1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <iterator> 108 #include <limits> 109 #include <optional> 110 #include <tuple> 111 112 using namespace llvm; 113 using namespace PatternMatch; 114 using namespace SwitchCG; 115 116 #define DEBUG_TYPE "isel" 117 118 /// LimitFloatPrecision - Generate low-precision inline sequences for 119 /// some float libcalls (6, 8 or 12 bits). 120 static unsigned LimitFloatPrecision; 121 122 static cl::opt<bool> 123 InsertAssertAlign("insert-assert-align", cl::init(true), 124 cl::desc("Insert the experimental `assertalign` node."), 125 cl::ReallyHidden); 126 127 static cl::opt<unsigned, true> 128 LimitFPPrecision("limit-float-precision", 129 cl::desc("Generate low-precision inline sequences " 130 "for some float libcalls"), 131 cl::location(LimitFloatPrecision), cl::Hidden, 132 cl::init(0)); 133 134 static cl::opt<unsigned> SwitchPeelThreshold( 135 "switch-peel-threshold", cl::Hidden, cl::init(66), 136 cl::desc("Set the case probability threshold for peeling the case from a " 137 "switch statement. A value greater than 100 will void this " 138 "optimization")); 139 140 // Limit the width of DAG chains. This is important in general to prevent 141 // DAG-based analysis from blowing up. For example, alias analysis and 142 // load clustering may not complete in reasonable time. It is difficult to 143 // recognize and avoid this situation within each individual analysis, and 144 // future analyses are likely to have the same behavior. Limiting DAG width is 145 // the safe approach and will be especially important with global DAGs. 146 // 147 // MaxParallelChains default is arbitrarily high to avoid affecting 148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 149 // sequence over this should have been converted to llvm.memcpy by the 150 // frontend. It is easy to induce this behavior with .ll code such as: 151 // %buffer = alloca [4096 x i8] 152 // %data = load [4096 x i8]* %argPtr 153 // store [4096 x i8] %data, [4096 x i8]* %buffer 154 static const unsigned MaxParallelChains = 64; 155 156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 157 const SDValue *Parts, unsigned NumParts, 158 MVT PartVT, EVT ValueVT, const Value *V, 159 SDValue InChain, 160 std::optional<CallingConv::ID> CC); 161 162 /// getCopyFromParts - Create a value that contains the specified legal parts 163 /// combined into the value they represent. If the parts combine to a type 164 /// larger than ValueVT then AssertOp can be used to specify whether the extra 165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 166 /// (ISD::AssertSext). 167 static SDValue 168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 169 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 170 SDValue InChain, 171 std::optional<CallingConv::ID> CC = std::nullopt, 172 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 173 // Let the target assemble the parts if it wants to 174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 175 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 176 PartVT, ValueVT, CC)) 177 return Val; 178 179 if (ValueVT.isVector()) 180 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 181 InChain, CC); 182 183 assert(NumParts > 0 && "No parts to assemble!"); 184 SDValue Val = Parts[0]; 185 186 if (NumParts > 1) { 187 // Assemble the value from multiple parts. 188 if (ValueVT.isInteger()) { 189 unsigned PartBits = PartVT.getSizeInBits(); 190 unsigned ValueBits = ValueVT.getSizeInBits(); 191 192 // Assemble the power of 2 part. 193 unsigned RoundParts = llvm::bit_floor(NumParts); 194 unsigned RoundBits = PartBits * RoundParts; 195 EVT RoundVT = RoundBits == ValueBits ? 196 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 197 SDValue Lo, Hi; 198 199 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 200 201 if (RoundParts > 2) { 202 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 203 InChain); 204 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 205 PartVT, HalfVT, V, InChain); 206 } else { 207 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 208 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 209 } 210 211 if (DAG.getDataLayout().isBigEndian()) 212 std::swap(Lo, Hi); 213 214 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 215 216 if (RoundParts < NumParts) { 217 // Assemble the trailing non-power-of-2 part. 218 unsigned OddParts = NumParts - RoundParts; 219 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 220 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 221 OddVT, V, InChain, CC); 222 223 // Combine the round and odd parts. 224 Lo = Val; 225 if (DAG.getDataLayout().isBigEndian()) 226 std::swap(Lo, Hi); 227 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 228 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 229 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 230 DAG.getConstant(Lo.getValueSizeInBits(), DL, 231 TLI.getShiftAmountTy( 232 TotalVT, DAG.getDataLayout()))); 233 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 234 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 235 } 236 } else if (PartVT.isFloatingPoint()) { 237 // FP split into multiple FP parts (for ppcf128) 238 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 239 "Unexpected split"); 240 SDValue Lo, Hi; 241 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 242 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 243 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 244 std::swap(Lo, Hi); 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 246 } else { 247 // FP split into integer parts (soft fp) 248 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 249 !PartVT.isVector() && "Unexpected split"); 250 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 251 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 252 InChain, CC); 253 } 254 } 255 256 // There is now one part, held in Val. Correct it to match ValueVT. 257 // PartEVT is the type of the register class that holds the value. 258 // ValueVT is the type of the inline asm operation. 259 EVT PartEVT = Val.getValueType(); 260 261 if (PartEVT == ValueVT) 262 return Val; 263 264 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 265 ValueVT.bitsLT(PartEVT)) { 266 // For an FP value in an integer part, we need to truncate to the right 267 // width first. 268 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 270 } 271 272 // Handle types that have the same size. 273 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 274 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 275 276 // Handle types with different sizes. 277 if (PartEVT.isInteger() && ValueVT.isInteger()) { 278 if (ValueVT.bitsLT(PartEVT)) { 279 // For a truncate, see if we have any information to 280 // indicate whether the truncated bits will always be 281 // zero or sign-extension. 282 if (AssertOp) 283 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 284 DAG.getValueType(ValueVT)); 285 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 286 } 287 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 288 } 289 290 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 291 // FP_ROUND's are always exact here. 292 if (ValueVT.bitsLT(Val.getValueType())) { 293 294 SDValue NoChange = 295 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 296 297 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 298 llvm::Attribute::StrictFP)) { 299 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 300 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 301 NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 305 } 306 307 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 308 } 309 310 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 311 // then truncating. 312 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 313 ValueVT.bitsLT(PartEVT)) { 314 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 318 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (CI->isInlineAsm()) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 SDValue InChain, 344 std::optional<CallingConv::ID> CallConv) { 345 assert(ValueVT.isVector() && "Not a vector value"); 346 assert(NumParts > 0 && "No parts to assemble!"); 347 const bool IsABIRegCopy = CallConv.has_value(); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 SDValue Val = Parts[0]; 351 352 // Handle a multi-element vector. 353 if (NumParts > 1) { 354 EVT IntermediateVT; 355 MVT RegisterVT; 356 unsigned NumIntermediates; 357 unsigned NumRegs; 358 359 if (IsABIRegCopy) { 360 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 361 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } else { 364 NumRegs = 365 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } 368 369 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 370 NumParts = NumRegs; // Silence a compiler warning. 371 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 372 assert(RegisterVT.getSizeInBits() == 373 Parts[0].getSimpleValueType().getSizeInBits() && 374 "Part type sizes don't match!"); 375 376 // Assemble the parts into intermediate operands. 377 SmallVector<SDValue, 8> Ops(NumIntermediates); 378 if (NumIntermediates == NumParts) { 379 // If the register was not expanded, truncate or copy the value, 380 // as appropriate. 381 for (unsigned i = 0; i != NumParts; ++i) 382 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 383 V, InChain, CallConv); 384 } else if (NumParts > 0) { 385 // If the intermediate type was expanded, build the intermediate 386 // operands from the parts. 387 assert(NumParts % NumIntermediates == 0 && 388 "Must expand into a divisible number of parts!"); 389 unsigned Factor = NumParts / NumIntermediates; 390 for (unsigned i = 0; i != NumIntermediates; ++i) 391 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 392 IntermediateVT, V, InChain, CallConv); 393 } 394 395 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 396 // intermediate operands. 397 EVT BuiltVectorTy = 398 IntermediateVT.isVector() 399 ? EVT::getVectorVT( 400 *DAG.getContext(), IntermediateVT.getScalarType(), 401 IntermediateVT.getVectorElementCount() * NumParts) 402 : EVT::getVectorVT(*DAG.getContext(), 403 IntermediateVT.getScalarType(), 404 NumIntermediates); 405 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 406 : ISD::BUILD_VECTOR, 407 DL, BuiltVectorTy, Ops); 408 } 409 410 // There is now one part, held in Val. Correct it to match ValueVT. 411 EVT PartEVT = Val.getValueType(); 412 413 if (PartEVT == ValueVT) 414 return Val; 415 416 if (PartEVT.isVector()) { 417 // Vector/Vector bitcast. 418 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 419 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 421 // If the parts vector has more elements than the value vector, then we 422 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 423 // Extract the elements we want. 424 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 425 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 426 ValueVT.getVectorElementCount().getKnownMinValue()) && 427 (PartEVT.getVectorElementCount().isScalable() == 428 ValueVT.getVectorElementCount().isScalable()) && 429 "Cannot narrow, it would be a lossy transformation"); 430 PartEVT = 431 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 432 ValueVT.getVectorElementCount()); 433 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 434 DAG.getVectorIdxConstant(0, DL)); 435 if (PartEVT == ValueVT) 436 return Val; 437 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 } 444 445 // Promoted vector extract 446 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 447 } 448 449 // Trivial bitcast if the types are the same size and the destination 450 // vector type is legal. 451 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 452 TLI.isTypeLegal(ValueVT)) 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 455 if (ValueVT.getVectorNumElements() != 1) { 456 // Certain ABIs require that vectors are passed as integers. For vectors 457 // are the same size, this is an obvious bitcast. 458 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 459 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 460 } else if (ValueVT.bitsLT(PartEVT)) { 461 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 462 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 463 // Drop the extra bits. 464 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 465 return DAG.getBitcast(ValueVT, Val); 466 } 467 468 diagnosePossiblyInvalidConstraint( 469 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 470 return DAG.getUNDEF(ValueVT); 471 } 472 473 // Handle cases such as i8 -> <1 x i1> 474 EVT ValueSVT = ValueVT.getVectorElementType(); 475 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 476 unsigned ValueSize = ValueSVT.getSizeInBits(); 477 if (ValueSize == PartEVT.getSizeInBits()) { 478 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 479 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 480 // It's possible a scalar floating point type gets softened to integer and 481 // then promoted to a larger integer. If PartEVT is the larger integer 482 // we need to truncate it and then bitcast to the FP type. 483 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 484 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 485 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 486 Val = DAG.getBitcast(ValueSVT, Val); 487 } else { 488 Val = ValueVT.isFloatingPoint() 489 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 490 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 491 } 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 std::optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void 506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 507 unsigned NumParts, MVT PartVT, const Value *V, 508 std::optional<CallingConv::ID> CallConv = std::nullopt, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 // Let the target split the parts if it wants to 511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 512 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 513 CallConv)) 514 return; 515 EVT ValueVT = Val.getValueType(); 516 517 // Handle the vector case separately. 518 if (ValueVT.isVector()) 519 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 520 CallConv); 521 522 unsigned OrigNumParts = NumParts; 523 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 524 "Copying to an illegal type!"); 525 526 if (NumParts == 0) 527 return; 528 529 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 530 EVT PartEVT = PartVT; 531 if (PartEVT == ValueVT) { 532 assert(NumParts == 1 && "No-op copy with multiple parts!"); 533 Parts[0] = Val; 534 return; 535 } 536 537 unsigned PartBits = PartVT.getSizeInBits(); 538 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 539 // If the parts cover more bits than the value has, promote the value. 540 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 541 assert(NumParts == 1 && "Do not know what to promote to!"); 542 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 543 } else { 544 if (ValueVT.isFloatingPoint()) { 545 // FP values need to be bitcast, then extended if they are being put 546 // into a larger container. 547 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 548 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 549 } 550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 551 ValueVT.isInteger() && 552 "Unknown mismatch!"); 553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 554 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 555 if (PartVT == MVT::x86mmx) 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } 558 } else if (PartBits == ValueVT.getSizeInBits()) { 559 // Different types of the same size. 560 assert(NumParts == 1 && PartEVT != ValueVT); 561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 562 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 563 // If the parts cover less bits than value has, truncate the value. 564 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 565 ValueVT.isInteger() && 566 "Unknown mismatch!"); 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 if (PartVT == MVT::x86mmx) 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 // The value may have changed - recompute ValueVT. 574 ValueVT = Val.getValueType(); 575 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 576 "Failed to tile the value with PartVT!"); 577 578 if (NumParts == 1) { 579 if (PartEVT != ValueVT) { 580 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 581 "scalar-to-vector conversion failed"); 582 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 583 } 584 585 Parts[0] = Val; 586 return; 587 } 588 589 // Expand the value into multiple parts. 590 if (NumParts & (NumParts - 1)) { 591 // The number of parts is not a power of 2. Split off and copy the tail. 592 assert(PartVT.isInteger() && ValueVT.isInteger() && 593 "Do not know what to expand to!"); 594 unsigned RoundParts = llvm::bit_floor(NumParts); 595 unsigned RoundBits = RoundParts * PartBits; 596 unsigned OddParts = NumParts - RoundParts; 597 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 598 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 599 600 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 601 CallConv); 602 603 if (DAG.getDataLayout().isBigEndian()) 604 // The odd parts were reversed by getCopyToParts - unreverse them. 605 std::reverse(Parts + RoundParts, Parts + NumParts); 606 607 NumParts = RoundParts; 608 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 609 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 610 } 611 612 // The number of parts is a power of 2. Repeatedly bisect the value using 613 // EXTRACT_ELEMENT. 614 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 615 EVT::getIntegerVT(*DAG.getContext(), 616 ValueVT.getSizeInBits()), 617 Val); 618 619 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 620 for (unsigned i = 0; i < NumParts; i += StepSize) { 621 unsigned ThisBits = StepSize * PartBits / 2; 622 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 623 SDValue &Part0 = Parts[i]; 624 SDValue &Part1 = Parts[i+StepSize/2]; 625 626 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 628 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 629 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 630 631 if (ThisBits == PartBits && ThisVT != PartVT) { 632 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 633 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 634 } 635 } 636 } 637 638 if (DAG.getDataLayout().isBigEndian()) 639 std::reverse(Parts, Parts + OrigNumParts); 640 } 641 642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 643 const SDLoc &DL, EVT PartVT) { 644 if (!PartVT.isVector()) 645 return SDValue(); 646 647 EVT ValueVT = Val.getValueType(); 648 EVT PartEVT = PartVT.getVectorElementType(); 649 EVT ValueEVT = ValueVT.getVectorElementType(); 650 ElementCount PartNumElts = PartVT.getVectorElementCount(); 651 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 652 653 // We only support widening vectors with equivalent element types and 654 // fixed/scalable properties. If a target needs to widen a fixed-length type 655 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 656 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 657 PartNumElts.isScalable() != ValueNumElts.isScalable()) 658 return SDValue(); 659 660 // Have a try for bf16 because some targets share its ABI with fp16. 661 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 662 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 663 "Cannot widen to illegal type"); 664 Val = DAG.getNode(ISD::BITCAST, DL, 665 ValueVT.changeVectorElementType(MVT::f16), Val); 666 } else if (PartEVT != ValueEVT) { 667 return SDValue(); 668 } 669 670 // Widening a scalable vector to another scalable vector is done by inserting 671 // the vector into a larger undef one. 672 if (PartNumElts.isScalable()) 673 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 674 Val, DAG.getVectorIdxConstant(0, DL)); 675 676 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 677 // undef elements. 678 SmallVector<SDValue, 16> Ops; 679 DAG.ExtractVectorElements(Val, Ops); 680 SDValue EltUndef = DAG.getUNDEF(PartEVT); 681 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 682 683 // FIXME: Use CONCAT for 2x -> 4x. 684 return DAG.getBuildVector(PartVT, DL, Ops); 685 } 686 687 /// getCopyToPartsVector - Create a series of nodes that contain the specified 688 /// value split into legal parts. 689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 690 SDValue Val, SDValue *Parts, unsigned NumParts, 691 MVT PartVT, const Value *V, 692 std::optional<CallingConv::ID> CallConv) { 693 EVT ValueVT = Val.getValueType(); 694 assert(ValueVT.isVector() && "Not a vector"); 695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 696 const bool IsABIRegCopy = CallConv.has_value(); 697 698 if (NumParts == 1) { 699 EVT PartEVT = PartVT; 700 if (PartEVT == ValueVT) { 701 // Nothing to do. 702 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 703 // Bitconvert vector->vector case. 704 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 705 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 706 Val = Widened; 707 } else if (PartVT.isVector() && 708 PartEVT.getVectorElementType().bitsGE( 709 ValueVT.getVectorElementType()) && 710 PartEVT.getVectorElementCount() == 711 ValueVT.getVectorElementCount()) { 712 713 // Promoted vector extract 714 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 715 } else if (PartEVT.isVector() && 716 PartEVT.getVectorElementType() != 717 ValueVT.getVectorElementType() && 718 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 719 TargetLowering::TypeWidenVector) { 720 // Combination of widening and promotion. 721 EVT WidenVT = 722 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 723 PartVT.getVectorElementCount()); 724 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 725 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 726 } else { 727 // Don't extract an integer from a float vector. This can happen if the 728 // FP type gets softened to integer and then promoted. The promotion 729 // prevents it from being picked up by the earlier bitcast case. 730 if (ValueVT.getVectorElementCount().isScalar() && 731 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 732 // If we reach this condition and PartVT is FP, this means that 733 // ValueVT is also FP and both have a different size, otherwise we 734 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 735 // would be invalid since that would mean the smaller FP type has to 736 // be extended to the larger one. 737 if (PartVT.isFloatingPoint()) { 738 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 739 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 740 } else 741 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 742 DAG.getVectorIdxConstant(0, DL)); 743 } else { 744 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 745 assert(PartVT.getFixedSizeInBits() > ValueSize && 746 "lossy conversion of vector to scalar type"); 747 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 748 Val = DAG.getBitcast(IntermediateType, Val); 749 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 750 } 751 } 752 753 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 754 Parts[0] = Val; 755 return; 756 } 757 758 // Handle a multi-element vector. 759 EVT IntermediateVT; 760 MVT RegisterVT; 761 unsigned NumIntermediates; 762 unsigned NumRegs; 763 if (IsABIRegCopy) { 764 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 765 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 766 RegisterVT); 767 } else { 768 NumRegs = 769 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 770 NumIntermediates, RegisterVT); 771 } 772 773 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 774 NumParts = NumRegs; // Silence a compiler warning. 775 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 776 777 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 778 "Mixing scalable and fixed vectors when copying in parts"); 779 780 std::optional<ElementCount> DestEltCnt; 781 782 if (IntermediateVT.isVector()) 783 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 784 else 785 DestEltCnt = ElementCount::getFixed(NumIntermediates); 786 787 EVT BuiltVectorTy = EVT::getVectorVT( 788 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 789 790 if (ValueVT == BuiltVectorTy) { 791 // Nothing to do. 792 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 793 // Bitconvert vector->vector case. 794 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 795 } else { 796 if (BuiltVectorTy.getVectorElementType().bitsGT( 797 ValueVT.getVectorElementType())) { 798 // Integer promotion. 799 ValueVT = EVT::getVectorVT(*DAG.getContext(), 800 BuiltVectorTy.getVectorElementType(), 801 ValueVT.getVectorElementCount()); 802 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 803 } 804 805 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 806 Val = Widened; 807 } 808 } 809 810 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 811 812 // Split the vector into intermediate operands. 813 SmallVector<SDValue, 8> Ops(NumIntermediates); 814 for (unsigned i = 0; i != NumIntermediates; ++i) { 815 if (IntermediateVT.isVector()) { 816 // This does something sensible for scalable vectors - see the 817 // definition of EXTRACT_SUBVECTOR for further details. 818 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 819 Ops[i] = 820 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 821 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 822 } else { 823 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 824 DAG.getVectorIdxConstant(i, DL)); 825 } 826 } 827 828 // Split the intermediate operands into legal parts. 829 if (NumParts == NumIntermediates) { 830 // If the register was not expanded, promote or copy the value, 831 // as appropriate. 832 for (unsigned i = 0; i != NumParts; ++i) 833 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 834 } else if (NumParts > 0) { 835 // If the intermediate type was expanded, split each the value into 836 // legal parts. 837 assert(NumIntermediates != 0 && "division by zero"); 838 assert(NumParts % NumIntermediates == 0 && 839 "Must expand into a divisible number of parts!"); 840 unsigned Factor = NumParts / NumIntermediates; 841 for (unsigned i = 0; i != NumIntermediates; ++i) 842 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 843 CallConv); 844 } 845 } 846 847 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 848 EVT valuevt, std::optional<CallingConv::ID> CC) 849 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 850 RegCount(1, regs.size()), CallConv(CC) {} 851 852 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 853 const DataLayout &DL, unsigned Reg, Type *Ty, 854 std::optional<CallingConv::ID> CC) { 855 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 856 857 CallConv = CC; 858 859 for (EVT ValueVT : ValueVTs) { 860 unsigned NumRegs = 861 isABIMangled() 862 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 863 : TLI.getNumRegisters(Context, ValueVT); 864 MVT RegisterVT = 865 isABIMangled() 866 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 867 : TLI.getRegisterType(Context, ValueVT); 868 for (unsigned i = 0; i != NumRegs; ++i) 869 Regs.push_back(Reg + i); 870 RegVTs.push_back(RegisterVT); 871 RegCount.push_back(NumRegs); 872 Reg += NumRegs; 873 } 874 } 875 876 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 877 FunctionLoweringInfo &FuncInfo, 878 const SDLoc &dl, SDValue &Chain, 879 SDValue *Glue, const Value *V) const { 880 // A Value with type {} or [0 x %t] needs no registers. 881 if (ValueVTs.empty()) 882 return SDValue(); 883 884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 885 886 // Assemble the legal parts into the final values. 887 SmallVector<SDValue, 4> Values(ValueVTs.size()); 888 SmallVector<SDValue, 8> Parts; 889 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 890 // Copy the legal parts from the registers. 891 EVT ValueVT = ValueVTs[Value]; 892 unsigned NumRegs = RegCount[Value]; 893 MVT RegisterVT = isABIMangled() 894 ? TLI.getRegisterTypeForCallingConv( 895 *DAG.getContext(), *CallConv, RegVTs[Value]) 896 : RegVTs[Value]; 897 898 Parts.resize(NumRegs); 899 for (unsigned i = 0; i != NumRegs; ++i) { 900 SDValue P; 901 if (!Glue) { 902 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 903 } else { 904 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 905 *Glue = P.getValue(2); 906 } 907 908 Chain = P.getValue(1); 909 Parts[i] = P; 910 911 // If the source register was virtual and if we know something about it, 912 // add an assert node. 913 if (!Register::isVirtualRegister(Regs[Part + i]) || 914 !RegisterVT.isInteger()) 915 continue; 916 917 const FunctionLoweringInfo::LiveOutInfo *LOI = 918 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 919 if (!LOI) 920 continue; 921 922 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 923 unsigned NumSignBits = LOI->NumSignBits; 924 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 925 926 if (NumZeroBits == RegSize) { 927 // The current value is a zero. 928 // Explicitly express that as it would be easier for 929 // optimizations to kick in. 930 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 931 continue; 932 } 933 934 // FIXME: We capture more information than the dag can represent. For 935 // now, just use the tightest assertzext/assertsext possible. 936 bool isSExt; 937 EVT FromVT(MVT::Other); 938 if (NumZeroBits) { 939 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 940 isSExt = false; 941 } else if (NumSignBits > 1) { 942 FromVT = 943 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 944 isSExt = true; 945 } else { 946 continue; 947 } 948 // Add an assertion node. 949 assert(FromVT != MVT::Other); 950 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 951 RegisterVT, P, DAG.getValueType(FromVT)); 952 } 953 954 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 955 RegisterVT, ValueVT, V, Chain, CallConv); 956 Part += NumRegs; 957 Parts.clear(); 958 } 959 960 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 961 } 962 963 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 964 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 965 const Value *V, 966 ISD::NodeType PreferredExtendType) const { 967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 968 ISD::NodeType ExtendKind = PreferredExtendType; 969 970 // Get the list of the values's legal parts. 971 unsigned NumRegs = Regs.size(); 972 SmallVector<SDValue, 8> Parts(NumRegs); 973 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 974 unsigned NumParts = RegCount[Value]; 975 976 MVT RegisterVT = isABIMangled() 977 ? TLI.getRegisterTypeForCallingConv( 978 *DAG.getContext(), *CallConv, RegVTs[Value]) 979 : RegVTs[Value]; 980 981 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 982 ExtendKind = ISD::ZERO_EXTEND; 983 984 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 985 NumParts, RegisterVT, V, CallConv, ExtendKind); 986 Part += NumParts; 987 } 988 989 // Copy the parts into the registers. 990 SmallVector<SDValue, 8> Chains(NumRegs); 991 for (unsigned i = 0; i != NumRegs; ++i) { 992 SDValue Part; 993 if (!Glue) { 994 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 995 } else { 996 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 997 *Glue = Part.getValue(1); 998 } 999 1000 Chains[i] = Part.getValue(0); 1001 } 1002 1003 if (NumRegs == 1 || Glue) 1004 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1005 // flagged to it. That is the CopyToReg nodes and the user are considered 1006 // a single scheduling unit. If we create a TokenFactor and return it as 1007 // chain, then the TokenFactor is both a predecessor (operand) of the 1008 // user as well as a successor (the TF operands are flagged to the user). 1009 // c1, f1 = CopyToReg 1010 // c2, f2 = CopyToReg 1011 // c3 = TokenFactor c1, c2 1012 // ... 1013 // = op c3, ..., f2 1014 Chain = Chains[NumRegs-1]; 1015 else 1016 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1017 } 1018 1019 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1020 unsigned MatchingIdx, const SDLoc &dl, 1021 SelectionDAG &DAG, 1022 std::vector<SDValue> &Ops) const { 1023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1024 1025 InlineAsm::Flag Flag(Code, Regs.size()); 1026 if (HasMatching) 1027 Flag.setMatchingOp(MatchingIdx); 1028 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1029 // Put the register class of the virtual registers in the flag word. That 1030 // way, later passes can recompute register class constraints for inline 1031 // assembly as well as normal instructions. 