xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 16033ffdd93c23b53c9429661a0539ed1bb70b97)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GetElementPtrTypeIterator.h"
71 #include "llvm/IR/InlineAsm.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsAArch64.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Statepoint.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/Support/AtomicOrdering.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/MathExtras.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Target/TargetIntrinsicInfo.h"
96 #include "llvm/Target/TargetMachine.h"
97 #include "llvm/Target/TargetOptions.h"
98 #include "llvm/Transforms/Utils/Local.h"
99 #include <cstddef>
100 #include <iterator>
101 #include <limits>
102 #include <tuple>
103 
104 using namespace llvm;
105 using namespace PatternMatch;
106 using namespace SwitchCG;
107 
108 #define DEBUG_TYPE "isel"
109 
110 /// LimitFloatPrecision - Generate low-precision inline sequences for
111 /// some float libcalls (6, 8 or 12 bits).
112 static unsigned LimitFloatPrecision;
113 
114 static cl::opt<bool>
115     InsertAssertAlign("insert-assert-align", cl::init(true),
116                       cl::desc("Insert the experimental `assertalign` node."),
117                       cl::ReallyHidden);
118 
119 static cl::opt<unsigned, true>
120     LimitFPPrecision("limit-float-precision",
121                      cl::desc("Generate low-precision inline sequences "
122                               "for some float libcalls"),
123                      cl::location(LimitFloatPrecision), cl::Hidden,
124                      cl::init(0));
125 
126 static cl::opt<unsigned> SwitchPeelThreshold(
127     "switch-peel-threshold", cl::Hidden, cl::init(66),
128     cl::desc("Set the case probability threshold for peeling the case from a "
129              "switch statement. A value greater than 100 will void this "
130              "optimization"));
131 
132 // Limit the width of DAG chains. This is important in general to prevent
133 // DAG-based analysis from blowing up. For example, alias analysis and
134 // load clustering may not complete in reasonable time. It is difficult to
135 // recognize and avoid this situation within each individual analysis, and
136 // future analyses are likely to have the same behavior. Limiting DAG width is
137 // the safe approach and will be especially important with global DAGs.
138 //
139 // MaxParallelChains default is arbitrarily high to avoid affecting
140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
141 // sequence over this should have been converted to llvm.memcpy by the
142 // frontend. It is easy to induce this behavior with .ll code such as:
143 // %buffer = alloca [4096 x i8]
144 // %data = load [4096 x i8]* %argPtr
145 // store [4096 x i8] %data, [4096 x i8]* %buffer
146 static const unsigned MaxParallelChains = 64;
147 
148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
149                                       const SDValue *Parts, unsigned NumParts,
150                                       MVT PartVT, EVT ValueVT, const Value *V,
151                                       Optional<CallingConv::ID> CC);
152 
153 /// getCopyFromParts - Create a value that contains the specified legal parts
154 /// combined into the value they represent.  If the parts combine to a type
155 /// larger than ValueVT then AssertOp can be used to specify whether the extra
156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
157 /// (ISD::AssertSext).
158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
159                                 const SDValue *Parts, unsigned NumParts,
160                                 MVT PartVT, EVT ValueVT, const Value *V,
161                                 Optional<CallingConv::ID> CC = None,
162                                 Optional<ISD::NodeType> AssertOp = None) {
163   // Let the target assemble the parts if it wants to
164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
165   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
166                                                    PartVT, ValueVT, CC))
167     return Val;
168 
169   if (ValueVT.isVector())
170     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
171                                   CC);
172 
173   assert(NumParts > 0 && "No parts to assemble!");
174   SDValue Val = Parts[0];
175 
176   if (NumParts > 1) {
177     // Assemble the value from multiple parts.
178     if (ValueVT.isInteger()) {
179       unsigned PartBits = PartVT.getSizeInBits();
180       unsigned ValueBits = ValueVT.getSizeInBits();
181 
182       // Assemble the power of 2 part.
183       unsigned RoundParts =
184           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
185       unsigned RoundBits = PartBits * RoundParts;
186       EVT RoundVT = RoundBits == ValueBits ?
187         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
188       SDValue Lo, Hi;
189 
190       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
191 
192       if (RoundParts > 2) {
193         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
194                               PartVT, HalfVT, V);
195         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
196                               RoundParts / 2, PartVT, HalfVT, V);
197       } else {
198         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
199         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
200       }
201 
202       if (DAG.getDataLayout().isBigEndian())
203         std::swap(Lo, Hi);
204 
205       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
206 
207       if (RoundParts < NumParts) {
208         // Assemble the trailing non-power-of-2 part.
209         unsigned OddParts = NumParts - RoundParts;
210         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
211         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
212                               OddVT, V, CC);
213 
214         // Combine the round and odd parts.
215         Lo = Val;
216         if (DAG.getDataLayout().isBigEndian())
217           std::swap(Lo, Hi);
218         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
219         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
220         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
221                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
222                                          TLI.getShiftAmountTy(
223                                              TotalVT, DAG.getDataLayout())));
224         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
225         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
226       }
227     } else if (PartVT.isFloatingPoint()) {
228       // FP split into multiple FP parts (for ppcf128)
229       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
230              "Unexpected split");
231       SDValue Lo, Hi;
232       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
233       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
234       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
235         std::swap(Lo, Hi);
236       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
237     } else {
238       // FP split into integer parts (soft fp)
239       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
240              !PartVT.isVector() && "Unexpected split");
241       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
242       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
243     }
244   }
245 
246   // There is now one part, held in Val.  Correct it to match ValueVT.
247   // PartEVT is the type of the register class that holds the value.
248   // ValueVT is the type of the inline asm operation.
249   EVT PartEVT = Val.getValueType();
250 
251   if (PartEVT == ValueVT)
252     return Val;
253 
254   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
255       ValueVT.bitsLT(PartEVT)) {
256     // For an FP value in an integer part, we need to truncate to the right
257     // width first.
258     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
259     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
260   }
261 
262   // Handle types that have the same size.
263   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
264     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
265 
266   // Handle types with different sizes.
267   if (PartEVT.isInteger() && ValueVT.isInteger()) {
268     if (ValueVT.bitsLT(PartEVT)) {
269       // For a truncate, see if we have any information to
270       // indicate whether the truncated bits will always be
271       // zero or sign-extension.
272       if (AssertOp)
273         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
274                           DAG.getValueType(ValueVT));
275       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
276     }
277     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
278   }
279 
280   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
281     // FP_ROUND's are always exact here.
282     if (ValueVT.bitsLT(Val.getValueType()))
283       return DAG.getNode(
284           ISD::FP_ROUND, DL, ValueVT, Val,
285           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
286 
287     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
288   }
289 
290   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
291   // then truncating.
292   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
293       ValueVT.bitsLT(PartEVT)) {
294     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
295     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
296   }
297 
298   report_fatal_error("Unknown mismatch in getCopyFromParts!");
299 }
300 
301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
302                                               const Twine &ErrMsg) {
303   const Instruction *I = dyn_cast_or_null<Instruction>(V);
304   if (!V)
305     return Ctx.emitError(ErrMsg);
306 
307   const char *AsmError = ", possible invalid constraint for vector type";
308   if (const CallInst *CI = dyn_cast<CallInst>(I))
309     if (CI->isInlineAsm())
310       return Ctx.emitError(I, ErrMsg + AsmError);
311 
312   return Ctx.emitError(I, ErrMsg);
313 }
314 
315 /// getCopyFromPartsVector - Create a value that contains the specified legal
316 /// parts combined into the value they represent.  If the parts combine to a
317 /// type larger than ValueVT then AssertOp can be used to specify whether the
318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
319 /// ValueVT (ISD::AssertSext).
320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
321                                       const SDValue *Parts, unsigned NumParts,
322                                       MVT PartVT, EVT ValueVT, const Value *V,
323                                       Optional<CallingConv::ID> CallConv) {
324   assert(ValueVT.isVector() && "Not a vector value");
325   assert(NumParts > 0 && "No parts to assemble!");
326   const bool IsABIRegCopy = CallConv.has_value();
327 
328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
329   SDValue Val = Parts[0];
330 
331   // Handle a multi-element vector.
332   if (NumParts > 1) {
333     EVT IntermediateVT;
334     MVT RegisterVT;
335     unsigned NumIntermediates;
336     unsigned NumRegs;
337 
338     if (IsABIRegCopy) {
339       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
340           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
341           NumIntermediates, RegisterVT);
342     } else {
343       NumRegs =
344           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
345                                      NumIntermediates, RegisterVT);
346     }
347 
348     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
349     NumParts = NumRegs; // Silence a compiler warning.
350     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
351     assert(RegisterVT.getSizeInBits() ==
352            Parts[0].getSimpleValueType().getSizeInBits() &&
353            "Part type sizes don't match!");
354 
355     // Assemble the parts into intermediate operands.
356     SmallVector<SDValue, 8> Ops(NumIntermediates);
357     if (NumIntermediates == NumParts) {
358       // If the register was not expanded, truncate or copy the value,
359       // as appropriate.
360       for (unsigned i = 0; i != NumParts; ++i)
361         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
362                                   PartVT, IntermediateVT, V, CallConv);
363     } else if (NumParts > 0) {
364       // If the intermediate type was expanded, build the intermediate
365       // operands from the parts.
366       assert(NumParts % NumIntermediates == 0 &&
367              "Must expand into a divisible number of parts!");
368       unsigned Factor = NumParts / NumIntermediates;
369       for (unsigned i = 0; i != NumIntermediates; ++i)
370         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
371                                   PartVT, IntermediateVT, V, CallConv);
372     }
373 
374     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
375     // intermediate operands.
376     EVT BuiltVectorTy =
377         IntermediateVT.isVector()
378             ? EVT::getVectorVT(
379                   *DAG.getContext(), IntermediateVT.getScalarType(),
380                   IntermediateVT.getVectorElementCount() * NumParts)
381             : EVT::getVectorVT(*DAG.getContext(),
382                                IntermediateVT.getScalarType(),
383                                NumIntermediates);
384     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
385                                                 : ISD::BUILD_VECTOR,
386                       DL, BuiltVectorTy, Ops);
387   }
388 
389   // There is now one part, held in Val.  Correct it to match ValueVT.
390   EVT PartEVT = Val.getValueType();
391 
392   if (PartEVT == ValueVT)
393     return Val;
394 
395   if (PartEVT.isVector()) {
396     // Vector/Vector bitcast.
397     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
398       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
399 
400     // If the element type of the source/dest vectors are the same, but the
401     // parts vector has more elements than the value vector, then we have a
402     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
403     // elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417     }
418 
419     // Promoted vector extract
420     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
421   }
422 
423   // Trivial bitcast if the types are the same size and the destination
424   // vector type is legal.
425   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
426       TLI.isTypeLegal(ValueVT))
427     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
428 
429   if (ValueVT.getVectorNumElements() != 1) {
430      // Certain ABIs require that vectors are passed as integers. For vectors
431      // are the same size, this is an obvious bitcast.
432      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
433        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434      } else if (ValueVT.bitsLT(PartEVT)) {
435        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
436        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
437        // Drop the extra bits.
438        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
439        return DAG.getBitcast(ValueVT, Val);
440      }
441 
442      diagnosePossiblyInvalidConstraint(
443          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
444      return DAG.getUNDEF(ValueVT);
445   }
446 
447   // Handle cases such as i8 -> <1 x i1>
448   EVT ValueSVT = ValueVT.getVectorElementType();
449   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
450     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
451       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
452     else
453       Val = ValueVT.isFloatingPoint()
454                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
455                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
456   }
457 
458   return DAG.getBuildVector(ValueVT, DL, Val);
459 }
460 
461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
462                                  SDValue Val, SDValue *Parts, unsigned NumParts,
463                                  MVT PartVT, const Value *V,
464                                  Optional<CallingConv::ID> CallConv);
465 
466 /// getCopyToParts - Create a series of nodes that contain the specified value
467 /// split into legal parts.  If the parts contain more bits than Val, then, for
468 /// integers, ExtendKind can be used to specify how to generate the extra bits.
469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
470                            SDValue *Parts, unsigned NumParts, MVT PartVT,
471                            const Value *V,
472                            Optional<CallingConv::ID> CallConv = None,
473                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
474   // Let the target split the parts if it wants to
475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
477                                       CallConv))
478     return;
479   EVT ValueVT = Val.getValueType();
480 
481   // Handle the vector case separately.
482   if (ValueVT.isVector())
483     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
484                                 CallConv);
485 
486   unsigned PartBits = PartVT.getSizeInBits();
487   unsigned OrigNumParts = NumParts;
488   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
489          "Copying to an illegal type!");
490 
491   if (NumParts == 0)
492     return;
493 
494   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
495   EVT PartEVT = PartVT;
496   if (PartEVT == ValueVT) {
497     assert(NumParts == 1 && "No-op copy with multiple parts!");
498     Parts[0] = Val;
499     return;
500   }
501 
502   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
503     // If the parts cover more bits than the value has, promote the value.
504     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
505       assert(NumParts == 1 && "Do not know what to promote to!");
506       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
507     } else {
508       if (ValueVT.isFloatingPoint()) {
509         // FP values need to be bitcast, then extended if they are being put
510         // into a larger container.
511         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
512         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
513       }
514       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
515              ValueVT.isInteger() &&
516              "Unknown mismatch!");
517       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
518       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
519       if (PartVT == MVT::x86mmx)
520         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
521     }
522   } else if (PartBits == ValueVT.getSizeInBits()) {
523     // Different types of the same size.
524     assert(NumParts == 1 && PartEVT != ValueVT);
525     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
526   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
527     // If the parts cover less bits than value has, truncate the value.
528     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529            ValueVT.isInteger() &&
530            "Unknown mismatch!");
531     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
533     if (PartVT == MVT::x86mmx)
534       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535   }
536 
537   // The value may have changed - recompute ValueVT.
538   ValueVT = Val.getValueType();
539   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
540          "Failed to tile the value with PartVT!");
541 
542   if (NumParts == 1) {
543     if (PartEVT != ValueVT) {
544       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
545                                         "scalar-to-vector conversion failed");
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547     }
548 
549     Parts[0] = Val;
550     return;
551   }
552 
553   // Expand the value into multiple parts.
554   if (NumParts & (NumParts - 1)) {
555     // The number of parts is not a power of 2.  Split off and copy the tail.
556     assert(PartVT.isInteger() && ValueVT.isInteger() &&
557            "Do not know what to expand to!");
558     unsigned RoundParts = 1 << Log2_32(NumParts);
559     unsigned RoundBits = RoundParts * PartBits;
560     unsigned OddParts = NumParts - RoundParts;
561     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
562       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
563 
564     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
565                    CallConv);
566 
567     if (DAG.getDataLayout().isBigEndian())
568       // The odd parts were reversed by getCopyToParts - unreverse them.
569       std::reverse(Parts + RoundParts, Parts + NumParts);
570 
571     NumParts = RoundParts;
572     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
573     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
574   }
575 
576   // The number of parts is a power of 2.  Repeatedly bisect the value using
577   // EXTRACT_ELEMENT.
578   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
579                          EVT::getIntegerVT(*DAG.getContext(),
580                                            ValueVT.getSizeInBits()),
581                          Val);
582 
583   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
584     for (unsigned i = 0; i < NumParts; i += StepSize) {
585       unsigned ThisBits = StepSize * PartBits / 2;
586       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
587       SDValue &Part0 = Parts[i];
588       SDValue &Part1 = Parts[i+StepSize/2];
589 
590       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
591                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
592       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
594 
595       if (ThisBits == PartBits && ThisVT != PartVT) {
596         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
597         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
598       }
599     }
600   }
601 
602   if (DAG.getDataLayout().isBigEndian())
603     std::reverse(Parts, Parts + OrigNumParts);
604 }
605 
606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
607                                      const SDLoc &DL, EVT PartVT) {
608   if (!PartVT.isVector())
609     return SDValue();
610 
611   EVT ValueVT = Val.getValueType();
612   ElementCount PartNumElts = PartVT.getVectorElementCount();
613   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
614 
615   // We only support widening vectors with equivalent element types and
616   // fixed/scalable properties. If a target needs to widen a fixed-length type
617   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
618   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
619       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
620       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
621     return SDValue();
622 
623   // Widening a scalable vector to another scalable vector is done by inserting
624   // the vector into a larger undef one.
625   if (PartNumElts.isScalable())
626     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
627                        Val, DAG.getVectorIdxConstant(0, DL));
628 
629   EVT ElementVT = PartVT.getVectorElementType();
630   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631   // undef elements.
632   SmallVector<SDValue, 16> Ops;
633   DAG.ExtractVectorElements(Val, Ops);
634   SDValue EltUndef = DAG.getUNDEF(ElementVT);
635   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
636 
637   // FIXME: Use CONCAT for 2x -> 4x.
638   return DAG.getBuildVector(PartVT, DL, Ops);
639 }
640 
641 /// getCopyToPartsVector - Create a series of nodes that contain the specified
642 /// value split into legal parts.
643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
644                                  SDValue Val, SDValue *Parts, unsigned NumParts,
645                                  MVT PartVT, const Value *V,
646                                  Optional<CallingConv::ID> CallConv) {
647   EVT ValueVT = Val.getValueType();
648   assert(ValueVT.isVector() && "Not a vector");
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650   const bool IsABIRegCopy = CallConv.has_value();
651 
652   if (NumParts == 1) {
653     EVT PartEVT = PartVT;
654     if (PartEVT == ValueVT) {
655       // Nothing to do.
656     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
657       // Bitconvert vector->vector case.
658       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
659     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
660       Val = Widened;
661     } else if (PartVT.isVector() &&
662                PartEVT.getVectorElementType().bitsGE(
663                    ValueVT.getVectorElementType()) &&
664                PartEVT.getVectorElementCount() ==
665                    ValueVT.getVectorElementCount()) {
666 
667       // Promoted vector extract
668       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
669     } else if (PartEVT.isVector() &&
670                PartEVT.getVectorElementType() !=
671                    ValueVT.getVectorElementType() &&
672                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
673                    TargetLowering::TypeWidenVector) {
674       // Combination of widening and promotion.
675       EVT WidenVT =
676           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
677                            PartVT.getVectorElementCount());
678       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
679       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
680     } else {
681       if (ValueVT.getVectorElementCount().isScalar()) {
682         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
683                           DAG.getVectorIdxConstant(0, DL));
684       } else {
685         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
686         assert(PartVT.getFixedSizeInBits() > ValueSize &&
687                "lossy conversion of vector to scalar type");
688         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
689         Val = DAG.getBitcast(IntermediateType, Val);
690         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
691       }
692     }
693 
694     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
695     Parts[0] = Val;
696     return;
697   }
698 
699   // Handle a multi-element vector.
700   EVT IntermediateVT;
701   MVT RegisterVT;
702   unsigned NumIntermediates;
703   unsigned NumRegs;
704   if (IsABIRegCopy) {
705     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
706         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
707         NumIntermediates, RegisterVT);
708   } else {
709     NumRegs =
710         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
711                                    NumIntermediates, RegisterVT);
712   }
713 
714   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
715   NumParts = NumRegs; // Silence a compiler warning.
716   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
717 
718   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
719          "Mixing scalable and fixed vectors when copying in parts");
720 
721   Optional<ElementCount> DestEltCnt;
722 
723   if (IntermediateVT.isVector())
724     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
725   else
726     DestEltCnt = ElementCount::getFixed(NumIntermediates);
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
730 
731   if (ValueVT == BuiltVectorTy) {
732     // Nothing to do.
733   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
734     // Bitconvert vector->vector case.
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   } else {
737     if (BuiltVectorTy.getVectorElementType().bitsGT(
738             ValueVT.getVectorElementType())) {
739       // Integer promotion.
740       ValueVT = EVT::getVectorVT(*DAG.getContext(),
741                                  BuiltVectorTy.getVectorElementType(),
742                                  ValueVT.getVectorElementCount());
743       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
744     }
745 
746     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
747       Val = Widened;
748     }
749   }
750 
751   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
752 
753   // Split the vector into intermediate operands.
754   SmallVector<SDValue, 8> Ops(NumIntermediates);
755   for (unsigned i = 0; i != NumIntermediates; ++i) {
756     if (IntermediateVT.isVector()) {
757       // This does something sensible for scalable vectors - see the
758       // definition of EXTRACT_SUBVECTOR for further details.
759       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
760       Ops[i] =
761           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
762                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
763     } else {
764       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
765                            DAG.getVectorIdxConstant(i, DL));
766     }
767   }
768 
769   // Split the intermediate operands into legal parts.
770   if (NumParts == NumIntermediates) {
771     // If the register was not expanded, promote or copy the value,
772     // as appropriate.
773     for (unsigned i = 0; i != NumParts; ++i)
774       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
775   } else if (NumParts > 0) {
776     // If the intermediate type was expanded, split each the value into
777     // legal parts.
778     assert(NumIntermediates != 0 && "division by zero");
779     assert(NumParts % NumIntermediates == 0 &&
780            "Must expand into a divisible number of parts!");
781     unsigned Factor = NumParts / NumIntermediates;
782     for (unsigned i = 0; i != NumIntermediates; ++i)
783       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
784                      CallConv);
785   }
786 }
787 
788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
789                            EVT valuevt, Optional<CallingConv::ID> CC)
790     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
791       RegCount(1, regs.size()), CallConv(CC) {}
792 
793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
794                            const DataLayout &DL, unsigned Reg, Type *Ty,
795                            Optional<CallingConv::ID> CC) {
796   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
797 
798   CallConv = CC;
799 
800   for (EVT ValueVT : ValueVTs) {
801     unsigned NumRegs =
802         isABIMangled()
803             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
804             : TLI.getNumRegisters(Context, ValueVT);
805     MVT RegisterVT =
806         isABIMangled()
807             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
808             : TLI.getRegisterType(Context, ValueVT);
809     for (unsigned i = 0; i != NumRegs; ++i)
810       Regs.push_back(Reg + i);
811     RegVTs.push_back(RegisterVT);
812     RegCount.push_back(NumRegs);
813     Reg += NumRegs;
814   }
815 }
816 
817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
818                                       FunctionLoweringInfo &FuncInfo,
819                                       const SDLoc &dl, SDValue &Chain,
820                                       SDValue *Flag, const Value *V) const {
821   // A Value with type {} or [0 x %t] needs no registers.
822   if (ValueVTs.empty())
823     return SDValue();
824 
825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
826 
827   // Assemble the legal parts into the final values.
828   SmallVector<SDValue, 4> Values(ValueVTs.size());
829   SmallVector<SDValue, 8> Parts;
830   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
831     // Copy the legal parts from the registers.
832     EVT ValueVT = ValueVTs[Value];
833     unsigned NumRegs = RegCount[Value];
834     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
835                                           *DAG.getContext(),
836                                           CallConv.getValue(), RegVTs[Value])
837                                     : RegVTs[Value];
838 
839     Parts.resize(NumRegs);
840     for (unsigned i = 0; i != NumRegs; ++i) {
841       SDValue P;
842       if (!Flag) {
843         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
844       } else {
845         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
846         *Flag = P.getValue(2);
847       }
848 
849       Chain = P.getValue(1);
850       Parts[i] = P;
851 
852       // If the source register was virtual and if we know something about it,
853       // add an assert node.
854       if (!Register::isVirtualRegister(Regs[Part + i]) ||
855           !RegisterVT.isInteger())
856         continue;
857 
858       const FunctionLoweringInfo::LiveOutInfo *LOI =
859         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
860       if (!LOI)
861         continue;
862 
863       unsigned RegSize = RegisterVT.getScalarSizeInBits();
864       unsigned NumSignBits = LOI->NumSignBits;
865       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
866 
867       if (NumZeroBits == RegSize) {
868         // The current value is a zero.
869         // Explicitly express that as it would be easier for
870         // optimizations to kick in.
871         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
872         continue;
873       }
874 
875       // FIXME: We capture more information than the dag can represent.  For
876       // now, just use the tightest assertzext/assertsext possible.
877       bool isSExt;
878       EVT FromVT(MVT::Other);
879       if (NumZeroBits) {
880         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
881         isSExt = false;
882       } else if (NumSignBits > 1) {
883         FromVT =
884             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
885         isSExt = true;
886       } else {
887         continue;
888       }
889       // Add an assertion node.
890       assert(FromVT != MVT::Other);
891       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
892                              RegisterVT, P, DAG.getValueType(FromVT));
893     }
894 
895     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
896                                      RegisterVT, ValueVT, V, CallConv);
897     Part += NumRegs;
898     Parts.clear();
899   }
900 
901   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
902 }
903 
904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
905                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
906                                  const Value *V,
907                                  ISD::NodeType PreferredExtendType) const {
908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
909   ISD::NodeType ExtendKind = PreferredExtendType;
910 
911   // Get the list of the values's legal parts.
912   unsigned NumRegs = Regs.size();
913   SmallVector<SDValue, 8> Parts(NumRegs);
914   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
915     unsigned NumParts = RegCount[Value];
916 
917     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
918                                           *DAG.getContext(),
919                                           CallConv.getValue(), RegVTs[Value])
920                                     : RegVTs[Value];
921 
922     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
923       ExtendKind = ISD::ZERO_EXTEND;
924 
925     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
926                    NumParts, RegisterVT, V, CallConv, ExtendKind);
927     Part += NumParts;
928   }
929 
930   // Copy the parts into the registers.
931   SmallVector<SDValue, 8> Chains(NumRegs);
932   for (unsigned i = 0; i != NumRegs; ++i) {
933     SDValue Part;
934     if (!Flag) {
935       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
936     } else {
937       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
938       *Flag = Part.getValue(1);
939     }
940 
941     Chains[i] = Part.getValue(0);
942   }
943 
944   if (NumRegs == 1 || Flag)
945     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
946     // flagged to it. That is the CopyToReg nodes and the user are considered
947     // a single scheduling unit. If we create a TokenFactor and return it as
948     // chain, then the TokenFactor is both a predecessor (operand) of the
949     // user as well as a successor (the TF operands are flagged to the user).
950     // c1, f1 = CopyToReg
951     // c2, f2 = CopyToReg
952     // c3     = TokenFactor c1, c2
953     // ...
954     //        = op c3, ..., f2
955     Chain = Chains[NumRegs-1];
956   else
957     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
958 }
959 
960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
961                                         unsigned MatchingIdx, const SDLoc &dl,
962                                         SelectionDAG &DAG,
963                                         std::vector<SDValue> &Ops) const {
964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
965 
966   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
967   if (HasMatching)
968     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
969   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
970     // Put the register class of the virtual registers in the flag word.  That
971     // way, later passes can recompute register class constraints for inline
972     // assembly as well as normal instructions.
973     // Don't do this for tied operands that can use the regclass information
974     // from the def.
975     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
976     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
977     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
978   }
979 
980   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
981   Ops.push_back(Res);
982 
983   if (Code == InlineAsm::Kind_Clobber) {
984     // Clobbers should always have a 1:1 mapping with registers, and may
985     // reference registers that have illegal (e.g. vector) types. Hence, we
986     // shouldn't try to apply any sort of splitting logic to them.
987     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
988            "No 1:1 mapping from clobbers to regs?");
989     Register SP = TLI.getStackPointerRegisterToSaveRestore();
990     (void)SP;
991     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
992       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
993       assert(
994           (Regs[I] != SP ||
995            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
996           "If we clobbered the stack pointer, MFI should know about it.");
997     }
998     return;
999   }
1000 
1001   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1002     MVT RegisterVT = RegVTs[Value];
1003     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1004                                            RegisterVT);
1005     for (unsigned i = 0; i != NumRegs; ++i) {
1006       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1007       unsigned TheReg = Regs[Reg++];
1008       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1009     }
1010   }
1011 }
1012 
1013 SmallVector<std::pair<unsigned, TypeSize>, 4>
1014 RegsForValue::getRegsAndSizes() const {
1015   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1016   unsigned I = 0;
1017   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1018     unsigned RegCount = std::get<0>(CountAndVT);
1019     MVT RegisterVT = std::get<1>(CountAndVT);
1020     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1021     for (unsigned E = I + RegCount; I != E; ++I)
1022       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1023   }
1024   return OutVec;
1025 }
1026 
1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1028                                const TargetLibraryInfo *li) {
1029   AA = aa;
1030   GFI = gfi;
1031   LibInfo = li;
1032   Context = DAG.getContext();
1033   LPadToCallSiteMap.clear();
1034   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1035 }
1036 
1037 void SelectionDAGBuilder::clear() {
1038   NodeMap.clear();
1039   UnusedArgNodeMap.clear();
1040   PendingLoads.clear();
1041   PendingExports.clear();
1042   PendingConstrainedFP.clear();
1043   PendingConstrainedFPStrict.clear();
1044   CurInst = nullptr;
1045   HasTailCall = false;
1046   SDNodeOrder = LowestSDNodeOrder;
1047   StatepointLowering.clear();
1048 }
1049 
1050 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1051   DanglingDebugInfoMap.clear();
1052 }
1053 
1054 // Update DAG root to include dependencies on Pending chains.
1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1056   SDValue Root = DAG.getRoot();
1057 
1058   if (Pending.empty())
1059     return Root;
1060 
1061   // Add current root to PendingChains, unless we already indirectly
1062   // depend on it.
1063   if (Root.getOpcode() != ISD::EntryToken) {
1064     unsigned i = 0, e = Pending.size();
1065     for (; i != e; ++i) {
1066       assert(Pending[i].getNode()->getNumOperands() > 1);
1067       if (Pending[i].getNode()->getOperand(0) == Root)
1068         break;  // Don't add the root if we already indirectly depend on it.
1069     }
1070 
1071     if (i == e)
1072       Pending.push_back(Root);
1073   }
1074 
1075   if (Pending.size() == 1)
1076     Root = Pending[0];
1077   else
1078     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1079 
1080   DAG.setRoot(Root);
1081   Pending.clear();
1082   return Root;
1083 }
1084 
1085 SDValue SelectionDAGBuilder::getMemoryRoot() {
1086   return updateRoot(PendingLoads);
1087 }
1088 
1089 SDValue SelectionDAGBuilder::getRoot() {
1090   // Chain up all pending constrained intrinsics together with all
1091   // pending loads, by simply appending them to PendingLoads and
1092   // then calling getMemoryRoot().
1093   PendingLoads.reserve(PendingLoads.size() +
1094                        PendingConstrainedFP.size() +
1095                        PendingConstrainedFPStrict.size());
1096   PendingLoads.append(PendingConstrainedFP.begin(),
1097                       PendingConstrainedFP.end());
1098   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1099                       PendingConstrainedFPStrict.end());
1100   PendingConstrainedFP.clear();
1101   PendingConstrainedFPStrict.clear();
1102   return getMemoryRoot();
1103 }
1104 
1105 SDValue SelectionDAGBuilder::getControlRoot() {
1106   // We need to emit pending fpexcept.strict constrained intrinsics,
1107   // so append them to the PendingExports list.
1108   PendingExports.append(PendingConstrainedFPStrict.begin(),
1109                         PendingConstrainedFPStrict.end());
1110   PendingConstrainedFPStrict.clear();
1111   return updateRoot(PendingExports);
1112 }
1113 
1114 void SelectionDAGBuilder::visit(const Instruction &I) {
1115   // Set up outgoing PHI node register values before emitting the terminator.
1116   if (I.isTerminator()) {
1117     HandlePHINodesInSuccessorBlocks(I.getParent());
1118   }
1119 
1120   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1121   if (!isa<DbgInfoIntrinsic>(I))
1122     ++SDNodeOrder;
1123 
1124   CurInst = &I;
1125 
1126   visit(I.getOpcode(), I);
1127 
1128   if (!I.isTerminator() && !HasTailCall &&
1129       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1130     CopyToExportRegsIfNeeded(&I);
1131 
1132   CurInst = nullptr;
1133 }
1134 
1135 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1136   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1137 }
1138 
1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1140   // Note: this doesn't use InstVisitor, because it has to work with
1141   // ConstantExpr's in addition to instructions.
1142   switch (Opcode) {
1143   default: llvm_unreachable("Unknown instruction type encountered!");
1144     // Build the switch statement using the Instruction.def file.
1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1146     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1147 #include "llvm/IR/Instruction.def"
1148   }
1149 }
1150 
1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1152                                                DebugLoc DL, unsigned Order) {
1153   // We treat variadic dbg_values differently at this stage.
1154   if (DI->hasArgList()) {
1155     // For variadic dbg_values we will now insert an undef.
1156     // FIXME: We can potentially recover these!
1157     SmallVector<SDDbgOperand, 2> Locs;
1158     for (const Value *V : DI->getValues()) {
1159       auto Undef = UndefValue::get(V->getType());
1160       Locs.push_back(SDDbgOperand::fromConst(Undef));
1161     }
1162     SDDbgValue *SDV = DAG.getDbgValueList(
1163         DI->getVariable(), DI->getExpression(), Locs, {},
1164         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1165     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1166   } else {
1167     // TODO: Dangling debug info will eventually either be resolved or produce
1168     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1169     // between the original dbg.value location and its resolved DBG_VALUE,
1170     // which we should ideally fill with an extra Undef DBG_VALUE.
1171     assert(DI->getNumVariableLocationOps() == 1 &&
1172            "DbgValueInst without an ArgList should have a single location "
1173            "operand.");
1174     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1175   }
1176 }
1177 
1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1179                                                 const DIExpression *Expr) {
1180   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1181     const DbgValueInst *DI = DDI.getDI();
1182     DIVariable *DanglingVariable = DI->getVariable();
1183     DIExpression *DanglingExpr = DI->getExpression();
1184     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1185       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1186       return true;
1187     }
1188     return false;
1189   };
1190 
1191   for (auto &DDIMI : DanglingDebugInfoMap) {
1192     DanglingDebugInfoVector &DDIV = DDIMI.second;
1193 
1194     // If debug info is to be dropped, run it through final checks to see
1195     // whether it can be salvaged.
1196     for (auto &DDI : DDIV)
1197       if (isMatchingDbgValue(DDI))
1198         salvageUnresolvedDbgValue(DDI);
1199 
1200     erase_if(DDIV, isMatchingDbgValue);
1201   }
1202 }
1203 
1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1205 // generate the debug data structures now that we've seen its definition.
1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1207                                                    SDValue Val) {
1208   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1209   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1210     return;
1211 
1212   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1213   for (auto &DDI : DDIV) {
1214     const DbgValueInst *DI = DDI.getDI();
1215     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1216     assert(DI && "Ill-formed DanglingDebugInfo");
1217     DebugLoc dl = DDI.getdl();
1218     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1219     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1220     DILocalVariable *Variable = DI->getVariable();
1221     DIExpression *Expr = DI->getExpression();
1222     assert(Variable->isValidLocationForIntrinsic(dl) &&
1223            "Expected inlined-at fields to agree");
1224     SDDbgValue *SDV;
1225     if (Val.getNode()) {
1226       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1227       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1228       // we couldn't resolve it directly when examining the DbgValue intrinsic
1229       // in the first place we should not be more successful here). Unless we
1230       // have some test case that prove this to be correct we should avoid
1231       // calling EmitFuncArgumentDbgValue here.
1232       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1233                                     FuncArgumentDbgValueKind::Value, Val)) {
1234         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1235                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1236         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1237         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1238         // inserted after the definition of Val when emitting the instructions
1239         // after ISel. An alternative could be to teach
1240         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1241         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1242                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1243                    << ValSDNodeOrder << "\n");
1244         SDV = getDbgValue(Val, Variable, Expr, dl,
1245                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1246         DAG.AddDbgValue(SDV, false);
1247       } else
1248         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1249                           << "in EmitFuncArgumentDbgValue\n");
1250     } else {
1251       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1252       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1253       auto SDV =
1254           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1255       DAG.AddDbgValue(SDV, false);
1256     }
1257   }
1258   DDIV.clear();
1259 }
1260 
1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1262   // TODO: For the variadic implementation, instead of only checking the fail
1263   // state of `handleDebugValue`, we need know specifically which values were
1264   // invalid, so that we attempt to salvage only those values when processing
1265   // a DIArgList.
1266   assert(!DDI.getDI()->hasArgList() &&
1267          "Not implemented for variadic dbg_values");
1268   Value *V = DDI.getDI()->getValue(0);
1269   DILocalVariable *Var = DDI.getDI()->getVariable();
1270   DIExpression *Expr = DDI.getDI()->getExpression();
1271   DebugLoc DL = DDI.getdl();
1272   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1273   unsigned SDOrder = DDI.getSDNodeOrder();
1274   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1275   // that DW_OP_stack_value is desired.
1276   assert(isa<DbgValueInst>(DDI.getDI()));
1277   bool StackValue = true;
1278 
1279   // Can this Value can be encoded without any further work?
1280   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1281     return;
1282 
1283   // Attempt to salvage back through as many instructions as possible. Bail if
1284   // a non-instruction is seen, such as a constant expression or global
1285   // variable. FIXME: Further work could recover those too.
1286   while (isa<Instruction>(V)) {
1287     Instruction &VAsInst = *cast<Instruction>(V);
1288     // Temporary "0", awaiting real implementation.
1289     SmallVector<uint64_t, 16> Ops;
1290     SmallVector<Value *, 4> AdditionalValues;
1291     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1292                              AdditionalValues);
1293     // If we cannot salvage any further, and haven't yet found a suitable debug
1294     // expression, bail out.
1295     if (!V)
1296       break;
1297 
1298     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1299     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1300     // here for variadic dbg_values, remove that condition.
1301     if (!AdditionalValues.empty())
1302       break;
1303 
1304     // New value and expr now represent this debuginfo.
1305     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1306 
1307     // Some kind of simplification occurred: check whether the operand of the
1308     // salvaged debug expression can be encoded in this DAG.
1309     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1310                          /*IsVariadic=*/false)) {
1311       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1312                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1313       return;
1314     }
1315   }
1316 
1317   // This was the final opportunity to salvage this debug information, and it
1318   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1319   // any earlier variable location.
1320   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1321   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1322   DAG.AddDbgValue(SDV, false);
1323 
1324   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1325                     << "\n");
1326   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1327                     << "\n");
1328 }
1329 
1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1331                                            DILocalVariable *Var,
1332                                            DIExpression *Expr, DebugLoc dl,
1333                                            DebugLoc InstDL, unsigned Order,
1334                                            bool IsVariadic) {
1335   if (Values.empty())
1336     return true;
1337   SmallVector<SDDbgOperand> LocationOps;
1338   SmallVector<SDNode *> Dependencies;
1339   for (const Value *V : Values) {
1340     // Constant value.
1341     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1342         isa<ConstantPointerNull>(V)) {
1343       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1344       continue;
1345     }
1346 
1347     // If the Value is a frame index, we can create a FrameIndex debug value
1348     // without relying on the DAG at all.
1349     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1350       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1351       if (SI != FuncInfo.StaticAllocaMap.end()) {
1352         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1353         continue;
1354       }
1355     }
1356 
1357     // Do not use getValue() in here; we don't want to generate code at
1358     // this point if it hasn't been done yet.
1359     SDValue N = NodeMap[V];
1360     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1361       N = UnusedArgNodeMap[V];
1362     if (N.getNode()) {
1363       // Only emit func arg dbg value for non-variadic dbg.values for now.
1364       if (!IsVariadic &&
1365           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1366                                    FuncArgumentDbgValueKind::Value, N))
1367         return true;
1368       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1369         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1370         // describe stack slot locations.
1371         //
1372         // Consider "int x = 0; int *px = &x;". There are two kinds of
1373         // interesting debug values here after optimization:
1374         //
1375         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1376         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1377         //
1378         // Both describe the direct values of their associated variables.
1379         Dependencies.push_back(N.getNode());
1380         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1381         continue;
1382       }
1383       LocationOps.emplace_back(
1384           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1385       continue;
1386     }
1387 
1388     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1389     // Special rules apply for the first dbg.values of parameter variables in a
1390     // function. Identify them by the fact they reference Argument Values, that
1391     // they're parameters, and they are parameters of the current function. We
1392     // need to let them dangle until they get an SDNode.
1393     bool IsParamOfFunc =
1394         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1395     if (IsParamOfFunc)
1396       return false;
1397 
1398     // The value is not used in this block yet (or it would have an SDNode).
1399     // We still want the value to appear for the user if possible -- if it has
1400     // an associated VReg, we can refer to that instead.
1401     auto VMI = FuncInfo.ValueMap.find(V);
1402     if (VMI != FuncInfo.ValueMap.end()) {
1403       unsigned Reg = VMI->second;
1404       // If this is a PHI node, it may be split up into several MI PHI nodes
1405       // (in FunctionLoweringInfo::set).
1406       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1407                        V->getType(), None);
1408       if (RFV.occupiesMultipleRegs()) {
1409         // FIXME: We could potentially support variadic dbg_values here.
1410         if (IsVariadic)
1411           return false;
1412         unsigned Offset = 0;
1413         unsigned BitsToDescribe = 0;
1414         if (auto VarSize = Var->getSizeInBits())
1415           BitsToDescribe = *VarSize;
1416         if (auto Fragment = Expr->getFragmentInfo())
1417           BitsToDescribe = Fragment->SizeInBits;
1418         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1419           // Bail out if all bits are described already.
1420           if (Offset >= BitsToDescribe)
1421             break;
1422           // TODO: handle scalable vectors.
1423           unsigned RegisterSize = RegAndSize.second;
1424           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1425                                       ? BitsToDescribe - Offset
1426                                       : RegisterSize;
1427           auto FragmentExpr = DIExpression::createFragmentExpression(
1428               Expr, Offset, FragmentSize);
1429           if (!FragmentExpr)
1430             continue;
1431           SDDbgValue *SDV = DAG.getVRegDbgValue(
1432               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1433           DAG.AddDbgValue(SDV, false);
1434           Offset += RegisterSize;
1435         }
1436         return true;
1437       }
1438       // We can use simple vreg locations for variadic dbg_values as well.
1439       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1440       continue;
1441     }
1442     // We failed to create a SDDbgOperand for V.
1443     return false;
1444   }
1445 
1446   // We have created a SDDbgOperand for each Value in Values.
1447   // Should use Order instead of SDNodeOrder?
1448   assert(!LocationOps.empty());
1449   SDDbgValue *SDV =
1450       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1451                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1452   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1453   return true;
1454 }
1455 
1456 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1457   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1458   for (auto &Pair : DanglingDebugInfoMap)
1459     for (auto &DDI : Pair.second)
1460       salvageUnresolvedDbgValue(DDI);
1461   clearDanglingDebugInfo();
1462 }
1463 
1464 /// getCopyFromRegs - If there was virtual register allocated for the value V
1465 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1466 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1467   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1468   SDValue Result;
1469 
1470   if (It != FuncInfo.ValueMap.end()) {
1471     Register InReg = It->second;
1472 
1473     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1474                      DAG.getDataLayout(), InReg, Ty,
1475                      None); // This is not an ABI copy.
1476     SDValue Chain = DAG.getEntryNode();
1477     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1478                                  V);
1479     resolveDanglingDebugInfo(V, Result);
1480   }
1481 
1482   return Result;
1483 }
1484 
1485 /// getValue - Return an SDValue for the given Value.
1486 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1487   // If we already have an SDValue for this value, use it. It's important
1488   // to do this first, so that we don't create a CopyFromReg if we already
1489   // have a regular SDValue.
1490   SDValue &N = NodeMap[V];
1491   if (N.getNode()) return N;
1492 
1493   // If there's a virtual register allocated and initialized for this
1494   // value, use it.
1495   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1496     return copyFromReg;
1497 
1498   // Otherwise create a new SDValue and remember it.
1499   SDValue Val = getValueImpl(V);
1500   NodeMap[V] = Val;
1501   resolveDanglingDebugInfo(V, Val);
1502   return Val;
1503 }
1504 
1505 /// getNonRegisterValue - Return an SDValue for the given Value, but
1506 /// don't look in FuncInfo.ValueMap for a virtual register.
1507 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1508   // If we already have an SDValue for this value, use it.
1509   SDValue &N = NodeMap[V];
1510   if (N.getNode()) {
1511     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1512       // Remove the debug location from the node as the node is about to be used
1513       // in a location which may differ from the original debug location.  This
1514       // is relevant to Constant and ConstantFP nodes because they can appear
1515       // as constant expressions inside PHI nodes.
1516       N->setDebugLoc(DebugLoc());
1517     }
1518     return N;
1519   }
1520 
1521   // Otherwise create a new SDValue and remember it.
