 Ops[1] = getValue(I.getArgOperand(0)); 6837 Ops[2] = getValue(I.getArgOperand(1)); 6838 Ops[3] = getValue(I.getArgOperand(2)); 6839 Ops[4] = getValue(I.getArgOperand(3)); 6840 SDValue Result = DAG.getMemIntrinsicNode( 6841 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6842 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6843 /* align */ None, Flags); 6844 6845 // Chain the prefetch in parallell with any pending loads, to stay out of 6846 // the way of later optimizations. 6847 PendingLoads.push_back(Result); 6848 Result = getRoot(); 6849 DAG.setRoot(Result); 6850 return; 6851 } 6852 case Intrinsic::lifetime_start: 6853 case Intrinsic::lifetime_end: { 6854 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6855 // Stack coloring is not enabled in O0, discard region information. 6856 if (TM.getOptLevel() == CodeGenOpt::None) 6857 return; 6858 6859 const int64_t ObjectSize = 6860 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6861 Value *const ObjectPtr = I.getArgOperand(1); 6862 SmallVector<const Value *, 4> Allocas; 6863 getUnderlyingObjects(ObjectPtr, Allocas); 6864 6865 for (const Value *Alloca : Allocas) { 6866 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6867 6868 // Could not find an Alloca. 6869 if (!LifetimeObject) 6870 continue; 6871 6872 // First check that the Alloca is static, otherwise it won't have a 6873 // valid frame index. 6874 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6875 if (SI == FuncInfo.StaticAllocaMap.end()) 6876 return; 6877 6878 const int FrameIndex = SI->second; 6879 int64_t Offset; 6880 if (GetPointerBaseWithConstantOffset( 6881 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6882 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6883 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6884 Offset); 6885 DAG.setRoot(Res); 6886 } 6887 return; 6888 } 6889 case Intrinsic::pseudoprobe: { 6890 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6891 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6892 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6893 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6894 DAG.setRoot(Res); 6895 return; 6896 } 6897 case Intrinsic::invariant_start: 6898 // Discard region information. 6899 setValue(&I, 6900 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6901 return; 6902 case Intrinsic::invariant_end: 6903 // Discard region information. 6904 return; 6905 case Intrinsic::clear_cache: 6906 /// FunctionName may be null. 6907 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6908 lowerCallToExternalSymbol(I, FunctionName); 6909 return; 6910 case Intrinsic::donothing: 6911 case Intrinsic::seh_try_begin: 6912 case Intrinsic::seh_scope_begin: 6913 case Intrinsic::seh_try_end: 6914 case Intrinsic::seh_scope_end: 6915 // ignore 6916 return; 6917 case Intrinsic::experimental_stackmap: 6918 visitStackmap(I); 6919 return; 6920 case Intrinsic::experimental_patchpoint_void: 6921 case Intrinsic::experimental_patchpoint_i64: 6922 visitPatchpoint(I); 6923 return; 6924 case Intrinsic::experimental_gc_statepoint: 6925 LowerStatepoint(cast<GCStatepointInst>(I)); 6926 return; 6927 case Intrinsic::experimental_gc_result: 6928 visitGCResult(cast<GCResultInst>(I)); 6929 return; 6930 case Intrinsic::experimental_gc_relocate: 6931 visitGCRelocate(cast<GCRelocateInst>(I)); 6932 return; 6933 case Intrinsic::instrprof_cover: 6934 llvm_unreachable("instrprof failed to lower a cover"); 6935 case Intrinsic::instrprof_increment: 6936 llvm_unreachable("instrprof failed to lower an increment"); 6937 case Intrinsic::instrprof_value_profile: 6938 llvm_unreachable("instrprof failed to lower a value profiling call"); 6939 case Intrinsic::localescape: { 6940 MachineFunction &MF = DAG.getMachineFunction(); 6941 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6942 6943 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6944 // is the same on all targets. 6945 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6946 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6947 if (isa<ConstantPointerNull>(Arg)) 6948 continue; // Skip null pointers. They represent a hole in index space. 6949 AllocaInst *Slot = cast<AllocaInst>(Arg); 6950 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6951 "can only escape static allocas"); 6952 int FI = FuncInfo.StaticAllocaMap[Slot]; 6953 MCSymbol *FrameAllocSym = 6954 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6955 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6957 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6958 .addSym(FrameAllocSym) 6959 .addFrameIndex(FI); 6960 } 6961 6962 return; 6963 } 6964 6965 case Intrinsic::localrecover: { 6966 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6967 MachineFunction &MF = DAG.getMachineFunction(); 6968 6969 // Get the symbol that defines the frame offset. 6970 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6971 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6972 unsigned IdxVal = 6973 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6974 MCSymbol *FrameAllocSym = 6975 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6976 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6977 6978 Value *FP = I.getArgOperand(1); 6979 SDValue FPVal = getValue(FP); 6980 EVT PtrVT = FPVal.getValueType(); 6981 6982 // Create a MCSymbol for the label to avoid any target lowering 6983 // that would make this PC relative. 6984 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6985 SDValue OffsetVal = 6986 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6987 6988 // Add the offset to the FP. 6989 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6990 setValue(&I, Add); 6991 6992 return; 6993 } 6994 6995 case Intrinsic::eh_exceptionpointer: 6996 case Intrinsic::eh_exceptioncode: { 6997 // Get the exception pointer vreg, copy from it, and resize it to fit. 6998 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6999 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7000 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7001 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7002 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7003 if (Intrinsic == Intrinsic::eh_exceptioncode) 7004 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7005 setValue(&I, N); 7006 return; 7007 } 7008 case Intrinsic::xray_customevent: { 7009 // Here we want to make sure that the intrinsic behaves as if it has a 7010 // specific calling convention, and only for x86_64. 7011 // FIXME: Support other platforms later. 7012 const auto &Triple = DAG.getTarget().getTargetTriple(); 7013 if (Triple.getArch() != Triple::x86_64) 7014 return; 7015 7016 SmallVector<SDValue, 8> Ops; 7017 7018 // We want to say that we always want the arguments in registers. 7019 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7020 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7021 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7022 SDValue Chain = getRoot(); 7023 Ops.push_back(LogEntryVal); 7024 Ops.push_back(StrSizeVal); 7025 Ops.push_back(Chain); 7026 7027 // We need to enforce the calling convention for the callsite, so that 7028 // argument ordering is enforced correctly, and that register allocation can 7029 // see that some registers may be assumed clobbered and have to preserve 7030 // them across calls to the intrinsic. 7031 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7032 sdl, NodeTys, Ops); 7033 SDValue patchableNode = SDValue(MN, 0); 7034 DAG.setRoot(patchableNode); 7035 setValue(&I, patchableNode); 7036 return; 7037 } 7038 case Intrinsic::xray_typedevent: { 7039 // Here we want to make sure that the intrinsic behaves as if it has a 7040 // specific calling convention, and only for x86_64. 7041 // FIXME: Support other platforms later. 7042 const auto &Triple = DAG.getTarget().getTargetTriple(); 7043 if (Triple.getArch() != Triple::x86_64) 7044 return; 7045 7046 SmallVector<SDValue, 8> Ops; 7047 7048 // We want to say that we always want the arguments in registers. 7049 // It's unclear to me how manipulating the selection DAG here forces callers 7050 // to provide arguments in registers instead of on the stack. 7051 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7052 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7053 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7054 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7055 SDValue Chain = getRoot(); 7056 Ops.push_back(LogTypeId); 7057 Ops.push_back(LogEntryVal); 7058 Ops.push_back(StrSizeVal); 7059 Ops.push_back(Chain); 7060 7061 // We need to enforce the calling convention for the callsite, so that 7062 // argument ordering is enforced correctly, and that register allocation can 7063 // see that some registers may be assumed clobbered and have to preserve 7064 // them across calls to the intrinsic. 7065 MachineSDNode *MN = DAG.getMachineNode( 7066 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7067 SDValue patchableNode = SDValue(MN, 0); 7068 DAG.setRoot(patchableNode); 7069 setValue(&I, patchableNode); 7070 return; 7071 } 7072 case Intrinsic::experimental_deoptimize: 7073 LowerDeoptimizeCall(&I); 7074 return; 7075 case Intrinsic::experimental_stepvector: 7076 visitStepVector(I); 7077 return; 7078 case Intrinsic::vector_reduce_fadd: 7079 case Intrinsic::vector_reduce_fmul: 7080 case Intrinsic::vector_reduce_add: 7081 case Intrinsic::vector_reduce_mul: 7082 case Intrinsic::vector_reduce_and: 7083 case Intrinsic::vector_reduce_or: 7084 case Intrinsic::vector_reduce_xor: 7085 case Intrinsic::vector_reduce_smax: 7086 case Intrinsic::vector_reduce_smin: 7087 case Intrinsic::vector_reduce_umax: 7088 case Intrinsic::vector_reduce_umin: 7089 case Intrinsic::vector_reduce_fmax: 7090 case Intrinsic::vector_reduce_fmin: 7091 visitVectorReduce(I, Intrinsic); 7092 return; 7093 7094 case Intrinsic::icall_branch_funnel: { 7095 SmallVector<SDValue, 16> Ops; 7096 Ops.push_back(getValue(I.getArgOperand(0))); 7097 7098 int64_t Offset; 7099 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7100 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7101 if (!Base) 7102 report_fatal_error( 7103 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7104 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7105 7106 struct BranchFunnelTarget { 7107 int64_t Offset; 7108 SDValue Target; 7109 }; 7110 SmallVector<BranchFunnelTarget, 8> Targets; 7111 7112 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7113 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7114 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7115 if (ElemBase != Base) 7116 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7117 "to the same GlobalValue"); 7118 7119 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7120 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7121 if (!GA) 7122 report_fatal_error( 7123 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7124 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7125 GA->getGlobal(), sdl, Val.getValueType(), 7126 GA->getOffset())}); 7127 } 7128 llvm::sort(Targets, 7129 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7130 return T1.Offset < T2.Offset; 7131 }); 7132 7133 for (auto &T : Targets) { 7134 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7135 Ops.push_back(T.Target); 7136 } 7137 7138 Ops.push_back(DAG.getRoot()); // Chain 7139 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7140 MVT::Other, Ops), 7141 0); 7142 DAG.setRoot(N); 7143 setValue(&I, N); 7144 HasTailCall = true; 7145 return; 7146 } 7147 7148 case Intrinsic::wasm_landingpad_index: 7149 // Information this intrinsic contained has been transferred to 7150 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7151 // delete it now. 7152 return; 7153 7154 case Intrinsic::aarch64_settag: 7155 case Intrinsic::aarch64_settag_zero: { 7156 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7157 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7158 SDValue Val = TSI.EmitTargetCodeForSetTag( 7159 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7160 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7161 ZeroMemory); 7162 DAG.setRoot(Val); 7163 setValue(&I, Val); 7164 return; 7165 } 7166 case Intrinsic::ptrmask: { 7167 SDValue Ptr = getValue(I.getOperand(0)); 7168 SDValue Const = getValue(I.getOperand(1)); 7169 7170 EVT PtrVT = Ptr.getValueType(); 7171 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7172 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7173 return; 7174 } 7175 case Intrinsic::get_active_lane_mask: { 7176 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7177 SDValue Index = getValue(I.getOperand(0)); 7178 EVT ElementVT = Index.getValueType(); 7179 7180 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7181 visitTargetIntrinsic(I, Intrinsic); 7182 return; 7183 } 7184 7185 SDValue TripCount = getValue(I.getOperand(1)); 7186 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7187 7188 SDValue VectorIndex, VectorTripCount; 7189 if (VecTy.isScalableVector()) { 7190 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7191 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7192 } else { 7193 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7194 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7195 } 7196 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7197 SDValue VectorInduction = DAG.getNode( 7198 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7199 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7200 VectorTripCount, ISD::CondCode::SETULT); 7201 setValue(&I, SetCC); 7202 return; 7203 } 7204 case Intrinsic::vector_insert: { 7205 SDValue Vec = getValue(I.getOperand(0)); 7206 SDValue SubVec = getValue(I.getOperand(1)); 7207 SDValue Index = getValue(I.getOperand(2)); 7208 7209 // The intrinsic's index type is i64, but the SDNode requires an index type 7210 // suitable for the target. Convert the index as required. 7211 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7212 if (Index.getValueType() != VectorIdxTy) 7213 Index = DAG.getVectorIdxConstant( 7214 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7215 7216 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7217 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7218 Index)); 7219 return; 7220 } 7221 case Intrinsic::vector_extract: { 7222 SDValue Vec = getValue(I.getOperand(0)); 7223 SDValue Index = getValue(I.getOperand(1)); 7224 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7225 7226 // The intrinsic's index type is i64, but the SDNode requires an index type 7227 // suitable for the target. Convert the index as required. 7228 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7229 if (Index.getValueType() != VectorIdxTy) 7230 Index = DAG.getVectorIdxConstant( 7231 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7232 7233 setValue(&I, 7234 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7235 return; 7236 } 7237 case Intrinsic::experimental_vector_reverse: 7238 visitVectorReverse(I); 7239 return; 7240 case Intrinsic::experimental_vector_splice: 7241 visitVectorSplice(I); 7242 return; 7243 } 7244 } 7245 7246 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7247 const ConstrainedFPIntrinsic &FPI) { 7248 SDLoc sdl = getCurSDLoc(); 7249 7250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7251 SmallVector<EVT, 4> ValueVTs; 7252 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7253 ValueVTs.push_back(MVT::Other); // Out chain 7254 7255 // We do not need to serialize constrained FP intrinsics against 7256 // each other or against (nonvolatile) loads, so they can be 7257 // chained like loads. 7258 SDValue Chain = DAG.getRoot(); 7259 SmallVector<SDValue, 4> Opers; 7260 Opers.push_back(Chain); 7261 if (FPI.isUnaryOp()) { 7262 Opers.push_back(getValue(FPI.getArgOperand(0))); 7263 } else if (FPI.isTernaryOp()) { 7264 Opers.push_back(getValue(FPI.getArgOperand(0))); 7265 Opers.push_back(getValue(FPI.getArgOperand(1))); 7266 Opers.push_back(getValue(FPI.getArgOperand(2))); 7267 } else { 7268 Opers.push_back(getValue(FPI.getArgOperand(0))); 7269 Opers.push_back(getValue(FPI.getArgOperand(1))); 7270 } 7271 7272 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7273 assert(Result.getNode()->getNumValues() == 2); 7274 7275 // Push node to the appropriate list so that future instructions can be 7276 // chained up correctly. 7277 SDValue OutChain = Result.getValue(1); 7278 switch (EB) { 7279 case fp::ExceptionBehavior::ebIgnore: 7280 // The only reason why ebIgnore nodes still need to be chained is that 7281 // they might depend on the current rounding mode, and therefore must 7282 // not be moved across instruction that may change that mode. 7283 LLVM_FALLTHROUGH; 7284 case fp::ExceptionBehavior::ebMayTrap: 7285 // These must not be moved across calls or instructions that may change 7286 // floating-point exception masks. 7287 PendingConstrainedFP.push_back(OutChain); 7288 break; 7289 case fp::ExceptionBehavior::ebStrict: 7290 // These must not be moved across calls or instructions that may change 7291 // floating-point exception masks or read floating-point exception flags. 7292 // In addition, they cannot be optimized out even if unused. 7293 PendingConstrainedFPStrict.push_back(OutChain); 7294 break; 7295 } 7296 }; 7297 7298 SDVTList VTs = DAG.getVTList(ValueVTs); 7299 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7300 7301 SDNodeFlags Flags; 7302 if (EB == fp::ExceptionBehavior::ebIgnore) 7303 Flags.setNoFPExcept(true); 7304 7305 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7306 Flags.copyFMF(*FPOp); 7307 7308 unsigned Opcode; 7309 switch (FPI.getIntrinsicID()) { 7310 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7311 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7312 case Intrinsic::INTRINSIC: \ 7313 Opcode = ISD::STRICT_##DAGN; \ 7314 break; 7315 #include "llvm/IR/ConstrainedOps.def" 7316 case Intrinsic::experimental_constrained_fmuladd: { 7317 Opcode = ISD::STRICT_FMA; 7318 // Break fmuladd into fmul and fadd. 7319 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7320 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7321 ValueVTs[0])) { 7322 Opers.pop_back(); 7323 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7324 pushOutChain(Mul, EB); 7325 Opcode = ISD::STRICT_FADD; 7326 Opers.clear(); 7327 Opers.push_back(Mul.getValue(1)); 7328 Opers.push_back(Mul.getValue(0)); 7329 Opers.push_back(getValue(FPI.getArgOperand(2))); 7330 } 7331 break; 7332 } 7333 } 7334 7335 // A few strict DAG nodes carry additional operands that are not 7336 // set up by the default code above. 7337 switch (Opcode) { 7338 default: break; 7339 case ISD::STRICT_FP_ROUND: 7340 Opers.push_back( 7341 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7342 break; 7343 case ISD::STRICT_FSETCC: 7344 case ISD::STRICT_FSETCCS: { 7345 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7346 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7347 if (TM.Options.NoNaNsFPMath) 7348 Condition = getFCmpCodeWithoutNaN(Condition); 7349 Opers.push_back(DAG.getCondCode(Condition)); 7350 break; 7351 } 7352 } 7353 7354 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7355 pushOutChain(Result, EB); 7356 7357 SDValue FPResult = Result.getValue(0); 7358 setValue(&FPI, FPResult); 7359 } 7360 7361 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7362 Optional<unsigned> ResOPC; 7363 switch (VPIntrin.getIntrinsicID()) { 7364 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7365 case Intrinsic::VPID: \ 7366 ResOPC = ISD::VPSD; \ 7367 break; 7368 #include "llvm/IR/VPIntrinsics.def" 7369 } 7370 7371 if (!ResOPC) 7372 llvm_unreachable( 7373 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7374 7375 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7376 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7377 if (VPIntrin.getFastMathFlags().allowReassoc()) 7378 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7379 : ISD::VP_REDUCE_FMUL; 7380 } 7381 7382 return *ResOPC; 7383 } 7384 7385 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7386 SmallVector<SDValue, 7> &OpValues, 7387 bool IsGather) { 7388 SDLoc DL = getCurSDLoc(); 7389 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7390 Value *PtrOperand = VPIntrin.getArgOperand(0); 7391 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7392 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7393 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7394 SDValue LD; 7395 bool AddToChain = true; 7396 if (!IsGather) { 7397 // Do not serialize variable-length loads of constant memory with 7398 // anything. 