1032 // Don't do this for tied operands that can use the regclass information 1033 // from the def. 1034 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1035 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1036 Flag.setRegClass(RC->getID()); 1037 } 1038 1039 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1040 Ops.push_back(Res); 1041 1042 if (Code == InlineAsm::Kind::Clobber) { 1043 // Clobbers should always have a 1:1 mapping with registers, and may 1044 // reference registers that have illegal (e.g. vector) types. Hence, we 1045 // shouldn't try to apply any sort of splitting logic to them. 1046 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1047 "No 1:1 mapping from clobbers to regs?"); 1048 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1049 (void)SP; 1050 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1051 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1052 assert( 1053 (Regs[I] != SP || 1054 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1055 "If we clobbered the stack pointer, MFI should know about it."); 1056 } 1057 return; 1058 } 1059 1060 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1061 MVT RegisterVT = RegVTs[Value]; 1062 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1063 RegisterVT); 1064 for (unsigned i = 0; i != NumRegs; ++i) { 1065 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1066 unsigned TheReg = Regs[Reg++]; 1067 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1068 } 1069 } 1070 } 1071 1072 SmallVector<std::pair<unsigned, TypeSize>, 4> 1073 RegsForValue::getRegsAndSizes() const { 1074 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1075 unsigned I = 0; 1076 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1077 unsigned RegCount = std::get<0>(CountAndVT); 1078 MVT RegisterVT = std::get<1>(CountAndVT); 1079 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1080 for (unsigned E = I + RegCount; I != E; ++I) 1081 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1082 } 1083 return OutVec; 1084 } 1085 1086 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1087 AssumptionCache *ac, 1088 const TargetLibraryInfo *li) { 1089 AA = aa; 1090 AC = ac; 1091 GFI = gfi; 1092 LibInfo = li; 1093 Context = DAG.getContext(); 1094 LPadToCallSiteMap.clear(); 1095 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1096 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1097 *DAG.getMachineFunction().getFunction().getParent()); 1098 } 1099 1100 void SelectionDAGBuilder::clear() { 1101 NodeMap.clear(); 1102 UnusedArgNodeMap.clear(); 1103 PendingLoads.clear(); 1104 PendingExports.clear(); 1105 PendingConstrainedFP.clear(); 1106 PendingConstrainedFPStrict.clear(); 1107 CurInst = nullptr; 1108 HasTailCall = false; 1109 SDNodeOrder = LowestSDNodeOrder; 1110 StatepointLowering.clear(); 1111 } 1112 1113 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1114 DanglingDebugInfoMap.clear(); 1115 } 1116 1117 // Update DAG root to include dependencies on Pending chains. 1118 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1119 SDValue Root = DAG.getRoot(); 1120 1121 if (Pending.empty()) 1122 return Root; 1123 1124 // Add current root to PendingChains, unless we already indirectly 1125 // depend on it. 1126 if (Root.getOpcode() != ISD::EntryToken) { 1127 unsigned i = 0, e = Pending.size(); 1128 for (; i != e; ++i) { 1129 assert(Pending[i].getNode()->getNumOperands() > 1); 1130 if (Pending[i].getNode()->getOperand(0) == Root) 1131 break; // Don't add the root if we already indirectly depend on it. 1132 } 1133 1134 if (i == e) 1135 Pending.push_back(Root); 1136 } 1137 1138 if (Pending.size() == 1) 1139 Root = Pending[0]; 1140 else 1141 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1142 1143 DAG.setRoot(Root); 1144 Pending.clear(); 1145 return Root; 1146 } 1147 1148 SDValue SelectionDAGBuilder::getMemoryRoot() { 1149 return updateRoot(PendingLoads); 1150 } 1151 1152 SDValue SelectionDAGBuilder::getRoot() { 1153 // Chain up all pending constrained intrinsics together with all 1154 // pending loads, by simply appending them to PendingLoads and 1155 // then calling getMemoryRoot(). 1156 PendingLoads.reserve(PendingLoads.size() + 1157 PendingConstrainedFP.size() + 1158 PendingConstrainedFPStrict.size()); 1159 PendingLoads.append(PendingConstrainedFP.begin(), 1160 PendingConstrainedFP.end()); 1161 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1162 PendingConstrainedFPStrict.end()); 1163 PendingConstrainedFP.clear(); 1164 PendingConstrainedFPStrict.clear(); 1165 return getMemoryRoot(); 1166 } 1167 1168 SDValue SelectionDAGBuilder::getControlRoot() { 1169 // We need to emit pending fpexcept.strict constrained intrinsics, 1170 // so append them to the PendingExports list. 1171 PendingExports.append(PendingConstrainedFPStrict.begin(), 1172 PendingConstrainedFPStrict.end()); 1173 PendingConstrainedFPStrict.clear(); 1174 return updateRoot(PendingExports); 1175 } 1176 1177 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1178 DILocalVariable *Variable, 1179 DIExpression *Expression, 1180 DebugLoc DL) { 1181 assert(Variable && "Missing variable"); 1182 1183 // Check if address has undef value. 1184 if (!Address || isa<UndefValue>(Address) || 1185 (Address->use_empty() && !isa<Argument>(Address))) { 1186 LLVM_DEBUG( 1187 dbgs() 1188 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1189 return; 1190 } 1191 1192 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1193 1194 SDValue &N = NodeMap[Address]; 1195 if (!N.getNode() && isa<Argument>(Address)) 1196 // Check unused arguments map. 1197 N = UnusedArgNodeMap[Address]; 1198 SDDbgValue *SDV; 1199 if (N.getNode()) { 1200 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1201 Address = BCI->getOperand(0); 1202 // Parameters are handled specially. 1203 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1204 if (IsParameter && FINode) { 1205 // Byval parameter. We have a frame index at this point. 1206 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1207 /*IsIndirect*/ true, DL, SDNodeOrder); 1208 } else if (isa<Argument>(Address)) { 1209 // Address is an argument, so try to emit its dbg value using 1210 // virtual register info from the FuncInfo.ValueMap. 1211 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1212 FuncArgumentDbgValueKind::Declare, N); 1213 return; 1214 } else { 1215 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1216 true, DL, SDNodeOrder); 1217 } 1218 DAG.AddDbgValue(SDV, IsParameter); 1219 } else { 1220 // If Address is an argument then try to emit its dbg value using 1221 // virtual register info from the FuncInfo.ValueMap. 1222 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1223 FuncArgumentDbgValueKind::Declare, N)) { 1224 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1225 << " (could not emit func-arg dbg_value)\n"); 1226 } 1227 } 1228 return; 1229 } 1230 1231 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1232 // Add SDDbgValue nodes for any var locs here. Do so before updating 1233 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1234 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1235 // Add SDDbgValue nodes for any var locs here. Do so before updating 1236 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1237 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1238 It != End; ++It) { 1239 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1240 dropDanglingDebugInfo(Var, It->Expr); 1241 if (It->Values.isKillLocation(It->Expr)) { 1242 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1243 continue; 1244 } 1245 SmallVector<Value *> Values(It->Values.location_ops()); 1246 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1247 It->Values.hasArgList())) { 1248 SmallVector<Value *, 4> Vals; 1249 for (Value *V : It->Values.location_ops()) 1250 Vals.push_back(V); 1251 addDanglingDebugInfo(Vals, 1252 FnVarLocs->getDILocalVariable(It->VariableID), 1253 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1254 } 1255 } 1256 } 1257 1258 // We must skip DbgVariableRecords if they've already been processed above as 1259 // we have just emitted the debug values resulting from assignment tracking 1260 // analysis, making any existing DbgVariableRecords redundant (and probably 1261 // less correct). We still need to process DbgLabelRecords. This does sink 1262 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1263 // be important as it does so deterministcally and ordering between 1264 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1265 // printing). 1266 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1267 // Is there is any debug-info attached to this instruction, in the form of 1268 // DbgRecord non-instruction debug-info records. 1269 for (DbgRecord &DR : I.getDbgRecordRange()) { 1270 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1271 assert(DLR->getLabel() && "Missing label"); 1272 SDDbgLabel *SDV = 1273 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1274 DAG.AddDbgLabel(SDV); 1275 continue; 1276 } 1277 1278 if (SkipDbgVariableRecords) 1279 continue; 1280 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1281 DILocalVariable *Variable = DVR.getVariable(); 1282 DIExpression *Expression = DVR.getExpression(); 1283 dropDanglingDebugInfo(Variable, Expression); 1284 1285 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1286 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1287 continue; 1288 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1289 << "\n"); 1290 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1291 DVR.getDebugLoc()); 1292 continue; 1293 } 1294 1295 // A DbgVariableRecord with no locations is a kill location. 1296 SmallVector<Value *, 4> Values(DVR.location_ops()); 1297 if (Values.empty()) { 1298 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1299 SDNodeOrder); 1300 continue; 1301 } 1302 1303 // A DbgVariableRecord with an undef or absent location is also a kill 1304 // location. 1305 if (llvm::any_of(Values, 1306 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1307 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1308 SDNodeOrder); 1309 continue; 1310 } 1311 1312 bool IsVariadic = DVR.hasArgList(); 1313 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1314 SDNodeOrder, IsVariadic)) { 1315 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1316 DVR.getDebugLoc(), SDNodeOrder); 1317 } 1318 } 1319 } 1320 1321 void SelectionDAGBuilder::visit(const Instruction &I) { 1322 visitDbgInfo(I); 1323 1324 // Set up outgoing PHI node register values before emitting the terminator. 1325 if (I.isTerminator()) { 1326 HandlePHINodesInSuccessorBlocks(I.getParent()); 1327 } 1328 1329 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1330 if (!isa<DbgInfoIntrinsic>(I)) 1331 ++SDNodeOrder; 1332 1333 CurInst = &I; 1334 1335 // Set inserted listener only if required. 1336 bool NodeInserted = false; 1337 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1338 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1339 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1340 if (PCSectionsMD || MMRA) { 1341 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1342 DAG, [&](SDNode *) { NodeInserted = true; }); 1343 } 1344 1345 visit(I.getOpcode(), I); 1346 1347 if (!I.isTerminator() && !HasTailCall && 1348 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1349 CopyToExportRegsIfNeeded(&I); 1350 1351 // Handle metadata. 1352 if (PCSectionsMD || MMRA) { 1353 auto It = NodeMap.find(&I); 1354 if (It != NodeMap.end()) { 1355 if (PCSectionsMD) 1356 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1357 if (MMRA) 1358 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1359 } else if (NodeInserted) { 1360 // This should not happen; if it does, don't let it go unnoticed so we can 1361 // fix it. Relevant visit*() function is probably missing a setValue(). 1362 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1363 << I.getModule()->getName() << "]\n"; 1364 LLVM_DEBUG(I.dump()); 1365 assert(false); 1366 } 1367 } 1368 1369 CurInst = nullptr; 1370 } 1371 1372 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1373 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1374 } 1375 1376 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1377 // Note: this doesn't use InstVisitor, because it has to work with 1378 // ConstantExpr's in addition to instructions. 1379 switch (Opcode) { 1380 default: llvm_unreachable("Unknown instruction type encountered!"); 1381 // Build the switch statement using the Instruction.def file. 1382 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1383 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1384 #include "llvm/IR/Instruction.def" 1385 } 1386 } 1387 1388 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1389 DILocalVariable *Variable, 1390 DebugLoc DL, unsigned Order, 1391 SmallVectorImpl<Value *> &Values, 1392 DIExpression *Expression) { 1393 // For variadic dbg_values we will now insert an undef. 1394 // FIXME: We can potentially recover these! 1395 SmallVector<SDDbgOperand, 2> Locs; 1396 for (const Value *V : Values) { 1397 auto *Undef = UndefValue::get(V->getType()); 1398 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1399 } 1400 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1401 /*IsIndirect=*/false, DL, Order, 1402 /*IsVariadic=*/true); 1403 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1404 return true; 1405 } 1406 1407 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1408 DILocalVariable *Var, 1409 DIExpression *Expr, 1410 bool IsVariadic, DebugLoc DL, 1411 unsigned Order) { 1412 if (IsVariadic) { 1413 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1414 return; 1415 } 1416 // TODO: Dangling debug info will eventually either be resolved or produce 1417 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1418 // between the original dbg.value location and its resolved DBG_VALUE, 1419 // which we should ideally fill with an extra Undef DBG_VALUE. 1420 assert(Values.size() == 1); 1421 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1422 } 1423 1424 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1425 const DIExpression *Expr) { 1426 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1427 DIVariable *DanglingVariable = DDI.getVariable(); 1428 DIExpression *DanglingExpr = DDI.getExpression(); 1429 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1430 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1431 << printDDI(nullptr, DDI) << "\n"); 1432 return true; 1433 } 1434 return false; 1435 }; 1436 1437 for (auto &DDIMI : DanglingDebugInfoMap) { 1438 DanglingDebugInfoVector &DDIV = DDIMI.second; 1439 1440 // If debug info is to be dropped, run it through final checks to see 1441 // whether it can be salvaged. 1442 for (auto &DDI : DDIV) 1443 if (isMatchingDbgValue(DDI)) 1444 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1445 1446 erase_if(DDIV, isMatchingDbgValue); 1447 } 1448 } 1449 1450 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1451 // generate the debug data structures now that we've seen its definition. 1452 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1453 SDValue Val) { 1454 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1455 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1456 return; 1457 1458 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1459 for (auto &DDI : DDIV) { 1460 DebugLoc DL = DDI.getDebugLoc(); 1461 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1462 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1463 DILocalVariable *Variable = DDI.getVariable(); 1464 DIExpression *Expr = DDI.getExpression(); 1465 assert(Variable->isValidLocationForIntrinsic(DL) && 1466 "Expected inlined-at fields to agree"); 1467 SDDbgValue *SDV; 1468 if (Val.getNode()) { 1469 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1470 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1471 // we couldn't resolve it directly when examining the DbgValue intrinsic 1472 // in the first place we should not be more successful here). Unless we 1473 // have some test case that prove this to be correct we should avoid 1474 // calling EmitFuncArgumentDbgValue here. 1475 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1476 FuncArgumentDbgValueKind::Value, Val)) { 1477 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1478 << printDDI(V, DDI) << "\n"); 1479 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1480 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1481 // inserted after the definition of Val when emitting the instructions 1482 // after ISel. An alternative could be to teach 1483 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1484 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1485 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1486 << ValSDNodeOrder << "\n"); 1487 SDV = getDbgValue(Val, Variable, Expr, DL, 1488 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1489 DAG.AddDbgValue(SDV, false); 1490 } else 1491 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1492 << printDDI(V, DDI) 1493 << " in EmitFuncArgumentDbgValue\n"); 1494 } else { 1495 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1496 << "\n"); 1497 auto Undef = UndefValue::get(V->getType()); 1498 auto SDV = 1499 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1500 DAG.AddDbgValue(SDV, false); 1501 } 1502 } 1503 DDIV.clear(); 1504 } 1505 1506 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1507 DanglingDebugInfo &DDI) { 1508 // TODO: For the variadic implementation, instead of only checking the fail 1509 // state of `handleDebugValue`, we need know specifically which values were 1510 // invalid, so that we attempt to salvage only those values when processing 1511 // a DIArgList. 1512 const Value *OrigV = V; 1513 DILocalVariable *Var = DDI.getVariable(); 1514 DIExpression *Expr = DDI.getExpression(); 1515 DebugLoc DL = DDI.getDebugLoc(); 1516 unsigned SDOrder = DDI.getSDNodeOrder(); 1517 1518 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1519 // that DW_OP_stack_value is desired. 1520 bool StackValue = true; 1521 1522 // Can this Value can be encoded without any further work? 1523 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1524 return; 1525 1526 // Attempt to salvage back through as many instructions as possible. Bail if 1527 // a non-instruction is seen, such as a constant expression or global 1528 // variable. FIXME: Further work could recover those too. 1529 while (isa<Instruction>(V)) { 1530 const Instruction &VAsInst = *cast<const Instruction>(V); 1531 // Temporary "0", awaiting real implementation. 1532 SmallVector<uint64_t, 16> Ops; 1533 SmallVector<Value *, 4> AdditionalValues; 1534 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1535 Expr->getNumLocationOperands(), Ops, 1536 AdditionalValues); 1537 // If we cannot salvage any further, and haven't yet found a suitable debug 1538 // expression, bail out. 1539 if (!V) 1540 break; 1541 1542 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1543 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1544 // here for variadic dbg_values, remove that condition. 1545 if (!AdditionalValues.empty()) 1546 break; 1547 1548 // New value and expr now represent this debuginfo. 1549 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1550 1551 // Some kind of simplification occurred: check whether the operand of the 1552 // salvaged debug expression can be encoded in this DAG. 1553 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1554 LLVM_DEBUG( 1555 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1556 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1557 return; 1558 } 1559 } 1560 1561 // This was the final opportunity to salvage this debug information, and it 1562 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1563 // any earlier variable location. 1564 assert(OrigV && "V shouldn't be null"); 1565 auto *Undef = UndefValue::get(OrigV->getType()); 1566 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1567 DAG.AddDbgValue(SDV, false); 1568 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1569 << printDDI(OrigV, DDI) << "\n"); 1570 } 1571 1572 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1573 DIExpression *Expr, 1574 DebugLoc DbgLoc, 1575 unsigned Order) { 1576 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1577 DIExpression *NewExpr = 1578 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1579 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1580 /*IsVariadic*/ false); 1581 } 1582 1583 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1584 DILocalVariable *Var, 1585 DIExpression *Expr, DebugLoc DbgLoc, 1586 unsigned Order, bool IsVariadic) { 1587 if (Values.empty()) 1588 return true; 1589 1590 // Filter EntryValue locations out early. 1591 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1592 return true; 1593 1594 SmallVector<SDDbgOperand> LocationOps; 1595 SmallVector<SDNode *> Dependencies; 1596 for (const Value *V : Values) { 1597 // Constant value. 1598 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1599 isa<ConstantPointerNull>(V)) { 1600 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1601 continue; 1602 } 1603 1604 // Look through IntToPtr constants. 1605 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1606 if (CE->getOpcode() == Instruction::IntToPtr) { 1607 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1608 continue; 1609 } 1610 1611 // If the Value is a frame index, we can create a FrameIndex debug value 1612 // without relying on the DAG at all. 1613 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1614 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1615 if (SI != FuncInfo.StaticAllocaMap.end()) { 1616 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1617 continue; 1618 } 1619 } 1620 1621 // Do not use getValue() in here; we don't want to generate code at 1622 // this point if it hasn't been done yet. 1623 SDValue N = NodeMap[V]; 1624 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1625 N = UnusedArgNodeMap[V]; 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (isa<ConstantPointerNull>(C)) { 1806 unsigned AS = V->getType()->getPointerAddressSpace(); 1807 return DAG.getConstant(0, getCurSDLoc(), 1808 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1809 } 1810 1811 if (match(C, m_VScale())) 1812 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1813 1814 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1815 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1816 1817 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1818 return DAG.getUNDEF(VT); 1819 1820 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1821 visit(CE->getOpcode(), *CE); 1822 SDValue N1 = NodeMap[V]; 1823 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1824 return N1; 1825 } 1826 1827 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1828 SmallVector<SDValue, 4> Constants; 1829 for (const Use &U : C->operands()) { 1830 SDNode *Val = getValue(U).getNode(); 1831 // If the operand is an empty aggregate, there are no values. 1832 if (!Val) continue; 1833 // Add each leaf value from the operand to the Constants list 1834 // to form a flattened list of all the values. 1835 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1836 Constants.push_back(SDValue(Val, i)); 1837 } 1838 1839 return DAG.getMergeValues(Constants, getCurSDLoc()); 1840 } 1841 1842 if (const ConstantDataSequential *CDS = 1843 dyn_cast<ConstantDataSequential>(C)) { 1844 SmallVector<SDValue, 4> Ops; 1845 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1846 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1847 // Add each leaf value from the operand to the Constants list 1848 // to form a flattened list of all the values. 1849 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1850 Ops.push_back(SDValue(Val, i)); 1851 } 1852 1853 if (isa<ArrayType>(CDS->getType())) 1854 return DAG.getMergeValues(Ops, getCurSDLoc()); 1855 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1856 } 1857 1858 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1859 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1860 "Unknown struct or array constant!"); 1861 1862 SmallVector<EVT, 4> ValueVTs; 1863 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1864 unsigned NumElts = ValueVTs.size(); 1865 if (NumElts == 0) 1866 return SDValue(); // empty struct 1867 SmallVector<SDValue, 4> Constants(NumElts); 1868 for (unsigned i = 0; i != NumElts; ++i) { 1869 EVT EltVT = ValueVTs[i]; 1870 if (isa<UndefValue>(C)) 1871 Constants[i] = DAG.getUNDEF(EltVT); 1872 else if (EltVT.isFloatingPoint()) 1873 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1874 else 1875 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1876 } 1877 1878 return DAG.getMergeValues(Constants, getCurSDLoc()); 1879 } 1880 1881 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1882 return DAG.getBlockAddress(BA, VT); 1883 1884 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1885 return getValue(Equiv->getGlobalValue()); 1886 1887 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1888 return getValue(NC->getGlobalValue()); 1889 1890 if (VT == MVT::aarch64svcount) { 1891 assert(C->isNullValue() && "Can only zero this target type!"); 1892 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1893 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1894 } 1895 1896 VectorType *VecTy = cast<VectorType>(V->getType()); 1897 1898 // Now that we know the number and type of the elements, get that number of 1899 // elements into the Ops array based on what kind of constant it is. 1900 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1901 SmallVector<SDValue, 16> Ops; 1902 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1903 for (unsigned i = 0; i != NumElements; ++i) 1904 Ops.push_back(getValue(CV->getOperand(i))); 1905 1906 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1907 } 1908 1909 if (isa<ConstantAggregateZero>(C)) { 1910 EVT EltVT = 1911 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1912 1913 SDValue Op; 1914 if (EltVT.isFloatingPoint()) 1915 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1916 else 1917 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1918 1919 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1920 } 1921 1922 llvm_unreachable("Unknown vector constant"); 1923 } 1924 1925 // If this is a static alloca, generate it as the frameindex instead of 1926 // computation. 1927 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1928 DenseMap<const AllocaInst*, int>::iterator SI = 1929 FuncInfo.StaticAllocaMap.find(AI); 1930 if (SI != FuncInfo.StaticAllocaMap.end()) 1931 return DAG.getFrameIndex( 1932 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1933 } 1934 1935 // If this is an instruction which fast-isel has deferred, select it now. 1936 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1937 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1938 1939 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1940 Inst->getType(), std::nullopt); 1941 SDValue Chain = DAG.getEntryNode(); 1942 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1943 } 1944 1945 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1946 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1947 1948 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1949 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1950 1951 llvm_unreachable("Can't get register for value!"); 1952 } 1953 1954 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1955 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1956 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1957 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1958 bool IsSEH = isAsynchronousEHPersonality(Pers); 1959 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1960 if (!IsSEH) 1961 CatchPadMBB->setIsEHScopeEntry(); 1962 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1963 if (IsMSVCCXX || IsCoreCLR) 1964 CatchPadMBB->setIsEHFuncletEntry(); 1965 } 1966 1967 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1968 // Update machine-CFG edge. 1969 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1970 FuncInfo.MBB->addSuccessor(TargetMBB); 1971 TargetMBB->setIsEHCatchretTarget(true); 1972 DAG.getMachineFunction().setHasEHCatchret(true); 1973 1974 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1975 bool IsSEH = isAsynchronousEHPersonality(Pers); 1976 if (IsSEH) { 1977 // If this is not a fall-through branch or optimizations are switched off, 1978 // emit the branch. 1979 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1980 TM.getOptLevel() == CodeGenOptLevel::None) 1981 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1982 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1983 return; 1984 } 1985 1986 // Figure out the funclet membership for the catchret's successor. 1987 // This will be used by the FuncletLayout pass to determine how to order the 1988 // BB's. 1989 // A 'catchret' returns to the outer scope's color. 1990 Value *ParentPad = I.getCatchSwitchParentPad(); 1991 const BasicBlock *SuccessorColor; 1992 if (isa<ConstantTokenNone>(ParentPad)) 1993 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1994 else 1995 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1996 assert(SuccessorColor && "No parent funclet for catchret!"); 1997 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1998 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1999 2000 // Create the terminator node. 2001 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2002 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2003 DAG.getBasicBlock(SuccessorColorMBB)); 2004 DAG.setRoot(Ret); 2005 } 2006 2007 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2008 // Don't emit any special code for the cleanuppad instruction. It just marks 2009 // the start of an EH scope/funclet. 2010 FuncInfo.MBB->setIsEHScopeEntry(); 2011 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2012 if (Pers != EHPersonality::Wasm_CXX) { 2013 FuncInfo.MBB->setIsEHFuncletEntry(); 2014 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2015 } 2016 } 2017 2018 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2019 // not match, it is OK to add only the first unwind destination catchpad to the 2020 // successors, because there will be at least one invoke instruction within the 2021 // catch scope that points to the next unwind destination, if one exists, so 2022 // CFGSort cannot mess up with BB sorting order. 2023 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2024 // call within them, and catchpads only consisting of 'catch (...)' have a 2025 // '__cxa_end_catch' call within them, both of which generate invokes in case 2026 // the next unwind destination exists, i.e., the next unwind destination is not 2027 // the caller.) 2028 // 2029 // Having at most one EH pad successor is also simpler and helps later 2030 // transformations. 2031 // 2032 // For example, 2033 // current: 2034 // invoke void @foo to ... unwind label %catch.dispatch 2035 // catch.dispatch: 2036 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2037 // catch.start: 2038 // ... 2039 // ... in this BB or some other child BB dominated by this BB there will be an 2040 // invoke that points to 'next' BB as an unwind destination 2041 // 2042 // next: ; We don't need to add this to 'current' BB's successor 2043 // ... 2044 static void findWasmUnwindDestinations( 2045 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2046 BranchProbability Prob, 2047 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2048 &UnwindDests) { 2049 while (EHPadBB) { 2050 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2051 if (isa<CleanupPadInst>(Pad)) { 2052 // Stop on cleanup pads. 2053 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2054 UnwindDests.back().first->setIsEHScopeEntry(); 2055 break; 2056 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2057 // Add the catchpad handlers to the possible destinations. We don't 2058 // continue to the unwind destination of the catchswitch for wasm. 2059 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2060 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 } 2063 break; 2064 } else { 2065 continue; 2066 } 2067 } 2068 } 2069 2070 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2071 /// many places it could ultimately go. In the IR, we have a single unwind 2072 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2073 /// This function skips over imaginary basic blocks that hold catchswitch 2074 /// instructions, and finds all the "real" machine 2075 /// basic block destinations. As those destinations may not be successors of 2076 /// EHPadBB, here we also calculate the edge probability to those destinations. 