1522   SDValue Val = getValueImpl(V);
1523   NodeMap[V] = Val;
1524   resolveDanglingDebugInfo(V, Val);
1525   return Val;
1526 }
1527 
1528 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1529 /// Create an SDValue for the given value.
1530 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1532 
1533   if (const Constant *C = dyn_cast<Constant>(V)) {
1534     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1535 
1536     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1537       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1538 
1539     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1540       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1541 
1542     if (isa<ConstantPointerNull>(C)) {
1543       unsigned AS = V->getType()->getPointerAddressSpace();
1544       return DAG.getConstant(0, getCurSDLoc(),
1545                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1546     }
1547 
1548     if (match(C, m_VScale(DAG.getDataLayout())))
1549       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1550 
1551     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1552       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1553 
1554     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1555       return DAG.getUNDEF(VT);
1556 
1557     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1558       visit(CE->getOpcode(), *CE);
1559       SDValue N1 = NodeMap[V];
1560       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1561       return N1;
1562     }
1563 
1564     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1565       SmallVector<SDValue, 4> Constants;
1566       for (const Use &U : C->operands()) {
1567         SDNode *Val = getValue(U).getNode();
1568         // If the operand is an empty aggregate, there are no values.
1569         if (!Val) continue;
1570         // Add each leaf value from the operand to the Constants list
1571         // to form a flattened list of all the values.
1572         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1573           Constants.push_back(SDValue(Val, i));
1574       }
1575 
1576       return DAG.getMergeValues(Constants, getCurSDLoc());
1577     }
1578 
1579     if (const ConstantDataSequential *CDS =
1580           dyn_cast<ConstantDataSequential>(C)) {
1581       SmallVector<SDValue, 4> Ops;
1582       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1583         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1584         // Add each leaf value from the operand to the Constants list
1585         // to form a flattened list of all the values.
1586         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1587           Ops.push_back(SDValue(Val, i));
1588       }
1589 
1590       if (isa<ArrayType>(CDS->getType()))
1591         return DAG.getMergeValues(Ops, getCurSDLoc());
1592       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1593     }
1594 
1595     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1596       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1597              "Unknown struct or array constant!");
1598 
1599       SmallVector<EVT, 4> ValueVTs;
1600       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1601       unsigned NumElts = ValueVTs.size();
1602       if (NumElts == 0)
1603         return SDValue(); // empty struct
1604       SmallVector<SDValue, 4> Constants(NumElts);
1605       for (unsigned i = 0; i != NumElts; ++i) {
1606         EVT EltVT = ValueVTs[i];
1607         if (isa<UndefValue>(C))
1608           Constants[i] = DAG.getUNDEF(EltVT);
1609         else if (EltVT.isFloatingPoint())
1610           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1611         else
1612           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1613       }
1614 
1615       return DAG.getMergeValues(Constants, getCurSDLoc());
1616     }
1617 
1618     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1619       return DAG.getBlockAddress(BA, VT);
1620 
1621     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1622       return getValue(Equiv->getGlobalValue());
1623 
1624     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1625       return getValue(NC->getGlobalValue());
1626 
1627     VectorType *VecTy = cast<VectorType>(V->getType());
1628 
1629     // Now that we know the number and type of the elements, get that number of
1630     // elements into the Ops array based on what kind of constant it is.
1631     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1632       SmallVector<SDValue, 16> Ops;
1633       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1634       for (unsigned i = 0; i != NumElements; ++i)
1635         Ops.push_back(getValue(CV->getOperand(i)));
1636 
1637       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1638     }
1639 
1640     if (isa<ConstantAggregateZero>(C)) {
1641       EVT EltVT =
1642           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1643 
1644       SDValue Op;
1645       if (EltVT.isFloatingPoint())
1646         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1647       else
1648         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1649 
1650       if (isa<ScalableVectorType>(VecTy))
1651         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1652 
1653       SmallVector<SDValue, 16> Ops;
1654       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1655       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1656     }
1657 
1658     llvm_unreachable("Unknown vector constant");
1659   }
1660 
1661   // If this is a static alloca, generate it as the frameindex instead of
1662   // computation.
1663   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1664     DenseMap<const AllocaInst*, int>::iterator SI =
1665       FuncInfo.StaticAllocaMap.find(AI);
1666     if (SI != FuncInfo.StaticAllocaMap.end())
1667       return DAG.getFrameIndex(SI->second,
1668                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1669   }
1670 
1671   // If this is an instruction which fast-isel has deferred, select it now.
1672   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1673     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1674 
1675     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1676                      Inst->getType(), None);
1677     SDValue Chain = DAG.getEntryNode();
1678     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1679   }
1680 
1681   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1682     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1683 
1684   if (const auto *BB = dyn_cast<BasicBlock>(V))
1685     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1686 
1687   llvm_unreachable("Can't get register for value!");
1688 }
1689 
1690 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1691   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1692   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1693   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1694   bool IsSEH = isAsynchronousEHPersonality(Pers);
1695   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1696   if (!IsSEH)
1697     CatchPadMBB->setIsEHScopeEntry();
1698   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1699   if (IsMSVCCXX || IsCoreCLR)
1700     CatchPadMBB->setIsEHFuncletEntry();
1701 }
1702 
1703 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1704   // Update machine-CFG edge.
1705   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1706   FuncInfo.MBB->addSuccessor(TargetMBB);
1707   TargetMBB->setIsEHCatchretTarget(true);
1708   DAG.getMachineFunction().setHasEHCatchret(true);
1709 
1710   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1711   bool IsSEH = isAsynchronousEHPersonality(Pers);
1712   if (IsSEH) {
1713     // If this is not a fall-through branch or optimizations are switched off,
1714     // emit the branch.
1715     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1716         TM.getOptLevel() == CodeGenOpt::None)
1717       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1718                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1719     return;
1720   }
1721 
1722   // Figure out the funclet membership for the catchret's successor.
1723   // This will be used by the FuncletLayout pass to determine how to order the
1724   // BB's.
1725   // A 'catchret' returns to the outer scope's color.
1726   Value *ParentPad = I.getCatchSwitchParentPad();
1727   const BasicBlock *SuccessorColor;
1728   if (isa<ConstantTokenNone>(ParentPad))
1729     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1730   else
1731     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1732   assert(SuccessorColor && "No parent funclet for catchret!");
1733   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1734   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1735 
1736   // Create the terminator node.
1737   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1738                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1739                             DAG.getBasicBlock(SuccessorColorMBB));
1740   DAG.setRoot(Ret);
1741 }
1742 
1743 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1744   // Don't emit any special code for the cleanuppad instruction. It just marks
1745   // the start of an EH scope/funclet.
1746   FuncInfo.MBB->setIsEHScopeEntry();
1747   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1748   if (Pers != EHPersonality::Wasm_CXX) {
1749     FuncInfo.MBB->setIsEHFuncletEntry();
1750     FuncInfo.MBB->setIsCleanupFuncletEntry();
1751   }
1752 }
1753 
1754 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1755 // not match, it is OK to add only the first unwind destination catchpad to the
1756 // successors, because there will be at least one invoke instruction within the
1757 // catch scope that points to the next unwind destination, if one exists, so
1758 // CFGSort cannot mess up with BB sorting order.
1759 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1760 // call within them, and catchpads only consisting of 'catch (...)' have a
1761 // '__cxa_end_catch' call within them, both of which generate invokes in case
1762 // the next unwind destination exists, i.e., the next unwind destination is not
1763 // the caller.)
1764 //
1765 // Having at most one EH pad successor is also simpler and helps later
1766 // transformations.
1767 //
1768 // For example,
1769 // current:
1770 //   invoke void @foo to ... unwind label %catch.dispatch
1771 // catch.dispatch:
1772 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1773 // catch.start:
1774 //   ...
1775 //   ... in this BB or some other child BB dominated by this BB there will be an
1776 //   invoke that points to 'next' BB as an unwind destination
1777 //
1778 // next: ; We don't need to add this to 'current' BB's successor
1779 //   ...
1780 static void findWasmUnwindDestinations(
1781     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1782     BranchProbability Prob,
1783     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1784         &UnwindDests) {
1785   while (EHPadBB) {
1786     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1787     if (isa<CleanupPadInst>(Pad)) {
1788       // Stop on cleanup pads.
1789       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1790       UnwindDests.back().first->setIsEHScopeEntry();
1791       break;
1792     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1793       // Add the catchpad handlers to the possible destinations. We don't
1794       // continue to the unwind destination of the catchswitch for wasm.
1795       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1796         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1797         UnwindDests.back().first->setIsEHScopeEntry();
1798       }
1799       break;
1800     } else {
1801       continue;
1802     }
1803   }
1804 }
1805 
1806 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1807 /// many places it could ultimately go. In the IR, we have a single unwind
1808 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1809 /// This function skips over imaginary basic blocks that hold catchswitch
1810 /// instructions, and finds all the "real" machine
1811 /// basic block destinations. As those destinations may not be successors of
1812 /// EHPadBB, here we also calculate the edge probability to those destinations.
1813 /// The passed-in Prob is the edge probability to EHPadBB.
1814 static void findUnwindDestinations(
1815     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1816     BranchProbability Prob,
1817     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1818         &UnwindDests) {
1819   EHPersonality Personality =
1820     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1821   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1822   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1823   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1824   bool IsSEH = isAsynchronousEHPersonality(Personality);
1825 
1826   if (IsWasmCXX) {
1827     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1828     assert(UnwindDests.size() <= 1 &&
1829            "There should be at most one unwind destination for wasm");
1830     return;
1831   }
1832 
1833   while (EHPadBB) {
1834     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1835     BasicBlock *NewEHPadBB = nullptr;
1836     if (isa<LandingPadInst>(Pad)) {
1837       // Stop on landingpads. They are not funclets.
1838       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1839       break;
1840     } else if (isa<CleanupPadInst>(Pad)) {
1841       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1842       // personalities.
1843       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1844       UnwindDests.back().first->setIsEHScopeEntry();
1845       UnwindDests.back().first->setIsEHFuncletEntry();
1846       break;
1847     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1848       // Add the catchpad handlers to the possible destinations.
1849       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1850         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1851         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1852         if (IsMSVCCXX || IsCoreCLR)
1853           UnwindDests.back().first->setIsEHFuncletEntry();
1854         if (!IsSEH)
1855           UnwindDests.back().first->setIsEHScopeEntry();
1856       }
1857       NewEHPadBB = CatchSwitch->getUnwindDest();
1858     } else {
1859       continue;
1860     }
1861 
1862     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1863     if (BPI && NewEHPadBB)
1864       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1865     EHPadBB = NewEHPadBB;
1866   }
1867 }
1868 
1869 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1870   // Update successor info.
1871   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1872   auto UnwindDest = I.getUnwindDest();
1873   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1874   BranchProbability UnwindDestProb =
1875       (BPI && UnwindDest)
1876           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1877           : BranchProbability::getZero();
1878   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1879   for (auto &UnwindDest : UnwindDests) {
1880     UnwindDest.first->setIsEHPad();
1881     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1882   }
1883   FuncInfo.MBB->normalizeSuccProbs();
1884 
1885   // Create the terminator node.
1886   SDValue Ret =
1887       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1888   DAG.setRoot(Ret);
1889 }
1890 
1891 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1892   report_fatal_error("visitCatchSwitch not yet implemented!");
1893 }
1894 
1895 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1897   auto &DL = DAG.getDataLayout();
1898   SDValue Chain = getControlRoot();
1899   SmallVector<ISD::OutputArg, 8> Outs;
1900   SmallVector<SDValue, 8> OutVals;
1901 
1902   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1903   // lower
1904   //
1905   //   %val = call <ty> @llvm.experimental.deoptimize()
1906   //   ret <ty> %val
1907   //
1908   // differently.
1909   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1910     LowerDeoptimizingReturn();
1911     return;
1912   }
1913 
1914   if (!FuncInfo.CanLowerReturn) {
1915     unsigned DemoteReg = FuncInfo.DemoteRegister;
1916     const Function *F = I.getParent()->getParent();
1917 
1918     // Emit a store of the return value through the virtual register.
1919     // Leave Outs empty so that LowerReturn won't try to load return
1920     // registers the usual way.
1921     SmallVector<EVT, 1> PtrValueVTs;
1922     ComputeValueVTs(TLI, DL,
1923                     F->getReturnType()->getPointerTo(
1924                         DAG.getDataLayout().getAllocaAddrSpace()),
1925                     PtrValueVTs);
1926 
1927     SDValue RetPtr =
1928         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1929     SDValue RetOp = getValue(I.getOperand(0));
1930 
1931     SmallVector<EVT, 4> ValueVTs, MemVTs;
1932     SmallVector<uint64_t, 4> Offsets;
1933     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1934                     &Offsets);
1935     unsigned NumValues = ValueVTs.size();
1936 
1937     SmallVector<SDValue, 4> Chains(NumValues);
1938     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1939     for (unsigned i = 0; i != NumValues; ++i) {
1940       // An aggregate return value cannot wrap around the address space, so
1941       // offsets to its parts don't wrap either.
1942       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1943                                            TypeSize::Fixed(Offsets[i]));
1944 
1945       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1946       if (MemVTs[i] != ValueVTs[i])
1947         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1948       Chains[i] = DAG.getStore(
1949           Chain, getCurSDLoc(), Val,
1950           // FIXME: better loc info would be nice.
1951           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1952           commonAlignment(BaseAlign, Offsets[i]));
1953     }
1954 
1955     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1956                         MVT::Other, Chains);
1957   } else if (I.getNumOperands() != 0) {
1958     SmallVector<EVT, 4> ValueVTs;
1959     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1960     unsigned NumValues = ValueVTs.size();
1961     if (NumValues) {
1962       SDValue RetOp = getValue(I.getOperand(0));
1963 
1964       const Function *F = I.getParent()->getParent();
1965 
1966       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1967           I.getOperand(0)->getType(), F->getCallingConv(),
1968           /*IsVarArg*/ false, DL);
1969 
1970       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1971       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1972         ExtendKind = ISD::SIGN_EXTEND;
1973       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1974         ExtendKind = ISD::ZERO_EXTEND;
1975 
1976       LLVMContext &Context = F->getContext();
1977       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1978 
1979       for (unsigned j = 0; j != NumValues; ++j) {
1980         EVT VT = ValueVTs[j];
1981 
1982         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1983           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1984 
1985         CallingConv::ID CC = F->getCallingConv();
1986 
1987         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1988         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1989         SmallVector<SDValue, 4> Parts(NumParts);
1990         getCopyToParts(DAG, getCurSDLoc(),
1991                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1992                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1993 
1994         // 'inreg' on function refers to return value
1995         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1996         if (RetInReg)
1997           Flags.setInReg();
1998 
1999         if (I.getOperand(0)->getType()->isPointerTy()) {
2000           Flags.setPointer();
2001           Flags.setPointerAddrSpace(
2002               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2003         }
2004 
2005         if (NeedsRegBlock) {
2006           Flags.setInConsecutiveRegs();
2007           if (j == NumValues - 1)
2008             Flags.setInConsecutiveRegsLast();
2009         }
2010 
2011         // Propagate extension type if any
2012         if (ExtendKind == ISD::SIGN_EXTEND)
2013           Flags.setSExt();
2014         else if (ExtendKind == ISD::ZERO_EXTEND)
2015           Flags.setZExt();
2016 
2017         for (unsigned i = 0; i < NumParts; ++i) {
2018           Outs.push_back(ISD::OutputArg(Flags,
2019                                         Parts[i].getValueType().getSimpleVT(),
2020                                         VT, /*isfixed=*/true, 0, 0));
2021           OutVals.push_back(Parts[i]);
2022         }
2023       }
2024     }
2025   }
2026 
2027   // Push in swifterror virtual register as the last element of Outs. This makes
2028   // sure swifterror virtual register will be returned in the swifterror
2029   // physical register.
2030   const Function *F = I.getParent()->getParent();
2031   if (TLI.supportSwiftError() &&
2032       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2033     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2034     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2035     Flags.setSwiftError();
2036     Outs.push_back(ISD::OutputArg(
2037         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2038         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2039     // Create SDNode for the swifterror virtual register.
2040     OutVals.push_back(
2041         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2042                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2043                         EVT(TLI.getPointerTy(DL))));
2044   }
2045 
2046   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2047   CallingConv::ID CallConv =
2048     DAG.getMachineFunction().getFunction().getCallingConv();
2049   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2050       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2051 
2052   // Verify that the target's LowerReturn behaved as expected.
2053   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2054          "LowerReturn didn't return a valid chain!");
2055 
2056   // Update the DAG with the new chain value resulting from return lowering.
2057   DAG.setRoot(Chain);
2058 }
2059 
2060 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2061 /// created for it, emit nodes to copy the value into the virtual
2062 /// registers.
2063 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2064   // Skip empty types
2065   if (V->getType()->isEmptyTy())
2066     return;
2067 
2068   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2069   if (VMI != FuncInfo.ValueMap.end()) {
2070     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2071     CopyValueToVirtualRegister(V, VMI->second);
2072   }
2073 }
2074 
2075 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2076 /// the current basic block, add it to ValueMap now so that we'll get a
2077 /// CopyTo/FromReg.
2078 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2079   // No need to export constants.
2080   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2081 
2082   // Already exported?
2083   if (FuncInfo.isExportedInst(V)) return;
2084 
2085   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2086   CopyValueToVirtualRegister(V, Reg);
2087 }
2088 
2089 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2090                                                      const BasicBlock *FromBB) {
2091   // The operands of the setcc have to be in this block.  We don't know
2092   // how to export them from some other block.
2093   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2094     // Can export from current BB.
2095     if (VI->getParent() == FromBB)
2096       return true;
2097 
2098     // Is already exported, noop.
2099     return FuncInfo.isExportedInst(V);
2100   }
2101 
2102   // If this is an argument, we can export it if the BB is the entry block or
2103   // if it is already exported.
2104   if (isa<Argument>(V)) {
2105     if (FromBB->isEntryBlock())
2106       return true;
2107 
2108     // Otherwise, can only export this if it is already exported.
2109     return FuncInfo.isExportedInst(V);
2110   }
2111 
2112   // Otherwise, constants can always be exported.
2113   return true;
2114 }
2115 
2116 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2117 BranchProbability
2118 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2119                                         const MachineBasicBlock *Dst) const {
2120   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2121   const BasicBlock *SrcBB = Src->getBasicBlock();
2122   const BasicBlock *DstBB = Dst->getBasicBlock();
2123   if (!BPI) {
2124     // If BPI is not available, set the default probability as 1 / N, where N is
2125     // the number of successors.
2126     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2127     return BranchProbability(1, SuccSize);
2128   }
2129   return BPI->getEdgeProbability(SrcBB, DstBB);
2130 }
2131 
2132 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2133                                                MachineBasicBlock *Dst,
2134                                                BranchProbability Prob) {
2135   if (!FuncInfo.BPI)
2136     Src->addSuccessorWithoutProb(Dst);
2137   else {
2138     if (Prob.isUnknown())
2139       Prob = getEdgeProbability(Src, Dst);
2140     Src->addSuccessor(Dst, Prob);
2141   }
2142 }
2143 
2144 static bool InBlock(const Value *V, const BasicBlock *BB) {
2145   if (const Instruction *I = dyn_cast<Instruction>(V))
2146     return I->getParent() == BB;
2147   return true;
2148 }
2149 
2150 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2151 /// This function emits a branch and is used at the leaves of an OR or an
2152 /// AND operator tree.
2153 void
2154 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2155                                                   MachineBasicBlock *TBB,
2156                                                   MachineBasicBlock *FBB,
2157                                                   MachineBasicBlock *CurBB,
2158                                                   MachineBasicBlock *SwitchBB,
2159                                                   BranchProbability TProb,
2160                                                   BranchProbability FProb,
2161                                                   bool InvertCond) {
2162   const BasicBlock *BB = CurBB->getBasicBlock();
2163 
2164   // If the leaf of the tree is a comparison, merge the condition into
2165   // the caseblock.
2166   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2167     // The operands of the cmp have to be in this block.  We don't know
2168     // how to export them from some other block.  If this is the first block
2169     // of the sequence, no exporting is needed.
2170     if (CurBB == SwitchBB ||
2171         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2172          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2173       ISD::CondCode Condition;
2174       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2175         ICmpInst::Predicate Pred =
2176             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2177         Condition = getICmpCondCode(Pred);
2178       } else {
2179         const FCmpInst *FC = cast<FCmpInst>(Cond);
2180         FCmpInst::Predicate Pred =
2181             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2182         Condition = getFCmpCondCode(Pred);
2183         if (TM.Options.NoNaNsFPMath)
2184           Condition = getFCmpCodeWithoutNaN(Condition);
2185       }
2186 
2187       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2188                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2189       SL->SwitchCases.push_back(CB);
2190       return;
2191     }
2192   }
2193 
2194   // Create a CaseBlock record representing this branch.
2195   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2196   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2197                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2198   SL->SwitchCases.push_back(CB);
2199 }
2200 
2201 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2202                                                MachineBasicBlock *TBB,
2203                                                MachineBasicBlock *FBB,
2204                                                MachineBasicBlock *CurBB,
2205                                                MachineBasicBlock *SwitchBB,
2206                                                Instruction::BinaryOps Opc,
2207                                                BranchProbability TProb,
2208                                                BranchProbability FProb,
2209                                                bool InvertCond) {
2210   // Skip over not part of the tree and remember to invert op and operands at
2211   // next level.
2212   Value *NotCond;
2213   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2214       InBlock(NotCond, CurBB->getBasicBlock())) {
2215     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2216                          !InvertCond);
2217     return;
2218   }
2219 
2220   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2221   const Value *BOpOp0, *BOpOp1;
2222   // Compute the effective opcode for Cond, taking into account whether it needs
2223   // to be inverted, e.g.
2224   //   and (not (or A, B)), C
2225   // gets lowered as
2226   //   and (and (not A, not B), C)
2227   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2228   if (BOp) {
2229     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2230                ? Instruction::And
2231                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2232                       ? Instruction::Or
2233                       : (Instruction::BinaryOps)0);
2234     if (InvertCond) {
2235       if (BOpc == Instruction::And)
2236         BOpc = Instruction::Or;
2237       else if (BOpc == Instruction::Or)
2238         BOpc = Instruction::And;
2239     }
2240   }
2241 
2242   // If this node is not part of the or/and tree, emit it as a branch.
2243   // Note that all nodes in the tree should have same opcode.
2244   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2245   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2246       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2247       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2248     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2249                                  TProb, FProb, InvertCond);
2250     return;
2251   }
2252 
2253   //  Create TmpBB after CurBB.
2254   MachineFunction::iterator BBI(CurBB);
2255   MachineFunction &MF = DAG.getMachineFunction();
2256   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2257   CurBB->getParent()->insert(++BBI, TmpBB);
2258 
2259   if (Opc == Instruction::Or) {
2260     // Codegen X | Y as:
2261     // BB1:
2262     //   jmp_if_X TBB
2263     //   jmp TmpBB
2264     // TmpBB:
2265     //   jmp_if_Y TBB
2266     //   jmp FBB
2267     //
2268 
2269     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2270     // The requirement is that
2271     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2272     //     = TrueProb for original BB.
2273     // Assuming the original probabilities are A and B, one choice is to set
2274     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2275     // A/(1+B) and 2B/(1+B). This choice assumes that
2276     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2277     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2278     // TmpBB, but the math is more complicated.
2279 
2280     auto NewTrueProb = TProb / 2;
2281     auto NewFalseProb = TProb / 2 + FProb;
2282     // Emit the LHS condition.
2283     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2284                          NewFalseProb, InvertCond);
2285 
2286     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2287     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2288     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2289     // Emit the RHS condition into TmpBB.
2290     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2291                          Probs[1], InvertCond);
2292   } else {
2293     assert(Opc == Instruction::And && "Unknown merge op!");
2294     // Codegen X & Y as:
2295     // BB1:
2296     //   jmp_if_X TmpBB
2297     //   jmp FBB
2298     // TmpBB:
2299     //   jmp_if_Y TBB
2300     //   jmp FBB
2301     //
2302     //  This requires creation of TmpBB after CurBB.
2303 
2304     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2305     // The requirement is that
2306     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2307     //     = FalseProb for original BB.
2308     // Assuming the original probabilities are A and B, one choice is to set
2309     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2310     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2311     // TrueProb for BB1 * FalseProb for TmpBB.
2312 
2313     auto NewTrueProb = TProb + FProb / 2;
2314     auto NewFalseProb = FProb / 2;
2315     // Emit the LHS condition.
2316     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2317                          NewFalseProb, InvertCond);
2318 
2319     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2320     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2321     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2322     // Emit the RHS condition into TmpBB.
2323     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2324                          Probs[1], InvertCond);
2325   }
2326 }
2327 
2328 /// If the set of cases should be emitted as a series of branches, return true.
2329 /// If we should emit this as a bunch of and/or'd together conditions, return
2330 /// false.
2331 bool
2332 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2333   if (Cases.size() != 2) return true;
2334 
2335   // If this is two comparisons of the same values or'd or and'd together, they
2336   // will get folded into a single comparison, so don't emit two blocks.
2337   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2338        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2339       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2340        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2341     return false;
2342   }
2343 
2344   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2345   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2346   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2347       Cases[0].CC == Cases[1].CC &&
2348       isa<Constant>(Cases[0].CmpRHS) &&
2349       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2350     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2351       return false;
2352     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2353       return false;
2354   }
2355 
2356   return true;
2357 }
2358 
2359 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2360   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2361 
2362   // Update machine-CFG edges.
2363   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2364 
2365   if (I.isUnconditional()) {
2366     // Update machine-CFG edges.
2367     BrMBB->addSuccessor(Succ0MBB);
2368 
2369     // If this is not a fall-through branch or optimizations are switched off,
2370     // emit the branch.
2371     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2372       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2373                               MVT::Other, getControlRoot(),
2374                               DAG.getBasicBlock(Succ0MBB)));
2375 
2376     return;
2377   }
2378 
2379   // If this condition is one of the special cases we handle, do special stuff
2380   // now.
2381   const Value *CondVal = I.getCondition();
2382   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2383 
2384   // If this is a series of conditions that are or'd or and'd together, emit
2385   // this as a sequence of branches instead of setcc's with and/or operations.
2386   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2387   // unpredictable branches, and vector extracts because those jumps are likely
2388   // expensive for any target), this should improve performance.
2389   // For example, instead of something like:
2390   //     cmp A, B
2391   //     C = seteq
2392   //     cmp D, E
2393   //     F = setle
2394   //     or C, F
2395   //     jnz foo
2396   // Emit:
2397   //     cmp A, B
2398   //     je foo
2399   //     cmp D, E
2400   //     jle foo
2401   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2402   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2403       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2404     Value *Vec;
2405     const Value *BOp0, *BOp1;
2406     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2407     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2408       Opcode = Instruction::And;
2409     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2410       Opcode = Instruction::Or;
2411 
2412     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2413                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2414       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2415                            getEdgeProbability(BrMBB, Succ0MBB),
2416                            getEdgeProbability(BrMBB, Succ1MBB),
2417                            /*InvertCond=*/false);
2418       // If the compares in later blocks need to use values not currently
2419       // exported from this block, export them now.  This block should always
2420       // be the first entry.
2421       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2422 
2423       // Allow some cases to be rejected.
2424       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2425         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2426           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2427           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2428         }
2429 
2430         // Emit the branch for this block.
2431         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2432         SL->SwitchCases.erase(SL->SwitchCases.begin());
2433         return;
2434       }
2435 
2436       // Okay, we decided not to do this, remove any inserted MBB's and clear
2437       // SwitchCases.
2438       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2439         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2440 
2441       SL->SwitchCases.clear();
2442     }
2443   }
2444 
2445   // Create a CaseBlock record representing this branch.
2446   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2447                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2448 
2449   // Use visitSwitchCase to actually insert the fast branch sequence for this
2450   // cond branch.
2451   visitSwitchCase(CB, BrMBB);
2452 }
2453 
2454 /// visitSwitchCase - Emits the necessary code to represent a single node in
2455 /// the binary search tree resulting from lowering a switch instruction.
2456 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2457                                           MachineBasicBlock *SwitchBB) {
2458   SDValue Cond;
2459   SDValue CondLHS = getValue(CB.CmpLHS);
2460   SDLoc dl = CB.DL;
2461 
2462   if (CB.CC == ISD::SETTRUE) {
2463     // Branch or fall through to TrueBB.
2464     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2465     SwitchBB->normalizeSuccProbs();
2466     if (CB.TrueBB != NextBlock(SwitchBB)) {
2467       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2468                               DAG.getBasicBlock(CB.TrueBB)));
2469     }
2470     return;
2471   }
2472 
2473   auto &TLI = DAG.getTargetLoweringInfo();
2474   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2475 
2476   // Build the setcc now.
2477   if (!CB.CmpMHS) {
2478     // Fold "(X == true)" to X and "(X == false)" to !X to
2479     // handle common cases produced by branch lowering.
2480     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2481         CB.CC == ISD::SETEQ)
2482       Cond = CondLHS;
2483     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2484              CB.CC == ISD::SETEQ) {
2485       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2486       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2487     } else {
2488       SDValue CondRHS = getValue(CB.CmpRHS);
2489 
2490       // If a pointer's DAG type is larger than its memory type then the DAG
2491       // values are zero-extended. This breaks signed comparisons so truncate
2492       // back to the underlying type before doing the compare.
2493       if (CondLHS.getValueType() != MemVT) {
2494         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2495         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2496       }
2497       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2498     }
2499   } else {
2500     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2501 
2502     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2503     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2504 
2505     SDValue CmpOp = getValue(CB.CmpMHS);
2506     EVT VT = CmpOp.getValueType();
2507 
2508     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2509       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2510                           ISD::SETLE);
2511     } else {
2512       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2513                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2514       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2515                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2516     }
2517   }
2518 
2519   // Update successor info
2520   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2521   // TrueBB and FalseBB are always different unless the incoming IR is
2522   // degenerate. This only happens when running llc on weird IR.
2523   if (CB.TrueBB != CB.FalseBB)
2524     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2525   SwitchBB->normalizeSuccProbs();
2526 
2527   // If the lhs block is the next block, invert the condition so that we can
2528   // fall through to the lhs instead of the rhs block.
2529   if (CB.TrueBB == NextBlock(SwitchBB)) {
2530     std::swap(CB.TrueBB, CB.FalseBB);
2531     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2532     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2533   }
2534 
2535   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2536                                MVT::Other, getControlRoot(), Cond,
2537                                DAG.getBasicBlock(CB.TrueBB));
2538 
2539   // Insert the false branch. Do this even if it's a fall through branch,
2540   // this makes it easier to do DAG optimizations which require inverting
2541   // the branch condition.
2542   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2543                        DAG.getBasicBlock(CB.FalseBB));
2544 
2545   DAG.setRoot(BrCond);
2546 }
2547 
2548 /// visitJumpTable - Emit JumpTable node in the current MBB
2549 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2550   // Emit the code for the jump table
2551   assert(JT.Reg != -1U && "Should lower JT Header first!");
2552   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2553   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2554                                      JT.Reg, PTy);
2555   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2556   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2557                                     MVT::Other, Index.getValue(1),
2558                                     Table, Index);
2559   DAG.setRoot(BrJumpTable);
2560 }
2561 
2562 /// visitJumpTableHeader - This function emits necessary code to produce index
2563 /// in the JumpTable from switch case.
2564 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2565                                                JumpTableHeader &JTH,
2566                                                MachineBasicBlock *SwitchBB) {
2567   SDLoc dl = getCurSDLoc();
2568 
2569   // Subtract the lowest switch case value from the value being switched on.
2570   SDValue SwitchOp = getValue(JTH.SValue);
2571   EVT VT = SwitchOp.getValueType();
2572   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2573                             DAG.getConstant(JTH.First, dl, VT));
2574 
2575   // The SDNode we just created, which holds the value being switched on minus
2576   // the smallest case value, needs to be copied to a virtual register so it
2577   // can be used as an index into the jump table in a subsequent basic block.
2578   // This value may be smaller or larger than the target's pointer type, and
2579   // therefore require extension or truncating.
2580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2581   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2582 
2583   unsigned JumpTableReg =
2584       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2585   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2586                                     JumpTableReg, SwitchOp);
2587   JT.Reg = JumpTableReg;
2588 
2589   if (!JTH.FallthroughUnreachable) {
2590     // Emit the range check for the jump table, and branch to the default block
2591     // for the switch statement if the value being switched on exceeds the
2592     // largest case in the switch.
2593     SDValue CMP = DAG.getSetCC(
2594         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2595                                    Sub.getValueType()),
2596         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2597 
2598     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2599                                  MVT::Other, CopyTo, CMP,
2600                                  DAG.getBasicBlock(JT.Default));
2601 
2602     // Avoid emitting unnecessary branches to the next block.
2603     if (JT.MBB != NextBlock(SwitchBB))
2604       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2605                            DAG.getBasicBlock(JT.MBB));
2606 
2607     DAG.setRoot(BrCond);
2608   } else {
2609     // Avoid emitting unnecessary branches to the next block.
2610     if (JT.MBB != NextBlock(SwitchBB))
2611       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2612                               DAG.getBasicBlock(JT.MBB)));
2613     else
2614       DAG.setRoot(CopyTo);
2615   }
2616 }
2617 
2618 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2619 /// variable if there exists one.
2620 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2621                                  SDValue &Chain) {
2622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2623   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2624   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2625   MachineFunction &MF = DAG.getMachineFunction();
2626   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2627   MachineSDNode *Node =
2628       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2629   if (Global) {
2630     MachinePointerInfo MPInfo(Global);
2631     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2632                  MachineMemOperand::MODereferenceable;
2633     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2634         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2635     DAG.setNodeMemRefs(Node, {MemRef});
2636   }
2637   if (PtrTy != PtrMemTy)
2638     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2639   return SDValue(Node, 0);
2640 }
2641 
2642 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2643 /// tail spliced into a stack protector check success bb.
2644 ///
2645 /// For a high level explanation of how this fits into the stack protector
2646 /// generation see the comment on the declaration of class
2647 /// StackProtectorDescriptor.
2648 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2649                                                   MachineBasicBlock *ParentBB) {
2650 
2651   // First create the loads to the guard/stack slot for the comparison.
2652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2653   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2654   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2655 
2656   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2657   int FI = MFI.getStackProtectorIndex();
2658 
2659   SDValue Guard;
2660   SDLoc dl = getCurSDLoc();
2661   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2662   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2663   Align Align =
2664       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2665 
2666   // Generate code to load the content of the guard slot.
2667   SDValue GuardVal = DAG.getLoad(
2668       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2669       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2670       MachineMemOperand::MOVolatile);
2671 
2672   if (TLI.useStackGuardXorFP())
2673     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2674 
2675   // Retrieve guard check function, nullptr if instrumentation is inlined.
2676   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2677     // The target provides a guard check function to validate the guard value.
2678     // Generate a call to that function with the content of the guard slot as
2679     // argument.
2680     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2681     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2682 
2683     TargetLowering::ArgListTy Args;
2684     TargetLowering::ArgListEntry Entry;
2685     Entry.Node = GuardVal;
2686     Entry.Ty = FnTy->getParamType(0);
2687     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2688       Entry.IsInReg = true;
2689     Args.push_back(Entry);
2690 
2691     TargetLowering::CallLoweringInfo CLI(DAG);
2692     CLI.setDebugLoc(getCurSDLoc())
2693         .setChain(DAG.getEntryNode())
2694         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2695                    getValue(GuardCheckFn), std::move(Args));
2696 
2697     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2698     DAG.setRoot(Result.second);
2699     return;
2700   }
2701 
2702   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2703   // Otherwise, emit a volatile load to retrieve the stack guard value.
2704   SDValue Chain = DAG.getEntryNode();
2705   if (TLI.useLoadStackGuardNode()) {
2706     Guard = getLoadStackGuard(DAG, dl, Chain);
2707   } else {
2708     const Value *IRGuard = TLI.getSDagStackGuard(M);
2709     SDValue GuardPtr = getValue(IRGuard);
2710 
2711     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2712                         MachinePointerInfo(IRGuard, 0), Align,
2713                         MachineMemOperand::MOVolatile);
2714   }
2715 
2716   // Perform the comparison via a getsetcc.
2717   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2718                                                         *DAG.getContext(),
2719                                                         Guard.getValueType()),
2720                              Guard, GuardVal, ISD::SETNE);
2721 
2722   // If the guard/stackslot do not equal, branch to failure MBB.
2723   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2724                                MVT::Other, GuardVal.getOperand(0),
2725                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2726   // Otherwise branch to success MBB.
2727   SDValue Br = DAG.getNode(ISD::BR, dl,
2728                            MVT::Other, BrCond,
2729                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2730 
2731   DAG.setRoot(Br);
2732 }
2733 
2734 /// Codegen the failure basic block for a stack protector check.
2735 ///
2736 /// A failure stack protector machine basic block consists simply of a call to
2737 /// __stack_chk_fail().
2738 ///
2739 /// For a high level explanation of how this fits into the stack protector
2740 /// generation see the comment on the declaration of class
2741 /// StackProtectorDescriptor.
2742 void
2743 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2744   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2745   TargetLowering::MakeLibCallOptions CallOptions;
2746   CallOptions.setDiscardResult(true);
2747   SDValue Chain =
2748       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2749                       None, CallOptions, getCurSDLoc()).second;
2750   // On PS4/PS5, the "return address" must still be within the calling
2751   // function, even if it's at the very end, so emit an explicit TRAP here.
2752   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2753   if (TM.getTargetTriple().isPS())
2754     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2755   // WebAssembly needs an unreachable instruction after a non-returning call,
2756   // because the function return type can be different from __stack_chk_fail's
2757   // return type (void).
2758   if (TM.getTargetTriple().isWasm())
2759     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2760 
2761   DAG.setRoot(Chain);
2762 }
2763 
2764 /// visitBitTestHeader - This function emits necessary code to produce value
2765 /// suitable for "bit tests"
2766 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2767                                              MachineBasicBlock *SwitchBB) {
2768   SDLoc dl = getCurSDLoc();
2769 
2770   // Subtract the minimum value.
2771   SDValue SwitchOp = getValue(B.SValue);
2772   EVT VT = SwitchOp.getValueType();
2773   SDValue RangeSub =
2774       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2775 
2776   // Determine the type of the test operands.
2777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2778   bool UsePtrType = false;
2779   if (!TLI.isTypeLegal(VT)) {
2780     UsePtrType = true;
2781   } else {
2782     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2783       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2784         // Switch table case range are encoded into series of masks.
2785         // Just use pointer type, it's guaranteed to fit.
2786         UsePtrType = true;
2787         break;
2788       }
2789   }
2790   SDValue Sub = RangeSub;
2791   if (UsePtrType) {
2792     VT = TLI.getPointerTy(DAG.getDataLayout());
2793     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2794   }
2795 
2796   B.RegVT = VT.getSimpleVT();
2797   B.Reg = FuncInfo.CreateReg(B.RegVT);
2798   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2799 
2800   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2801 
2802   if (!B.FallthroughUnreachable)
2803     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2804   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2805   SwitchBB->normalizeSuccProbs();
2806 
2807   SDValue Root = CopyTo;
2808   if (!B.FallthroughUnreachable) {
2809     // Conditional branch to the default block.
2810     SDValue RangeCmp = DAG.getSetCC(dl,
2811         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2812                                RangeSub.getValueType()),
2813         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2814         ISD::SETUGT);
2815 
2816     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2817                        DAG.getBasicBlock(B.Default));
2818   }
2819 
2820   // Avoid emitting unnecessary branches to the next block.
2821   if (MBB != NextBlock(SwitchBB))
2822     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2823 
2824   DAG.setRoot(Root);
2825 }
2826 
2827 /// visitBitTestCase - this function produces one "bit test"
2828 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2829                                            MachineBasicBlock* NextMBB,
2830                                            BranchProbability BranchProbToNext,
2831                                            unsigned Reg,
2832                                            BitTestCase &B,
2833                                            MachineBasicBlock *SwitchBB) {
2834   SDLoc dl = getCurSDLoc();
2835   MVT VT = BB.RegVT;
2836   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2837   SDValue Cmp;
2838   unsigned PopCount = countPopulation(B.Mask);
2839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2840   if (PopCount == 1) {
2841     // Testing for a single bit; just compare the shift count with what it
2842     // would need to be to shift a 1 bit in that position.
2843     Cmp = DAG.getSetCC(
2844         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2845         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2846         ISD::SETEQ);
2847   } else if (PopCount == BB.Range) {
2848     // There is only one zero bit in the range, test for it directly.
2849     Cmp = DAG.getSetCC(
2850         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2851         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2852         ISD::SETNE);
2853   } else {
2854     // Make desired shift
2855     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2856                                     DAG.getConstant(1, dl, VT), ShiftOp);
2857 
2858     // Emit bit tests and jumps
2859     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2860                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2861     Cmp = DAG.getSetCC(
2862         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2863         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2864   }
2865 
2866   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2867   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2868   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2869   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2870   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2871   // one as they are relative probabilities (and thus work more like weights),
2872   // and hence we need to normalize them to let the sum of them become one.
2873   SwitchBB->normalizeSuccProbs();
2874 
2875   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2876                               MVT::Other, getControlRoot(),
2877                               Cmp, DAG.getBasicBlock(B.TargetBB));
2878 
2879   // Avoid emitting unnecessary branches to the next block.
2880   if (NextMBB != NextBlock(SwitchBB))
2881     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2882                         DAG.getBasicBlock(NextMBB));
2883 
2884   DAG.setRoot(BrAnd);
2885 }
2886 
2887 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2888   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2889 
2890   // Retrieve successors. Look through artificial IR level blocks like
2891   // catchswitch for successors.
2892   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2893   const BasicBlock *EHPadBB = I.getSuccessor(1);
2894 
2895   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2896   // have to do anything here to lower funclet bundles.
2897   assert(!I.hasOperandBundlesOtherThan(
2898              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2899               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2900               LLVMContext::OB_cfguardtarget,
2901               LLVMContext::OB_clang_arc_attachedcall}) &&
2902          "Cannot lower invokes with arbitrary operand bundles yet!");
2903 
2904   const Value *Callee(I.getCalledOperand());
2905   const Function *Fn = dyn_cast<Function>(Callee);
2906   if (isa<InlineAsm>(Callee))
2907     visitInlineAsm(I, EHPadBB);
2908   else if (Fn && Fn->isIntrinsic()) {
2909     switch (Fn->getIntrinsicID()) {
2910     default:
2911       llvm_unreachable("Cannot invoke this intrinsic");
2912     case Intrinsic::donothing:
2913       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2914     case Intrinsic::seh_try_begin:
2915     case Intrinsic::seh_scope_begin:
2916     case Intrinsic::seh_try_end:
2917     case Intrinsic::seh_scope_end:
2918       break;
2919     case Intrinsic::experimental_patchpoint_void:
2920     case Intrinsic::experimental_patchpoint_i64:
2921       visitPatchpoint(I, EHPadBB);
2922       break;
2923     case Intrinsic::experimental_gc_statepoint:
2924       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2925       break;
2926     case Intrinsic::wasm_rethrow: {
2927       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2928       // special because it can be invoked, so we manually lower it to a DAG
2929       // node here.
2930       SmallVector<SDValue, 8> Ops;
2931       Ops.push_back(getRoot()); // inchain
2932       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2933       Ops.push_back(
2934           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2935                                 TLI.getPointerTy(DAG.getDataLayout())));
2936       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2937       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2938       break;
2939     }
2940     }
2941   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2942     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2943     // Eventually we will support lowering the @llvm.experimental.deoptimize
2944     // intrinsic, and right now there are no plans to support other intrinsics
2945     // with deopt state.
2946     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2947   } else {
2948     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2949   }
2950 
2951   // If the value of the invoke is used outside of its defining block, make it
2952   // available as a virtual register.
2953   // We already took care of the exported value for the statepoint instruction
2954   // during call to the LowerStatepoint.
2955   if (!isa<GCStatepointInst>(I)) {
2956     CopyToExportRegsIfNeeded(&I);
2957   }
2958 
2959   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2960   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2961   BranchProbability EHPadBBProb =
2962       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2963           : BranchProbability::getZero();
2964   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2965 
2966   // Update successor info.