7399 if (!Alignment) 7400 Alignment = DAG.getEVTAlign(VT); 7401 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7402 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7403 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7404 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7405 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7406 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7407 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7408 MMO, false /*IsExpanding */); 7409 } else { 7410 if (!Alignment) 7411 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7412 unsigned AS = 7413 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7414 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7415 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7416 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7417 SDValue Base, Index, Scale; 7418 ISD::MemIndexType IndexType; 7419 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7420 this, VPIntrin.getParent(), 7421 VT.getScalarStoreSize()); 7422 if (!UniformBase) { 7423 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7424 Index = getValue(PtrOperand); 7425 IndexType = ISD::SIGNED_SCALED; 7426 Scale = 7427 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7428 } 7429 EVT IdxVT = Index.getValueType(); 7430 EVT EltTy = IdxVT.getVectorElementType(); 7431 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7432 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7433 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7434 } 7435 LD = DAG.getGatherVP( 7436 DAG.getVTList(VT, MVT::Other), VT, DL, 7437 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7438 IndexType); 7439 } 7440 if (AddToChain) 7441 PendingLoads.push_back(LD.getValue(1)); 7442 setValue(&VPIntrin, LD); 7443 } 7444 7445 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7446 SmallVector<SDValue, 7> &OpValues, 7447 bool IsScatter) { 7448 SDLoc DL = getCurSDLoc(); 7449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7450 Value *PtrOperand = VPIntrin.getArgOperand(1); 7451 EVT VT = OpValues[0].getValueType(); 7452 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7453 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7454 SDValue ST; 7455 if (!IsScatter) { 7456 if (!Alignment) 7457 Alignment = DAG.getEVTAlign(VT); 7458 SDValue Ptr = OpValues[1]; 7459 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7460 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7461 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7462 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7463 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7464 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7465 /* IsTruncating */ false, /*IsCompressing*/ false); 7466 } else { 7467 if (!Alignment) 7468 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7469 unsigned AS = 7470 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7471 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7472 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7473 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7474 SDValue Base, Index, Scale; 7475 ISD::MemIndexType IndexType; 7476 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7477 this, VPIntrin.getParent(), 7478 VT.getScalarStoreSize()); 7479 if (!UniformBase) { 7480 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7481 Index = getValue(PtrOperand); 7482 IndexType = ISD::SIGNED_SCALED; 7483 Scale = 7484 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7485 } 7486 EVT IdxVT = Index.getValueType(); 7487 EVT EltTy = IdxVT.getVectorElementType(); 7488 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7489 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7490 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7491 } 7492 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7493 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7494 OpValues[2], OpValues[3]}, 7495 MMO, IndexType); 7496 } 7497 DAG.setRoot(ST); 7498 setValue(&VPIntrin, ST); 7499 } 7500 7501 void SelectionDAGBuilder::visitVPStridedLoad( 7502 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7503 SDLoc DL = getCurSDLoc(); 7504 Value *PtrOperand = VPIntrin.getArgOperand(0); 7505 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7506 if (!Alignment) 7507 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7508 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7509 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7510 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7511 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7512 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7513 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7514 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7515 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7516 7517 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7518 OpValues[2], OpValues[3], MMO, 7519 false /*IsExpanding*/); 7520 7521 if (AddToChain) 7522 PendingLoads.push_back(LD.getValue(1)); 7523 setValue(&VPIntrin, LD); 7524 } 7525 7526 void SelectionDAGBuilder::visitVPStridedStore( 7527 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7528 SDLoc DL = getCurSDLoc(); 7529 Value *PtrOperand = VPIntrin.getArgOperand(1); 7530 EVT VT = OpValues[0].getValueType(); 7531 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7532 if (!Alignment) 7533 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7534 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7535 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7536 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7537 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7538 7539 SDValue ST = DAG.getStridedStoreVP( 7540 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7541 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7542 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7543 /*IsCompressing*/ false); 7544 7545 DAG.setRoot(ST); 7546 setValue(&VPIntrin, ST); 7547 } 7548 7549 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7551 SDLoc DL = getCurSDLoc(); 7552 7553 ISD::CondCode Condition; 7554 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7555 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7556 if (IsFP) { 7557 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7558 // flags, but calls that don't return floating-point types can't be 7559 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7560 Condition = getFCmpCondCode(CondCode); 7561 if (TM.Options.NoNaNsFPMath) 7562 Condition = getFCmpCodeWithoutNaN(Condition); 7563 } else { 7564 Condition = getICmpCondCode(CondCode); 7565 } 7566 7567 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7568 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7569 // #2 is the condition code 7570 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7571 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7572 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7573 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7574 "Unexpected target EVL type"); 7575 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7576 7577 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7578 VPIntrin.getType()); 7579 setValue(&VPIntrin, 7580 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7581 } 7582 7583 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7584 const VPIntrinsic &VPIntrin) { 7585 SDLoc DL = getCurSDLoc(); 7586 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7587 7588 auto IID = VPIntrin.getIntrinsicID(); 7589 7590 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7591 return visitVPCmp(*CmpI); 7592 7593 SmallVector<EVT, 4> ValueVTs; 7594 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7595 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7596 SDVTList VTs = DAG.getVTList(ValueVTs); 7597 7598 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7599 7600 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7601 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7602 "Unexpected target EVL type"); 7603 7604 // Request operands. 7605 SmallVector<SDValue, 7> OpValues; 7606 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7607 auto Op = getValue(VPIntrin.getArgOperand(I)); 7608 if (I == EVLParamPos) 7609 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7610 OpValues.push_back(Op); 7611 } 7612 7613 switch (Opcode) { 7614 default: { 7615 SDNodeFlags SDFlags; 7616 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7617 SDFlags.copyFMF(*FPMO); 7618 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7619 setValue(&VPIntrin, Result); 7620 break; 7621 } 7622 case ISD::VP_LOAD: 7623 case ISD::VP_GATHER: 7624 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7625 Opcode == ISD::VP_GATHER); 7626 break; 7627 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7628 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7629 break; 7630 case ISD::VP_STORE: 7631 case ISD::VP_SCATTER: 7632 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7633 break; 7634 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7635 visitVPStridedStore(VPIntrin, OpValues); 7636 break; 7637 } 7638 } 7639 7640 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7641 const BasicBlock *EHPadBB, 7642 MCSymbol *&BeginLabel) { 7643 MachineFunction &MF = DAG.getMachineFunction(); 7644 MachineModuleInfo &MMI = MF.getMMI(); 7645 7646 // Insert a label before the invoke call to mark the try range. This can be 7647 // used to detect deletion of the invoke via the MachineModuleInfo. 7648 BeginLabel = MMI.getContext().createTempSymbol(); 7649 7650 // For SjLj, keep track of which landing pads go with which invokes 7651 // so as to maintain the ordering of pads in the LSDA. 7652 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7653 if (CallSiteIndex) { 7654 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7655 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7656 7657 // Now that the call site is handled, stop tracking it. 7658 MMI.setCurrentCallSite(0); 7659 } 7660 7661 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7662 } 7663 7664 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7665 const BasicBlock *EHPadBB, 7666 MCSymbol *BeginLabel) { 7667 assert(BeginLabel && "BeginLabel should've been set"); 7668 7669 MachineFunction &MF = DAG.getMachineFunction(); 7670 MachineModuleInfo &MMI = MF.getMMI(); 7671 7672 // Insert a label at the end of the invoke call to mark the try range. This 7673 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7674 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7675 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7676 7677 // Inform MachineModuleInfo of range. 7678 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7679 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7680 // actually use outlined funclets and their LSDA info style. 7681 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7682 assert(II && "II should've been set"); 7683 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7684 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7685 } else if (!isScopedEHPersonality(Pers)) { 7686 assert(EHPadBB); 7687 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7688 } 7689 7690 return Chain; 7691 } 7692 7693 std::pair<SDValue, SDValue> 7694 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7695 const BasicBlock *EHPadBB) { 7696 MCSymbol *BeginLabel = nullptr; 7697 7698 if (EHPadBB) { 7699 // Both PendingLoads and PendingExports must be flushed here; 7700 // this call might not return. 7701 (void)getRoot(); 7702 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7703 CLI.setChain(getRoot()); 7704 } 7705 7706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7707 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7708 7709 assert((CLI.IsTailCall || Result.second.getNode()) && 7710 "Non-null chain expected with non-tail call!"); 7711 assert((Result.second.getNode() || !Result.first.getNode()) && 7712 "Null value expected with tail call!"); 7713 7714 if (!Result.second.getNode()) { 7715 // As a special case, a null chain means that a tail call has been emitted 7716 // and the DAG root is already updated. 7717 HasTailCall = true; 7718 7719 // Since there's no actual continuation from this block, nothing can be 7720 // relying on us setting vregs for them. 7721 PendingExports.clear(); 7722 } else { 7723 DAG.setRoot(Result.second); 7724 } 7725 7726 if (EHPadBB) { 7727 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7728 BeginLabel)); 7729 } 7730 7731 return Result; 7732 } 7733 7734 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7735 bool isTailCall, 7736 bool isMustTailCall, 7737 const BasicBlock *EHPadBB) { 7738 auto &DL = DAG.getDataLayout(); 7739 FunctionType *FTy = CB.getFunctionType(); 7740 Type *RetTy = CB.getType(); 7741 7742 TargetLowering::ArgListTy Args; 7743 Args.reserve(CB.arg_size()); 7744 7745 const Value *SwiftErrorVal = nullptr; 7746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7747 7748 if (isTailCall) { 7749 // Avoid emitting tail calls in functions with the disable-tail-calls 7750 // attribute. 7751 auto *Caller = CB.getParent()->getParent(); 7752 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7753 "true" && !isMustTailCall) 7754 isTailCall = false; 7755 7756 // We can't tail call inside a function with a swifterror argument. Lowering 7757 // does not support this yet. It would have to move into the swifterror 7758 // register before the call. 7759 if (TLI.supportSwiftError() && 7760 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7761 isTailCall = false; 7762 } 7763 7764 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7765 TargetLowering::ArgListEntry Entry; 7766 const Value *V = *I; 7767 7768 // Skip empty types 7769 if (V->getType()->isEmptyTy()) 7770 continue; 7771 7772 SDValue ArgNode = getValue(V); 7773 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7774 7775 Entry.setAttributes(&CB, I - CB.arg_begin()); 7776 7777 // Use swifterror virtual register as input to the call. 7778 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7779 SwiftErrorVal = V; 7780 // We find the virtual register for the actual swifterror argument. 7781 // Instead of using the Value, we use the virtual register instead. 7782 Entry.Node = 7783 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7784 EVT(TLI.getPointerTy(DL))); 7785 } 7786 7787 Args.push_back(Entry); 7788 7789 // If we have an explicit sret argument that is an Instruction, (i.e., it 7790 // might point to function-local memory), we can't meaningfully tail-call. 7791 if (Entry.IsSRet && isa<Instruction>(V)) 7792 isTailCall = false; 7793 } 7794 7795 // If call site has a cfguardtarget operand bundle, create and add an 7796 // additional ArgListEntry. 7797 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7798 TargetLowering::ArgListEntry Entry; 7799 Value *V = Bundle->Inputs[0]; 7800 SDValue ArgNode = getValue(V); 7801 Entry.Node = ArgNode; 7802 Entry.Ty = V->getType(); 7803 Entry.IsCFGuardTarget = true; 7804 Args.push_back(Entry); 7805 } 7806 7807 // Check if target-independent constraints permit a tail call here. 7808 // Target-dependent constraints are checked within TLI->LowerCallTo. 7809 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7810 isTailCall = false; 7811 7812 // Disable tail calls if there is an swifterror argument. Targets have not 7813 // been updated to support tail calls. 7814 if (TLI.supportSwiftError() && SwiftErrorVal) 7815 isTailCall = false; 7816 7817 TargetLowering::CallLoweringInfo CLI(DAG); 7818 CLI.setDebugLoc(getCurSDLoc()) 7819 .setChain(getRoot()) 7820 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7821 .setTailCall(isTailCall) 7822 .setConvergent(CB.isConvergent()) 7823 .setIsPreallocated( 7824 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7825 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7826 7827 if (Result.first.getNode()) { 7828 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7829 setValue(&CB, Result.first); 7830 } 7831 7832 // The last element of CLI.InVals has the SDValue for swifterror return. 7833 // Here we copy it to a virtual register and update SwiftErrorMap for 7834 // book-keeping. 7835 if (SwiftErrorVal && TLI.supportSwiftError()) { 7836 // Get the last element of InVals. 7837 SDValue Src = CLI.InVals.back(); 7838 Register VReg = 7839 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7840 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7841 DAG.setRoot(CopyNode); 7842 } 7843 } 7844 7845 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7846 SelectionDAGBuilder &Builder) { 7847 // Check to see if this load can be trivially constant folded, e.g. if the 7848 // input is from a string literal. 7849 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7850 // Cast pointer to the type we really want to load. 7851 Type *LoadTy = 7852 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7853 if (LoadVT.isVector()) 7854 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7855 7856 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7857 PointerType::getUnqual(LoadTy)); 7858 7859 if (const Constant *LoadCst = 7860 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7861 LoadTy, Builder.DAG.getDataLayout())) 7862 return Builder.getValue(LoadCst); 7863 } 7864 7865 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7866 // still constant memory, the input chain can be the entry node. 7867 SDValue Root; 7868 bool ConstantMemory = false; 7869 7870 // Do not serialize (non-volatile) loads of constant memory with anything. 7871 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7872 Root = Builder.DAG.getEntryNode(); 7873 ConstantMemory = true; 7874 } else { 7875 // Do not serialize non-volatile loads against each other. 7876 Root = Builder.DAG.getRoot(); 7877 } 7878 7879 SDValue Ptr = Builder.getValue(PtrVal); 7880 SDValue LoadVal = 7881 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7882 MachinePointerInfo(PtrVal), Align(1)); 7883 7884 if (!ConstantMemory) 7885 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7886 return LoadVal; 7887 } 7888 7889 /// Record the value for an instruction that produces an integer result, 7890 /// converting the type where necessary. 7891 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7892 SDValue Value, 7893 bool IsSigned) { 7894 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7895 I.getType(), true); 7896 if (IsSigned) 7897 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7898 else 7899 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7900 setValue(&I, Value); 7901 } 7902 7903 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7904 /// true and lower it. Otherwise return false, and it will be lowered like a 7905 /// normal call. 7906 /// The caller already checked that \p I calls the appropriate LibFunc with a 7907 /// correct prototype. 7908 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7909 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7910 const Value *Size = I.getArgOperand(2); 7911 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 7912 if (CSize && CSize->getZExtValue() == 0) { 7913 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7914 I.getType(), true); 7915 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7916 return true; 7917 } 7918 7919 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7920 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7921 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7922 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7923 if (Res.first.getNode()) { 7924 processIntegerCallValue(I, Res.first, true); 7925 PendingLoads.push_back(Res.second); 7926 return true; 7927 } 7928 7929 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7930 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7931 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7932 return false; 7933 7934 // If the target has a fast compare for the given size, it will return a 7935 // preferred load type for that size. Require that the load VT is legal and 7936 // that the target supports unaligned loads of that type. Otherwise, return 7937 // INVALID. 7938 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7940 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7941 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7942 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7943 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7944 // TODO: Check alignment of src and dest ptrs. 7945 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7946 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7947 if (!TLI.isTypeLegal(LVT) || 7948 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7949 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7950 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7951 } 7952 7953 return LVT; 7954 }; 7955 7956 // This turns into unaligned loads. We only do this if the target natively 7957 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7958 // we'll only produce a small number of byte loads. 7959 MVT LoadVT; 7960 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7961 switch (NumBitsToCompare) { 7962 default: 7963 return false; 7964 case 16: 7965 LoadVT = MVT::i16; 7966 break; 7967 case 32: 7968 LoadVT = MVT::i32; 7969 break; 7970 case 64: 7971 case 128: 7972 case 256: 7973 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7974 break; 7975 } 7976 7977 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7978 return false; 7979 7980 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7981 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7982 7983 // Bitcast to a wide integer type if the loads are vectors. 7984 if (LoadVT.isVector()) { 7985 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7986 LoadL = DAG.getBitcast(CmpVT, LoadL); 7987 LoadR = DAG.getBitcast(CmpVT, LoadR); 7988 } 7989 7990 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7991 processIntegerCallValue(I, Cmp, false); 7992 return true; 7993 } 7994 7995 /// See if we can lower a memchr call into an optimized form. If so, return 7996 /// true and lower it. Otherwise return false, and it will be lowered like a 7997 /// normal call. 7998 /// The caller already checked that \p I calls the appropriate LibFunc with a 7999 /// correct prototype. 