2077 /// The passed-in Prob is the edge probability to EHPadBB. 2078 static void findUnwindDestinations( 2079 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2080 BranchProbability Prob, 2081 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2082 &UnwindDests) { 2083 EHPersonality Personality = 2084 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2085 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2086 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2087 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2088 bool IsSEH = isAsynchronousEHPersonality(Personality); 2089 2090 if (IsWasmCXX) { 2091 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2092 assert(UnwindDests.size() <= 1 && 2093 "There should be at most one unwind destination for wasm"); 2094 return; 2095 } 2096 2097 while (EHPadBB) { 2098 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2099 BasicBlock *NewEHPadBB = nullptr; 2100 if (isa<LandingPadInst>(Pad)) { 2101 // Stop on landingpads. They are not funclets. 2102 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2103 break; 2104 } else if (isa<CleanupPadInst>(Pad)) { 2105 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2106 // personalities. 2107 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2108 UnwindDests.back().first->setIsEHScopeEntry(); 2109 UnwindDests.back().first->setIsEHFuncletEntry(); 2110 break; 2111 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2112 // Add the catchpad handlers to the possible destinations. 2113 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2114 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2115 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2116 if (IsMSVCCXX || IsCoreCLR) 2117 UnwindDests.back().first->setIsEHFuncletEntry(); 2118 if (!IsSEH) 2119 UnwindDests.back().first->setIsEHScopeEntry(); 2120 } 2121 NewEHPadBB = CatchSwitch->getUnwindDest(); 2122 } else { 2123 continue; 2124 } 2125 2126 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2127 if (BPI && NewEHPadBB) 2128 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2129 EHPadBB = NewEHPadBB; 2130 } 2131 } 2132 2133 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2134 // Update successor info. 2135 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2136 auto UnwindDest = I.getUnwindDest(); 2137 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2138 BranchProbability UnwindDestProb = 2139 (BPI && UnwindDest) 2140 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2141 : BranchProbability::getZero(); 2142 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2143 for (auto &UnwindDest : UnwindDests) { 2144 UnwindDest.first->setIsEHPad(); 2145 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2146 } 2147 FuncInfo.MBB->normalizeSuccProbs(); 2148 2149 // Create the terminator node. 2150 SDValue Ret = 2151 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2152 DAG.setRoot(Ret); 2153 } 2154 2155 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2156 report_fatal_error("visitCatchSwitch not yet implemented!"); 2157 } 2158 2159 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2161 auto &DL = DAG.getDataLayout(); 2162 SDValue Chain = getControlRoot(); 2163 SmallVector<ISD::OutputArg, 8> Outs; 2164 SmallVector<SDValue, 8> OutVals; 2165 2166 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2167 // lower 2168 // 2169 // %val = call <ty> @llvm.experimental.deoptimize() 2170 // ret <ty> %val 2171 // 2172 // differently. 2173 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2174 LowerDeoptimizingReturn(); 2175 return; 2176 } 2177 2178 if (!FuncInfo.CanLowerReturn) { 2179 unsigned DemoteReg = FuncInfo.DemoteRegister; 2180 const Function *F = I.getParent()->getParent(); 2181 2182 // Emit a store of the return value through the virtual register. 2183 // Leave Outs empty so that LowerReturn won't try to load return 2184 // registers the usual way. 2185 SmallVector<EVT, 1> PtrValueVTs; 2186 ComputeValueVTs(TLI, DL, 2187 PointerType::get(F->getContext(), 2188 DAG.getDataLayout().getAllocaAddrSpace()), 2189 PtrValueVTs); 2190 2191 SDValue RetPtr = 2192 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2193 SDValue RetOp = getValue(I.getOperand(0)); 2194 2195 SmallVector<EVT, 4> ValueVTs, MemVTs; 2196 SmallVector<uint64_t, 4> Offsets; 2197 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2198 &Offsets, 0); 2199 unsigned NumValues = ValueVTs.size(); 2200 2201 SmallVector<SDValue, 4> Chains(NumValues); 2202 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2203 for (unsigned i = 0; i != NumValues; ++i) { 2204 // An aggregate return value cannot wrap around the address space, so 2205 // offsets to its parts don't wrap either. 2206 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2207 TypeSize::getFixed(Offsets[i])); 2208 2209 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2210 if (MemVTs[i] != ValueVTs[i]) 2211 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2212 Chains[i] = DAG.getStore( 2213 Chain, getCurSDLoc(), Val, 2214 // FIXME: better loc info would be nice. 2215 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2216 commonAlignment(BaseAlign, Offsets[i])); 2217 } 2218 2219 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2220 MVT::Other, Chains); 2221 } else if (I.getNumOperands() != 0) { 2222 SmallVector<EVT, 4> ValueVTs; 2223 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2224 unsigned NumValues = ValueVTs.size(); 2225 if (NumValues) { 2226 SDValue RetOp = getValue(I.getOperand(0)); 2227 2228 const Function *F = I.getParent()->getParent(); 2229 2230 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2231 I.getOperand(0)->getType(), F->getCallingConv(), 2232 /*IsVarArg*/ false, DL); 2233 2234 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2235 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2236 ExtendKind = ISD::SIGN_EXTEND; 2237 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2238 ExtendKind = ISD::ZERO_EXTEND; 2239 2240 LLVMContext &Context = F->getContext(); 2241 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2242 2243 for (unsigned j = 0; j != NumValues; ++j) { 2244 EVT VT = ValueVTs[j]; 2245 2246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2247 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2248 2249 CallingConv::ID CC = F->getCallingConv(); 2250 2251 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2252 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2253 SmallVector<SDValue, 4> Parts(NumParts); 2254 getCopyToParts(DAG, getCurSDLoc(), 2255 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2256 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2257 2258 // 'inreg' on function refers to return value 2259 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2260 if (RetInReg) 2261 Flags.setInReg(); 2262 2263 if (I.getOperand(0)->getType()->isPointerTy()) { 2264 Flags.setPointer(); 2265 Flags.setPointerAddrSpace( 2266 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2267 } 2268 2269 if (NeedsRegBlock) { 2270 Flags.setInConsecutiveRegs(); 2271 if (j == NumValues - 1) 2272 Flags.setInConsecutiveRegsLast(); 2273 } 2274 2275 // Propagate extension type if any 2276 if (ExtendKind == ISD::SIGN_EXTEND) 2277 Flags.setSExt(); 2278 else if (ExtendKind == ISD::ZERO_EXTEND) 2279 Flags.setZExt(); 2280 2281 for (unsigned i = 0; i < NumParts; ++i) { 2282 Outs.push_back(ISD::OutputArg(Flags, 2283 Parts[i].getValueType().getSimpleVT(), 2284 VT, /*isfixed=*/true, 0, 0)); 2285 OutVals.push_back(Parts[i]); 2286 } 2287 } 2288 } 2289 } 2290 2291 // Push in swifterror virtual register as the last element of Outs. This makes 2292 // sure swifterror virtual register will be returned in the swifterror 2293 // physical register. 2294 const Function *F = I.getParent()->getParent(); 2295 if (TLI.supportSwiftError() && 2296 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2297 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2298 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2299 Flags.setSwiftError(); 2300 Outs.push_back(ISD::OutputArg( 2301 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2302 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2303 // Create SDNode for the swifterror virtual register. 2304 OutVals.push_back( 2305 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2306 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2307 EVT(TLI.getPointerTy(DL)))); 2308 } 2309 2310 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2311 CallingConv::ID CallConv = 2312 DAG.getMachineFunction().getFunction().getCallingConv(); 2313 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2314 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2315 2316 // Verify that the target's LowerReturn behaved as expected. 2317 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2318 "LowerReturn didn't return a valid chain!"); 2319 2320 // Update the DAG with the new chain value resulting from return lowering. 2321 DAG.setRoot(Chain); 2322 } 2323 2324 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2325 /// created for it, emit nodes to copy the value into the virtual 2326 /// registers. 2327 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2328 // Skip empty types 2329 if (V->getType()->isEmptyTy()) 2330 return; 2331 2332 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2333 if (VMI != FuncInfo.ValueMap.end()) { 2334 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2335 "Unused value assigned virtual registers!"); 2336 CopyValueToVirtualRegister(V, VMI->second); 2337 } 2338 } 2339 2340 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2341 /// the current basic block, add it to ValueMap now so that we'll get a 2342 /// CopyTo/FromReg. 2343 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2344 // No need to export constants. 2345 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2346 2347 // Already exported? 2348 if (FuncInfo.isExportedInst(V)) return; 2349 2350 Register Reg = FuncInfo.InitializeRegForValue(V); 2351 CopyValueToVirtualRegister(V, Reg); 2352 } 2353 2354 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2355 const BasicBlock *FromBB) { 2356 // The operands of the setcc have to be in this block. We don't know 2357 // how to export them from some other block. 2358 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2359 // Can export from current BB. 2360 if (VI->getParent() == FromBB) 2361 return true; 2362 2363 // Is already exported, noop. 2364 return FuncInfo.isExportedInst(V); 2365 } 2366 2367 // If this is an argument, we can export it if the BB is the entry block or 2368 // if it is already exported. 2369 if (isa<Argument>(V)) { 2370 if (FromBB->isEntryBlock()) 2371 return true; 2372 2373 // Otherwise, can only export this if it is already exported. 2374 return FuncInfo.isExportedInst(V); 2375 } 2376 2377 // Otherwise, constants can always be exported. 2378 return true; 2379 } 2380 2381 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2382 BranchProbability 2383 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2384 const MachineBasicBlock *Dst) const { 2385 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2386 const BasicBlock *SrcBB = Src->getBasicBlock(); 2387 const BasicBlock *DstBB = Dst->getBasicBlock(); 2388 if (!BPI) { 2389 // If BPI is not available, set the default probability as 1 / N, where N is 2390 // the number of successors. 2391 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2392 return BranchProbability(1, SuccSize); 2393 } 2394 return BPI->getEdgeProbability(SrcBB, DstBB); 2395 } 2396 2397 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2398 MachineBasicBlock *Dst, 2399 BranchProbability Prob) { 2400 if (!FuncInfo.BPI) 2401 Src->addSuccessorWithoutProb(Dst); 2402 else { 2403 if (Prob.isUnknown()) 2404 Prob = getEdgeProbability(Src, Dst); 2405 Src->addSuccessor(Dst, Prob); 2406 } 2407 } 2408 2409 static bool InBlock(const Value *V, const BasicBlock *BB) { 2410 if (const Instruction *I = dyn_cast<Instruction>(V)) 2411 return I->getParent() == BB; 2412 return true; 2413 } 2414 2415 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2416 /// This function emits a branch and is used at the leaves of an OR or an 2417 /// AND operator tree. 2418 void 2419 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2420 MachineBasicBlock *TBB, 2421 MachineBasicBlock *FBB, 2422 MachineBasicBlock *CurBB, 2423 MachineBasicBlock *SwitchBB, 2424 BranchProbability TProb, 2425 BranchProbability FProb, 2426 bool InvertCond) { 2427 const BasicBlock *BB = CurBB->getBasicBlock(); 2428 2429 // If the leaf of the tree is a comparison, merge the condition into 2430 // the caseblock. 2431 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2432 // The operands of the cmp have to be in this block. We don't know 2433 // how to export them from some other block. If this is the first block 2434 // of the sequence, no exporting is needed. 2435 if (CurBB == SwitchBB || 2436 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2437 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2438 ISD::CondCode Condition; 2439 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2440 ICmpInst::Predicate Pred = 2441 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2442 Condition = getICmpCondCode(Pred); 2443 } else { 2444 const FCmpInst *FC = cast<FCmpInst>(Cond); 2445 FCmpInst::Predicate Pred = 2446 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2447 Condition = getFCmpCondCode(Pred); 2448 if (TM.Options.NoNaNsFPMath) 2449 Condition = getFCmpCodeWithoutNaN(Condition); 2450 } 2451 2452 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2453 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2454 SL->SwitchCases.push_back(CB); 2455 return; 2456 } 2457 } 2458 2459 // Create a CaseBlock record representing this branch. 2460 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2461 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2462 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2463 SL->SwitchCases.push_back(CB); 2464 } 2465 2466 // Collect dependencies on V recursively. This is used for the cost analysis in 2467 // `shouldKeepJumpConditionsTogether`. 2468 static bool collectInstructionDeps( 2469 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2470 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2471 unsigned Depth = 0) { 2472 // Return false if we have an incomplete count. 2473 if (Depth >= SelectionDAG::MaxRecursionDepth) 2474 return false; 2475 2476 auto *I = dyn_cast<Instruction>(V); 2477 if (I == nullptr) 2478 return true; 2479 2480 if (Necessary != nullptr) { 2481 // This instruction is necessary for the other side of the condition so 2482 // don't count it. 2483 if (Necessary->contains(I)) 2484 return true; 2485 } 2486 2487 // Already added this dep. 2488 if (!Deps->try_emplace(I, false).second) 2489 return true; 2490 2491 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2492 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2493 Depth + 1)) 2494 return false; 2495 return true; 2496 } 2497 2498 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2499 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2500 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2501 TargetLoweringBase::CondMergingParams Params) const { 2502 if (I.getNumSuccessors() != 2) 2503 return false; 2504 2505 if (!I.isConditional()) 2506 return false; 2507 2508 if (Params.BaseCost < 0) 2509 return false; 2510 2511 // Baseline cost. 2512 InstructionCost CostThresh = Params.BaseCost; 2513 2514 BranchProbabilityInfo *BPI = nullptr; 2515 if (Params.LikelyBias || Params.UnlikelyBias) 2516 BPI = FuncInfo.BPI; 2517 if (BPI != nullptr) { 2518 // See if we are either likely to get an early out or compute both lhs/rhs 2519 // of the condition. 2520 BasicBlock *IfFalse = I.getSuccessor(0); 2521 BasicBlock *IfTrue = I.getSuccessor(1); 2522 2523 std::optional<bool> Likely; 2524 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2525 Likely = true; 2526 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2527 Likely = false; 2528 2529 if (Likely) { 2530 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2531 // Its likely we will have to compute both lhs and rhs of condition 2532 CostThresh += Params.LikelyBias; 2533 else { 2534 if (Params.UnlikelyBias < 0) 2535 return false; 2536 // Its likely we will get an early out. 2537 CostThresh -= Params.UnlikelyBias; 2538 } 2539 } 2540 } 2541 2542 if (CostThresh <= 0) 2543 return false; 2544 2545 // Collect "all" instructions that lhs condition is dependent on. 2546 // Use map for stable iteration (to avoid non-determanism of iteration of 2547 // SmallPtrSet). The `bool` value is just a dummy. 2548 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2549 collectInstructionDeps(&LhsDeps, Lhs); 2550 // Collect "all" instructions that rhs condition is dependent on AND are 2551 // dependencies of lhs. This gives us an estimate on which instructions we 2552 // stand to save by splitting the condition. 2553 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2554 return false; 2555 // Add the compare instruction itself unless its a dependency on the LHS. 2556 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2557 if (!LhsDeps.contains(RhsI)) 2558 RhsDeps.try_emplace(RhsI, false); 2559 2560 const auto &TLI = DAG.getTargetLoweringInfo(); 2561 const auto &TTI = 2562 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2563 2564 InstructionCost CostOfIncluding = 0; 2565 // See if this instruction will need to computed independently of whether RHS 2566 // is. 2567 Value *BrCond = I.getCondition(); 2568 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2569 for (const auto *U : Ins->users()) { 2570 // If user is independent of RHS calculation we don't need to count it. 2571 if (auto *UIns = dyn_cast<Instruction>(U)) 2572 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2573 return false; 2574 } 2575 return true; 2576 }; 2577 2578 // Prune instructions from RHS Deps that are dependencies of unrelated 2579 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2580 // arbitrary and just meant to cap the how much time we spend in the pruning 2581 // loop. Its highly unlikely to come into affect. 2582 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2583 // Stop after a certain point. No incorrectness from including too many 2584 // instructions. 2585 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2586 const Instruction *ToDrop = nullptr; 2587 for (const auto &InsPair : RhsDeps) { 2588 if (!ShouldCountInsn(InsPair.first)) { 2589 ToDrop = InsPair.first; 2590 break; 2591 } 2592 } 2593 if (ToDrop == nullptr) 2594 break; 2595 RhsDeps.erase(ToDrop); 2596 } 2597 2598 for (const auto &InsPair : RhsDeps) { 2599 // Finally accumulate latency that we can only attribute to computing the 2600 // RHS condition. Use latency because we are essentially trying to calculate 2601 // the cost of the dependency chain. 2602 // Possible TODO: We could try to estimate ILP and make this more precise. 2603 CostOfIncluding += 2604 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2605 2606 if (CostOfIncluding > CostThresh) 2607 return false; 2608 } 2609 return true; 2610 } 2611 2612 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2613 MachineBasicBlock *TBB, 2614 MachineBasicBlock *FBB, 2615 MachineBasicBlock *CurBB, 2616 MachineBasicBlock *SwitchBB, 2617 Instruction::BinaryOps Opc, 2618 BranchProbability TProb, 2619 BranchProbability FProb, 2620 bool InvertCond) { 2621 // Skip over not part of the tree and remember to invert op and operands at 2622 // next level. 2623 Value *NotCond; 2624 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2625 InBlock(NotCond, CurBB->getBasicBlock())) { 2626 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2627 !InvertCond); 2628 return; 2629 } 2630 2631 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2632 const Value *BOpOp0, *BOpOp1; 2633 // Compute the effective opcode for Cond, taking into account whether it needs 2634 // to be inverted, e.g. 2635 // and (not (or A, B)), C 2636 // gets lowered as 2637 // and (and (not A, not B), C) 2638 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2639 if (BOp) { 2640 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2641 ? Instruction::And 2642 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2643 ? Instruction::Or 2644 : (Instruction::BinaryOps)0); 2645 if (InvertCond) { 2646 if (BOpc == Instruction::And) 2647 BOpc = Instruction::Or; 2648 else if (BOpc == Instruction::Or) 2649 BOpc = Instruction::And; 2650 } 2651 } 2652 2653 // If this node is not part of the or/and tree, emit it as a branch. 2654 // Note that all nodes in the tree should have same opcode. 2655 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2656 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2657 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2658 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2659 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2660 TProb, FProb, InvertCond); 2661 return; 2662 } 2663 2664 // Create TmpBB after CurBB. 2665 MachineFunction::iterator BBI(CurBB); 2666 MachineFunction &MF = DAG.getMachineFunction(); 2667 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2668 CurBB->getParent()->insert(++BBI, TmpBB); 2669 2670 if (Opc == Instruction::Or) { 2671 // Codegen X | Y as: 2672 // BB1: 2673 // jmp_if_X TBB 2674 // jmp TmpBB 2675 // TmpBB: 2676 // jmp_if_Y TBB 2677 // jmp FBB 2678 // 2679 2680 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2681 // The requirement is that 2682 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2683 // = TrueProb for original BB. 2684 // Assuming the original probabilities are A and B, one choice is to set 2685 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2686 // A/(1+B) and 2B/(1+B). This choice assumes that 2687 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2688 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2689 // TmpBB, but the math is more complicated. 2690 2691 auto NewTrueProb = TProb / 2; 2692 auto NewFalseProb = TProb / 2 + FProb; 2693 // Emit the LHS condition. 2694 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2695 NewFalseProb, InvertCond); 2696 2697 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2698 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2699 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2700 // Emit the RHS condition into TmpBB. 2701 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2702 Probs[1], InvertCond); 2703 } else { 2704 assert(Opc == Instruction::And && "Unknown merge op!"); 2705 // Codegen X & Y as: 2706 // BB1: 2707 // jmp_if_X TmpBB 2708 // jmp FBB 2709 // TmpBB: 2710 // jmp_if_Y TBB 2711 // jmp FBB 2712 // 2713 // This requires creation of TmpBB after CurBB. 2714 2715 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2716 // The requirement is that 2717 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2718 // = FalseProb for original BB. 2719 // Assuming the original probabilities are A and B, one choice is to set 2720 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2721 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2722 // TrueProb for BB1 * FalseProb for TmpBB. 2723 2724 auto NewTrueProb = TProb + FProb / 2; 2725 auto NewFalseProb = FProb / 2; 2726 // Emit the LHS condition. 2727 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2728 NewFalseProb, InvertCond); 2729 2730 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2731 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2732 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2733 // Emit the RHS condition into TmpBB. 2734 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2735 Probs[1], InvertCond); 2736 } 2737 } 2738 2739 /// If the set of cases should be emitted as a series of branches, return true. 2740 /// If we should emit this as a bunch of and/or'd together conditions, return 2741 /// false. 2742 bool 2743 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2744 if (Cases.size() != 2) return true; 2745 2746 // If this is two comparisons of the same values or'd or and'd together, they 2747 // will get folded into a single comparison, so don't emit two blocks. 2748 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2749 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2750 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2751 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2752 return false; 2753 } 2754 2755 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2756 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2757 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2758 Cases[0].CC == Cases[1].CC && 2759 isa<Constant>(Cases[0].CmpRHS) && 2760 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2761 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2762 return false; 2763 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2764 return false; 2765 } 2766 2767 return true; 2768 } 2769 2770 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2771 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2772 2773 // Update machine-CFG edges. 2774 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2775 2776 if (I.isUnconditional()) { 2777 // Update machine-CFG edges. 2778 BrMBB->addSuccessor(Succ0MBB); 2779 2780 // If this is not a fall-through branch or optimizations are switched off, 2781 // emit the branch. 2782 if (Succ0MBB != NextBlock(BrMBB) || 2783 TM.getOptLevel() == CodeGenOptLevel::None) { 2784 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2785 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2786 setValue(&I, Br); 2787 DAG.setRoot(Br); 2788 } 2789 2790 return; 2791 } 2792 2793 // If this condition is one of the special cases we handle, do special stuff 2794 // now. 2795 const Value *CondVal = I.getCondition(); 2796 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2797 2798 // If this is a series of conditions that are or'd or and'd together, emit 2799 // this as a sequence of branches instead of setcc's with and/or operations. 2800 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2801 // unpredictable branches, and vector extracts because those jumps are likely 2802 // expensive for any target), this should improve performance. 2803 // For example, instead of something like: 2804 // cmp A, B 2805 // C = seteq 2806 // cmp D, E 2807 // F = setle 2808 // or C, F 2809 // jnz foo 2810 // Emit: 2811 // cmp A, B 2812 // je foo 2813 // cmp D, E 2814 // jle foo 2815 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2816 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2817 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2818 Value *Vec; 2819 const Value *BOp0, *BOp1; 2820 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2821 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2822 Opcode = Instruction::And; 2823 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2824 Opcode = Instruction::Or; 2825 2826 if (Opcode && 2827 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2828 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2829 !shouldKeepJumpConditionsTogether( 2830 FuncInfo, I, Opcode, BOp0, BOp1, 2831 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2832 Opcode, BOp0, BOp1))) { 2833 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2834 getEdgeProbability(BrMBB, Succ0MBB), 2835 getEdgeProbability(BrMBB, Succ1MBB), 2836 /*InvertCond=*/false); 2837 // If the compares in later blocks need to use values not currently 2838 // exported from this block, export them now. This block should always 2839 // be the first entry. 2840 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2841 2842 // Allow some cases to be rejected. 2843 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2844 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2845 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2846 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2847 } 2848 2849 // Emit the branch for this block. 2850 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2851 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2852 return; 2853 } 2854 2855 // Okay, we decided not to do this, remove any inserted MBB's and clear 2856 // SwitchCases. 2857 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2858 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2859 2860 SL->SwitchCases.clear(); 2861 } 2862 } 2863 2864 // Create a CaseBlock record representing this branch. 2865 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2866 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2867 2868 // Use visitSwitchCase to actually insert the fast branch sequence for this 2869 // cond branch. 2870 visitSwitchCase(CB, BrMBB); 2871 } 2872 2873 /// visitSwitchCase - Emits the necessary code to represent a single node in 2874 /// the binary search tree resulting from lowering a switch instruction. 2875 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2876 MachineBasicBlock *SwitchBB) { 2877 SDValue Cond; 2878 SDValue CondLHS = getValue(CB.CmpLHS); 2879 SDLoc dl = CB.DL; 2880 2881 if (CB.CC == ISD::SETTRUE) { 2882 // Branch or fall through to TrueBB. 2883 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2884 SwitchBB->normalizeSuccProbs(); 2885 if (CB.TrueBB != NextBlock(SwitchBB)) { 2886 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2887 DAG.getBasicBlock(CB.TrueBB))); 2888 } 2889 return; 2890 } 2891 2892 auto &TLI = DAG.getTargetLoweringInfo(); 2893 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2894 2895 // Build the setcc now. 2896 if (!CB.CmpMHS) { 2897 // Fold "(X == true)" to X and "(X == false)" to !X to 2898 // handle common cases produced by branch lowering. 2899 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2900 CB.CC == ISD::SETEQ) 2901 Cond = CondLHS; 2902 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2903 CB.CC == ISD::SETEQ) { 2904 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2905 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2906 } else { 2907 SDValue CondRHS = getValue(CB.CmpRHS); 2908 2909 // If a pointer's DAG type is larger than its memory type then the DAG 2910 // values are zero-extended. This breaks signed comparisons so truncate 2911 // back to the underlying type before doing the compare. 2912 if (CondLHS.getValueType() != MemVT) { 2913 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2914 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2915 } 2916 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2917 } 2918 } else { 2919 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2920 2921 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2922 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2923 2924 SDValue CmpOp = getValue(CB.CmpMHS); 2925 EVT VT = CmpOp.getValueType(); 2926 2927 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2928 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2929 ISD::SETLE); 2930 } else { 2931 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2932 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2933 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2934 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2935 } 2936 } 2937 2938 // Update successor info 2939 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2940 // TrueBB and FalseBB are always different unless the incoming IR is 2941 // degenerate. This only happens when running llc on weird IR. 2942 if (CB.TrueBB != CB.FalseBB) 2943 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2944 SwitchBB->normalizeSuccProbs(); 2945 2946 // If the lhs block is the next block, invert the condition so that we can 2947 // fall through to the lhs instead of the rhs block. 2948 if (CB.TrueBB == NextBlock(SwitchBB)) { 2949 std::swap(CB.TrueBB, CB.FalseBB); 2950 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2951 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2952 } 2953 2954 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2955 MVT::Other, getControlRoot(), Cond, 2956 DAG.getBasicBlock(CB.TrueBB)); 2957 2958 setValue(CurInst, BrCond); 2959 2960 // Insert the false branch. Do this even if it's a fall through branch, 2961 // this makes it easier to do DAG optimizations which require inverting 2962 // the branch condition. 