2967   addSuccessorWithProb(InvokeMBB, Return);
2968   for (auto &UnwindDest : UnwindDests) {
2969     UnwindDest.first->setIsEHPad();
2970     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2971   }
2972   InvokeMBB->normalizeSuccProbs();
2973 
2974   // Drop into normal successor.
2975   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2976                           DAG.getBasicBlock(Return)));
2977 }
2978 
2979 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2980   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2981 
2982   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2983   // have to do anything here to lower funclet bundles.
2984   assert(!I.hasOperandBundlesOtherThan(
2985              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2986          "Cannot lower callbrs with arbitrary operand bundles yet!");
2987 
2988   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2989   visitInlineAsm(I);
2990   CopyToExportRegsIfNeeded(&I);
2991 
2992   // Retrieve successors.
2993   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2994 
2995   // Update successor info.
2996   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2997   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2998     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2999     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3000     Target->setIsInlineAsmBrIndirectTarget();
3001   }
3002   CallBrMBB->normalizeSuccProbs();
3003 
3004   // Drop into default successor.
3005   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3006                           MVT::Other, getControlRoot(),
3007                           DAG.getBasicBlock(Return)));
3008 }
3009 
3010 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3011   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3012 }
3013 
3014 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3015   assert(FuncInfo.MBB->isEHPad() &&
3016          "Call to landingpad not in landing pad!");
3017 
3018   // If there aren't registers to copy the values into (e.g., during SjLj
3019   // exceptions), then don't bother to create these DAG nodes.
3020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3021   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3022   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3023       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3024     return;
3025 
3026   // If landingpad's return type is token type, we don't create DAG nodes
3027   // for its exception pointer and selector value. The extraction of exception
3028   // pointer or selector value from token type landingpads is not currently
3029   // supported.
3030   if (LP.getType()->isTokenTy())
3031     return;
3032 
3033   SmallVector<EVT, 2> ValueVTs;
3034   SDLoc dl = getCurSDLoc();
3035   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3036   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3037 
3038   // Get the two live-in registers as SDValues. The physregs have already been
3039   // copied into virtual registers.
3040   SDValue Ops[2];
3041   if (FuncInfo.ExceptionPointerVirtReg) {
3042     Ops[0] = DAG.getZExtOrTrunc(
3043         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3044                            FuncInfo.ExceptionPointerVirtReg,
3045                            TLI.getPointerTy(DAG.getDataLayout())),
3046         dl, ValueVTs[0]);
3047   } else {
3048     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3049   }
3050   Ops[1] = DAG.getZExtOrTrunc(
3051       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3052                          FuncInfo.ExceptionSelectorVirtReg,
3053                          TLI.getPointerTy(DAG.getDataLayout())),
3054       dl, ValueVTs[1]);
3055 
3056   // Merge into one.
3057   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3058                             DAG.getVTList(ValueVTs), Ops);
3059   setValue(&LP, Res);
3060 }
3061 
3062 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3063                                            MachineBasicBlock *Last) {
3064   // Update JTCases.
3065   for (JumpTableBlock &JTB : SL->JTCases)
3066     if (JTB.first.HeaderBB == First)
3067       JTB.first.HeaderBB = Last;
3068 
3069   // Update BitTestCases.
3070   for (BitTestBlock &BTB : SL->BitTestCases)
3071     if (BTB.Parent == First)
3072       BTB.Parent = Last;
3073 }
3074 
3075 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3076   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3077 
3078   // Update machine-CFG edges with unique successors.
3079   SmallSet<BasicBlock*, 32> Done;
3080   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3081     BasicBlock *BB = I.getSuccessor(i);
3082     bool Inserted = Done.insert(BB).second;
3083     if (!Inserted)
3084         continue;
3085 
3086     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3087     addSuccessorWithProb(IndirectBrMBB, Succ);
3088   }
3089   IndirectBrMBB->normalizeSuccProbs();
3090 
3091   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3092                           MVT::Other, getControlRoot(),
3093                           getValue(I.getAddress())));
3094 }
3095 
3096 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3097   if (!DAG.getTarget().Options.TrapUnreachable)
3098     return;
3099 
3100   // We may be able to ignore unreachable behind a noreturn call.
3101   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3102     const BasicBlock &BB = *I.getParent();
3103     if (&I != &BB.front()) {
3104       BasicBlock::const_iterator PredI =
3105         std::prev(BasicBlock::const_iterator(&I));
3106       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3107         if (Call->doesNotReturn())
3108           return;
3109       }
3110     }
3111   }
3112 
3113   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3114 }
3115 
3116 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3117   SDNodeFlags Flags;
3118   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3119     Flags.copyFMF(*FPOp);
3120 
3121   SDValue Op = getValue(I.getOperand(0));
3122   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3123                                     Op, Flags);
3124   setValue(&I, UnNodeValue);
3125 }
3126 
3127 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3128   SDNodeFlags Flags;
3129   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3130     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3131     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3132   }
3133   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3134     Flags.setExact(ExactOp->isExact());
3135   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3136     Flags.copyFMF(*FPOp);
3137 
3138   SDValue Op1 = getValue(I.getOperand(0));
3139   SDValue Op2 = getValue(I.getOperand(1));
3140   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3141                                      Op1, Op2, Flags);
3142   setValue(&I, BinNodeValue);
3143 }
3144 
3145 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3146   SDValue Op1 = getValue(I.getOperand(0));
3147   SDValue Op2 = getValue(I.getOperand(1));
3148 
3149   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3150       Op1.getValueType(), DAG.getDataLayout());
3151 
3152   // Coerce the shift amount to the right type if we can. This exposes the
3153   // truncate or zext to optimization early.
3154   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3155     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3156            "Unexpected shift type");
3157     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3158   }
3159 
3160   bool nuw = false;
3161   bool nsw = false;
3162   bool exact = false;
3163 
3164   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3165 
3166     if (const OverflowingBinaryOperator *OFBinOp =
3167             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3168       nuw = OFBinOp->hasNoUnsignedWrap();
3169       nsw = OFBinOp->hasNoSignedWrap();
3170     }
3171     if (const PossiblyExactOperator *ExactOp =
3172             dyn_cast<const PossiblyExactOperator>(&I))
3173       exact = ExactOp->isExact();
3174   }
3175   SDNodeFlags Flags;
3176   Flags.setExact(exact);
3177   Flags.setNoSignedWrap(nsw);
3178   Flags.setNoUnsignedWrap(nuw);
3179   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3180                             Flags);
3181   setValue(&I, Res);
3182 }
3183 
3184 void SelectionDAGBuilder::visitSDiv(const User &I) {
3185   SDValue Op1 = getValue(I.getOperand(0));
3186   SDValue Op2 = getValue(I.getOperand(1));
3187 
3188   SDNodeFlags Flags;
3189   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3190                  cast<PossiblyExactOperator>(&I)->isExact());
3191   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3192                            Op2, Flags));
3193 }
3194 
3195 void SelectionDAGBuilder::visitICmp(const User &I) {
3196   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3197   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3198     predicate = IC->getPredicate();
3199   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3200     predicate = ICmpInst::Predicate(IC->getPredicate());
3201   SDValue Op1 = getValue(I.getOperand(0));
3202   SDValue Op2 = getValue(I.getOperand(1));
3203   ISD::CondCode Opcode = getICmpCondCode(predicate);
3204 
3205   auto &TLI = DAG.getTargetLoweringInfo();
3206   EVT MemVT =
3207       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3208 
3209   // If a pointer's DAG type is larger than its memory type then the DAG values
3210   // are zero-extended. This breaks signed comparisons so truncate back to the
3211   // underlying type before doing the compare.
3212   if (Op1.getValueType() != MemVT) {
3213     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3214     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3215   }
3216 
3217   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3218                                                         I.getType());
3219   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3220 }
3221 
3222 void SelectionDAGBuilder::visitFCmp(const User &I) {
3223   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3224   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3225     predicate = FC->getPredicate();
3226   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3227     predicate = FCmpInst::Predicate(FC->getPredicate());
3228   SDValue Op1 = getValue(I.getOperand(0));
3229   SDValue Op2 = getValue(I.getOperand(1));
3230 
3231   ISD::CondCode Condition = getFCmpCondCode(predicate);
3232   auto *FPMO = cast<FPMathOperator>(&I);
3233   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3234     Condition = getFCmpCodeWithoutNaN(Condition);
3235 
3236   SDNodeFlags Flags;
3237   Flags.copyFMF(*FPMO);
3238   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3239 
3240   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3241                                                         I.getType());
3242   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3243 }
3244 
3245 // Check if the condition of the select has one use or two users that are both
3246 // selects with the same condition.
3247 static bool hasOnlySelectUsers(const Value *Cond) {
3248   return llvm::all_of(Cond->users(), [](const Value *V) {
3249     return isa<SelectInst>(V);
3250   });
3251 }
3252 
3253 void SelectionDAGBuilder::visitSelect(const User &I) {
3254   SmallVector<EVT, 4> ValueVTs;
3255   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3256                   ValueVTs);
3257   unsigned NumValues = ValueVTs.size();
3258   if (NumValues == 0) return;
3259 
3260   SmallVector<SDValue, 4> Values(NumValues);
3261   SDValue Cond     = getValue(I.getOperand(0));
3262   SDValue LHSVal   = getValue(I.getOperand(1));
3263   SDValue RHSVal   = getValue(I.getOperand(2));
3264   SmallVector<SDValue, 1> BaseOps(1, Cond);
3265   ISD::NodeType OpCode =
3266       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3267 
3268   bool IsUnaryAbs = false;
3269   bool Negate = false;
3270 
3271   SDNodeFlags Flags;
3272   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3273     Flags.copyFMF(*FPOp);
3274 
3275   // Min/max matching is only viable if all output VTs are the same.
3276   if (is_splat(ValueVTs)) {
3277     EVT VT = ValueVTs[0];
3278     LLVMContext &Ctx = *DAG.getContext();
3279     auto &TLI = DAG.getTargetLoweringInfo();
3280 
3281     // We care about the legality of the operation after it has been type
3282     // legalized.
3283     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3284       VT = TLI.getTypeToTransformTo(Ctx, VT);
3285 
3286     // If the vselect is legal, assume we want to leave this as a vector setcc +
3287     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3288     // min/max is legal on the scalar type.
3289     bool UseScalarMinMax = VT.isVector() &&
3290       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3291 
3292     Value *LHS, *RHS;
3293     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3294     ISD::NodeType Opc = ISD::DELETED_NODE;
3295     switch (SPR.Flavor) {
3296     case SPF_UMAX:    Opc = ISD::UMAX; break;
3297     case SPF_UMIN:    Opc = ISD::UMIN; break;
3298     case SPF_SMAX:    Opc = ISD::SMAX; break;
3299     case SPF_SMIN:    Opc = ISD::SMIN; break;
3300     case SPF_FMINNUM:
3301       switch (SPR.NaNBehavior) {
3302       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3303       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3304       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3305       case SPNB_RETURNS_ANY: {
3306         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3307           Opc = ISD::FMINNUM;
3308         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3309           Opc = ISD::FMINIMUM;
3310         else if (UseScalarMinMax)
3311           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3312             ISD::FMINNUM : ISD::FMINIMUM;
3313         break;
3314       }
3315       }
3316       break;
3317     case SPF_FMAXNUM:
3318       switch (SPR.NaNBehavior) {
3319       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3320       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3321       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3322       case SPNB_RETURNS_ANY:
3323 
3324         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3325           Opc = ISD::FMAXNUM;
3326         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3327           Opc = ISD::FMAXIMUM;
3328         else if (UseScalarMinMax)
3329           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3330             ISD::FMAXNUM : ISD::FMAXIMUM;
3331         break;
3332       }
3333       break;
3334     case SPF_NABS:
3335       Negate = true;
3336       LLVM_FALLTHROUGH;
3337     case SPF_ABS:
3338       IsUnaryAbs = true;
3339       Opc = ISD::ABS;
3340       break;
3341     default: break;
3342     }
3343 
3344     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3345         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3346          (UseScalarMinMax &&
3347           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3348         // If the underlying comparison instruction is used by any other
3349         // instruction, the consumed instructions won't be destroyed, so it is
3350         // not profitable to convert to a min/max.
3351         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3352       OpCode = Opc;
3353       LHSVal = getValue(LHS);
3354       RHSVal = getValue(RHS);
3355       BaseOps.clear();
3356     }
3357 
3358     if (IsUnaryAbs) {
3359       OpCode = Opc;
3360       LHSVal = getValue(LHS);
3361       BaseOps.clear();
3362     }
3363   }
3364 
3365   if (IsUnaryAbs) {
3366     for (unsigned i = 0; i != NumValues; ++i) {
3367       SDLoc dl = getCurSDLoc();
3368       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3369       Values[i] =
3370           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3371       if (Negate)
3372         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3373                                 Values[i]);
3374     }
3375   } else {
3376     for (unsigned i = 0; i != NumValues; ++i) {
3377       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3378       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3379       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3380       Values[i] = DAG.getNode(
3381           OpCode, getCurSDLoc(),
3382           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3383     }
3384   }
3385 
3386   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3387                            DAG.getVTList(ValueVTs), Values));
3388 }
3389 
3390 void SelectionDAGBuilder::visitTrunc(const User &I) {
3391   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3392   SDValue N = getValue(I.getOperand(0));
3393   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3394                                                         I.getType());
3395   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3396 }
3397 
3398 void SelectionDAGBuilder::visitZExt(const User &I) {
3399   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3400   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3401   SDValue N = getValue(I.getOperand(0));
3402   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3403                                                         I.getType());
3404   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3405 }
3406 
3407 void SelectionDAGBuilder::visitSExt(const User &I) {
3408   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3409   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3410   SDValue N = getValue(I.getOperand(0));
3411   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3412                                                         I.getType());
3413   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3414 }
3415 
3416 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3417   // FPTrunc is never a no-op cast, no need to check
3418   SDValue N = getValue(I.getOperand(0));
3419   SDLoc dl = getCurSDLoc();
3420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3422   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3423                            DAG.getTargetConstant(
3424                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3425 }
3426 
3427 void SelectionDAGBuilder::visitFPExt(const User &I) {
3428   // FPExt is never a no-op cast, no need to check
3429   SDValue N = getValue(I.getOperand(0));
3430   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3431                                                         I.getType());
3432   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3433 }
3434 
3435 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3436   // FPToUI is never a no-op cast, no need to check
3437   SDValue N = getValue(I.getOperand(0));
3438   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3439                                                         I.getType());
3440   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3441 }
3442 
3443 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3444   // FPToSI is never a no-op cast, no need to check
3445   SDValue N = getValue(I.getOperand(0));
3446   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3447                                                         I.getType());
3448   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3449 }
3450 
3451 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3452   // UIToFP is never a no-op cast, no need to check
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3460   // SIToFP is never a no-op cast, no need to check
3461   SDValue N = getValue(I.getOperand(0));
3462   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3463                                                         I.getType());
3464   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3465 }
3466 
3467 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3468   // What to do depends on the size of the integer and the size of the pointer.
3469   // We can either truncate, zero extend, or no-op, accordingly.
3470   SDValue N = getValue(I.getOperand(0));
3471   auto &TLI = DAG.getTargetLoweringInfo();
3472   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3473                                                         I.getType());
3474   EVT PtrMemVT =
3475       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3476   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3477   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3478   setValue(&I, N);
3479 }
3480 
3481 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3482   // What to do depends on the size of the integer and the size of the pointer.
3483   // We can either truncate, zero extend, or no-op, accordingly.
3484   SDValue N = getValue(I.getOperand(0));
3485   auto &TLI = DAG.getTargetLoweringInfo();
3486   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3487   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3488   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3489   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3490   setValue(&I, N);
3491 }
3492 
3493 void SelectionDAGBuilder::visitBitCast(const User &I) {
3494   SDValue N = getValue(I.getOperand(0));
3495   SDLoc dl = getCurSDLoc();
3496   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3497                                                         I.getType());
3498 
3499   // BitCast assures us that source and destination are the same size so this is
3500   // either a BITCAST or a no-op.
3501   if (DestVT != N.getValueType())
3502     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3503                              DestVT, N)); // convert types.
3504   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3505   // might fold any kind of constant expression to an integer constant and that
3506   // is not what we are looking for. Only recognize a bitcast of a genuine
3507   // constant integer as an opaque constant.
3508   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3509     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3510                                  /*isOpaque*/true));
3511   else
3512     setValue(&I, N);            // noop cast.
3513 }
3514 
3515 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3517   const Value *SV = I.getOperand(0);
3518   SDValue N = getValue(SV);
3519   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3520 
3521   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3522   unsigned DestAS = I.getType()->getPointerAddressSpace();
3523 
3524   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3525     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3526 
3527   setValue(&I, N);
3528 }
3529 
3530 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3532   SDValue InVec = getValue(I.getOperand(0));
3533   SDValue InVal = getValue(I.getOperand(1));
3534   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3535                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3536   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3537                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3538                            InVec, InVal, InIdx));
3539 }
3540 
3541 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3543   SDValue InVec = getValue(I.getOperand(0));
3544   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3545                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3546   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3547                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3548                            InVec, InIdx));
3549 }
3550 
3551 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3552   SDValue Src1 = getValue(I.getOperand(0));
3553   SDValue Src2 = getValue(I.getOperand(1));
3554   ArrayRef<int> Mask;
3555   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3556     Mask = SVI->getShuffleMask();
3557   else
3558     Mask = cast<ConstantExpr>(I).getShuffleMask();
3559   SDLoc DL = getCurSDLoc();
3560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3561   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3562   EVT SrcVT = Src1.getValueType();
3563 
3564   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3565       VT.isScalableVector()) {
3566     // Canonical splat form of first element of first input vector.
3567     SDValue FirstElt =
3568         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3569                     DAG.getVectorIdxConstant(0, DL));
3570     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3571     return;
3572   }
3573 
3574   // For now, we only handle splats for scalable vectors.
3575   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3576   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3577   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3578 
3579   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3580   unsigned MaskNumElts = Mask.size();
3581 
3582   if (SrcNumElts == MaskNumElts) {
3583     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3584     return;
3585   }
3586 
3587   // Normalize the shuffle vector since mask and vector length don't match.
3588   if (SrcNumElts < MaskNumElts) {
3589     // Mask is longer than the source vectors. We can use concatenate vector to
3590     // make the mask and vectors lengths match.
3591 
3592     if (MaskNumElts % SrcNumElts == 0) {
3593       // Mask length is a multiple of the source vector length.
3594       // Check if the shuffle is some kind of concatenation of the input
3595       // vectors.
3596       unsigned NumConcat = MaskNumElts / SrcNumElts;
3597       bool IsConcat = true;
3598       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3599       for (unsigned i = 0; i != MaskNumElts; ++i) {
3600         int Idx = Mask[i];
3601         if (Idx < 0)
3602           continue;
3603         // Ensure the indices in each SrcVT sized piece are sequential and that
3604         // the same source is used for the whole piece.
3605         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3606             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3607              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3608           IsConcat = false;
3609           break;
3610         }
3611         // Remember which source this index came from.
3612         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3613       }
3614 
3615       // The shuffle is concatenating multiple vectors together. Just emit
3616       // a CONCAT_VECTORS operation.
3617       if (IsConcat) {
3618         SmallVector<SDValue, 8> ConcatOps;
3619         for (auto Src : ConcatSrcs) {
3620           if (Src < 0)
3621             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3622           else if (Src == 0)
3623             ConcatOps.push_back(Src1);
3624           else
3625             ConcatOps.push_back(Src2);
3626         }
3627         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3628         return;
3629       }
3630     }
3631 
3632     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3633     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3634     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3635                                     PaddedMaskNumElts);
3636 
3637     // Pad both vectors with undefs to make them the same length as the mask.
3638     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3639 
3640     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3641     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3642     MOps1[0] = Src1;
3643     MOps2[0] = Src2;
3644 
3645     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3646     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3647 
3648     // Readjust mask for new input vector length.
3649     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3650     for (unsigned i = 0; i != MaskNumElts; ++i) {
3651       int Idx = Mask[i];
3652       if (Idx >= (int)SrcNumElts)
3653         Idx -= SrcNumElts - PaddedMaskNumElts;
3654       MappedOps[i] = Idx;
3655     }
3656 
3657     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3658 
3659     // If the concatenated vector was padded, extract a subvector with the
3660     // correct number of elements.
3661     if (MaskNumElts != PaddedMaskNumElts)
3662       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3663                            DAG.getVectorIdxConstant(0, DL));
3664 
3665     setValue(&I, Result);
3666     return;
3667   }
3668 
3669   if (SrcNumElts > MaskNumElts) {
3670     // Analyze the access pattern of the vector to see if we can extract
3671     // two subvectors and do the shuffle.
3672     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3673     bool CanExtract = true;
3674     for (int Idx : Mask) {
3675       unsigned Input = 0;
3676       if (Idx < 0)
3677         continue;
3678 
3679       if (Idx >= (int)SrcNumElts) {
3680         Input = 1;
3681         Idx -= SrcNumElts;
3682       }
3683 
3684       // If all the indices come from the same MaskNumElts sized portion of
3685       // the sources we can use extract. Also make sure the extract wouldn't
3686       // extract past the end of the source.
3687       int NewStartIdx = alignDown(Idx, MaskNumElts);
3688       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3689           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3690         CanExtract = false;
3691       // Make sure we always update StartIdx as we use it to track if all
3692       // elements are undef.
3693       StartIdx[Input] = NewStartIdx;
3694     }
3695 
3696     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3697       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3698       return;
3699     }
3700     if (CanExtract) {
3701       // Extract appropriate subvector and generate a vector shuffle
3702       for (unsigned Input = 0; Input < 2; ++Input) {
3703         SDValue &Src = Input == 0 ? Src1 : Src2;
3704         if (StartIdx[Input] < 0)
3705           Src = DAG.getUNDEF(VT);
3706         else {
3707           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3708                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3709         }
3710       }
3711 
3712       // Calculate new mask.
3713       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3714       for (int &Idx : MappedOps) {
3715         if (Idx >= (int)SrcNumElts)
3716           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3717         else if (Idx >= 0)
3718           Idx -= StartIdx[0];
3719       }
3720 
3721       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3722       return;
3723     }
3724   }
3725 
3726   // We can't use either concat vectors or extract subvectors so fall back to
3727   // replacing the shuffle with extract and build vector.
3728   // to insert and build vector.
3729   EVT EltVT = VT.getVectorElementType();
3730   SmallVector<SDValue,8> Ops;
3731   for (int Idx : Mask) {
3732     SDValue Res;
3733 
3734     if (Idx < 0) {
3735       Res = DAG.getUNDEF(EltVT);
3736     } else {
3737       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3738       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3739 
3740       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3741                         DAG.getVectorIdxConstant(Idx, DL));
3742     }
3743 
3744     Ops.push_back(Res);
3745   }
3746 
3747   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3748 }
3749 
3750 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3751   ArrayRef<unsigned> Indices;
3752   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3753     Indices = IV->getIndices();
3754   else
3755     Indices = cast<ConstantExpr>(&I)->getIndices();
3756 
3757   const Value *Op0 = I.getOperand(0);
3758   const Value *Op1 = I.getOperand(1);
3759   Type *AggTy = I.getType();
3760   Type *ValTy = Op1->getType();
3761   bool IntoUndef = isa<UndefValue>(Op0);
3762   bool FromUndef = isa<UndefValue>(Op1);
3763 
3764   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3765 
3766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3767   SmallVector<EVT, 4> AggValueVTs;
3768   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3769   SmallVector<EVT, 4> ValValueVTs;
3770   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3771 
3772   unsigned NumAggValues = AggValueVTs.size();
3773   unsigned NumValValues = ValValueVTs.size();
3774   SmallVector<SDValue, 4> Values(NumAggValues);
3775 
3776   // Ignore an insertvalue that produces an empty object
3777   if (!NumAggValues) {
3778     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3779     return;
3780   }
3781 
3782   SDValue Agg = getValue(Op0);
3783   unsigned i = 0;
3784   // Copy the beginning value(s) from the original aggregate.
3785   for (; i != LinearIndex; ++i)
3786     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3787                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3788   // Copy values from the inserted value(s).
3789   if (NumValValues) {
3790     SDValue Val = getValue(Op1);
3791     for (; i != LinearIndex + NumValValues; ++i)
3792       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3793                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3794   }
3795   // Copy remaining value(s) from the original aggregate.
3796   for (; i != NumAggValues; ++i)
3797     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3798                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3799 
3800   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3801                            DAG.getVTList(AggValueVTs), Values));
3802 }
3803 
3804 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3805   ArrayRef<unsigned> Indices = I.getIndices();
3806   const Value *Op0 = I.getOperand(0);
3807   Type *AggTy = Op0->getType();
3808   Type *ValTy = I.getType();
3809   bool OutOfUndef = isa<UndefValue>(Op0);
3810 
3811   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3812 
3813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3814   SmallVector<EVT, 4> ValValueVTs;
3815   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3816 
3817   unsigned NumValValues = ValValueVTs.size();
3818 
3819   // Ignore a extractvalue that produces an empty object
3820   if (!NumValValues) {
3821     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3822     return;
3823   }
3824 
3825   SmallVector<SDValue, 4> Values(NumValValues);
3826 
3827   SDValue Agg = getValue(Op0);
3828   // Copy out the selected value(s).
3829   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3830     Values[i - LinearIndex] =
3831       OutOfUndef ?
3832         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3833         SDValue(Agg.getNode(), Agg.getResNo() + i);
3834 
3835   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3836                            DAG.getVTList(ValValueVTs), Values));
3837 }
3838 
3839 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3840   Value *Op0 = I.getOperand(0);
3841   // Note that the pointer operand may be a vector of pointers. Take the scalar
3842   // element which holds a pointer.
3843   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3844   SDValue N = getValue(Op0);
3845   SDLoc dl = getCurSDLoc();
3846   auto &TLI = DAG.getTargetLoweringInfo();
3847 
3848   // Normalize Vector GEP - all scalar operands should be converted to the
3849   // splat vector.
3850   bool IsVectorGEP = I.getType()->isVectorTy();
3851   ElementCount VectorElementCount =
3852       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3853                   : ElementCount::getFixed(0);
3854 
3855   if (IsVectorGEP && !N.getValueType().isVector()) {
3856     LLVMContext &Context = *DAG.getContext();
3857     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3858     if (VectorElementCount.isScalable())
3859       N = DAG.getSplatVector(VT, dl, N);
3860     else
3861       N = DAG.getSplatBuildVector(VT, dl, N);
3862   }
3863 
3864   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3865        GTI != E; ++GTI) {
3866     const Value *Idx = GTI.getOperand();
3867     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3868       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3869       if (Field) {
3870         // N = N + Offset
3871         uint64_t Offset =
3872             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3873 
3874         // In an inbounds GEP with an offset that is nonnegative even when
3875         // interpreted as signed, assume there is no unsigned overflow.
3876         SDNodeFlags Flags;
3877         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3878           Flags.setNoUnsignedWrap(true);
3879 
3880         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3881                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3882       }
3883     } else {
3884       // IdxSize is the width of the arithmetic according to IR semantics.
3885       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3886       // (and fix up the result later).
3887       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3888       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3889       TypeSize ElementSize =
3890           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3891       // We intentionally mask away the high bits here; ElementSize may not
3892       // fit in IdxTy.
3893       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3894       bool ElementScalable = ElementSize.isScalable();
3895 
3896       // If this is a scalar constant or a splat vector of constants,
3897       // handle it quickly.
3898       const auto *C = dyn_cast<Constant>(Idx);
3899       if (C && isa<VectorType>(C->getType()))
3900         C = C->getSplatValue();
3901 
3902       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3903       if (CI && CI->isZero())
3904         continue;
3905       if (CI && !ElementScalable) {
3906         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3907         LLVMContext &Context = *DAG.getContext();
3908         SDValue OffsVal;
3909         if (IsVectorGEP)
3910           OffsVal = DAG.getConstant(
3911               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3912         else
3913           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3914 
3915         // In an inbounds GEP with an offset that is nonnegative even when
3916         // interpreted as signed, assume there is no unsigned overflow.
3917         SDNodeFlags Flags;
3918         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3919           Flags.setNoUnsignedWrap(true);
3920 
3921         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3922 
3923         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3924         continue;
3925       }
3926 
3927       // N = N + Idx * ElementMul;
3928       SDValue IdxN = getValue(Idx);
3929 
3930       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3931         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3932                                   VectorElementCount);
3933         if (VectorElementCount.isScalable())
3934           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3935         else
3936           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3937       }
3938 
3939       // If the index is smaller or larger than intptr_t, truncate or extend
3940       // it.
3941       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3942 
3943       if (ElementScalable) {
3944         EVT VScaleTy = N.getValueType().getScalarType();
3945         SDValue VScale = DAG.getNode(
3946             ISD::VSCALE, dl, VScaleTy,
3947             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3948         if (IsVectorGEP)
3949           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3950         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3951       } else {
3952         // If this is a multiply by a power of two, turn it into a shl
3953         // immediately.  This is a very common case.
3954         if (ElementMul != 1) {
3955           if (ElementMul.isPowerOf2()) {
3956             unsigned Amt = ElementMul.logBase2();
3957             IdxN = DAG.getNode(ISD::SHL, dl,
3958                                N.getValueType(), IdxN,
3959                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3960           } else {
3961             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3962                                             IdxN.getValueType());
3963             IdxN = DAG.getNode(ISD::MUL, dl,
3964                                N.getValueType(), IdxN, Scale);
3965           }
3966         }
3967       }
3968 
3969       N = DAG.getNode(ISD::ADD, dl,
3970                       N.getValueType(), N, IdxN);
3971     }
3972   }
3973 
3974   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3975   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3976   if (IsVectorGEP) {
3977     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3978     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3979   }
3980 
3981   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3982     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3983 
3984   setValue(&I, N);
3985 }
3986 
3987 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3988   // If this is a fixed sized alloca in the entry block of the function,
3989   // allocate it statically on the stack.
3990   if (FuncInfo.StaticAllocaMap.count(&I))
3991     return;   // getValue will auto-populate this.
3992 
3993   SDLoc dl = getCurSDLoc();
3994   Type *Ty = I.getAllocatedType();
3995   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3996   auto &DL = DAG.getDataLayout();
3997   TypeSize TySize = DL.getTypeAllocSize(Ty);
3998   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3999 
4000   SDValue AllocSize = getValue(I.getArraySize());
4001 
4002   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4003   if (AllocSize.getValueType() != IntPtr)
4004     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4005 
4006   if (TySize.isScalable())
4007     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4008                             DAG.getVScale(dl, IntPtr,
4009                                           APInt(IntPtr.getScalarSizeInBits(),
4010                                                 TySize.getKnownMinValue())));
4011   else
4012     AllocSize =
4013         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4014                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4015 
4016   // Handle alignment.  If the requested alignment is less than or equal to
4017   // the stack alignment, ignore it.  If the size is greater than or equal to
4018   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4019   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4020   if (*Alignment <= StackAlign)
4021     Alignment = None;
4022 
4023   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4024   // Round the size of the allocation up to the stack alignment size
4025   // by add SA-1 to the size. This doesn't overflow because we're computing
4026   // an address inside an alloca.
4027   SDNodeFlags Flags;
4028   Flags.setNoUnsignedWrap(true);
4029   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4030                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4031 
4032   // Mask out the low bits for alignment purposes.
4033   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4034                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4035 
4036   SDValue Ops[] = {
4037       getRoot(), AllocSize,
4038       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4039   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4040   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4041   setValue(&I, DSA);
4042   DAG.setRoot(DSA.getValue(1));
4043 
4044   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4045 }
4046 
4047 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4048   if (I.isAtomic())
4049     return visitAtomicLoad(I);
4050 
4051   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4052   const Value *SV = I.getOperand(0);
4053   if (TLI.supportSwiftError()) {
4054     // Swifterror values can come from either a function parameter with
4055     // swifterror attribute or an alloca with swifterror attribute.
4056     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4057       if (Arg->hasSwiftErrorAttr())
4058         return visitLoadFromSwiftError(I);
4059     }
4060 
4061     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4062       if (Alloca->isSwiftError())
4063         return visitLoadFromSwiftError(I);
4064     }
4065   }
4066 
4067   SDValue Ptr = getValue(SV);
4068 
4069   Type *Ty = I.getType();
4070   Align Alignment = I.getAlign();
4071 
4072   AAMDNodes AAInfo = I.getAAMetadata();
4073   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4074 
4075   SmallVector<EVT, 4> ValueVTs, MemVTs;
4076   SmallVector<uint64_t, 4> Offsets;
4077   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4078   unsigned NumValues = ValueVTs.size();
4079   if (NumValues == 0)
4080     return;
4081 
4082   bool isVolatile = I.isVolatile();
4083 
4084   SDValue Root;
4085   bool ConstantMemory = false;
4086   if (isVolatile)
4087     // Serialize volatile loads with other side effects.
4088     Root = getRoot();
4089   else if (NumValues > MaxParallelChains)
4090     Root = getMemoryRoot();
4091   else if (AA &&
4092            AA->pointsToConstantMemory(MemoryLocation(
4093                SV,
4094                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4095                AAInfo))) {
4096     // Do not serialize (non-volatile) loads of constant memory with anything.
4097     Root = DAG.getEntryNode();
4098     ConstantMemory = true;
4099   } else {
4100     // Do not serialize non-volatile loads against each other.
4101     Root = DAG.getRoot();
4102   }
4103 
4104   SDLoc dl = getCurSDLoc();
4105 
4106   if (isVolatile)
4107     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4108 
4109   // An aggregate load cannot wrap around the address space, so offsets to its
4110   // parts don't wrap either.
4111   SDNodeFlags Flags;
4112   Flags.setNoUnsignedWrap(true);
4113 
4114   SmallVector<SDValue, 4> Values(NumValues);
4115   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4116   EVT PtrVT = Ptr.getValueType();
4117 
4118   MachineMemOperand::Flags MMOFlags
4119     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4120 
4121   unsigned ChainI = 0;
4122   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4123     // Serializing loads here may result in excessive register pressure, and
4124     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4125     // could recover a bit by hoisting nodes upward in the chain by recognizing
4126     // they are side-effect free or do not alias. The optimizer should really
4127     // avoid this case by converting large object/array copies to llvm.memcpy
4128     // (MaxParallelChains should always remain as failsafe).
4129     if (ChainI == MaxParallelChains) {
4130       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4131       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4132                                   makeArrayRef(Chains.data(), ChainI));
4133       Root = Chain;
4134       ChainI = 0;
4135     }
4136     SDValue A = DAG.getNode(ISD::ADD, dl,
4137                             PtrVT, Ptr,
4138                             DAG.getConstant(Offsets[i], dl, PtrVT),
4139                             Flags);
4140 
4141     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4142                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4143                             MMOFlags, AAInfo, Ranges);
4144     Chains[ChainI] = L.getValue(1);
4145 
4146     if (MemVTs[i] != ValueVTs[i])
4147       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4148 
4149     Values[i] = L;
4150   }
4151 
4152   if (!ConstantMemory) {
4153     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4154                                 makeArrayRef(Chains.data(), ChainI));
4155     if (isVolatile)
4156       DAG.setRoot(Chain);
4157     else
4158       PendingLoads.push_back(Chain);
4159   }
4160 
4161   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4162                            DAG.getVTList(ValueVTs), Values));
4163 }
4164 
4165 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4166   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4167          "call visitStoreToSwiftError when backend supports swifterror");
4168 
4169   SmallVector<EVT, 4> ValueVTs;
4170   SmallVector<uint64_t, 4> Offsets;
4171   const Value *SrcV = I.getOperand(0);
4172   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4173                   SrcV->getType(), ValueVTs, &Offsets);
4174   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4175          "expect a single EVT for swifterror");
4176 
4177   SDValue Src = getValue(SrcV);
4178   // Create a virtual register, then update the virtual register.
4179   Register VReg =
4180       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4181   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4182   // Chain can be getRoot or getControlRoot.
4183   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4184                                       SDValue(Src.getNode(), Src.getResNo()));
4185   DAG.setRoot(CopyNode);
4186 }
4187 
4188 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4189   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4190          "call visitLoadFromSwiftError when backend supports swifterror");
4191 
4192   assert(!I.isVolatile() &&
4193          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4194          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4195          "Support volatile, non temporal, invariant for load_from_swift_error");
4196 
4197   const Value *SV = I.getOperand(0);
4198   Type *Ty = I.getType();
4199   assert(
4200       (!AA ||
4201        !AA->pointsToConstantMemory(MemoryLocation(
4202            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4203            I.getAAMetadata()))) &&
4204       "load_from_swift_error should not be constant memory");
4205 
4206   SmallVector<EVT, 4> ValueVTs;
4207   SmallVector<uint64_t, 4> Offsets;
4208   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4209                   ValueVTs, &Offsets);
4210   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4211          "expect a single EVT for swifterror");
4212 
4213   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4214   SDValue L = DAG.getCopyFromReg(
4215       getRoot(), getCurSDLoc(),
4216       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4217 
4218   setValue(&I, L);
4219 }
4220 
4221 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4222   if (I.isAtomic())
4223     return visitAtomicStore(I);
4224 
4225   const Value *SrcV = I.getOperand(0);
4226   const Value *PtrV = I.getOperand(1);
4227 
4228   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4229   if (TLI.supportSwiftError()) {
4230     // Swifterror values can come from either a function parameter with
4231     // swifterror attribute or an alloca with swifterror attribute.
4232     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4233       if (Arg->hasSwiftErrorAttr())
4234         return visitStoreToSwiftError(I);
4235     }
4236 
4237     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4238       if (Alloca->isSwiftError())
4239         return visitStoreToSwiftError(I);
4240     }
4241   }
4242 
4243   SmallVector<EVT, 4> ValueVTs, MemVTs;
4244   SmallVector<uint64_t, 4> Offsets;
4245   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4246                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4247   unsigned NumValues = ValueVTs.size();
4248   if (NumValues == 0)
4249     return;
4250 
4251   // Get the lowered operands. Note that we do this after
4252   // checking if NumResults is zero, because with zero results
4253   // the operands won't have values in the map.
4254   SDValue Src = getValue(SrcV);
4255   SDValue Ptr = getValue(PtrV);
4256 
4257   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4258   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4259   SDLoc dl = getCurSDLoc();
4260   Align Alignment = I.getAlign();
4261   AAMDNodes AAInfo = I.getAAMetadata();
4262 
4263   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4264 
4265   // An aggregate load cannot wrap around the address space, so offsets to its
4266   // parts don't wrap either.
4267   SDNodeFlags Flags;
4268   Flags.setNoUnsignedWrap(true);
4269 
4270   unsigned ChainI = 0;
4271   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4272     // See visitLoad comments.
4273     if (ChainI == MaxParallelChains) {
4274       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4275                                   makeArrayRef(Chains.data(), ChainI));
4276       Root = Chain;
4277       ChainI = 0;
4278     }
4279     SDValue Add =
4280         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4281     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4282     if (MemVTs[i] != ValueVTs[i])
4283       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4284     SDValue St =
4285         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4286                      Alignment, MMOFlags, AAInfo);
4287     Chains[ChainI] = St;
4288   }
4289 
4290   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4291                                   makeArrayRef(Chains.data(), ChainI));
4292   DAG.setRoot(StoreNode);
4293 }
4294 
4295 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4296                                            bool IsCompressing) {
4297   SDLoc sdl = getCurSDLoc();
4298 
4299   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4300                                MaybeAlign &Alignment) {
4301     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4302     Src0 = I.getArgOperand(0);
4303     Ptr = I.getArgOperand(1);
4304     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4305     Mask = I.getArgOperand(3);
4306   };
4307   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4308                                     MaybeAlign &Alignment) {
4309     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4310     Src0 = I.getArgOperand(0);
4311     Ptr = I.getArgOperand(1);
4312     Mask = I.getArgOperand(2);
4313     Alignment = None;
4314   };
4315 
4316   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4317   MaybeAlign Alignment;
4318   if (IsCompressing)
4319     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4320   else
4321     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4322 
4323   SDValue Ptr = getValue(PtrOperand);
4324   SDValue Src0 = getValue(Src0Operand);
4325   SDValue Mask = getValue(MaskOperand);
4326   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4327 
4328   EVT VT = Src0.getValueType();
4329   if (!Alignment)
4330     Alignment = DAG.getEVTAlign(VT);
4331 
4332   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4333       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4334       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4335   SDValue StoreNode =
4336       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4337                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4338   DAG.setRoot(StoreNode);
4339   setValue(&I, StoreNode);
4340 }
4341 
4342 // Get a uniform base for the Gather/Scatter intrinsic.
4343 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4344 // We try to represent it as a base pointer + vector of indices.
4345 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4346 // The first operand of the GEP may be a single pointer or a vector of pointers
4347 // Example:
4348 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4349 //  or
4350 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4351 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4352 //
4353 // When the first GEP operand is a single pointer - it is the uniform base we
4354 // are looking for. If first operand of the GEP is a splat vector - we
4355 // extract the splat value and use it as a uniform base.
4356 // In all other cases the function returns 'false'.
4357 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4358                            ISD::MemIndexType &IndexType, SDValue &Scale,
4359                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4360                            uint64_t ElemSize) {
4361   SelectionDAG& DAG = SDB->DAG;
4362   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4363   const DataLayout &DL = DAG.getDataLayout();
4364 
4365   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4366 
4367   // Handle splat constant pointer.
4368   if (auto *C = dyn_cast<Constant>(Ptr)) {
4369     C = C->getSplatValue();
4370     if (!C)
4371       return false;
4372 
4373     Base = SDB->getValue(C);
4374 
4375     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4376     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4377     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4378     IndexType = ISD::SIGNED_SCALED;
4379     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4380     return true;
4381   }
4382 
4383   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4384   if (!GEP || GEP->getParent() != CurBB)
4385     return false;
4386 
4387   if (GEP->getNumOperands() != 2)
4388     return false;
4389 
4390   const Value *BasePtr = GEP->getPointerOperand();
4391   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4392 
4393   // Make sure the base is scalar and the index is a vector.
4394   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4395     return false;
4396 
4397   Base = SDB->getValue(BasePtr);
4398   Index = SDB->getValue(IndexVal);
4399   IndexType = ISD::SIGNED_SCALED;
4400 
4401   // MGATHER/MSCATTER are only required to support scaling by one or by the
4402   // element size. Other scales may be produced using target-specific DAG
4403   // combines.
4404   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4405   if (ScaleVal != ElemSize && ScaleVal != 1)
4406     return false;
4407 
4408   Scale =
4409       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4410   return true;
4411 }
4412 
4413 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4414   SDLoc sdl = getCurSDLoc();
4415 
4416   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4417   const Value *Ptr = I.getArgOperand(1);
4418   SDValue Src0 = getValue(I.getArgOperand(0));
4419   SDValue Mask = getValue(I.getArgOperand(3));
4420   EVT VT = Src0.getValueType();
4421   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4422                         ->getMaybeAlignValue()
4423                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4425 
4426   SDValue Base;
4427   SDValue Index;
4428   ISD::MemIndexType IndexType;
4429   SDValue Scale;
4430   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4431                                     I.getParent(), VT.getScalarStoreSize());
4432 
4433   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4434   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4435       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4436       // TODO: Make MachineMemOperands aware of scalable
4437       // vectors.
4438       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4439   if (!UniformBase) {
4440     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4441     Index = getValue(Ptr);
4442     IndexType = ISD::SIGNED_SCALED;
4443     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4444   }
4445 
4446   EVT IdxVT = Index.getValueType();
4447   EVT EltTy = IdxVT.getVectorElementType();
4448   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4449     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4450     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4451   }
4452 
4453   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4454   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4455                                          Ops, MMO, IndexType, false);
4456   DAG.setRoot(Scatter);
4457   setValue(&I, Scatter);
4458 }
4459 
4460 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4461   SDLoc sdl = getCurSDLoc();
4462 
4463   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4464                               MaybeAlign &Alignment) {
4465     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4466     Ptr = I.getArgOperand(0);
4467     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4468     Mask = I.getArgOperand(2);
4469     Src0 = I.getArgOperand(3);
4470   };
4471   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4472                                  MaybeAlign &Alignment) {
4473     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4474     Ptr = I.getArgOperand(0);
4475     Alignment = None;
4476     Mask = I.getArgOperand(1);
4477     Src0 = I.getArgOperand(2);
4478   };
4479 
4480   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4481   MaybeAlign Alignment;
4482   if (IsExpanding)
4483     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4484   else
4485     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4486 
4487   SDValue Ptr = getValue(PtrOperand);
4488   SDValue Src0 = getValue(Src0Operand);
4489   SDValue Mask = getValue(MaskOperand);
4490   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4491 
4492   EVT VT = Src0.getValueType();
4493   if (!Alignment)
4494     Alignment = DAG.getEVTAlign(VT);
4495 
4496   AAMDNodes AAInfo = I.getAAMetadata();
4497   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4498 
4499   // Do not serialize masked loads of constant memory with anything.