8000 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8001 const Value *Src = I.getArgOperand(0); 8002 const Value *Char = I.getArgOperand(1); 8003 const Value *Length = I.getArgOperand(2); 8004 8005 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8006 std::pair<SDValue, SDValue> Res = 8007 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8008 getValue(Src), getValue(Char), getValue(Length), 8009 MachinePointerInfo(Src)); 8010 if (Res.first.getNode()) { 8011 setValue(&I, Res.first); 8012 PendingLoads.push_back(Res.second); 8013 return true; 8014 } 8015 8016 return false; 8017 } 8018 8019 /// See if we can lower a mempcpy call into an optimized form. If so, return 8020 /// true and lower it. Otherwise return false, and it will be lowered like a 8021 /// normal call. 8022 /// The caller already checked that \p I calls the appropriate LibFunc with a 8023 /// correct prototype. 8024 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8025 SDValue Dst = getValue(I.getArgOperand(0)); 8026 SDValue Src = getValue(I.getArgOperand(1)); 8027 SDValue Size = getValue(I.getArgOperand(2)); 8028 8029 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8030 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8031 // DAG::getMemcpy needs Alignment to be defined. 8032 Align Alignment = std::min(DstAlign, SrcAlign); 8033 8034 bool isVol = false; 8035 SDLoc sdl = getCurSDLoc(); 8036 8037 // In the mempcpy context we need to pass in a false value for isTailCall 8038 // because the return pointer needs to be adjusted by the size of 8039 // the copied memory. 8040 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8041 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8042 /*isTailCall=*/false, 8043 MachinePointerInfo(I.getArgOperand(0)), 8044 MachinePointerInfo(I.getArgOperand(1)), 8045 I.getAAMetadata()); 8046 assert(MC.getNode() != nullptr && 8047 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8048 DAG.setRoot(MC); 8049 8050 // Check if Size needs to be truncated or extended. 8051 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8052 8053 // Adjust return pointer to point just past the last dst byte. 8054 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8055 Dst, Size); 8056 setValue(&I, DstPlusSize); 8057 return true; 8058 } 8059 8060 /// See if we can lower a strcpy call into an optimized form. If so, return 8061 /// true and lower it, otherwise return false and it will be lowered like a 8062 /// normal call. 8063 /// The caller already checked that \p I calls the appropriate LibFunc with a 8064 /// correct prototype. 8065 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8066 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8067 8068 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8069 std::pair<SDValue, SDValue> Res = 8070 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8071 getValue(Arg0), getValue(Arg1), 8072 MachinePointerInfo(Arg0), 8073 MachinePointerInfo(Arg1), isStpcpy); 8074 if (Res.first.getNode()) { 8075 setValue(&I, Res.first); 8076 DAG.setRoot(Res.second); 8077 return true; 8078 } 8079 8080 return false; 8081 } 8082 8083 /// See if we can lower a strcmp call into an optimized form. If so, return 8084 /// true and lower it, otherwise return false and it will be lowered like a 8085 /// normal call. 8086 /// The caller already checked that \p I calls the appropriate LibFunc with a 8087 /// correct prototype. 8088 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8089 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8090 8091 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8092 std::pair<SDValue, SDValue> Res = 8093 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8094 getValue(Arg0), getValue(Arg1), 8095 MachinePointerInfo(Arg0), 8096 MachinePointerInfo(Arg1)); 8097 if (Res.first.getNode()) { 8098 processIntegerCallValue(I, Res.first, true); 8099 PendingLoads.push_back(Res.second); 8100 return true; 8101 } 8102 8103 return false; 8104 } 8105 8106 /// See if we can lower a strlen call into an optimized form. If so, return 8107 /// true and lower it, otherwise return false and it will be lowered like a 8108 /// normal call. 8109 /// The caller already checked that \p I calls the appropriate LibFunc with a 8110 /// correct prototype. 8111 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8112 const Value *Arg0 = I.getArgOperand(0); 8113 8114 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8115 std::pair<SDValue, SDValue> Res = 8116 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8117 getValue(Arg0), MachinePointerInfo(Arg0)); 8118 if (Res.first.getNode()) { 8119 processIntegerCallValue(I, Res.first, false); 8120 PendingLoads.push_back(Res.second); 8121 return true; 8122 } 8123 8124 return false; 8125 } 8126 8127 /// See if we can lower a strnlen call into an optimized form. If so, return 8128 /// true and lower it, otherwise return false and it will be lowered like a 8129 /// normal call. 8130 /// The caller already checked that \p I calls the appropriate LibFunc with a 8131 /// correct prototype. 8132 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8133 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8134 8135 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8136 std::pair<SDValue, SDValue> Res = 8137 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8138 getValue(Arg0), getValue(Arg1), 8139 MachinePointerInfo(Arg0)); 8140 if (Res.first.getNode()) { 8141 processIntegerCallValue(I, Res.first, false); 8142 PendingLoads.push_back(Res.second); 8143 return true; 8144 } 8145 8146 return false; 8147 } 8148 8149 /// See if we can lower a unary floating-point operation into an SDNode with 8150 /// the specified Opcode. If so, return true and lower it, otherwise return 8151 /// false and it will be lowered like a normal call. 8152 /// The caller already checked that \p I calls the appropriate LibFunc with a 8153 /// correct prototype. 8154 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8155 unsigned Opcode) { 8156 // We already checked this call's prototype; verify it doesn't modify errno. 8157 if (!I.onlyReadsMemory()) 8158 return false; 8159 8160 SDNodeFlags Flags; 8161 Flags.copyFMF(cast<FPMathOperator>(I)); 8162 8163 SDValue Tmp = getValue(I.getArgOperand(0)); 8164 setValue(&I, 8165 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8166 return true; 8167 } 8168 8169 /// See if we can lower a binary floating-point operation into an SDNode with 8170 /// the specified Opcode. If so, return true and lower it. Otherwise return 8171 /// false, and it will be lowered like a normal call. 8172 /// The caller already checked that \p I calls the appropriate LibFunc with a 8173 /// correct prototype. 8174 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8175 unsigned Opcode) { 8176 // We already checked this call's prototype; verify it doesn't modify errno. 8177 if (!I.onlyReadsMemory()) 8178 return false; 8179 8180 SDNodeFlags Flags; 8181 Flags.copyFMF(cast<FPMathOperator>(I)); 8182 8183 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8184 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8185 EVT VT = Tmp0.getValueType(); 8186 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8187 return true; 8188 } 8189 8190 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8191 // Handle inline assembly differently. 8192 if (I.isInlineAsm()) { 8193 visitInlineAsm(I); 8194 return; 8195 } 8196 8197 if (Function *F = I.getCalledFunction()) { 8198 diagnoseDontCall(I); 8199 8200 if (F->isDeclaration()) { 8201 // Is this an LLVM intrinsic or a target-specific intrinsic? 8202 unsigned IID = F->getIntrinsicID(); 8203 if (!IID) 8204 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8205 IID = II->getIntrinsicID(F); 8206 8207 if (IID) { 8208 visitIntrinsicCall(I, IID); 8209 return; 8210 } 8211 } 8212 8213 // Check for well-known libc/libm calls. If the function is internal, it 8214 // can't be a library call. Don't do the check if marked as nobuiltin for 8215 // some reason or the call site requires strict floating point semantics. 8216 LibFunc Func; 8217 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8218 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8219 LibInfo->hasOptimizedCodeGen(Func)) { 8220 switch (Func) { 8221 default: break; 8222 case LibFunc_bcmp: 8223 if (visitMemCmpBCmpCall(I)) 8224 return; 8225 break; 8226 case LibFunc_copysign: 8227 case LibFunc_copysignf: 8228 case LibFunc_copysignl: 8229 // We already checked this call's prototype; verify it doesn't modify 8230 // errno. 8231 if (I.onlyReadsMemory()) { 8232 SDValue LHS = getValue(I.getArgOperand(0)); 8233 SDValue RHS = getValue(I.getArgOperand(1)); 8234 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8235 LHS.getValueType(), LHS, RHS)); 8236 return; 8237 } 8238 break; 8239 case LibFunc_fabs: 8240 case LibFunc_fabsf: 8241 case LibFunc_fabsl: 8242 if (visitUnaryFloatCall(I, ISD::FABS)) 8243 return; 8244 break; 8245 case LibFunc_fmin: 8246 case LibFunc_fminf: 8247 case LibFunc_fminl: 8248 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8249 return; 8250 break; 8251 case LibFunc_fmax: 8252 case LibFunc_fmaxf: 8253 case LibFunc_fmaxl: 8254 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8255 return; 8256 break; 8257 case LibFunc_sin: 8258 case LibFunc_sinf: 8259 case LibFunc_sinl: 8260 if (visitUnaryFloatCall(I, ISD::FSIN)) 8261 return; 8262 break; 8263 case LibFunc_cos: 8264 case LibFunc_cosf: 8265 case LibFunc_cosl: 8266 if (visitUnaryFloatCall(I, ISD::FCOS)) 8267 return; 8268 break; 8269 case LibFunc_sqrt: 8270 case LibFunc_sqrtf: 8271 case LibFunc_sqrtl: 8272 case LibFunc_sqrt_finite: 8273 case LibFunc_sqrtf_finite: 8274 case LibFunc_sqrtl_finite: 8275 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8276 return; 8277 break; 8278 case LibFunc_floor: 8279 case LibFunc_floorf: 8280 case LibFunc_floorl: 8281 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8282 return; 8283 break; 8284 case LibFunc_nearbyint: 8285 case LibFunc_nearbyintf: 8286 case LibFunc_nearbyintl: 8287 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8288 return; 8289 break; 8290 case LibFunc_ceil: 8291 case LibFunc_ceilf: 8292 case LibFunc_ceill: 8293 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8294 return; 8295 break; 8296 case LibFunc_rint: 8297 case LibFunc_rintf: 8298 case LibFunc_rintl: 8299 if (visitUnaryFloatCall(I, ISD::FRINT)) 8300 return; 8301 break; 8302 case LibFunc_round: 8303 case LibFunc_roundf: 8304 case LibFunc_roundl: 8305 if (visitUnaryFloatCall(I, ISD::FROUND)) 8306 return; 8307 break; 8308 case LibFunc_trunc: 8309 case LibFunc_truncf: 8310 case LibFunc_truncl: 8311 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8312 return; 8313 break; 8314 case LibFunc_log2: 8315 case LibFunc_log2f: 8316 case LibFunc_log2l: 8317 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8318 return; 8319 break; 8320 case LibFunc_exp2: 8321 case LibFunc_exp2f: 8322 case LibFunc_exp2l: 8323 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8324 return; 8325 break; 8326 case LibFunc_memcmp: 8327 if (visitMemCmpBCmpCall(I)) 8328 return; 8329 break; 8330 case LibFunc_mempcpy: 8331 if (visitMemPCpyCall(I)) 8332 return; 8333 break; 8334 case LibFunc_memchr: 8335 if (visitMemChrCall(I)) 8336 return; 8337 break; 8338 case LibFunc_strcpy: 8339 if (visitStrCpyCall(I, false)) 8340 return; 8341 break; 8342 case LibFunc_stpcpy: 8343 if (visitStrCpyCall(I, true)) 8344 return; 8345 break; 8346 case LibFunc_strcmp: 8347 if (visitStrCmpCall(I)) 8348 return; 8349 break; 8350 case LibFunc_strlen: 8351 if (visitStrLenCall(I)) 8352 return; 8353 break; 8354 case LibFunc_strnlen: 8355 if (visitStrNLenCall(I)) 8356 return; 8357 break; 8358 } 8359 } 8360 } 8361 8362 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8363 // have to do anything here to lower funclet bundles. 8364 // CFGuardTarget bundles are lowered in LowerCallTo. 8365 assert(!I.hasOperandBundlesOtherThan( 8366 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8367 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8368 LLVMContext::OB_clang_arc_attachedcall}) && 8369 "Cannot lower calls with arbitrary operand bundles!"); 8370 8371 SDValue Callee = getValue(I.getCalledOperand()); 8372 8373 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8374 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8375 else 8376 // Check if we can potentially perform a tail call. More detailed checking 8377 // is be done within LowerCallTo, after more information about the call is 8378 // known. 8379 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8380 } 8381 8382 namespace { 8383 8384 /// AsmOperandInfo - This contains information for each constraint that we are 8385 /// lowering. 8386 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8387 public: 8388 /// CallOperand - If this is the result output operand or a clobber 8389 /// this is null, otherwise it is the incoming operand to the CallInst. 8390 /// This gets modified as the asm is processed. 8391 SDValue CallOperand; 8392 8393 /// AssignedRegs - If this is a register or register class operand, this 8394 /// contains the set of register corresponding to the operand. 8395 RegsForValue AssignedRegs; 8396 8397 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8398 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8399 } 8400 8401 /// Whether or not this operand accesses memory 8402 bool hasMemory(const TargetLowering &TLI) const { 8403 // Indirect operand accesses access memory. 8404 if (isIndirect) 8405 return true; 8406 8407 for (const auto &Code : Codes) 8408 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8409 return true; 8410 8411 return false; 8412 } 8413 8414 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8415 /// corresponds to. If there is no Value* for this operand, it returns 8416 /// MVT::Other. 8417 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8418 const DataLayout &DL, 8419 llvm::Type *ParamElemType) const { 8420 if (!CallOperandVal) return MVT::Other; 8421 8422 if (isa<BasicBlock>(CallOperandVal)) 8423 return TLI.getProgramPointerTy(DL); 8424 8425 llvm::Type *OpTy = CallOperandVal->getType(); 8426 8427 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8428 // If this is an indirect operand, the operand is a pointer to the 8429 // accessed type. 8430 if (isIndirect) { 8431 OpTy = ParamElemType; 8432 assert(OpTy && "Indirect operand must have elementtype attribute"); 8433 } 8434 8435 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8436 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8437 if (STy->getNumElements() == 1) 8438 OpTy = STy->getElementType(0); 8439 8440 // If OpTy is not a single value, it may be a struct/union that we 8441 // can tile with integers. 8442 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8443 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8444 switch (BitSize) { 8445 default: break; 8446 case 1: 8447 case 8: 8448 case 16: 8449 case 32: 8450 case 64: 8451 case 128: 8452 OpTy = IntegerType::get(Context, BitSize); 8453 break; 8454 } 8455 } 8456 8457 return TLI.getAsmOperandValueType(DL, OpTy, true); 8458 } 8459 }; 8460 8461 8462 } // end anonymous namespace 8463 8464 /// Make sure that the output operand \p OpInfo and its corresponding input 8465 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8466 /// out). 8467 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8468 SDISelAsmOperandInfo &MatchingOpInfo, 8469 SelectionDAG &DAG) { 8470 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8471 return; 8472 8473 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8474 const auto &TLI = DAG.getTargetLoweringInfo(); 8475 8476 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8477 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8478 OpInfo.ConstraintVT); 8479 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8480 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8481 MatchingOpInfo.ConstraintVT); 8482 if ((OpInfo.ConstraintVT.isInteger() != 8483 MatchingOpInfo.ConstraintVT.isInteger()) || 8484 (MatchRC.second != InputRC.second)) { 8485 // FIXME: error out in a more elegant fashion 8486 report_fatal_error("Unsupported asm: input constraint" 8487 " with a matching output constraint of" 8488 " incompatible type!"); 8489 } 8490 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8491 } 8492 8493 /// Get a direct memory input to behave well as an indirect operand. 8494 /// This may introduce stores, hence the need for a \p Chain. 8495 /// \return The (possibly updated) chain. 8496 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8497 SDISelAsmOperandInfo &OpInfo, 8498 SelectionDAG &DAG) { 8499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8500 8501 // If we don't have an indirect input, put it in the constpool if we can, 8502 // otherwise spill it to a stack slot. 8503 // TODO: This isn't quite right. We need to handle these according to 8504 // the addressing mode that the constraint wants. Also, this may take 8505 // an additional register for the computation and we don't want that 8506 // either. 8507 8508 // If the operand is a float, integer, or vector constant, spill to a 8509 // constant pool entry to get its address. 8510 const Value *OpVal = OpInfo.CallOperandVal; 8511 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8512 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8513 OpInfo.CallOperand = DAG.getConstantPool( 8514 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8515 return Chain; 8516 } 8517 8518 // Otherwise, create a stack slot and emit a store to it before the asm. 8519 Type *Ty = OpVal->getType(); 8520 auto &DL = DAG.getDataLayout(); 8521 uint64_t TySize = DL.getTypeAllocSize(Ty); 8522 MachineFunction &MF = DAG.getMachineFunction(); 8523 int SSFI = MF.getFrameInfo().CreateStackObject( 8524 TySize, DL.getPrefTypeAlign(Ty), false); 8525 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8526 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8527 MachinePointerInfo::getFixedStack(MF, SSFI), 8528 TLI.getMemValueType(DL, Ty)); 8529 OpInfo.CallOperand = StackSlot; 8530 8531 return Chain; 8532 } 8533 8534 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8535 /// specified operand. We prefer to assign virtual registers, to allow the 8536 /// register allocator to handle the assignment process. However, if the asm 8537 /// uses features that we can't model on machineinstrs, we have SDISel do the 8538 /// allocation. This produces generally horrible, but correct, code. 8539 /// 8540 /// OpInfo describes the operand 8541 /// RefOpInfo describes the matching operand if any, the operand otherwise 8542 static llvm::Optional<unsigned> 8543 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8544 SDISelAsmOperandInfo &OpInfo, 8545 SDISelAsmOperandInfo &RefOpInfo) { 8546 LLVMContext &Context = *DAG.getContext(); 8547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8548 8549 MachineFunction &MF = DAG.getMachineFunction(); 8550 SmallVector<unsigned, 4> Regs; 8551 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8552 8553 // No work to do for memory/address operands. 8554 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8555 OpInfo.ConstraintType == TargetLowering::C_Address) 8556 return None; 8557 8558 // If this is a constraint for a single physreg, or a constraint for a 8559 // register class, find it. 8560 unsigned AssignedReg; 8561 const TargetRegisterClass *RC; 8562 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8563 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8564 // RC is unset only on failure. Return immediately. 8565 if (!RC) 8566 return None; 8567 8568 // Get the actual register value type. This is important, because the user 8569 // may have asked for (e.g.) the AX register in i32 type. We need to 8570 // remember that AX is actually i16 to get the right extension. 8571 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8572 8573 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8574 // If this is an FP operand in an integer register (or visa versa), or more 8575 // generally if the operand value disagrees with the register class we plan 8576 // to stick it in, fix the operand type. 8577 // 8578 // If this is an input value, the bitcast to the new type is done now. 8579 // Bitcast for output value is done at the end of visitInlineAsm(). 8580 if ((OpInfo.Type == InlineAsm::isOutput || 8581 OpInfo.Type == InlineAsm::isInput) && 8582 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8583 // Try to convert to the first EVT that the reg class contains. If the 8584 // types are identical size, use a bitcast to convert (e.g. two differing 8585 // vector types). Note: output bitcast is done at the end of 8586 // visitInlineAsm(). 8587 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8588 // Exclude indirect inputs while they are unsupported because the code 8589 // to perform the load is missing and thus OpInfo.CallOperand still 8590 // refers to the input address rather than the pointed-to value. 8591 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8592 OpInfo.CallOperand = 8593 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8594 OpInfo.ConstraintVT = RegVT; 8595 // If the operand is an FP value and we want it in integer registers, 8596 // use the corresponding integer type. This turns an f64 value into 8597 // i64, which can be passed with two i32 values on a 32-bit machine. 