2963 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2964 DAG.getBasicBlock(CB.FalseBB)); 2965 2966 DAG.setRoot(BrCond); 2967 } 2968 2969 /// visitJumpTable - Emit JumpTable node in the current MBB 2970 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2971 // Emit the code for the jump table 2972 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2973 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2974 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2975 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2976 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2977 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2978 Index.getValue(1), Table, Index); 2979 DAG.setRoot(BrJumpTable); 2980 } 2981 2982 /// visitJumpTableHeader - This function emits necessary code to produce index 2983 /// in the JumpTable from switch case. 2984 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2985 JumpTableHeader &JTH, 2986 MachineBasicBlock *SwitchBB) { 2987 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2988 const SDLoc &dl = *JT.SL; 2989 2990 // Subtract the lowest switch case value from the value being switched on. 2991 SDValue SwitchOp = getValue(JTH.SValue); 2992 EVT VT = SwitchOp.getValueType(); 2993 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2994 DAG.getConstant(JTH.First, dl, VT)); 2995 2996 // The SDNode we just created, which holds the value being switched on minus 2997 // the smallest case value, needs to be copied to a virtual register so it 2998 // can be used as an index into the jump table in a subsequent basic block. 2999 // This value may be smaller or larger than the target's pointer type, and 3000 // therefore require extension or truncating. 3001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3002 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 3003 3004 unsigned JumpTableReg = 3005 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 3006 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 3007 JumpTableReg, SwitchOp); 3008 JT.Reg = JumpTableReg; 3009 3010 if (!JTH.FallthroughUnreachable) { 3011 // Emit the range check for the jump table, and branch to the default block 3012 // for the switch statement if the value being switched on exceeds the 3013 // largest case in the switch. 3014 SDValue CMP = DAG.getSetCC( 3015 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3016 Sub.getValueType()), 3017 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3018 3019 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3020 MVT::Other, CopyTo, CMP, 3021 DAG.getBasicBlock(JT.Default)); 3022 3023 // Avoid emitting unnecessary branches to the next block. 3024 if (JT.MBB != NextBlock(SwitchBB)) 3025 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3026 DAG.getBasicBlock(JT.MBB)); 3027 3028 DAG.setRoot(BrCond); 3029 } else { 3030 // Avoid emitting unnecessary branches to the next block. 3031 if (JT.MBB != NextBlock(SwitchBB)) 3032 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3033 DAG.getBasicBlock(JT.MBB))); 3034 else 3035 DAG.setRoot(CopyTo); 3036 } 3037 } 3038 3039 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3040 /// variable if there exists one. 3041 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3042 SDValue &Chain) { 3043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3044 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3045 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3046 MachineFunction &MF = DAG.getMachineFunction(); 3047 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3048 MachineSDNode *Node = 3049 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3050 if (Global) { 3051 MachinePointerInfo MPInfo(Global); 3052 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3053 MachineMemOperand::MODereferenceable; 3054 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3055 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3056 DAG.getEVTAlign(PtrTy)); 3057 DAG.setNodeMemRefs(Node, {MemRef}); 3058 } 3059 if (PtrTy != PtrMemTy) 3060 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3061 return SDValue(Node, 0); 3062 } 3063 3064 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3065 /// tail spliced into a stack protector check success bb. 3066 /// 3067 /// For a high level explanation of how this fits into the stack protector 3068 /// generation see the comment on the declaration of class 3069 /// StackProtectorDescriptor. 3070 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3071 MachineBasicBlock *ParentBB) { 3072 3073 // First create the loads to the guard/stack slot for the comparison. 3074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3075 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3076 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3077 3078 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3079 int FI = MFI.getStackProtectorIndex(); 3080 3081 SDValue Guard; 3082 SDLoc dl = getCurSDLoc(); 3083 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3084 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3085 Align Align = 3086 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3087 3088 // Generate code to load the content of the guard slot. 3089 SDValue GuardVal = DAG.getLoad( 3090 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3091 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3092 MachineMemOperand::MOVolatile); 3093 3094 if (TLI.useStackGuardXorFP()) 3095 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3096 3097 // Retrieve guard check function, nullptr if instrumentation is inlined. 3098 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3099 // The target provides a guard check function to validate the guard value. 3100 // Generate a call to that function with the content of the guard slot as 3101 // argument. 3102 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3103 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3104 3105 TargetLowering::ArgListTy Args; 3106 TargetLowering::ArgListEntry Entry; 3107 Entry.Node = GuardVal; 3108 Entry.Ty = FnTy->getParamType(0); 3109 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3110 Entry.IsInReg = true; 3111 Args.push_back(Entry); 3112 3113 TargetLowering::CallLoweringInfo CLI(DAG); 3114 CLI.setDebugLoc(getCurSDLoc()) 3115 .setChain(DAG.getEntryNode()) 3116 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3117 getValue(GuardCheckFn), std::move(Args)); 3118 3119 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3120 DAG.setRoot(Result.second); 3121 return; 3122 } 3123 3124 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3125 // Otherwise, emit a volatile load to retrieve the stack guard value. 3126 SDValue Chain = DAG.getEntryNode(); 3127 if (TLI.useLoadStackGuardNode()) { 3128 Guard = getLoadStackGuard(DAG, dl, Chain); 3129 } else { 3130 const Value *IRGuard = TLI.getSDagStackGuard(M); 3131 SDValue GuardPtr = getValue(IRGuard); 3132 3133 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3134 MachinePointerInfo(IRGuard, 0), Align, 3135 MachineMemOperand::MOVolatile); 3136 } 3137 3138 // Perform the comparison via a getsetcc. 3139 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3140 *DAG.getContext(), 3141 Guard.getValueType()), 3142 Guard, GuardVal, ISD::SETNE); 3143 3144 // If the guard/stackslot do not equal, branch to failure MBB. 3145 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3146 MVT::Other, GuardVal.getOperand(0), 3147 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3148 // Otherwise branch to success MBB. 3149 SDValue Br = DAG.getNode(ISD::BR, dl, 3150 MVT::Other, BrCond, 3151 DAG.getBasicBlock(SPD.getSuccessMBB())); 3152 3153 DAG.setRoot(Br); 3154 } 3155 3156 /// Codegen the failure basic block for a stack protector check. 3157 /// 3158 /// A failure stack protector machine basic block consists simply of a call to 3159 /// __stack_chk_fail(). 3160 /// 3161 /// For a high level explanation of how this fits into the stack protector 3162 /// generation see the comment on the declaration of class 3163 /// StackProtectorDescriptor. 3164 void 3165 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3167 TargetLowering::MakeLibCallOptions CallOptions; 3168 CallOptions.setDiscardResult(true); 3169 SDValue Chain = 3170 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3171 std::nullopt, CallOptions, getCurSDLoc()) 3172 .second; 3173 // On PS4/PS5, the "return address" must still be within the calling 3174 // function, even if it's at the very end, so emit an explicit TRAP here. 3175 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3176 if (TM.getTargetTriple().isPS()) 3177 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3178 // WebAssembly needs an unreachable instruction after a non-returning call, 3179 // because the function return type can be different from __stack_chk_fail's 3180 // return type (void). 3181 if (TM.getTargetTriple().isWasm()) 3182 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3183 3184 DAG.setRoot(Chain); 3185 } 3186 3187 /// visitBitTestHeader - This function emits necessary code to produce value 3188 /// suitable for "bit tests" 3189 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3190 MachineBasicBlock *SwitchBB) { 3191 SDLoc dl = getCurSDLoc(); 3192 3193 // Subtract the minimum value. 3194 SDValue SwitchOp = getValue(B.SValue); 3195 EVT VT = SwitchOp.getValueType(); 3196 SDValue RangeSub = 3197 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3198 3199 // Determine the type of the test operands. 3200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3201 bool UsePtrType = false; 3202 if (!TLI.isTypeLegal(VT)) { 3203 UsePtrType = true; 3204 } else { 3205 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3206 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3207 // Switch table case range are encoded into series of masks. 3208 // Just use pointer type, it's guaranteed to fit. 3209 UsePtrType = true; 3210 break; 3211 } 3212 } 3213 SDValue Sub = RangeSub; 3214 if (UsePtrType) { 3215 VT = TLI.getPointerTy(DAG.getDataLayout()); 3216 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3217 } 3218 3219 B.RegVT = VT.getSimpleVT(); 3220 B.Reg = FuncInfo.CreateReg(B.RegVT); 3221 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3222 3223 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3224 3225 if (!B.FallthroughUnreachable) 3226 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3227 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3228 SwitchBB->normalizeSuccProbs(); 3229 3230 SDValue Root = CopyTo; 3231 if (!B.FallthroughUnreachable) { 3232 // Conditional branch to the default block. 3233 SDValue RangeCmp = DAG.getSetCC(dl, 3234 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3235 RangeSub.getValueType()), 3236 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3237 ISD::SETUGT); 3238 3239 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3240 DAG.getBasicBlock(B.Default)); 3241 } 3242 3243 // Avoid emitting unnecessary branches to the next block. 3244 if (MBB != NextBlock(SwitchBB)) 3245 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3246 3247 DAG.setRoot(Root); 3248 } 3249 3250 /// visitBitTestCase - this function produces one "bit test" 3251 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3252 MachineBasicBlock* NextMBB, 3253 BranchProbability BranchProbToNext, 3254 unsigned Reg, 3255 BitTestCase &B, 3256 MachineBasicBlock *SwitchBB) { 3257 SDLoc dl = getCurSDLoc(); 3258 MVT VT = BB.RegVT; 3259 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3260 SDValue Cmp; 3261 unsigned PopCount = llvm::popcount(B.Mask); 3262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3263 if (PopCount == 1) { 3264 // Testing for a single bit; just compare the shift count with what it 3265 // would need to be to shift a 1 bit in that position. 3266 Cmp = DAG.getSetCC( 3267 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3268 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3269 ISD::SETEQ); 3270 } else if (PopCount == BB.Range) { 3271 // There is only one zero bit in the range, test for it directly. 3272 Cmp = DAG.getSetCC( 3273 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3274 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3275 } else { 3276 // Make desired shift 3277 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3278 DAG.getConstant(1, dl, VT), ShiftOp); 3279 3280 // Emit bit tests and jumps 3281 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3282 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3283 Cmp = DAG.getSetCC( 3284 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3285 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3286 } 3287 3288 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3289 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3290 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3291 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3292 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3293 // one as they are relative probabilities (and thus work more like weights), 3294 // and hence we need to normalize them to let the sum of them become one. 3295 SwitchBB->normalizeSuccProbs(); 3296 3297 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3298 MVT::Other, getControlRoot(), 3299 Cmp, DAG.getBasicBlock(B.TargetBB)); 3300 3301 // Avoid emitting unnecessary branches to the next block. 3302 if (NextMBB != NextBlock(SwitchBB)) 3303 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3304 DAG.getBasicBlock(NextMBB)); 3305 3306 DAG.setRoot(BrAnd); 3307 } 3308 3309 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3310 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3311 3312 // Retrieve successors. Look through artificial IR level blocks like 3313 // catchswitch for successors. 3314 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3315 const BasicBlock *EHPadBB = I.getSuccessor(1); 3316 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3317 3318 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3319 // have to do anything here to lower funclet bundles. 3320 assert(!I.hasOperandBundlesOtherThan( 3321 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3322 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3323 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3324 LLVMContext::OB_clang_arc_attachedcall}) && 3325 "Cannot lower invokes with arbitrary operand bundles yet!"); 3326 3327 const Value *Callee(I.getCalledOperand()); 3328 const Function *Fn = dyn_cast<Function>(Callee); 3329 if (isa<InlineAsm>(Callee)) 3330 visitInlineAsm(I, EHPadBB); 3331 else if (Fn && Fn->isIntrinsic()) { 3332 switch (Fn->getIntrinsicID()) { 3333 default: 3334 llvm_unreachable("Cannot invoke this intrinsic"); 3335 case Intrinsic::donothing: 3336 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3337 case Intrinsic::seh_try_begin: 3338 case Intrinsic::seh_scope_begin: 3339 case Intrinsic::seh_try_end: 3340 case Intrinsic::seh_scope_end: 3341 if (EHPadMBB) 3342 // a block referenced by EH table 3343 // so dtor-funclet not removed by opts 3344 EHPadMBB->setMachineBlockAddressTaken(); 3345 break; 3346 case Intrinsic::experimental_patchpoint_void: 3347 case Intrinsic::experimental_patchpoint: 3348 visitPatchpoint(I, EHPadBB); 3349 break; 3350 case Intrinsic::experimental_gc_statepoint: 3351 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3352 break; 3353 case Intrinsic::wasm_rethrow: { 3354 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3355 // special because it can be invoked, so we manually lower it to a DAG 3356 // node here. 3357 SmallVector<SDValue, 8> Ops; 3358 Ops.push_back(getControlRoot()); // inchain for the terminator node 3359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3360 Ops.push_back( 3361 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3362 TLI.getPointerTy(DAG.getDataLayout()))); 3363 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3364 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3365 break; 3366 } 3367 } 3368 } else if (I.hasDeoptState()) { 3369 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3370 // Eventually we will support lowering the @llvm.experimental.deoptimize 3371 // intrinsic, and right now there are no plans to support other intrinsics 3372 // with deopt state. 3373 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3374 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3375 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3376 } else { 3377 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3378 } 3379 3380 // If the value of the invoke is used outside of its defining block, make it 3381 // available as a virtual register. 3382 // We already took care of the exported value for the statepoint instruction 3383 // during call to the LowerStatepoint. 3384 if (!isa<GCStatepointInst>(I)) { 3385 CopyToExportRegsIfNeeded(&I); 3386 } 3387 3388 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3389 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3390 BranchProbability EHPadBBProb = 3391 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3392 : BranchProbability::getZero(); 3393 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3394 3395 // Update successor info. 3396 addSuccessorWithProb(InvokeMBB, Return); 3397 for (auto &UnwindDest : UnwindDests) { 3398 UnwindDest.first->setIsEHPad(); 3399 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3400 } 3401 InvokeMBB->normalizeSuccProbs(); 3402 3403 // Drop into normal successor. 3404 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3405 DAG.getBasicBlock(Return))); 3406 } 3407 3408 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3409 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3410 3411 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3412 // have to do anything here to lower funclet bundles. 3413 assert(!I.hasOperandBundlesOtherThan( 3414 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3415 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3416 3417 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3418 visitInlineAsm(I); 3419 CopyToExportRegsIfNeeded(&I); 3420 3421 // Retrieve successors. 3422 SmallPtrSet<BasicBlock *, 8> Dests; 3423 Dests.insert(I.getDefaultDest()); 3424 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3425 3426 // Update successor info. 3427 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3428 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3429 BasicBlock *Dest = I.getIndirectDest(i); 3430 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3431 Target->setIsInlineAsmBrIndirectTarget(); 3432 Target->setMachineBlockAddressTaken(); 3433 Target->setLabelMustBeEmitted(); 3434 // Don't add duplicate machine successors. 3435 if (Dests.insert(Dest).second) 3436 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3437 } 3438 CallBrMBB->normalizeSuccProbs(); 3439 3440 // Drop into default successor. 3441 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3442 MVT::Other, getControlRoot(), 3443 DAG.getBasicBlock(Return))); 3444 } 3445 3446 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3447 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3448 } 3449 3450 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3451 assert(FuncInfo.MBB->isEHPad() && 3452 "Call to landingpad not in landing pad!"); 3453 3454 // If there aren't registers to copy the values into (e.g., during SjLj 3455 // exceptions), then don't bother to create these DAG nodes. 3456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3457 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3458 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3459 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3460 return; 3461 3462 // If landingpad's return type is token type, we don't create DAG nodes 3463 // for its exception pointer and selector value. The extraction of exception 3464 // pointer or selector value from token type landingpads is not currently 3465 // supported. 3466 if (LP.getType()->isTokenTy()) 3467 return; 3468 3469 SmallVector<EVT, 2> ValueVTs; 3470 SDLoc dl = getCurSDLoc(); 3471 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3472 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3473 3474 // Get the two live-in registers as SDValues. The physregs have already been 3475 // copied into virtual registers. 3476 SDValue Ops[2]; 3477 if (FuncInfo.ExceptionPointerVirtReg) { 3478 Ops[0] = DAG.getZExtOrTrunc( 3479 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3480 FuncInfo.ExceptionPointerVirtReg, 3481 TLI.getPointerTy(DAG.getDataLayout())), 3482 dl, ValueVTs[0]); 3483 } else { 3484 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3485 } 3486 Ops[1] = DAG.getZExtOrTrunc( 3487 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3488 FuncInfo.ExceptionSelectorVirtReg, 3489 TLI.getPointerTy(DAG.getDataLayout())), 3490 dl, ValueVTs[1]); 3491 3492 // Merge into one. 3493 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3494 DAG.getVTList(ValueVTs), Ops); 3495 setValue(&LP, Res); 3496 } 3497 3498 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3499 MachineBasicBlock *Last) { 3500 // Update JTCases. 3501 for (JumpTableBlock &JTB : SL->JTCases) 3502 if (JTB.first.HeaderBB == First) 3503 JTB.first.HeaderBB = Last; 3504 3505 // Update BitTestCases. 3506 for (BitTestBlock &BTB : SL->BitTestCases) 3507 if (BTB.Parent == First) 3508 BTB.Parent = Last; 3509 } 3510 3511 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3512 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3513 3514 // Update machine-CFG edges with unique successors. 3515 SmallSet<BasicBlock*, 32> Done; 3516 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3517 BasicBlock *BB = I.getSuccessor(i); 3518 bool Inserted = Done.insert(BB).second; 3519 if (!Inserted) 3520 continue; 3521 3522 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3523 addSuccessorWithProb(IndirectBrMBB, Succ); 3524 } 3525 IndirectBrMBB->normalizeSuccProbs(); 3526 3527 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3528 MVT::Other, getControlRoot(), 3529 getValue(I.getAddress()))); 3530 } 3531 3532 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3533 if (!DAG.getTarget().Options.TrapUnreachable) 3534 return; 3535 3536 // We may be able to ignore unreachable behind a noreturn call. 3537 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3538 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3539 if (Call->doesNotReturn()) 3540 return; 3541 } 3542 } 3543 3544 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3545 } 3546 3547 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3548 SDNodeFlags Flags; 3549 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3550 Flags.copyFMF(*FPOp); 3551 3552 SDValue Op = getValue(I.getOperand(0)); 3553 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3554 Op, Flags); 3555 setValue(&I, UnNodeValue); 3556 } 3557 3558 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3559 SDNodeFlags Flags; 3560 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3561 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3562 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3563 } 3564 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3565 Flags.setExact(ExactOp->isExact()); 3566 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3567 Flags.setDisjoint(DisjointOp->isDisjoint()); 3568 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3569 Flags.copyFMF(*FPOp); 3570 3571 SDValue Op1 = getValue(I.getOperand(0)); 3572 SDValue Op2 = getValue(I.getOperand(1)); 3573 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3574 Op1, Op2, Flags); 3575 setValue(&I, BinNodeValue); 3576 } 3577 3578 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3579 SDValue Op1 = getValue(I.getOperand(0)); 3580 SDValue Op2 = getValue(I.getOperand(1)); 3581 3582 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3583 Op1.getValueType(), DAG.getDataLayout()); 3584 3585 // Coerce the shift amount to the right type if we can. This exposes the 3586 // truncate or zext to optimization early. 3587 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3588 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3589 "Unexpected shift type"); 3590 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3591 } 3592 3593 bool nuw = false; 3594 bool nsw = false; 3595 bool exact = false; 3596 3597 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3598 3599 if (const OverflowingBinaryOperator *OFBinOp = 3600 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3601 nuw = OFBinOp->hasNoUnsignedWrap(); 3602 nsw = OFBinOp->hasNoSignedWrap(); 3603 } 3604 if (const PossiblyExactOperator *ExactOp = 3605 dyn_cast<const PossiblyExactOperator>(&I)) 3606 exact = ExactOp->isExact(); 3607 } 3608 SDNodeFlags Flags; 3609 Flags.setExact(exact); 3610 Flags.setNoSignedWrap(nsw); 3611 Flags.setNoUnsignedWrap(nuw); 3612 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3613 Flags); 3614 setValue(&I, Res); 3615 } 3616 3617 void SelectionDAGBuilder::visitSDiv(const User &I) { 3618 SDValue Op1 = getValue(I.getOperand(0)); 3619 SDValue Op2 = getValue(I.getOperand(1)); 3620 3621 SDNodeFlags Flags; 3622 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3623 cast<PossiblyExactOperator>(&I)->isExact()); 3624 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3625 Op2, Flags)); 3626 } 3627 3628 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3629 ICmpInst::Predicate predicate = I.getPredicate(); 3630 SDValue Op1 = getValue(I.getOperand(0)); 3631 SDValue Op2 = getValue(I.getOperand(1)); 3632 ISD::CondCode Opcode = getICmpCondCode(predicate); 3633 3634 auto &TLI = DAG.getTargetLoweringInfo(); 3635 EVT MemVT = 3636 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3637 3638 // If a pointer's DAG type is larger than its memory type then the DAG values 3639 // are zero-extended. This breaks signed comparisons so truncate back to the 3640 // underlying type before doing the compare. 3641 if (Op1.getValueType() != MemVT) { 3642 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3643 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3644 } 3645 3646 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3647 I.getType()); 3648 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3649 } 3650 3651 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3652 FCmpInst::Predicate predicate = I.getPredicate(); 3653 SDValue Op1 = getValue(I.getOperand(0)); 3654 SDValue Op2 = getValue(I.getOperand(1)); 3655 3656 ISD::CondCode Condition = getFCmpCondCode(predicate); 3657 auto *FPMO = cast<FPMathOperator>(&I); 3658 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3659 Condition = getFCmpCodeWithoutNaN(Condition); 3660 3661 SDNodeFlags Flags; 3662 Flags.copyFMF(*FPMO); 3663 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3664 3665 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3666 I.getType()); 3667 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3668 } 3669 3670 // Check if the condition of the select has one use or two users that are both 3671 // selects with the same condition. 3672 static bool hasOnlySelectUsers(const Value *Cond) { 3673 return llvm::all_of(Cond->users(), [](const Value *V) { 3674 return isa<SelectInst>(V); 3675 }); 3676 } 3677 3678 void SelectionDAGBuilder::visitSelect(const User &I) { 3679 SmallVector<EVT, 4> ValueVTs; 3680 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3681 ValueVTs); 3682 unsigned NumValues = ValueVTs.size(); 3683 if (NumValues == 0) return; 3684 3685 SmallVector<SDValue, 4> Values(NumValues); 3686 SDValue Cond = getValue(I.getOperand(0)); 3687 SDValue LHSVal = getValue(I.getOperand(1)); 3688 SDValue RHSVal = getValue(I.getOperand(2)); 3689 SmallVector<SDValue, 1> BaseOps(1, Cond); 3690 ISD::NodeType OpCode = 3691 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3692 3693 bool IsUnaryAbs = false; 3694 bool Negate = false; 3695 3696 SDNodeFlags Flags; 3697 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3698 Flags.copyFMF(*FPOp); 3699 3700 Flags.setUnpredictable( 3701 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3702 3703 // Min/max matching is only viable if all output VTs are the same. 3704 if (all_equal(ValueVTs)) { 3705 EVT VT = ValueVTs[0]; 3706 LLVMContext &Ctx = *DAG.getContext(); 3707 auto &TLI = DAG.getTargetLoweringInfo(); 3708 3709 // We care about the legality of the operation after it has been type 3710 // legalized. 3711 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3712 VT = TLI.getTypeToTransformTo(Ctx, VT); 3713 3714 // If the vselect is legal, assume we want to leave this as a vector setcc + 3715 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3716 // min/max is legal on the scalar type. 3717 bool UseScalarMinMax = VT.isVector() && 3718 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3719 3720 // ValueTracking's select pattern matching does not account for -0.0, 3721 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3722 // -0.0 is less than +0.0. 3723 Value *LHS, *RHS; 3724 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3725 ISD::NodeType Opc = ISD::DELETED_NODE; 3726 switch (SPR.Flavor) { 3727 case SPF_UMAX: Opc = ISD::UMAX; break; 3728 case SPF_UMIN: Opc = ISD::UMIN; break; 3729 case SPF_SMAX: Opc = ISD::SMAX; break; 3730 case SPF_SMIN: Opc = ISD::SMIN; break; 3731 case SPF_FMINNUM: 3732 switch (SPR.NaNBehavior) { 3733 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3734 case SPNB_RETURNS_NAN: break; 3735 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3736 case SPNB_RETURNS_ANY: 3737 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3738 (UseScalarMinMax && 3739 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3740 Opc = ISD::FMINNUM; 3741 break; 3742 } 3743 break; 3744 case SPF_FMAXNUM: 3745 switch (SPR.NaNBehavior) { 3746 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3747 case SPNB_RETURNS_NAN: break; 3748 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3749 case SPNB_RETURNS_ANY: 3750 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3751 (UseScalarMinMax && 3752 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3753 Opc = ISD::FMAXNUM; 3754 break; 3755 } 3756 break; 3757 case SPF_NABS: 3758 Negate = true; 3759 [[fallthrough]]; 3760 case SPF_ABS: 3761 IsUnaryAbs = true; 3762 Opc = ISD::ABS; 3763 break; 3764 default: break; 3765 } 3766 3767 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3768 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3769 (UseScalarMinMax && 3770 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3771 // If the underlying comparison instruction is used by any other 3772 // instruction, the consumed instructions won't be destroyed, so it is 3773 // not profitable to convert to a min/max. 3774 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3775 OpCode = Opc; 3776 LHSVal = getValue(LHS); 3777 RHSVal = getValue(RHS); 3778 BaseOps.clear(); 3779 } 3780 3781 if (IsUnaryAbs) { 3782 OpCode = Opc; 3783 LHSVal = getValue(LHS); 3784 BaseOps.clear(); 3785 } 3786 } 3787 3788 if (IsUnaryAbs) { 3789 for (unsigned i = 0; i != NumValues; ++i) { 3790 SDLoc dl = getCurSDLoc(); 3791 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3792 Values[i] = 3793 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3794 if (Negate) 3795 Values[i] = DAG.getNegative(Values[i], dl, VT); 3796 } 3797 } else { 3798 for (unsigned i = 0; i != NumValues; ++i) { 3799 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3800 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3801 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3802 Values[i] = DAG.getNode( 3803 OpCode, getCurSDLoc(), 3804 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3805 } 3806 } 3807 3808 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3809 DAG.getVTList(ValueVTs), Values)); 3810 } 3811 3812 void SelectionDAGBuilder::visitTrunc(const User &I) { 3813 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3814 SDValue N = getValue(I.getOperand(0)); 3815 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3816 I.getType()); 3817 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3818 } 3819 3820 void SelectionDAGBuilder::visitZExt(const User &I) { 3821 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3822 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3823 SDValue N = getValue(I.getOperand(0)); 3824 auto &TLI = DAG.getTargetLoweringInfo(); 3825 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3826 3827 SDNodeFlags Flags; 3828 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3829 Flags.setNonNeg(PNI->hasNonNeg()); 3830 3831 // Eagerly use nonneg information to canonicalize towards sign_extend if 3832 // that is the target's preference. 3833 // TODO: Let the target do this later. 