4500   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4501   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4502 
4503   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4504 
4505   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4506       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4507       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4508 
4509   SDValue Load =
4510       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4511                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4512   if (AddToChain)
4513     PendingLoads.push_back(Load.getValue(1));
4514   setValue(&I, Load);
4515 }
4516 
4517 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4518   SDLoc sdl = getCurSDLoc();
4519 
4520   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4521   const Value *Ptr = I.getArgOperand(0);
4522   SDValue Src0 = getValue(I.getArgOperand(3));
4523   SDValue Mask = getValue(I.getArgOperand(2));
4524 
4525   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4526   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4527   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4528                         ->getMaybeAlignValue()
4529                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4530 
4531   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4532 
4533   SDValue Root = DAG.getRoot();
4534   SDValue Base;
4535   SDValue Index;
4536   ISD::MemIndexType IndexType;
4537   SDValue Scale;
4538   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4539                                     I.getParent(), VT.getScalarStoreSize());
4540   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4541   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4542       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4543       // TODO: Make MachineMemOperands aware of scalable
4544       // vectors.
4545       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4546 
4547   if (!UniformBase) {
4548     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4549     Index = getValue(Ptr);
4550     IndexType = ISD::SIGNED_SCALED;
4551     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4552   }
4553 
4554   EVT IdxVT = Index.getValueType();
4555   EVT EltTy = IdxVT.getVectorElementType();
4556   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4557     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4558     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4559   }
4560 
4561   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4562   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4563                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4564 
4565   PendingLoads.push_back(Gather.getValue(1));
4566   setValue(&I, Gather);
4567 }
4568 
4569 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4570   SDLoc dl = getCurSDLoc();
4571   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4572   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4573   SyncScope::ID SSID = I.getSyncScopeID();
4574 
4575   SDValue InChain = getRoot();
4576 
4577   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4578   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4579 
4580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4581   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4582 
4583   MachineFunction &MF = DAG.getMachineFunction();
4584   MachineMemOperand *MMO = MF.getMachineMemOperand(
4585       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4586       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4587       FailureOrdering);
4588 
4589   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4590                                    dl, MemVT, VTs, InChain,
4591                                    getValue(I.getPointerOperand()),
4592                                    getValue(I.getCompareOperand()),
4593                                    getValue(I.getNewValOperand()), MMO);
4594 
4595   SDValue OutChain = L.getValue(2);
4596 
4597   setValue(&I, L);
4598   DAG.setRoot(OutChain);
4599 }
4600 
4601 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4602   SDLoc dl = getCurSDLoc();
4603   ISD::NodeType NT;
4604   switch (I.getOperation()) {
4605   default: llvm_unreachable("Unknown atomicrmw operation");
4606   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4607   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4608   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4609   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4610   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4611   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4612   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4613   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4614   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4615   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4616   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4617   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4618   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4619   }
4620   AtomicOrdering Ordering = I.getOrdering();
4621   SyncScope::ID SSID = I.getSyncScopeID();
4622 
4623   SDValue InChain = getRoot();
4624 
4625   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4627   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4628 
4629   MachineFunction &MF = DAG.getMachineFunction();
4630   MachineMemOperand *MMO = MF.getMachineMemOperand(
4631       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4632       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4633 
4634   SDValue L =
4635     DAG.getAtomic(NT, dl, MemVT, InChain,
4636                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4637                   MMO);
4638 
4639   SDValue OutChain = L.getValue(1);
4640 
4641   setValue(&I, L);
4642   DAG.setRoot(OutChain);
4643 }
4644 
4645 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4646   SDLoc dl = getCurSDLoc();
4647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4648   SDValue Ops[3];
4649   Ops[0] = getRoot();
4650   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4651                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4652   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4653                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4654   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4655 }
4656 
4657 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4658   SDLoc dl = getCurSDLoc();
4659   AtomicOrdering Order = I.getOrdering();
4660   SyncScope::ID SSID = I.getSyncScopeID();
4661 
4662   SDValue InChain = getRoot();
4663 
4664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4665   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4666   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4667 
4668   if (!TLI.supportsUnalignedAtomics() &&
4669       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4670     report_fatal_error("Cannot generate unaligned atomic load");
4671 
4672   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4673 
4674   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4675       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4676       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4677 
4678   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4679 
4680   SDValue Ptr = getValue(I.getPointerOperand());
4681 
4682   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4683     // TODO: Once this is better exercised by tests, it should be merged with
4684     // the normal path for loads to prevent future divergence.
4685     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4686     if (MemVT != VT)
4687       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4688 
4689     setValue(&I, L);
4690     SDValue OutChain = L.getValue(1);
4691     if (!I.isUnordered())
4692       DAG.setRoot(OutChain);
4693     else
4694       PendingLoads.push_back(OutChain);
4695     return;
4696   }
4697 
4698   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4699                             Ptr, MMO);
4700 
4701   SDValue OutChain = L.getValue(1);
4702   if (MemVT != VT)
4703     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4704 
4705   setValue(&I, L);
4706   DAG.setRoot(OutChain);
4707 }
4708 
4709 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4710   SDLoc dl = getCurSDLoc();
4711 
4712   AtomicOrdering Ordering = I.getOrdering();
4713   SyncScope::ID SSID = I.getSyncScopeID();
4714 
4715   SDValue InChain = getRoot();
4716 
4717   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4718   EVT MemVT =
4719       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4720 
4721   if (I.getAlign().value() < MemVT.getSizeInBits() / 8)
4722     report_fatal_error("Cannot generate unaligned atomic store");
4723 
4724   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4725 
4726   MachineFunction &MF = DAG.getMachineFunction();
4727   MachineMemOperand *MMO = MF.getMachineMemOperand(
4728       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4729       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4730 
4731   SDValue Val = getValue(I.getValueOperand());
4732   if (Val.getValueType() != MemVT)
4733     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4734   SDValue Ptr = getValue(I.getPointerOperand());
4735 
4736   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4737     // TODO: Once this is better exercised by tests, it should be merged with
4738     // the normal path for stores to prevent future divergence.
4739     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4740     DAG.setRoot(S);
4741     return;
4742   }
4743   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4744                                    Ptr, Val, MMO);
4745 
4746 
4747   DAG.setRoot(OutChain);
4748 }
4749 
4750 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4751 /// node.
4752 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4753                                                unsigned Intrinsic) {
4754   // Ignore the callsite's attributes. A specific call site may be marked with
4755   // readnone, but the lowering code will expect the chain based on the
4756   // definition.
4757   const Function *F = I.getCalledFunction();
4758   bool HasChain = !F->doesNotAccessMemory();
4759   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4760 
4761   // Build the operand list.
4762   SmallVector<SDValue, 8> Ops;
4763   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4764     if (OnlyLoad) {
4765       // We don't need to serialize loads against other loads.
4766       Ops.push_back(DAG.getRoot());
4767     } else {
4768       Ops.push_back(getRoot());
4769     }
4770   }
4771 
4772   // Info is set by getTgtMemIntrinsic
4773   TargetLowering::IntrinsicInfo Info;
4774   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4775   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4776                                                DAG.getMachineFunction(),
4777                                                Intrinsic);
4778 
4779   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4780   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4781       Info.opc == ISD::INTRINSIC_W_CHAIN)
4782     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4783                                         TLI.getPointerTy(DAG.getDataLayout())));
4784 
4785   // Add all operands of the call to the operand list.
4786   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4787     const Value *Arg = I.getArgOperand(i);
4788     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4789       Ops.push_back(getValue(Arg));
4790       continue;
4791     }
4792 
4793     // Use TargetConstant instead of a regular constant for immarg.
4794     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4795     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4796       assert(CI->getBitWidth() <= 64 &&
4797              "large intrinsic immediates not handled");
4798       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4799     } else {
4800       Ops.push_back(
4801           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4802     }
4803   }
4804 
4805   SmallVector<EVT, 4> ValueVTs;
4806   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4807 
4808   if (HasChain)
4809     ValueVTs.push_back(MVT::Other);
4810 
4811   SDVTList VTs = DAG.getVTList(ValueVTs);
4812 
4813   // Propagate fast-math-flags from IR to node(s).
4814   SDNodeFlags Flags;
4815   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4816     Flags.copyFMF(*FPMO);
4817   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4818 
4819   // Create the node.
4820   SDValue Result;
4821   if (IsTgtIntrinsic) {
4822     // This is target intrinsic that touches memory
4823     Result =
4824         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4825                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4826                                 Info.align, Info.flags, Info.size,
4827                                 I.getAAMetadata());
4828   } else if (!HasChain) {
4829     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4830   } else if (!I.getType()->isVoidTy()) {
4831     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4832   } else {
4833     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4834   }
4835 
4836   if (HasChain) {
4837     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4838     if (OnlyLoad)
4839       PendingLoads.push_back(Chain);
4840     else
4841       DAG.setRoot(Chain);
4842   }
4843 
4844   if (!I.getType()->isVoidTy()) {
4845     if (!isa<VectorType>(I.getType()))
4846       Result = lowerRangeToAssertZExt(DAG, I, Result);
4847 
4848     MaybeAlign Alignment = I.getRetAlign();
4849     if (!Alignment)
4850       Alignment = F->getAttributes().getRetAlignment();
4851     // Insert `assertalign` node if there's an alignment.
4852     if (InsertAssertAlign && Alignment) {
4853       Result =
4854           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4855     }
4856 
4857     setValue(&I, Result);
4858   }
4859 }
4860 
4861 /// GetSignificand - Get the significand and build it into a floating-point
4862 /// number with exponent of 1:
4863 ///
4864 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4865 ///
4866 /// where Op is the hexadecimal representation of floating point value.
4867 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4868   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4869                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4870   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4871                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4872   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4873 }
4874 
4875 /// GetExponent - Get the exponent:
4876 ///
4877 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4878 ///
4879 /// where Op is the hexadecimal representation of floating point value.
4880 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4881                            const TargetLowering &TLI, const SDLoc &dl) {
4882   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4883                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4884   SDValue t1 = DAG.getNode(
4885       ISD::SRL, dl, MVT::i32, t0,
4886       DAG.getConstant(23, dl,
4887                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4888   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4889                            DAG.getConstant(127, dl, MVT::i32));
4890   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4891 }
4892 
4893 /// getF32Constant - Get 32-bit floating point constant.
4894 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4895                               const SDLoc &dl) {
4896   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4897                            MVT::f32);
4898 }
4899 
4900 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4901                                        SelectionDAG &DAG) {
4902   // TODO: What fast-math-flags should be set on the floating-point nodes?
4903 
4904   //   IntegerPartOfX = ((int32_t)(t0);
4905   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4906 
4907   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4908   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4909   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4910 
4911   //   IntegerPartOfX <<= 23;
4912   IntegerPartOfX =
4913       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4914                   DAG.getConstant(23, dl,
4915                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4916                                       MVT::i32, DAG.getDataLayout())));
4917 
4918   SDValue TwoToFractionalPartOfX;
4919   if (LimitFloatPrecision <= 6) {
4920     // For floating-point precision of 6:
4921     //
4922     //   TwoToFractionalPartOfX =
4923     //     0.997535578f +
4924     //       (0.735607626f + 0.252464424f * x) * x;
4925     //
4926     // error 0.0144103317, which is 6 bits
4927     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4928                              getF32Constant(DAG, 0x3e814304, dl));
4929     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4930                              getF32Constant(DAG, 0x3f3c50c8, dl));
4931     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4932     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4933                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4934   } else if (LimitFloatPrecision <= 12) {
4935     // For floating-point precision of 12:
4936     //
4937     //   TwoToFractionalPartOfX =
4938     //     0.999892986f +
4939     //       (0.696457318f +
4940     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4941     //
4942     // error 0.000107046256, which is 13 to 14 bits
4943     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4944                              getF32Constant(DAG, 0x3da235e3, dl));
4945     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4946                              getF32Constant(DAG, 0x3e65b8f3, dl));
4947     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4948     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4949                              getF32Constant(DAG, 0x3f324b07, dl));
4950     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4951     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4952                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4953   } else { // LimitFloatPrecision <= 18
4954     // For floating-point precision of 18:
4955     //
4956     //   TwoToFractionalPartOfX =
4957     //     0.999999982f +
4958     //       (0.693148872f +
4959     //         (0.240227044f +
4960     //           (0.554906021e-1f +
4961     //             (0.961591928e-2f +
4962     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4963     // error 2.47208000*10^(-7), which is better than 18 bits
4964     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4965                              getF32Constant(DAG, 0x3924b03e, dl));
4966     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4967                              getF32Constant(DAG, 0x3ab24b87, dl));
4968     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4969     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4970                              getF32Constant(DAG, 0x3c1d8c17, dl));
4971     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4972     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4973                              getF32Constant(DAG, 0x3d634a1d, dl));
4974     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4975     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4976                              getF32Constant(DAG, 0x3e75fe14, dl));
4977     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4978     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4979                               getF32Constant(DAG, 0x3f317234, dl));
4980     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4981     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4982                                          getF32Constant(DAG, 0x3f800000, dl));
4983   }
4984 
4985   // Add the exponent into the result in integer domain.
4986   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4987   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4988                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4989 }
4990 
4991 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4992 /// limited-precision mode.
4993 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4994                          const TargetLowering &TLI, SDNodeFlags Flags) {
4995   if (Op.getValueType() == MVT::f32 &&
4996       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4997 
4998     // Put the exponent in the right bit position for later addition to the
4999     // final result:
5000     //
5001     // t0 = Op * log2(e)
5002 
5003     // TODO: What fast-math-flags should be set here?
5004     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5005                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5006     return getLimitedPrecisionExp2(t0, dl, DAG);
5007   }
5008 
5009   // No special expansion.
5010   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5011 }
5012 
5013 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5014 /// limited-precision mode.
5015 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5016                          const TargetLowering &TLI, SDNodeFlags Flags) {
5017   // TODO: What fast-math-flags should be set on the floating-point nodes?
5018 
5019   if (Op.getValueType() == MVT::f32 &&
5020       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5021     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5022 
5023     // Scale the exponent by log(2).
5024     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5025     SDValue LogOfExponent =
5026         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5027                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5028 
5029     // Get the significand and build it into a floating-point number with
5030     // exponent of 1.
5031     SDValue X = GetSignificand(DAG, Op1, dl);
5032 
5033     SDValue LogOfMantissa;
5034     if (LimitFloatPrecision <= 6) {
5035       // For floating-point precision of 6:
5036       //
5037       //   LogofMantissa =
5038       //     -1.1609546f +
5039       //       (1.4034025f - 0.23903021f * x) * x;
5040       //
5041       // error 0.0034276066, which is better than 8 bits
5042       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5043                                getF32Constant(DAG, 0xbe74c456, dl));
5044       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5045                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5046       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5047       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5048                                   getF32Constant(DAG, 0x3f949a29, dl));
5049     } else if (LimitFloatPrecision <= 12) {
5050       // For floating-point precision of 12:
5051       //
5052       //   LogOfMantissa =
5053       //     -1.7417939f +
5054       //       (2.8212026f +
5055       //         (-1.4699568f +
5056       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5057       //
5058       // error 0.000061011436, which is 14 bits
5059       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5060                                getF32Constant(DAG, 0xbd67b6d6, dl));
5061       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5062                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5063       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5064       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5065                                getF32Constant(DAG, 0x3fbc278b, dl));
5066       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5067       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5068                                getF32Constant(DAG, 0x40348e95, dl));
5069       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5070       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5071                                   getF32Constant(DAG, 0x3fdef31a, dl));
5072     } else { // LimitFloatPrecision <= 18
5073       // For floating-point precision of 18:
5074       //
5075       //   LogOfMantissa =
5076       //     -2.1072184f +
5077       //       (4.2372794f +
5078       //         (-3.7029485f +
5079       //           (2.2781945f +
5080       //             (-0.87823314f +
5081       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5082       //
5083       // error 0.0000023660568, which is better than 18 bits
5084       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5085                                getF32Constant(DAG, 0xbc91e5ac, dl));
5086       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5087                                getF32Constant(DAG, 0x3e4350aa, dl));
5088       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5089       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5090                                getF32Constant(DAG, 0x3f60d3e3, dl));
5091       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5092       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5093                                getF32Constant(DAG, 0x4011cdf0, dl));
5094       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5095       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5096                                getF32Constant(DAG, 0x406cfd1c, dl));
5097       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5098       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5099                                getF32Constant(DAG, 0x408797cb, dl));
5100       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5101       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5102                                   getF32Constant(DAG, 0x4006dcab, dl));
5103     }
5104 
5105     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5106   }
5107 
5108   // No special expansion.
5109   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5110 }
5111 
5112 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5113 /// limited-precision mode.
5114 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5115                           const TargetLowering &TLI, SDNodeFlags Flags) {
5116   // TODO: What fast-math-flags should be set on the floating-point nodes?
5117 
5118   if (Op.getValueType() == MVT::f32 &&
5119       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5120     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5121 
5122     // Get the exponent.
5123     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5124 
5125     // Get the significand and build it into a floating-point number with
5126     // exponent of 1.
5127     SDValue X = GetSignificand(DAG, Op1, dl);
5128 
5129     // Different possible minimax approximations of significand in
5130     // floating-point for various degrees of accuracy over [1,2].
5131     SDValue Log2ofMantissa;
5132     if (LimitFloatPrecision <= 6) {
5133       // For floating-point precision of 6:
5134       //
5135       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5136       //
5137       // error 0.0049451742, which is more than 7 bits
5138       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5139                                getF32Constant(DAG, 0xbeb08fe0, dl));
5140       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5141                                getF32Constant(DAG, 0x40019463, dl));
5142       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5143       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5144                                    getF32Constant(DAG, 0x3fd6633d, dl));
5145     } else if (LimitFloatPrecision <= 12) {
5146       // For floating-point precision of 12:
5147       //
5148       //   Log2ofMantissa =
5149       //     -2.51285454f +
5150       //       (4.07009056f +
5151       //         (-2.12067489f +
5152       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5153       //
5154       // error 0.0000876136000, which is better than 13 bits
5155       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5156                                getF32Constant(DAG, 0xbda7262e, dl));
5157       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5158                                getF32Constant(DAG, 0x3f25280b, dl));
5159       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5160       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5161                                getF32Constant(DAG, 0x4007b923, dl));
5162       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5163       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5164                                getF32Constant(DAG, 0x40823e2f, dl));
5165       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5166       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5167                                    getF32Constant(DAG, 0x4020d29c, dl));
5168     } else { // LimitFloatPrecision <= 18
5169       // For floating-point precision of 18:
5170       //
5171       //   Log2ofMantissa =
5172       //     -3.0400495f +
5173       //       (6.1129976f +
5174       //         (-5.3420409f +
5175       //           (3.2865683f +
5176       //             (-1.2669343f +
5177       //               (0.27515199f -
5178       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5179       //
5180       // error 0.0000018516, which is better than 18 bits
5181       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5182                                getF32Constant(DAG, 0xbcd2769e, dl));
5183       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5184                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5185       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5186       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5187                                getF32Constant(DAG, 0x3fa22ae7, dl));
5188       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5189       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5190                                getF32Constant(DAG, 0x40525723, dl));
5191       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5192       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5193                                getF32Constant(DAG, 0x40aaf200, dl));
5194       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5195       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5196                                getF32Constant(DAG, 0x40c39dad, dl));
5197       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5198       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5199                                    getF32Constant(DAG, 0x4042902c, dl));
5200     }
5201 
5202     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5203   }
5204 
5205   // No special expansion.
5206   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5207 }
5208 
5209 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5210 /// limited-precision mode.
5211 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5212                            const TargetLowering &TLI, SDNodeFlags Flags) {
5213   // TODO: What fast-math-flags should be set on the floating-point nodes?
5214 
5215   if (Op.getValueType() == MVT::f32 &&
5216       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5217     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5218 
5219     // Scale the exponent by log10(2) [0.30102999f].
5220     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5221     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5222                                         getF32Constant(DAG, 0x3e9a209a, dl));
5223 
5224     // Get the significand and build it into a floating-point number with
5225     // exponent of 1.
5226     SDValue X = GetSignificand(DAG, Op1, dl);
5227 
5228     SDValue Log10ofMantissa;
5229     if (LimitFloatPrecision <= 6) {
5230       // For floating-point precision of 6:
5231       //
5232       //   Log10ofMantissa =
5233       //     -0.50419619f +
5234       //       (0.60948995f - 0.10380950f * x) * x;
5235       //
5236       // error 0.0014886165, which is 6 bits
5237       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5238                                getF32Constant(DAG, 0xbdd49a13, dl));
5239       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5240                                getF32Constant(DAG, 0x3f1c0789, dl));
5241       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5242       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5243                                     getF32Constant(DAG, 0x3f011300, dl));
5244     } else if (LimitFloatPrecision <= 12) {
5245       // For floating-point precision of 12:
5246       //
5247       //   Log10ofMantissa =
5248       //     -0.64831180f +
5249       //       (0.91751397f +
5250       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5251       //
5252       // error 0.00019228036, which is better than 12 bits
5253       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5254                                getF32Constant(DAG, 0x3d431f31, dl));
5255       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5256                                getF32Constant(DAG, 0x3ea21fb2, dl));
5257       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5258       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5259                                getF32Constant(DAG, 0x3f6ae232, dl));
5260       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5261       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5262                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5263     } else { // LimitFloatPrecision <= 18
5264       // For floating-point precision of 18:
5265       //
5266       //   Log10ofMantissa =
5267       //     -0.84299375f +
5268       //       (1.5327582f +
5269       //         (-1.0688956f +
5270       //           (0.49102474f +
5271       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5272       //
5273       // error 0.0000037995730, which is better than 18 bits
5274       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5275                                getF32Constant(DAG, 0x3c5d51ce, dl));
5276       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5277                                getF32Constant(DAG, 0x3e00685a, dl));
5278       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5279       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5280                                getF32Constant(DAG, 0x3efb6798, dl));
5281       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5282       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5283                                getF32Constant(DAG, 0x3f88d192, dl));
5284       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5285       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5286                                getF32Constant(DAG, 0x3fc4316c, dl));
5287       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5288       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5289                                     getF32Constant(DAG, 0x3f57ce70, dl));
5290     }
5291 
5292     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5293   }
5294 
5295   // No special expansion.
5296   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5297 }
5298 
5299 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5300 /// limited-precision mode.
5301 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5302                           const TargetLowering &TLI, SDNodeFlags Flags) {
5303   if (Op.getValueType() == MVT::f32 &&
5304       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5305     return getLimitedPrecisionExp2(Op, dl, DAG);
5306 
5307   // No special expansion.
5308   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5309 }
5310 
5311 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5312 /// limited-precision mode with x == 10.0f.
5313 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5314                          SelectionDAG &DAG, const TargetLowering &TLI,
5315                          SDNodeFlags Flags) {
5316   bool IsExp10 = false;
5317   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5318       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5319     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5320       APFloat Ten(10.0f);
5321       IsExp10 = LHSC->isExactlyValue(Ten);
5322     }
5323   }
5324 
5325   // TODO: What fast-math-flags should be set on the FMUL node?
5326   if (IsExp10) {
5327     // Put the exponent in the right bit position for later addition to the
5328     // final result:
5329     //
5330     //   #define LOG2OF10 3.3219281f
5331     //   t0 = Op * LOG2OF10;
5332     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5333                              getF32Constant(DAG, 0x40549a78, dl));
5334     return getLimitedPrecisionExp2(t0, dl, DAG);
5335   }
5336 
5337   // No special expansion.
5338   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5339 }
5340 
5341 /// ExpandPowI - Expand a llvm.powi intrinsic.
5342 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5343                           SelectionDAG &DAG) {
5344   // If RHS is a constant, we can expand this out to a multiplication tree if
5345   // it's beneficial on the target, otherwise we end up lowering to a call to
5346   // __powidf2 (for example).
5347   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5348     unsigned Val = RHSC->getSExtValue();
5349 
5350     // powi(x, 0) -> 1.0
5351     if (Val == 0)
5352       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5353 
5354     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5355             Val, DAG.shouldOptForSize())) {
5356       // Get the exponent as a positive value.
5357       if ((int)Val < 0)
5358         Val = -Val;
5359       // We use the simple binary decomposition method to generate the multiply
5360       // sequence.  There are more optimal ways to do this (for example,
5361       // powi(x,15) generates one more multiply than it should), but this has
5362       // the benefit of being both really simple and much better than a libcall.
5363       SDValue Res; // Logically starts equal to 1.0
5364       SDValue CurSquare = LHS;
5365       // TODO: Intrinsics should have fast-math-flags that propagate to these
5366       // nodes.
5367       while (Val) {
5368         if (Val & 1) {
5369           if (Res.getNode())
5370             Res =
5371                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5372           else
5373             Res = CurSquare; // 1.0*CurSquare.
5374         }
5375 
5376         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5377                                 CurSquare, CurSquare);
5378         Val >>= 1;
5379       }
5380 
5381       // If the original was negative, invert the result, producing 1/(x*x*x).
5382       if (RHSC->getSExtValue() < 0)
5383         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5384                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5385       return Res;
5386     }
5387   }
5388 
5389   // Otherwise, expand to a libcall.
5390   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5391 }
5392 
5393 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5394                             SDValue LHS, SDValue RHS, SDValue Scale,
5395                             SelectionDAG &DAG, const TargetLowering &TLI) {
5396   EVT VT = LHS.getValueType();
5397   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5398   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5399   LLVMContext &Ctx = *DAG.getContext();
5400 
5401   // If the type is legal but the operation isn't, this node might survive all
5402   // the way to operation legalization. If we end up there and we do not have
5403   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5404   // node.
5405 
5406   // Coax the legalizer into expanding the node during type legalization instead
5407   // by bumping the size by one bit. This will force it to Promote, enabling the
5408   // early expansion and avoiding the need to expand later.
5409 
5410   // We don't have to do this if Scale is 0; that can always be expanded, unless
5411   // it's a saturating signed operation. Those can experience true integer
5412   // division overflow, a case which we must avoid.
5413 
5414   // FIXME: We wouldn't have to do this (or any of the early
5415   // expansion/promotion) if it was possible to expand a libcall of an
5416   // illegal type during operation legalization. But it's not, so things
5417   // get a bit hacky.
5418   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5419   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5420       (TLI.isTypeLegal(VT) ||
5421        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5422     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5423         Opcode, VT, ScaleInt);
5424     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5425       EVT PromVT;
5426       if (VT.isScalarInteger())
5427         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5428       else if (VT.isVector()) {
5429         PromVT = VT.getVectorElementType();
5430         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5431         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5432       } else
5433         llvm_unreachable("Wrong VT for DIVFIX?");
5434       if (Signed) {
5435         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5436         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5437       } else {
5438         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5439         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5440       }
5441       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5442       // For saturating operations, we need to shift up the LHS to get the
5443       // proper saturation width, and then shift down again afterwards.
5444       if (Saturating)
5445         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5446                           DAG.getConstant(1, DL, ShiftTy));
5447       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5448       if (Saturating)
5449         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5450                           DAG.getConstant(1, DL, ShiftTy));
5451       return DAG.getZExtOrTrunc(Res, DL, VT);
5452     }
5453   }
5454 
5455   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5456 }
5457 
5458 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5459 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5460 static void
5461 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5462                      const SDValue &N) {
5463   switch (N.getOpcode()) {
5464   case ISD::CopyFromReg: {
5465     SDValue Op = N.getOperand(1);
5466     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5467                       Op.getValueType().getSizeInBits());
5468     return;
5469   }
5470   case ISD::BITCAST:
5471   case ISD::AssertZext:
5472   case ISD::AssertSext:
5473   case ISD::TRUNCATE:
5474     getUnderlyingArgRegs(Regs, N.getOperand(0));
5475     return;
5476   case ISD::BUILD_PAIR:
5477   case ISD::BUILD_VECTOR:
5478   case ISD::CONCAT_VECTORS:
5479     for (SDValue Op : N->op_values())
5480       getUnderlyingArgRegs(Regs, Op);
5481     return;
5482   default:
5483     return;
5484   }
5485 }
5486 
5487 /// If the DbgValueInst is a dbg_value of a function argument, create the
5488 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5489 /// instruction selection, they will be inserted to the entry BB.
5490 /// We don't currently support this for variadic dbg_values, as they shouldn't
5491 /// appear for function arguments or in the prologue.
5492 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5493     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5494     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5495   const Argument *Arg = dyn_cast<Argument>(V);
5496   if (!Arg)
5497     return false;
5498 
5499   MachineFunction &MF = DAG.getMachineFunction();
5500   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5501 
5502   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5503   // we've been asked to pursue.
5504   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5505                               bool Indirect) {
5506     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5507       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5508       // pointing at the VReg, which will be patched up later.
5509       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5510       auto MIB = BuildMI(MF, DL, Inst);
5511       MIB.addReg(Reg);
5512       MIB.addImm(0);
5513       MIB.addMetadata(Variable);
5514       auto *NewDIExpr = FragExpr;
5515       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5516       // the DIExpression.
5517       if (Indirect)
5518         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5519       MIB.addMetadata(NewDIExpr);
5520       return MIB;
5521     } else {
5522       // Create a completely standard DBG_VALUE.
5523       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5524       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5525     }
5526   };
5527 
5528   if (Kind == FuncArgumentDbgValueKind::Value) {
5529     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5530     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5531     // the entry block.
5532     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5533     if (!IsInEntryBlock)
5534       return false;
5535 
5536     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5537     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5538     // variable that also is a param.
5539     //
5540     // Although, if we are at the top of the entry block already, we can still
5541     // emit using ArgDbgValue. This might catch some situations when the
5542     // dbg.value refers to an argument that isn't used in the entry block, so
5543     // any CopyToReg node would be optimized out and the only way to express
5544     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5545     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5546     // we should only emit as ArgDbgValue if the Variable is an argument to the
5547     // current function, and the dbg.value intrinsic is found in the entry
5548     // block.
5549     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5550         !DL->getInlinedAt();
5551     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5552     if (!IsInPrologue && !VariableIsFunctionInputArg)
5553       return false;
5554 
5555     // Here we assume that a function argument on IR level only can be used to
5556     // describe one input parameter on source level. If we for example have
5557     // source code like this
5558     //
5559     //    struct A { long x, y; };
5560     //    void foo(struct A a, long b) {
5561     //      ...
5562     //      b = a.x;
5563     //      ...
5564     //    }
5565     //
5566     // and IR like this
5567     //
5568     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5569     //  entry:
5570     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5571     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5572     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5573     //    ...
5574     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5575     //    ...
5576     //
5577     // then the last dbg.value is describing a parameter "b" using a value that
5578     // is an argument. But since we already has used %a1 to describe a parameter
5579     // we should not handle that last dbg.value here (that would result in an
5580     // incorrect hoisting of the DBG_VALUE to the function entry).
5581     // Notice that we allow one dbg.value per IR level argument, to accommodate
5582     // for the situation with fragments above.
5583     if (VariableIsFunctionInputArg) {
5584       unsigned ArgNo = Arg->getArgNo();
5585       if (ArgNo >= FuncInfo.DescribedArgs.size())
5586         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5587       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5588         return false;
5589       FuncInfo.DescribedArgs.set(ArgNo);
5590     }
5591   }
5592 
5593   bool IsIndirect = false;
5594   Optional<MachineOperand> Op;
5595   // Some arguments' frame index is recorded during argument lowering.
5596   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5597   if (FI != std::numeric_limits<int>::max())
5598     Op = MachineOperand::CreateFI(FI);
5599 
5600   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5601   if (!Op && N.getNode()) {
5602     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5603     Register Reg;
5604     if (ArgRegsAndSizes.size() == 1)
5605       Reg = ArgRegsAndSizes.front().first;
5606 
5607     if (Reg && Reg.isVirtual()) {
5608       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5609       Register PR = RegInfo.getLiveInPhysReg(Reg);
5610       if (PR)
5611         Reg = PR;
5612     }
5613     if (Reg) {
5614       Op = MachineOperand::CreateReg(Reg, false);
5615       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5616     }
5617   }
5618 
5619   if (!Op && N.getNode()) {
5620     // Check if frame index is available.
5621     SDValue LCandidate = peekThroughBitcasts(N);
5622     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5623       if (FrameIndexSDNode *FINode =
5624           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5625         Op = MachineOperand::CreateFI(FINode->getIndex());
5626   }
5627 
5628   if (!Op) {
5629     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5630     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5631                                          SplitRegs) {
5632       unsigned Offset = 0;
5633       for (const auto &RegAndSize : SplitRegs) {
5634         // If the expression is already a fragment, the current register
5635         // offset+size might extend beyond the fragment. In this case, only
5636         // the register bits that are inside the fragment are relevant.
5637         int RegFragmentSizeInBits = RegAndSize.second;
5638         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5639           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5640           // The register is entirely outside the expression fragment,
5641           // so is irrelevant for debug info.
5642           if (Offset >= ExprFragmentSizeInBits)
5643             break;
5644           // The register is partially outside the expression fragment, only
5645           // the low bits within the fragment are relevant for debug info.
5646           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5647             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5648           }
5649         }
5650 
5651         auto FragmentExpr = DIExpression::createFragmentExpression(
5652             Expr, Offset, RegFragmentSizeInBits);
5653         Offset += RegAndSize.second;
5654         // If a valid fragment expression cannot be created, the variable's
5655         // correct value cannot be determined and so it is set as Undef.
5656         if (!FragmentExpr) {
5657           SDDbgValue *SDV = DAG.getConstantDbgValue(
5658               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5659           DAG.AddDbgValue(SDV, false);
5660           continue;
5661         }
5662         MachineInstr *NewMI =
5663             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5664                              Kind != FuncArgumentDbgValueKind::Value);
5665         FuncInfo.ArgDbgValues.push_back(NewMI);
5666       }
5667     };
5668 
5669     // Check if ValueMap has reg number.
5670     DenseMap<const Value *, Register>::const_iterator
5671       VMI = FuncInfo.ValueMap.find(V);
5672     if (VMI != FuncInfo.ValueMap.end()) {
5673       const auto &TLI = DAG.getTargetLoweringInfo();
5674       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5675                        V->getType(), None);
5676       if (RFV.occupiesMultipleRegs()) {
5677         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5678         return true;
5679       }
5680 
5681       Op = MachineOperand::CreateReg(VMI->second, false);
5682       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5683     } else if (ArgRegsAndSizes.size() > 1) {
5684       // This was split due to the calling convention, and no virtual register
5685       // mapping exists for the value.
5686       splitMultiRegDbgValue(ArgRegsAndSizes);
5687       return true;
5688     }
5689   }
5690 
5691   if (!Op)
5692     return false;
5693 
5694   assert(Variable->isValidLocationForIntrinsic(DL) &&
5695          "Expected inlined-at fields to agree");
5696   MachineInstr *NewMI = nullptr;
5697 
5698   if (Op->isReg())
5699     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5700   else
5701     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5702                     Variable, Expr);
5703 
5704   // Otherwise, use ArgDbgValues.
5705   FuncInfo.ArgDbgValues.push_back(NewMI);
5706   return true;
5707 }
5708 
5709 /// Return the appropriate SDDbgValue based on N.
5710 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5711                                              DILocalVariable *Variable,
5712                                              DIExpression *Expr,
5713                                              const DebugLoc &dl,
5714                                              unsigned DbgSDNodeOrder) {
5715   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5716     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5717     // stack slot locations.
5718     //
5719     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5720     // debug values here after optimization:
5721     //
5722     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5723     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5724     //
5725     // Both describe the direct values of their associated variables.
5726     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5727                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5728   }
5729   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5730                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5731 }
5732 
5733 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5734   switch (Intrinsic) {
5735   case Intrinsic::smul_fix:
5736     return ISD::SMULFIX;
5737   case Intrinsic::umul_fix:
5738     return ISD::UMULFIX;
5739   case Intrinsic::smul_fix_sat:
5740     return ISD::SMULFIXSAT;
5741   case Intrinsic::umul_fix_sat:
5742     return ISD::UMULFIXSAT;
5743   case Intrinsic::sdiv_fix:
5744     return ISD::SDIVFIX;
5745   case Intrinsic::udiv_fix:
5746     return ISD::UDIVFIX;
5747   case Intrinsic::sdiv_fix_sat:
5748     return ISD::SDIVFIXSAT;
5749   case Intrinsic::udiv_fix_sat:
5750     return ISD::UDIVFIXSAT;
5751   default:
5752     llvm_unreachable("Unhandled fixed point intrinsic");
5753   }
5754 }
5755 
5756 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5757                                            const char *FunctionName) {
5758   assert(FunctionName && "FunctionName must not be nullptr");
5759   SDValue Callee = DAG.getExternalSymbol(
5760       FunctionName,
5761       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5762   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5763 }
5764 
5765 /// Given a @llvm.call.preallocated.setup, return the corresponding
5766 /// preallocated call.
5767 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5768   assert(cast<CallBase>(PreallocatedSetup)
5769                  ->getCalledFunction()
5770                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5771          "expected call_preallocated_setup Value");
5772   for (auto *U : PreallocatedSetup->users()) {
5773     auto *UseCall = cast<CallBase>(U);
5774     const Function *Fn = UseCall->getCalledFunction();
5775     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5776       return UseCall;
5777     }
5778   }
5779   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5780 }
5781 
5782 /// Lower the call to the specified intrinsic function.
5783 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5784                                              unsigned Intrinsic) {
5785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5786   SDLoc sdl = getCurSDLoc();
5787   DebugLoc dl = getCurDebugLoc();
5788   SDValue Res;
5789 
5790   SDNodeFlags Flags;
5791   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5792     Flags.copyFMF(*FPOp);
5793 
5794   switch (Intrinsic) {
5795   default:
5796     // By default, turn this into a target intrinsic node.
5797     visitTargetIntrinsic(I, Intrinsic);
5798     return;
5799   case Intrinsic::vscale: {
5800     match(&I, m_VScale(DAG.getDataLayout()));
5801     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5802     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5803     return;
5804   }
5805   case Intrinsic::vastart:  visitVAStart(I); return;
5806   case Intrinsic::vaend:    visitVAEnd(I); return;
5807   case Intrinsic::vacopy:   visitVACopy(I); return;
5808   case Intrinsic::returnaddress:
5809     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5810                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5811                              getValue(I.getArgOperand(0))));
5812     return;
5813   case Intrinsic::addressofreturnaddress:
5814     setValue(&I,
5815              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5816                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5817     return;
5818   case Intrinsic::sponentry:
5819     setValue(&I,
5820              DAG.getNode(ISD::SPONENTRY, sdl,
5821                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5822     return;
5823   case Intrinsic::frameaddress:
5824     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5825                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5826                              getValue(I.getArgOperand(0))));
5827     return;
5828   case Intrinsic::read_volatile_register:
5829   case Intrinsic::read_register: {
5830     Value *Reg = I.getArgOperand(0);
5831     SDValue Chain = getRoot();
5832     SDValue RegName =
5833         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5834     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5835     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5836       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5837     setValue(&I, Res);
5838     DAG.setRoot(Res.getValue(1));
5839     return;
5840   }
5841   case Intrinsic::write_register: {
5842     Value *Reg = I.getArgOperand(0);
5843     Value *RegValue = I.getArgOperand(1);
5844     SDValue Chain = getRoot();
5845     SDValue RegName =
5846         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5847     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5848                             RegName, getValue(RegValue)));
5849     return;
5850   }
5851   case Intrinsic::memcpy: {
5852     const auto &MCI = cast<MemCpyInst>(I);
5853     SDValue Op1 = getValue(I.getArgOperand(0));
5854     SDValue Op2 = getValue(I.getArgOperand(1));
5855     SDValue Op3 = getValue(I.getArgOperand(2));
5856     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5857     Align DstAlign = MCI.getDestAlign().valueOrOne();
5858     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5859     Align Alignment = std::min(DstAlign, SrcAlign);
5860     bool isVol = MCI.isVolatile();
5861     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5862     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5863     // node.
5864     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5865     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5866                                /* AlwaysInline */ false, isTC,
5867                                MachinePointerInfo(I.getArgOperand(0)),
5868                                MachinePointerInfo(I.getArgOperand(1)),
5869                                I.getAAMetadata());
5870     updateDAGForMaybeTailCall(MC);
5871     return;
5872   }
5873   case Intrinsic::memcpy_inline: {
5874     const auto &MCI = cast<MemCpyInlineInst>(I);
5875     SDValue Dst = getValue(I.getArgOperand(0));
5876     SDValue Src = getValue(I.getArgOperand(1));
5877     SDValue Size = getValue(I.getArgOperand(2));
5878     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5879     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5880     Align DstAlign = MCI.getDestAlign().valueOrOne();
5881     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5882     Align Alignment = std::min(DstAlign, SrcAlign);
5883     bool isVol = MCI.isVolatile();
5884     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5885     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5886     // node.
5887     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5888                                /* AlwaysInline */ true, isTC,
5889                                MachinePointerInfo(I.getArgOperand(0)),
5890                                MachinePointerInfo(I.getArgOperand(1)),
5891                                I.getAAMetadata());
5892     updateDAGForMaybeTailCall(MC);
5893     return;
5894   }
5895   case Intrinsic::memset: {
5896     const auto &MSI = cast<MemSetInst>(I);
5897     SDValue Op1 = getValue(I.getArgOperand(0));
5898     SDValue Op2 = getValue(I.getArgOperand(1));
5899     SDValue Op3 = getValue(I.getArgOperand(2));
5900     // @llvm.memset defines 0 and 1 to both mean no alignment.
5901     Align Alignment = MSI.getDestAlign().valueOrOne();
5902     bool isVol = MSI.isVolatile();
5903     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5904     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5905     SDValue MS = DAG.getMemset(
5906         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5907         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5908     updateDAGForMaybeTailCall(MS);
5909     return;
5910   }
5911   case Intrinsic::memset_inline: {
5912     const auto &MSII = cast<MemSetInlineInst>(I);
5913     SDValue Dst = getValue(I.getArgOperand(0));
5914     SDValue Value = getValue(I.getArgOperand(1));
5915     SDValue Size = getValue(I.getArgOperand(2));
5916     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5917     // @llvm.memset defines 0 and 1 to both mean no alignment.
5918     Align DstAlign = MSII.getDestAlign().valueOrOne();
5919     bool isVol = MSII.isVolatile();
5920     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5921     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5922     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5923                                /* AlwaysInline */ true, isTC,
5924                                MachinePointerInfo(I.getArgOperand(0)),
5925                                I.getAAMetadata());
5926     updateDAGForMaybeTailCall(MC);
5927     return;
5928   }
5929   case Intrinsic::memmove: {
5930     const auto &MMI = cast<MemMoveInst>(I);
5931     SDValue Op1 = getValue(I.getArgOperand(0));
5932     SDValue Op2 = getValue(I.getArgOperand(1));
5933     SDValue Op3 = getValue(I.getArgOperand(2));
5934     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5935     Align DstAlign = MMI.getDestAlign().valueOrOne();
5936     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5937     Align Alignment = std::min(DstAlign, SrcAlign);
5938     bool isVol = MMI.isVolatile();
5939     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5940     // FIXME: Support passing different dest/src alignments to the memmove DAG
5941     // node.