8598 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8599 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8600 if (OpInfo.Type == InlineAsm::isInput) 8601 OpInfo.CallOperand = 8602 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8603 OpInfo.ConstraintVT = VT; 8604 } 8605 } 8606 } 8607 8608 // No need to allocate a matching input constraint since the constraint it's 8609 // matching to has already been allocated. 8610 if (OpInfo.isMatchingInputConstraint()) 8611 return None; 8612 8613 EVT ValueVT = OpInfo.ConstraintVT; 8614 if (OpInfo.ConstraintVT == MVT::Other) 8615 ValueVT = RegVT; 8616 8617 // Initialize NumRegs. 8618 unsigned NumRegs = 1; 8619 if (OpInfo.ConstraintVT != MVT::Other) 8620 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8621 8622 // If this is a constraint for a specific physical register, like {r17}, 8623 // assign it now. 8624 8625 // If this associated to a specific register, initialize iterator to correct 8626 // place. If virtual, make sure we have enough registers 8627 8628 // Initialize iterator if necessary 8629 TargetRegisterClass::iterator I = RC->begin(); 8630 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8631 8632 // Do not check for single registers. 8633 if (AssignedReg) { 8634 I = std::find(I, RC->end(), AssignedReg); 8635 if (I == RC->end()) { 8636 // RC does not contain the selected register, which indicates a 8637 // mismatch between the register and the required type/bitwidth. 8638 return {AssignedReg}; 8639 } 8640 } 8641 8642 for (; NumRegs; --NumRegs, ++I) { 8643 assert(I != RC->end() && "Ran out of registers to allocate!"); 8644 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8645 Regs.push_back(R); 8646 } 8647 8648 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8649 return None; 8650 } 8651 8652 static unsigned 8653 findMatchingInlineAsmOperand(unsigned OperandNo, 8654 const std::vector<SDValue> &AsmNodeOperands) { 8655 // Scan until we find the definition we already emitted of this operand. 8656 unsigned CurOp = InlineAsm::Op_FirstOperand; 8657 for (; OperandNo; --OperandNo) { 8658 // Advance to the next operand. 8659 unsigned OpFlag = 8660 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8661 assert((InlineAsm::isRegDefKind(OpFlag) || 8662 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8663 InlineAsm::isMemKind(OpFlag)) && 8664 "Skipped past definitions?"); 8665 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8666 } 8667 return CurOp; 8668 } 8669 8670 namespace { 8671 8672 class ExtraFlags { 8673 unsigned Flags = 0; 8674 8675 public: 8676 explicit ExtraFlags(const CallBase &Call) { 8677 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8678 if (IA->hasSideEffects()) 8679 Flags |= InlineAsm::Extra_HasSideEffects; 8680 if (IA->isAlignStack()) 8681 Flags |= InlineAsm::Extra_IsAlignStack; 8682 if (Call.isConvergent()) 8683 Flags |= InlineAsm::Extra_IsConvergent; 8684 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8685 } 8686 8687 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8688 // Ideally, we would only check against memory constraints. However, the 8689 // meaning of an Other constraint can be target-specific and we can't easily 8690 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8691 // for Other constraints as well. 8692 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8693 OpInfo.ConstraintType == TargetLowering::C_Other) { 8694 if (OpInfo.Type == InlineAsm::isInput) 8695 Flags |= InlineAsm::Extra_MayLoad; 8696 else if (OpInfo.Type == InlineAsm::isOutput) 8697 Flags |= InlineAsm::Extra_MayStore; 8698 else if (OpInfo.Type == InlineAsm::isClobber) 8699 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8700 } 8701 } 8702 8703 unsigned get() const { return Flags; } 8704 }; 8705 8706 } // end anonymous namespace 8707 8708 /// visitInlineAsm - Handle a call to an InlineAsm object. 8709 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8710 const BasicBlock *EHPadBB) { 8711 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8712 8713 /// ConstraintOperands - Information about all of the constraints. 8714 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8715 8716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8717 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8718 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8719 8720 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8721 // AsmDialect, MayLoad, MayStore). 8722 bool HasSideEffect = IA->hasSideEffects(); 8723 ExtraFlags ExtraInfo(Call); 8724 8725 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8726 unsigned ResNo = 0; // ResNo - The result number of the next output. 8727 for (auto &T : TargetConstraints) { 8728 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8729 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8730 8731 // Compute the value type for each operand. 8732 if (OpInfo.hasArg()) { 8733 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 8734 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8735 Type *ParamElemTy = Call.getParamElementType(ArgNo); 8736 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8737 DAG.getDataLayout(), ParamElemTy); 8738 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8739 ArgNo++; 8740 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8741 // The return value of the call is this value. As such, there is no 8742 // corresponding argument. 8743 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8744 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8745 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8746 DAG.getDataLayout(), STy->getElementType(ResNo)); 8747 } else { 8748 assert(ResNo == 0 && "Asm only has one result!"); 8749 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8750 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8751 } 8752 ++ResNo; 8753 } else { 8754 OpInfo.ConstraintVT = MVT::Other; 8755 } 8756 8757 if (!HasSideEffect) 8758 HasSideEffect = OpInfo.hasMemory(TLI); 8759 8760 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8761 // FIXME: Could we compute this on OpInfo rather than T? 8762 8763 // Compute the constraint code and ConstraintType to use. 8764 TLI.ComputeConstraintToUse(T, SDValue()); 8765 8766 if (T.ConstraintType == TargetLowering::C_Immediate && 8767 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8768 // We've delayed emitting a diagnostic like the "n" constraint because 8769 // inlining could cause an integer showing up. 8770 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8771 "' expects an integer constant " 8772 "expression"); 8773 8774 ExtraInfo.update(T); 8775 } 8776 8777 // We won't need to flush pending loads if this asm doesn't touch 8778 // memory and is nonvolatile. 8779 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8780 8781 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8782 if (EmitEHLabels) { 8783 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8784 } 8785 bool IsCallBr = isa<CallBrInst>(Call); 8786 8787 if (IsCallBr || EmitEHLabels) { 8788 // If this is a callbr or invoke we need to flush pending exports since 8789 // inlineasm_br and invoke are terminators. 8790 // We need to do this before nodes are glued to the inlineasm_br node. 8791 Chain = getControlRoot(); 8792 } 8793 8794 MCSymbol *BeginLabel = nullptr; 8795 if (EmitEHLabels) { 8796 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8797 } 8798 8799 // Second pass over the constraints: compute which constraint option to use. 8800 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8801 // If this is an output operand with a matching input operand, look up the 8802 // matching input. If their types mismatch, e.g. one is an integer, the 8803 // other is floating point, or their sizes are different, flag it as an 8804 // error. 8805 if (OpInfo.hasMatchingInput()) { 8806 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8807 patchMatchingInput(OpInfo, Input, DAG); 8808 } 8809 8810 // Compute the constraint code and ConstraintType to use. 8811 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8812 8813 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8814 OpInfo.Type == InlineAsm::isClobber) || 8815 OpInfo.ConstraintType == TargetLowering::C_Address) 8816 continue; 8817 8818 // If this is a memory input, and if the operand is not indirect, do what we 8819 // need to provide an address for the memory input. 8820 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8821 !OpInfo.isIndirect) { 8822 assert((OpInfo.isMultipleAlternative || 8823 (OpInfo.Type == InlineAsm::isInput)) && 8824 "Can only indirectify direct input operands!"); 8825 8826 // Memory operands really want the address of the value. 8827 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8828 8829 // There is no longer a Value* corresponding to this operand. 8830 OpInfo.CallOperandVal = nullptr; 8831 8832 // It is now an indirect operand. 8833 OpInfo.isIndirect = true; 8834 } 8835 8836 } 8837 8838 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8839 std::vector<SDValue> AsmNodeOperands; 8840 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8841 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8842 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8843 8844 // If we have a !srcloc metadata node associated with it, we want to attach 8845 // this to the ultimately generated inline asm machineinstr. To do this, we 8846 // pass in the third operand as this (potentially null) inline asm MDNode. 8847 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8848 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8849 8850 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8851 // bits as operand 3. 8852 AsmNodeOperands.push_back(DAG.getTargetConstant( 8853 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8854 8855 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8856 // this, assign virtual and physical registers for inputs and otput. 8857 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8858 // Assign Registers. 8859 SDISelAsmOperandInfo &RefOpInfo = 8860 OpInfo.isMatchingInputConstraint() 8861 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8862 : OpInfo; 8863 const auto RegError = 8864 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8865 if (RegError) { 8866 const MachineFunction &MF = DAG.getMachineFunction(); 8867 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8868 const char *RegName = TRI.getName(RegError.getValue()); 8869 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8870 "' allocated for constraint '" + 8871 Twine(OpInfo.ConstraintCode) + 8872 "' does not match required type"); 8873 return; 8874 } 8875 8876 auto DetectWriteToReservedRegister = [&]() { 8877 const MachineFunction &MF = DAG.getMachineFunction(); 8878 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8879 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8880 if (Register::isPhysicalRegister(Reg) && 8881 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8882 const char *RegName = TRI.getName(Reg); 8883 emitInlineAsmError(Call, "write to reserved register '" + 8884 Twine(RegName) + "'"); 8885 return true; 8886 } 8887 } 8888 return false; 8889 }; 8890 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8891 (OpInfo.Type == InlineAsm::isInput && 8892 !OpInfo.isMatchingInputConstraint())) && 8893 "Only address as input operand is allowed."); 8894 8895 switch (OpInfo.Type) { 8896 case InlineAsm::isOutput: 8897 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8898 unsigned ConstraintID = 8899 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8900 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8901 "Failed to convert memory constraint code to constraint id."); 8902 8903 // Add information to the INLINEASM node to know about this output. 8904 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8905 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8906 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8907 MVT::i32)); 8908 AsmNodeOperands.push_back(OpInfo.CallOperand); 8909 } else { 8910 // Otherwise, this outputs to a register (directly for C_Register / 8911 // C_RegisterClass, and a target-defined fashion for 8912 // C_Immediate/C_Other). Find a register that we can use. 8913 if (OpInfo.AssignedRegs.Regs.empty()) { 8914 emitInlineAsmError( 8915 Call, "couldn't allocate output register for constraint '" + 8916 Twine(OpInfo.ConstraintCode) + "'"); 8917 return; 8918 } 8919 8920 if (DetectWriteToReservedRegister()) 8921 return; 8922 8923 // Add information to the INLINEASM node to know that this register is 8924 // set. 8925 OpInfo.AssignedRegs.AddInlineAsmOperands( 8926 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8927 : InlineAsm::Kind_RegDef, 8928 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8929 } 8930 break; 8931 8932 case InlineAsm::isInput: { 8933 SDValue InOperandVal = OpInfo.CallOperand; 8934 8935 if (OpInfo.isMatchingInputConstraint()) { 8936 // If this is required to match an output register we have already set, 8937 // just use its register. 8938 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8939 AsmNodeOperands); 8940 unsigned OpFlag = 8941 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8942 if (InlineAsm::isRegDefKind(OpFlag) || 8943 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8944 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8945 if (OpInfo.isIndirect) { 8946 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8947 emitInlineAsmError(Call, "inline asm not supported yet: " 8948 "don't know how to handle tied " 8949 "indirect register inputs"); 8950 return; 8951 } 8952 8953 SmallVector<unsigned, 4> Regs; 8954 MachineFunction &MF = DAG.getMachineFunction(); 8955 MachineRegisterInfo &MRI = MF.getRegInfo(); 8956 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8957 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8958 Register TiedReg = R->getReg(); 8959 MVT RegVT = R->getSimpleValueType(0); 8960 const TargetRegisterClass *RC = 8961 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8962 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8963 : TRI.getMinimalPhysRegClass(TiedReg); 8964 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8965 for (unsigned i = 0; i != NumRegs; ++i) 8966 Regs.push_back(MRI.createVirtualRegister(RC)); 8967 8968 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8969 8970 SDLoc dl = getCurSDLoc(); 8971 // Use the produced MatchedRegs object to 8972 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8973 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8974 true, OpInfo.getMatchedOperand(), dl, 8975 DAG, AsmNodeOperands); 8976 break; 8977 } 8978 8979 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8980 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8981 "Unexpected number of operands"); 8982 // Add information to the INLINEASM node to know about this input. 8983 // See InlineAsm.h isUseOperandTiedToDef. 8984 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8985 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8986 OpInfo.getMatchedOperand()); 8987 AsmNodeOperands.push_back(DAG.getTargetConstant( 8988 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8989 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8990 break; 8991 } 8992 8993 // Treat indirect 'X' constraint as memory. 8994 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8995 OpInfo.isIndirect) 8996 OpInfo.ConstraintType = TargetLowering::C_Memory; 8997 8998 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8999 OpInfo.ConstraintType == TargetLowering::C_Other) { 9000 std::vector<SDValue> Ops; 9001 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9002 Ops, DAG); 9003 if (Ops.empty()) { 9004 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9005 if (isa<ConstantSDNode>(InOperandVal)) { 9006 emitInlineAsmError(Call, "value out of range for constraint '" + 9007 Twine(OpInfo.ConstraintCode) + "'"); 9008 return; 9009 } 9010 9011 emitInlineAsmError(Call, 9012 "invalid operand for inline asm constraint '" + 9013 Twine(OpInfo.ConstraintCode) + "'"); 9014 return; 9015 } 9016 9017 // Add information to the INLINEASM node to know about this input. 9018 unsigned ResOpType = 9019 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9020 AsmNodeOperands.push_back(DAG.getTargetConstant( 9021 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9022 llvm::append_range(AsmNodeOperands, Ops); 9023 break; 9024 } 9025 9026 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9027 OpInfo.ConstraintType == TargetLowering::C_Address) { 9028 assert((OpInfo.isIndirect || 9029 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9030 "Operand must be indirect to be a mem!"); 9031 assert(InOperandVal.getValueType() == 9032 TLI.getPointerTy(DAG.getDataLayout()) && 9033 "Memory operands expect pointer values"); 9034 9035 unsigned ConstraintID = 9036 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9037 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9038 "Failed to convert memory constraint code to constraint id."); 9039 9040 // Add information to the INLINEASM node to know about this input. 9041 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9042 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9043 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9044 getCurSDLoc(), 9045 MVT::i32)); 9046 AsmNodeOperands.push_back(InOperandVal); 9047 break; 9048 } 9049 9050 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9051 OpInfo.ConstraintType == TargetLowering::C_Register) && 9052 "Unknown constraint type!"); 9053 9054 // TODO: Support this. 9055 if (OpInfo.isIndirect) { 9056 emitInlineAsmError( 9057 Call, "Don't know how to handle indirect register inputs yet " 9058 "for constraint '" + 9059 Twine(OpInfo.ConstraintCode) + "'"); 9060 return; 9061 } 9062 9063 // Copy the input into the appropriate registers. 9064 if (OpInfo.AssignedRegs.Regs.empty()) { 9065 emitInlineAsmError(Call, 9066 "couldn't allocate input reg for constraint '" + 9067 Twine(OpInfo.ConstraintCode) + "'"); 9068 return; 9069 } 9070 9071 if (DetectWriteToReservedRegister()) 9072 return; 9073 9074 SDLoc dl = getCurSDLoc(); 9075 9076 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9077 &Call); 9078 9079 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9080 dl, DAG, AsmNodeOperands); 9081 break; 9082 } 9083 case InlineAsm::isClobber: 9084 // Add the clobbered value to the operand list, so that the register 9085 // allocator is aware that the physreg got clobbered. 9086 if (!OpInfo.AssignedRegs.Regs.empty()) 9087 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9088 false, 0, getCurSDLoc(), DAG, 9089 AsmNodeOperands); 9090 break; 9091 } 9092 } 9093 9094 // Finish up input operands. Set the input chain and add the flag last. 9095 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9096 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9097 9098 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9099 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9100 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9101 Flag = Chain.getValue(1); 9102 9103 // Do additional work to generate outputs. 9104 9105 SmallVector<EVT, 1> ResultVTs; 9106 SmallVector<SDValue, 1> ResultValues; 9107 SmallVector<SDValue, 8> OutChains; 9108 9109 llvm::Type *CallResultType = Call.getType(); 9110 ArrayRef<Type *> ResultTypes; 9111 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9112 ResultTypes = StructResult->elements(); 9113 else if (!CallResultType->isVoidTy()) 9114 ResultTypes = makeArrayRef(CallResultType); 9115 9116 auto CurResultType = ResultTypes.begin(); 9117 auto handleRegAssign = [&](SDValue V) { 9118 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9119 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9120 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9121 ++CurResultType; 9122 // If the type of the inline asm call site return value is different but has 9123 // same size as the type of the asm output bitcast it. One example of this 9124 // is for vectors with different width / number of elements. This can 9125 // happen for register classes that can contain multiple different value 9126 // types. The preg or vreg allocated may not have the same VT as was 9127 // expected. 9128 // 9129 // This can also happen for a return value that disagrees with the register 9130 // class it is put in, eg. a double in a general-purpose register on a 9131 // 32-bit machine. 9132 if (ResultVT != V.getValueType() && 9133 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9134 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9135 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9136 V.getValueType().isInteger()) { 9137 // If a result value was tied to an input value, the computed result 9138 // may have a wider width than the expected result. Extract the 9139 // relevant portion. 9140 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9141 } 9142 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9143 ResultVTs.push_back(ResultVT); 9144 ResultValues.push_back(V); 9145 }; 9146 9147 // Deal with output operands. 9148 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9149 if (OpInfo.Type == InlineAsm::isOutput) { 9150 SDValue Val; 9151 // Skip trivial output operands. 