3834 if (Flags.hasNonNeg() && 3835 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3836 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3837 return; 3838 } 3839 3840 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3841 } 3842 3843 void SelectionDAGBuilder::visitSExt(const User &I) { 3844 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3845 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3846 SDValue N = getValue(I.getOperand(0)); 3847 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3848 I.getType()); 3849 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3850 } 3851 3852 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3853 // FPTrunc is never a no-op cast, no need to check 3854 SDValue N = getValue(I.getOperand(0)); 3855 SDLoc dl = getCurSDLoc(); 3856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3857 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3858 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3859 DAG.getTargetConstant( 3860 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3861 } 3862 3863 void SelectionDAGBuilder::visitFPExt(const User &I) { 3864 // FPExt is never a no-op cast, no need to check 3865 SDValue N = getValue(I.getOperand(0)); 3866 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3867 I.getType()); 3868 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3869 } 3870 3871 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3872 // FPToUI is never a no-op cast, no need to check 3873 SDValue N = getValue(I.getOperand(0)); 3874 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3875 I.getType()); 3876 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3877 } 3878 3879 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3880 // FPToSI is never a no-op cast, no need to check 3881 SDValue N = getValue(I.getOperand(0)); 3882 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3883 I.getType()); 3884 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3885 } 3886 3887 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3888 // UIToFP is never a no-op cast, no need to check 3889 SDValue N = getValue(I.getOperand(0)); 3890 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3891 I.getType()); 3892 SDNodeFlags Flags; 3893 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3894 Flags.setNonNeg(PNI->hasNonNeg()); 3895 3896 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3897 } 3898 3899 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3900 // SIToFP is never a no-op cast, no need to check 3901 SDValue N = getValue(I.getOperand(0)); 3902 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3903 I.getType()); 3904 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3905 } 3906 3907 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3908 // What to do depends on the size of the integer and the size of the pointer. 3909 // We can either truncate, zero extend, or no-op, accordingly. 3910 SDValue N = getValue(I.getOperand(0)); 3911 auto &TLI = DAG.getTargetLoweringInfo(); 3912 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3913 I.getType()); 3914 EVT PtrMemVT = 3915 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3916 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3917 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3918 setValue(&I, N); 3919 } 3920 3921 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3922 // What to do depends on the size of the integer and the size of the pointer. 3923 // We can either truncate, zero extend, or no-op, accordingly. 3924 SDValue N = getValue(I.getOperand(0)); 3925 auto &TLI = DAG.getTargetLoweringInfo(); 3926 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3927 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3928 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3929 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3930 setValue(&I, N); 3931 } 3932 3933 void SelectionDAGBuilder::visitBitCast(const User &I) { 3934 SDValue N = getValue(I.getOperand(0)); 3935 SDLoc dl = getCurSDLoc(); 3936 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3937 I.getType()); 3938 3939 // BitCast assures us that source and destination are the same size so this is 3940 // either a BITCAST or a no-op. 3941 if (DestVT != N.getValueType()) 3942 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3943 DestVT, N)); // convert types. 3944 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3945 // might fold any kind of constant expression to an integer constant and that 3946 // is not what we are looking for. Only recognize a bitcast of a genuine 3947 // constant integer as an opaque constant. 3948 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3949 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3950 /*isOpaque*/true)); 3951 else 3952 setValue(&I, N); // noop cast. 3953 } 3954 3955 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3957 const Value *SV = I.getOperand(0); 3958 SDValue N = getValue(SV); 3959 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3960 3961 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3962 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3963 3964 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3965 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3966 3967 setValue(&I, N); 3968 } 3969 3970 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3972 SDValue InVec = getValue(I.getOperand(0)); 3973 SDValue InVal = getValue(I.getOperand(1)); 3974 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3975 TLI.getVectorIdxTy(DAG.getDataLayout())); 3976 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3977 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3978 InVec, InVal, InIdx)); 3979 } 3980 3981 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3983 SDValue InVec = getValue(I.getOperand(0)); 3984 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3985 TLI.getVectorIdxTy(DAG.getDataLayout())); 3986 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3987 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3988 InVec, InIdx)); 3989 } 3990 3991 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3992 SDValue Src1 = getValue(I.getOperand(0)); 3993 SDValue Src2 = getValue(I.getOperand(1)); 3994 ArrayRef<int> Mask; 3995 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3996 Mask = SVI->getShuffleMask(); 3997 else 3998 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3999 SDLoc DL = getCurSDLoc(); 4000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4001 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4002 EVT SrcVT = Src1.getValueType(); 4003 4004 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4005 VT.isScalableVector()) { 4006 // Canonical splat form of first element of first input vector. 4007 SDValue FirstElt = 4008 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4009 DAG.getVectorIdxConstant(0, DL)); 4010 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4011 return; 4012 } 4013 4014 // For now, we only handle splats for scalable vectors. 4015 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4016 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4017 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4018 4019 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4020 unsigned MaskNumElts = Mask.size(); 4021 4022 if (SrcNumElts == MaskNumElts) { 4023 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4024 return; 4025 } 4026 4027 // Normalize the shuffle vector since mask and vector length don't match. 4028 if (SrcNumElts < MaskNumElts) { 4029 // Mask is longer than the source vectors. We can use concatenate vector to 4030 // make the mask and vectors lengths match. 4031 4032 if (MaskNumElts % SrcNumElts == 0) { 4033 // Mask length is a multiple of the source vector length. 4034 // Check if the shuffle is some kind of concatenation of the input 4035 // vectors. 4036 unsigned NumConcat = MaskNumElts / SrcNumElts; 4037 bool IsConcat = true; 4038 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4039 for (unsigned i = 0; i != MaskNumElts; ++i) { 4040 int Idx = Mask[i]; 4041 if (Idx < 0) 4042 continue; 4043 // Ensure the indices in each SrcVT sized piece are sequential and that 4044 // the same source is used for the whole piece. 4045 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4046 (ConcatSrcs[i / SrcNumElts] >= 0 && 4047 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4048 IsConcat = false; 4049 break; 4050 } 4051 // Remember which source this index came from. 4052 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4053 } 4054 4055 // The shuffle is concatenating multiple vectors together. Just emit 4056 // a CONCAT_VECTORS operation. 4057 if (IsConcat) { 4058 SmallVector<SDValue, 8> ConcatOps; 4059 for (auto Src : ConcatSrcs) { 4060 if (Src < 0) 4061 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4062 else if (Src == 0) 4063 ConcatOps.push_back(Src1); 4064 else 4065 ConcatOps.push_back(Src2); 4066 } 4067 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4068 return; 4069 } 4070 } 4071 4072 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4073 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4074 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4075 PaddedMaskNumElts); 4076 4077 // Pad both vectors with undefs to make them the same length as the mask. 4078 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4079 4080 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4081 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4082 MOps1[0] = Src1; 4083 MOps2[0] = Src2; 4084 4085 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4086 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4087 4088 // Readjust mask for new input vector length. 4089 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4090 for (unsigned i = 0; i != MaskNumElts; ++i) { 4091 int Idx = Mask[i]; 4092 if (Idx >= (int)SrcNumElts) 4093 Idx -= SrcNumElts - PaddedMaskNumElts; 4094 MappedOps[i] = Idx; 4095 } 4096 4097 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4098 4099 // If the concatenated vector was padded, extract a subvector with the 4100 // correct number of elements. 4101 if (MaskNumElts != PaddedMaskNumElts) 4102 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4103 DAG.getVectorIdxConstant(0, DL)); 4104 4105 setValue(&I, Result); 4106 return; 4107 } 4108 4109 if (SrcNumElts > MaskNumElts) { 4110 // Analyze the access pattern of the vector to see if we can extract 4111 // two subvectors and do the shuffle. 4112 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4113 bool CanExtract = true; 4114 for (int Idx : Mask) { 4115 unsigned Input = 0; 4116 if (Idx < 0) 4117 continue; 4118 4119 if (Idx >= (int)SrcNumElts) { 4120 Input = 1; 4121 Idx -= SrcNumElts; 4122 } 4123 4124 // If all the indices come from the same MaskNumElts sized portion of 4125 // the sources we can use extract. Also make sure the extract wouldn't 4126 // extract past the end of the source. 4127 int NewStartIdx = alignDown(Idx, MaskNumElts); 4128 if (NewStartIdx + MaskNumElts > SrcNumElts || 4129 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4130 CanExtract = false; 4131 // Make sure we always update StartIdx as we use it to track if all 4132 // elements are undef. 4133 StartIdx[Input] = NewStartIdx; 4134 } 4135 4136 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4137 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4138 return; 4139 } 4140 if (CanExtract) { 4141 // Extract appropriate subvector and generate a vector shuffle 4142 for (unsigned Input = 0; Input < 2; ++Input) { 4143 SDValue &Src = Input == 0 ? Src1 : Src2; 4144 if (StartIdx[Input] < 0) 4145 Src = DAG.getUNDEF(VT); 4146 else { 4147 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4148 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4149 } 4150 } 4151 4152 // Calculate new mask. 4153 SmallVector<int, 8> MappedOps(Mask); 4154 for (int &Idx : MappedOps) { 4155 if (Idx >= (int)SrcNumElts) 4156 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4157 else if (Idx >= 0) 4158 Idx -= StartIdx[0]; 4159 } 4160 4161 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4162 return; 4163 } 4164 } 4165 4166 // We can't use either concat vectors or extract subvectors so fall back to 4167 // replacing the shuffle with extract and build vector. 4168 // to insert and build vector. 4169 EVT EltVT = VT.getVectorElementType(); 4170 SmallVector<SDValue,8> Ops; 4171 for (int Idx : Mask) { 4172 SDValue Res; 4173 4174 if (Idx < 0) { 4175 Res = DAG.getUNDEF(EltVT); 4176 } else { 4177 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4178 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4179 4180 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4181 DAG.getVectorIdxConstant(Idx, DL)); 4182 } 4183 4184 Ops.push_back(Res); 4185 } 4186 4187 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4188 } 4189 4190 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4191 ArrayRef<unsigned> Indices = I.getIndices(); 4192 const Value *Op0 = I.getOperand(0); 4193 const Value *Op1 = I.getOperand(1); 4194 Type *AggTy = I.getType(); 4195 Type *ValTy = Op1->getType(); 4196 bool IntoUndef = isa<UndefValue>(Op0); 4197 bool FromUndef = isa<UndefValue>(Op1); 4198 4199 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4200 4201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4202 SmallVector<EVT, 4> AggValueVTs; 4203 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4204 SmallVector<EVT, 4> ValValueVTs; 4205 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4206 4207 unsigned NumAggValues = AggValueVTs.size(); 4208 unsigned NumValValues = ValValueVTs.size(); 4209 SmallVector<SDValue, 4> Values(NumAggValues); 4210 4211 // Ignore an insertvalue that produces an empty object 4212 if (!NumAggValues) { 4213 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4214 return; 4215 } 4216 4217 SDValue Agg = getValue(Op0); 4218 unsigned i = 0; 4219 // Copy the beginning value(s) from the original aggregate. 4220 for (; i != LinearIndex; ++i) 4221 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4222 SDValue(Agg.getNode(), Agg.getResNo() + i); 4223 // Copy values from the inserted value(s). 4224 if (NumValValues) { 4225 SDValue Val = getValue(Op1); 4226 for (; i != LinearIndex + NumValValues; ++i) 4227 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4228 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4229 } 4230 // Copy remaining value(s) from the original aggregate. 4231 for (; i != NumAggValues; ++i) 4232 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4233 SDValue(Agg.getNode(), Agg.getResNo() + i); 4234 4235 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4236 DAG.getVTList(AggValueVTs), Values)); 4237 } 4238 4239 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4240 ArrayRef<unsigned> Indices = I.getIndices(); 4241 const Value *Op0 = I.getOperand(0); 4242 Type *AggTy = Op0->getType(); 4243 Type *ValTy = I.getType(); 4244 bool OutOfUndef = isa<UndefValue>(Op0); 4245 4246 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4247 4248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4249 SmallVector<EVT, 4> ValValueVTs; 4250 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4251 4252 unsigned NumValValues = ValValueVTs.size(); 4253 4254 // Ignore a extractvalue that produces an empty object 4255 if (!NumValValues) { 4256 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4257 return; 4258 } 4259 4260 SmallVector<SDValue, 4> Values(NumValValues); 4261 4262 SDValue Agg = getValue(Op0); 4263 // Copy out the selected value(s). 4264 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4265 Values[i - LinearIndex] = 4266 OutOfUndef ? 4267 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4268 SDValue(Agg.getNode(), Agg.getResNo() + i); 4269 4270 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4271 DAG.getVTList(ValValueVTs), Values)); 4272 } 4273 4274 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4275 Value *Op0 = I.getOperand(0); 4276 // Note that the pointer operand may be a vector of pointers. Take the scalar 4277 // element which holds a pointer. 4278 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4279 SDValue N = getValue(Op0); 4280 SDLoc dl = getCurSDLoc(); 4281 auto &TLI = DAG.getTargetLoweringInfo(); 4282 4283 // Normalize Vector GEP - all scalar operands should be converted to the 4284 // splat vector. 4285 bool IsVectorGEP = I.getType()->isVectorTy(); 4286 ElementCount VectorElementCount = 4287 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4288 : ElementCount::getFixed(0); 4289 4290 if (IsVectorGEP && !N.getValueType().isVector()) { 4291 LLVMContext &Context = *DAG.getContext(); 4292 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4293 N = DAG.getSplat(VT, dl, N); 4294 } 4295 4296 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4297 GTI != E; ++GTI) { 4298 const Value *Idx = GTI.getOperand(); 4299 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4300 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4301 if (Field) { 4302 // N = N + Offset 4303 uint64_t Offset = 4304 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4305 4306 // In an inbounds GEP with an offset that is nonnegative even when 4307 // interpreted as signed, assume there is no unsigned overflow. 4308 SDNodeFlags Flags; 4309 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4310 Flags.setNoUnsignedWrap(true); 4311 4312 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4313 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4314 } 4315 } else { 4316 // IdxSize is the width of the arithmetic according to IR semantics. 4317 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4318 // (and fix up the result later). 4319 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4320 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4321 TypeSize ElementSize = 4322 GTI.getSequentialElementStride(DAG.getDataLayout()); 4323 // We intentionally mask away the high bits here; ElementSize may not 4324 // fit in IdxTy. 4325 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4326 bool ElementScalable = ElementSize.isScalable(); 4327 4328 // If this is a scalar constant or a splat vector of constants, 4329 // handle it quickly. 4330 const auto *C = dyn_cast<Constant>(Idx); 4331 if (C && isa<VectorType>(C->getType())) 4332 C = C->getSplatValue(); 4333 4334 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4335 if (CI && CI->isZero()) 4336 continue; 4337 if (CI && !ElementScalable) { 4338 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4339 LLVMContext &Context = *DAG.getContext(); 4340 SDValue OffsVal; 4341 if (IsVectorGEP) 4342 OffsVal = DAG.getConstant( 4343 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4344 else 4345 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4346 4347 // In an inbounds GEP with an offset that is nonnegative even when 4348 // interpreted as signed, assume there is no unsigned overflow. 4349 SDNodeFlags Flags; 4350 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4351 Flags.setNoUnsignedWrap(true); 4352 4353 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4354 4355 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4356 continue; 4357 } 4358 4359 // N = N + Idx * ElementMul; 4360 SDValue IdxN = getValue(Idx); 4361 4362 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4363 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4364 VectorElementCount); 4365 IdxN = DAG.getSplat(VT, dl, IdxN); 4366 } 4367 4368 // If the index is smaller or larger than intptr_t, truncate or extend 4369 // it. 4370 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4371 4372 if (ElementScalable) { 4373 EVT VScaleTy = N.getValueType().getScalarType(); 4374 SDValue VScale = DAG.getNode( 4375 ISD::VSCALE, dl, VScaleTy, 4376 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4377 if (IsVectorGEP) 4378 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4379 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4380 } else { 4381 // If this is a multiply by a power of two, turn it into a shl 4382 // immediately. This is a very common case. 4383 if (ElementMul != 1) { 4384 if (ElementMul.isPowerOf2()) { 4385 unsigned Amt = ElementMul.logBase2(); 4386 IdxN = DAG.getNode(ISD::SHL, dl, 4387 N.getValueType(), IdxN, 4388 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4389 } else { 4390 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4391 IdxN.getValueType()); 4392 IdxN = DAG.getNode(ISD::MUL, dl, 4393 N.getValueType(), IdxN, Scale); 4394 } 4395 } 4396 } 4397 4398 N = DAG.getNode(ISD::ADD, dl, 4399 N.getValueType(), N, IdxN); 4400 } 4401 } 4402 4403 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4404 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4405 if (IsVectorGEP) { 4406 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4407 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4408 } 4409 4410 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4411 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4412 4413 setValue(&I, N); 4414 } 4415 4416 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4417 // If this is a fixed sized alloca in the entry block of the function, 4418 // allocate it statically on the stack. 4419 if (FuncInfo.StaticAllocaMap.count(&I)) 4420 return; // getValue will auto-populate this. 4421 4422 SDLoc dl = getCurSDLoc(); 4423 Type *Ty = I.getAllocatedType(); 4424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4425 auto &DL = DAG.getDataLayout(); 4426 TypeSize TySize = DL.getTypeAllocSize(Ty); 4427 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4428 4429 SDValue AllocSize = getValue(I.getArraySize()); 4430 4431 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4432 if (AllocSize.getValueType() != IntPtr) 4433 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4434 4435 if (TySize.isScalable()) 4436 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4437 DAG.getVScale(dl, IntPtr, 4438 APInt(IntPtr.getScalarSizeInBits(), 4439 TySize.getKnownMinValue()))); 4440 else { 4441 SDValue TySizeValue = 4442 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4443 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4444 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4445 } 4446 4447 // Handle alignment. If the requested alignment is less than or equal to 4448 // the stack alignment, ignore it. If the size is greater than or equal to 4449 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4450 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4451 if (*Alignment <= StackAlign) 4452 Alignment = std::nullopt; 4453 4454 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4455 // Round the size of the allocation up to the stack alignment size 4456 // by add SA-1 to the size. This doesn't overflow because we're computing 4457 // an address inside an alloca. 4458 SDNodeFlags Flags; 4459 Flags.setNoUnsignedWrap(true); 4460 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4461 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4462 4463 // Mask out the low bits for alignment purposes. 4464 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4465 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4466 4467 SDValue Ops[] = { 4468 getRoot(), AllocSize, 4469 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4470 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4471 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4472 setValue(&I, DSA); 4473 DAG.setRoot(DSA.getValue(1)); 4474 4475 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4476 } 4477 4478 static const MDNode *getRangeMetadata(const Instruction &I) { 4479 // If !noundef is not present, then !range violation results in a poison 4480 // value rather than immediate undefined behavior. In theory, transferring 4481 // these annotations to SDAG is fine, but in practice there are key SDAG 4482 // transforms that are known not to be poison-safe, such as folding logical 4483 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4484 // also present. 4485 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4486 return nullptr; 4487 return I.getMetadata(LLVMContext::MD_range); 4488 } 4489 4490 static std::optional<ConstantRange> getRange(const Instruction &I) { 4491 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4492 // see comment in getRangeMetadata about this check 4493 if (CB->hasRetAttr(Attribute::NoUndef)) 4494 return CB->getRange(); 4495 } 4496 if (const MDNode *Range = getRangeMetadata(I)) 4497 return getConstantRangeFromMetadata(*Range); 4498 return std::nullopt; 4499 } 4500 4501 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4502 if (I.isAtomic()) 4503 return visitAtomicLoad(I); 4504 4505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4506 const Value *SV = I.getOperand(0); 4507 if (TLI.supportSwiftError()) { 4508 // Swifterror values can come from either a function parameter with 4509 // swifterror attribute or an alloca with swifterror attribute. 4510 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4511 if (Arg->hasSwiftErrorAttr()) 4512 return visitLoadFromSwiftError(I); 4513 } 4514 4515 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4516 if (Alloca->isSwiftError()) 4517 return visitLoadFromSwiftError(I); 4518 } 4519 } 4520 4521 SDValue Ptr = getValue(SV); 4522 4523 Type *Ty = I.getType(); 4524 SmallVector<EVT, 4> ValueVTs, MemVTs; 4525 SmallVector<TypeSize, 4> Offsets; 4526 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4527 unsigned NumValues = ValueVTs.size(); 4528 if (NumValues == 0) 4529 return; 4530 4531 Align Alignment = I.getAlign(); 4532 AAMDNodes AAInfo = I.getAAMetadata(); 4533 const MDNode *Ranges = getRangeMetadata(I); 4534 bool isVolatile = I.isVolatile(); 4535 MachineMemOperand::Flags MMOFlags = 4536 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4537 4538 SDValue Root; 4539 bool ConstantMemory = false; 4540 if (isVolatile) 4541 // Serialize volatile loads with other side effects. 4542 Root = getRoot(); 4543 else if (NumValues > MaxParallelChains) 4544 Root = getMemoryRoot(); 4545 else if (AA && 4546 AA->pointsToConstantMemory(MemoryLocation( 4547 SV, 4548 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4549 AAInfo))) { 4550 // Do not serialize (non-volatile) loads of constant memory with anything. 4551 Root = DAG.getEntryNode(); 4552 ConstantMemory = true; 4553 MMOFlags |= MachineMemOperand::MOInvariant; 4554 } else { 4555 // Do not serialize non-volatile loads against each other. 4556 Root = DAG.getRoot(); 4557 } 4558 4559 SDLoc dl = getCurSDLoc(); 4560 4561 if (isVolatile) 4562 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4563 4564 SmallVector<SDValue, 4> Values(NumValues); 4565 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4566 4567 unsigned ChainI = 0; 4568 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4569 // Serializing loads here may result in excessive register pressure, and 4570 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4571 // could recover a bit by hoisting nodes upward in the chain by recognizing 4572 // they are side-effect free or do not alias. The optimizer should really 4573 // avoid this case by converting large object/array copies to llvm.memcpy 4574 // (MaxParallelChains should always remain as failsafe). 4575 if (ChainI == MaxParallelChains) { 4576 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4577 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4578 ArrayRef(Chains.data(), ChainI)); 4579 Root = Chain; 4580 ChainI = 0; 4581 } 4582 4583 // TODO: MachinePointerInfo only supports a fixed length offset. 4584 MachinePointerInfo PtrInfo = 4585 !Offsets[i].isScalable() || Offsets[i].isZero() 4586 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4587 : MachinePointerInfo(); 4588 4589 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4590 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4591 MMOFlags, AAInfo, Ranges); 4592 Chains[ChainI] = L.getValue(1); 4593 4594 if (MemVTs[i] != ValueVTs[i]) 4595 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4596 4597 Values[i] = L; 4598 } 4599 4600 if (!ConstantMemory) { 4601 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4602 ArrayRef(Chains.data(), ChainI)); 4603 if (isVolatile) 4604 DAG.setRoot(Chain); 4605 else 4606 PendingLoads.push_back(Chain); 4607 } 4608 4609 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4610 DAG.getVTList(ValueVTs), Values)); 4611 } 4612 4613 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4614 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4615 "call visitStoreToSwiftError when backend supports swifterror"); 4616 4617 SmallVector<EVT, 4> ValueVTs; 4618 SmallVector<uint64_t, 4> Offsets; 4619 const Value *SrcV = I.getOperand(0); 4620 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4621 SrcV->getType(), ValueVTs, &Offsets, 0); 4622 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4623 "expect a single EVT for swifterror"); 4624 4625 SDValue Src = getValue(SrcV); 4626 // Create a virtual register, then update the virtual register. 4627 Register VReg = 4628 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4629 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4630 // Chain can be getRoot or getControlRoot. 4631 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4632 SDValue(Src.getNode(), Src.getResNo())); 4633 DAG.setRoot(CopyNode); 4634 } 4635 4636 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4637 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4638 "call visitLoadFromSwiftError when backend supports swifterror"); 4639 4640 assert(!I.isVolatile() && 4641 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4642 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4643 "Support volatile, non temporal, invariant for load_from_swift_error"); 4644 4645 const Value *SV = I.getOperand(0); 4646 Type *Ty = I.getType(); 4647 assert( 4648 (!AA || 4649 !AA->pointsToConstantMemory(MemoryLocation( 4650 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4651 I.getAAMetadata()))) && 4652 "load_from_swift_error should not be constant memory"); 4653 4654 SmallVector<EVT, 4> ValueVTs; 4655 SmallVector<uint64_t, 4> Offsets; 4656 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4657 ValueVTs, &Offsets, 0); 4658 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4659 "expect a single EVT for swifterror"); 4660 4661 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4662 SDValue L = DAG.getCopyFromReg( 4663 getRoot(), getCurSDLoc(), 4664 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4665 4666 setValue(&I, L); 4667 } 4668 4669 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4670 if (I.isAtomic()) 4671 return visitAtomicStore(I); 4672 4673 const Value *SrcV = I.getOperand(0); 4674 const Value *PtrV = I.getOperand(1); 4675 4676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4677 if (TLI.supportSwiftError()) { 4678 // Swifterror values can come from either a function parameter with 4679 // swifterror attribute or an alloca with swifterror attribute. 4680 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4681 if (Arg->hasSwiftErrorAttr()) 4682 return visitStoreToSwiftError(I); 4683 } 4684 4685 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4686 if (Alloca->isSwiftError()) 4687 return visitStoreToSwiftError(I); 4688 } 4689 } 4690 4691 SmallVector<EVT, 4> ValueVTs, MemVTs; 4692 SmallVector<TypeSize, 4> Offsets; 4693 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4694 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4695 unsigned NumValues = ValueVTs.size(); 4696 if (NumValues == 0) 4697 return; 4698 4699 // Get the lowered operands. Note that we do this after 4700 // checking if NumResults is zero, because with zero results 4701 // the operands won't have values in the map. 4702 SDValue Src = getValue(SrcV); 4703 SDValue Ptr = getValue(PtrV); 4704 4705 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4706 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4707 SDLoc dl = getCurSDLoc(); 4708 Align Alignment = I.getAlign(); 4709 AAMDNodes AAInfo = I.getAAMetadata(); 4710 4711 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4712 4713 unsigned ChainI = 0; 4714 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4715 // See visitLoad comments. 4716 if (ChainI == MaxParallelChains) { 4717 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4718 ArrayRef(Chains.data(), ChainI)); 4719 Root = Chain; 4720 ChainI = 0; 4721 } 4722 4723 // TODO: MachinePointerInfo only supports a fixed length offset. 