5942     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5943     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5944                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5945                                 MachinePointerInfo(I.getArgOperand(1)),
5946                                 I.getAAMetadata());
5947     updateDAGForMaybeTailCall(MM);
5948     return;
5949   }
5950   case Intrinsic::memcpy_element_unordered_atomic: {
5951     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5952     SDValue Dst = getValue(MI.getRawDest());
5953     SDValue Src = getValue(MI.getRawSource());
5954     SDValue Length = getValue(MI.getLength());
5955 
5956     Type *LengthTy = MI.getLength()->getType();
5957     unsigned ElemSz = MI.getElementSizeInBytes();
5958     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5959     SDValue MC =
5960         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5961                             isTC, MachinePointerInfo(MI.getRawDest()),
5962                             MachinePointerInfo(MI.getRawSource()));
5963     updateDAGForMaybeTailCall(MC);
5964     return;
5965   }
5966   case Intrinsic::memmove_element_unordered_atomic: {
5967     auto &MI = cast<AtomicMemMoveInst>(I);
5968     SDValue Dst = getValue(MI.getRawDest());
5969     SDValue Src = getValue(MI.getRawSource());
5970     SDValue Length = getValue(MI.getLength());
5971 
5972     Type *LengthTy = MI.getLength()->getType();
5973     unsigned ElemSz = MI.getElementSizeInBytes();
5974     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5975     SDValue MC =
5976         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5977                              isTC, MachinePointerInfo(MI.getRawDest()),
5978                              MachinePointerInfo(MI.getRawSource()));
5979     updateDAGForMaybeTailCall(MC);
5980     return;
5981   }
5982   case Intrinsic::memset_element_unordered_atomic: {
5983     auto &MI = cast<AtomicMemSetInst>(I);
5984     SDValue Dst = getValue(MI.getRawDest());
5985     SDValue Val = getValue(MI.getValue());
5986     SDValue Length = getValue(MI.getLength());
5987 
5988     Type *LengthTy = MI.getLength()->getType();
5989     unsigned ElemSz = MI.getElementSizeInBytes();
5990     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5991     SDValue MC =
5992         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
5993                             isTC, MachinePointerInfo(MI.getRawDest()));
5994     updateDAGForMaybeTailCall(MC);
5995     return;
5996   }
5997   case Intrinsic::call_preallocated_setup: {
5998     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5999     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6000     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6001                               getRoot(), SrcValue);
6002     setValue(&I, Res);
6003     DAG.setRoot(Res);
6004     return;
6005   }
6006   case Intrinsic::call_preallocated_arg: {
6007     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6008     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6009     SDValue Ops[3];
6010     Ops[0] = getRoot();
6011     Ops[1] = SrcValue;
6012     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6013                                    MVT::i32); // arg index
6014     SDValue Res = DAG.getNode(
6015         ISD::PREALLOCATED_ARG, sdl,
6016         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6017     setValue(&I, Res);
6018     DAG.setRoot(Res.getValue(1));
6019     return;
6020   }
6021   case Intrinsic::dbg_addr:
6022   case Intrinsic::dbg_declare: {
6023     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6024     // they are non-variadic.
6025     const auto &DI = cast<DbgVariableIntrinsic>(I);
6026     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6027     DILocalVariable *Variable = DI.getVariable();
6028     DIExpression *Expression = DI.getExpression();
6029     dropDanglingDebugInfo(Variable, Expression);
6030     assert(Variable && "Missing variable");
6031     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6032                       << "\n");
6033     // Check if address has undef value.
6034     const Value *Address = DI.getVariableLocationOp(0);
6035     if (!Address || isa<UndefValue>(Address) ||
6036         (Address->use_empty() && !isa<Argument>(Address))) {
6037       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6038                         << " (bad/undef/unused-arg address)\n");
6039       return;
6040     }
6041 
6042     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6043 
6044     // Check if this variable can be described by a frame index, typically
6045     // either as a static alloca or a byval parameter.
6046     int FI = std::numeric_limits<int>::max();
6047     if (const auto *AI =
6048             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6049       if (AI->isStaticAlloca()) {
6050         auto I = FuncInfo.StaticAllocaMap.find(AI);
6051         if (I != FuncInfo.StaticAllocaMap.end())
6052           FI = I->second;
6053       }
6054     } else if (const auto *Arg = dyn_cast<Argument>(
6055                    Address->stripInBoundsConstantOffsets())) {
6056       FI = FuncInfo.getArgumentFrameIndex(Arg);
6057     }
6058 
6059     // llvm.dbg.addr is control dependent and always generates indirect
6060     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6061     // the MachineFunction variable table.
6062     if (FI != std::numeric_limits<int>::max()) {
6063       if (Intrinsic == Intrinsic::dbg_addr) {
6064         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6065             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6066             dl, SDNodeOrder);
6067         DAG.AddDbgValue(SDV, isParameter);
6068       } else {
6069         LLVM_DEBUG(dbgs() << "Skipping " << DI
6070                           << " (variable info stashed in MF side table)\n");
6071       }
6072       return;
6073     }
6074 
6075     SDValue &N = NodeMap[Address];
6076     if (!N.getNode() && isa<Argument>(Address))
6077       // Check unused arguments map.
6078       N = UnusedArgNodeMap[Address];
6079     SDDbgValue *SDV;
6080     if (N.getNode()) {
6081       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6082         Address = BCI->getOperand(0);
6083       // Parameters are handled specially.
6084       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6085       if (isParameter && FINode) {
6086         // Byval parameter. We have a frame index at this point.
6087         SDV =
6088             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6089                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6090       } else if (isa<Argument>(Address)) {
6091         // Address is an argument, so try to emit its dbg value using
6092         // virtual register info from the FuncInfo.ValueMap.
6093         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6094                                  FuncArgumentDbgValueKind::Declare, N);
6095         return;
6096       } else {
6097         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6098                               true, dl, SDNodeOrder);
6099       }
6100       DAG.AddDbgValue(SDV, isParameter);
6101     } else {
6102       // If Address is an argument then try to emit its dbg value using
6103       // virtual register info from the FuncInfo.ValueMap.
6104       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6105                                     FuncArgumentDbgValueKind::Declare, N)) {
6106         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6107                           << " (could not emit func-arg dbg_value)\n");
6108       }
6109     }
6110     return;
6111   }
6112   case Intrinsic::dbg_label: {
6113     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6114     DILabel *Label = DI.getLabel();
6115     assert(Label && "Missing label");
6116 
6117     SDDbgLabel *SDV;
6118     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6119     DAG.AddDbgLabel(SDV);
6120     return;
6121   }
6122   case Intrinsic::dbg_value: {
6123     const DbgValueInst &DI = cast<DbgValueInst>(I);
6124     assert(DI.getVariable() && "Missing variable");
6125 
6126     DILocalVariable *Variable = DI.getVariable();
6127     DIExpression *Expression = DI.getExpression();
6128     dropDanglingDebugInfo(Variable, Expression);
6129     SmallVector<Value *, 4> Values(DI.getValues());
6130     if (Values.empty())
6131       return;
6132 
6133     if (llvm::is_contained(Values, nullptr))
6134       return;
6135 
6136     bool IsVariadic = DI.hasArgList();
6137     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6138                           SDNodeOrder, IsVariadic))
6139       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6140     return;
6141   }
6142 
6143   case Intrinsic::eh_typeid_for: {
6144     // Find the type id for the given typeinfo.
6145     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6146     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6147     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6148     setValue(&I, Res);
6149     return;
6150   }
6151 
6152   case Intrinsic::eh_return_i32:
6153   case Intrinsic::eh_return_i64:
6154     DAG.getMachineFunction().setCallsEHReturn(true);
6155     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6156                             MVT::Other,
6157                             getControlRoot(),
6158                             getValue(I.getArgOperand(0)),
6159                             getValue(I.getArgOperand(1))));
6160     return;
6161   case Intrinsic::eh_unwind_init:
6162     DAG.getMachineFunction().setCallsUnwindInit(true);
6163     return;
6164   case Intrinsic::eh_dwarf_cfa:
6165     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6166                              TLI.getPointerTy(DAG.getDataLayout()),
6167                              getValue(I.getArgOperand(0))));
6168     return;
6169   case Intrinsic::eh_sjlj_callsite: {
6170     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6171     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6172     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6173 
6174     MMI.setCurrentCallSite(CI->getZExtValue());
6175     return;
6176   }
6177   case Intrinsic::eh_sjlj_functioncontext: {
6178     // Get and store the index of the function context.
6179     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6180     AllocaInst *FnCtx =
6181       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6182     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6183     MFI.setFunctionContextIndex(FI);
6184     return;
6185   }
6186   case Intrinsic::eh_sjlj_setjmp: {
6187     SDValue Ops[2];
6188     Ops[0] = getRoot();
6189     Ops[1] = getValue(I.getArgOperand(0));
6190     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6191                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6192     setValue(&I, Op.getValue(0));
6193     DAG.setRoot(Op.getValue(1));
6194     return;
6195   }
6196   case Intrinsic::eh_sjlj_longjmp:
6197     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6198                             getRoot(), getValue(I.getArgOperand(0))));
6199     return;
6200   case Intrinsic::eh_sjlj_setup_dispatch:
6201     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6202                             getRoot()));
6203     return;
6204   case Intrinsic::masked_gather:
6205     visitMaskedGather(I);
6206     return;
6207   case Intrinsic::masked_load:
6208     visitMaskedLoad(I);
6209     return;
6210   case Intrinsic::masked_scatter:
6211     visitMaskedScatter(I);
6212     return;
6213   case Intrinsic::masked_store:
6214     visitMaskedStore(I);
6215     return;
6216   case Intrinsic::masked_expandload:
6217     visitMaskedLoad(I, true /* IsExpanding */);
6218     return;
6219   case Intrinsic::masked_compressstore:
6220     visitMaskedStore(I, true /* IsCompressing */);
6221     return;
6222   case Intrinsic::powi:
6223     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6224                             getValue(I.getArgOperand(1)), DAG));
6225     return;
6226   case Intrinsic::log:
6227     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6228     return;
6229   case Intrinsic::log2:
6230     setValue(&I,
6231              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6232     return;
6233   case Intrinsic::log10:
6234     setValue(&I,
6235              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6236     return;
6237   case Intrinsic::exp:
6238     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6239     return;
6240   case Intrinsic::exp2:
6241     setValue(&I,
6242              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6243     return;
6244   case Intrinsic::pow:
6245     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6246                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6247     return;
6248   case Intrinsic::sqrt:
6249   case Intrinsic::fabs:
6250   case Intrinsic::sin:
6251   case Intrinsic::cos:
6252   case Intrinsic::floor:
6253   case Intrinsic::ceil:
6254   case Intrinsic::trunc:
6255   case Intrinsic::rint:
6256   case Intrinsic::nearbyint:
6257   case Intrinsic::round:
6258   case Intrinsic::roundeven:
6259   case Intrinsic::canonicalize: {
6260     unsigned Opcode;
6261     switch (Intrinsic) {
6262     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6263     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6264     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6265     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6266     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6267     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6268     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6269     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6270     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6271     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6272     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6273     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6274     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6275     }
6276 
6277     setValue(&I, DAG.getNode(Opcode, sdl,
6278                              getValue(I.getArgOperand(0)).getValueType(),
6279                              getValue(I.getArgOperand(0)), Flags));
6280     return;
6281   }
6282   case Intrinsic::lround:
6283   case Intrinsic::llround:
6284   case Intrinsic::lrint:
6285   case Intrinsic::llrint: {
6286     unsigned Opcode;
6287     switch (Intrinsic) {
6288     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6289     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6290     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6291     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6292     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6293     }
6294 
6295     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6296     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6297                              getValue(I.getArgOperand(0))));
6298     return;
6299   }
6300   case Intrinsic::minnum:
6301     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6302                              getValue(I.getArgOperand(0)).getValueType(),
6303                              getValue(I.getArgOperand(0)),
6304                              getValue(I.getArgOperand(1)), Flags));
6305     return;
6306   case Intrinsic::maxnum:
6307     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6308                              getValue(I.getArgOperand(0)).getValueType(),
6309                              getValue(I.getArgOperand(0)),
6310                              getValue(I.getArgOperand(1)), Flags));
6311     return;
6312   case Intrinsic::minimum:
6313     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6314                              getValue(I.getArgOperand(0)).getValueType(),
6315                              getValue(I.getArgOperand(0)),
6316                              getValue(I.getArgOperand(1)), Flags));
6317     return;
6318   case Intrinsic::maximum:
6319     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6320                              getValue(I.getArgOperand(0)).getValueType(),
6321                              getValue(I.getArgOperand(0)),
6322                              getValue(I.getArgOperand(1)), Flags));
6323     return;
6324   case Intrinsic::copysign:
6325     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6326                              getValue(I.getArgOperand(0)).getValueType(),
6327                              getValue(I.getArgOperand(0)),
6328                              getValue(I.getArgOperand(1)), Flags));
6329     return;
6330   case Intrinsic::arithmetic_fence: {
6331     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6332                              getValue(I.getArgOperand(0)).getValueType(),
6333                              getValue(I.getArgOperand(0)), Flags));
6334     return;
6335   }
6336   case Intrinsic::fma:
6337     setValue(&I, DAG.getNode(
6338                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6339                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6340                      getValue(I.getArgOperand(2)), Flags));
6341     return;
6342 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6343   case Intrinsic::INTRINSIC:
6344 #include "llvm/IR/ConstrainedOps.def"
6345     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6346     return;
6347 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6348 #include "llvm/IR/VPIntrinsics.def"
6349     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6350     return;
6351   case Intrinsic::fptrunc_round: {
6352     // Get the last argument, the metadata and convert it to an integer in the
6353     // call
6354     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6355     Optional<RoundingMode> RoundMode =
6356         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6357 
6358     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6359 
6360     // Propagate fast-math-flags from IR to node(s).
6361     SDNodeFlags Flags;
6362     Flags.copyFMF(*cast<FPMathOperator>(&I));
6363     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6364 
6365     SDValue Result;
6366     Result = DAG.getNode(
6367         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6368         DAG.getTargetConstant((int)*RoundMode, sdl,
6369                               TLI.getPointerTy(DAG.getDataLayout())));
6370     setValue(&I, Result);
6371 
6372     return;
6373   }
6374   case Intrinsic::fmuladd: {
6375     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6376     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6377         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6378       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6379                                getValue(I.getArgOperand(0)).getValueType(),
6380                                getValue(I.getArgOperand(0)),
6381                                getValue(I.getArgOperand(1)),
6382                                getValue(I.getArgOperand(2)), Flags));
6383     } else {
6384       // TODO: Intrinsic calls should have fast-math-flags.
6385       SDValue Mul = DAG.getNode(
6386           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6387           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6388       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6389                                 getValue(I.getArgOperand(0)).getValueType(),
6390                                 Mul, getValue(I.getArgOperand(2)), Flags);
6391       setValue(&I, Add);
6392     }
6393     return;
6394   }
6395   case Intrinsic::convert_to_fp16:
6396     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6397                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6398                                          getValue(I.getArgOperand(0)),
6399                                          DAG.getTargetConstant(0, sdl,
6400                                                                MVT::i32))));
6401     return;
6402   case Intrinsic::convert_from_fp16:
6403     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6404                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6405                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6406                                          getValue(I.getArgOperand(0)))));
6407     return;
6408   case Intrinsic::fptosi_sat: {
6409     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6410     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6411                              getValue(I.getArgOperand(0)),
6412                              DAG.getValueType(VT.getScalarType())));
6413     return;
6414   }
6415   case Intrinsic::fptoui_sat: {
6416     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6417     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6418                              getValue(I.getArgOperand(0)),
6419                              DAG.getValueType(VT.getScalarType())));
6420     return;
6421   }
6422   case Intrinsic::set_rounding:
6423     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6424                       {getRoot(), getValue(I.getArgOperand(0))});
6425     setValue(&I, Res);
6426     DAG.setRoot(Res.getValue(0));
6427     return;
6428   case Intrinsic::is_fpclass: {
6429     const DataLayout DLayout = DAG.getDataLayout();
6430     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6431     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6432     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6433     MachineFunction &MF = DAG.getMachineFunction();
6434     const Function &F = MF.getFunction();
6435     SDValue Op = getValue(I.getArgOperand(0));
6436     SDNodeFlags Flags;
6437     Flags.setNoFPExcept(
6438         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6439     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6440     // expansion can use illegal types. Making expansion early allows
6441     // legalizing these types prior to selection.
6442     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6443       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6444       setValue(&I, Result);
6445       return;
6446     }
6447 
6448     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6449     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6450     setValue(&I, V);
6451     return;
6452   }
6453   case Intrinsic::pcmarker: {
6454     SDValue Tmp = getValue(I.getArgOperand(0));
6455     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6456     return;
6457   }
6458   case Intrinsic::readcyclecounter: {
6459     SDValue Op = getRoot();
6460     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6461                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6462     setValue(&I, Res);
6463     DAG.setRoot(Res.getValue(1));
6464     return;
6465   }
6466   case Intrinsic::bitreverse:
6467     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6468                              getValue(I.getArgOperand(0)).getValueType(),
6469                              getValue(I.getArgOperand(0))));
6470     return;
6471   case Intrinsic::bswap:
6472     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6473                              getValue(I.getArgOperand(0)).getValueType(),
6474                              getValue(I.getArgOperand(0))));
6475     return;
6476   case Intrinsic::cttz: {
6477     SDValue Arg = getValue(I.getArgOperand(0));
6478     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6479     EVT Ty = Arg.getValueType();
6480     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6481                              sdl, Ty, Arg));
6482     return;
6483   }
6484   case Intrinsic::ctlz: {
6485     SDValue Arg = getValue(I.getArgOperand(0));
6486     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6487     EVT Ty = Arg.getValueType();
6488     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6489                              sdl, Ty, Arg));
6490     return;
6491   }
6492   case Intrinsic::ctpop: {
6493     SDValue Arg = getValue(I.getArgOperand(0));
6494     EVT Ty = Arg.getValueType();
6495     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6496     return;
6497   }
6498   case Intrinsic::fshl:
6499   case Intrinsic::fshr: {
6500     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6501     SDValue X = getValue(I.getArgOperand(0));
6502     SDValue Y = getValue(I.getArgOperand(1));
6503     SDValue Z = getValue(I.getArgOperand(2));
6504     EVT VT = X.getValueType();
6505 
6506     if (X == Y) {
6507       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6508       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6509     } else {
6510       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6511       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6512     }
6513     return;
6514   }
6515   case Intrinsic::sadd_sat: {
6516     SDValue Op1 = getValue(I.getArgOperand(0));
6517     SDValue Op2 = getValue(I.getArgOperand(1));
6518     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6519     return;
6520   }
6521   case Intrinsic::uadd_sat: {
6522     SDValue Op1 = getValue(I.getArgOperand(0));
6523     SDValue Op2 = getValue(I.getArgOperand(1));
6524     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6525     return;
6526   }
6527   case Intrinsic::ssub_sat: {
6528     SDValue Op1 = getValue(I.getArgOperand(0));
6529     SDValue Op2 = getValue(I.getArgOperand(1));
6530     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6531     return;
6532   }
6533   case Intrinsic::usub_sat: {
6534     SDValue Op1 = getValue(I.getArgOperand(0));
6535     SDValue Op2 = getValue(I.getArgOperand(1));
6536     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6537     return;
6538   }
6539   case Intrinsic::sshl_sat: {
6540     SDValue Op1 = getValue(I.getArgOperand(0));
6541     SDValue Op2 = getValue(I.getArgOperand(1));
6542     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6543     return;
6544   }
6545   case Intrinsic::ushl_sat: {
6546     SDValue Op1 = getValue(I.getArgOperand(0));
6547     SDValue Op2 = getValue(I.getArgOperand(1));
6548     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6549     return;
6550   }
6551   case Intrinsic::smul_fix:
6552   case Intrinsic::umul_fix:
6553   case Intrinsic::smul_fix_sat:
6554   case Intrinsic::umul_fix_sat: {
6555     SDValue Op1 = getValue(I.getArgOperand(0));
6556     SDValue Op2 = getValue(I.getArgOperand(1));
6557     SDValue Op3 = getValue(I.getArgOperand(2));
6558     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6559                              Op1.getValueType(), Op1, Op2, Op3));
6560     return;
6561   }
6562   case Intrinsic::sdiv_fix:
6563   case Intrinsic::udiv_fix:
6564   case Intrinsic::sdiv_fix_sat:
6565   case Intrinsic::udiv_fix_sat: {
6566     SDValue Op1 = getValue(I.getArgOperand(0));
6567     SDValue Op2 = getValue(I.getArgOperand(1));
6568     SDValue Op3 = getValue(I.getArgOperand(2));
6569     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6570                               Op1, Op2, Op3, DAG, TLI));
6571     return;
6572   }
6573   case Intrinsic::smax: {
6574     SDValue Op1 = getValue(I.getArgOperand(0));
6575     SDValue Op2 = getValue(I.getArgOperand(1));
6576     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6577     return;
6578   }
6579   case Intrinsic::smin: {
6580     SDValue Op1 = getValue(I.getArgOperand(0));
6581     SDValue Op2 = getValue(I.getArgOperand(1));
6582     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6583     return;
6584   }
6585   case Intrinsic::umax: {
6586     SDValue Op1 = getValue(I.getArgOperand(0));
6587     SDValue Op2 = getValue(I.getArgOperand(1));
6588     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6589     return;
6590   }
6591   case Intrinsic::umin: {
6592     SDValue Op1 = getValue(I.getArgOperand(0));
6593     SDValue Op2 = getValue(I.getArgOperand(1));
6594     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6595     return;
6596   }
6597   case Intrinsic::abs: {
6598     // TODO: Preserve "int min is poison" arg in SDAG?
6599     SDValue Op1 = getValue(I.getArgOperand(0));
6600     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6601     return;
6602   }
6603   case Intrinsic::stacksave: {
6604     SDValue Op = getRoot();
6605     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6606     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6607     setValue(&I, Res);
6608     DAG.setRoot(Res.getValue(1));
6609     return;
6610   }
6611   case Intrinsic::stackrestore:
6612     Res = getValue(I.getArgOperand(0));
6613     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6614     return;
6615   case Intrinsic::get_dynamic_area_offset: {
6616     SDValue Op = getRoot();
6617     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6618     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6619     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6620     // target.
6621     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6622       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6623                          " intrinsic!");
6624     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6625                       Op);
6626     DAG.setRoot(Op);
6627     setValue(&I, Res);
6628     return;
6629   }
6630   case Intrinsic::stackguard: {
6631     MachineFunction &MF = DAG.getMachineFunction();
6632     const Module &M = *MF.getFunction().getParent();
6633     SDValue Chain = getRoot();
6634     if (TLI.useLoadStackGuardNode()) {
6635       Res = getLoadStackGuard(DAG, sdl, Chain);
6636     } else {
6637       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6638       const Value *Global = TLI.getSDagStackGuard(M);
6639       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6640       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6641                         MachinePointerInfo(Global, 0), Align,
6642                         MachineMemOperand::MOVolatile);
6643     }
6644     if (TLI.useStackGuardXorFP())
6645       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6646     DAG.setRoot(Chain);
6647     setValue(&I, Res);
6648     return;
6649   }
6650   case Intrinsic::stackprotector: {
6651     // Emit code into the DAG to store the stack guard onto the stack.
6652     MachineFunction &MF = DAG.getMachineFunction();
6653     MachineFrameInfo &MFI = MF.getFrameInfo();
6654     SDValue Src, Chain = getRoot();
6655 
6656     if (TLI.useLoadStackGuardNode())
6657       Src = getLoadStackGuard(DAG, sdl, Chain);
6658     else
6659       Src = getValue(I.getArgOperand(0));   // The guard's value.
6660 
6661     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6662 
6663     int FI = FuncInfo.StaticAllocaMap[Slot];
6664     MFI.setStackProtectorIndex(FI);
6665     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6666 
6667     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6668 
6669     // Store the stack protector onto the stack.
6670     Res = DAG.getStore(
6671         Chain, sdl, Src, FIN,
6672         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6673         MaybeAlign(), MachineMemOperand::MOVolatile);
6674     setValue(&I, Res);
6675     DAG.setRoot(Res);
6676     return;
6677   }
6678   case Intrinsic::objectsize:
6679     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6680 
6681   case Intrinsic::is_constant:
6682     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6683 
6684   case Intrinsic::annotation:
6685   case Intrinsic::ptr_annotation:
6686   case Intrinsic::launder_invariant_group:
6687   case Intrinsic::strip_invariant_group:
6688     // Drop the intrinsic, but forward the value
6689     setValue(&I, getValue(I.getOperand(0)));
6690     return;
6691 
6692   case Intrinsic::assume:
6693   case Intrinsic::experimental_noalias_scope_decl:
6694   case Intrinsic::var_annotation:
6695   case Intrinsic::sideeffect:
6696     // Discard annotate attributes, noalias scope declarations, assumptions, and
6697     // artificial side-effects.
6698     return;
6699 
6700   case Intrinsic::codeview_annotation: {
6701     // Emit a label associated with this metadata.
6702     MachineFunction &MF = DAG.getMachineFunction();
6703     MCSymbol *Label =
6704         MF.getMMI().getContext().createTempSymbol("annotation", true);
6705     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6706     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6707     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6708     DAG.setRoot(Res);
6709     return;
6710   }
6711 
6712   case Intrinsic::init_trampoline: {
6713     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6714 
6715     SDValue Ops[6];
6716     Ops[0] = getRoot();
6717     Ops[1] = getValue(I.getArgOperand(0));
6718     Ops[2] = getValue(I.getArgOperand(1));
6719     Ops[3] = getValue(I.getArgOperand(2));
6720     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6721     Ops[5] = DAG.getSrcValue(F);
6722 
6723     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6724 
6725     DAG.setRoot(Res);
6726     return;
6727   }
6728   case Intrinsic::adjust_trampoline:
6729     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6730                              TLI.getPointerTy(DAG.getDataLayout()),
6731                              getValue(I.getArgOperand(0))));
6732     return;
6733   case Intrinsic::gcroot: {
6734     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6735            "only valid in functions with gc specified, enforced by Verifier");
6736     assert(GFI && "implied by previous");
6737     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6738     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6739 
6740     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6741     GFI->addStackRoot(FI->getIndex(), TypeMap);
6742     return;
6743   }
6744   case Intrinsic::gcread:
6745   case Intrinsic::gcwrite:
6746     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6747   case Intrinsic::flt_rounds:
6748     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6749     setValue(&I, Res);
6750     DAG.setRoot(Res.getValue(1));
6751     return;
6752 
6753   case Intrinsic::expect:
6754     // Just replace __builtin_expect(exp, c) with EXP.
6755     setValue(&I, getValue(I.getArgOperand(0)));
6756     return;
6757 
6758   case Intrinsic::ubsantrap:
6759   case Intrinsic::debugtrap:
6760   case Intrinsic::trap: {
6761     StringRef TrapFuncName =
6762         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6763     if (TrapFuncName.empty()) {
6764       switch (Intrinsic) {
6765       case Intrinsic::trap:
6766         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6767         break;
6768       case Intrinsic::debugtrap:
6769         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6770         break;
6771       case Intrinsic::ubsantrap:
6772         DAG.setRoot(DAG.getNode(
6773             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6774             DAG.getTargetConstant(
6775                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6776                 MVT::i32)));
6777         break;
6778       default: llvm_unreachable("unknown trap intrinsic");
6779       }
6780       return;
6781     }
6782     TargetLowering::ArgListTy Args;
6783     if (Intrinsic == Intrinsic::ubsantrap) {
6784       Args.push_back(TargetLoweringBase::ArgListEntry());
6785       Args[0].Val = I.getArgOperand(0);
6786       Args[0].Node = getValue(Args[0].Val);
6787       Args[0].Ty = Args[0].Val->getType();
6788     }
6789 
6790     TargetLowering::CallLoweringInfo CLI(DAG);
6791     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6792         CallingConv::C, I.getType(),
6793         DAG.getExternalSymbol(TrapFuncName.data(),
6794                               TLI.getPointerTy(DAG.getDataLayout())),
6795         std::move(Args));
6796 
6797     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6798     DAG.setRoot(Result.second);
6799     return;
6800   }
6801 
6802   case Intrinsic::uadd_with_overflow:
6803   case Intrinsic::sadd_with_overflow:
6804   case Intrinsic::usub_with_overflow:
6805   case Intrinsic::ssub_with_overflow:
6806   case Intrinsic::umul_with_overflow:
6807   case Intrinsic::smul_with_overflow: {
6808     ISD::NodeType Op;
6809     switch (Intrinsic) {
6810     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6811     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6812     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6813     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6814     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6815     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6816     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6817     }
6818     SDValue Op1 = getValue(I.getArgOperand(0));
6819     SDValue Op2 = getValue(I.getArgOperand(1));
6820 
6821     EVT ResultVT = Op1.getValueType();
6822     EVT OverflowVT = MVT::i1;
6823     if (ResultVT.isVector())
6824       OverflowVT = EVT::getVectorVT(
6825           *Context, OverflowVT, ResultVT.getVectorElementCount());
6826 
6827     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6828     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6829     return;
6830   }
6831   case Intrinsic::prefetch: {
6832     SDValue Ops[5];
6833     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6834     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6835     Ops[0] = DAG.getRoot();
6836     Ops[1] = getValue(I.getArgOperand(0));
6837     Ops[2] = getValue(I.getArgOperand(1));
6838     Ops[3] = getValue(I.getArgOperand(2));
6839     Ops[4] = getValue(I.getArgOperand(3));
6840     SDValue Result = DAG.getMemIntrinsicNode(
6841         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6842         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6843         /* align */ None, Flags);
6844 
6845     // Chain the prefetch in parallell with any pending loads, to stay out of
6846     // the way of later optimizations.
6847     PendingLoads.push_back(Result);
6848     Result = getRoot();
6849     DAG.setRoot(Result);
6850     return;
6851   }
6852   case Intrinsic::lifetime_start:
6853   case Intrinsic::lifetime_end: {
6854     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6855     // Stack coloring is not enabled in O0, discard region information.
6856     if (TM.getOptLevel() == CodeGenOpt::None)
6857       return;
6858 
6859     const int64_t ObjectSize =
6860         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6861     Value *const ObjectPtr = I.getArgOperand(1);
6862     SmallVector<const Value *, 4> Allocas;
6863     getUnderlyingObjects(ObjectPtr, Allocas);
6864 
6865     for (const Value *Alloca : Allocas) {
6866       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6867 
6868       // Could not find an Alloca.
6869       if (!LifetimeObject)
6870         continue;
6871 
6872       // First check that the Alloca is static, otherwise it won't have a
6873       // valid frame index.
6874       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6875       if (SI == FuncInfo.StaticAllocaMap.end())
6876         return;
6877 
6878       const int FrameIndex = SI->second;
6879       int64_t Offset;
6880       if (GetPointerBaseWithConstantOffset(
6881               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6882         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6883       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6884                                 Offset);
6885       DAG.setRoot(Res);
6886     }
6887     return;
6888   }
6889   case Intrinsic::pseudoprobe: {
6890     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6891     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6892     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6893     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6894     DAG.setRoot(Res);
6895     return;
6896   }
6897   case Intrinsic::invariant_start:
6898     // Discard region information.
6899     setValue(&I,
6900              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6901     return;
6902   case Intrinsic::invariant_end:
6903     // Discard region information.
6904     return;
6905   case Intrinsic::clear_cache:
6906     /// FunctionName may be null.
6907     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6908       lowerCallToExternalSymbol(I, FunctionName);
6909     return;
6910   case Intrinsic::donothing:
6911   case Intrinsic::seh_try_begin:
6912   case Intrinsic::seh_scope_begin:
6913   case Intrinsic::seh_try_end:
6914   case Intrinsic::seh_scope_end:
6915     // ignore
6916     return;
6917   case Intrinsic::experimental_stackmap:
6918     visitStackmap(I);
6919     return;
6920   case Intrinsic::experimental_patchpoint_void:
6921   case Intrinsic::experimental_patchpoint_i64:
6922     visitPatchpoint(I);
6923     return;
6924   case Intrinsic::experimental_gc_statepoint:
6925     LowerStatepoint(cast<GCStatepointInst>(I));
6926     return;
6927   case Intrinsic::experimental_gc_result:
6928     visitGCResult(cast<GCResultInst>(I));
6929     return;
6930   case Intrinsic::experimental_gc_relocate:
6931     visitGCRelocate(cast<GCRelocateInst>(I));
6932     return;
6933   case Intrinsic::instrprof_cover:
6934     llvm_unreachable("instrprof failed to lower a cover");
6935   case Intrinsic::instrprof_increment:
6936     llvm_unreachable("instrprof failed to lower an increment");
6937   case Intrinsic::instrprof_value_profile:
6938     llvm_unreachable("instrprof failed to lower a value profiling call");
6939   case Intrinsic::localescape: {
6940     MachineFunction &MF = DAG.getMachineFunction();
6941     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6942 
6943     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6944     // is the same on all targets.
6945     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6946       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6947       if (isa<ConstantPointerNull>(Arg))
6948         continue; // Skip null pointers. They represent a hole in index space.
6949       AllocaInst *Slot = cast<AllocaInst>(Arg);
6950       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6951              "can only escape static allocas");
6952       int FI = FuncInfo.StaticAllocaMap[Slot];
6953       MCSymbol *FrameAllocSym =
6954           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6955               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6956       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6957               TII->get(TargetOpcode::LOCAL_ESCAPE))
6958           .addSym(FrameAllocSym)
6959           .addFrameIndex(FI);
6960     }
6961 
6962     return;
6963   }
6964 
6965   case Intrinsic::localrecover: {
6966     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6967     MachineFunction &MF = DAG.getMachineFunction();
6968 
6969     // Get the symbol that defines the frame offset.
6970     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6971     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6972     unsigned IdxVal =
6973         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6974     MCSymbol *FrameAllocSym =
6975         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6976             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6977 
6978     Value *FP = I.getArgOperand(1);
6979     SDValue FPVal = getValue(FP);
6980     EVT PtrVT = FPVal.getValueType();
6981 
6982     // Create a MCSymbol for the label to avoid any target lowering
6983     // that would make this PC relative.
6984     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6985     SDValue OffsetVal =
6986         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6987 
6988     // Add the offset to the FP.
6989     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6990     setValue(&I, Add);
6991 
6992     return;
6993   }
6994 
6995   case Intrinsic::eh_exceptionpointer:
6996   case Intrinsic::eh_exceptioncode: {
6997     // Get the exception pointer vreg, copy from it, and resize it to fit.
6998     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6999     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7000     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7001     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7002     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7003     if (Intrinsic == Intrinsic::eh_exceptioncode)
7004       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7005     setValue(&I, N);
7006     return;
7007   }
7008   case Intrinsic::xray_customevent: {
7009     // Here we want to make sure that the intrinsic behaves as if it has a
7010     // specific calling convention, and only for x86_64.
7011     // FIXME: Support other platforms later.
7012     const auto &Triple = DAG.getTarget().getTargetTriple();
7013     if (Triple.getArch() != Triple::x86_64)
7014       return;
7015 
7016     SmallVector<SDValue, 8> Ops;
7017 
7018     // We want to say that we always want the arguments in registers.
7019     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7020     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7021     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7022     SDValue Chain = getRoot();
7023     Ops.push_back(LogEntryVal);
7024     Ops.push_back(StrSizeVal);
7025     Ops.push_back(Chain);
7026 
7027     // We need to enforce the calling convention for the callsite, so that
7028     // argument ordering is enforced correctly, and that register allocation can
7029     // see that some registers may be assumed clobbered and have to preserve
7030     // them across calls to the intrinsic.
7031     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7032                                            sdl, NodeTys, Ops);
7033     SDValue patchableNode = SDValue(MN, 0);
7034     DAG.setRoot(patchableNode);
7035     setValue(&I, patchableNode);
7036     return;
7037   }
7038   case Intrinsic::xray_typedevent: {
7039     // Here we want to make sure that the intrinsic behaves as if it has a
7040     // specific calling convention, and only for x86_64.
7041     // FIXME: Support other platforms later.
7042     const auto &Triple = DAG.getTarget().getTargetTriple();
7043     if (Triple.getArch() != Triple::x86_64)
7044       return;
7045 
7046     SmallVector<SDValue, 8> Ops;
7047 
7048     // We want to say that we always want the arguments in registers.
7049     // It's unclear to me how manipulating the selection DAG here forces callers
7050     // to provide arguments in registers instead of on the stack.
7051     SDValue LogTypeId = getValue(I.getArgOperand(0));
7052     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7053     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7054     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7055     SDValue Chain = getRoot();
7056     Ops.push_back(LogTypeId);
7057     Ops.push_back(LogEntryVal);
7058     Ops.push_back(StrSizeVal);
7059     Ops.push_back(Chain);
7060 
7061     // We need to enforce the calling convention for the callsite, so that
7062     // argument ordering is enforced correctly, and that register allocation can
7063     // see that some registers may be assumed clobbered and have to preserve
7064     // them across calls to the intrinsic.
7065     MachineSDNode *MN = DAG.getMachineNode(
7066         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7067     SDValue patchableNode = SDValue(MN, 0);
7068     DAG.setRoot(patchableNode);
7069     setValue(&I, patchableNode);
7070     return;
7071   }
7072   case Intrinsic::experimental_deoptimize:
7073     LowerDeoptimizeCall(&I);
7074     return;
7075   case Intrinsic::experimental_stepvector:
7076     visitStepVector(I);
7077     return;
7078   case Intrinsic::vector_reduce_fadd:
7079   case Intrinsic::vector_reduce_fmul:
7080   case Intrinsic::vector_reduce_add:
7081   case Intrinsic::vector_reduce_mul:
7082   case Intrinsic::vector_reduce_and:
7083   case Intrinsic::vector_reduce_or:
7084   case Intrinsic::vector_reduce_xor:
7085   case Intrinsic::vector_reduce_smax:
7086   case Intrinsic::vector_reduce_smin:
7087   case Intrinsic::vector_reduce_umax:
7088   case Intrinsic::vector_reduce_umin:
7089   case Intrinsic::vector_reduce_fmax:
7090   case Intrinsic::vector_reduce_fmin:
7091     visitVectorReduce(I, Intrinsic);
7092     return;
7093 
7094   case Intrinsic::icall_branch_funnel: {
7095     SmallVector<SDValue, 16> Ops;
7096     Ops.push_back(getValue(I.getArgOperand(0)));
7097 
7098     int64_t Offset;
7099     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7100         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7101     if (!Base)
7102       report_fatal_error(
7103           "llvm.icall.branch.funnel operand must be a GlobalValue");
7104     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7105 
7106     struct BranchFunnelTarget {
7107       int64_t Offset;
7108       SDValue Target;
7109     };
7110     SmallVector<BranchFunnelTarget, 8> Targets;
7111 
7112     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7113       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7114           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7115       if (ElemBase != Base)
7116         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7117                            "to the same GlobalValue");
7118 
7119       SDValue Val = getValue(I.getArgOperand(Op + 1));
7120       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7121       if (!GA)
7122         report_fatal_error(
7123             "llvm.icall.branch.funnel operand must be a GlobalValue");
7124       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7125                                      GA->getGlobal(), sdl, Val.getValueType(),
7126                                      GA->getOffset())});
7127     }
7128     llvm::sort(Targets,
7129                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7130                  return T1.Offset < T2.Offset;
7131                });
7132 
7133     for (auto &T : Targets) {
7134       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7135       Ops.push_back(T.Target);
7136     }
7137 
7138     Ops.push_back(DAG.getRoot()); // Chain
7139     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7140                                  MVT::Other, Ops),
7141               0);
7142     DAG.setRoot(N);
7143     setValue(&I, N);
7144     HasTailCall = true;
7145     return;
7146   }
7147 
7148   case Intrinsic::wasm_landingpad_index:
7149     // Information this intrinsic contained has been transferred to
7150     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7151     // delete it now.
7152     return;
7153 
7154   case Intrinsic::aarch64_settag:
7155   case Intrinsic::aarch64_settag_zero: {
7156     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7157     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7158     SDValue Val = TSI.EmitTargetCodeForSetTag(
7159         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7160         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7161         ZeroMemory);
7162     DAG.setRoot(Val);
7163     setValue(&I, Val);
7164     return;
7165   }
7166   case Intrinsic::ptrmask: {
7167     SDValue Ptr = getValue(I.getOperand(0));
7168     SDValue Const = getValue(I.getOperand(1));
7169 
7170     EVT PtrVT = Ptr.getValueType();
7171     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7172                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7173     return;
7174   }
7175   case Intrinsic::get_active_lane_mask: {
7176     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7177     SDValue Index = getValue(I.getOperand(0));
7178     EVT ElementVT = Index.getValueType();
7179 
7180     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7181       visitTargetIntrinsic(I, Intrinsic);
7182       return;
7183     }
7184 
7185     SDValue TripCount = getValue(I.getOperand(1));
7186     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7187 
7188     SDValue VectorIndex, VectorTripCount;
7189     if (VecTy.isScalableVector()) {
7190       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7191       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7192     } else {
7193       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7194       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7195     }
7196     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7197     SDValue VectorInduction = DAG.getNode(
7198         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7199     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7200                                  VectorTripCount, ISD::CondCode::SETULT);
7201     setValue(&I, SetCC);
7202     return;
7203   }
7204   case Intrinsic::vector_insert: {
7205     SDValue Vec = getValue(I.getOperand(0));
7206     SDValue SubVec = getValue(I.getOperand(1));
7207     SDValue Index = getValue(I.getOperand(2));
7208 
7209     // The intrinsic's index type is i64, but the SDNode requires an index type
7210     // suitable for the target. Convert the index as required.
7211     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7212     if (Index.getValueType() != VectorIdxTy)
7213       Index = DAG.getVectorIdxConstant(
7214           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7215 
7216     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7217     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7218                              Index));
7219     return;
7220   }
7221   case Intrinsic::vector_extract: {
7222     SDValue Vec = getValue(I.getOperand(0));
7223     SDValue Index = getValue(I.getOperand(1));
7224     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7225 
7226     // The intrinsic's index type is i64, but the SDNode requires an index type
7227     // suitable for the target. Convert the index as required.
7228     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7229     if (Index.getValueType() != VectorIdxTy)
7230       Index = DAG.getVectorIdxConstant(
7231           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7232 
7233     setValue(&I,
7234              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7235     return;
7236   }
7237   case Intrinsic::experimental_vector_reverse:
7238     visitVectorReverse(I);
7239     return;
7240   case Intrinsic::experimental_vector_splice:
7241     visitVectorSplice(I);
7242     return;
7243   }
7244 }
7245 
7246 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7247     const ConstrainedFPIntrinsic &FPI) {
7248   SDLoc sdl = getCurSDLoc();
7249 
7250   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7251   SmallVector<EVT, 4> ValueVTs;
7252   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7253   ValueVTs.push_back(MVT::Other); // Out chain
7254 
7255   // We do not need to serialize constrained FP intrinsics against
7256   // each other or against (nonvolatile) loads, so they can be
7257   // chained like loads.
7258   SDValue Chain = DAG.getRoot();
7259   SmallVector<SDValue, 4> Opers;
7260   Opers.push_back(Chain);
7261   if (FPI.isUnaryOp()) {
7262     Opers.push_back(getValue(FPI.getArgOperand(0)));
7263   } else if (FPI.isTernaryOp()) {
7264     Opers.push_back(getValue(FPI.getArgOperand(0)));
7265     Opers.push_back(getValue(FPI.getArgOperand(1)));
7266     Opers.push_back(getValue(FPI.getArgOperand(2)));
7267   } else {
7268     Opers.push_back(getValue(FPI.getArgOperand(0)));
7269     Opers.push_back(getValue(FPI.getArgOperand(1)));
7270   }
7271 
7272   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7273     assert(Result.getNode()->getNumValues() == 2);
7274 
7275     // Push node to the appropriate list so that future instructions can be
7276     // chained up correctly.
7277     SDValue OutChain = Result.getValue(1);
7278     switch (EB) {
7279     case fp::ExceptionBehavior::ebIgnore:
7280       // The only reason why ebIgnore nodes still need to be chained is that
7281       // they might depend on the current rounding mode, and therefore must
7282       // not be moved across instruction that may change that mode.
7283       LLVM_FALLTHROUGH;
7284     case fp::ExceptionBehavior::ebMayTrap:
7285       // These must not be moved across calls or instructions that may change
7286       // floating-point exception masks.
7287       PendingConstrainedFP.push_back(OutChain);
7288       break;
7289     case fp::ExceptionBehavior::ebStrict:
7290       // These must not be moved across calls or instructions that may change
7291       // floating-point exception masks or read floating-point exception flags.
7292       // In addition, they cannot be optimized out even if unused.