9152 if (OpInfo.AssignedRegs.Regs.empty()) 9153 continue; 9154 9155 switch (OpInfo.ConstraintType) { 9156 case TargetLowering::C_Register: 9157 case TargetLowering::C_RegisterClass: 9158 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9159 Chain, &Flag, &Call); 9160 break; 9161 case TargetLowering::C_Immediate: 9162 case TargetLowering::C_Other: 9163 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9164 OpInfo, DAG); 9165 break; 9166 case TargetLowering::C_Memory: 9167 break; // Already handled. 9168 case TargetLowering::C_Address: 9169 break; // Silence warning. 9170 case TargetLowering::C_Unknown: 9171 assert(false && "Unexpected unknown constraint"); 9172 } 9173 9174 // Indirect output manifest as stores. Record output chains. 9175 if (OpInfo.isIndirect) { 9176 const Value *Ptr = OpInfo.CallOperandVal; 9177 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9178 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9179 MachinePointerInfo(Ptr)); 9180 OutChains.push_back(Store); 9181 } else { 9182 // generate CopyFromRegs to associated registers. 9183 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9184 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9185 for (const SDValue &V : Val->op_values()) 9186 handleRegAssign(V); 9187 } else 9188 handleRegAssign(Val); 9189 } 9190 } 9191 } 9192 9193 // Set results. 9194 if (!ResultValues.empty()) { 9195 assert(CurResultType == ResultTypes.end() && 9196 "Mismatch in number of ResultTypes"); 9197 assert(ResultValues.size() == ResultTypes.size() && 9198 "Mismatch in number of output operands in asm result"); 9199 9200 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9201 DAG.getVTList(ResultVTs), ResultValues); 9202 setValue(&Call, V); 9203 } 9204 9205 // Collect store chains. 9206 if (!OutChains.empty()) 9207 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9208 9209 if (EmitEHLabels) { 9210 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9211 } 9212 9213 // Only Update Root if inline assembly has a memory effect. 9214 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9215 EmitEHLabels) 9216 DAG.setRoot(Chain); 9217 } 9218 9219 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9220 const Twine &Message) { 9221 LLVMContext &Ctx = *DAG.getContext(); 9222 Ctx.emitError(&Call, Message); 9223 9224 // Make sure we leave the DAG in a valid state 9225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9226 SmallVector<EVT, 1> ValueVTs; 9227 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9228 9229 if (ValueVTs.empty()) 9230 return; 9231 9232 SmallVector<SDValue, 1> Ops; 9233 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9234 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9235 9236 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9237 } 9238 9239 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9240 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9241 MVT::Other, getRoot(), 9242 getValue(I.getArgOperand(0)), 9243 DAG.getSrcValue(I.getArgOperand(0)))); 9244 } 9245 9246 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9248 const DataLayout &DL = DAG.getDataLayout(); 9249 SDValue V = DAG.getVAArg( 9250 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9251 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9252 DL.getABITypeAlign(I.getType()).value()); 9253 DAG.setRoot(V.getValue(1)); 9254 9255 if (I.getType()->isPointerTy()) 9256 V = DAG.getPtrExtOrTrunc( 9257 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9258 setValue(&I, V); 9259 } 9260 9261 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9262 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9263 MVT::Other, getRoot(), 9264 getValue(I.getArgOperand(0)), 9265 DAG.getSrcValue(I.getArgOperand(0)))); 9266 } 9267 9268 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9269 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9270 MVT::Other, getRoot(), 9271 getValue(I.getArgOperand(0)), 9272 getValue(I.getArgOperand(1)), 9273 DAG.getSrcValue(I.getArgOperand(0)), 9274 DAG.getSrcValue(I.getArgOperand(1)))); 9275 } 9276 9277 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9278 const Instruction &I, 9279 SDValue Op) { 9280 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9281 if (!Range) 9282 return Op; 9283 9284 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9285 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9286 return Op; 9287 9288 APInt Lo = CR.getUnsignedMin(); 9289 if (!Lo.isMinValue()) 9290 return Op; 9291 9292 APInt Hi = CR.getUnsignedMax(); 9293 unsigned Bits = std::max(Hi.getActiveBits(), 9294 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9295 9296 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9297 9298 SDLoc SL = getCurSDLoc(); 9299 9300 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9301 DAG.getValueType(SmallVT)); 9302 unsigned NumVals = Op.getNode()->getNumValues(); 9303 if (NumVals == 1) 9304 return ZExt; 9305 9306 SmallVector<SDValue, 4> Ops; 9307 9308 Ops.push_back(ZExt); 9309 for (unsigned I = 1; I != NumVals; ++I) 9310 Ops.push_back(Op.getValue(I)); 9311 9312 return DAG.getMergeValues(Ops, SL); 9313 } 9314 9315 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9316 /// the call being lowered. 9317 /// 9318 /// This is a helper for lowering intrinsics that follow a target calling 9319 /// convention or require stack pointer adjustment. Only a subset of the 9320 /// intrinsic's operands need to participate in the calling convention. 9321 void SelectionDAGBuilder::populateCallLoweringInfo( 9322 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9323 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9324 bool IsPatchPoint) { 9325 TargetLowering::ArgListTy Args; 9326 Args.reserve(NumArgs); 9327 9328 // Populate the argument list. 9329 // Attributes for args start at offset 1, after the return attribute. 9330 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9331 ArgI != ArgE; ++ArgI) { 9332 const Value *V = Call->getOperand(ArgI); 9333 9334 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9335 9336 TargetLowering::ArgListEntry Entry; 9337 Entry.Node = getValue(V); 9338 Entry.Ty = V->getType(); 9339 Entry.setAttributes(Call, ArgI); 9340 Args.push_back(Entry); 9341 } 9342 9343 CLI.setDebugLoc(getCurSDLoc()) 9344 .setChain(getRoot()) 9345 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9346 .setDiscardResult(Call->use_empty()) 9347 .setIsPatchPoint(IsPatchPoint) 9348 .setIsPreallocated( 9349 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9350 } 9351 9352 /// Add a stack map intrinsic call's live variable operands to a stackmap 9353 /// or patchpoint target node's operand list. 9354 /// 9355 /// Constants are converted to TargetConstants purely as an optimization to 9356 /// avoid constant materialization and register allocation. 9357 /// 9358 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9359 /// generate addess computation nodes, and so FinalizeISel can convert the 9360 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9361 /// address materialization and register allocation, but may also be required 9362 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9363 /// alloca in the entry block, then the runtime may assume that the alloca's 9364 /// StackMap location can be read immediately after compilation and that the 9365 /// location is valid at any point during execution (this is similar to the 9366 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9367 /// only available in a register, then the runtime would need to trap when 9368 /// execution reaches the StackMap in order to read the alloca's location. 9369 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9370 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9371 SelectionDAGBuilder &Builder) { 9372 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9373 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9374 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9375 Ops.push_back( 9376 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9377 Ops.push_back( 9378 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9379 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9380 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9381 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9382 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9383 } else 9384 Ops.push_back(OpVal); 9385 } 9386 } 9387 9388 /// Lower llvm.experimental.stackmap directly to its target opcode. 9389 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9390 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9391 // [live variables...]) 9392 9393 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9394 9395 SDValue Chain, InFlag, Callee, NullPtr; 9396 SmallVector<SDValue, 32> Ops; 9397 9398 SDLoc DL = getCurSDLoc(); 9399 Callee = getValue(CI.getCalledOperand()); 9400 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9401 9402 // The stackmap intrinsic only records the live variables (the arguments 9403 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9404 // intrinsic, this won't be lowered to a function call. This means we don't 9405 // have to worry about calling conventions and target specific lowering code. 9406 // Instead we perform the call lowering right here. 9407 // 9408 // chain, flag = CALLSEQ_START(chain, 0, 0) 9409 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9410 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9411 // 9412 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9413 InFlag = Chain.getValue(1); 9414 9415 // Add the <id> and <numBytes> constants. 9416 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9417 Ops.push_back(DAG.getTargetConstant( 9418 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9419 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9420 Ops.push_back(DAG.getTargetConstant( 9421 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9422 MVT::i32)); 9423 9424 // Push live variables for the stack map. 9425 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9426 9427 // We are not pushing any register mask info here on the operands list, 9428 // because the stackmap doesn't clobber anything. 9429 9430 // Push the chain and the glue flag. 9431 Ops.push_back(Chain); 9432 Ops.push_back(InFlag); 9433 9434 // Create the STACKMAP node. 9435 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9436 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9437 Chain = SDValue(SM, 0); 9438 InFlag = Chain.getValue(1); 9439 9440 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9441 9442 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9443 9444 // Set the root to the target-lowered call chain. 9445 DAG.setRoot(Chain); 9446 9447 // Inform the Frame Information that we have a stackmap in this function. 9448 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9449 } 9450 9451 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9452 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9453 const BasicBlock *EHPadBB) { 9454 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9455 // i32 <numBytes>, 9456 // i8* <target>, 9457 // i32 <numArgs>, 9458 // [Args...], 9459 // [live variables...]) 9460 9461 CallingConv::ID CC = CB.getCallingConv(); 9462 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9463 bool HasDef = !CB.getType()->isVoidTy(); 9464 SDLoc dl = getCurSDLoc(); 9465 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9466 9467 // Handle immediate and symbolic callees. 9468 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9469 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9470 /*isTarget=*/true); 9471 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9472 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9473 SDLoc(SymbolicCallee), 9474 SymbolicCallee->getValueType(0)); 9475 9476 // Get the real number of arguments participating in the call <numArgs> 9477 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9478 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9479 9480 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9481 // Intrinsics include all meta-operands up to but not including CC. 9482 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9483 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9484 "Not enough arguments provided to the patchpoint intrinsic"); 9485 9486 // For AnyRegCC the arguments are lowered later on manually. 9487 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9488 Type *ReturnTy = 9489 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9490 9491 TargetLowering::CallLoweringInfo CLI(DAG); 9492 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9493 ReturnTy, true); 9494 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9495 9496 SDNode *CallEnd = Result.second.getNode(); 9497 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9498 CallEnd = CallEnd->getOperand(0).getNode(); 9499 9500 /// Get a call instruction from the call sequence chain. 9501 /// Tail calls are not allowed. 9502 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9503 "Expected a callseq node."); 9504 SDNode *Call = CallEnd->getOperand(0).getNode(); 9505 bool HasGlue = Call->getGluedNode(); 9506 9507 // Replace the target specific call node with the patchable intrinsic. 9508 SmallVector<SDValue, 8> Ops; 9509 9510 // Add the <id> and <numBytes> constants. 9511 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9512 Ops.push_back(DAG.getTargetConstant( 9513 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9514 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9515 Ops.push_back(DAG.getTargetConstant( 9516 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9517 MVT::i32)); 9518 9519 // Add the callee. 9520 Ops.push_back(Callee); 9521 9522 // Adjust <numArgs> to account for any arguments that have been passed on the 9523 // stack instead. 9524 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9525 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9526 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9527 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9528 9529 // Add the calling convention 9530 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9531 9532 // Add the arguments we omitted previously. The register allocator should 9533 // place these in any free register. 9534 if (IsAnyRegCC) 9535 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9536 Ops.push_back(getValue(CB.getArgOperand(i))); 9537 9538 // Push the arguments from the call instruction up to the register mask. 9539 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9540 Ops.append(Call->op_begin() + 2, e); 9541 9542 // Push live variables for the stack map. 9543 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9544 9545 // Push the register mask info. 9546 if (HasGlue) 9547 Ops.push_back(*(Call->op_end()-2)); 9548 else 9549 Ops.push_back(*(Call->op_end()-1)); 9550 9551 // Push the chain (this is originally the first operand of the call, but 9552 // becomes now the last or second to last operand). 9553 Ops.push_back(*(Call->op_begin())); 9554 9555 // Push the glue flag (last operand). 9556 if (HasGlue) 9557 Ops.push_back(*(Call->op_end()-1)); 9558 9559 SDVTList NodeTys; 9560 if (IsAnyRegCC && HasDef) { 9561 // Create the return types based on the intrinsic definition 9562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9563 SmallVector<EVT, 3> ValueVTs; 9564 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9565 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9566 9567 // There is always a chain and a glue type at the end 9568 ValueVTs.push_back(MVT::Other); 9569 ValueVTs.push_back(MVT::Glue); 9570 NodeTys = DAG.getVTList(ValueVTs); 9571 } else 9572 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9573 9574 // Replace the target specific call node with a PATCHPOINT node. 9575 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9576 dl, NodeTys, Ops); 9577 9578 // Update the NodeMap. 9579 if (HasDef) { 9580 if (IsAnyRegCC) 9581 setValue(&CB, SDValue(MN, 0)); 9582 else 9583 setValue(&CB, Result.first); 9584 } 9585 9586 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9587 // call sequence. Furthermore the location of the chain and glue can change 9588 // when the AnyReg calling convention is used and the intrinsic returns a 9589 // value. 9590 if (IsAnyRegCC && HasDef) { 9591 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9592 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9593 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9594 } else 9595 DAG.ReplaceAllUsesWith(Call, MN); 9596 DAG.DeleteNode(Call); 9597 9598 // Inform the Frame Information that we have a patchpoint in this function. 9599 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9600 } 9601 9602 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9603 unsigned Intrinsic) { 9604 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9605 SDValue Op1 = getValue(I.getArgOperand(0)); 9606 SDValue Op2; 9607 if (I.arg_size() > 1) 9608 Op2 = getValue(I.getArgOperand(1)); 9609 SDLoc dl = getCurSDLoc(); 9610 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9611 SDValue Res; 9612 SDNodeFlags SDFlags; 9613 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9614 SDFlags.copyFMF(*FPMO); 9615 9616 switch (Intrinsic) { 9617 case Intrinsic::vector_reduce_fadd: 9618 if (SDFlags.hasAllowReassociation()) 9619 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9620 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9621 SDFlags); 9622 else 9623 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9624 break; 9625 case Intrinsic::vector_reduce_fmul: 9626 if (SDFlags.hasAllowReassociation()) 9627 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9628 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9629 SDFlags); 9630 else 9631 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9632 break; 9633 case Intrinsic::vector_reduce_add: 9634 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9635 break; 9636 case Intrinsic::vector_reduce_mul: 9637 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9638 break; 9639 case Intrinsic::vector_reduce_and: 9640 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9641 break; 9642 case Intrinsic::vector_reduce_or: 9643 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9644 break; 9645 case Intrinsic::vector_reduce_xor: 9646 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9647 break; 9648 case Intrinsic::vector_reduce_smax: 9649 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9650 break; 9651 case Intrinsic::vector_reduce_smin: 9652 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9653 break; 9654 case Intrinsic::vector_reduce_umax: 9655 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9656 break; 9657 case Intrinsic::vector_reduce_umin: 9658 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9659 break; 9660 case Intrinsic::vector_reduce_fmax: 9661 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9662 break; 9663 case Intrinsic::vector_reduce_fmin: 9664 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9665 break; 9666 default: 9667 llvm_unreachable("Unhandled vector reduce intrinsic"); 9668 } 9669 setValue(&I, Res); 9670 } 9671 9672 /// Returns an AttributeList representing the attributes applied to the return 9673 /// value of the given call. 9674 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9675 SmallVector<Attribute::AttrKind, 2> Attrs; 9676 if (CLI.RetSExt) 9677 Attrs.push_back(Attribute::SExt); 9678 if (CLI.RetZExt) 9679 Attrs.push_back(Attribute::ZExt); 9680 if (CLI.IsInReg) 9681 Attrs.push_back(Attribute::InReg); 9682 9683 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9684 Attrs); 9685 } 9686 9687 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9688 /// implementation, which just calls LowerCall. 9689 /// FIXME: When all targets are 9690 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9691 std::pair<SDValue, SDValue> 9692 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9693 // Handle the incoming return values from the call. 9694 CLI.Ins.clear(); 9695 Type *OrigRetTy = CLI.RetTy; 9696 SmallVector<EVT, 4> RetTys; 9697 SmallVector<uint64_t, 4> Offsets; 9698 auto &DL = CLI.DAG.getDataLayout(); 9699 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9700 9701 if (CLI.IsPostTypeLegalization) { 9702 // If we are lowering a libcall after legalization, split the return type. 9703 SmallVector<EVT, 4> OldRetTys; 9704 SmallVector<uint64_t, 4> OldOffsets; 9705 RetTys.swap(OldRetTys); 9706 Offsets.swap(OldOffsets); 9707 9708 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9709 EVT RetVT = OldRetTys[i]; 9710 uint64_t Offset = OldOffsets[i]; 9711 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9712 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9713 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9714 RetTys.append(NumRegs, RegisterVT); 9715 for (unsigned j = 0; j != NumRegs; ++j) 9716 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9717 } 9718 } 9719 9720 SmallVector<ISD::OutputArg, 4> Outs; 9721 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9722 9723 bool CanLowerReturn = 9724 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9725 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9726 9727 SDValue DemoteStackSlot; 9728 int DemoteStackIdx = -100; 9729 if (!CanLowerReturn) { 9730 // FIXME: equivalent assert? 