4724 MachinePointerInfo PtrInfo = 4725 !Offsets[i].isScalable() || Offsets[i].isZero() 4726 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4727 : MachinePointerInfo(); 4728 4729 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4730 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4731 if (MemVTs[i] != ValueVTs[i]) 4732 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4733 SDValue St = 4734 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4735 Chains[ChainI] = St; 4736 } 4737 4738 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4739 ArrayRef(Chains.data(), ChainI)); 4740 setValue(&I, StoreNode); 4741 DAG.setRoot(StoreNode); 4742 } 4743 4744 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4745 bool IsCompressing) { 4746 SDLoc sdl = getCurSDLoc(); 4747 4748 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4749 Align &Alignment) { 4750 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4751 Src0 = I.getArgOperand(0); 4752 Ptr = I.getArgOperand(1); 4753 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4754 Mask = I.getArgOperand(3); 4755 }; 4756 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4757 Align &Alignment) { 4758 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4759 Src0 = I.getArgOperand(0); 4760 Ptr = I.getArgOperand(1); 4761 Mask = I.getArgOperand(2); 4762 Alignment = I.getParamAlign(1).valueOrOne(); 4763 }; 4764 4765 Value *PtrOperand, *MaskOperand, *Src0Operand; 4766 Align Alignment; 4767 if (IsCompressing) 4768 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4769 else 4770 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4771 4772 SDValue Ptr = getValue(PtrOperand); 4773 SDValue Src0 = getValue(Src0Operand); 4774 SDValue Mask = getValue(MaskOperand); 4775 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4776 4777 EVT VT = Src0.getValueType(); 4778 4779 auto MMOFlags = MachineMemOperand::MOStore; 4780 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4781 MMOFlags |= MachineMemOperand::MONonTemporal; 4782 4783 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4784 MachinePointerInfo(PtrOperand), MMOFlags, 4785 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4786 4787 const auto &TLI = DAG.getTargetLoweringInfo(); 4788 const auto &TTI = 4789 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4790 SDValue StoreNode = 4791 !IsCompressing && TTI.hasConditionalLoadStoreForType( 4792 I.getArgOperand(0)->getType()->getScalarType()) 4793 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4794 Mask) 4795 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4796 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4797 IsCompressing); 4798 DAG.setRoot(StoreNode); 4799 setValue(&I, StoreNode); 4800 } 4801 4802 // Get a uniform base for the Gather/Scatter intrinsic. 4803 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4804 // We try to represent it as a base pointer + vector of indices. 4805 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4806 // The first operand of the GEP may be a single pointer or a vector of pointers 4807 // Example: 4808 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4809 // or 4810 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4811 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4812 // 4813 // When the first GEP operand is a single pointer - it is the uniform base we 4814 // are looking for. If first operand of the GEP is a splat vector - we 4815 // extract the splat value and use it as a uniform base. 4816 // In all other cases the function returns 'false'. 4817 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4818 ISD::MemIndexType &IndexType, SDValue &Scale, 4819 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4820 uint64_t ElemSize) { 4821 SelectionDAG& DAG = SDB->DAG; 4822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4823 const DataLayout &DL = DAG.getDataLayout(); 4824 4825 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4826 4827 // Handle splat constant pointer. 4828 if (auto *C = dyn_cast<Constant>(Ptr)) { 4829 C = C->getSplatValue(); 4830 if (!C) 4831 return false; 4832 4833 Base = SDB->getValue(C); 4834 4835 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4836 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4837 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4838 IndexType = ISD::SIGNED_SCALED; 4839 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4840 return true; 4841 } 4842 4843 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4844 if (!GEP || GEP->getParent() != CurBB) 4845 return false; 4846 4847 if (GEP->getNumOperands() != 2) 4848 return false; 4849 4850 const Value *BasePtr = GEP->getPointerOperand(); 4851 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4852 4853 // Make sure the base is scalar and the index is a vector. 4854 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4855 return false; 4856 4857 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4858 if (ScaleVal.isScalable()) 4859 return false; 4860 4861 // Target may not support the required addressing mode. 4862 if (ScaleVal != 1 && 4863 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4864 return false; 4865 4866 Base = SDB->getValue(BasePtr); 4867 Index = SDB->getValue(IndexVal); 4868 IndexType = ISD::SIGNED_SCALED; 4869 4870 Scale = 4871 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4872 return true; 4873 } 4874 4875 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4876 SDLoc sdl = getCurSDLoc(); 4877 4878 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4879 const Value *Ptr = I.getArgOperand(1); 4880 SDValue Src0 = getValue(I.getArgOperand(0)); 4881 SDValue Mask = getValue(I.getArgOperand(3)); 4882 EVT VT = Src0.getValueType(); 4883 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4884 ->getMaybeAlignValue() 4885 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4887 4888 SDValue Base; 4889 SDValue Index; 4890 ISD::MemIndexType IndexType; 4891 SDValue Scale; 4892 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4893 I.getParent(), VT.getScalarStoreSize()); 4894 4895 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4896 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4897 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4898 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4899 if (!UniformBase) { 4900 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4901 Index = getValue(Ptr); 4902 IndexType = ISD::SIGNED_SCALED; 4903 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4904 } 4905 4906 EVT IdxVT = Index.getValueType(); 4907 EVT EltTy = IdxVT.getVectorElementType(); 4908 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4909 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4910 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4911 } 4912 4913 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4914 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4915 Ops, MMO, IndexType, false); 4916 DAG.setRoot(Scatter); 4917 setValue(&I, Scatter); 4918 } 4919 4920 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4921 SDLoc sdl = getCurSDLoc(); 4922 4923 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4924 Align &Alignment) { 4925 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4926 Ptr = I.getArgOperand(0); 4927 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4928 Mask = I.getArgOperand(2); 4929 Src0 = I.getArgOperand(3); 4930 }; 4931 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4932 Align &Alignment) { 4933 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4934 Ptr = I.getArgOperand(0); 4935 Alignment = I.getParamAlign(0).valueOrOne(); 4936 Mask = I.getArgOperand(1); 4937 Src0 = I.getArgOperand(2); 4938 }; 4939 4940 Value *PtrOperand, *MaskOperand, *Src0Operand; 4941 Align Alignment; 4942 if (IsExpanding) 4943 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4944 else 4945 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4946 4947 SDValue Ptr = getValue(PtrOperand); 4948 SDValue Src0 = getValue(Src0Operand); 4949 SDValue Mask = getValue(MaskOperand); 4950 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4951 4952 EVT VT = Src0.getValueType(); 4953 AAMDNodes AAInfo = I.getAAMetadata(); 4954 const MDNode *Ranges = getRangeMetadata(I); 4955 4956 // Do not serialize masked loads of constant memory with anything. 4957 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4958 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4959 4960 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4961 4962 auto MMOFlags = MachineMemOperand::MOLoad; 4963 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4964 MMOFlags |= MachineMemOperand::MONonTemporal; 4965 4966 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4967 MachinePointerInfo(PtrOperand), MMOFlags, 4968 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4969 4970 const auto &TLI = DAG.getTargetLoweringInfo(); 4971 const auto &TTI = 4972 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4973 // The Load/Res may point to different values and both of them are output 4974 // variables. 4975 SDValue Load; 4976 SDValue Res; 4977 if (!IsExpanding && TTI.hasConditionalLoadStoreForType( 4978 Src0Operand->getType()->getScalarType())) 4979 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 4980 else 4981 Res = Load = 4982 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4983 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4984 if (AddToChain) 4985 PendingLoads.push_back(Load.getValue(1)); 4986 setValue(&I, Res); 4987 } 4988 4989 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4990 SDLoc sdl = getCurSDLoc(); 4991 4992 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4993 const Value *Ptr = I.getArgOperand(0); 4994 SDValue Src0 = getValue(I.getArgOperand(3)); 4995 SDValue Mask = getValue(I.getArgOperand(2)); 4996 4997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4998 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4999 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5000 ->getMaybeAlignValue() 5001 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5002 5003 const MDNode *Ranges = getRangeMetadata(I); 5004 5005 SDValue Root = DAG.getRoot(); 5006 SDValue Base; 5007 SDValue Index; 5008 ISD::MemIndexType IndexType; 5009 SDValue Scale; 5010 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5011 I.getParent(), VT.getScalarStoreSize()); 5012 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5013 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5014 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5015 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5016 Ranges); 5017 5018 if (!UniformBase) { 5019 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5020 Index = getValue(Ptr); 5021 IndexType = ISD::SIGNED_SCALED; 5022 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5023 } 5024 5025 EVT IdxVT = Index.getValueType(); 5026 EVT EltTy = IdxVT.getVectorElementType(); 5027 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5028 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5029 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5030 } 5031 5032 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5033 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5034 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5035 5036 PendingLoads.push_back(Gather.getValue(1)); 5037 setValue(&I, Gather); 5038 } 5039 5040 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5041 SDLoc dl = getCurSDLoc(); 5042 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5043 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5044 SyncScope::ID SSID = I.getSyncScopeID(); 5045 5046 SDValue InChain = getRoot(); 5047 5048 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5049 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5050 5051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5052 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5053 5054 MachineFunction &MF = DAG.getMachineFunction(); 5055 MachineMemOperand *MMO = MF.getMachineMemOperand( 5056 MachinePointerInfo(I.getPointerOperand()), Flags, 5057 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5058 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5059 5060 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5061 dl, MemVT, VTs, InChain, 5062 getValue(I.getPointerOperand()), 5063 getValue(I.getCompareOperand()), 5064 getValue(I.getNewValOperand()), MMO); 5065 5066 SDValue OutChain = L.getValue(2); 5067 5068 setValue(&I, L); 5069 DAG.setRoot(OutChain); 5070 } 5071 5072 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5073 SDLoc dl = getCurSDLoc(); 5074 ISD::NodeType NT; 5075 switch (I.getOperation()) { 5076 default: llvm_unreachable("Unknown atomicrmw operation"); 5077 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5078 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5079 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5080 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5081 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5082 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5083 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5084 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5085 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5086 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5087 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5088 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5089 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5090 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5091 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5092 case AtomicRMWInst::UIncWrap: 5093 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5094 break; 5095 case AtomicRMWInst::UDecWrap: 5096 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5097 break; 5098 } 5099 AtomicOrdering Ordering = I.getOrdering(); 5100 SyncScope::ID SSID = I.getSyncScopeID(); 5101 5102 SDValue InChain = getRoot(); 5103 5104 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5106 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5107 5108 MachineFunction &MF = DAG.getMachineFunction(); 5109 MachineMemOperand *MMO = MF.getMachineMemOperand( 5110 MachinePointerInfo(I.getPointerOperand()), Flags, 5111 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5112 AAMDNodes(), nullptr, SSID, Ordering); 5113 5114 SDValue L = 5115 DAG.getAtomic(NT, dl, MemVT, InChain, 5116 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5117 MMO); 5118 5119 SDValue OutChain = L.getValue(1); 5120 5121 setValue(&I, L); 5122 DAG.setRoot(OutChain); 5123 } 5124 5125 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5126 SDLoc dl = getCurSDLoc(); 5127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5128 SDValue Ops[3]; 5129 Ops[0] = getRoot(); 5130 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5131 TLI.getFenceOperandTy(DAG.getDataLayout())); 5132 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5133 TLI.getFenceOperandTy(DAG.getDataLayout())); 5134 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5135 setValue(&I, N); 5136 DAG.setRoot(N); 5137 } 5138 5139 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5140 SDLoc dl = getCurSDLoc(); 5141 AtomicOrdering Order = I.getOrdering(); 5142 SyncScope::ID SSID = I.getSyncScopeID(); 5143 5144 SDValue InChain = getRoot(); 5145 5146 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5147 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5148 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5149 5150 if (!TLI.supportsUnalignedAtomics() && 5151 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5152 report_fatal_error("Cannot generate unaligned atomic load"); 5153 5154 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5155 5156 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5157 MachinePointerInfo(I.getPointerOperand()), Flags, 5158 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5159 nullptr, SSID, Order); 5160 5161 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5162 5163 SDValue Ptr = getValue(I.getPointerOperand()); 5164 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5165 Ptr, MMO); 5166 5167 SDValue OutChain = L.getValue(1); 5168 if (MemVT != VT) 5169 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5170 5171 setValue(&I, L); 5172 DAG.setRoot(OutChain); 5173 } 5174 5175 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5176 SDLoc dl = getCurSDLoc(); 5177 5178 AtomicOrdering Ordering = I.getOrdering(); 5179 SyncScope::ID SSID = I.getSyncScopeID(); 5180 5181 SDValue InChain = getRoot(); 5182 5183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5184 EVT MemVT = 5185 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5186 5187 if (!TLI.supportsUnalignedAtomics() && 5188 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5189 report_fatal_error("Cannot generate unaligned atomic store"); 5190 5191 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5192 5193 MachineFunction &MF = DAG.getMachineFunction(); 5194 MachineMemOperand *MMO = MF.getMachineMemOperand( 5195 MachinePointerInfo(I.getPointerOperand()), Flags, 5196 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5197 nullptr, SSID, Ordering); 5198 5199 SDValue Val = getValue(I.getValueOperand()); 5200 if (Val.getValueType() != MemVT) 5201 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5202 SDValue Ptr = getValue(I.getPointerOperand()); 5203 5204 SDValue OutChain = 5205 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5206 5207 setValue(&I, OutChain); 5208 DAG.setRoot(OutChain); 5209 } 5210 5211 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5212 /// node. 5213 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5214 unsigned Intrinsic) { 5215 // Ignore the callsite's attributes. A specific call site may be marked with 5216 // readnone, but the lowering code will expect the chain based on the 5217 // definition. 5218 const Function *F = I.getCalledFunction(); 5219 bool HasChain = !F->doesNotAccessMemory(); 5220 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5221 5222 // Build the operand list. 5223 SmallVector<SDValue, 8> Ops; 5224 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5225 if (OnlyLoad) { 5226 // We don't need to serialize loads against other loads. 5227 Ops.push_back(DAG.getRoot()); 5228 } else { 5229 Ops.push_back(getRoot()); 5230 } 5231 } 5232 5233 // Info is set by getTgtMemIntrinsic 5234 TargetLowering::IntrinsicInfo Info; 5235 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5236 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5237 DAG.getMachineFunction(), 5238 Intrinsic); 5239 5240 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5241 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5242 Info.opc == ISD::INTRINSIC_W_CHAIN) 5243 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5244 TLI.getPointerTy(DAG.getDataLayout()))); 5245 5246 // Add all operands of the call to the operand list. 5247 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5248 const Value *Arg = I.getArgOperand(i); 5249 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5250 Ops.push_back(getValue(Arg)); 5251 continue; 5252 } 5253 5254 // Use TargetConstant instead of a regular constant for immarg. 5255 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5256 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5257 assert(CI->getBitWidth() <= 64 && 5258 "large intrinsic immediates not handled"); 5259 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5260 } else { 5261 Ops.push_back( 5262 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5263 } 5264 } 5265 5266 SmallVector<EVT, 4> ValueVTs; 5267 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5268 5269 if (HasChain) 5270 ValueVTs.push_back(MVT::Other); 5271 5272 SDVTList VTs = DAG.getVTList(ValueVTs); 5273 5274 // Propagate fast-math-flags from IR to node(s). 5275 SDNodeFlags Flags; 5276 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5277 Flags.copyFMF(*FPMO); 5278 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5279 5280 // Create the node. 5281 SDValue Result; 5282 5283 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5284 auto *Token = Bundle->Inputs[0].get(); 5285 SDValue ConvControlToken = getValue(Token); 5286 assert(Ops.back().getValueType() != MVT::Glue && 5287 "Did not expected another glue node here."); 5288 ConvControlToken = 5289 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5290 Ops.push_back(ConvControlToken); 5291 } 5292 5293 // In some cases, custom collection of operands from CallInst I may be needed. 5294 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5295 if (IsTgtIntrinsic) { 5296 // This is target intrinsic that touches memory 5297 // 5298 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5299 // didn't yield anything useful. 5300 MachinePointerInfo MPI; 5301 if (Info.ptrVal) 5302 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5303 else if (Info.fallbackAddressSpace) 5304 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5305 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5306 Info.memVT, MPI, Info.align, Info.flags, 5307 Info.size, I.getAAMetadata()); 5308 } else if (!HasChain) { 5309 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5310 } else if (!I.getType()->isVoidTy()) { 5311 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5312 } else { 5313 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5314 } 5315 5316 if (HasChain) { 5317 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5318 if (OnlyLoad) 5319 PendingLoads.push_back(Chain); 5320 else 5321 DAG.setRoot(Chain); 5322 } 5323 5324 if (!I.getType()->isVoidTy()) { 5325 if (!isa<VectorType>(I.getType())) 5326 Result = lowerRangeToAssertZExt(DAG, I, Result); 5327 5328 MaybeAlign Alignment = I.getRetAlign(); 5329 5330 // Insert `assertalign` node if there's an alignment. 5331 if (InsertAssertAlign && Alignment) { 5332 Result = 5333 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5334 } 5335 } 5336 5337 setValue(&I, Result); 5338 } 5339 5340 /// GetSignificand - Get the significand and build it into a floating-point 5341 /// number with exponent of 1: 5342 /// 5343 /// Op = (Op & 0x007fffff) | 0x3f800000; 5344 /// 5345 /// where Op is the hexadecimal representation of floating point value. 5346 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5347 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5348 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5349 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5350 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5351 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5352 } 5353 5354 /// GetExponent - Get the exponent: 5355 /// 5356 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5357 /// 5358 /// where Op is the hexadecimal representation of floating point value. 5359 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5360 const TargetLowering &TLI, const SDLoc &dl) { 5361 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5362 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5363 SDValue t1 = DAG.getNode( 5364 ISD::SRL, dl, MVT::i32, t0, 5365 DAG.getConstant(23, dl, 5366 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5367 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5368 DAG.getConstant(127, dl, MVT::i32)); 5369 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5370 } 5371 5372 /// getF32Constant - Get 32-bit floating point constant. 5373 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5374 const SDLoc &dl) { 5375 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5376 MVT::f32); 5377 } 5378 5379 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5380 SelectionDAG &DAG) { 5381 // TODO: What fast-math-flags should be set on the floating-point nodes? 5382 5383 // IntegerPartOfX = ((int32_t)(t0); 5384 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5385 5386 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5387 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5388 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5389 5390 // IntegerPartOfX <<= 23; 5391 IntegerPartOfX = 5392 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5393 DAG.getConstant(23, dl, 5394 DAG.getTargetLoweringInfo().getShiftAmountTy( 5395 MVT::i32, DAG.getDataLayout()))); 5396 5397 SDValue TwoToFractionalPartOfX; 5398 if (LimitFloatPrecision <= 6) { 5399 // For floating-point precision of 6: 5400 // 5401 // TwoToFractionalPartOfX = 5402 // 0.997535578f + 5403 // (0.735607626f + 0.252464424f * x) * x; 5404 // 5405 // error 0.0144103317, which is 6 bits 5406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5407 getF32Constant(DAG, 0x3e814304, dl)); 5408 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5409 getF32Constant(DAG, 0x3f3c50c8, dl)); 5410 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5411 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5412 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5413 } else if (LimitFloatPrecision <= 12) { 5414 // For floating-point precision of 12: 5415 // 5416 // TwoToFractionalPartOfX = 5417 // 0.999892986f + 5418 // (0.696457318f + 5419 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5420 // 5421 // error 0.000107046256, which is 13 to 14 bits 5422 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5423 getF32Constant(DAG, 0x3da235e3, dl)); 5424 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5425 getF32Constant(DAG, 0x3e65b8f3, dl)); 5426 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5427 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5428 getF32Constant(DAG, 0x3f324b07, dl)); 5429 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5430 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5431 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5432 } else { // LimitFloatPrecision <= 18 5433 // For floating-point precision of 18: 5434 // 5435 // TwoToFractionalPartOfX = 5436 // 0.999999982f + 5437 // (0.693148872f + 5438 // (0.240227044f + 5439 // (0.554906021e-1f + 5440 // (0.961591928e-2f + 5441 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5442 // error 2.47208000*10^(-7), which is better than 18 bits 5443 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5444 getF32Constant(DAG, 0x3924b03e, dl)); 5445 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5446 getF32Constant(DAG, 0x3ab24b87, dl)); 5447 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5448 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5449 getF32Constant(DAG, 0x3c1d8c17, dl)); 5450 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5451 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5452 getF32Constant(DAG, 0x3d634a1d, dl)); 5453 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5454 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5455 getF32Constant(DAG, 0x3e75fe14, dl)); 5456 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5457 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5458 getF32Constant(DAG, 0x3f317234, dl)); 5459 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5460 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5461 getF32Constant(DAG, 0x3f800000, dl)); 5462 } 5463 5464 // Add the exponent into the result in integer domain. 5465 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5466 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5467 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5468 } 5469 5470 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5471 /// limited-precision mode. 5472 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5473 const TargetLowering &TLI, SDNodeFlags Flags) { 5474 if (Op.getValueType() == MVT::f32 && 5475 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5476 5477 // Put the exponent in the right bit position for later addition to the 5478 // final result: 5479 // 5480 // t0 = Op * log2(e) 5481 5482 // TODO: What fast-math-flags should be set here? 5483 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5484 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5485 return getLimitedPrecisionExp2(t0, dl, DAG); 5486 } 5487 5488 // No special expansion. 5489 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5490 } 5491 5492 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5493 /// limited-precision mode. 5494 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5495 const TargetLowering &TLI, SDNodeFlags Flags) { 5496 // TODO: What fast-math-flags should be set on the floating-point nodes? 5497 5498 if (Op.getValueType() == MVT::f32 && 5499 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5500 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5501 5502 // Scale the exponent by log(2). 5503 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5504 SDValue LogOfExponent = 5505 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5506 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5507 5508 // Get the significand and build it into a floating-point number with 5509 // exponent of 1. 5510 SDValue X = GetSignificand(DAG, Op1, dl); 5511 5512 SDValue LogOfMantissa; 5513 if (LimitFloatPrecision <= 6) { 5514 // For floating-point precision of 6: 5515 // 5516 // LogofMantissa = 5517 // -1.1609546f + 5518 // (1.4034025f - 0.23903021f * x) * x; 5519 // 5520 // error 0.0034276066, which is better than 8 bits 5521 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5522 getF32Constant(DAG, 0xbe74c456, dl)); 5523 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5524 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5525 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5526 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5527 getF32Constant(DAG, 0x3f949a29, dl)); 5528 } else if (LimitFloatPrecision <= 12) { 5529 // For floating-point precision of 12: 5530 // 5531 // LogOfMantissa = 5532 // -1.7417939f + 5533 // (2.8212026f + 5534 // (-1.4699568f + 5535 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5536 // 5537 // error 0.000061011436, which is 14 bits 5538 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5539 getF32Constant(DAG, 0xbd67b6d6, dl)); 5540 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5541 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5542 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5543 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5544 getF32Constant(DAG, 0x3fbc278b, dl)); 5545 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5546 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5547 getF32Constant(DAG, 0x40348e95, dl)); 5548 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5549 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5550 getF32Constant(DAG, 0x3fdef31a, dl)); 5551 } else { // LimitFloatPrecision <= 18 5552 // For floating-point precision of 18: 5553 // 5554 // LogOfMantissa = 5555 // -2.1072184f + 5556 // (4.2372794f + 5557 // (-3.7029485f + 5558 // (2.2781945f + 5559 // (-0.87823314f + 5560 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5561 // 5562 // error 0.0000023660568, which is better than 18 bits 5563 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5564 getF32Constant(DAG, 0xbc91e5ac, dl)); 5565 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5566 getF32Constant(DAG, 0x3e4350aa, dl)); 5567 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5568 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5569 getF32Constant(DAG, 0x3f60d3e3, dl)); 5570 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5571 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5572 getF32Constant(DAG, 0x4011cdf0, dl)); 5573 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5574 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5575 getF32Constant(DAG, 0x406cfd1c, dl)); 5576 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5577 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5578 getF32Constant(DAG, 0x408797cb, dl)); 5579 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5580 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5581 getF32Constant(DAG, 0x4006dcab, dl)); 5582 } 5583 5584 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5585 } 5586 5587 // No special expansion. 5588 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5589 } 5590 5591 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5592 /// limited-precision mode. 5593 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5594 const TargetLowering &TLI, SDNodeFlags Flags) { 5595 // TODO: What fast-math-flags should be set on the floating-point nodes? 5596 5597 if (Op.getValueType() == MVT::f32 && 5598 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5599 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5600 5601 // Get the exponent. 5602 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5603 5604 // Get the significand and build it into a floating-point number with 5605 // exponent of 1. 5606 SDValue X = GetSignificand(DAG, Op1, dl); 5607 5608 // Different possible minimax approximations of significand in 5609 // floating-point for various degrees of accuracy over [1,2]. 