7293       PendingConstrainedFPStrict.push_back(OutChain);
7294       break;
7295     }
7296   };
7297 
7298   SDVTList VTs = DAG.getVTList(ValueVTs);
7299   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7300 
7301   SDNodeFlags Flags;
7302   if (EB == fp::ExceptionBehavior::ebIgnore)
7303     Flags.setNoFPExcept(true);
7304 
7305   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7306     Flags.copyFMF(*FPOp);
7307 
7308   unsigned Opcode;
7309   switch (FPI.getIntrinsicID()) {
7310   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7311 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7312   case Intrinsic::INTRINSIC:                                                   \
7313     Opcode = ISD::STRICT_##DAGN;                                               \
7314     break;
7315 #include "llvm/IR/ConstrainedOps.def"
7316   case Intrinsic::experimental_constrained_fmuladd: {
7317     Opcode = ISD::STRICT_FMA;
7318     // Break fmuladd into fmul and fadd.
7319     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7320         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7321                                         ValueVTs[0])) {
7322       Opers.pop_back();
7323       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7324       pushOutChain(Mul, EB);
7325       Opcode = ISD::STRICT_FADD;
7326       Opers.clear();
7327       Opers.push_back(Mul.getValue(1));
7328       Opers.push_back(Mul.getValue(0));
7329       Opers.push_back(getValue(FPI.getArgOperand(2)));
7330     }
7331     break;
7332   }
7333   }
7334 
7335   // A few strict DAG nodes carry additional operands that are not
7336   // set up by the default code above.
7337   switch (Opcode) {
7338   default: break;
7339   case ISD::STRICT_FP_ROUND:
7340     Opers.push_back(
7341         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7342     break;
7343   case ISD::STRICT_FSETCC:
7344   case ISD::STRICT_FSETCCS: {
7345     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7346     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7347     if (TM.Options.NoNaNsFPMath)
7348       Condition = getFCmpCodeWithoutNaN(Condition);
7349     Opers.push_back(DAG.getCondCode(Condition));
7350     break;
7351   }
7352   }
7353 
7354   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7355   pushOutChain(Result, EB);
7356 
7357   SDValue FPResult = Result.getValue(0);
7358   setValue(&FPI, FPResult);
7359 }
7360 
7361 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7362   Optional<unsigned> ResOPC;
7363   switch (VPIntrin.getIntrinsicID()) {
7364 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7365   case Intrinsic::VPID:                                                        \
7366     ResOPC = ISD::VPSD;                                                        \
7367     break;
7368 #include "llvm/IR/VPIntrinsics.def"
7369   }
7370 
7371   if (!ResOPC)
7372     llvm_unreachable(
7373         "Inconsistency: no SDNode available for this VPIntrinsic!");
7374 
7375   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7376       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7377     if (VPIntrin.getFastMathFlags().allowReassoc())
7378       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7379                                                 : ISD::VP_REDUCE_FMUL;
7380   }
7381 
7382   return *ResOPC;
7383 }
7384 
7385 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7386                                             SmallVector<SDValue, 7> &OpValues,
7387                                             bool IsGather) {
7388   SDLoc DL = getCurSDLoc();
7389   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7390   Value *PtrOperand = VPIntrin.getArgOperand(0);
7391   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7392   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7393   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7394   SDValue LD;
7395   bool AddToChain = true;
7396   if (!IsGather) {
7397     // Do not serialize variable-length loads of constant memory with
7398     // anything.
7399     if (!Alignment)
7400       Alignment = DAG.getEVTAlign(VT);
7401     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7402     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7403     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7404     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7405         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7406         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7407     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7408                        MMO, false /*IsExpanding */);
7409   } else {
7410     if (!Alignment)
7411       Alignment = DAG.getEVTAlign(VT.getScalarType());
7412     unsigned AS =
7413         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7414     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7415         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7416         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7417     SDValue Base, Index, Scale;
7418     ISD::MemIndexType IndexType;
7419     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7420                                       this, VPIntrin.getParent(),
7421                                       VT.getScalarStoreSize());
7422     if (!UniformBase) {
7423       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7424       Index = getValue(PtrOperand);
7425       IndexType = ISD::SIGNED_SCALED;
7426       Scale =
7427           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7428     }
7429     EVT IdxVT = Index.getValueType();
7430     EVT EltTy = IdxVT.getVectorElementType();
7431     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7432       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7433       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7434     }
7435     LD = DAG.getGatherVP(
7436         DAG.getVTList(VT, MVT::Other), VT, DL,
7437         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7438         IndexType);
7439   }
7440   if (AddToChain)
7441     PendingLoads.push_back(LD.getValue(1));
7442   setValue(&VPIntrin, LD);
7443 }
7444 
7445 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7446                                               SmallVector<SDValue, 7> &OpValues,
7447                                               bool IsScatter) {
7448   SDLoc DL = getCurSDLoc();
7449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7450   Value *PtrOperand = VPIntrin.getArgOperand(1);
7451   EVT VT = OpValues[0].getValueType();
7452   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7453   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7454   SDValue ST;
7455   if (!IsScatter) {
7456     if (!Alignment)
7457       Alignment = DAG.getEVTAlign(VT);
7458     SDValue Ptr = OpValues[1];
7459     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7460     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7461         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7462         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7463     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7464                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7465                         /* IsTruncating */ false, /*IsCompressing*/ false);
7466   } else {
7467     if (!Alignment)
7468       Alignment = DAG.getEVTAlign(VT.getScalarType());
7469     unsigned AS =
7470         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7471     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7472         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7473         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7474     SDValue Base, Index, Scale;
7475     ISD::MemIndexType IndexType;
7476     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7477                                       this, VPIntrin.getParent(),
7478                                       VT.getScalarStoreSize());
7479     if (!UniformBase) {
7480       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7481       Index = getValue(PtrOperand);
7482       IndexType = ISD::SIGNED_SCALED;
7483       Scale =
7484           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7485     }
7486     EVT IdxVT = Index.getValueType();
7487     EVT EltTy = IdxVT.getVectorElementType();
7488     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7489       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7490       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7491     }
7492     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7493                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7494                            OpValues[2], OpValues[3]},
7495                           MMO, IndexType);
7496   }
7497   DAG.setRoot(ST);
7498   setValue(&VPIntrin, ST);
7499 }
7500 
7501 void SelectionDAGBuilder::visitVPStridedLoad(
7502     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7503   SDLoc DL = getCurSDLoc();
7504   Value *PtrOperand = VPIntrin.getArgOperand(0);
7505   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7506   if (!Alignment)
7507     Alignment = DAG.getEVTAlign(VT.getScalarType());
7508   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7509   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7510   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7511   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7512   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7513   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7514       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7515       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7516 
7517   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7518                                     OpValues[2], OpValues[3], MMO,
7519                                     false /*IsExpanding*/);
7520 
7521   if (AddToChain)
7522     PendingLoads.push_back(LD.getValue(1));
7523   setValue(&VPIntrin, LD);
7524 }
7525 
7526 void SelectionDAGBuilder::visitVPStridedStore(
7527     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7528   SDLoc DL = getCurSDLoc();
7529   Value *PtrOperand = VPIntrin.getArgOperand(1);
7530   EVT VT = OpValues[0].getValueType();
7531   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7532   if (!Alignment)
7533     Alignment = DAG.getEVTAlign(VT.getScalarType());
7534   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7535   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7536       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7537       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7538 
7539   SDValue ST = DAG.getStridedStoreVP(
7540       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7541       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7542       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7543       /*IsCompressing*/ false);
7544 
7545   DAG.setRoot(ST);
7546   setValue(&VPIntrin, ST);
7547 }
7548 
7549 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7551   SDLoc DL = getCurSDLoc();
7552 
7553   ISD::CondCode Condition;
7554   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7555   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7556   if (IsFP) {
7557     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7558     // flags, but calls that don't return floating-point types can't be
7559     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7560     Condition = getFCmpCondCode(CondCode);
7561     if (TM.Options.NoNaNsFPMath)
7562       Condition = getFCmpCodeWithoutNaN(Condition);
7563   } else {
7564     Condition = getICmpCondCode(CondCode);
7565   }
7566 
7567   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7568   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7569   // #2 is the condition code
7570   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7571   SDValue EVL = getValue(VPIntrin.getOperand(4));
7572   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7573   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7574          "Unexpected target EVL type");
7575   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7576 
7577   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7578                                                         VPIntrin.getType());
7579   setValue(&VPIntrin,
7580            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7581 }
7582 
7583 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7584     const VPIntrinsic &VPIntrin) {
7585   SDLoc DL = getCurSDLoc();
7586   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7587 
7588   auto IID = VPIntrin.getIntrinsicID();
7589 
7590   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7591     return visitVPCmp(*CmpI);
7592 
7593   SmallVector<EVT, 4> ValueVTs;
7594   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7595   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7596   SDVTList VTs = DAG.getVTList(ValueVTs);
7597 
7598   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7599 
7600   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7601   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7602          "Unexpected target EVL type");
7603 
7604   // Request operands.
7605   SmallVector<SDValue, 7> OpValues;
7606   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7607     auto Op = getValue(VPIntrin.getArgOperand(I));
7608     if (I == EVLParamPos)
7609       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7610     OpValues.push_back(Op);
7611   }
7612 
7613   switch (Opcode) {
7614   default: {
7615     SDNodeFlags SDFlags;
7616     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7617       SDFlags.copyFMF(*FPMO);
7618     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7619     setValue(&VPIntrin, Result);
7620     break;
7621   }
7622   case ISD::VP_LOAD:
7623   case ISD::VP_GATHER:
7624     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7625                       Opcode == ISD::VP_GATHER);
7626     break;
7627   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7628     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7629     break;
7630   case ISD::VP_STORE:
7631   case ISD::VP_SCATTER:
7632     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7633     break;
7634   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7635     visitVPStridedStore(VPIntrin, OpValues);
7636     break;
7637   }
7638 }
7639 
7640 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7641                                           const BasicBlock *EHPadBB,
7642                                           MCSymbol *&BeginLabel) {
7643   MachineFunction &MF = DAG.getMachineFunction();
7644   MachineModuleInfo &MMI = MF.getMMI();
7645 
7646   // Insert a label before the invoke call to mark the try range.  This can be
7647   // used to detect deletion of the invoke via the MachineModuleInfo.
7648   BeginLabel = MMI.getContext().createTempSymbol();
7649 
7650   // For SjLj, keep track of which landing pads go with which invokes
7651   // so as to maintain the ordering of pads in the LSDA.
7652   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7653   if (CallSiteIndex) {
7654     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7655     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7656 
7657     // Now that the call site is handled, stop tracking it.
7658     MMI.setCurrentCallSite(0);
7659   }
7660 
7661   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7662 }
7663 
7664 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7665                                         const BasicBlock *EHPadBB,
7666                                         MCSymbol *BeginLabel) {
7667   assert(BeginLabel && "BeginLabel should've been set");
7668 
7669   MachineFunction &MF = DAG.getMachineFunction();
7670   MachineModuleInfo &MMI = MF.getMMI();
7671 
7672   // Insert a label at the end of the invoke call to mark the try range.  This
7673   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7674   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7675   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7676 
7677   // Inform MachineModuleInfo of range.
7678   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7679   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7680   // actually use outlined funclets and their LSDA info style.
7681   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7682     assert(II && "II should've been set");
7683     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7684     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7685   } else if (!isScopedEHPersonality(Pers)) {
7686     assert(EHPadBB);
7687     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7688   }
7689 
7690   return Chain;
7691 }
7692 
7693 std::pair<SDValue, SDValue>
7694 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7695                                     const BasicBlock *EHPadBB) {
7696   MCSymbol *BeginLabel = nullptr;
7697 
7698   if (EHPadBB) {
7699     // Both PendingLoads and PendingExports must be flushed here;
7700     // this call might not return.
7701     (void)getRoot();
7702     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7703     CLI.setChain(getRoot());
7704   }
7705 
7706   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7707   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7708 
7709   assert((CLI.IsTailCall || Result.second.getNode()) &&
7710          "Non-null chain expected with non-tail call!");
7711   assert((Result.second.getNode() || !Result.first.getNode()) &&
7712          "Null value expected with tail call!");
7713 
7714   if (!Result.second.getNode()) {
7715     // As a special case, a null chain means that a tail call has been emitted
7716     // and the DAG root is already updated.
7717     HasTailCall = true;
7718 
7719     // Since there's no actual continuation from this block, nothing can be
7720     // relying on us setting vregs for them.
7721     PendingExports.clear();
7722   } else {
7723     DAG.setRoot(Result.second);
7724   }
7725 
7726   if (EHPadBB) {
7727     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7728                            BeginLabel));
7729   }
7730 
7731   return Result;
7732 }
7733 
7734 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7735                                       bool isTailCall,
7736                                       bool isMustTailCall,
7737                                       const BasicBlock *EHPadBB) {
7738   auto &DL = DAG.getDataLayout();
7739   FunctionType *FTy = CB.getFunctionType();
7740   Type *RetTy = CB.getType();
7741 
7742   TargetLowering::ArgListTy Args;
7743   Args.reserve(CB.arg_size());
7744 
7745   const Value *SwiftErrorVal = nullptr;
7746   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7747 
7748   if (isTailCall) {
7749     // Avoid emitting tail calls in functions with the disable-tail-calls
7750     // attribute.
7751     auto *Caller = CB.getParent()->getParent();
7752     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7753         "true" && !isMustTailCall)
7754       isTailCall = false;
7755 
7756     // We can't tail call inside a function with a swifterror argument. Lowering
7757     // does not support this yet. It would have to move into the swifterror
7758     // register before the call.
7759     if (TLI.supportSwiftError() &&
7760         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7761       isTailCall = false;
7762   }
7763 
7764   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7765     TargetLowering::ArgListEntry Entry;
7766     const Value *V = *I;
7767 
7768     // Skip empty types
7769     if (V->getType()->isEmptyTy())
7770       continue;
7771 
7772     SDValue ArgNode = getValue(V);
7773     Entry.Node = ArgNode; Entry.Ty = V->getType();
7774 
7775     Entry.setAttributes(&CB, I - CB.arg_begin());
7776 
7777     // Use swifterror virtual register as input to the call.
7778     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7779       SwiftErrorVal = V;
7780       // We find the virtual register for the actual swifterror argument.
7781       // Instead of using the Value, we use the virtual register instead.
7782       Entry.Node =
7783           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7784                           EVT(TLI.getPointerTy(DL)));
7785     }
7786 
7787     Args.push_back(Entry);
7788 
7789     // If we have an explicit sret argument that is an Instruction, (i.e., it
7790     // might point to function-local memory), we can't meaningfully tail-call.
7791     if (Entry.IsSRet && isa<Instruction>(V))
7792       isTailCall = false;
7793   }
7794 
7795   // If call site has a cfguardtarget operand bundle, create and add an
7796   // additional ArgListEntry.
7797   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7798     TargetLowering::ArgListEntry Entry;
7799     Value *V = Bundle->Inputs[0];
7800     SDValue ArgNode = getValue(V);
7801     Entry.Node = ArgNode;
7802     Entry.Ty = V->getType();
7803     Entry.IsCFGuardTarget = true;
7804     Args.push_back(Entry);
7805   }
7806 
7807   // Check if target-independent constraints permit a tail call here.
7808   // Target-dependent constraints are checked within TLI->LowerCallTo.
7809   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7810     isTailCall = false;
7811 
7812   // Disable tail calls if there is an swifterror argument. Targets have not
7813   // been updated to support tail calls.
7814   if (TLI.supportSwiftError() && SwiftErrorVal)
7815     isTailCall = false;
7816 
7817   TargetLowering::CallLoweringInfo CLI(DAG);
7818   CLI.setDebugLoc(getCurSDLoc())
7819       .setChain(getRoot())
7820       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7821       .setTailCall(isTailCall)
7822       .setConvergent(CB.isConvergent())
7823       .setIsPreallocated(
7824           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7825   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7826 
7827   if (Result.first.getNode()) {
7828     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7829     setValue(&CB, Result.first);
7830   }
7831 
7832   // The last element of CLI.InVals has the SDValue for swifterror return.
7833   // Here we copy it to a virtual register and update SwiftErrorMap for
7834   // book-keeping.
7835   if (SwiftErrorVal && TLI.supportSwiftError()) {
7836     // Get the last element of InVals.
7837     SDValue Src = CLI.InVals.back();
7838     Register VReg =
7839         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7840     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7841     DAG.setRoot(CopyNode);
7842   }
7843 }
7844 
7845 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7846                              SelectionDAGBuilder &Builder) {
7847   // Check to see if this load can be trivially constant folded, e.g. if the
7848   // input is from a string literal.
7849   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7850     // Cast pointer to the type we really want to load.
7851     Type *LoadTy =
7852         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7853     if (LoadVT.isVector())
7854       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7855 
7856     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7857                                          PointerType::getUnqual(LoadTy));
7858 
7859     if (const Constant *LoadCst =
7860             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7861                                          LoadTy, Builder.DAG.getDataLayout()))
7862       return Builder.getValue(LoadCst);
7863   }
7864 
7865   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7866   // still constant memory, the input chain can be the entry node.
7867   SDValue Root;
7868   bool ConstantMemory = false;
7869 
7870   // Do not serialize (non-volatile) loads of constant memory with anything.
7871   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7872     Root = Builder.DAG.getEntryNode();
7873     ConstantMemory = true;
7874   } else {
7875     // Do not serialize non-volatile loads against each other.
7876     Root = Builder.DAG.getRoot();
7877   }
7878 
7879   SDValue Ptr = Builder.getValue(PtrVal);
7880   SDValue LoadVal =
7881       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7882                           MachinePointerInfo(PtrVal), Align(1));
7883 
7884   if (!ConstantMemory)
7885     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7886   return LoadVal;
7887 }
7888 
7889 /// Record the value for an instruction that produces an integer result,
7890 /// converting the type where necessary.
7891 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7892                                                   SDValue Value,
7893                                                   bool IsSigned) {
7894   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7895                                                     I.getType(), true);
7896   if (IsSigned)
7897     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7898   else
7899     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7900   setValue(&I, Value);
7901 }
7902 
7903 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7904 /// true and lower it. Otherwise return false, and it will be lowered like a
7905 /// normal call.
7906 /// The caller already checked that \p I calls the appropriate LibFunc with a
7907 /// correct prototype.
7908 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7909   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7910   const Value *Size = I.getArgOperand(2);
7911   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
7912   if (CSize && CSize->getZExtValue() == 0) {
7913     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7914                                                           I.getType(), true);
7915     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7916     return true;
7917   }
7918 
7919   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7920   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7921       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7922       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7923   if (Res.first.getNode()) {
7924     processIntegerCallValue(I, Res.first, true);
7925     PendingLoads.push_back(Res.second);
7926     return true;
7927   }
7928 
7929   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7930   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7931   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7932     return false;
7933 
7934   // If the target has a fast compare for the given size, it will return a
7935   // preferred load type for that size. Require that the load VT is legal and
7936   // that the target supports unaligned loads of that type. Otherwise, return
7937   // INVALID.
7938   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7939     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7940     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7941     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7942       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7943       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7944       // TODO: Check alignment of src and dest ptrs.
7945       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7946       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7947       if (!TLI.isTypeLegal(LVT) ||
7948           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7949           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7950         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7951     }
7952 
7953     return LVT;
7954   };
7955 
7956   // This turns into unaligned loads. We only do this if the target natively
7957   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7958   // we'll only produce a small number of byte loads.
7959   MVT LoadVT;
7960   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7961   switch (NumBitsToCompare) {
7962   default:
7963     return false;
7964   case 16:
7965     LoadVT = MVT::i16;
7966     break;
7967   case 32:
7968     LoadVT = MVT::i32;
7969     break;
7970   case 64:
7971   case 128:
7972   case 256:
7973     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7974     break;
7975   }
7976 
7977   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7978     return false;
7979 
7980   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7981   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7982 
7983   // Bitcast to a wide integer type if the loads are vectors.
7984   if (LoadVT.isVector()) {
7985     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7986     LoadL = DAG.getBitcast(CmpVT, LoadL);
7987     LoadR = DAG.getBitcast(CmpVT, LoadR);
7988   }
7989 
7990   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7991   processIntegerCallValue(I, Cmp, false);
7992   return true;
7993 }
7994 
7995 /// See if we can lower a memchr call into an optimized form. If so, return
7996 /// true and lower it. Otherwise return false, and it will be lowered like a
7997 /// normal call.
7998 /// The caller already checked that \p I calls the appropriate LibFunc with a
7999 /// correct prototype.
8000 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8001   const Value *Src = I.getArgOperand(0);
8002   const Value *Char = I.getArgOperand(1);
8003   const Value *Length = I.getArgOperand(2);
8004 
8005   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8006   std::pair<SDValue, SDValue> Res =
8007     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8008                                 getValue(Src), getValue(Char), getValue(Length),
8009                                 MachinePointerInfo(Src));
8010   if (Res.first.getNode()) {
8011     setValue(&I, Res.first);
8012     PendingLoads.push_back(Res.second);
8013     return true;
8014   }
8015 
8016   return false;
8017 }
8018 
8019 /// See if we can lower a mempcpy call into an optimized form. If so, return
8020 /// true and lower it. Otherwise return false, and it will be lowered like a
8021 /// normal call.
8022 /// The caller already checked that \p I calls the appropriate LibFunc with a
8023 /// correct prototype.
8024 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8025   SDValue Dst = getValue(I.getArgOperand(0));
8026   SDValue Src = getValue(I.getArgOperand(1));
8027   SDValue Size = getValue(I.getArgOperand(2));
8028 
8029   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8030   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8031   // DAG::getMemcpy needs Alignment to be defined.
8032   Align Alignment = std::min(DstAlign, SrcAlign);
8033 
8034   bool isVol = false;
8035   SDLoc sdl = getCurSDLoc();
8036 
8037   // In the mempcpy context we need to pass in a false value for isTailCall
8038   // because the return pointer needs to be adjusted by the size of
8039   // the copied memory.
8040   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8041   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8042                              /*isTailCall=*/false,
8043                              MachinePointerInfo(I.getArgOperand(0)),
8044                              MachinePointerInfo(I.getArgOperand(1)),
8045                              I.getAAMetadata());
8046   assert(MC.getNode() != nullptr &&
8047          "** memcpy should not be lowered as TailCall in mempcpy context **");
8048   DAG.setRoot(MC);
8049 
8050   // Check if Size needs to be truncated or extended.
8051   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8052 
8053   // Adjust return pointer to point just past the last dst byte.
8054   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8055                                     Dst, Size);
8056   setValue(&I, DstPlusSize);
8057   return true;
8058 }
8059 
8060 /// See if we can lower a strcpy call into an optimized form.  If so, return
8061 /// true and lower it, otherwise return false and it will be lowered like a
8062 /// normal call.
8063 /// The caller already checked that \p I calls the appropriate LibFunc with a
8064 /// correct prototype.
8065 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8066   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8067 
8068   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8069   std::pair<SDValue, SDValue> Res =
8070     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8071                                 getValue(Arg0), getValue(Arg1),
8072                                 MachinePointerInfo(Arg0),
8073                                 MachinePointerInfo(Arg1), isStpcpy);
8074   if (Res.first.getNode()) {
8075     setValue(&I, Res.first);
8076     DAG.setRoot(Res.second);
8077     return true;
8078   }
8079 
8080   return false;
8081 }
8082 
8083 /// See if we can lower a strcmp call into an optimized form.  If so, return
8084 /// true and lower it, otherwise return false and it will be lowered like a
8085 /// normal call.
8086 /// The caller already checked that \p I calls the appropriate LibFunc with a
8087 /// correct prototype.
8088 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8089   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8090 
8091   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8092   std::pair<SDValue, SDValue> Res =
8093     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8094                                 getValue(Arg0), getValue(Arg1),
8095                                 MachinePointerInfo(Arg0),
8096                                 MachinePointerInfo(Arg1));
8097   if (Res.first.getNode()) {
8098     processIntegerCallValue(I, Res.first, true);
8099     PendingLoads.push_back(Res.second);
8100     return true;
8101   }
8102 
8103   return false;
8104 }
8105 
8106 /// See if we can lower a strlen call into an optimized form.  If so, return
8107 /// true and lower it, otherwise return false and it will be lowered like a
8108 /// normal call.
8109 /// The caller already checked that \p I calls the appropriate LibFunc with a
8110 /// correct prototype.
8111 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8112   const Value *Arg0 = I.getArgOperand(0);
8113 
8114   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8115   std::pair<SDValue, SDValue> Res =
8116     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8117                                 getValue(Arg0), MachinePointerInfo(Arg0));
8118   if (Res.first.getNode()) {
8119     processIntegerCallValue(I, Res.first, false);
8120     PendingLoads.push_back(Res.second);
8121     return true;
8122   }
8123 
8124   return false;
8125 }
8126 
8127 /// See if we can lower a strnlen call into an optimized form.  If so, return
8128 /// true and lower it, otherwise return false and it will be lowered like a
8129 /// normal call.
8130 /// The caller already checked that \p I calls the appropriate LibFunc with a
8131 /// correct prototype.
8132 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8133   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8134 
8135   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8136   std::pair<SDValue, SDValue> Res =
8137     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8138                                  getValue(Arg0), getValue(Arg1),
8139                                  MachinePointerInfo(Arg0));
8140   if (Res.first.getNode()) {
8141     processIntegerCallValue(I, Res.first, false);
8142     PendingLoads.push_back(Res.second);
8143     return true;
8144   }
8145 
8146   return false;
8147 }
8148 
8149 /// See if we can lower a unary floating-point operation into an SDNode with
8150 /// the specified Opcode.  If so, return true and lower it, otherwise return
8151 /// false and it will be lowered like a normal call.
8152 /// The caller already checked that \p I calls the appropriate LibFunc with a
8153 /// correct prototype.
8154 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8155                                               unsigned Opcode) {
8156   // We already checked this call's prototype; verify it doesn't modify errno.
8157   if (!I.onlyReadsMemory())
8158     return false;
8159 
8160   SDNodeFlags Flags;
8161   Flags.copyFMF(cast<FPMathOperator>(I));
8162 
8163   SDValue Tmp = getValue(I.getArgOperand(0));
8164   setValue(&I,
8165            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8166   return true;
8167 }
8168 
8169 /// See if we can lower a binary floating-point operation into an SDNode with
8170 /// the specified Opcode. If so, return true and lower it. Otherwise return
8171 /// false, and it will be lowered like a normal call.
8172 /// The caller already checked that \p I calls the appropriate LibFunc with a
8173 /// correct prototype.
8174 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8175                                                unsigned Opcode) {
8176   // We already checked this call's prototype; verify it doesn't modify errno.
8177   if (!I.onlyReadsMemory())
8178     return false;
8179 
8180   SDNodeFlags Flags;
8181   Flags.copyFMF(cast<FPMathOperator>(I));
8182 
8183   SDValue Tmp0 = getValue(I.getArgOperand(0));
8184   SDValue Tmp1 = getValue(I.getArgOperand(1));
8185   EVT VT = Tmp0.getValueType();
8186   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8187   return true;
8188 }
8189 
8190 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8191   // Handle inline assembly differently.
8192   if (I.isInlineAsm()) {
8193     visitInlineAsm(I);
8194     return;
8195   }
8196 
8197   if (Function *F = I.getCalledFunction()) {
8198     diagnoseDontCall(I);
8199 
8200     if (F->isDeclaration()) {
8201       // Is this an LLVM intrinsic or a target-specific intrinsic?
8202       unsigned IID = F->getIntrinsicID();
8203       if (!IID)
8204         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8205           IID = II->getIntrinsicID(F);
8206 
8207       if (IID) {
8208         visitIntrinsicCall(I, IID);
8209         return;
8210       }
8211     }
8212 
8213     // Check for well-known libc/libm calls.  If the function is internal, it
8214     // can't be a library call.  Don't do the check if marked as nobuiltin for
8215     // some reason or the call site requires strict floating point semantics.
8216     LibFunc Func;
8217     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8218         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8219         LibInfo->hasOptimizedCodeGen(Func)) {
8220       switch (Func) {
8221       default: break;
8222       case LibFunc_bcmp:
8223         if (visitMemCmpBCmpCall(I))
8224           return;
8225         break;
8226       case LibFunc_copysign:
8227       case LibFunc_copysignf:
8228       case LibFunc_copysignl:
8229         // We already checked this call's prototype; verify it doesn't modify
8230         // errno.
8231         if (I.onlyReadsMemory()) {
8232           SDValue LHS = getValue(I.getArgOperand(0));
8233           SDValue RHS = getValue(I.getArgOperand(1));
8234           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8235                                    LHS.getValueType(), LHS, RHS));
8236           return;
8237         }
8238         break;
8239       case LibFunc_fabs:
8240       case LibFunc_fabsf:
8241       case LibFunc_fabsl:
8242         if (visitUnaryFloatCall(I, ISD::FABS))
8243           return;
8244         break;
8245       case LibFunc_fmin:
8246       case LibFunc_fminf:
8247       case LibFunc_fminl:
8248         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8249           return;
8250         break;
8251       case LibFunc_fmax:
8252       case LibFunc_fmaxf:
8253       case LibFunc_fmaxl:
8254         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8255           return;
8256         break;
8257       case LibFunc_sin:
8258       case LibFunc_sinf:
8259       case LibFunc_sinl:
8260         if (visitUnaryFloatCall(I, ISD::FSIN))
8261           return;
8262         break;
8263       case LibFunc_cos:
8264       case LibFunc_cosf:
8265       case LibFunc_cosl:
8266         if (visitUnaryFloatCall(I, ISD::FCOS))
8267           return;
8268         break;
8269       case LibFunc_sqrt:
8270       case LibFunc_sqrtf:
8271       case LibFunc_sqrtl:
8272       case LibFunc_sqrt_finite:
8273       case LibFunc_sqrtf_finite:
8274       case LibFunc_sqrtl_finite:
8275         if (visitUnaryFloatCall(I, ISD::FSQRT))
8276           return;
8277         break;
8278       case LibFunc_floor:
8279       case LibFunc_floorf:
8280       case LibFunc_floorl:
8281         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8282           return;
8283         break;
8284       case LibFunc_nearbyint:
8285       case LibFunc_nearbyintf:
8286       case LibFunc_nearbyintl:
8287         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8288           return;
8289         break;
8290       case LibFunc_ceil:
8291       case LibFunc_ceilf:
8292       case LibFunc_ceill:
8293         if (visitUnaryFloatCall(I, ISD::FCEIL))
8294           return;
8295         break;
8296       case LibFunc_rint:
8297       case LibFunc_rintf:
8298       case LibFunc_rintl:
8299         if (visitUnaryFloatCall(I, ISD::FRINT))
8300           return;
8301         break;
8302       case LibFunc_round:
8303       case LibFunc_roundf:
8304       case LibFunc_roundl:
8305         if (visitUnaryFloatCall(I, ISD::FROUND))
8306           return;
8307         break;
8308       case LibFunc_trunc:
8309       case LibFunc_truncf:
8310       case LibFunc_truncl:
8311         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8312           return;
8313         break;
8314       case LibFunc_log2:
8315       case LibFunc_log2f:
8316       case LibFunc_log2l:
8317         if (visitUnaryFloatCall(I, ISD::FLOG2))
8318           return;
8319         break;
8320       case LibFunc_exp2:
8321       case LibFunc_exp2f:
8322       case LibFunc_exp2l:
8323         if (visitUnaryFloatCall(I, ISD::FEXP2))
8324           return;
8325         break;
8326       case LibFunc_memcmp:
8327         if (visitMemCmpBCmpCall(I))
8328           return;
8329         break;
8330       case LibFunc_mempcpy:
8331         if (visitMemPCpyCall(I))
8332           return;
8333         break;
8334       case LibFunc_memchr:
8335         if (visitMemChrCall(I))
8336           return;
8337         break;
8338       case LibFunc_strcpy:
8339         if (visitStrCpyCall(I, false))
8340           return;
8341         break;
8342       case LibFunc_stpcpy:
8343         if (visitStrCpyCall(I, true))
8344           return;
8345         break;
8346       case LibFunc_strcmp:
8347         if (visitStrCmpCall(I))
8348           return;
8349         break;
8350       case LibFunc_strlen:
8351         if (visitStrLenCall(I))
8352           return;
8353         break;
8354       case LibFunc_strnlen:
8355         if (visitStrNLenCall(I))
8356           return;
8357         break;
8358       }
8359     }
8360   }
8361 
8362   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8363   // have to do anything here to lower funclet bundles.
8364   // CFGuardTarget bundles are lowered in LowerCallTo.
8365   assert(!I.hasOperandBundlesOtherThan(
8366              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8367               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8368               LLVMContext::OB_clang_arc_attachedcall}) &&
8369          "Cannot lower calls with arbitrary operand bundles!");
8370 
8371   SDValue Callee = getValue(I.getCalledOperand());
8372 
8373   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8374     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8375   else
8376     // Check if we can potentially perform a tail call. More detailed checking
8377     // is be done within LowerCallTo, after more information about the call is
8378     // known.
8379     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8380 }
8381 
8382 namespace {
8383 
8384 /// AsmOperandInfo - This contains information for each constraint that we are
8385 /// lowering.
8386 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8387 public:
8388   /// CallOperand - If this is the result output operand or a clobber
8389   /// this is null, otherwise it is the incoming operand to the CallInst.
8390   /// This gets modified as the asm is processed.
8391   SDValue CallOperand;
8392 
8393   /// AssignedRegs - If this is a register or register class operand, this
8394   /// contains the set of register corresponding to the operand.
8395   RegsForValue AssignedRegs;
8396 
8397   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8398     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8399   }
8400 
8401   /// Whether or not this operand accesses memory
8402   bool hasMemory(const TargetLowering &TLI) const {
8403     // Indirect operand accesses access memory.
8404     if (isIndirect)
8405       return true;
8406 
8407     for (const auto &Code : Codes)
8408       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8409         return true;
8410 
8411     return false;
8412   }
8413 
8414   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8415   /// corresponds to.  If there is no Value* for this operand, it returns
8416   /// MVT::Other.
8417   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8418                            const DataLayout &DL,
8419                            llvm::Type *ParamElemType) const {
8420     if (!CallOperandVal) return MVT::Other;
8421 
8422     if (isa<BasicBlock>(CallOperandVal))
8423       return TLI.getProgramPointerTy(DL);
8424 
8425     llvm::Type *OpTy = CallOperandVal->getType();
8426 
8427     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8428     // If this is an indirect operand, the operand is a pointer to the
8429     // accessed type.
8430     if (isIndirect) {
8431       OpTy = ParamElemType;
8432       assert(OpTy && "Indirect operand must have elementtype attribute");
8433     }
8434 
8435     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8436     if (StructType *STy = dyn_cast<StructType>(OpTy))
8437       if (STy->getNumElements() == 1)
8438         OpTy = STy->getElementType(0);
8439 
8440     // If OpTy is not a single value, it may be a struct/union that we
8441     // can tile with integers.
8442     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8443       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8444       switch (BitSize) {
8445       default: break;
8446       case 1:
8447       case 8:
8448       case 16:
8449       case 32:
8450       case 64:
8451       case 128:
8452         OpTy = IntegerType::get(Context, BitSize);
8453         break;
8454       }
8455     }
8456 
8457     return TLI.getAsmOperandValueType(DL, OpTy, true);
8458   }
8459 };
8460 
8461 
8462 } // end anonymous namespace
8463 
8464 /// Make sure that the output operand \p OpInfo and its corresponding input
8465 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8466 /// out).
8467 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8468                                SDISelAsmOperandInfo &MatchingOpInfo,
8469                                SelectionDAG &DAG) {
8470   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8471     return;
8472 
8473   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8474   const auto &TLI = DAG.getTargetLoweringInfo();
8475 
8476   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8477       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8478                                        OpInfo.ConstraintVT);
8479   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8480       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8481                                        MatchingOpInfo.ConstraintVT);
8482   if ((OpInfo.ConstraintVT.isInteger() !=
8483        MatchingOpInfo.ConstraintVT.isInteger()) ||
8484       (MatchRC.second != InputRC.second)) {
8485     // FIXME: error out in a more elegant fashion
8486     report_fatal_error("Unsupported asm: input constraint"
8487                        " with a matching output constraint of"
8488                        " incompatible type!");
8489   }
8490   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8491 }
8492 
8493 /// Get a direct memory input to behave well as an indirect operand.
8494 /// This may introduce stores, hence the need for a \p Chain.
8495 /// \return The (possibly updated) chain.
8496 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8497                                         SDISelAsmOperandInfo &OpInfo,
8498                                         SelectionDAG &DAG) {
8499   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8500 
8501   // If we don't have an indirect input, put it in the constpool if we can,
8502   // otherwise spill it to a stack slot.
8503   // TODO: This isn't quite right. We need to handle these according to
8504   // the addressing mode that the constraint wants. Also, this may take
8505   // an additional register for the computation and we don't want that
8506   // either.
8507 
8508   // If the operand is a float, integer, or vector constant, spill to a
8509   // constant pool entry to get its address.
8510   const Value *OpVal = OpInfo.CallOperandVal;
8511   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8512       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8513     OpInfo.CallOperand = DAG.getConstantPool(
8514         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8515     return Chain;
8516   }
8517 
8518   // Otherwise, create a stack slot and emit a store to it before the asm.
8519   Type *Ty = OpVal->getType();
8520   auto &DL = DAG.getDataLayout();
8521   uint64_t TySize = DL.getTypeAllocSize(Ty);
8522   MachineFunction &MF = DAG.getMachineFunction();
8523   int SSFI = MF.getFrameInfo().CreateStackObject(
8524       TySize, DL.getPrefTypeAlign(Ty), false);
8525   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8526   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8527                             MachinePointerInfo::getFixedStack(MF, SSFI),
8528                             TLI.getMemValueType(DL, Ty));
8529   OpInfo.CallOperand = StackSlot;
8530 
8531   return Chain;
8532 }
8533 
8534 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8535 /// specified operand.  We prefer to assign virtual registers, to allow the
8536 /// register allocator to handle the assignment process.  However, if the asm
8537 /// uses features that we can't model on machineinstrs, we have SDISel do the
8538 /// allocation.  This produces generally horrible, but correct, code.
8539 ///
8540 ///   OpInfo describes the operand
8541 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8542 static llvm::Optional<unsigned>
8543 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8544                      SDISelAsmOperandInfo &OpInfo,
8545                      SDISelAsmOperandInfo &RefOpInfo) {
8546   LLVMContext &Context = *DAG.getContext();
8547   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8548 
8549   MachineFunction &MF = DAG.getMachineFunction();
8550   SmallVector<unsigned, 4> Regs;
8551   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8552 
8553   // No work to do for memory/address operands.
8554   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8555       OpInfo.ConstraintType == TargetLowering::C_Address)
8556     return None;
8557 
8558   // If this is a constraint for a single physreg, or a constraint for a
8559   // register class, find it.
8560   unsigned AssignedReg;
8561   const TargetRegisterClass *RC;
8562   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8563       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8564   // RC is unset only on failure. Return immediately.
8565   if (!RC)
8566     return None;
8567 
8568   // Get the actual register value type.  This is important, because the user
8569   // may have asked for (e.g.) the AX register in i32 type.  We need to
8570   // remember that AX is actually i16 to get the right extension.
8571   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8572 
8573   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8574     // If this is an FP operand in an integer register (or visa versa), or more
8575     // generally if the operand value disagrees with the register class we plan
8576     // to stick it in, fix the operand type.
8577     //
8578     // If this is an input value, the bitcast to the new type is done now.
8579     // Bitcast for output value is done at the end of visitInlineAsm().
8580     if ((OpInfo.Type == InlineAsm::isOutput ||
8581          OpInfo.Type == InlineAsm::isInput) &&
8582         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8583       // Try to convert to the first EVT that the reg class contains.  If the
8584       // types are identical size, use a bitcast to convert (e.g. two differing
8585       // vector types).  Note: output bitcast is done at the end of
8586       // visitInlineAsm().
8587       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8588         // Exclude indirect inputs while they are unsupported because the code
8589         // to perform the load is missing and thus OpInfo.CallOperand still
8590         // refers to the input address rather than the pointed-to value.
8591         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8592           OpInfo.CallOperand =
8593               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8594         OpInfo.ConstraintVT = RegVT;
8595         // If the operand is an FP value and we want it in integer registers,
8596         // use the corresponding integer type. This turns an f64 value into
8597         // i64, which can be passed with two i32 values on a 32-bit machine.
8598       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8599         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8600         if (OpInfo.Type == InlineAsm::isInput)
8601           OpInfo.CallOperand =
8602               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8603         OpInfo.ConstraintVT = VT;
8604       }
8605     }
8606   }
8607 
8608   // No need to allocate a matching input constraint since the constraint it's
8609   // matching to has already been allocated.
8610   if (OpInfo.isMatchingInputConstraint())
8611     return None;
8612 
8613   EVT ValueVT = OpInfo.ConstraintVT;
8614   if (OpInfo.ConstraintVT == MVT::Other)
8615     ValueVT = RegVT;
8616 
8617   // Initialize NumRegs.
8618   unsigned NumRegs = 1;
8619   if (OpInfo.ConstraintVT != MVT::Other)
8620     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8621 
8622   // If this is a constraint for a specific physical register, like {r17},
8623   // assign it now.
8624 
8625   // If this associated to a specific register, initialize iterator to correct
8626   // place. If virtual, make sure we have enough registers
8627 
8628   // Initialize iterator if necessary
8629   TargetRegisterClass::iterator I = RC->begin();
8630   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8631 
8632   // Do not check for single registers.
8633   if (AssignedReg) {
8634     I = std::find(I, RC->end(), AssignedReg);
8635     if (I == RC->end()) {
8636       // RC does not contain the selected register, which indicates a
8637       // mismatch between the register and the required type/bitwidth.
8638       return {AssignedReg};
8639     }
8640   }
8641 
8642   for (; NumRegs; --NumRegs, ++I) {
8643     assert(I != RC->end() && "Ran out of registers to allocate!");
8644     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8645     Regs.push_back(R);
8646   }
8647 
8648   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8649   return None;
8650 }
8651 
8652 static unsigned
8653 findMatchingInlineAsmOperand(unsigned OperandNo,
8654                              const std::vector<SDValue> &AsmNodeOperands) {
8655   // Scan until we find the definition we already emitted of this operand.
8656   unsigned CurOp = InlineAsm::Op_FirstOperand;
8657   for (; OperandNo; --OperandNo) {
8658     // Advance to the next operand.
8659     unsigned OpFlag =
8660         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8661     assert((InlineAsm::isRegDefKind(OpFlag) ||
8662             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8663             InlineAsm::isMemKind(OpFlag)) &&
8664            "Skipped past definitions?");
8665     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8666   }
8667   return CurOp;
8668 }
8669 
8670 namespace {
8671 
8672 class ExtraFlags {
8673   unsigned Flags = 0;
8674 
8675 public:
8676   explicit ExtraFlags(const CallBase &Call) {
8677     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8678     if (IA->hasSideEffects())
8679       Flags |= InlineAsm::Extra_HasSideEffects;
8680     if (IA->isAlignStack())
8681       Flags |= InlineAsm::Extra_IsAlignStack;
8682     if (Call.isConvergent())
8683       Flags |= InlineAsm::Extra_IsConvergent;
8684     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8685   }
8686 
8687   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8688     // Ideally, we would only check against memory constraints.  However, the
8689     // meaning of an Other constraint can be target-specific and we can't easily
8690     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8691     // for Other constraints as well.
8692     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8693         OpInfo.ConstraintType == TargetLowering::C_Other) {
8694       if (OpInfo.Type == InlineAsm::isInput)
8695         Flags |= InlineAsm::Extra_MayLoad;
8696       else if (OpInfo.Type == InlineAsm::isOutput)
8697         Flags |= InlineAsm::Extra_MayStore;
8698       else if (OpInfo.Type == InlineAsm::isClobber)
8699         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8700     }
8701   }
8702 
8703   unsigned get() const { return Flags; }
8704 };
8705 
8706 } // end anonymous namespace
8707 
8708 /// visitInlineAsm - Handle a call to an InlineAsm object.
8709 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8710                                          const BasicBlock *EHPadBB) {
8711   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8712 
8713   /// ConstraintOperands - Information about all of the constraints.
8714   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8715 
8716   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8717   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8718       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8719 
8720   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8721   // AsmDialect, MayLoad, MayStore).