9731 // assert(!CS.hasInAllocaArgument() && 9732 // "sret demotion is incompatible with inalloca"); 9733 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9734 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9735 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9736 DemoteStackIdx = 9737 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9738 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9739 DL.getAllocaAddrSpace()); 9740 9741 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9742 ArgListEntry Entry; 9743 Entry.Node = DemoteStackSlot; 9744 Entry.Ty = StackSlotPtrType; 9745 Entry.IsSExt = false; 9746 Entry.IsZExt = false; 9747 Entry.IsInReg = false; 9748 Entry.IsSRet = true; 9749 Entry.IsNest = false; 9750 Entry.IsByVal = false; 9751 Entry.IsByRef = false; 9752 Entry.IsReturned = false; 9753 Entry.IsSwiftSelf = false; 9754 Entry.IsSwiftAsync = false; 9755 Entry.IsSwiftError = false; 9756 Entry.IsCFGuardTarget = false; 9757 Entry.Alignment = Alignment; 9758 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9759 CLI.NumFixedArgs += 1; 9760 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9761 9762 // sret demotion isn't compatible with tail-calls, since the sret argument 9763 // points into the callers stack frame. 9764 CLI.IsTailCall = false; 9765 } else { 9766 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9767 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9768 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9769 ISD::ArgFlagsTy Flags; 9770 if (NeedsRegBlock) { 9771 Flags.setInConsecutiveRegs(); 9772 if (I == RetTys.size() - 1) 9773 Flags.setInConsecutiveRegsLast(); 9774 } 9775 EVT VT = RetTys[I]; 9776 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9777 CLI.CallConv, VT); 9778 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9779 CLI.CallConv, VT); 9780 for (unsigned i = 0; i != NumRegs; ++i) { 9781 ISD::InputArg MyFlags; 9782 MyFlags.Flags = Flags; 9783 MyFlags.VT = RegisterVT; 9784 MyFlags.ArgVT = VT; 9785 MyFlags.Used = CLI.IsReturnValueUsed; 9786 if (CLI.RetTy->isPointerTy()) { 9787 MyFlags.Flags.setPointer(); 9788 MyFlags.Flags.setPointerAddrSpace( 9789 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9790 } 9791 if (CLI.RetSExt) 9792 MyFlags.Flags.setSExt(); 9793 if (CLI.RetZExt) 9794 MyFlags.Flags.setZExt(); 9795 if (CLI.IsInReg) 9796 MyFlags.Flags.setInReg(); 9797 CLI.Ins.push_back(MyFlags); 9798 } 9799 } 9800 } 9801 9802 // We push in swifterror return as the last element of CLI.Ins. 9803 ArgListTy &Args = CLI.getArgs(); 9804 if (supportSwiftError()) { 9805 for (const ArgListEntry &Arg : Args) { 9806 if (Arg.IsSwiftError) { 9807 ISD::InputArg MyFlags; 9808 MyFlags.VT = getPointerTy(DL); 9809 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9810 MyFlags.Flags.setSwiftError(); 9811 CLI.Ins.push_back(MyFlags); 9812 } 9813 } 9814 } 9815 9816 // Handle all of the outgoing arguments. 9817 CLI.Outs.clear(); 9818 CLI.OutVals.clear(); 9819 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9820 SmallVector<EVT, 4> ValueVTs; 9821 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9822 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9823 Type *FinalType = Args[i].Ty; 9824 if (Args[i].IsByVal) 9825 FinalType = Args[i].IndirectType; 9826 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9827 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9828 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9829 ++Value) { 9830 EVT VT = ValueVTs[Value]; 9831 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9832 SDValue Op = SDValue(Args[i].Node.getNode(), 9833 Args[i].Node.getResNo() + Value); 9834 ISD::ArgFlagsTy Flags; 9835 9836 // Certain targets (such as MIPS), may have a different ABI alignment 9837 // for a type depending on the context. Give the target a chance to 9838 // specify the alignment it wants. 9839 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9840 Flags.setOrigAlign(OriginalAlignment); 9841 9842 if (Args[i].Ty->isPointerTy()) { 9843 Flags.setPointer(); 9844 Flags.setPointerAddrSpace( 9845 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9846 } 9847 if (Args[i].IsZExt) 9848 Flags.setZExt(); 9849 if (Args[i].IsSExt) 9850 Flags.setSExt(); 9851 if (Args[i].IsInReg) { 9852 // If we are using vectorcall calling convention, a structure that is 9853 // passed InReg - is surely an HVA 9854 if (CLI.CallConv == CallingConv::X86_VectorCall && 9855 isa<StructType>(FinalType)) { 9856 // The first value of a structure is marked 9857 if (0 == Value) 9858 Flags.setHvaStart(); 9859 Flags.setHva(); 9860 } 9861 // Set InReg Flag 9862 Flags.setInReg(); 9863 } 9864 if (Args[i].IsSRet) 9865 Flags.setSRet(); 9866 if (Args[i].IsSwiftSelf) 9867 Flags.setSwiftSelf(); 9868 if (Args[i].IsSwiftAsync) 9869 Flags.setSwiftAsync(); 9870 if (Args[i].IsSwiftError) 9871 Flags.setSwiftError(); 9872 if (Args[i].IsCFGuardTarget) 9873 Flags.setCFGuardTarget(); 9874 if (Args[i].IsByVal) 9875 Flags.setByVal(); 9876 if (Args[i].IsByRef) 9877 Flags.setByRef(); 9878 if (Args[i].IsPreallocated) { 9879 Flags.setPreallocated(); 9880 // Set the byval flag for CCAssignFn callbacks that don't know about 9881 // preallocated. This way we can know how many bytes we should've 9882 // allocated and how many bytes a callee cleanup function will pop. If 9883 // we port preallocated to more targets, we'll have to add custom 9884 // preallocated handling in the various CC lowering callbacks. 9885 Flags.setByVal(); 9886 } 9887 if (Args[i].IsInAlloca) { 9888 Flags.setInAlloca(); 9889 // Set the byval flag for CCAssignFn callbacks that don't know about 9890 // inalloca. This way we can know how many bytes we should've allocated 9891 // and how many bytes a callee cleanup function will pop. If we port 9892 // inalloca to more targets, we'll have to add custom inalloca handling 9893 // in the various CC lowering callbacks. 9894 Flags.setByVal(); 9895 } 9896 Align MemAlign; 9897 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9898 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9899 Flags.setByValSize(FrameSize); 9900 9901 // info is not there but there are cases it cannot get right. 9902 if (auto MA = Args[i].Alignment) 9903 MemAlign = *MA; 9904 else 9905 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9906 } else if (auto MA = Args[i].Alignment) { 9907 MemAlign = *MA; 9908 } else { 9909 MemAlign = OriginalAlignment; 9910 } 9911 Flags.setMemAlign(MemAlign); 9912 if (Args[i].IsNest) 9913 Flags.setNest(); 9914 if (NeedsRegBlock) 9915 Flags.setInConsecutiveRegs(); 9916 9917 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9918 CLI.CallConv, VT); 9919 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9920 CLI.CallConv, VT); 9921 SmallVector<SDValue, 4> Parts(NumParts); 9922 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9923 9924 if (Args[i].IsSExt) 9925 ExtendKind = ISD::SIGN_EXTEND; 9926 else if (Args[i].IsZExt) 9927 ExtendKind = ISD::ZERO_EXTEND; 9928 9929 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9930 // for now. 9931 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9932 CanLowerReturn) { 9933 assert((CLI.RetTy == Args[i].Ty || 9934 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9935 CLI.RetTy->getPointerAddressSpace() == 9936 Args[i].Ty->getPointerAddressSpace())) && 9937 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9938 // Before passing 'returned' to the target lowering code, ensure that 9939 // either the register MVT and the actual EVT are the same size or that 9940 // the return value and argument are extended in the same way; in these 9941 // cases it's safe to pass the argument register value unchanged as the 9942 // return register value (although it's at the target's option whether 9943 // to do so) 9944 // TODO: allow code generation to take advantage of partially preserved 9945 // registers rather than clobbering the entire register when the 9946 // parameter extension method is not compatible with the return 9947 // extension method 9948 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9949 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9950 CLI.RetZExt == Args[i].IsZExt)) 9951 Flags.setReturned(); 9952 } 9953 9954 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9955 CLI.CallConv, ExtendKind); 9956 9957 for (unsigned j = 0; j != NumParts; ++j) { 9958 // if it isn't first piece, alignment must be 1 9959 // For scalable vectors the scalable part is currently handled 9960 // by individual targets, so we just use the known minimum size here. 9961 ISD::OutputArg MyFlags( 9962 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9963 i < CLI.NumFixedArgs, i, 9964 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9965 if (NumParts > 1 && j == 0) 9966 MyFlags.Flags.setSplit(); 9967 else if (j != 0) { 9968 MyFlags.Flags.setOrigAlign(Align(1)); 9969 if (j == NumParts - 1) 9970 MyFlags.Flags.setSplitEnd(); 9971 } 9972 9973 CLI.Outs.push_back(MyFlags); 9974 CLI.OutVals.push_back(Parts[j]); 9975 } 9976 9977 if (NeedsRegBlock && Value == NumValues - 1) 9978 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9979 } 9980 } 9981 9982 SmallVector<SDValue, 4> InVals; 9983 CLI.Chain = LowerCall(CLI, InVals); 9984 9985 // Update CLI.InVals to use outside of this function. 9986 CLI.InVals = InVals; 9987 9988 // Verify that the target's LowerCall behaved as expected. 9989 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9990 "LowerCall didn't return a valid chain!"); 9991 assert((!CLI.IsTailCall || InVals.empty()) && 9992 "LowerCall emitted a return value for a tail call!"); 9993 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9994 "LowerCall didn't emit the correct number of values!"); 9995 9996 // For a tail call, the return value is merely live-out and there aren't 9997 // any nodes in the DAG representing it. Return a special value to 9998 // indicate that a tail call has been emitted and no more Instructions 9999 // should be processed in the current block. 10000 if (CLI.IsTailCall) { 10001 CLI.DAG.setRoot(CLI.Chain); 10002 return std::make_pair(SDValue(), SDValue()); 10003 } 10004 10005 #ifndef NDEBUG 10006 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10007 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10008 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10009 "LowerCall emitted a value with the wrong type!"); 10010 } 10011 #endif 10012 10013 SmallVector<SDValue, 4> ReturnValues; 10014 if (!CanLowerReturn) { 10015 // The instruction result is the result of loading from the 10016 // hidden sret parameter. 10017 SmallVector<EVT, 1> PVTs; 10018 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10019 10020 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10021 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10022 EVT PtrVT = PVTs[0]; 10023 10024 unsigned NumValues = RetTys.size(); 10025 ReturnValues.resize(NumValues); 10026 SmallVector<SDValue, 4> Chains(NumValues); 10027 10028 // An aggregate return value cannot wrap around the address space, so 10029 // offsets to its parts don't wrap either. 10030 SDNodeFlags Flags; 10031 Flags.setNoUnsignedWrap(true); 10032 10033 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10034 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10035 for (unsigned i = 0; i < NumValues; ++i) { 10036 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10037 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10038 PtrVT), Flags); 10039 SDValue L = CLI.DAG.getLoad( 10040 RetTys[i], CLI.DL, CLI.Chain, Add, 10041 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10042 DemoteStackIdx, Offsets[i]), 10043 HiddenSRetAlign); 10044 ReturnValues[i] = L; 10045 Chains[i] = L.getValue(1); 10046 } 10047 10048 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10049 } else { 10050 // Collect the legal value parts into potentially illegal values 10051 // that correspond to the original function's return values. 10052 Optional<ISD::NodeType> AssertOp; 10053 if (CLI.RetSExt) 10054 AssertOp = ISD::AssertSext; 10055 else if (CLI.RetZExt) 10056 AssertOp = ISD::AssertZext; 10057 unsigned CurReg = 0; 10058 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10059 EVT VT = RetTys[I]; 10060 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10061 CLI.CallConv, VT); 10062 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10063 CLI.CallConv, VT); 10064 10065 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10066 NumRegs, RegisterVT, VT, nullptr, 10067 CLI.CallConv, AssertOp)); 10068 CurReg += NumRegs; 10069 } 10070 10071 // For a function returning void, there is no return value. We can't create 10072 // such a node, so we just return a null return value in that case. In 10073 // that case, nothing will actually look at the value. 10074 if (ReturnValues.empty()) 10075 return std::make_pair(SDValue(), CLI.Chain); 10076 } 10077 10078 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10079 CLI.DAG.getVTList(RetTys), ReturnValues); 10080 return std::make_pair(Res, CLI.Chain); 10081 } 10082 10083 /// Places new result values for the node in Results (their number 10084 /// and types must exactly match those of the original return values of 10085 /// the node), or leaves Results empty, which indicates that the node is not 10086 /// to be custom lowered after all. 10087 void TargetLowering::LowerOperationWrapper(SDNode *N, 10088 SmallVectorImpl<SDValue> &Results, 10089 SelectionDAG &DAG) const { 10090 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10091 10092 if (!Res.getNode()) 10093 return; 10094 10095 // If the original node has one result, take the return value from 10096 // LowerOperation as is. It might not be result number 0. 10097 if (N->getNumValues() == 1) { 10098 Results.push_back(Res); 10099 return; 10100 } 10101 10102 // If the original node has multiple results, then the return node should 10103 // have the same number of results. 10104 assert((N->getNumValues() == Res->getNumValues()) && 10105 "Lowering returned the wrong number of results!"); 10106 10107 // Places new result values base on N result number. 10108 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10109 Results.push_back(Res.getValue(I)); 10110 } 10111 10112 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10113 llvm_unreachable("LowerOperation not implemented for this target!"); 10114 } 10115 10116 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10117 unsigned Reg, 10118 ISD::NodeType ExtendType) { 10119 SDValue Op = getNonRegisterValue(V); 10120 assert((Op.getOpcode() != ISD::CopyFromReg || 10121 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10122 "Copy from a reg to the same reg!"); 10123 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10124 10125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10126 // If this is an InlineAsm we have to match the registers required, not the 10127 // notional registers required by the type. 10128 10129 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10130 None); // This is not an ABI copy. 10131 SDValue Chain = DAG.getEntryNode(); 10132 10133 if (ExtendType == ISD::ANY_EXTEND) { 10134 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10135 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10136 ExtendType = PreferredExtendIt->second; 10137 } 10138 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10139 PendingExports.push_back(Chain); 10140 } 10141 10142 #include "llvm/CodeGen/SelectionDAGISel.h" 10143 10144 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10145 /// entry block, return true. This includes arguments used by switches, since 10146 /// the switch may expand into multiple basic blocks. 10147 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10148 // With FastISel active, we may be splitting blocks, so force creation 10149 // of virtual registers for all non-dead arguments. 10150 if (FastISel) 10151 return A->use_empty(); 10152 10153 const BasicBlock &Entry = A->getParent()->front(); 10154 for (const User *U : A->users()) 10155 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10156 return false; // Use not in entry block. 10157 10158 return true; 10159 } 10160 10161 using ArgCopyElisionMapTy = 10162 DenseMap<const Argument *, 10163 std::pair<const AllocaInst *, const StoreInst *>>; 10164 10165 /// Scan the entry block of the function in FuncInfo for arguments that look 10166 /// like copies into a local alloca. Record any copied arguments in 10167 /// ArgCopyElisionCandidates. 10168 static void 10169 findArgumentCopyElisionCandidates(const DataLayout &DL, 10170 FunctionLoweringInfo *FuncInfo, 10171 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10172 // Record the state of every static alloca used in the entry block. Argument 10173 // allocas are all used in the entry block, so we need approximately as many 10174 // entries as we have arguments. 10175 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10176 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10177 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10178 StaticAllocas.reserve(NumArgs * 2); 10179 10180 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10181 if (!V) 10182 return nullptr; 10183 V = V->stripPointerCasts(); 10184 const auto *AI = dyn_cast<AllocaInst>(V); 10185 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10186 return nullptr; 10187 auto Iter = StaticAllocas.insert({AI, Unknown}); 10188 return &Iter.first->second; 10189 }; 10190 10191 // Look for stores of arguments to static allocas. Look through bitcasts and 10192 // GEPs to handle type coercions, as long as the alloca is fully initialized 10193 // by the store. Any non-store use of an alloca escapes it and any subsequent 10194 // unanalyzed store might write it. 10195 // FIXME: Handle structs initialized with multiple stores. 10196 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10197 // Look for stores, and handle non-store uses conservatively. 10198 const auto *SI = dyn_cast<StoreInst>(&I); 10199 if (!SI) { 10200 // We will look through cast uses, so ignore them completely. 10201 if (I.isCast()) 10202 continue; 10203 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10204 // to allocas. 10205 if (I.isDebugOrPseudoInst()) 10206 continue; 10207 // This is an unknown instruction. Assume it escapes or writes to all 10208 // static alloca operands. 10209 for (const Use &U : I.operands()) { 10210 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10211 *Info = StaticAllocaInfo::Clobbered; 10212 } 10213 continue; 10214 } 10215 10216 // If the stored value is a static alloca, mark it as escaped. 10217 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10218 *Info = StaticAllocaInfo::Clobbered; 10219 10220 // Check if the destination is a static alloca. 10221 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10222 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10223 if (!Info) 10224 continue; 10225 const AllocaInst *AI = cast<AllocaInst>(Dst); 10226 10227 // Skip allocas that have been initialized or clobbered. 10228 if (*Info != StaticAllocaInfo::Unknown) 10229 continue; 10230 10231 // Check if the stored value is an argument, and that this store fully 10232 // initializes the alloca. 10233 // If the argument type has padding bits we can't directly forward a pointer 10234 // as the upper bits may contain garbage. 10235 // Don't elide copies from the same argument twice. 10236 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10237 const auto *Arg = dyn_cast<Argument>(Val); 10238 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10239 Arg->getType()->isEmptyTy() || 10240 DL.getTypeStoreSize(Arg->getType()) != 10241 DL.getTypeAllocSize(AI->getAllocatedType()) || 10242 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10243 ArgCopyElisionCandidates.count(Arg)) { 10244 *Info = StaticAllocaInfo::Clobbered; 10245 continue; 10246 } 10247 10248 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10249 << '\n'); 10250 10251 // Mark this alloca and store for argument copy elision. 10252 *Info = StaticAllocaInfo::Elidable; 10253 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10254 10255 // Stop scanning if we've seen all arguments. This will happen early in -O0 10256 // builds, which is useful, because -O0 builds have large entry blocks and 10257 // many allocas. 10258 if (ArgCopyElisionCandidates.size() == NumArgs) 10259 break; 10260 } 10261 } 10262 10263 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10264 /// ArgVal is a load from a suitable fixed stack object. 10265 static void tryToElideArgumentCopy( 10266 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10267 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10268 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10269 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10270 SDValue ArgVal, bool &ArgHasUses) { 10271 // Check if this is a load from a fixed stack object. 10272 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10273 if (!LNode) 10274 return; 10275 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10276 if (!FINode) 10277 return; 10278 10279 // Check that the fixed stack object is the right size and alignment. 10280 // Look at the alignment that the user wrote on the alloca instead of looking 10281 // at the stack object. 