5610 SDValue Log2ofMantissa; 5611 if (LimitFloatPrecision <= 6) { 5612 // For floating-point precision of 6: 5613 // 5614 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5615 // 5616 // error 0.0049451742, which is more than 7 bits 5617 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5618 getF32Constant(DAG, 0xbeb08fe0, dl)); 5619 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5620 getF32Constant(DAG, 0x40019463, dl)); 5621 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5622 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5623 getF32Constant(DAG, 0x3fd6633d, dl)); 5624 } else if (LimitFloatPrecision <= 12) { 5625 // For floating-point precision of 12: 5626 // 5627 // Log2ofMantissa = 5628 // -2.51285454f + 5629 // (4.07009056f + 5630 // (-2.12067489f + 5631 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5632 // 5633 // error 0.0000876136000, which is better than 13 bits 5634 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5635 getF32Constant(DAG, 0xbda7262e, dl)); 5636 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5637 getF32Constant(DAG, 0x3f25280b, dl)); 5638 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5639 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5640 getF32Constant(DAG, 0x4007b923, dl)); 5641 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5642 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5643 getF32Constant(DAG, 0x40823e2f, dl)); 5644 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5645 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5646 getF32Constant(DAG, 0x4020d29c, dl)); 5647 } else { // LimitFloatPrecision <= 18 5648 // For floating-point precision of 18: 5649 // 5650 // Log2ofMantissa = 5651 // -3.0400495f + 5652 // (6.1129976f + 5653 // (-5.3420409f + 5654 // (3.2865683f + 5655 // (-1.2669343f + 5656 // (0.27515199f - 5657 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5658 // 5659 // error 0.0000018516, which is better than 18 bits 5660 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5661 getF32Constant(DAG, 0xbcd2769e, dl)); 5662 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5663 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5664 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5665 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5666 getF32Constant(DAG, 0x3fa22ae7, dl)); 5667 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5668 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5669 getF32Constant(DAG, 0x40525723, dl)); 5670 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5671 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5672 getF32Constant(DAG, 0x40aaf200, dl)); 5673 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5674 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5675 getF32Constant(DAG, 0x40c39dad, dl)); 5676 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5677 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5678 getF32Constant(DAG, 0x4042902c, dl)); 5679 } 5680 5681 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5682 } 5683 5684 // No special expansion. 5685 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5686 } 5687 5688 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5689 /// limited-precision mode. 5690 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5691 const TargetLowering &TLI, SDNodeFlags Flags) { 5692 // TODO: What fast-math-flags should be set on the floating-point nodes? 5693 5694 if (Op.getValueType() == MVT::f32 && 5695 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5696 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5697 5698 // Scale the exponent by log10(2) [0.30102999f]. 5699 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5700 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5701 getF32Constant(DAG, 0x3e9a209a, dl)); 5702 5703 // Get the significand and build it into a floating-point number with 5704 // exponent of 1. 5705 SDValue X = GetSignificand(DAG, Op1, dl); 5706 5707 SDValue Log10ofMantissa; 5708 if (LimitFloatPrecision <= 6) { 5709 // For floating-point precision of 6: 5710 // 5711 // Log10ofMantissa = 5712 // -0.50419619f + 5713 // (0.60948995f - 0.10380950f * x) * x; 5714 // 5715 // error 0.0014886165, which is 6 bits 5716 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5717 getF32Constant(DAG, 0xbdd49a13, dl)); 5718 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5719 getF32Constant(DAG, 0x3f1c0789, dl)); 5720 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5721 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5722 getF32Constant(DAG, 0x3f011300, dl)); 5723 } else if (LimitFloatPrecision <= 12) { 5724 // For floating-point precision of 12: 5725 // 5726 // Log10ofMantissa = 5727 // -0.64831180f + 5728 // (0.91751397f + 5729 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5730 // 5731 // error 0.00019228036, which is better than 12 bits 5732 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5733 getF32Constant(DAG, 0x3d431f31, dl)); 5734 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5735 getF32Constant(DAG, 0x3ea21fb2, dl)); 5736 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5737 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5738 getF32Constant(DAG, 0x3f6ae232, dl)); 5739 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5740 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5741 getF32Constant(DAG, 0x3f25f7c3, dl)); 5742 } else { // LimitFloatPrecision <= 18 5743 // For floating-point precision of 18: 5744 // 5745 // Log10ofMantissa = 5746 // -0.84299375f + 5747 // (1.5327582f + 5748 // (-1.0688956f + 5749 // (0.49102474f + 5750 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5751 // 5752 // error 0.0000037995730, which is better than 18 bits 5753 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5754 getF32Constant(DAG, 0x3c5d51ce, dl)); 5755 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5756 getF32Constant(DAG, 0x3e00685a, dl)); 5757 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5758 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5759 getF32Constant(DAG, 0x3efb6798, dl)); 5760 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5761 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5762 getF32Constant(DAG, 0x3f88d192, dl)); 5763 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5764 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5765 getF32Constant(DAG, 0x3fc4316c, dl)); 5766 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5767 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5768 getF32Constant(DAG, 0x3f57ce70, dl)); 5769 } 5770 5771 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5772 } 5773 5774 // No special expansion. 5775 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5776 } 5777 5778 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5779 /// limited-precision mode. 5780 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5781 const TargetLowering &TLI, SDNodeFlags Flags) { 5782 if (Op.getValueType() == MVT::f32 && 5783 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5784 return getLimitedPrecisionExp2(Op, dl, DAG); 5785 5786 // No special expansion. 5787 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5788 } 5789 5790 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5791 /// limited-precision mode with x == 10.0f. 5792 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5793 SelectionDAG &DAG, const TargetLowering &TLI, 5794 SDNodeFlags Flags) { 5795 bool IsExp10 = false; 5796 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5797 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5798 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5799 APFloat Ten(10.0f); 5800 IsExp10 = LHSC->isExactlyValue(Ten); 5801 } 5802 } 5803 5804 // TODO: What fast-math-flags should be set on the FMUL node? 5805 if (IsExp10) { 5806 // Put the exponent in the right bit position for later addition to the 5807 // final result: 5808 // 5809 // #define LOG2OF10 3.3219281f 5810 // t0 = Op * LOG2OF10; 5811 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5812 getF32Constant(DAG, 0x40549a78, dl)); 5813 return getLimitedPrecisionExp2(t0, dl, DAG); 5814 } 5815 5816 // No special expansion. 5817 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5818 } 5819 5820 /// ExpandPowI - Expand a llvm.powi intrinsic. 5821 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5822 SelectionDAG &DAG) { 5823 // If RHS is a constant, we can expand this out to a multiplication tree if 5824 // it's beneficial on the target, otherwise we end up lowering to a call to 5825 // __powidf2 (for example). 5826 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5827 unsigned Val = RHSC->getSExtValue(); 5828 5829 // powi(x, 0) -> 1.0 5830 if (Val == 0) 5831 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5832 5833 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5834 Val, DAG.shouldOptForSize())) { 5835 // Get the exponent as a positive value. 5836 if ((int)Val < 0) 5837 Val = -Val; 5838 // We use the simple binary decomposition method to generate the multiply 5839 // sequence. There are more optimal ways to do this (for example, 5840 // powi(x,15) generates one more multiply than it should), but this has 5841 // the benefit of being both really simple and much better than a libcall. 5842 SDValue Res; // Logically starts equal to 1.0 5843 SDValue CurSquare = LHS; 5844 // TODO: Intrinsics should have fast-math-flags that propagate to these 5845 // nodes. 5846 while (Val) { 5847 if (Val & 1) { 5848 if (Res.getNode()) 5849 Res = 5850 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5851 else 5852 Res = CurSquare; // 1.0*CurSquare. 5853 } 5854 5855 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5856 CurSquare, CurSquare); 5857 Val >>= 1; 5858 } 5859 5860 // If the original was negative, invert the result, producing 1/(x*x*x). 5861 if (RHSC->getSExtValue() < 0) 5862 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5863 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5864 return Res; 5865 } 5866 } 5867 5868 // Otherwise, expand to a libcall. 5869 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5870 } 5871 5872 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5873 SDValue LHS, SDValue RHS, SDValue Scale, 5874 SelectionDAG &DAG, const TargetLowering &TLI) { 5875 EVT VT = LHS.getValueType(); 5876 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5877 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5878 LLVMContext &Ctx = *DAG.getContext(); 5879 5880 // If the type is legal but the operation isn't, this node might survive all 5881 // the way to operation legalization. If we end up there and we do not have 5882 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5883 // node. 5884 5885 // Coax the legalizer into expanding the node during type legalization instead 5886 // by bumping the size by one bit. This will force it to Promote, enabling the 5887 // early expansion and avoiding the need to expand later. 5888 5889 // We don't have to do this if Scale is 0; that can always be expanded, unless 5890 // it's a saturating signed operation. Those can experience true integer 5891 // division overflow, a case which we must avoid. 5892 5893 // FIXME: We wouldn't have to do this (or any of the early 5894 // expansion/promotion) if it was possible to expand a libcall of an 5895 // illegal type during operation legalization. But it's not, so things 5896 // get a bit hacky. 5897 unsigned ScaleInt = Scale->getAsZExtVal(); 5898 if ((ScaleInt > 0 || (Saturating && Signed)) && 5899 (TLI.isTypeLegal(VT) || 5900 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5901 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5902 Opcode, VT, ScaleInt); 5903 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5904 EVT PromVT; 5905 if (VT.isScalarInteger()) 5906 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5907 else if (VT.isVector()) { 5908 PromVT = VT.getVectorElementType(); 5909 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5910 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5911 } else 5912 llvm_unreachable("Wrong VT for DIVFIX?"); 5913 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5914 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5915 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5916 // For saturating operations, we need to shift up the LHS to get the 5917 // proper saturation width, and then shift down again afterwards. 5918 if (Saturating) 5919 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5920 DAG.getConstant(1, DL, ShiftTy)); 5921 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5922 if (Saturating) 5923 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5924 DAG.getConstant(1, DL, ShiftTy)); 5925 return DAG.getZExtOrTrunc(Res, DL, VT); 5926 } 5927 } 5928 5929 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5930 } 5931 5932 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5933 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5934 static void 5935 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5936 const SDValue &N) { 5937 switch (N.getOpcode()) { 5938 case ISD::CopyFromReg: { 5939 SDValue Op = N.getOperand(1); 5940 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5941 Op.getValueType().getSizeInBits()); 5942 return; 5943 } 5944 case ISD::BITCAST: 5945 case ISD::AssertZext: 5946 case ISD::AssertSext: 5947 case ISD::TRUNCATE: 5948 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5949 return; 5950 case ISD::BUILD_PAIR: 5951 case ISD::BUILD_VECTOR: 5952 case ISD::CONCAT_VECTORS: 5953 for (SDValue Op : N->op_values()) 5954 getUnderlyingArgRegs(Regs, Op); 5955 return; 5956 default: 5957 return; 5958 } 5959 } 5960 5961 /// If the DbgValueInst is a dbg_value of a function argument, create the 5962 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5963 /// instruction selection, they will be inserted to the entry BB. 5964 /// We don't currently support this for variadic dbg_values, as they shouldn't 5965 /// appear for function arguments or in the prologue. 5966 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5967 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5968 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5969 const Argument *Arg = dyn_cast<Argument>(V); 5970 if (!Arg) 5971 return false; 5972 5973 MachineFunction &MF = DAG.getMachineFunction(); 5974 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5975 5976 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5977 // we've been asked to pursue. 5978 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5979 bool Indirect) { 5980 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5981 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5982 // pointing at the VReg, which will be patched up later. 5983 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5984 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5985 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5986 /* isKill */ false, /* isDead */ false, 5987 /* isUndef */ false, /* isEarlyClobber */ false, 5988 /* SubReg */ 0, /* isDebug */ true)}); 5989 5990 auto *NewDIExpr = FragExpr; 5991 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5992 // the DIExpression. 5993 if (Indirect) 5994 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5995 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5996 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5997 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5998 } else { 5999 // Create a completely standard DBG_VALUE. 6000 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6001 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6002 } 6003 }; 6004 6005 if (Kind == FuncArgumentDbgValueKind::Value) { 6006 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6007 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6008 // the entry block. 6009 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6010 if (!IsInEntryBlock) 6011 return false; 6012 6013 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6014 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6015 // variable that also is a param. 6016 // 6017 // Although, if we are at the top of the entry block already, we can still 6018 // emit using ArgDbgValue. This might catch some situations when the 6019 // dbg.value refers to an argument that isn't used in the entry block, so 6020 // any CopyToReg node would be optimized out and the only way to express 6021 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6022 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6023 // we should only emit as ArgDbgValue if the Variable is an argument to the 6024 // current function, and the dbg.value intrinsic is found in the entry 6025 // block. 6026 bool VariableIsFunctionInputArg = Variable->isParameter() && 6027 !DL->getInlinedAt(); 6028 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6029 if (!IsInPrologue && !VariableIsFunctionInputArg) 6030 return false; 6031 6032 // Here we assume that a function argument on IR level only can be used to 6033 // describe one input parameter on source level. If we for example have 6034 // source code like this 6035 // 6036 // struct A { long x, y; }; 6037 // void foo(struct A a, long b) { 6038 // ... 6039 // b = a.x; 6040 // ... 6041 // } 6042 // 6043 // and IR like this 6044 // 6045 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6046 // entry: 6047 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6048 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6049 // call void @llvm.dbg.value(metadata i32 %b, "b", 6050 // ... 6051 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6052 // ... 6053 // 6054 // then the last dbg.value is describing a parameter "b" using a value that 6055 // is an argument. But since we already has used %a1 to describe a parameter 6056 // we should not handle that last dbg.value here (that would result in an 6057 // incorrect hoisting of the DBG_VALUE to the function entry). 6058 // Notice that we allow one dbg.value per IR level argument, to accommodate 6059 // for the situation with fragments above. 6060 // If there is no node for the value being handled, we return true to skip 6061 // the normal generation of debug info, as it would kill existing debug 6062 // info for the parameter in case of duplicates. 6063 if (VariableIsFunctionInputArg) { 6064 unsigned ArgNo = Arg->getArgNo(); 6065 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6066 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6067 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6068 return !NodeMap[V].getNode(); 6069 FuncInfo.DescribedArgs.set(ArgNo); 6070 } 6071 } 6072 6073 bool IsIndirect = false; 6074 std::optional<MachineOperand> Op; 6075 // Some arguments' frame index is recorded during argument lowering. 6076 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6077 if (FI != std::numeric_limits<int>::max()) 6078 Op = MachineOperand::CreateFI(FI); 6079 6080 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6081 if (!Op && N.getNode()) { 6082 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6083 Register Reg; 6084 if (ArgRegsAndSizes.size() == 1) 6085 Reg = ArgRegsAndSizes.front().first; 6086 6087 if (Reg && Reg.isVirtual()) { 6088 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6089 Register PR = RegInfo.getLiveInPhysReg(Reg); 6090 if (PR) 6091 Reg = PR; 6092 } 6093 if (Reg) { 6094 Op = MachineOperand::CreateReg(Reg, false); 6095 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6096 } 6097 } 6098 6099 if (!Op && N.getNode()) { 6100 // Check if frame index is available. 6101 SDValue LCandidate = peekThroughBitcasts(N); 6102 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6103 if (FrameIndexSDNode *FINode = 6104 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6105 Op = MachineOperand::CreateFI(FINode->getIndex()); 6106 } 6107 6108 if (!Op) { 6109 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6110 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6111 SplitRegs) { 6112 unsigned Offset = 0; 6113 for (const auto &RegAndSize : SplitRegs) { 6114 // If the expression is already a fragment, the current register 6115 // offset+size might extend beyond the fragment. In this case, only 6116 // the register bits that are inside the fragment are relevant. 6117 int RegFragmentSizeInBits = RegAndSize.second; 6118 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6119 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6120 // The register is entirely outside the expression fragment, 6121 // so is irrelevant for debug info. 6122 if (Offset >= ExprFragmentSizeInBits) 6123 break; 6124 // The register is partially outside the expression fragment, only 6125 // the low bits within the fragment are relevant for debug info. 6126 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6127 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6128 } 6129 } 6130 6131 auto FragmentExpr = DIExpression::createFragmentExpression( 6132 Expr, Offset, RegFragmentSizeInBits); 6133 Offset += RegAndSize.second; 6134 // If a valid fragment expression cannot be created, the variable's 6135 // correct value cannot be determined and so it is set as Undef. 6136 if (!FragmentExpr) { 6137 SDDbgValue *SDV = DAG.getConstantDbgValue( 6138 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6139 DAG.AddDbgValue(SDV, false); 6140 continue; 6141 } 6142 MachineInstr *NewMI = 6143 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6144 Kind != FuncArgumentDbgValueKind::Value); 6145 FuncInfo.ArgDbgValues.push_back(NewMI); 6146 } 6147 }; 6148 6149 // Check if ValueMap has reg number. 6150 DenseMap<const Value *, Register>::const_iterator 6151 VMI = FuncInfo.ValueMap.find(V); 6152 if (VMI != FuncInfo.ValueMap.end()) { 6153 const auto &TLI = DAG.getTargetLoweringInfo(); 6154 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6155 V->getType(), std::nullopt); 6156 if (RFV.occupiesMultipleRegs()) { 6157 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6158 return true; 6159 } 6160 6161 Op = MachineOperand::CreateReg(VMI->second, false); 6162 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6163 } else if (ArgRegsAndSizes.size() > 1) { 6164 // This was split due to the calling convention, and no virtual register 6165 // mapping exists for the value. 6166 splitMultiRegDbgValue(ArgRegsAndSizes); 6167 return true; 6168 } 6169 } 6170 6171 if (!Op) 6172 return false; 6173 6174 assert(Variable->isValidLocationForIntrinsic(DL) && 6175 "Expected inlined-at fields to agree"); 6176 MachineInstr *NewMI = nullptr; 6177 6178 if (Op->isReg()) 6179 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6180 else 6181 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6182 Variable, Expr); 6183 6184 // Otherwise, use ArgDbgValues. 6185 FuncInfo.ArgDbgValues.push_back(NewMI); 6186 return true; 6187 } 6188 6189 /// Return the appropriate SDDbgValue based on N. 6190 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6191 DILocalVariable *Variable, 6192 DIExpression *Expr, 6193 const DebugLoc &dl, 6194 unsigned DbgSDNodeOrder) { 6195 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6196 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6197 // stack slot locations. 6198 // 6199 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6200 // debug values here after optimization: 6201 // 6202 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6203 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6204 // 6205 // Both describe the direct values of their associated variables. 6206 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6207 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6208 } 6209 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6210 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6211 } 6212 6213 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6214 switch (Intrinsic) { 6215 case Intrinsic::smul_fix: 6216 return ISD::SMULFIX; 6217 case Intrinsic::umul_fix: 6218 return ISD::UMULFIX; 6219 case Intrinsic::smul_fix_sat: 6220 return ISD::SMULFIXSAT; 6221 case Intrinsic::umul_fix_sat: 6222 return ISD::UMULFIXSAT; 6223 case Intrinsic::sdiv_fix: 6224 return ISD::SDIVFIX; 6225 case Intrinsic::udiv_fix: 6226 return ISD::UDIVFIX; 6227 case Intrinsic::sdiv_fix_sat: 6228 return ISD::SDIVFIXSAT; 6229 case Intrinsic::udiv_fix_sat: 6230 return ISD::UDIVFIXSAT; 6231 default: 6232 llvm_unreachable("Unhandled fixed point intrinsic"); 6233 } 6234 } 6235 6236 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6237 const char *FunctionName) { 6238 assert(FunctionName && "FunctionName must not be nullptr"); 6239 SDValue Callee = DAG.getExternalSymbol( 6240 FunctionName, 6241 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6242 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6243 } 6244 6245 /// Given a @llvm.call.preallocated.setup, return the corresponding 6246 /// preallocated call. 6247 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6248 assert(cast<CallBase>(PreallocatedSetup) 6249 ->getCalledFunction() 6250 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6251 "expected call_preallocated_setup Value"); 6252 for (const auto *U : PreallocatedSetup->users()) { 6253 auto *UseCall = cast<CallBase>(U); 6254 const Function *Fn = UseCall->getCalledFunction(); 6255 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6256 return UseCall; 6257 } 6258 } 6259 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6260 } 6261 6262 /// If DI is a debug value with an EntryValue expression, lower it using the 6263 /// corresponding physical register of the associated Argument value 6264 /// (guaranteed to exist by the verifier). 6265 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6266 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6267 DIExpression *Expr, DebugLoc DbgLoc) { 6268 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6269 return false; 6270 6271 // These properties are guaranteed by the verifier. 6272 const Argument *Arg = cast<Argument>(Values[0]); 6273 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6274 6275 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6276 if (ArgIt == FuncInfo.ValueMap.end()) { 6277 LLVM_DEBUG( 6278 dbgs() << "Dropping dbg.value: expression is entry_value but " 6279 "couldn't find an associated register for the Argument\n"); 6280 return true; 6281 } 6282 Register ArgVReg = ArgIt->getSecond(); 6283 6284 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6285 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6286 SDDbgValue *SDV = DAG.getVRegDbgValue( 6287 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6288 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6289 return true; 6290 } 6291 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6292 "couldn't find a physical register\n"); 6293 return true; 6294 } 6295 6296 /// Lower the call to the specified intrinsic function. 6297 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6298 unsigned Intrinsic) { 6299 SDLoc sdl = getCurSDLoc(); 6300 switch (Intrinsic) { 6301 case Intrinsic::experimental_convergence_anchor: 6302 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6303 break; 6304 case Intrinsic::experimental_convergence_entry: 6305 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6306 break; 6307 case Intrinsic::experimental_convergence_loop: { 6308 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6309 auto *Token = Bundle->Inputs[0].get(); 6310 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6311 getValue(Token))); 6312 break; 6313 } 6314 } 6315 } 6316 6317 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6318 unsigned IntrinsicID) { 6319 // For now, we're only lowering an 'add' histogram. 6320 // We can add others later, e.g. saturating adds, min/max. 6321 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6322 "Tried to lower unsupported histogram type"); 6323 SDLoc sdl = getCurSDLoc(); 6324 Value *Ptr = I.getOperand(0); 6325 SDValue Inc = getValue(I.getOperand(1)); 6326 SDValue Mask = getValue(I.getOperand(2)); 6327 6328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6329 DataLayout TargetDL = DAG.getDataLayout(); 6330 EVT VT = Inc.getValueType(); 6331 Align Alignment = DAG.getEVTAlign(VT); 6332 6333 const MDNode *Ranges = getRangeMetadata(I); 6334 6335 SDValue Root = DAG.getRoot(); 6336 SDValue Base; 6337 SDValue Index; 6338 ISD::MemIndexType IndexType; 6339 SDValue Scale; 6340 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6341 I.getParent(), VT.getScalarStoreSize()); 6342 6343 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6344 6345 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6346 MachinePointerInfo(AS), 6347 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6348 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6349 6350 if (!UniformBase) { 6351 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6352 Index = getValue(Ptr); 6353 IndexType = ISD::SIGNED_SCALED; 6354 Scale = 6355 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6356 } 6357 6358 EVT IdxVT = Index.getValueType(); 6359 EVT EltTy = IdxVT.getVectorElementType(); 6360 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6361 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6362 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6363 } 6364 6365 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6366 6367 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6368 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6369 Ops, MMO, IndexType); 6370 6371 setValue(&I, Histogram); 6372 DAG.setRoot(Histogram); 6373 } 6374 6375 /// Lower the call to the specified intrinsic function. 6376 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6377 unsigned Intrinsic) { 6378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6379 SDLoc sdl = getCurSDLoc(); 6380 DebugLoc dl = getCurDebugLoc(); 6381 SDValue Res; 6382 6383 SDNodeFlags Flags; 6384 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6385 Flags.copyFMF(*FPOp); 6386 6387 switch (Intrinsic) { 6388 default: 6389 // By default, turn this into a target intrinsic node. 6390 visitTargetIntrinsic(I, Intrinsic); 6391 return; 6392 case Intrinsic::vscale: { 6393 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6394 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6395 return; 6396 } 6397 case Intrinsic::vastart: visitVAStart(I); return; 6398 case Intrinsic::vaend: visitVAEnd(I); return; 6399 case Intrinsic::vacopy: visitVACopy(I); return; 6400 case Intrinsic::returnaddress: 6401 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6402 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6403 getValue(I.getArgOperand(0)))); 6404 return; 6405 case Intrinsic::addressofreturnaddress: 6406 setValue(&I, 6407 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6408 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6409 return; 6410 case Intrinsic::sponentry: 6411 setValue(&I, 6412 DAG.getNode(ISD::SPONENTRY, sdl, 6413 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6414 return; 6415 case Intrinsic::frameaddress: 6416 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6417 TLI.getFrameIndexTy(DAG.getDataLayout()), 6418 getValue(I.getArgOperand(0)))); 6419 return; 6420 case Intrinsic::read_volatile_register: 6421 case Intrinsic::read_register: { 6422 Value *Reg = I.getArgOperand(0); 6423 SDValue Chain = getRoot(); 6424 SDValue RegName = 6425 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6426 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6427 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6428 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6429 setValue(&I, Res); 6430 DAG.setRoot(Res.getValue(1)); 6431 return; 6432 } 6433 case Intrinsic::write_register: { 6434 Value *Reg = I.getArgOperand(0); 6435 Value *RegValue = I.getArgOperand(1); 6436 SDValue Chain = getRoot(); 6437 SDValue RegName = 6438 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6439 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6440 RegName, getValue(RegValue))); 6441 return; 6442 } 6443 case Intrinsic::memcpy: { 6444 const auto &MCI = cast<MemCpyInst>(I); 6445 SDValue Op1 = getValue(I.getArgOperand(0)); 6446 SDValue Op2 = getValue(I.getArgOperand(1)); 6447 SDValue Op3 = getValue(I.getArgOperand(2)); 6448 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6449 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6450 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6451 Align Alignment = std::min(DstAlign, SrcAlign); 6452 bool isVol = MCI.isVolatile(); 6453 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6454 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6455 // node. 6456 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6457 SDValue MC = DAG.getMemcpy( 6458 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6459 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6460 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6461 updateDAGForMaybeTailCall(MC); 6462 return; 6463 } 6464 case Intrinsic::memcpy_inline: { 6465 const auto &MCI = cast<MemCpyInlineInst>(I); 6466 SDValue Dst = getValue(I.getArgOperand(0)); 6467 SDValue Src = getValue(I.getArgOperand(1)); 6468 SDValue Size = getValue(I.getArgOperand(2)); 6469 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6470 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6471 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6472 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6473 Align Alignment = std::min(DstAlign, SrcAlign); 6474 bool isVol = MCI.isVolatile(); 6475 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6476 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6477 // node. 6478 SDValue MC = DAG.getMemcpy( 6479 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6480 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6481 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6482 updateDAGForMaybeTailCall(MC); 6483 return; 6484 } 6485 case Intrinsic::memset: { 6486 const auto &MSI = cast<MemSetInst>(I); 6487 SDValue Op1 = getValue(I.getArgOperand(0)); 6488 SDValue Op2 = getValue(I.getArgOperand(1)); 6489 SDValue Op3 = getValue(I.getArgOperand(2)); 6490 // @llvm.memset defines 0 and 1 to both mean no alignment. 