8722   bool HasSideEffect = IA->hasSideEffects();
8723   ExtraFlags ExtraInfo(Call);
8724 
8725   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8726   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8727   for (auto &T : TargetConstraints) {
8728     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8729     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8730 
8731     // Compute the value type for each operand.
8732     if (OpInfo.hasArg()) {
8733       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
8734       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8735       Type *ParamElemTy = Call.getParamElementType(ArgNo);
8736       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8737                                            DAG.getDataLayout(), ParamElemTy);
8738       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8739       ArgNo++;
8740     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8741       // The return value of the call is this value.  As such, there is no
8742       // corresponding argument.
8743       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8744       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8745         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8746             DAG.getDataLayout(), STy->getElementType(ResNo));
8747       } else {
8748         assert(ResNo == 0 && "Asm only has one result!");
8749         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8750             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8751       }
8752       ++ResNo;
8753     } else {
8754       OpInfo.ConstraintVT = MVT::Other;
8755     }
8756 
8757     if (!HasSideEffect)
8758       HasSideEffect = OpInfo.hasMemory(TLI);
8759 
8760     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8761     // FIXME: Could we compute this on OpInfo rather than T?
8762 
8763     // Compute the constraint code and ConstraintType to use.
8764     TLI.ComputeConstraintToUse(T, SDValue());
8765 
8766     if (T.ConstraintType == TargetLowering::C_Immediate &&
8767         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8768       // We've delayed emitting a diagnostic like the "n" constraint because
8769       // inlining could cause an integer showing up.
8770       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8771                                           "' expects an integer constant "
8772                                           "expression");
8773 
8774     ExtraInfo.update(T);
8775   }
8776 
8777   // We won't need to flush pending loads if this asm doesn't touch
8778   // memory and is nonvolatile.
8779   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8780 
8781   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8782   if (EmitEHLabels) {
8783     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8784   }
8785   bool IsCallBr = isa<CallBrInst>(Call);
8786 
8787   if (IsCallBr || EmitEHLabels) {
8788     // If this is a callbr or invoke we need to flush pending exports since
8789     // inlineasm_br and invoke are terminators.
8790     // We need to do this before nodes are glued to the inlineasm_br node.
8791     Chain = getControlRoot();
8792   }
8793 
8794   MCSymbol *BeginLabel = nullptr;
8795   if (EmitEHLabels) {
8796     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8797   }
8798 
8799   // Second pass over the constraints: compute which constraint option to use.
8800   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8801     // If this is an output operand with a matching input operand, look up the
8802     // matching input. If their types mismatch, e.g. one is an integer, the
8803     // other is floating point, or their sizes are different, flag it as an
8804     // error.
8805     if (OpInfo.hasMatchingInput()) {
8806       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8807       patchMatchingInput(OpInfo, Input, DAG);
8808     }
8809 
8810     // Compute the constraint code and ConstraintType to use.
8811     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8812 
8813     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8814          OpInfo.Type == InlineAsm::isClobber) ||
8815         OpInfo.ConstraintType == TargetLowering::C_Address)
8816       continue;
8817 
8818     // If this is a memory input, and if the operand is not indirect, do what we
8819     // need to provide an address for the memory input.
8820     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8821         !OpInfo.isIndirect) {
8822       assert((OpInfo.isMultipleAlternative ||
8823               (OpInfo.Type == InlineAsm::isInput)) &&
8824              "Can only indirectify direct input operands!");
8825 
8826       // Memory operands really want the address of the value.
8827       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8828 
8829       // There is no longer a Value* corresponding to this operand.
8830       OpInfo.CallOperandVal = nullptr;
8831 
8832       // It is now an indirect operand.
8833       OpInfo.isIndirect = true;
8834     }
8835 
8836   }
8837 
8838   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8839   std::vector<SDValue> AsmNodeOperands;
8840   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8841   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8842       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8843 
8844   // If we have a !srcloc metadata node associated with it, we want to attach
8845   // this to the ultimately generated inline asm machineinstr.  To do this, we
8846   // pass in the third operand as this (potentially null) inline asm MDNode.
8847   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8848   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8849 
8850   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8851   // bits as operand 3.
8852   AsmNodeOperands.push_back(DAG.getTargetConstant(
8853       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8854 
8855   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8856   // this, assign virtual and physical registers for inputs and otput.
8857   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8858     // Assign Registers.
8859     SDISelAsmOperandInfo &RefOpInfo =
8860         OpInfo.isMatchingInputConstraint()
8861             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8862             : OpInfo;
8863     const auto RegError =
8864         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8865     if (RegError) {
8866       const MachineFunction &MF = DAG.getMachineFunction();
8867       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8868       const char *RegName = TRI.getName(RegError.getValue());
8869       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8870                                    "' allocated for constraint '" +
8871                                    Twine(OpInfo.ConstraintCode) +
8872                                    "' does not match required type");
8873       return;
8874     }
8875 
8876     auto DetectWriteToReservedRegister = [&]() {
8877       const MachineFunction &MF = DAG.getMachineFunction();
8878       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8879       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8880         if (Register::isPhysicalRegister(Reg) &&
8881             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8882           const char *RegName = TRI.getName(Reg);
8883           emitInlineAsmError(Call, "write to reserved register '" +
8884                                        Twine(RegName) + "'");
8885           return true;
8886         }
8887       }
8888       return false;
8889     };
8890     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8891             (OpInfo.Type == InlineAsm::isInput &&
8892              !OpInfo.isMatchingInputConstraint())) &&
8893            "Only address as input operand is allowed.");
8894 
8895     switch (OpInfo.Type) {
8896     case InlineAsm::isOutput:
8897       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8898         unsigned ConstraintID =
8899             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8900         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8901                "Failed to convert memory constraint code to constraint id.");
8902 
8903         // Add information to the INLINEASM node to know about this output.
8904         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8905         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8906         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8907                                                         MVT::i32));
8908         AsmNodeOperands.push_back(OpInfo.CallOperand);
8909       } else {
8910         // Otherwise, this outputs to a register (directly for C_Register /
8911         // C_RegisterClass, and a target-defined fashion for
8912         // C_Immediate/C_Other). Find a register that we can use.
8913         if (OpInfo.AssignedRegs.Regs.empty()) {
8914           emitInlineAsmError(
8915               Call, "couldn't allocate output register for constraint '" +
8916                         Twine(OpInfo.ConstraintCode) + "'");
8917           return;
8918         }
8919 
8920         if (DetectWriteToReservedRegister())
8921           return;
8922 
8923         // Add information to the INLINEASM node to know that this register is
8924         // set.
8925         OpInfo.AssignedRegs.AddInlineAsmOperands(
8926             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8927                                   : InlineAsm::Kind_RegDef,
8928             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8929       }
8930       break;
8931 
8932     case InlineAsm::isInput: {
8933       SDValue InOperandVal = OpInfo.CallOperand;
8934 
8935       if (OpInfo.isMatchingInputConstraint()) {
8936         // If this is required to match an output register we have already set,
8937         // just use its register.
8938         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8939                                                   AsmNodeOperands);
8940         unsigned OpFlag =
8941           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8942         if (InlineAsm::isRegDefKind(OpFlag) ||
8943             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8944           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8945           if (OpInfo.isIndirect) {
8946             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8947             emitInlineAsmError(Call, "inline asm not supported yet: "
8948                                      "don't know how to handle tied "
8949                                      "indirect register inputs");
8950             return;
8951           }
8952 
8953           SmallVector<unsigned, 4> Regs;
8954           MachineFunction &MF = DAG.getMachineFunction();
8955           MachineRegisterInfo &MRI = MF.getRegInfo();
8956           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8957           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8958           Register TiedReg = R->getReg();
8959           MVT RegVT = R->getSimpleValueType(0);
8960           const TargetRegisterClass *RC =
8961               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8962               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8963                                       : TRI.getMinimalPhysRegClass(TiedReg);
8964           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8965           for (unsigned i = 0; i != NumRegs; ++i)
8966             Regs.push_back(MRI.createVirtualRegister(RC));
8967 
8968           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8969 
8970           SDLoc dl = getCurSDLoc();
8971           // Use the produced MatchedRegs object to
8972           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8973           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8974                                            true, OpInfo.getMatchedOperand(), dl,
8975                                            DAG, AsmNodeOperands);
8976           break;
8977         }
8978 
8979         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8980         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8981                "Unexpected number of operands");
8982         // Add information to the INLINEASM node to know about this input.
8983         // See InlineAsm.h isUseOperandTiedToDef.
8984         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8985         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8986                                                     OpInfo.getMatchedOperand());
8987         AsmNodeOperands.push_back(DAG.getTargetConstant(
8988             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8989         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8990         break;
8991       }
8992 
8993       // Treat indirect 'X' constraint as memory.
8994       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8995           OpInfo.isIndirect)
8996         OpInfo.ConstraintType = TargetLowering::C_Memory;
8997 
8998       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8999           OpInfo.ConstraintType == TargetLowering::C_Other) {
9000         std::vector<SDValue> Ops;
9001         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9002                                           Ops, DAG);
9003         if (Ops.empty()) {
9004           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9005             if (isa<ConstantSDNode>(InOperandVal)) {
9006               emitInlineAsmError(Call, "value out of range for constraint '" +
9007                                            Twine(OpInfo.ConstraintCode) + "'");
9008               return;
9009             }
9010 
9011           emitInlineAsmError(Call,
9012                              "invalid operand for inline asm constraint '" +
9013                                  Twine(OpInfo.ConstraintCode) + "'");
9014           return;
9015         }
9016 
9017         // Add information to the INLINEASM node to know about this input.
9018         unsigned ResOpType =
9019           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9020         AsmNodeOperands.push_back(DAG.getTargetConstant(
9021             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9022         llvm::append_range(AsmNodeOperands, Ops);
9023         break;
9024       }
9025 
9026       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9027           OpInfo.ConstraintType == TargetLowering::C_Address) {
9028         assert((OpInfo.isIndirect ||
9029                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9030                "Operand must be indirect to be a mem!");
9031         assert(InOperandVal.getValueType() ==
9032                    TLI.getPointerTy(DAG.getDataLayout()) &&
9033                "Memory operands expect pointer values");
9034 
9035         unsigned ConstraintID =
9036             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9037         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9038                "Failed to convert memory constraint code to constraint id.");
9039 
9040         // Add information to the INLINEASM node to know about this input.
9041         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9042         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9043         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9044                                                         getCurSDLoc(),
9045                                                         MVT::i32));
9046         AsmNodeOperands.push_back(InOperandVal);
9047         break;
9048       }
9049 
9050       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9051               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9052              "Unknown constraint type!");
9053 
9054       // TODO: Support this.
9055       if (OpInfo.isIndirect) {
9056         emitInlineAsmError(
9057             Call, "Don't know how to handle indirect register inputs yet "
9058                   "for constraint '" +
9059                       Twine(OpInfo.ConstraintCode) + "'");
9060         return;
9061       }
9062 
9063       // Copy the input into the appropriate registers.
9064       if (OpInfo.AssignedRegs.Regs.empty()) {
9065         emitInlineAsmError(Call,
9066                            "couldn't allocate input reg for constraint '" +
9067                                Twine(OpInfo.ConstraintCode) + "'");
9068         return;
9069       }
9070 
9071       if (DetectWriteToReservedRegister())
9072         return;
9073 
9074       SDLoc dl = getCurSDLoc();
9075 
9076       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9077                                         &Call);
9078 
9079       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9080                                                dl, DAG, AsmNodeOperands);
9081       break;
9082     }
9083     case InlineAsm::isClobber:
9084       // Add the clobbered value to the operand list, so that the register
9085       // allocator is aware that the physreg got clobbered.
9086       if (!OpInfo.AssignedRegs.Regs.empty())
9087         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9088                                                  false, 0, getCurSDLoc(), DAG,
9089                                                  AsmNodeOperands);
9090       break;
9091     }
9092   }
9093 
9094   // Finish up input operands.  Set the input chain and add the flag last.
9095   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9096   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9097 
9098   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9099   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9100                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9101   Flag = Chain.getValue(1);
9102 
9103   // Do additional work to generate outputs.
9104 
9105   SmallVector<EVT, 1> ResultVTs;
9106   SmallVector<SDValue, 1> ResultValues;
9107   SmallVector<SDValue, 8> OutChains;
9108 
9109   llvm::Type *CallResultType = Call.getType();
9110   ArrayRef<Type *> ResultTypes;
9111   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9112     ResultTypes = StructResult->elements();
9113   else if (!CallResultType->isVoidTy())
9114     ResultTypes = makeArrayRef(CallResultType);
9115 
9116   auto CurResultType = ResultTypes.begin();
9117   auto handleRegAssign = [&](SDValue V) {
9118     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9119     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9120     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9121     ++CurResultType;
9122     // If the type of the inline asm call site return value is different but has
9123     // same size as the type of the asm output bitcast it.  One example of this
9124     // is for vectors with different width / number of elements.  This can
9125     // happen for register classes that can contain multiple different value
9126     // types.  The preg or vreg allocated may not have the same VT as was
9127     // expected.
9128     //
9129     // This can also happen for a return value that disagrees with the register
9130     // class it is put in, eg. a double in a general-purpose register on a
9131     // 32-bit machine.
9132     if (ResultVT != V.getValueType() &&
9133         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9134       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9135     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9136              V.getValueType().isInteger()) {
9137       // If a result value was tied to an input value, the computed result
9138       // may have a wider width than the expected result.  Extract the
9139       // relevant portion.
9140       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9141     }
9142     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9143     ResultVTs.push_back(ResultVT);
9144     ResultValues.push_back(V);
9145   };
9146 
9147   // Deal with output operands.
9148   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9149     if (OpInfo.Type == InlineAsm::isOutput) {
9150       SDValue Val;
9151       // Skip trivial output operands.
9152       if (OpInfo.AssignedRegs.Regs.empty())
9153         continue;
9154 
9155       switch (OpInfo.ConstraintType) {
9156       case TargetLowering::C_Register:
9157       case TargetLowering::C_RegisterClass:
9158         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9159                                                   Chain, &Flag, &Call);
9160         break;
9161       case TargetLowering::C_Immediate:
9162       case TargetLowering::C_Other:
9163         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9164                                               OpInfo, DAG);
9165         break;
9166       case TargetLowering::C_Memory:
9167         break; // Already handled.
9168       case TargetLowering::C_Address:
9169         break; // Silence warning.
9170       case TargetLowering::C_Unknown:
9171         assert(false && "Unexpected unknown constraint");
9172       }
9173 
9174       // Indirect output manifest as stores. Record output chains.
9175       if (OpInfo.isIndirect) {
9176         const Value *Ptr = OpInfo.CallOperandVal;
9177         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9178         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9179                                      MachinePointerInfo(Ptr));
9180         OutChains.push_back(Store);
9181       } else {
9182         // generate CopyFromRegs to associated registers.
9183         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9184         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9185           for (const SDValue &V : Val->op_values())
9186             handleRegAssign(V);
9187         } else
9188           handleRegAssign(Val);
9189       }
9190     }
9191   }
9192 
9193   // Set results.
9194   if (!ResultValues.empty()) {
9195     assert(CurResultType == ResultTypes.end() &&
9196            "Mismatch in number of ResultTypes");
9197     assert(ResultValues.size() == ResultTypes.size() &&
9198            "Mismatch in number of output operands in asm result");
9199 
9200     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9201                             DAG.getVTList(ResultVTs), ResultValues);
9202     setValue(&Call, V);
9203   }
9204 
9205   // Collect store chains.
9206   if (!OutChains.empty())
9207     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9208 
9209   if (EmitEHLabels) {
9210     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9211   }
9212 
9213   // Only Update Root if inline assembly has a memory effect.
9214   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9215       EmitEHLabels)
9216     DAG.setRoot(Chain);
9217 }
9218 
9219 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9220                                              const Twine &Message) {
9221   LLVMContext &Ctx = *DAG.getContext();
9222   Ctx.emitError(&Call, Message);
9223 
9224   // Make sure we leave the DAG in a valid state
9225   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9226   SmallVector<EVT, 1> ValueVTs;
9227   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9228 
9229   if (ValueVTs.empty())
9230     return;
9231 
9232   SmallVector<SDValue, 1> Ops;
9233   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9234     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9235 
9236   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9237 }
9238 
9239 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9240   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9241                           MVT::Other, getRoot(),
9242                           getValue(I.getArgOperand(0)),
9243                           DAG.getSrcValue(I.getArgOperand(0))));
9244 }
9245 
9246 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9247   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9248   const DataLayout &DL = DAG.getDataLayout();
9249   SDValue V = DAG.getVAArg(
9250       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9251       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9252       DL.getABITypeAlign(I.getType()).value());
9253   DAG.setRoot(V.getValue(1));
9254 
9255   if (I.getType()->isPointerTy())
9256     V = DAG.getPtrExtOrTrunc(
9257         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9258   setValue(&I, V);
9259 }
9260 
9261 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9262   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9263                           MVT::Other, getRoot(),
9264                           getValue(I.getArgOperand(0)),
9265                           DAG.getSrcValue(I.getArgOperand(0))));
9266 }
9267 
9268 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9269   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9270                           MVT::Other, getRoot(),
9271                           getValue(I.getArgOperand(0)),
9272                           getValue(I.getArgOperand(1)),
9273                           DAG.getSrcValue(I.getArgOperand(0)),
9274                           DAG.getSrcValue(I.getArgOperand(1))));
9275 }
9276 
9277 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9278                                                     const Instruction &I,
9279                                                     SDValue Op) {
9280   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9281   if (!Range)
9282     return Op;
9283 
9284   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9285   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9286     return Op;
9287 
9288   APInt Lo = CR.getUnsignedMin();
9289   if (!Lo.isMinValue())
9290     return Op;
9291 
9292   APInt Hi = CR.getUnsignedMax();
9293   unsigned Bits = std::max(Hi.getActiveBits(),
9294                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9295 
9296   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9297 
9298   SDLoc SL = getCurSDLoc();
9299 
9300   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9301                              DAG.getValueType(SmallVT));
9302   unsigned NumVals = Op.getNode()->getNumValues();
9303   if (NumVals == 1)
9304     return ZExt;
9305 
9306   SmallVector<SDValue, 4> Ops;
9307 
9308   Ops.push_back(ZExt);
9309   for (unsigned I = 1; I != NumVals; ++I)
9310     Ops.push_back(Op.getValue(I));
9311 
9312   return DAG.getMergeValues(Ops, SL);
9313 }
9314 
9315 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9316 /// the call being lowered.
9317 ///
9318 /// This is a helper for lowering intrinsics that follow a target calling
9319 /// convention or require stack pointer adjustment. Only a subset of the
9320 /// intrinsic's operands need to participate in the calling convention.
9321 void SelectionDAGBuilder::populateCallLoweringInfo(
9322     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9323     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9324     bool IsPatchPoint) {
9325   TargetLowering::ArgListTy Args;
9326   Args.reserve(NumArgs);
9327 
9328   // Populate the argument list.
9329   // Attributes for args start at offset 1, after the return attribute.
9330   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9331        ArgI != ArgE; ++ArgI) {
9332     const Value *V = Call->getOperand(ArgI);
9333 
9334     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9335 
9336     TargetLowering::ArgListEntry Entry;
9337     Entry.Node = getValue(V);
9338     Entry.Ty = V->getType();
9339     Entry.setAttributes(Call, ArgI);
9340     Args.push_back(Entry);
9341   }
9342 
9343   CLI.setDebugLoc(getCurSDLoc())
9344       .setChain(getRoot())
9345       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9346       .setDiscardResult(Call->use_empty())
9347       .setIsPatchPoint(IsPatchPoint)
9348       .setIsPreallocated(
9349           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9350 }
9351 
9352 /// Add a stack map intrinsic call's live variable operands to a stackmap
9353 /// or patchpoint target node's operand list.
9354 ///
9355 /// Constants are converted to TargetConstants purely as an optimization to
9356 /// avoid constant materialization and register allocation.
9357 ///
9358 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9359 /// generate addess computation nodes, and so FinalizeISel can convert the
9360 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9361 /// address materialization and register allocation, but may also be required
9362 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9363 /// alloca in the entry block, then the runtime may assume that the alloca's
9364 /// StackMap location can be read immediately after compilation and that the
9365 /// location is valid at any point during execution (this is similar to the
9366 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9367 /// only available in a register, then the runtime would need to trap when
9368 /// execution reaches the StackMap in order to read the alloca's location.
9369 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9370                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9371                                 SelectionDAGBuilder &Builder) {
9372   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9373     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9374     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9375       Ops.push_back(
9376         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9377       Ops.push_back(
9378         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9379     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9380       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9381       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9382           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9383     } else
9384       Ops.push_back(OpVal);
9385   }
9386 }
9387 
9388 /// Lower llvm.experimental.stackmap directly to its target opcode.
9389 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9390   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9391   //                                  [live variables...])
9392 
9393   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9394 
9395   SDValue Chain, InFlag, Callee, NullPtr;
9396   SmallVector<SDValue, 32> Ops;
9397 
9398   SDLoc DL = getCurSDLoc();
9399   Callee = getValue(CI.getCalledOperand());
9400   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9401 
9402   // The stackmap intrinsic only records the live variables (the arguments
9403   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9404   // intrinsic, this won't be lowered to a function call. This means we don't
9405   // have to worry about calling conventions and target specific lowering code.
9406   // Instead we perform the call lowering right here.
9407   //
9408   // chain, flag = CALLSEQ_START(chain, 0, 0)
9409   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9410   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9411   //
9412   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9413   InFlag = Chain.getValue(1);
9414 
9415   // Add the <id> and <numBytes> constants.
9416   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9417   Ops.push_back(DAG.getTargetConstant(
9418                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9419   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9420   Ops.push_back(DAG.getTargetConstant(
9421                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9422                   MVT::i32));
9423 
9424   // Push live variables for the stack map.
9425   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9426 
9427   // We are not pushing any register mask info here on the operands list,
9428   // because the stackmap doesn't clobber anything.
9429 
9430   // Push the chain and the glue flag.
9431   Ops.push_back(Chain);
9432   Ops.push_back(InFlag);
9433 
9434   // Create the STACKMAP node.
9435   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9436   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9437   Chain = SDValue(SM, 0);
9438   InFlag = Chain.getValue(1);
9439 
9440   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9441 
9442   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9443 
9444   // Set the root to the target-lowered call chain.
9445   DAG.setRoot(Chain);
9446 
9447   // Inform the Frame Information that we have a stackmap in this function.
9448   FuncInfo.MF->getFrameInfo().setHasStackMap();
9449 }
9450 
9451 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9452 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9453                                           const BasicBlock *EHPadBB) {
9454   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9455   //                                                 i32 <numBytes>,
9456   //                                                 i8* <target>,
9457   //                                                 i32 <numArgs>,
9458   //                                                 [Args...],
9459   //                                                 [live variables...])
9460 
9461   CallingConv::ID CC = CB.getCallingConv();
9462   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9463   bool HasDef = !CB.getType()->isVoidTy();
9464   SDLoc dl = getCurSDLoc();
9465   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9466 
9467   // Handle immediate and symbolic callees.
9468   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9469     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9470                                    /*isTarget=*/true);
9471   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9472     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9473                                          SDLoc(SymbolicCallee),
9474                                          SymbolicCallee->getValueType(0));
9475 
9476   // Get the real number of arguments participating in the call <numArgs>
9477   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9478   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9479 
9480   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9481   // Intrinsics include all meta-operands up to but not including CC.
9482   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9483   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9484          "Not enough arguments provided to the patchpoint intrinsic");
9485 
9486   // For AnyRegCC the arguments are lowered later on manually.
9487   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9488   Type *ReturnTy =
9489       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9490 
9491   TargetLowering::CallLoweringInfo CLI(DAG);
9492   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9493                            ReturnTy, true);
9494   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9495 
9496   SDNode *CallEnd = Result.second.getNode();
9497   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9498     CallEnd = CallEnd->getOperand(0).getNode();
9499 
9500   /// Get a call instruction from the call sequence chain.
9501   /// Tail calls are not allowed.
9502   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9503          "Expected a callseq node.");
9504   SDNode *Call = CallEnd->getOperand(0).getNode();
9505   bool HasGlue = Call->getGluedNode();
9506 
9507   // Replace the target specific call node with the patchable intrinsic.
9508   SmallVector<SDValue, 8> Ops;
9509 
9510   // Add the <id> and <numBytes> constants.
9511   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9512   Ops.push_back(DAG.getTargetConstant(
9513                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9514   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9515   Ops.push_back(DAG.getTargetConstant(
9516                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9517                   MVT::i32));
9518 
9519   // Add the callee.
9520   Ops.push_back(Callee);
9521 
9522   // Adjust <numArgs> to account for any arguments that have been passed on the
9523   // stack instead.
9524   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9525   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9526   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9527   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9528 
9529   // Add the calling convention
9530   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9531 
9532   // Add the arguments we omitted previously. The register allocator should
9533   // place these in any free register.
9534   if (IsAnyRegCC)
9535     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9536       Ops.push_back(getValue(CB.getArgOperand(i)));
9537 
9538   // Push the arguments from the call instruction up to the register mask.
9539   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9540   Ops.append(Call->op_begin() + 2, e);
9541 
9542   // Push live variables for the stack map.
9543   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9544 
9545   // Push the register mask info.
9546   if (HasGlue)
9547     Ops.push_back(*(Call->op_end()-2));
9548   else
9549     Ops.push_back(*(Call->op_end()-1));
9550 
9551   // Push the chain (this is originally the first operand of the call, but
9552   // becomes now the last or second to last operand).
9553   Ops.push_back(*(Call->op_begin()));
9554 
9555   // Push the glue flag (last operand).
9556   if (HasGlue)
9557     Ops.push_back(*(Call->op_end()-1));
9558 
9559   SDVTList NodeTys;
9560   if (IsAnyRegCC && HasDef) {
9561     // Create the return types based on the intrinsic definition
9562     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9563     SmallVector<EVT, 3> ValueVTs;
9564     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9565     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9566 
9567     // There is always a chain and a glue type at the end
9568     ValueVTs.push_back(MVT::Other);
9569     ValueVTs.push_back(MVT::Glue);
9570     NodeTys = DAG.getVTList(ValueVTs);
9571   } else
9572     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9573 
9574   // Replace the target specific call node with a PATCHPOINT node.
9575   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9576                                          dl, NodeTys, Ops);
9577 
9578   // Update the NodeMap.
9579   if (HasDef) {
9580     if (IsAnyRegCC)
9581       setValue(&CB, SDValue(MN, 0));
9582     else
9583       setValue(&CB, Result.first);
9584   }
9585 
9586   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9587   // call sequence. Furthermore the location of the chain and glue can change
9588   // when the AnyReg calling convention is used and the intrinsic returns a
9589   // value.
9590   if (IsAnyRegCC && HasDef) {
9591     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9592     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9593     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9594   } else
9595     DAG.ReplaceAllUsesWith(Call, MN);
9596   DAG.DeleteNode(Call);
9597 
9598   // Inform the Frame Information that we have a patchpoint in this function.
9599   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9600 }
9601 
9602 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9603                                             unsigned Intrinsic) {
9604   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9605   SDValue Op1 = getValue(I.getArgOperand(0));
9606   SDValue Op2;
9607   if (I.arg_size() > 1)
9608     Op2 = getValue(I.getArgOperand(1));
9609   SDLoc dl = getCurSDLoc();
9610   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9611   SDValue Res;
9612   SDNodeFlags SDFlags;
9613   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9614     SDFlags.copyFMF(*FPMO);
9615 
9616   switch (Intrinsic) {
9617   case Intrinsic::vector_reduce_fadd:
9618     if (SDFlags.hasAllowReassociation())
9619       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9620                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9621                         SDFlags);
9622     else
9623       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9624     break;
9625   case Intrinsic::vector_reduce_fmul:
9626     if (SDFlags.hasAllowReassociation())
9627       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9628                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9629                         SDFlags);
9630     else
9631       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9632     break;
9633   case Intrinsic::vector_reduce_add:
9634     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9635     break;
9636   case Intrinsic::vector_reduce_mul:
9637     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9638     break;
9639   case Intrinsic::vector_reduce_and:
9640     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9641     break;
9642   case Intrinsic::vector_reduce_or:
9643     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9644     break;
9645   case Intrinsic::vector_reduce_xor:
9646     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9647     break;
9648   case Intrinsic::vector_reduce_smax:
9649     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9650     break;
9651   case Intrinsic::vector_reduce_smin:
9652     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9653     break;
9654   case Intrinsic::vector_reduce_umax:
9655     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9656     break;
9657   case Intrinsic::vector_reduce_umin:
9658     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9659     break;
9660   case Intrinsic::vector_reduce_fmax:
9661     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9662     break;
9663   case Intrinsic::vector_reduce_fmin:
9664     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9665     break;
9666   default:
9667     llvm_unreachable("Unhandled vector reduce intrinsic");
9668   }
9669   setValue(&I, Res);
9670 }
9671 
9672 /// Returns an AttributeList representing the attributes applied to the return
9673 /// value of the given call.
9674 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9675   SmallVector<Attribute::AttrKind, 2> Attrs;
9676   if (CLI.RetSExt)
9677     Attrs.push_back(Attribute::SExt);
9678   if (CLI.RetZExt)
9679     Attrs.push_back(Attribute::ZExt);
9680   if (CLI.IsInReg)
9681     Attrs.push_back(Attribute::InReg);
9682 
9683   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9684                             Attrs);
9685 }
9686 
9687 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9688 /// implementation, which just calls LowerCall.
9689 /// FIXME: When all targets are
9690 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9691 std::pair<SDValue, SDValue>
9692 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9693   // Handle the incoming return values from the call.
9694   CLI.Ins.clear();
9695   Type *OrigRetTy = CLI.RetTy;
9696   SmallVector<EVT, 4> RetTys;
9697   SmallVector<uint64_t, 4> Offsets;
9698   auto &DL = CLI.DAG.getDataLayout();
9699   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9700 
9701   if (CLI.IsPostTypeLegalization) {
9702     // If we are lowering a libcall after legalization, split the return type.
9703     SmallVector<EVT, 4> OldRetTys;
9704     SmallVector<uint64_t, 4> OldOffsets;
9705     RetTys.swap(OldRetTys);
9706     Offsets.swap(OldOffsets);
9707 
9708     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9709       EVT RetVT = OldRetTys[i];
9710       uint64_t Offset = OldOffsets[i];
9711       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9712       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9713       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9714       RetTys.append(NumRegs, RegisterVT);
9715       for (unsigned j = 0; j != NumRegs; ++j)
9716         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9717     }
9718   }
9719 
9720   SmallVector<ISD::OutputArg, 4> Outs;
9721   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9722 
9723   bool CanLowerReturn =
9724       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9725                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9726 
9727   SDValue DemoteStackSlot;
9728   int DemoteStackIdx = -100;
9729   if (!CanLowerReturn) {
9730     // FIXME: equivalent assert?
9731     // assert(!CS.hasInAllocaArgument() &&
9732     //        "sret demotion is incompatible with inalloca");
9733     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9734     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9735     MachineFunction &MF = CLI.DAG.getMachineFunction();
9736     DemoteStackIdx =
9737         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9738     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9739                                               DL.getAllocaAddrSpace());
9740 
9741     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9742     ArgListEntry Entry;
9743     Entry.Node = DemoteStackSlot;
9744     Entry.Ty = StackSlotPtrType;
9745     Entry.IsSExt = false;
9746     Entry.IsZExt = false;
9747     Entry.IsInReg = false;
9748     Entry.IsSRet = true;
9749     Entry.IsNest = false;
9750     Entry.IsByVal = false;
9751     Entry.IsByRef = false;
9752     Entry.IsReturned = false;
9753     Entry.IsSwiftSelf = false;
9754     Entry.IsSwiftAsync = false;
9755     Entry.IsSwiftError = false;
9756     Entry.IsCFGuardTarget = false;
9757     Entry.Alignment = Alignment;
9758     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9759     CLI.NumFixedArgs += 1;
9760     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9761 
9762     // sret demotion isn't compatible with tail-calls, since the sret argument
9763     // points into the callers stack frame.
9764     CLI.IsTailCall = false;
9765   } else {
9766     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9767         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9768     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9769       ISD::ArgFlagsTy Flags;
9770       if (NeedsRegBlock) {
9771         Flags.setInConsecutiveRegs();
9772         if (I == RetTys.size() - 1)
9773           Flags.setInConsecutiveRegsLast();
9774       }
9775       EVT VT = RetTys[I];
9776       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9777                                                      CLI.CallConv, VT);
9778       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9779                                                        CLI.CallConv, VT);
9780       for (unsigned i = 0; i != NumRegs; ++i) {
9781         ISD::InputArg MyFlags;
9782         MyFlags.Flags = Flags;
9783         MyFlags.VT = RegisterVT;
9784         MyFlags.ArgVT = VT;
9785         MyFlags.Used = CLI.IsReturnValueUsed;
9786         if (CLI.RetTy->isPointerTy()) {
9787           MyFlags.Flags.setPointer();
9788           MyFlags.Flags.setPointerAddrSpace(
9789               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9790         }
9791         if (CLI.RetSExt)
9792           MyFlags.Flags.setSExt();
9793         if (CLI.RetZExt)
9794           MyFlags.Flags.setZExt();
9795         if (CLI.IsInReg)
9796           MyFlags.Flags.setInReg();
9797         CLI.Ins.push_back(MyFlags);
9798       }
9799     }
9800   }
9801 
9802   // We push in swifterror return as the last element of CLI.Ins.
9803   ArgListTy &Args = CLI.getArgs();
9804   if (supportSwiftError()) {
9805     for (const ArgListEntry &Arg : Args) {
9806       if (Arg.IsSwiftError) {
9807         ISD::InputArg MyFlags;
9808         MyFlags.VT = getPointerTy(DL);
9809         MyFlags.ArgVT = EVT(getPointerTy(DL));
9810         MyFlags.Flags.setSwiftError();
9811         CLI.Ins.push_back(MyFlags);
9812       }
9813     }
9814   }
9815 
9816   // Handle all of the outgoing arguments.
9817   CLI.Outs.clear();
9818   CLI.OutVals.clear();
9819   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9820     SmallVector<EVT, 4> ValueVTs;
9821     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9822     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9823     Type *FinalType = Args[i].Ty;
9824     if (Args[i].IsByVal)
9825       FinalType = Args[i].IndirectType;
9826     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9827         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9828     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9829          ++Value) {
9830       EVT VT = ValueVTs[Value];
9831       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9832       SDValue Op = SDValue(Args[i].Node.getNode(),
9833                            Args[i].Node.getResNo() + Value);
9834       ISD::ArgFlagsTy Flags;
9835 
9836       // Certain targets (such as MIPS), may have a different ABI alignment
9837       // for a type depending on the context. Give the target a chance to
9838       // specify the alignment it wants.
9839       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9840       Flags.setOrigAlign(OriginalAlignment);
9841 
9842       if (Args[i].Ty->isPointerTy()) {
9843         Flags.setPointer();
9844         Flags.setPointerAddrSpace(
9845             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9846       }
9847       if (Args[i].IsZExt)
9848         Flags.setZExt();
9849       if (Args[i].IsSExt)
9850         Flags.setSExt();
9851       if (Args[i].IsInReg) {
9852         // If we are using vectorcall calling convention, a structure that is
9853         // passed InReg - is surely an HVA
9854         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9855             isa<StructType>(FinalType)) {
9856           // The first value of a structure is marked
9857           if (0 == Value)
9858             Flags.setHvaStart();
9859           Flags.setHva();
9860         }
9861         // Set InReg Flag
9862         Flags.setInReg();
9863       }
9864       if (Args[i].IsSRet)
9865         Flags.setSRet();
9866       if (Args[i].IsSwiftSelf)
9867         Flags.setSwiftSelf();
9868       if (Args[i].IsSwiftAsync)
9869         Flags.setSwiftAsync();
9870       if (Args[i].IsSwiftError)
9871         Flags.setSwiftError();
9872       if (Args[i].IsCFGuardTarget)
9873         Flags.setCFGuardTarget();
9874       if (Args[i].IsByVal)
9875         Flags.setByVal();
9876       if (Args[i].IsByRef)
9877         Flags.setByRef();
9878       if (Args[i].IsPreallocated) {
9879         Flags.setPreallocated();
9880         // Set the byval flag for CCAssignFn callbacks that don't know about
9881         // preallocated.  This way we can know how many bytes we should've
9882         // allocated and how many bytes a callee cleanup function will pop.  If
9883         // we port preallocated to more targets, we'll have to add custom
9884         // preallocated handling in the various CC lowering callbacks.
9885         Flags.setByVal();
9886       }
9887       if (Args[i].IsInAlloca) {
9888         Flags.setInAlloca();
9889         // Set the byval flag for CCAssignFn callbacks that don't know about
9890         // inalloca.  This way we can know how many bytes we should've allocated
9891         // and how many bytes a callee cleanup function will pop.  If we port
9892         // inalloca to more targets, we'll have to add custom inalloca handling
9893         // in the various CC lowering callbacks.
9894         Flags.setByVal();
9895       }
9896       Align MemAlign;
9897       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9898         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9899         Flags.setByValSize(FrameSize);
9900 
9901         // info is not there but there are cases it cannot get right.
9902         if (auto MA = Args[i].Alignment)
9903           MemAlign = *MA;
9904         else
9905           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9906       } else if (auto MA = Args[i].Alignment) {
9907         MemAlign = *MA;
9908       } else {
9909         MemAlign = OriginalAlignment;
9910       }
9911       Flags.setMemAlign(MemAlign);
9912       if (Args[i].IsNest)
9913         Flags.setNest();
9914       if (NeedsRegBlock)
9915         Flags.setInConsecutiveRegs();
9916 
9917       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9918                                                  CLI.CallConv, VT);
9919       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9920                                                         CLI.CallConv, VT);
9921       SmallVector<SDValue, 4> Parts(NumParts);
9922       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9923 
9924       if (Args[i].IsSExt)
9925         ExtendKind = ISD::SIGN_EXTEND;
9926       else if (Args[i].IsZExt)
9927         ExtendKind = ISD::ZERO_EXTEND;
9928 
9929       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9930       // for now.
9931       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9932           CanLowerReturn) {
9933         assert((CLI.RetTy == Args[i].Ty ||
9934                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9935                  CLI.RetTy->getPointerAddressSpace() ==
9936                      Args[i].Ty->getPointerAddressSpace())) &&
9937                RetTys.size() == NumValues && "unexpected use of 'returned'");
9938         // Before passing 'returned' to the target lowering code, ensure that
9939         // either the register MVT and the actual EVT are the same size or that
9940         // the return value and argument are extended in the same way; in these
9941         // cases it's safe to pass the argument register value unchanged as the
9942         // return register value (although it's at the target's option whether
9943         // to do so)
9944         // TODO: allow code generation to take advantage of partially preserved
9945         // registers rather than clobbering the entire register when the
9946         // parameter extension method is not compatible with the return
9947         // extension method
9948         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9949             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9950              CLI.RetZExt == Args[i].IsZExt))
9951           Flags.setReturned();
9952       }
9953 
9954       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9955                      CLI.CallConv, ExtendKind);
9956 
9957       for (unsigned j = 0; j != NumParts; ++j) {
9958         // if it isn't first piece, alignment must be 1
9959         // For scalable vectors the scalable part is currently handled
9960         // by individual targets, so we just use the known minimum size here.
9961         ISD::OutputArg MyFlags(
9962             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9963             i < CLI.NumFixedArgs, i,
9964             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9965         if (NumParts > 1 && j == 0)
9966           MyFlags.Flags.setSplit();
9967         else if (j != 0) {
9968           MyFlags.Flags.setOrigAlign(Align(1));
9969           if (j == NumParts - 1)
9970             MyFlags.Flags.setSplitEnd();
9971         }
9972 
9973         CLI.Outs.push_back(MyFlags);
9974         CLI.OutVals.push_back(Parts[j]);
9975       }
9976 
9977       if (NeedsRegBlock && Value == NumValues - 1)
9978         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9979     }
9980   }
9981 
9982   SmallVector<SDValue, 4> InVals;
9983   CLI.Chain = LowerCall(CLI, InVals);
9984 
9985   // Update CLI.InVals to use outside of this function.
9986   CLI.InVals = InVals;
9987 
9988   // Verify that the target's LowerCall behaved as expected.
9989   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9990          "LowerCall didn't return a valid chain!");
9991   assert((!CLI.IsTailCall || InVals.empty()) &&
9992          "LowerCall emitted a return value for a tail call!");
9993   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9994          "LowerCall didn't emit the correct number of values!");
9995 
9996   // For a tail call, the return value is merely live-out and there aren't
9997   // any nodes in the DAG representing it. Return a special value to
9998   // indicate that a tail call has been emitted and no more Instructions
9999   // should be processed in the current block.
10000   if (CLI.IsTailCall) {
10001     CLI.DAG.setRoot(CLI.Chain);
10002     return std::make_pair(SDValue(), SDValue());
10003   }
10004 
10005 #ifndef NDEBUG
10006   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10007     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10008     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10009            "LowerCall emitted a value with the wrong type!");
10010   }
10011 #endif
10012 
10013   SmallVector<SDValue, 4> ReturnValues;
10014   if (!CanLowerReturn) {
10015     // The instruction result is the result of loading from the
10016     // hidden sret parameter.
10017     SmallVector<EVT, 1> PVTs;
10018     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10019 
10020     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10021     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10022     EVT PtrVT = PVTs[0];
10023 
10024     unsigned NumValues = RetTys.size();
10025     ReturnValues.resize(NumValues);
10026     SmallVector<SDValue, 4> Chains(NumValues);
10027 
10028     // An aggregate return value cannot wrap around the address space, so
10029     // offsets to its parts don't wrap either.
10030     SDNodeFlags Flags;
10031     Flags.setNoUnsignedWrap(true);
10032 
10033     MachineFunction &MF = CLI.DAG.getMachineFunction();
10034     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10035     for (unsigned i = 0; i < NumValues; ++i) {
10036       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10037                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10038                                                         PtrVT), Flags);
10039       SDValue L = CLI.DAG.getLoad(
10040           RetTys[i], CLI.DL, CLI.Chain, Add,
10041           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10042                                             DemoteStackIdx, Offsets[i]),
10043           HiddenSRetAlign);
10044       ReturnValues[i] = L;
10045       Chains[i] = L.getValue(1);
10046     }
10047 
10048     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10049   } else {
10050     // Collect the legal value parts into potentially illegal values
10051     // that correspond to the original function's return values.
10052     Optional<ISD::NodeType> AssertOp;
10053     if (CLI.RetSExt)
10054       AssertOp = ISD::AssertSext;
10055     else if (CLI.RetZExt)
10056       AssertOp = ISD::AssertZext;
10057     unsigned CurReg = 0;
10058     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10059       EVT VT = RetTys[I];
10060       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10061                                                      CLI.CallConv, VT);
10062       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10063                                                        CLI.CallConv, VT);
10064 
10065       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10066                                               NumRegs, RegisterVT, VT, nullptr,
10067                                               CLI.CallConv, AssertOp));
10068       CurReg += NumRegs;
10069     }
10070 
10071     // For a function returning void, there is no return value. We can't create
10072     // such a node, so we just return a null return value in that case. In
10073     // that case, nothing will actually look at the value.
10074     if (ReturnValues.empty())
10075       return std::make_pair(SDValue(), CLI.Chain);
10076   }
10077 
10078   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10079                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10080   return std::make_pair(Res, CLI.Chain);
10081 }
10082 
10083 /// Places new result values for the node in Results (their number
10084 /// and types must exactly match those of the original return values of
10085 /// the node), or leaves Results empty, which indicates that the node is not
10086 /// to be custom lowered after all.
10087 void TargetLowering::LowerOperationWrapper(SDNode *N,
10088                                            SmallVectorImpl<SDValue> &Results,
10089                                            SelectionDAG &DAG) const {
10090   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10091 
10092   if (!Res.getNode())
10093     return;
10094 
10095   // If the original node has one result, take the return value from
10096   // LowerOperation as is. It might not be result number 0.
10097   if (N->getNumValues() == 1) {
10098     Results.push_back(Res);
10099     return;
10100   }
10101 
10102   // If the original node has multiple results, then the return node should
10103   // have the same number of results.