10282 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10283 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10284 const AllocaInst *AI = ArgCopyIter->second.first; 10285 int FixedIndex = FINode->getIndex(); 10286 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10287 int OldIndex = AllocaIndex; 10288 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10289 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10290 LLVM_DEBUG( 10291 dbgs() << " argument copy elision failed due to bad fixed stack " 10292 "object size\n"); 10293 return; 10294 } 10295 Align RequiredAlignment = AI->getAlign(); 10296 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10297 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10298 "greater than stack argument alignment (" 10299 << DebugStr(RequiredAlignment) << " vs " 10300 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10301 return; 10302 } 10303 10304 // Perform the elision. Delete the old stack object and replace its only use 10305 // in the variable info map. Mark the stack object as mutable. 10306 LLVM_DEBUG({ 10307 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10308 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10309 << '\n'; 10310 }); 10311 MFI.RemoveStackObject(OldIndex); 10312 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10313 AllocaIndex = FixedIndex; 10314 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10315 Chains.push_back(ArgVal.getValue(1)); 10316 10317 // Avoid emitting code for the store implementing the copy. 10318 const StoreInst *SI = ArgCopyIter->second.second; 10319 ElidedArgCopyInstrs.insert(SI); 10320 10321 // Check for uses of the argument again so that we can avoid exporting ArgVal 10322 // if it is't used by anything other than the store. 10323 for (const Value *U : Arg.users()) { 10324 if (U != SI) { 10325 ArgHasUses = true; 10326 break; 10327 } 10328 } 10329 } 10330 10331 void SelectionDAGISel::LowerArguments(const Function &F) { 10332 SelectionDAG &DAG = SDB->DAG; 10333 SDLoc dl = SDB->getCurSDLoc(); 10334 const DataLayout &DL = DAG.getDataLayout(); 10335 SmallVector<ISD::InputArg, 16> Ins; 10336 10337 // In Naked functions we aren't going to save any registers. 10338 if (F.hasFnAttribute(Attribute::Naked)) 10339 return; 10340 10341 if (!FuncInfo->CanLowerReturn) { 10342 // Put in an sret pointer parameter before all the other parameters. 10343 SmallVector<EVT, 1> ValueVTs; 10344 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10345 F.getReturnType()->getPointerTo( 10346 DAG.getDataLayout().getAllocaAddrSpace()), 10347 ValueVTs); 10348 10349 // NOTE: Assuming that a pointer will never break down to more than one VT 10350 // or one register. 10351 ISD::ArgFlagsTy Flags; 10352 Flags.setSRet(); 10353 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10354 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10355 ISD::InputArg::NoArgIndex, 0); 10356 Ins.push_back(RetArg); 10357 } 10358 10359 // Look for stores of arguments to static allocas. Mark such arguments with a 10360 // flag to ask the target to give us the memory location of that argument if 10361 // available. 10362 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10363 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10364 ArgCopyElisionCandidates); 10365 10366 // Set up the incoming argument description vector. 10367 for (const Argument &Arg : F.args()) { 10368 unsigned ArgNo = Arg.getArgNo(); 10369 SmallVector<EVT, 4> ValueVTs; 10370 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10371 bool isArgValueUsed = !Arg.use_empty(); 10372 unsigned PartBase = 0; 10373 Type *FinalType = Arg.getType(); 10374 if (Arg.hasAttribute(Attribute::ByVal)) 10375 FinalType = Arg.getParamByValType(); 10376 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10377 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10378 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10379 Value != NumValues; ++Value) { 10380 EVT VT = ValueVTs[Value]; 10381 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10382 ISD::ArgFlagsTy Flags; 10383 10384 10385 if (Arg.getType()->isPointerTy()) { 10386 Flags.setPointer(); 10387 Flags.setPointerAddrSpace( 10388 cast<PointerType>(Arg.getType())->getAddressSpace()); 10389 } 10390 if (Arg.hasAttribute(Attribute::ZExt)) 10391 Flags.setZExt(); 10392 if (Arg.hasAttribute(Attribute::SExt)) 10393 Flags.setSExt(); 10394 if (Arg.hasAttribute(Attribute::InReg)) { 10395 // If we are using vectorcall calling convention, a structure that is 10396 // passed InReg - is surely an HVA 10397 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10398 isa<StructType>(Arg.getType())) { 10399 // The first value of a structure is marked 10400 if (0 == Value) 10401 Flags.setHvaStart(); 10402 Flags.setHva(); 10403 } 10404 // Set InReg Flag 10405 Flags.setInReg(); 10406 } 10407 if (Arg.hasAttribute(Attribute::StructRet)) 10408 Flags.setSRet(); 10409 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10410 Flags.setSwiftSelf(); 10411 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10412 Flags.setSwiftAsync(); 10413 if (Arg.hasAttribute(Attribute::SwiftError)) 10414 Flags.setSwiftError(); 10415 if (Arg.hasAttribute(Attribute::ByVal)) 10416 Flags.setByVal(); 10417 if (Arg.hasAttribute(Attribute::ByRef)) 10418 Flags.setByRef(); 10419 if (Arg.hasAttribute(Attribute::InAlloca)) { 10420 Flags.setInAlloca(); 10421 // Set the byval flag for CCAssignFn callbacks that don't know about 10422 // inalloca. This way we can know how many bytes we should've allocated 10423 // and how many bytes a callee cleanup function will pop. If we port 10424 // inalloca to more targets, we'll have to add custom inalloca handling 10425 // in the various CC lowering callbacks. 10426 Flags.setByVal(); 10427 } 10428 if (Arg.hasAttribute(Attribute::Preallocated)) { 10429 Flags.setPreallocated(); 10430 // Set the byval flag for CCAssignFn callbacks that don't know about 10431 // preallocated. This way we can know how many bytes we should've 10432 // allocated and how many bytes a callee cleanup function will pop. If 10433 // we port preallocated to more targets, we'll have to add custom 10434 // preallocated handling in the various CC lowering callbacks. 10435 Flags.setByVal(); 10436 } 10437 10438 // Certain targets (such as MIPS), may have a different ABI alignment 10439 // for a type depending on the context. Give the target a chance to 10440 // specify the alignment it wants. 10441 const Align OriginalAlignment( 10442 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10443 Flags.setOrigAlign(OriginalAlignment); 10444 10445 Align MemAlign; 10446 Type *ArgMemTy = nullptr; 10447 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10448 Flags.isByRef()) { 10449 if (!ArgMemTy) 10450 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10451 10452 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10453 10454 // For in-memory arguments, size and alignment should be passed from FE. 10455 // BE will guess if this info is not there but there are cases it cannot 10456 // get right. 10457 if (auto ParamAlign = Arg.getParamStackAlign()) 10458 MemAlign = *ParamAlign; 10459 else if ((ParamAlign = Arg.getParamAlign())) 10460 MemAlign = *ParamAlign; 10461 else 10462 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10463 if (Flags.isByRef()) 10464 Flags.setByRefSize(MemSize); 10465 else 10466 Flags.setByValSize(MemSize); 10467 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10468 MemAlign = *ParamAlign; 10469 } else { 10470 MemAlign = OriginalAlignment; 10471 } 10472 Flags.setMemAlign(MemAlign); 10473 10474 if (Arg.hasAttribute(Attribute::Nest)) 10475 Flags.setNest(); 10476 if (NeedsRegBlock) 10477 Flags.setInConsecutiveRegs(); 10478 if (ArgCopyElisionCandidates.count(&Arg)) 10479 Flags.setCopyElisionCandidate(); 10480 if (Arg.hasAttribute(Attribute::Returned)) 10481 Flags.setReturned(); 10482 10483 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10484 *CurDAG->getContext(), F.getCallingConv(), VT); 10485 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10486 *CurDAG->getContext(), F.getCallingConv(), VT); 10487 for (unsigned i = 0; i != NumRegs; ++i) { 10488 // For scalable vectors, use the minimum size; individual targets 10489 // are responsible for handling scalable vector arguments and 10490 // return values. 10491 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10492 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10493 if (NumRegs > 1 && i == 0) 10494 MyFlags.Flags.setSplit(); 10495 // if it isn't first piece, alignment must be 1 10496 else if (i > 0) { 10497 MyFlags.Flags.setOrigAlign(Align(1)); 10498 if (i == NumRegs - 1) 10499 MyFlags.Flags.setSplitEnd(); 10500 } 10501 Ins.push_back(MyFlags); 10502 } 10503 if (NeedsRegBlock && Value == NumValues - 1) 10504 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10505 PartBase += VT.getStoreSize().getKnownMinSize(); 10506 } 10507 } 10508 10509 // Call the target to set up the argument values. 10510 SmallVector<SDValue, 8> InVals; 10511 SDValue NewRoot = TLI->LowerFormalArguments( 10512 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10513 10514 // Verify that the target's LowerFormalArguments behaved as expected. 10515 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10516 "LowerFormalArguments didn't return a valid chain!"); 10517 assert(InVals.size() == Ins.size() && 10518 "LowerFormalArguments didn't emit the correct number of values!"); 10519 LLVM_DEBUG({ 10520 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10521 assert(InVals[i].getNode() && 10522 "LowerFormalArguments emitted a null value!"); 10523 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10524 "LowerFormalArguments emitted a value with the wrong type!"); 10525 } 10526 }); 10527 10528 // Update the DAG with the new chain value resulting from argument lowering. 10529 DAG.setRoot(NewRoot); 10530 10531 // Set up the argument values. 10532 unsigned i = 0; 10533 if (!FuncInfo->CanLowerReturn) { 10534 // Create a virtual register for the sret pointer, and put in a copy 10535 // from the sret argument into it. 10536 SmallVector<EVT, 1> ValueVTs; 10537 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10538 F.getReturnType()->getPointerTo( 10539 DAG.getDataLayout().getAllocaAddrSpace()), 10540 ValueVTs); 10541 MVT VT = ValueVTs[0].getSimpleVT(); 10542 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10543 Optional<ISD::NodeType> AssertOp = None; 10544 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10545 nullptr, F.getCallingConv(), AssertOp); 10546 10547 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10548 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10549 Register SRetReg = 10550 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10551 FuncInfo->DemoteRegister = SRetReg; 10552 NewRoot = 10553 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10554 DAG.setRoot(NewRoot); 10555 10556 // i indexes lowered arguments. Bump it past the hidden sret argument. 10557 ++i; 10558 } 10559 10560 SmallVector<SDValue, 4> Chains; 10561 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10562 for (const Argument &Arg : F.args()) { 10563 SmallVector<SDValue, 4> ArgValues; 10564 SmallVector<EVT, 4> ValueVTs; 10565 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10566 unsigned NumValues = ValueVTs.size(); 10567 if (NumValues == 0) 10568 continue; 10569 10570 bool ArgHasUses = !Arg.use_empty(); 10571 10572 // Elide the copying store if the target loaded this argument from a 10573 // suitable fixed stack object. 10574 if (Ins[i].Flags.isCopyElisionCandidate()) { 10575 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10576 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10577 InVals[i], ArgHasUses); 10578 } 10579 10580 // If this argument is unused then remember its value. It is used to generate 10581 // debugging information. 10582 bool isSwiftErrorArg = 10583 TLI->supportSwiftError() && 10584 Arg.hasAttribute(Attribute::SwiftError); 10585 if (!ArgHasUses && !isSwiftErrorArg) { 10586 SDB->setUnusedArgValue(&Arg, InVals[i]); 10587 10588 // Also remember any frame index for use in FastISel. 10589 if (FrameIndexSDNode *FI = 10590 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10591 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10592 } 10593 10594 for (unsigned Val = 0; Val != NumValues; ++Val) { 10595 EVT VT = ValueVTs[Val]; 10596 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10597 F.getCallingConv(), VT); 10598 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10599 *CurDAG->getContext(), F.getCallingConv(), VT); 10600 10601 // Even an apparent 'unused' swifterror argument needs to be returned. So 10602 // we do generate a copy for it that can be used on return from the 10603 // function. 10604 if (ArgHasUses || isSwiftErrorArg) { 10605 Optional<ISD::NodeType> AssertOp; 10606 if (Arg.hasAttribute(Attribute::SExt)) 10607 AssertOp = ISD::AssertSext; 10608 else if (Arg.hasAttribute(Attribute::ZExt)) 10609 AssertOp = ISD::AssertZext; 10610 10611 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10612 PartVT, VT, nullptr, 10613 F.getCallingConv(), AssertOp)); 10614 } 10615 10616 i += NumParts; 10617 } 10618 10619 // We don't need to do anything else for unused arguments. 10620 if (ArgValues.empty()) 10621 continue; 10622 10623 // Note down frame index. 10624 if (FrameIndexSDNode *FI = 10625 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10626 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10627 10628 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10629 SDB->getCurSDLoc()); 10630 10631 SDB->setValue(&Arg, Res); 10632 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10633 // We want to associate the argument with the frame index, among 10634 // involved operands, that correspond to the lowest address. The 10635 // getCopyFromParts function, called earlier, is swapping the order of 10636 // the operands to BUILD_PAIR depending on endianness. The result of 10637 // that swapping is that the least significant bits of the argument will 10638 // be in the first operand of the BUILD_PAIR node, and the most 10639 // significant bits will be in the second operand. 10640 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10641 if (LoadSDNode *LNode = 10642 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10643 if (FrameIndexSDNode *FI = 10644 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10645 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10646 } 10647 10648 // Analyses past this point are naive and don't expect an assertion. 10649 if (Res.getOpcode() == ISD::AssertZext) 10650 Res = Res.getOperand(0); 10651 10652 // Update the SwiftErrorVRegDefMap. 10653 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10654 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10655 if (Register::isVirtualRegister(Reg)) 10656 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10657 Reg); 10658 } 10659 10660 // If this argument is live outside of the entry block, insert a copy from 10661 // wherever we got it to the vreg that other BB's will reference it as. 10662 if (Res.getOpcode() == ISD::CopyFromReg) { 10663 // If we can, though, try to skip creating an unnecessary vreg. 10664 // FIXME: This isn't very clean... it would be nice to make this more 10665 // general. 10666 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10667 if (Register::isVirtualRegister(Reg)) { 10668 FuncInfo->ValueMap[&Arg] = Reg; 10669 continue; 10670 } 10671 } 10672 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10673 FuncInfo->InitializeRegForValue(&Arg); 10674 SDB->CopyToExportRegsIfNeeded(&Arg); 10675 } 10676 } 10677 10678 if (!Chains.empty()) { 10679 Chains.push_back(NewRoot); 10680 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10681 } 10682 10683 DAG.setRoot(NewRoot); 10684 10685 assert(i == InVals.size() && "Argument register count mismatch!"); 10686 10687 // If any argument copy elisions occurred and we have debug info, update the 10688 // stale frame indices used in the dbg.declare variable info table. 10689 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10690 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10691 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10692 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10693 if (I != ArgCopyElisionFrameIndexMap.end()) 10694 VI.Slot = I->second; 10695 } 10696 } 10697 10698 // Finally, if the target has anything special to do, allow it to do so. 10699 emitFunctionEntryCode(); 10700 } 10701 10702 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10703 /// ensure constants are generated when needed. Remember the virtual registers 10704 /// that need to be added to the Machine PHI nodes as input. We cannot just 10705 /// directly add them, because expansion might result in multiple MBB's for one 10706 /// BB. As such, the start of the BB might correspond to a different MBB than 10707 /// the end. 10708 void 10709 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10711 const Instruction *TI = LLVMBB->getTerminator(); 10712 10713 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10714 10715 // Check PHI nodes in successors that expect a value to be available from this 10716 // block. 10717 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10718 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10719 if (!isa<PHINode>(SuccBB->begin())) continue; 10720 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10721 10722 // If this terminator has multiple identical successors (common for 10723 // switches), only handle each succ once. 10724 if (!SuccsHandled.insert(SuccMBB).second) 10725 continue; 10726 10727 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10728 10729 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10730 // nodes and Machine PHI nodes, but the incoming operands have not been 10731 // emitted yet. 10732 for (const PHINode &PN : SuccBB->phis()) { 10733 // Ignore dead phi's. 10734 if (PN.use_empty()) 10735 continue; 10736 10737 // Skip empty types 10738 if (PN.getType()->isEmptyTy()) 10739 continue; 10740 10741 unsigned Reg; 10742 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10743 10744 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10745 unsigned &RegOut = ConstantsOut[C]; 10746 if (RegOut == 0) { 10747 RegOut = FuncInfo.CreateRegs(C); 10748 // We need to zero/sign extend ConstantInt phi operands to match 10749 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10750 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10751 if (auto *CI = dyn_cast<ConstantInt>(C)) 10752 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10753 : ISD::ZERO_EXTEND; 10754 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10755 } 10756 Reg = RegOut; 10757 } else { 10758 DenseMap<const Value *, Register>::iterator I = 10759 FuncInfo.ValueMap.find(PHIOp); 10760 if (I != FuncInfo.ValueMap.end()) 10761 Reg = I->second; 10762 else { 10763 assert(isa<AllocaInst>(PHIOp) && 10764 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10765 "Didn't codegen value into a register!??"); 10766 Reg = FuncInfo.CreateRegs(PHIOp); 10767 CopyValueToVirtualRegister(PHIOp, Reg); 10768 } 10769 } 10770 10771 // Remember that this register needs to added to the machine PHI node as 10772 // the input for this MBB. 10773 SmallVector<EVT, 4> ValueVTs; 10774 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10775 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10776 EVT VT = ValueVTs[vti]; 10777 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10778 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10779 FuncInfo.PHINodesToUpdate.push_back( 10780 std::make_pair(&*MBBI++, Reg + i)); 10781 Reg += NumRegisters; 10782 } 10783 } 10784 } 10785 10786 ConstantsOut.clear(); 10787 } 10788 10789 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10790 MachineFunction::iterator I(MBB); 10791 if (++I == FuncInfo.MF->end()) 10792 return nullptr; 10793 return &*I; 10794 } 10795 10796 /// During lowering new call nodes can be created (such as memset, etc.). 10797 /// Those will become new roots of the current DAG, but complications arise 10798 /// when they are tail calls. In such cases, the call lowering will update 10799 /// the root, but the builder still needs to know that a tail call has been 10800 /// lowered in order to avoid generating an additional return. 10801 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10802 // If the node is null, we do have a tail call. 10803 if (MaybeTC.getNode() != nullptr) 10804 DAG.setRoot(MaybeTC); 10805 else 10806 HasTailCall = true; 10807 } 10808 10809 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10810 MachineBasicBlock *SwitchMBB, 10811 MachineBasicBlock *DefaultMBB) { 10812 MachineFunction *CurMF = FuncInfo.MF; 10813 MachineBasicBlock *NextMBB = nullptr; 10814 MachineFunction::iterator BBI(W.MBB); 10815 if (++BBI != FuncInfo.MF->end()) 10816 NextMBB = &*BBI; 10817 10818 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10819 10820 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10821 10822 if (Size == 2 && W.MBB == SwitchMBB) { 10823 // If any two of the cases has the same destination, and if one value 10824 // is the same as the other, but has one bit unset that the other has set, 10825 // use bit manipulation to do two compares at once. For example: 10826 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10827 // TODO: This could be extended to merge any 2 cases in switches with 3 10828 // cases. 10829 // TODO: Handle cases where W.CaseBB != SwitchBB. 10830 CaseCluster &Small = *W.FirstCluster; 10831 CaseCluster &Big = *W.LastCluster; 10832 10833 if (Small.Low == Small.High && Big.Low == Big.High && 10834 Small.MBB == Big.MBB) { 10835 const APInt &SmallValue = Small.Low->getValue(); 10836 const APInt &BigValue = Big.Low->getValue(); 10837 10838 // Check that there is only one bit different. 10839 APInt CommonBit = BigValue ^ SmallValue; 10840 if (CommonBit.isPowerOf2()) { 10841 SDValue CondLHS = getValue(Cond); 10842 EVT VT = CondLHS.getValueType(); 10843 SDLoc DL = getCurSDLoc(); 10844 10845 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10846 DAG.getConstant(CommonBit, DL, VT)); 10847 SDValue Cond = DAG.getSetCC( 10848 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10849 ISD::SETEQ); 10850 10851 // Update successor info. 10852 // Both Small and Big will jump to Small.BB, so we sum up the 10853 // probabilities. 10854 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10855 if (BPI) 10856 addSuccessorWithProb( 10857 SwitchMBB, DefaultMBB, 10858 // The default destination is the first successor in IR. 10859 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10860 else 10861 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10862 10863 // Insert the true branch. 10864 SDValue BrCond = 10865 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10866 DAG.getBasicBlock(Small.MBB)); 10867 // Insert the false branch. 10868 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10869 DAG.getBasicBlock(DefaultMBB)); 10870 10871 DAG.setRoot(BrCond); 10872 return; 10873 } 10874 } 10875 } 10876 10877 if (TM.getOptLevel() != CodeGenOpt::None) { 10878 // Here, we order cases by probability so the most likely case will be 10879 // checked first. However, two clusters can have the same probability in 10880 // which case their relative ordering is non-deterministic. So we use Low 10881 // as a tie-breaker as clusters are guaranteed to never overlap. 10882 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10883 [](const CaseCluster &a, const CaseCluster &b) { 10884 return a.Prob != b.Prob ? 10885 a.Prob > b.Prob : 10886 a.Low->getValue().slt(b.Low->getValue()); 10887 }); 10888 10889 // Rearrange the case blocks so that the last one falls through if possible 10890 // without changing the order of probabilities. 10891 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10892 --I; 10893 if (I->Prob > W.LastCluster->Prob) 10894 break; 10895 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10896 std::swap(*I, *W.LastCluster); 10897 break; 10898 } 10899 } 10900 } 10901 10902 // Compute total probability. 10903 BranchProbability DefaultProb = W.DefaultProb; 10904 BranchProbability UnhandledProbs = DefaultProb; 10905 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10906 UnhandledProbs += I->Prob; 10907 10908 MachineBasicBlock *CurMBB = W.MBB; 10909 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10910 bool FallthroughUnreachable = false; 10911 MachineBasicBlock *Fallthrough; 10912 if (I == W.LastCluster) { 10913 // For the last cluster, fall through to the default destination. 10914 Fallthrough = DefaultMBB; 10915 FallthroughUnreachable = isa<UnreachableInst>( 10916 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10917 } else { 10918 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10919 CurMF->insert(BBI, Fallthrough); 10920 // Put Cond in a virtual register to make it available from the new blocks. 10921 ExportFromCurrentBlock(Cond); 10922 } 10923 UnhandledProbs -= I->Prob; 10924 10925 switch (I->Kind) { 10926 case CC_JumpTable: { 10927 // FIXME: Optimize away range check based on pivot comparisons. 10928 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10929 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10930 10931 // The jump block hasn't been inserted yet; insert it here. 10932 MachineBasicBlock *JumpMBB = JT->MBB; 10933 CurMF->insert(BBI, JumpMBB); 10934 10935 auto JumpProb = I->Prob; 10936 auto FallthroughProb = UnhandledProbs; 10937 10938 // If the default statement is a target of the jump table, we evenly 10939 // distribute the default probability to successors of CurMBB. Also 10940 // update the probability on the edge from JumpMBB to Fallthrough. 10941 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10942 SE = JumpMBB->succ_end(); 10943 SI != SE; ++SI) { 10944 if (*SI == DefaultMBB) { 10945 JumpProb += DefaultProb / 2; 10946 FallthroughProb -= DefaultProb / 2; 10947 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10948 JumpMBB->normalizeSuccProbs(); 10949 break; 10950 } 10951 } 10952 10953 if (FallthroughUnreachable) 10954 JTH->FallthroughUnreachable = true; 10955 10956 if (!JTH->FallthroughUnreachable) 10957 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10958 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10959 CurMBB->normalizeSuccProbs(); 10960 10961 // The jump table header will be inserted in our current block, do the 10962 // range check, and fall through to our fallthrough block. 10963 JTH->HeaderBB = CurMBB; 10964 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10965 10966 // If we're in the right place, emit the jump table header right now. 10967 if (CurMBB == SwitchMBB) { 10968 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10969 JTH->Emitted = true; 10970 } 10971 break; 10972 } 10973 case CC_BitTests: { 10974 // FIXME: Optimize away range check based on pivot comparisons. 10975 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10976 10977 // The bit test blocks haven't been inserted yet; insert them here. 10978 for (BitTestCase &BTC : BTB->Cases) 10979 CurMF->insert(BBI, BTC.ThisBB); 10980 10981 // Fill in fields of the BitTestBlock. 10982 BTB->Parent = CurMBB; 10983 BTB->Default = Fallthrough; 10984 10985 BTB->DefaultProb = UnhandledProbs; 10986 // If the cases in bit test don't form a contiguous range, we evenly 10987 // distribute the probability on the edge to Fallthrough to two 10988 // successors of CurMBB. 10989 if (!BTB->ContiguousRange) { 10990 BTB->Prob += DefaultProb / 2; 10991 BTB->DefaultProb -= DefaultProb / 2; 10992 } 10993 10994 if (FallthroughUnreachable) 10995 BTB->FallthroughUnreachable = true; 10996 10997 // If we're in the right place, emit the bit test header right now. 10998 if (CurMBB == SwitchMBB) { 10999 visitBitTestHeader(*BTB, SwitchMBB); 11000 BTB->Emitted = true; 11001 } 11002 break; 11003 } 11004 case CC_Range: { 11005 const Value *RHS, *LHS, *MHS; 11006 ISD::CondCode CC; 11007 if (I->Low == I->High) { 11008 // Check Cond == I->Low. 11009 CC = ISD::SETEQ; 11010 LHS = Cond; 11011 RHS=I->Low; 11012 MHS = nullptr; 11013 } else { 11014 // Check I->Low <= Cond <= I->High. 11015 CC = ISD::SETLE; 11016 LHS = I->Low; 11017 MHS = Cond; 11018 RHS = I->High; 11019 } 11020 11021 // If Fallthrough is unreachable, fold away the comparison. 11022 if (FallthroughUnreachable) 11023 CC = ISD::SETTRUE; 11024 11025 // The false probability is the sum of all unhandled cases. 11026 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11027 getCurSDLoc(), I->Prob, UnhandledProbs); 11028 11029 if (CurMBB == SwitchMBB) 11030 visitSwitchCase(CB, SwitchMBB); 11031 else 11032 SL->SwitchCases.push_back(CB); 11033 11034 break; 11035 } 11036 } 11037 CurMBB = Fallthrough; 11038 } 11039 } 11040 11041 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11042 CaseClusterIt First, 11043 CaseClusterIt Last) { 11044 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11045 if (X.Prob != CC.Prob) 11046 return X.Prob > CC.Prob; 11047 11048 // Ties are broken by comparing the case value. 11049 return X.Low->getValue().slt(CC.Low->getValue()); 11050 }); 11051 } 11052 11053 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11054 const SwitchWorkListItem &W, 11055 Value *Cond, 11056 MachineBasicBlock *SwitchMBB) { 11057 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11058 "Clusters not sorted?"); 11059 11060 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11061 11062 // Balance the tree based on branch probabilities to create a near-optimal (in 11063 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11064 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11065 CaseClusterIt LastLeft = W.FirstCluster; 11066 CaseClusterIt FirstRight = W.LastCluster; 11067 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11068 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11069 11070 // Move LastLeft and FirstRight towards each other from opposite directions to 11071 // find a partitioning of the clusters which balances the probability on both 11072 // sides. If LeftProb and RightProb are equal, alternate which side is 11073 // taken to ensure 0-probability nodes are distributed evenly. 11074 unsigned I = 0; 11075 while (LastLeft + 1 < FirstRight) { 11076 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11077 LeftProb += (++LastLeft)->Prob; 11078 else 11079 RightProb += (--FirstRight)->Prob; 11080 I++; 11081 } 11082 11083 while (true) { 11084 // Our binary search tree differs from a typical BST in that ours can have up 11085 // to three values in each leaf. The pivot selection above doesn't take that 11086 // into account, which means the tree might require more nodes and be less 11087 // efficient. We compensate for this here. 11088 11089 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11090 unsigned NumRight = W.LastCluster - FirstRight + 1; 11091 11092 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11093 // If one side has less than 3 clusters, and the other has more than 3, 11094 // consider taking a cluster from the other side. 11095 11096 if (NumLeft < NumRight) { 11097 // Consider moving the first cluster on the right to the left side. 11098 CaseCluster &CC = *FirstRight; 11099 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11100 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11101 if (LeftSideRank <= RightSideRank) { 11102 // Moving the cluster to the left does not demote it. 11103 ++LastLeft; 11104 ++FirstRight; 11105 continue; 11106 } 11107 } else { 11108 assert(NumRight < NumLeft); 11109 // Consider moving the last element on the left to the right side. 11110 CaseCluster &CC = *LastLeft; 11111 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11112 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11113 if (RightSideRank <= LeftSideRank) { 11114 // Moving the cluster to the right does not demot it. 11115 --LastLeft; 11116 --FirstRight; 11117 continue; 11118 } 11119 } 11120 } 11121 break; 11122 } 11123 11124 assert(LastLeft + 1 == FirstRight); 11125 assert(LastLeft >= W.FirstCluster); 11126 assert(FirstRight <= W.LastCluster); 11127 11128 // Use the first element on the right as pivot since we will make less-than 11129 // comparisons against it. 11130 CaseClusterIt PivotCluster = FirstRight; 11131 assert(PivotCluster > W.FirstCluster); 11132 assert(PivotCluster <= W.LastCluster); 11133 11134 CaseClusterIt FirstLeft = W.FirstCluster; 11135 CaseClusterIt LastRight = W.LastCluster; 11136 11137 const ConstantInt *Pivot = PivotCluster->Low; 11138 11139 // New blocks will be inserted immediately after the current one. 11140 MachineFunction::iterator BBI(W.MBB); 11141 ++BBI; 11142 11143 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11144 // we can branch to its destination directly if it's squeezed exactly in 11145 // between the known lower bound and Pivot - 1. 11146 MachineBasicBlock *LeftMBB; 11147 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11148 FirstLeft->Low == W.GE && 11149 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11150 LeftMBB = FirstLeft->MBB; 11151 } else { 11152 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11153 FuncInfo.MF->insert(BBI, LeftMBB); 11154 WorkList.push_back( 11155 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11156 // Put Cond in a virtual register to make it available from the new blocks. 11157 ExportFromCurrentBlock(Cond); 11158 } 11159 11160 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11161 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11162 // directly if RHS.High equals the current upper bound. 11163 MachineBasicBlock *RightMBB; 11164 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11165 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11166 RightMBB = FirstRight->MBB; 11167 } else { 11168 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11169 FuncInfo.MF->insert(BBI, RightMBB); 11170 WorkList.push_back( 11171 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11172 // Put Cond in a virtual register to make it available from the new blocks. 11173 ExportFromCurrentBlock(Cond); 11174 } 11175 11176 // Create the CaseBlock record that will be used to lower the branch. 11177 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11178 getCurSDLoc(), LeftProb, RightProb); 11179 11180 if (W.MBB == SwitchMBB) 11181 visitSwitchCase(CB, SwitchMBB); 11182 else 11183 SL->SwitchCases.push_back(CB); 11184 } 11185 11186 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11187 // from the swith statement. 11188 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11189 BranchProbability PeeledCaseProb) { 11190 if (PeeledCaseProb == BranchProbability::getOne()) 11191 return BranchProbability::getZero(); 11192 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11193 11194 uint32_t Numerator = CaseProb.getNumerator(); 11195 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11196 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11197 } 11198 11199 // Try to peel the top probability case if it exceeds the threshold. 11200 // Return current MachineBasicBlock for the switch statement if the peeling 11201 // does not occur. 11202 // If the peeling is performed, return the newly created MachineBasicBlock 11203 // for the peeled switch statement. Also update Clusters to remove the peeled 11204 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11205 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11206 const SwitchInst &SI, CaseClusterVector &Clusters, 11207 BranchProbability &PeeledCaseProb) { 11208 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11209 // Don't perform if there is only one cluster or optimizing for size. 11210 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11211 TM.getOptLevel() == CodeGenOpt::None || 11212 SwitchMBB->getParent()->getFunction().hasMinSize()) 11213 return SwitchMBB; 11214 11215 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11216 unsigned PeeledCaseIndex = 0; 11217 bool SwitchPeeled = false; 11218 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11219 CaseCluster &CC = Clusters[Index]; 11220 if (CC.Prob < TopCaseProb) 11221 continue; 11222 TopCaseProb = CC.Prob; 11223 PeeledCaseIndex = Index; 11224 SwitchPeeled = true; 11225 } 11226 if (!SwitchPeeled) 11227 return SwitchMBB; 11228 11229 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11230 << TopCaseProb << "\n"); 11231 11232 // Record the MBB for the peeled switch statement. 11233 MachineFunction::iterator BBI(SwitchMBB); 11234 ++BBI; 11235 MachineBasicBlock *PeeledSwitchMBB = 11236 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11237 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11238 11239 ExportFromCurrentBlock(SI.getCondition()); 11240 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11241 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11242 nullptr, nullptr, TopCaseProb.getCompl()}; 11243 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11244 11245 Clusters.erase(PeeledCaseIt); 11246 for (CaseCluster &CC : Clusters) { 11247 LLVM_DEBUG( 11248 dbgs() << "Scale the probablity for one cluster, before scaling: " 11249 << CC.Prob << "\n"); 11250 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11251 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11252 } 11253 PeeledCaseProb = TopCaseProb; 11254 return PeeledSwitchMBB; 11255 } 11256 11257 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11258 // Extract cases from the switch. 11259 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11260 CaseClusterVector Clusters; 11261 Clusters.reserve(SI.getNumCases()); 11262 for (auto I : SI.cases()) { 11263 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11264 const ConstantInt *CaseVal = I.getCaseValue(); 11265 BranchProbability Prob = 11266 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11267 : BranchProbability(1, SI.getNumCases() + 1); 11268 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11269 } 11270 11271 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11272 11273 // Cluster adjacent cases with the same destination. We do this at all 11274 // optimization levels because it's cheap to do and will make codegen faster 11275 // if there are many clusters. 11276 sortAndRangeify(Clusters); 11277 11278 // The branch probablity of the peeled case. 11279 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11280 MachineBasicBlock *PeeledSwitchMBB = 11281 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11282 11283 // If there is only the default destination, jump there directly. 11284 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11285 if (Clusters.empty()) { 11286 assert(PeeledSwitchMBB == SwitchMBB); 11287 SwitchMBB->addSuccessor(DefaultMBB); 11288 if (DefaultMBB != NextBlock(SwitchMBB)) { 11289 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11290 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11291 } 11292 return; 11293 } 11294 11295 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11296 SL->findBitTestClusters(Clusters, &SI); 11297 11298 LLVM_DEBUG({ 11299 dbgs() << "Case clusters: "; 11300 for (const CaseCluster &C : Clusters) { 11301 if (C.Kind == CC_JumpTable) 11302 dbgs() << "JT:"; 11303 if (C.Kind == CC_BitTests) 11304 dbgs() << "BT:"; 11305 11306 C.Low->getValue().print(dbgs(), true); 11307 if (C.Low != C.High) { 11308 dbgs() << '-'; 11309 C.High->getValue().print(dbgs(), true); 11310 } 11311 dbgs() << ' '; 11312 } 11313 dbgs() << '\n'; 11314 }); 11315 11316 assert(!Clusters.empty()); 11317 SwitchWorkList WorkList; 11318 CaseClusterIt First = Clusters.begin(); 11319 CaseClusterIt Last = Clusters.end() - 1; 11320 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11321 // Scale the branchprobability for DefaultMBB if the peel occurs and 11322 // DefaultMBB is not replaced. 11323 if (PeeledCaseProb != BranchProbability::getZero() && 11324 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11325 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11326 WorkList.push_back( 11327 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11328 11329 while (!WorkList.empty()) { 11330 SwitchWorkListItem W = WorkList.pop_back_val(); 11331 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11332 11333 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11334 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11335 // For optimized builds, lower large range as a balanced binary tree. 11336 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11337 continue; 11338 } 11339 11340 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11341 } 11342 } 11343 11344 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11346 auto DL = getCurSDLoc(); 11347 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11348 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11349 } 11350 11351 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11352 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11353 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11354 11355 SDLoc DL = getCurSDLoc(); 11356 SDValue V = getValue(I.getOperand(0)); 11357 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11358 11359 if (VT.isScalableVector()) { 11360 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11361 return; 11362 } 11363 11364 // Use VECTOR_SHUFFLE for the fixed-length vector 11365 // to maintain existing behavior. 11366 SmallVector<int, 8> Mask; 11367 unsigned NumElts = VT.getVectorMinNumElements(); 11368 for (unsigned i = 0; i != NumElts; ++i) 11369 Mask.push_back(NumElts - 1 - i); 11370 11371 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11372 } 11373 11374 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11375 SmallVector<EVT, 4> ValueVTs; 11376 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11377 ValueVTs); 11378 unsigned NumValues = ValueVTs.size(); 11379 if (NumValues == 0) return; 11380 11381 SmallVector<SDValue, 4> Values(NumValues); 11382 SDValue Op = getValue(I.getOperand(0)); 11383 11384 for (unsigned i = 0; i != NumValues; ++i) 11385 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11386 SDValue(Op.getNode(), Op.getResNo() + i)); 11387 11388 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11389 DAG.getVTList(ValueVTs), Values)); 11390 } 11391 11392 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11393 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11394 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11395 11396 SDLoc DL = getCurSDLoc(); 11397 SDValue V1 = getValue(I.getOperand(0)); 11398 SDValue V2 = getValue(I.getOperand(1)); 11399 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11400 11401 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11402 if (VT.isScalableVector()) { 11403 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11404 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11405 DAG.getConstant(Imm, DL, IdxVT))); 11406 return; 11407 } 11408 11409 unsigned NumElts = VT.getVectorNumElements(); 11410 11411 uint64_t Idx = (NumElts + Imm) % NumElts; 11412 11413 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11414 SmallVector<int, 8> Mask; 11415 for (unsigned i = 0; i < NumElts; ++i) 11416 Mask.push_back(Idx + i); 11417 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11418 } 11419