10104   assert((N->getNumValues() == Res->getNumValues()) &&
10105       "Lowering returned the wrong number of results!");
10106 
10107   // Places new result values base on N result number.
10108   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10109     Results.push_back(Res.getValue(I));
10110 }
10111 
10112 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10113   llvm_unreachable("LowerOperation not implemented for this target!");
10114 }
10115 
10116 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10117                                                      unsigned Reg,
10118                                                      ISD::NodeType ExtendType) {
10119   SDValue Op = getNonRegisterValue(V);
10120   assert((Op.getOpcode() != ISD::CopyFromReg ||
10121           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10122          "Copy from a reg to the same reg!");
10123   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10124 
10125   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10126   // If this is an InlineAsm we have to match the registers required, not the
10127   // notional registers required by the type.
10128 
10129   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10130                    None); // This is not an ABI copy.
10131   SDValue Chain = DAG.getEntryNode();
10132 
10133   if (ExtendType == ISD::ANY_EXTEND) {
10134     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10135     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10136       ExtendType = PreferredExtendIt->second;
10137   }
10138   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10139   PendingExports.push_back(Chain);
10140 }
10141 
10142 #include "llvm/CodeGen/SelectionDAGISel.h"
10143 
10144 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10145 /// entry block, return true.  This includes arguments used by switches, since
10146 /// the switch may expand into multiple basic blocks.
10147 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10148   // With FastISel active, we may be splitting blocks, so force creation
10149   // of virtual registers for all non-dead arguments.
10150   if (FastISel)
10151     return A->use_empty();
10152 
10153   const BasicBlock &Entry = A->getParent()->front();
10154   for (const User *U : A->users())
10155     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10156       return false;  // Use not in entry block.
10157 
10158   return true;
10159 }
10160 
10161 using ArgCopyElisionMapTy =
10162     DenseMap<const Argument *,
10163              std::pair<const AllocaInst *, const StoreInst *>>;
10164 
10165 /// Scan the entry block of the function in FuncInfo for arguments that look
10166 /// like copies into a local alloca. Record any copied arguments in
10167 /// ArgCopyElisionCandidates.
10168 static void
10169 findArgumentCopyElisionCandidates(const DataLayout &DL,
10170                                   FunctionLoweringInfo *FuncInfo,
10171                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10172   // Record the state of every static alloca used in the entry block. Argument
10173   // allocas are all used in the entry block, so we need approximately as many
10174   // entries as we have arguments.
10175   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10176   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10177   unsigned NumArgs = FuncInfo->Fn->arg_size();
10178   StaticAllocas.reserve(NumArgs * 2);
10179 
10180   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10181     if (!V)
10182       return nullptr;
10183     V = V->stripPointerCasts();
10184     const auto *AI = dyn_cast<AllocaInst>(V);
10185     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10186       return nullptr;
10187     auto Iter = StaticAllocas.insert({AI, Unknown});
10188     return &Iter.first->second;
10189   };
10190 
10191   // Look for stores of arguments to static allocas. Look through bitcasts and
10192   // GEPs to handle type coercions, as long as the alloca is fully initialized
10193   // by the store. Any non-store use of an alloca escapes it and any subsequent
10194   // unanalyzed store might write it.
10195   // FIXME: Handle structs initialized with multiple stores.
10196   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10197     // Look for stores, and handle non-store uses conservatively.
10198     const auto *SI = dyn_cast<StoreInst>(&I);
10199     if (!SI) {
10200       // We will look through cast uses, so ignore them completely.
10201       if (I.isCast())
10202         continue;
10203       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10204       // to allocas.
10205       if (I.isDebugOrPseudoInst())
10206         continue;
10207       // This is an unknown instruction. Assume it escapes or writes to all
10208       // static alloca operands.
10209       for (const Use &U : I.operands()) {
10210         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10211           *Info = StaticAllocaInfo::Clobbered;
10212       }
10213       continue;
10214     }
10215 
10216     // If the stored value is a static alloca, mark it as escaped.
10217     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10218       *Info = StaticAllocaInfo::Clobbered;
10219 
10220     // Check if the destination is a static alloca.
10221     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10222     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10223     if (!Info)
10224       continue;
10225     const AllocaInst *AI = cast<AllocaInst>(Dst);
10226 
10227     // Skip allocas that have been initialized or clobbered.
10228     if (*Info != StaticAllocaInfo::Unknown)
10229       continue;
10230 
10231     // Check if the stored value is an argument, and that this store fully
10232     // initializes the alloca.
10233     // If the argument type has padding bits we can't directly forward a pointer
10234     // as the upper bits may contain garbage.
10235     // Don't elide copies from the same argument twice.
10236     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10237     const auto *Arg = dyn_cast<Argument>(Val);
10238     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10239         Arg->getType()->isEmptyTy() ||
10240         DL.getTypeStoreSize(Arg->getType()) !=
10241             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10242         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10243         ArgCopyElisionCandidates.count(Arg)) {
10244       *Info = StaticAllocaInfo::Clobbered;
10245       continue;
10246     }
10247 
10248     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10249                       << '\n');
10250 
10251     // Mark this alloca and store for argument copy elision.
10252     *Info = StaticAllocaInfo::Elidable;
10253     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10254 
10255     // Stop scanning if we've seen all arguments. This will happen early in -O0
10256     // builds, which is useful, because -O0 builds have large entry blocks and
10257     // many allocas.
10258     if (ArgCopyElisionCandidates.size() == NumArgs)
10259       break;
10260   }
10261 }
10262 
10263 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10264 /// ArgVal is a load from a suitable fixed stack object.
10265 static void tryToElideArgumentCopy(
10266     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10267     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10268     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10269     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10270     SDValue ArgVal, bool &ArgHasUses) {
10271   // Check if this is a load from a fixed stack object.
10272   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10273   if (!LNode)
10274     return;
10275   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10276   if (!FINode)
10277     return;
10278 
10279   // Check that the fixed stack object is the right size and alignment.
10280   // Look at the alignment that the user wrote on the alloca instead of looking
10281   // at the stack object.
10282   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10283   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10284   const AllocaInst *AI = ArgCopyIter->second.first;
10285   int FixedIndex = FINode->getIndex();
10286   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10287   int OldIndex = AllocaIndex;
10288   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10289   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10290     LLVM_DEBUG(
10291         dbgs() << "  argument copy elision failed due to bad fixed stack "
10292                   "object size\n");
10293     return;
10294   }
10295   Align RequiredAlignment = AI->getAlign();
10296   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10297     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10298                          "greater than stack argument alignment ("
10299                       << DebugStr(RequiredAlignment) << " vs "
10300                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10301     return;
10302   }
10303 
10304   // Perform the elision. Delete the old stack object and replace its only use
10305   // in the variable info map. Mark the stack object as mutable.
10306   LLVM_DEBUG({
10307     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10308            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10309            << '\n';
10310   });
10311   MFI.RemoveStackObject(OldIndex);
10312   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10313   AllocaIndex = FixedIndex;
10314   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10315   Chains.push_back(ArgVal.getValue(1));
10316 
10317   // Avoid emitting code for the store implementing the copy.
10318   const StoreInst *SI = ArgCopyIter->second.second;
10319   ElidedArgCopyInstrs.insert(SI);
10320 
10321   // Check for uses of the argument again so that we can avoid exporting ArgVal
10322   // if it is't used by anything other than the store.
10323   for (const Value *U : Arg.users()) {
10324     if (U != SI) {
10325       ArgHasUses = true;
10326       break;
10327     }
10328   }
10329 }
10330 
10331 void SelectionDAGISel::LowerArguments(const Function &F) {
10332   SelectionDAG &DAG = SDB->DAG;
10333   SDLoc dl = SDB->getCurSDLoc();
10334   const DataLayout &DL = DAG.getDataLayout();
10335   SmallVector<ISD::InputArg, 16> Ins;
10336 
10337   // In Naked functions we aren't going to save any registers.
10338   if (F.hasFnAttribute(Attribute::Naked))
10339     return;
10340 
10341   if (!FuncInfo->CanLowerReturn) {
10342     // Put in an sret pointer parameter before all the other parameters.
10343     SmallVector<EVT, 1> ValueVTs;
10344     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10345                     F.getReturnType()->getPointerTo(
10346                         DAG.getDataLayout().getAllocaAddrSpace()),
10347                     ValueVTs);
10348 
10349     // NOTE: Assuming that a pointer will never break down to more than one VT
10350     // or one register.
10351     ISD::ArgFlagsTy Flags;
10352     Flags.setSRet();
10353     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10354     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10355                          ISD::InputArg::NoArgIndex, 0);
10356     Ins.push_back(RetArg);
10357   }
10358 
10359   // Look for stores of arguments to static allocas. Mark such arguments with a
10360   // flag to ask the target to give us the memory location of that argument if
10361   // available.
10362   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10363   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10364                                     ArgCopyElisionCandidates);
10365 
10366   // Set up the incoming argument description vector.
10367   for (const Argument &Arg : F.args()) {
10368     unsigned ArgNo = Arg.getArgNo();
10369     SmallVector<EVT, 4> ValueVTs;
10370     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10371     bool isArgValueUsed = !Arg.use_empty();
10372     unsigned PartBase = 0;
10373     Type *FinalType = Arg.getType();
10374     if (Arg.hasAttribute(Attribute::ByVal))
10375       FinalType = Arg.getParamByValType();
10376     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10377         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10378     for (unsigned Value = 0, NumValues = ValueVTs.size();
10379          Value != NumValues; ++Value) {
10380       EVT VT = ValueVTs[Value];
10381       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10382       ISD::ArgFlagsTy Flags;
10383 
10384 
10385       if (Arg.getType()->isPointerTy()) {
10386         Flags.setPointer();
10387         Flags.setPointerAddrSpace(
10388             cast<PointerType>(Arg.getType())->getAddressSpace());
10389       }
10390       if (Arg.hasAttribute(Attribute::ZExt))
10391         Flags.setZExt();
10392       if (Arg.hasAttribute(Attribute::SExt))
10393         Flags.setSExt();
10394       if (Arg.hasAttribute(Attribute::InReg)) {
10395         // If we are using vectorcall calling convention, a structure that is
10396         // passed InReg - is surely an HVA
10397         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10398             isa<StructType>(Arg.getType())) {
10399           // The first value of a structure is marked
10400           if (0 == Value)
10401             Flags.setHvaStart();
10402           Flags.setHva();
10403         }
10404         // Set InReg Flag
10405         Flags.setInReg();
10406       }
10407       if (Arg.hasAttribute(Attribute::StructRet))
10408         Flags.setSRet();
10409       if (Arg.hasAttribute(Attribute::SwiftSelf))
10410         Flags.setSwiftSelf();
10411       if (Arg.hasAttribute(Attribute::SwiftAsync))
10412         Flags.setSwiftAsync();
10413       if (Arg.hasAttribute(Attribute::SwiftError))
10414         Flags.setSwiftError();
10415       if (Arg.hasAttribute(Attribute::ByVal))
10416         Flags.setByVal();
10417       if (Arg.hasAttribute(Attribute::ByRef))
10418         Flags.setByRef();
10419       if (Arg.hasAttribute(Attribute::InAlloca)) {
10420         Flags.setInAlloca();
10421         // Set the byval flag for CCAssignFn callbacks that don't know about
10422         // inalloca.  This way we can know how many bytes we should've allocated
10423         // and how many bytes a callee cleanup function will pop.  If we port
10424         // inalloca to more targets, we'll have to add custom inalloca handling
10425         // in the various CC lowering callbacks.
10426         Flags.setByVal();
10427       }
10428       if (Arg.hasAttribute(Attribute::Preallocated)) {
10429         Flags.setPreallocated();
10430         // Set the byval flag for CCAssignFn callbacks that don't know about
10431         // preallocated.  This way we can know how many bytes we should've
10432         // allocated and how many bytes a callee cleanup function will pop.  If
10433         // we port preallocated to more targets, we'll have to add custom
10434         // preallocated handling in the various CC lowering callbacks.
10435         Flags.setByVal();
10436       }
10437 
10438       // Certain targets (such as MIPS), may have a different ABI alignment
10439       // for a type depending on the context. Give the target a chance to
10440       // specify the alignment it wants.
10441       const Align OriginalAlignment(
10442           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10443       Flags.setOrigAlign(OriginalAlignment);
10444 
10445       Align MemAlign;
10446       Type *ArgMemTy = nullptr;
10447       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10448           Flags.isByRef()) {
10449         if (!ArgMemTy)
10450           ArgMemTy = Arg.getPointeeInMemoryValueType();
10451 
10452         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10453 
10454         // For in-memory arguments, size and alignment should be passed from FE.
10455         // BE will guess if this info is not there but there are cases it cannot
10456         // get right.
10457         if (auto ParamAlign = Arg.getParamStackAlign())
10458           MemAlign = *ParamAlign;
10459         else if ((ParamAlign = Arg.getParamAlign()))
10460           MemAlign = *ParamAlign;
10461         else
10462           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10463         if (Flags.isByRef())
10464           Flags.setByRefSize(MemSize);
10465         else
10466           Flags.setByValSize(MemSize);
10467       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10468         MemAlign = *ParamAlign;
10469       } else {
10470         MemAlign = OriginalAlignment;
10471       }
10472       Flags.setMemAlign(MemAlign);
10473 
10474       if (Arg.hasAttribute(Attribute::Nest))
10475         Flags.setNest();
10476       if (NeedsRegBlock)
10477         Flags.setInConsecutiveRegs();
10478       if (ArgCopyElisionCandidates.count(&Arg))
10479         Flags.setCopyElisionCandidate();
10480       if (Arg.hasAttribute(Attribute::Returned))
10481         Flags.setReturned();
10482 
10483       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10484           *CurDAG->getContext(), F.getCallingConv(), VT);
10485       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10486           *CurDAG->getContext(), F.getCallingConv(), VT);
10487       for (unsigned i = 0; i != NumRegs; ++i) {
10488         // For scalable vectors, use the minimum size; individual targets
10489         // are responsible for handling scalable vector arguments and
10490         // return values.
10491         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10492                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10493         if (NumRegs > 1 && i == 0)
10494           MyFlags.Flags.setSplit();
10495         // if it isn't first piece, alignment must be 1
10496         else if (i > 0) {
10497           MyFlags.Flags.setOrigAlign(Align(1));
10498           if (i == NumRegs - 1)
10499             MyFlags.Flags.setSplitEnd();
10500         }
10501         Ins.push_back(MyFlags);
10502       }
10503       if (NeedsRegBlock && Value == NumValues - 1)
10504         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10505       PartBase += VT.getStoreSize().getKnownMinSize();
10506     }
10507   }
10508 
10509   // Call the target to set up the argument values.
10510   SmallVector<SDValue, 8> InVals;
10511   SDValue NewRoot = TLI->LowerFormalArguments(
10512       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10513 
10514   // Verify that the target's LowerFormalArguments behaved as expected.
10515   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10516          "LowerFormalArguments didn't return a valid chain!");
10517   assert(InVals.size() == Ins.size() &&
10518          "LowerFormalArguments didn't emit the correct number of values!");
10519   LLVM_DEBUG({
10520     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10521       assert(InVals[i].getNode() &&
10522              "LowerFormalArguments emitted a null value!");
10523       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10524              "LowerFormalArguments emitted a value with the wrong type!");
10525     }
10526   });
10527 
10528   // Update the DAG with the new chain value resulting from argument lowering.
10529   DAG.setRoot(NewRoot);
10530 
10531   // Set up the argument values.
10532   unsigned i = 0;
10533   if (!FuncInfo->CanLowerReturn) {
10534     // Create a virtual register for the sret pointer, and put in a copy
10535     // from the sret argument into it.
10536     SmallVector<EVT, 1> ValueVTs;
10537     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10538                     F.getReturnType()->getPointerTo(
10539                         DAG.getDataLayout().getAllocaAddrSpace()),
10540                     ValueVTs);
10541     MVT VT = ValueVTs[0].getSimpleVT();
10542     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10543     Optional<ISD::NodeType> AssertOp = None;
10544     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10545                                         nullptr, F.getCallingConv(), AssertOp);
10546 
10547     MachineFunction& MF = SDB->DAG.getMachineFunction();
10548     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10549     Register SRetReg =
10550         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10551     FuncInfo->DemoteRegister = SRetReg;
10552     NewRoot =
10553         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10554     DAG.setRoot(NewRoot);
10555 
10556     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10557     ++i;
10558   }
10559 
10560   SmallVector<SDValue, 4> Chains;
10561   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10562   for (const Argument &Arg : F.args()) {
10563     SmallVector<SDValue, 4> ArgValues;
10564     SmallVector<EVT, 4> ValueVTs;
10565     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10566     unsigned NumValues = ValueVTs.size();
10567     if (NumValues == 0)
10568       continue;
10569 
10570     bool ArgHasUses = !Arg.use_empty();
10571 
10572     // Elide the copying store if the target loaded this argument from a
10573     // suitable fixed stack object.
10574     if (Ins[i].Flags.isCopyElisionCandidate()) {
10575       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10576                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10577                              InVals[i], ArgHasUses);
10578     }
10579 
10580     // If this argument is unused then remember its value. It is used to generate
10581     // debugging information.
10582     bool isSwiftErrorArg =
10583         TLI->supportSwiftError() &&
10584         Arg.hasAttribute(Attribute::SwiftError);
10585     if (!ArgHasUses && !isSwiftErrorArg) {
10586       SDB->setUnusedArgValue(&Arg, InVals[i]);
10587 
10588       // Also remember any frame index for use in FastISel.
10589       if (FrameIndexSDNode *FI =
10590           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10591         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10592     }
10593 
10594     for (unsigned Val = 0; Val != NumValues; ++Val) {
10595       EVT VT = ValueVTs[Val];
10596       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10597                                                       F.getCallingConv(), VT);
10598       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10599           *CurDAG->getContext(), F.getCallingConv(), VT);
10600 
10601       // Even an apparent 'unused' swifterror argument needs to be returned. So
10602       // we do generate a copy for it that can be used on return from the
10603       // function.
10604       if (ArgHasUses || isSwiftErrorArg) {
10605         Optional<ISD::NodeType> AssertOp;
10606         if (Arg.hasAttribute(Attribute::SExt))
10607           AssertOp = ISD::AssertSext;
10608         else if (Arg.hasAttribute(Attribute::ZExt))
10609           AssertOp = ISD::AssertZext;
10610 
10611         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10612                                              PartVT, VT, nullptr,
10613                                              F.getCallingConv(), AssertOp));
10614       }
10615 
10616       i += NumParts;
10617     }
10618 
10619     // We don't need to do anything else for unused arguments.
10620     if (ArgValues.empty())
10621       continue;
10622 
10623     // Note down frame index.
10624     if (FrameIndexSDNode *FI =
10625         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10626       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10627 
10628     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10629                                      SDB->getCurSDLoc());
10630 
10631     SDB->setValue(&Arg, Res);
10632     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10633       // We want to associate the argument with the frame index, among
10634       // involved operands, that correspond to the lowest address. The
10635       // getCopyFromParts function, called earlier, is swapping the order of
10636       // the operands to BUILD_PAIR depending on endianness. The result of
10637       // that swapping is that the least significant bits of the argument will
10638       // be in the first operand of the BUILD_PAIR node, and the most
10639       // significant bits will be in the second operand.
10640       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10641       if (LoadSDNode *LNode =
10642           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10643         if (FrameIndexSDNode *FI =
10644             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10645           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10646     }
10647 
10648     // Analyses past this point are naive and don't expect an assertion.
10649     if (Res.getOpcode() == ISD::AssertZext)
10650       Res = Res.getOperand(0);
10651 
10652     // Update the SwiftErrorVRegDefMap.
10653     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10654       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10655       if (Register::isVirtualRegister(Reg))
10656         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10657                                    Reg);
10658     }
10659 
10660     // If this argument is live outside of the entry block, insert a copy from
10661     // wherever we got it to the vreg that other BB's will reference it as.
10662     if (Res.getOpcode() == ISD::CopyFromReg) {
10663       // If we can, though, try to skip creating an unnecessary vreg.
10664       // FIXME: This isn't very clean... it would be nice to make this more
10665       // general.
10666       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10667       if (Register::isVirtualRegister(Reg)) {
10668         FuncInfo->ValueMap[&Arg] = Reg;
10669         continue;
10670       }
10671     }
10672     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10673       FuncInfo->InitializeRegForValue(&Arg);
10674       SDB->CopyToExportRegsIfNeeded(&Arg);
10675     }
10676   }
10677 
10678   if (!Chains.empty()) {
10679     Chains.push_back(NewRoot);
10680     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10681   }
10682 
10683   DAG.setRoot(NewRoot);
10684 
10685   assert(i == InVals.size() && "Argument register count mismatch!");
10686 
10687   // If any argument copy elisions occurred and we have debug info, update the
10688   // stale frame indices used in the dbg.declare variable info table.
10689   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10690   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10691     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10692       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10693       if (I != ArgCopyElisionFrameIndexMap.end())
10694         VI.Slot = I->second;
10695     }
10696   }
10697 
10698   // Finally, if the target has anything special to do, allow it to do so.
10699   emitFunctionEntryCode();
10700 }
10701 
10702 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10703 /// ensure constants are generated when needed.  Remember the virtual registers
10704 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10705 /// directly add them, because expansion might result in multiple MBB's for one
10706 /// BB.  As such, the start of the BB might correspond to a different MBB than
10707 /// the end.
10708 void
10709 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10710   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10711   const Instruction *TI = LLVMBB->getTerminator();
10712 
10713   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10714 
10715   // Check PHI nodes in successors that expect a value to be available from this
10716   // block.
10717   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10718     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10719     if (!isa<PHINode>(SuccBB->begin())) continue;
10720     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10721 
10722     // If this terminator has multiple identical successors (common for
10723     // switches), only handle each succ once.
10724     if (!SuccsHandled.insert(SuccMBB).second)
10725       continue;
10726 
10727     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10728 
10729     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10730     // nodes and Machine PHI nodes, but the incoming operands have not been
10731     // emitted yet.
10732     for (const PHINode &PN : SuccBB->phis()) {
10733       // Ignore dead phi's.
10734       if (PN.use_empty())
10735         continue;
10736 
10737       // Skip empty types
10738       if (PN.getType()->isEmptyTy())
10739         continue;
10740 
10741       unsigned Reg;
10742       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10743 
10744       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10745         unsigned &RegOut = ConstantsOut[C];
10746         if (RegOut == 0) {
10747           RegOut = FuncInfo.CreateRegs(C);
10748           // We need to zero/sign extend ConstantInt phi operands to match
10749           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10750           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10751           if (auto *CI = dyn_cast<ConstantInt>(C))
10752             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10753                                                     : ISD::ZERO_EXTEND;
10754           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10755         }
10756         Reg = RegOut;
10757       } else {
10758         DenseMap<const Value *, Register>::iterator I =
10759           FuncInfo.ValueMap.find(PHIOp);
10760         if (I != FuncInfo.ValueMap.end())
10761           Reg = I->second;
10762         else {
10763           assert(isa<AllocaInst>(PHIOp) &&
10764                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10765                  "Didn't codegen value into a register!??");
10766           Reg = FuncInfo.CreateRegs(PHIOp);
10767           CopyValueToVirtualRegister(PHIOp, Reg);
10768         }
10769       }
10770 
10771       // Remember that this register needs to added to the machine PHI node as
10772       // the input for this MBB.
10773       SmallVector<EVT, 4> ValueVTs;
10774       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10775       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10776         EVT VT = ValueVTs[vti];
10777         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10778         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10779           FuncInfo.PHINodesToUpdate.push_back(
10780               std::make_pair(&*MBBI++, Reg + i));
10781         Reg += NumRegisters;
10782       }
10783     }
10784   }
10785 
10786   ConstantsOut.clear();
10787 }
10788 
10789 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10790   MachineFunction::iterator I(MBB);
10791   if (++I == FuncInfo.MF->end())
10792     return nullptr;
10793   return &*I;
10794 }
10795 
10796 /// During lowering new call nodes can be created (such as memset, etc.).
10797 /// Those will become new roots of the current DAG, but complications arise
10798 /// when they are tail calls. In such cases, the call lowering will update
10799 /// the root, but the builder still needs to know that a tail call has been
10800 /// lowered in order to avoid generating an additional return.
10801 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10802   // If the node is null, we do have a tail call.
10803   if (MaybeTC.getNode() != nullptr)
10804     DAG.setRoot(MaybeTC);
10805   else
10806     HasTailCall = true;
10807 }
10808 
10809 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10810                                         MachineBasicBlock *SwitchMBB,
10811                                         MachineBasicBlock *DefaultMBB) {
10812   MachineFunction *CurMF = FuncInfo.MF;
10813   MachineBasicBlock *NextMBB = nullptr;
10814   MachineFunction::iterator BBI(W.MBB);
10815   if (++BBI != FuncInfo.MF->end())
10816     NextMBB = &*BBI;
10817 
10818   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10819 
10820   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10821 
10822   if (Size == 2 && W.MBB == SwitchMBB) {
10823     // If any two of the cases has the same destination, and if one value
10824     // is the same as the other, but has one bit unset that the other has set,
10825     // use bit manipulation to do two compares at once.  For example:
10826     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10827     // TODO: This could be extended to merge any 2 cases in switches with 3
10828     // cases.
10829     // TODO: Handle cases where W.CaseBB != SwitchBB.
10830     CaseCluster &Small = *W.FirstCluster;
10831     CaseCluster &Big = *W.LastCluster;
10832 
10833     if (Small.Low == Small.High && Big.Low == Big.High &&
10834         Small.MBB == Big.MBB) {
10835       const APInt &SmallValue = Small.Low->getValue();
10836       const APInt &BigValue = Big.Low->getValue();
10837 
10838       // Check that there is only one bit different.
10839       APInt CommonBit = BigValue ^ SmallValue;
10840       if (CommonBit.isPowerOf2()) {
10841         SDValue CondLHS = getValue(Cond);
10842         EVT VT = CondLHS.getValueType();
10843         SDLoc DL = getCurSDLoc();
10844 
10845         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10846                                  DAG.getConstant(CommonBit, DL, VT));
10847         SDValue Cond = DAG.getSetCC(
10848             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10849             ISD::SETEQ);
10850 
10851         // Update successor info.
10852         // Both Small and Big will jump to Small.BB, so we sum up the
10853         // probabilities.
10854         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10855         if (BPI)
10856           addSuccessorWithProb(
10857               SwitchMBB, DefaultMBB,
10858               // The default destination is the first successor in IR.
10859               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10860         else
10861           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10862 
10863         // Insert the true branch.
10864         SDValue BrCond =
10865             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10866                         DAG.getBasicBlock(Small.MBB));
10867         // Insert the false branch.
10868         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10869                              DAG.getBasicBlock(DefaultMBB));
10870 
10871         DAG.setRoot(BrCond);
10872         return;
10873       }
10874     }
10875   }
10876 
10877   if (TM.getOptLevel() != CodeGenOpt::None) {
10878     // Here, we order cases by probability so the most likely case will be
10879     // checked first. However, two clusters can have the same probability in
10880     // which case their relative ordering is non-deterministic. So we use Low
10881     // as a tie-breaker as clusters are guaranteed to never overlap.
10882     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10883                [](const CaseCluster &a, const CaseCluster &b) {
10884       return a.Prob != b.Prob ?
10885              a.Prob > b.Prob :
10886              a.Low->getValue().slt(b.Low->getValue());
10887     });
10888 
10889     // Rearrange the case blocks so that the last one falls through if possible
10890     // without changing the order of probabilities.
10891     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10892       --I;
10893       if (I->Prob > W.LastCluster->Prob)
10894         break;
10895       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10896         std::swap(*I, *W.LastCluster);
10897         break;
10898       }
10899     }
10900   }
10901 
10902   // Compute total probability.
10903   BranchProbability DefaultProb = W.DefaultProb;
10904   BranchProbability UnhandledProbs = DefaultProb;
10905   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10906     UnhandledProbs += I->Prob;
10907 
10908   MachineBasicBlock *CurMBB = W.MBB;
10909   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10910     bool FallthroughUnreachable = false;
10911     MachineBasicBlock *Fallthrough;
10912     if (I == W.LastCluster) {
10913       // For the last cluster, fall through to the default destination.
10914       Fallthrough = DefaultMBB;
10915       FallthroughUnreachable = isa<UnreachableInst>(
10916           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10917     } else {
10918       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10919       CurMF->insert(BBI, Fallthrough);
10920       // Put Cond in a virtual register to make it available from the new blocks.
10921       ExportFromCurrentBlock(Cond);
10922     }
10923     UnhandledProbs -= I->Prob;
10924 
10925     switch (I->Kind) {
10926       case CC_JumpTable: {
10927         // FIXME: Optimize away range check based on pivot comparisons.
10928         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10929         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10930 
10931         // The jump block hasn't been inserted yet; insert it here.
10932         MachineBasicBlock *JumpMBB = JT->MBB;
10933         CurMF->insert(BBI, JumpMBB);
10934 
10935         auto JumpProb = I->Prob;
10936         auto FallthroughProb = UnhandledProbs;
10937 
10938         // If the default statement is a target of the jump table, we evenly
10939         // distribute the default probability to successors of CurMBB. Also
10940         // update the probability on the edge from JumpMBB to Fallthrough.
10941         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10942                                               SE = JumpMBB->succ_end();
10943              SI != SE; ++SI) {
10944           if (*SI == DefaultMBB) {
10945             JumpProb += DefaultProb / 2;
10946             FallthroughProb -= DefaultProb / 2;
10947             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10948             JumpMBB->normalizeSuccProbs();
10949             break;
10950           }
10951         }
10952 
10953         if (FallthroughUnreachable)
10954           JTH->FallthroughUnreachable = true;
10955 
10956         if (!JTH->FallthroughUnreachable)
10957           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10958         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10959         CurMBB->normalizeSuccProbs();
10960 
10961         // The jump table header will be inserted in our current block, do the
10962         // range check, and fall through to our fallthrough block.
10963         JTH->HeaderBB = CurMBB;
10964         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10965 
10966         // If we're in the right place, emit the jump table header right now.
10967         if (CurMBB == SwitchMBB) {
10968           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10969           JTH->Emitted = true;
10970         }
10971         break;
10972       }
10973       case CC_BitTests: {
10974         // FIXME: Optimize away range check based on pivot comparisons.
10975         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10976 
10977         // The bit test blocks haven't been inserted yet; insert them here.
10978         for (BitTestCase &BTC : BTB->Cases)
10979           CurMF->insert(BBI, BTC.ThisBB);
10980 
10981         // Fill in fields of the BitTestBlock.
10982         BTB->Parent = CurMBB;
10983         BTB->Default = Fallthrough;
10984 
10985         BTB->DefaultProb = UnhandledProbs;
10986         // If the cases in bit test don't form a contiguous range, we evenly
10987         // distribute the probability on the edge to Fallthrough to two
10988         // successors of CurMBB.
10989         if (!BTB->ContiguousRange) {
10990           BTB->Prob += DefaultProb / 2;
10991           BTB->DefaultProb -= DefaultProb / 2;
10992         }
10993 
10994         if (FallthroughUnreachable)
10995           BTB->FallthroughUnreachable = true;
10996 
10997         // If we're in the right place, emit the bit test header right now.
10998         if (CurMBB == SwitchMBB) {
10999           visitBitTestHeader(*BTB, SwitchMBB);
11000           BTB->Emitted = true;
11001         }
11002         break;
11003       }
11004       case CC_Range: {
11005         const Value *RHS, *LHS, *MHS;
11006         ISD::CondCode CC;
11007         if (I->Low == I->High) {
11008           // Check Cond == I->Low.
11009           CC = ISD::SETEQ;
11010           LHS = Cond;
11011           RHS=I->Low;
11012           MHS = nullptr;
11013         } else {
11014           // Check I->Low <= Cond <= I->High.
11015           CC = ISD::SETLE;
11016           LHS = I->Low;
11017           MHS = Cond;
11018           RHS = I->High;
11019         }
11020 
11021         // If Fallthrough is unreachable, fold away the comparison.
11022         if (FallthroughUnreachable)
11023           CC = ISD::SETTRUE;
11024 
11025         // The false probability is the sum of all unhandled cases.
11026         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11027                      getCurSDLoc(), I->Prob, UnhandledProbs);
11028 
11029         if (CurMBB == SwitchMBB)
11030           visitSwitchCase(CB, SwitchMBB);
11031         else
11032           SL->SwitchCases.push_back(CB);
11033 
11034         break;
11035       }
11036     }
11037     CurMBB = Fallthrough;
11038   }
11039 }
11040 
11041 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11042                                               CaseClusterIt First,
11043                                               CaseClusterIt Last) {
11044   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11045     if (X.Prob != CC.Prob)
11046       return X.Prob > CC.Prob;
11047 
11048     // Ties are broken by comparing the case value.
11049     return X.Low->getValue().slt(CC.Low->getValue());
11050   });
11051 }
11052 
11053 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11054                                         const SwitchWorkListItem &W,
11055                                         Value *Cond,
11056                                         MachineBasicBlock *SwitchMBB) {
11057   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11058          "Clusters not sorted?");
11059 
11060   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11061 
11062   // Balance the tree based on branch probabilities to create a near-optimal (in
11063   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11064   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11065   CaseClusterIt LastLeft = W.FirstCluster;
11066   CaseClusterIt FirstRight = W.LastCluster;
11067   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11068   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11069 
11070   // Move LastLeft and FirstRight towards each other from opposite directions to
11071   // find a partitioning of the clusters which balances the probability on both
11072   // sides. If LeftProb and RightProb are equal, alternate which side is
11073   // taken to ensure 0-probability nodes are distributed evenly.
11074   unsigned I = 0;
11075   while (LastLeft + 1 < FirstRight) {
11076     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11077       LeftProb += (++LastLeft)->Prob;
11078     else
11079       RightProb += (--FirstRight)->Prob;
11080     I++;
11081   }
11082 
11083   while (true) {
11084     // Our binary search tree differs from a typical BST in that ours can have up
11085     // to three values in each leaf. The pivot selection above doesn't take that
11086     // into account, which means the tree might require more nodes and be less
11087     // efficient. We compensate for this here.
11088 
11089     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11090     unsigned NumRight = W.LastCluster - FirstRight + 1;
11091 
11092     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11093       // If one side has less than 3 clusters, and the other has more than 3,
11094       // consider taking a cluster from the other side.
11095 
11096       if (NumLeft < NumRight) {
11097         // Consider moving the first cluster on the right to the left side.
11098         CaseCluster &CC = *FirstRight;
11099         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11100         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11101         if (LeftSideRank <= RightSideRank) {
11102           // Moving the cluster to the left does not demote it.
11103           ++LastLeft;
11104           ++FirstRight;
11105           continue;
11106         }
11107       } else {
11108         assert(NumRight < NumLeft);
11109         // Consider moving the last element on the left to the right side.
11110         CaseCluster &CC = *LastLeft;
11111         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11112         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11113         if (RightSideRank <= LeftSideRank) {
11114           // Moving the cluster to the right does not demot it.
11115           --LastLeft;
11116           --FirstRight;
11117           continue;
11118         }
11119       }
11120     }
11121     break;
11122   }
11123 
11124   assert(LastLeft + 1 == FirstRight);
11125   assert(LastLeft >= W.FirstCluster);
11126   assert(FirstRight <= W.LastCluster);
11127 
11128   // Use the first element on the right as pivot since we will make less-than
11129   // comparisons against it.
11130   CaseClusterIt PivotCluster = FirstRight;
11131   assert(PivotCluster > W.FirstCluster);
11132   assert(PivotCluster <= W.LastCluster);
11133 
11134   CaseClusterIt FirstLeft = W.FirstCluster;
11135   CaseClusterIt LastRight = W.LastCluster;
11136 
11137   const ConstantInt *Pivot = PivotCluster->Low;
11138 
11139   // New blocks will be inserted immediately after the current one.
11140   MachineFunction::iterator BBI(W.MBB);
11141   ++BBI;
11142 
11143   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11144   // we can branch to its destination directly if it's squeezed exactly in
11145   // between the known lower bound and Pivot - 1.
11146   MachineBasicBlock *LeftMBB;
11147   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11148       FirstLeft->Low == W.GE &&
11149       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11150     LeftMBB = FirstLeft->MBB;
11151   } else {
11152     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11153     FuncInfo.MF->insert(BBI, LeftMBB);
11154     WorkList.push_back(
11155         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11156     // Put Cond in a virtual register to make it available from the new blocks.
11157     ExportFromCurrentBlock(Cond);
11158   }
11159 
11160   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11161   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11162   // directly if RHS.High equals the current upper bound.
11163   MachineBasicBlock *RightMBB;
11164   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11165       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11166     RightMBB = FirstRight->MBB;
11167   } else {
11168     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11169     FuncInfo.MF->insert(BBI, RightMBB);
11170     WorkList.push_back(
11171         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11172     // Put Cond in a virtual register to make it available from the new blocks.
11173     ExportFromCurrentBlock(Cond);
11174   }
11175 
11176   // Create the CaseBlock record that will be used to lower the branch.
11177   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11178                getCurSDLoc(), LeftProb, RightProb);
11179 
11180   if (W.MBB == SwitchMBB)
11181     visitSwitchCase(CB, SwitchMBB);
11182   else
11183     SL->SwitchCases.push_back(CB);
11184 }
11185 
11186 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11187 // from the swith statement.
11188 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11189                                             BranchProbability PeeledCaseProb) {
11190   if (PeeledCaseProb == BranchProbability::getOne())
11191     return BranchProbability::getZero();
11192   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11193 
11194   uint32_t Numerator = CaseProb.getNumerator();
11195   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11196   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11197 }
11198 
11199 // Try to peel the top probability case if it exceeds the threshold.
11200 // Return current MachineBasicBlock for the switch statement if the peeling
11201 // does not occur.
11202 // If the peeling is performed, return the newly created MachineBasicBlock
11203 // for the peeled switch statement. Also update Clusters to remove the peeled
11204 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11205 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11206     const SwitchInst &SI, CaseClusterVector &Clusters,
11207     BranchProbability &PeeledCaseProb) {
11208   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11209   // Don't perform if there is only one cluster or optimizing for size.
11210   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11211       TM.getOptLevel() == CodeGenOpt::None ||
11212       SwitchMBB->getParent()->getFunction().hasMinSize())
11213     return SwitchMBB;
11214 
11215   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11216   unsigned PeeledCaseIndex = 0;
11217   bool SwitchPeeled = false;
11218   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11219     CaseCluster &CC = Clusters[Index];
11220     if (CC.Prob < TopCaseProb)
11221       continue;
11222     TopCaseProb = CC.Prob;
11223     PeeledCaseIndex = Index;
11224     SwitchPeeled = true;
11225   }
11226   if (!SwitchPeeled)
11227     return SwitchMBB;
11228 
11229   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11230                     << TopCaseProb << "\n");
11231 
11232   // Record the MBB for the peeled switch statement.
11233   MachineFunction::iterator BBI(SwitchMBB);
11234   ++BBI;
11235   MachineBasicBlock *PeeledSwitchMBB =
11236       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11237   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11238 
11239   ExportFromCurrentBlock(SI.getCondition());
11240   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11241   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11242                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11243   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11244 
11245   Clusters.erase(PeeledCaseIt);
11246   for (CaseCluster &CC : Clusters) {
11247     LLVM_DEBUG(
11248         dbgs() << "Scale the probablity for one cluster, before scaling: "
11249                << CC.Prob << "\n");
11250     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11251     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11252   }
11253   PeeledCaseProb = TopCaseProb;
11254   return PeeledSwitchMBB;
11255 }
11256 
11257 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11258   // Extract cases from the switch.
11259   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11260   CaseClusterVector Clusters;
11261   Clusters.reserve(SI.getNumCases());
11262   for (auto I : SI.cases()) {
11263     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11264     const ConstantInt *CaseVal = I.getCaseValue();
11265     BranchProbability Prob =
11266         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11267             : BranchProbability(1, SI.getNumCases() + 1);
11268     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11269   }
11270 
11271   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11272 
11273   // Cluster adjacent cases with the same destination. We do this at all
11274   // optimization levels because it's cheap to do and will make codegen faster
11275   // if there are many clusters.
11276   sortAndRangeify(Clusters);
11277 
11278   // The branch probablity of the peeled case.
11279   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11280   MachineBasicBlock *PeeledSwitchMBB =
11281       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11282 
11283   // If there is only the default destination, jump there directly.
11284   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11285   if (Clusters.empty()) {
11286     assert(PeeledSwitchMBB == SwitchMBB);
11287     SwitchMBB->addSuccessor(DefaultMBB);
11288     if (DefaultMBB != NextBlock(SwitchMBB)) {
11289       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11290                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11291     }
11292     return;
11293   }
11294 
11295   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11296   SL->findBitTestClusters(Clusters, &SI);
11297 
11298   LLVM_DEBUG({
11299     dbgs() << "Case clusters: ";
11300     for (const CaseCluster &C : Clusters) {
11301       if (C.Kind == CC_JumpTable)
11302         dbgs() << "JT:";
11303       if (C.Kind == CC_BitTests)
11304         dbgs() << "BT:";
11305 
11306       C.Low->getValue().print(dbgs(), true);
11307       if (C.Low != C.High) {
11308         dbgs() << '-';
11309         C.High->getValue().print(dbgs(), true);
11310       }
11311       dbgs() << ' ';
11312     }
11313     dbgs() << '\n';
11314   });
11315 
11316   assert(!Clusters.empty());
11317   SwitchWorkList WorkList;
11318   CaseClusterIt First = Clusters.begin();
11319   CaseClusterIt Last = Clusters.end() - 1;
11320   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11321   // Scale the branchprobability for DefaultMBB if the peel occurs and
11322   // DefaultMBB is not replaced.
11323   if (PeeledCaseProb != BranchProbability::getZero() &&
11324       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11325     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11326   WorkList.push_back(
11327       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11328 
11329   while (!WorkList.empty()) {
11330     SwitchWorkListItem W = WorkList.pop_back_val();
11331     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11332 
11333     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11334         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11335       // For optimized builds, lower large range as a balanced binary tree.
11336       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11337       continue;
11338     }
11339 
11340     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11341   }
11342 }
11343 
11344 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11346   auto DL = getCurSDLoc();
11347   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11348   setValue(&I, DAG.getStepVector(DL, ResultVT));
11349 }
11350 
11351 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11352   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11353   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11354 
11355   SDLoc DL = getCurSDLoc();
11356   SDValue V = getValue(I.getOperand(0));
11357   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11358 
11359   if (VT.isScalableVector()) {
11360     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11361     return;
11362   }
11363 
11364   // Use VECTOR_SHUFFLE for the fixed-length vector
11365   // to maintain existing behavior.
11366   SmallVector<int, 8> Mask;
11367   unsigned NumElts = VT.getVectorMinNumElements();
11368   for (unsigned i = 0; i != NumElts; ++i)
11369     Mask.push_back(NumElts - 1 - i);
11370 
11371   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11372 }
11373 
11374 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11375   SmallVector<EVT, 4> ValueVTs;
11376   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11377                   ValueVTs);
11378   unsigned NumValues = ValueVTs.size();
11379   if (NumValues == 0) return;
11380 
11381   SmallVector<SDValue, 4> Values(NumValues);
11382   SDValue Op = getValue(I.getOperand(0));
11383 
11384   for (unsigned i = 0; i != NumValues; ++i)
11385     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11386                             SDValue(Op.getNode(), Op.getResNo() + i));
11387 
11388   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11389                            DAG.getVTList(ValueVTs), Values));
11390 }
11391 
11392 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11393   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11394   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11395 
11396   SDLoc DL = getCurSDLoc();
11397   SDValue V1 = getValue(I.getOperand(0));
11398   SDValue V2 = getValue(I.getOperand(1));
11399   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11400 
11401   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11402   if (VT.isScalableVector()) {
11403     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11404     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11405                              DAG.getConstant(Imm, DL, IdxVT)));
11406     return;
11407   }
11408 
11409   unsigned NumElts = VT.getVectorNumElements();
11410 
11411   uint64_t Idx = (NumElts + Imm) % NumElts;
11412 
11413   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11414   SmallVector<int, 8> Mask;
11415   for (unsigned i = 0; i < NumElts; ++i)
11416     Mask.push_back(Idx + i);
11417   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11418 }
11419