6491 Align Alignment = MSI.getDestAlign().valueOrOne(); 6492 bool isVol = MSI.isVolatile(); 6493 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6494 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6495 SDValue MS = DAG.getMemset( 6496 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6497 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6498 updateDAGForMaybeTailCall(MS); 6499 return; 6500 } 6501 case Intrinsic::memset_inline: { 6502 const auto &MSII = cast<MemSetInlineInst>(I); 6503 SDValue Dst = getValue(I.getArgOperand(0)); 6504 SDValue Value = getValue(I.getArgOperand(1)); 6505 SDValue Size = getValue(I.getArgOperand(2)); 6506 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6507 // @llvm.memset defines 0 and 1 to both mean no alignment. 6508 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6509 bool isVol = MSII.isVolatile(); 6510 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6511 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6512 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6513 /* AlwaysInline */ true, isTC, 6514 MachinePointerInfo(I.getArgOperand(0)), 6515 I.getAAMetadata()); 6516 updateDAGForMaybeTailCall(MC); 6517 return; 6518 } 6519 case Intrinsic::memmove: { 6520 const auto &MMI = cast<MemMoveInst>(I); 6521 SDValue Op1 = getValue(I.getArgOperand(0)); 6522 SDValue Op2 = getValue(I.getArgOperand(1)); 6523 SDValue Op3 = getValue(I.getArgOperand(2)); 6524 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6525 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6526 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6527 Align Alignment = std::min(DstAlign, SrcAlign); 6528 bool isVol = MMI.isVolatile(); 6529 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6530 // FIXME: Support passing different dest/src alignments to the memmove DAG 6531 // node. 6532 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6533 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6534 isTC, MachinePointerInfo(I.getArgOperand(0)), 6535 MachinePointerInfo(I.getArgOperand(1)), 6536 I.getAAMetadata(), AA); 6537 updateDAGForMaybeTailCall(MM); 6538 return; 6539 } 6540 case Intrinsic::memcpy_element_unordered_atomic: { 6541 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6542 SDValue Dst = getValue(MI.getRawDest()); 6543 SDValue Src = getValue(MI.getRawSource()); 6544 SDValue Length = getValue(MI.getLength()); 6545 6546 Type *LengthTy = MI.getLength()->getType(); 6547 unsigned ElemSz = MI.getElementSizeInBytes(); 6548 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6549 SDValue MC = 6550 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6551 isTC, MachinePointerInfo(MI.getRawDest()), 6552 MachinePointerInfo(MI.getRawSource())); 6553 updateDAGForMaybeTailCall(MC); 6554 return; 6555 } 6556 case Intrinsic::memmove_element_unordered_atomic: { 6557 auto &MI = cast<AtomicMemMoveInst>(I); 6558 SDValue Dst = getValue(MI.getRawDest()); 6559 SDValue Src = getValue(MI.getRawSource()); 6560 SDValue Length = getValue(MI.getLength()); 6561 6562 Type *LengthTy = MI.getLength()->getType(); 6563 unsigned ElemSz = MI.getElementSizeInBytes(); 6564 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6565 SDValue MC = 6566 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6567 isTC, MachinePointerInfo(MI.getRawDest()), 6568 MachinePointerInfo(MI.getRawSource())); 6569 updateDAGForMaybeTailCall(MC); 6570 return; 6571 } 6572 case Intrinsic::memset_element_unordered_atomic: { 6573 auto &MI = cast<AtomicMemSetInst>(I); 6574 SDValue Dst = getValue(MI.getRawDest()); 6575 SDValue Val = getValue(MI.getValue()); 6576 SDValue Length = getValue(MI.getLength()); 6577 6578 Type *LengthTy = MI.getLength()->getType(); 6579 unsigned ElemSz = MI.getElementSizeInBytes(); 6580 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6581 SDValue MC = 6582 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6583 isTC, MachinePointerInfo(MI.getRawDest())); 6584 updateDAGForMaybeTailCall(MC); 6585 return; 6586 } 6587 case Intrinsic::call_preallocated_setup: { 6588 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6589 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6590 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6591 getRoot(), SrcValue); 6592 setValue(&I, Res); 6593 DAG.setRoot(Res); 6594 return; 6595 } 6596 case Intrinsic::call_preallocated_arg: { 6597 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6598 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6599 SDValue Ops[3]; 6600 Ops[0] = getRoot(); 6601 Ops[1] = SrcValue; 6602 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6603 MVT::i32); // arg index 6604 SDValue Res = DAG.getNode( 6605 ISD::PREALLOCATED_ARG, sdl, 6606 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6607 setValue(&I, Res); 6608 DAG.setRoot(Res.getValue(1)); 6609 return; 6610 } 6611 case Intrinsic::dbg_declare: { 6612 const auto &DI = cast<DbgDeclareInst>(I); 6613 // Debug intrinsics are handled separately in assignment tracking mode. 6614 // Some intrinsics are handled right after Argument lowering. 6615 if (AssignmentTrackingEnabled || 6616 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6617 return; 6618 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6619 DILocalVariable *Variable = DI.getVariable(); 6620 DIExpression *Expression = DI.getExpression(); 6621 dropDanglingDebugInfo(Variable, Expression); 6622 // Assume dbg.declare can not currently use DIArgList, i.e. 6623 // it is non-variadic. 6624 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6625 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6626 DI.getDebugLoc()); 6627 return; 6628 } 6629 case Intrinsic::dbg_label: { 6630 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6631 DILabel *Label = DI.getLabel(); 6632 assert(Label && "Missing label"); 6633 6634 SDDbgLabel *SDV; 6635 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6636 DAG.AddDbgLabel(SDV); 6637 return; 6638 } 6639 case Intrinsic::dbg_assign: { 6640 // Debug intrinsics are handled separately in assignment tracking mode. 6641 if (AssignmentTrackingEnabled) 6642 return; 6643 // If assignment tracking hasn't been enabled then fall through and treat 6644 // the dbg.assign as a dbg.value. 6645 [[fallthrough]]; 6646 } 6647 case Intrinsic::dbg_value: { 6648 // Debug intrinsics are handled separately in assignment tracking mode. 6649 if (AssignmentTrackingEnabled) 6650 return; 6651 const DbgValueInst &DI = cast<DbgValueInst>(I); 6652 assert(DI.getVariable() && "Missing variable"); 6653 6654 DILocalVariable *Variable = DI.getVariable(); 6655 DIExpression *Expression = DI.getExpression(); 6656 dropDanglingDebugInfo(Variable, Expression); 6657 6658 if (DI.isKillLocation()) { 6659 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6660 return; 6661 } 6662 6663 SmallVector<Value *, 4> Values(DI.getValues()); 6664 if (Values.empty()) 6665 return; 6666 6667 bool IsVariadic = DI.hasArgList(); 6668 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6669 SDNodeOrder, IsVariadic)) 6670 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6671 DI.getDebugLoc(), SDNodeOrder); 6672 return; 6673 } 6674 6675 case Intrinsic::eh_typeid_for: { 6676 // Find the type id for the given typeinfo. 6677 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6678 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6679 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6680 setValue(&I, Res); 6681 return; 6682 } 6683 6684 case Intrinsic::eh_return_i32: 6685 case Intrinsic::eh_return_i64: 6686 DAG.getMachineFunction().setCallsEHReturn(true); 6687 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6688 MVT::Other, 6689 getControlRoot(), 6690 getValue(I.getArgOperand(0)), 6691 getValue(I.getArgOperand(1)))); 6692 return; 6693 case Intrinsic::eh_unwind_init: 6694 DAG.getMachineFunction().setCallsUnwindInit(true); 6695 return; 6696 case Intrinsic::eh_dwarf_cfa: 6697 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6698 TLI.getPointerTy(DAG.getDataLayout()), 6699 getValue(I.getArgOperand(0)))); 6700 return; 6701 case Intrinsic::eh_sjlj_callsite: { 6702 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6703 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6704 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6705 6706 MMI.setCurrentCallSite(CI->getZExtValue()); 6707 return; 6708 } 6709 case Intrinsic::eh_sjlj_functioncontext: { 6710 // Get and store the index of the function context. 6711 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6712 AllocaInst *FnCtx = 6713 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6714 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6715 MFI.setFunctionContextIndex(FI); 6716 return; 6717 } 6718 case Intrinsic::eh_sjlj_setjmp: { 6719 SDValue Ops[2]; 6720 Ops[0] = getRoot(); 6721 Ops[1] = getValue(I.getArgOperand(0)); 6722 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6723 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6724 setValue(&I, Op.getValue(0)); 6725 DAG.setRoot(Op.getValue(1)); 6726 return; 6727 } 6728 case Intrinsic::eh_sjlj_longjmp: 6729 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6730 getRoot(), getValue(I.getArgOperand(0)))); 6731 return; 6732 case Intrinsic::eh_sjlj_setup_dispatch: 6733 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6734 getRoot())); 6735 return; 6736 case Intrinsic::masked_gather: 6737 visitMaskedGather(I); 6738 return; 6739 case Intrinsic::masked_load: 6740 visitMaskedLoad(I); 6741 return; 6742 case Intrinsic::masked_scatter: 6743 visitMaskedScatter(I); 6744 return; 6745 case Intrinsic::masked_store: 6746 visitMaskedStore(I); 6747 return; 6748 case Intrinsic::masked_expandload: 6749 visitMaskedLoad(I, true /* IsExpanding */); 6750 return; 6751 case Intrinsic::masked_compressstore: 6752 visitMaskedStore(I, true /* IsCompressing */); 6753 return; 6754 case Intrinsic::powi: 6755 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6756 getValue(I.getArgOperand(1)), DAG)); 6757 return; 6758 case Intrinsic::log: 6759 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6760 return; 6761 case Intrinsic::log2: 6762 setValue(&I, 6763 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6764 return; 6765 case Intrinsic::log10: 6766 setValue(&I, 6767 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6768 return; 6769 case Intrinsic::exp: 6770 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6771 return; 6772 case Intrinsic::exp2: 6773 setValue(&I, 6774 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6775 return; 6776 case Intrinsic::pow: 6777 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6778 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6779 return; 6780 case Intrinsic::sqrt: 6781 case Intrinsic::fabs: 6782 case Intrinsic::sin: 6783 case Intrinsic::cos: 6784 case Intrinsic::tan: 6785 case Intrinsic::exp10: 6786 case Intrinsic::floor: 6787 case Intrinsic::ceil: 6788 case Intrinsic::trunc: 6789 case Intrinsic::rint: 6790 case Intrinsic::nearbyint: 6791 case Intrinsic::round: 6792 case Intrinsic::roundeven: 6793 case Intrinsic::canonicalize: { 6794 unsigned Opcode; 6795 // clang-format off 6796 switch (Intrinsic) { 6797 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6798 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6799 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6800 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6801 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6802 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6803 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6804 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6805 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6806 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6807 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6808 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6809 case Intrinsic::round: Opcode = ISD::FROUND; break; 6810 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6811 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6812 } 6813 // clang-format on 6814 6815 setValue(&I, DAG.getNode(Opcode, sdl, 6816 getValue(I.getArgOperand(0)).getValueType(), 6817 getValue(I.getArgOperand(0)), Flags)); 6818 return; 6819 } 6820 case Intrinsic::lround: 6821 case Intrinsic::llround: 6822 case Intrinsic::lrint: 6823 case Intrinsic::llrint: { 6824 unsigned Opcode; 6825 // clang-format off 6826 switch (Intrinsic) { 6827 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6828 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6829 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6830 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6831 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6832 } 6833 // clang-format on 6834 6835 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6836 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6837 getValue(I.getArgOperand(0)))); 6838 return; 6839 } 6840 case Intrinsic::minnum: 6841 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6842 getValue(I.getArgOperand(0)).getValueType(), 6843 getValue(I.getArgOperand(0)), 6844 getValue(I.getArgOperand(1)), Flags)); 6845 return; 6846 case Intrinsic::maxnum: 6847 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6848 getValue(I.getArgOperand(0)).getValueType(), 6849 getValue(I.getArgOperand(0)), 6850 getValue(I.getArgOperand(1)), Flags)); 6851 return; 6852 case Intrinsic::minimum: 6853 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6854 getValue(I.getArgOperand(0)).getValueType(), 6855 getValue(I.getArgOperand(0)), 6856 getValue(I.getArgOperand(1)), Flags)); 6857 return; 6858 case Intrinsic::maximum: 6859 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6860 getValue(I.getArgOperand(0)).getValueType(), 6861 getValue(I.getArgOperand(0)), 6862 getValue(I.getArgOperand(1)), Flags)); 6863 return; 6864 case Intrinsic::copysign: 6865 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6866 getValue(I.getArgOperand(0)).getValueType(), 6867 getValue(I.getArgOperand(0)), 6868 getValue(I.getArgOperand(1)), Flags)); 6869 return; 6870 case Intrinsic::ldexp: 6871 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6872 getValue(I.getArgOperand(0)).getValueType(), 6873 getValue(I.getArgOperand(0)), 6874 getValue(I.getArgOperand(1)), Flags)); 6875 return; 6876 case Intrinsic::frexp: { 6877 SmallVector<EVT, 2> ValueVTs; 6878 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6879 SDVTList VTs = DAG.getVTList(ValueVTs); 6880 setValue(&I, 6881 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6882 return; 6883 } 6884 case Intrinsic::arithmetic_fence: { 6885 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6886 getValue(I.getArgOperand(0)).getValueType(), 6887 getValue(I.getArgOperand(0)), Flags)); 6888 return; 6889 } 6890 case Intrinsic::fma: 6891 setValue(&I, DAG.getNode( 6892 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6893 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6894 getValue(I.getArgOperand(2)), Flags)); 6895 return; 6896 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6897 case Intrinsic::INTRINSIC: 6898 #include "llvm/IR/ConstrainedOps.def" 6899 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6900 return; 6901 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6902 #include "llvm/IR/VPIntrinsics.def" 6903 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6904 return; 6905 case Intrinsic::fptrunc_round: { 6906 // Get the last argument, the metadata and convert it to an integer in the 6907 // call 6908 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6909 std::optional<RoundingMode> RoundMode = 6910 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6911 6912 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6913 6914 // Propagate fast-math-flags from IR to node(s). 6915 SDNodeFlags Flags; 6916 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6917 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6918 6919 SDValue Result; 6920 Result = DAG.getNode( 6921 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6922 DAG.getTargetConstant((int)*RoundMode, sdl, 6923 TLI.getPointerTy(DAG.getDataLayout()))); 6924 setValue(&I, Result); 6925 6926 return; 6927 } 6928 case Intrinsic::fmuladd: { 6929 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6930 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6931 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6932 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6933 getValue(I.getArgOperand(0)).getValueType(), 6934 getValue(I.getArgOperand(0)), 6935 getValue(I.getArgOperand(1)), 6936 getValue(I.getArgOperand(2)), Flags)); 6937 } else { 6938 // TODO: Intrinsic calls should have fast-math-flags. 6939 SDValue Mul = DAG.getNode( 6940 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6941 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6942 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6943 getValue(I.getArgOperand(0)).getValueType(), 6944 Mul, getValue(I.getArgOperand(2)), Flags); 6945 setValue(&I, Add); 6946 } 6947 return; 6948 } 6949 case Intrinsic::convert_to_fp16: 6950 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6951 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6952 getValue(I.getArgOperand(0)), 6953 DAG.getTargetConstant(0, sdl, 6954 MVT::i32)))); 6955 return; 6956 case Intrinsic::convert_from_fp16: 6957 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6958 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6959 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6960 getValue(I.getArgOperand(0))))); 6961 return; 6962 case Intrinsic::fptosi_sat: { 6963 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6964 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6965 getValue(I.getArgOperand(0)), 6966 DAG.getValueType(VT.getScalarType()))); 6967 return; 6968 } 6969 case Intrinsic::fptoui_sat: { 6970 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6971 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6972 getValue(I.getArgOperand(0)), 6973 DAG.getValueType(VT.getScalarType()))); 6974 return; 6975 } 6976 case Intrinsic::set_rounding: 6977 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6978 {getRoot(), getValue(I.getArgOperand(0))}); 6979 setValue(&I, Res); 6980 DAG.setRoot(Res.getValue(0)); 6981 return; 6982 case Intrinsic::is_fpclass: { 6983 const DataLayout DLayout = DAG.getDataLayout(); 6984 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6985 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6986 FPClassTest Test = static_cast<FPClassTest>( 6987 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6988 MachineFunction &MF = DAG.getMachineFunction(); 6989 const Function &F = MF.getFunction(); 6990 SDValue Op = getValue(I.getArgOperand(0)); 6991 SDNodeFlags Flags; 6992 Flags.setNoFPExcept( 6993 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6994 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6995 // expansion can use illegal types. Making expansion early allows 6996 // legalizing these types prior to selection. 6997 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6998 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6999 setValue(&I, Result); 7000 return; 7001 } 7002 7003 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7004 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7005 setValue(&I, V); 7006 return; 7007 } 7008 case Intrinsic::get_fpenv: { 7009 const DataLayout DLayout = DAG.getDataLayout(); 7010 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7011 Align TempAlign = DAG.getEVTAlign(EnvVT); 7012 SDValue Chain = getRoot(); 7013 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7014 // and temporary storage in stack. 7015 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7016 Res = DAG.getNode( 7017 ISD::GET_FPENV, sdl, 7018 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7019 MVT::Other), 7020 Chain); 7021 } else { 7022 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7023 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7024 auto MPI = 7025 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7026 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7027 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7028 TempAlign); 7029 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7030 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7031 } 7032 setValue(&I, Res); 7033 DAG.setRoot(Res.getValue(1)); 7034 return; 7035 } 7036 case Intrinsic::set_fpenv: { 7037 const DataLayout DLayout = DAG.getDataLayout(); 7038 SDValue Env = getValue(I.getArgOperand(0)); 7039 EVT EnvVT = Env.getValueType(); 7040 Align TempAlign = DAG.getEVTAlign(EnvVT); 7041 SDValue Chain = getRoot(); 7042 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7043 // environment from memory. 7044 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7045 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7046 } else { 7047 // Allocate space in stack, copy environment bits into it and use this 7048 // memory in SET_FPENV_MEM. 7049 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7050 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7051 auto MPI = 7052 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7053 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7054 MachineMemOperand::MOStore); 7055 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7056 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7057 TempAlign); 7058 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7059 } 7060 DAG.setRoot(Chain); 7061 return; 7062 } 7063 case Intrinsic::reset_fpenv: 7064 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7065 return; 7066 case Intrinsic::get_fpmode: 7067 Res = DAG.getNode( 7068 ISD::GET_FPMODE, sdl, 7069 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7070 MVT::Other), 7071 DAG.getRoot()); 7072 setValue(&I, Res); 7073 DAG.setRoot(Res.getValue(1)); 7074 return; 7075 case Intrinsic::set_fpmode: 7076 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7077 getValue(I.getArgOperand(0))); 7078 DAG.setRoot(Res); 7079 return; 7080 case Intrinsic::reset_fpmode: { 7081 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7082 DAG.setRoot(Res); 7083 return; 7084 } 7085 case Intrinsic::pcmarker: { 7086 SDValue Tmp = getValue(I.getArgOperand(0)); 7087 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7088 return; 7089 } 7090 case Intrinsic::readcyclecounter: { 7091 SDValue Op = getRoot(); 7092 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7093 DAG.getVTList(MVT::i64, MVT::Other), Op); 7094 setValue(&I, Res); 7095 DAG.setRoot(Res.getValue(1)); 7096 return; 7097 } 7098 case Intrinsic::readsteadycounter: { 7099 SDValue Op = getRoot(); 7100 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7101 DAG.getVTList(MVT::i64, MVT::Other), Op); 7102 setValue(&I, Res); 7103 DAG.setRoot(Res.getValue(1)); 7104 return; 7105 } 7106 case Intrinsic::bitreverse: 7107 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7108 getValue(I.getArgOperand(0)).getValueType(), 7109 getValue(I.getArgOperand(0)))); 7110 return; 7111 case Intrinsic::bswap: 7112 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7113 getValue(I.getArgOperand(0)).getValueType(), 7114 getValue(I.getArgOperand(0)))); 7115 return; 7116 case Intrinsic::cttz: { 7117 SDValue Arg = getValue(I.getArgOperand(0)); 7118 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7119 EVT Ty = Arg.getValueType(); 7120 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7121 sdl, Ty, Arg)); 7122 return; 7123 } 7124 case Intrinsic::ctlz: { 7125 SDValue Arg = getValue(I.getArgOperand(0)); 7126 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7127 EVT Ty = Arg.getValueType(); 7128 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7129 sdl, Ty, Arg)); 7130 return; 7131 } 7132 case Intrinsic::ctpop: { 7133 SDValue Arg = getValue(I.getArgOperand(0)); 7134 EVT Ty = Arg.getValueType(); 7135 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7136 return; 7137 } 7138 case Intrinsic::fshl: 7139 case Intrinsic::fshr: { 7140 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7141 SDValue X = getValue(I.getArgOperand(0)); 7142 SDValue Y = getValue(I.getArgOperand(1)); 7143 SDValue Z = getValue(I.getArgOperand(2)); 7144 EVT VT = X.getValueType(); 7145 7146 if (X == Y) { 7147 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7148 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7149 } else { 7150 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7151 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7152 } 7153 return; 7154 } 7155 case Intrinsic::sadd_sat: { 7156 SDValue Op1 = getValue(I.getArgOperand(0)); 7157 SDValue Op2 = getValue(I.getArgOperand(1)); 7158 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7159 return; 7160 } 7161 case Intrinsic::uadd_sat: { 7162 SDValue Op1 = getValue(I.getArgOperand(0)); 7163 SDValue Op2 = getValue(I.getArgOperand(1)); 7164 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7165 return; 7166 } 7167 case Intrinsic::ssub_sat: { 7168 SDValue Op1 = getValue(I.getArgOperand(0)); 7169 SDValue Op2 = getValue(I.getArgOperand(1)); 7170 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7171 return; 7172 } 7173 case Intrinsic::usub_sat: { 7174 SDValue Op1 = getValue(I.getArgOperand(0)); 7175 SDValue Op2 = getValue(I.getArgOperand(1)); 7176 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7177 return; 7178 } 7179 case Intrinsic::sshl_sat: { 7180 SDValue Op1 = getValue(I.getArgOperand(0)); 7181 SDValue Op2 = getValue(I.getArgOperand(1)); 7182 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7183 return; 7184 } 7185 case Intrinsic::ushl_sat: { 7186 SDValue Op1 = getValue(I.getArgOperand(0)); 7187 SDValue Op2 = getValue(I.getArgOperand(1)); 7188 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7189 return; 7190 } 7191 case Intrinsic::smul_fix: 7192 case Intrinsic::umul_fix: 7193 case Intrinsic::smul_fix_sat: 7194 case Intrinsic::umul_fix_sat: { 7195 SDValue Op1 = getValue(I.getArgOperand(0)); 7196 SDValue Op2 = getValue(I.getArgOperand(1)); 7197 SDValue Op3 = getValue(I.getArgOperand(2)); 7198 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7199 Op1.getValueType(), Op1, Op2, Op3)); 7200 return; 7201 } 7202 case Intrinsic::sdiv_fix: 7203 case Intrinsic::udiv_fix: 7204 case Intrinsic::sdiv_fix_sat: 7205 case Intrinsic::udiv_fix_sat: { 7206 SDValue Op1 = getValue(I.getArgOperand(0)); 7207 SDValue Op2 = getValue(I.getArgOperand(1)); 7208 SDValue Op3 = getValue(I.getArgOperand(2)); 7209 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7210 Op1, Op2, Op3, DAG, TLI)); 7211 return; 7212 } 7213 case Intrinsic::smax: { 7214 SDValue Op1 = getValue(I.getArgOperand(0)); 7215 SDValue Op2 = getValue(I.getArgOperand(1)); 7216 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7217 return; 7218 } 7219 case Intrinsic::smin: { 7220 SDValue Op1 = getValue(I.getArgOperand(0)); 7221 SDValue Op2 = getValue(I.getArgOperand(1)); 7222 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7223 return; 7224 } 7225 case Intrinsic::umax: { 7226 SDValue Op1 = getValue(I.getArgOperand(0)); 7227 SDValue Op2 = getValue(I.getArgOperand(1)); 7228 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7229 return; 7230 } 7231 case Intrinsic::umin: { 7232 SDValue Op1 = getValue(I.getArgOperand(0)); 7233 SDValue Op2 = getValue(I.getArgOperand(1)); 7234 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7235 return; 7236 } 7237 case Intrinsic::abs: { 7238 // TODO: Preserve "int min is poison" arg in SDAG? 7239 SDValue Op1 = getValue(I.getArgOperand(0)); 7240 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7241 return; 7242 } 7243 case Intrinsic::scmp: { 7244 SDValue Op1 = getValue(I.getArgOperand(0)); 7245 SDValue Op2 = getValue(I.getArgOperand(1)); 7246 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7247 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7248 break; 7249 } 7250 case Intrinsic::ucmp: { 7251 SDValue Op1 = getValue(I.getArgOperand(0)); 7252 SDValue Op2 = getValue(I.getArgOperand(1)); 7253 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7254 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7255 break; 7256 } 7257 case Intrinsic::stacksave: { 7258 SDValue Op = getRoot(); 7259 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7260 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7261 setValue(&I, Res); 7262 DAG.setRoot(Res.getValue(1)); 7263 return; 7264 } 7265 case Intrinsic::stackrestore: 7266 Res = getValue(I.getArgOperand(0)); 7267 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7268 return; 7269 case Intrinsic::get_dynamic_area_offset: { 7270 SDValue Op = getRoot(); 7271 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7272 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7273 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7274 // target. 7275 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7276 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7277 " intrinsic!"); 7278 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7279 Op); 7280 DAG.setRoot(Op); 7281 setValue(&I, Res); 7282 return; 7283 } 7284 case Intrinsic::stackguard: { 7285 MachineFunction &MF = DAG.getMachineFunction(); 7286 const Module &M = *MF.getFunction().getParent(); 7287 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7288 SDValue Chain = getRoot(); 7289 if (TLI.useLoadStackGuardNode()) { 7290 Res = getLoadStackGuard(DAG, sdl, Chain); 7291 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7292 } else { 7293 const Value *Global = TLI.getSDagStackGuard(M); 7294 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7295 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7296 MachinePointerInfo(Global, 0), Align, 7297 MachineMemOperand::MOVolatile); 7298 } 7299 if (TLI.useStackGuardXorFP()) 7300 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7301 DAG.setRoot(Chain); 7302 setValue(&I, Res); 7303 return; 7304 } 7305 case Intrinsic::stackprotector: { 7306 // Emit code into the DAG to store the stack guard onto the stack. 7307 MachineFunction &MF = DAG.getMachineFunction(); 7308 MachineFrameInfo &MFI = MF.getFrameInfo(); 7309 SDValue Src, Chain = getRoot(); 7310 7311 if (TLI.useLoadStackGuardNode()) 7312 Src = getLoadStackGuard(DAG, sdl, Chain); 7313 else 7314 Src = getValue(I.getArgOperand(0)); // The guard's value. 7315 7316 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7317 7318 int FI = FuncInfo.StaticAllocaMap[Slot]; 7319 MFI.setStackProtectorIndex(FI); 7320 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7321 7322 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7323 7324 // Store the stack protector onto the stack. 7325 Res = DAG.getStore( 7326 Chain, sdl, Src, FIN, 7327 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7328 MaybeAlign(), MachineMemOperand::MOVolatile); 7329 setValue(&I, Res); 7330 DAG.setRoot(Res); 7331 return; 7332 } 7333 case Intrinsic::objectsize: 7334 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7335 7336 case Intrinsic::is_constant: 7337 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7338 7339 case Intrinsic::annotation: 7340 case Intrinsic::ptr_annotation: 7341 case Intrinsic::launder_invariant_group: 7342 case Intrinsic::strip_invariant_group: 7343 // Drop the intrinsic, but forward the value 7344 setValue(&I, getValue(I.getOperand(0))); 7345 return; 7346 7347 case Intrinsic::assume: 7348 case Intrinsic::experimental_noalias_scope_decl: 7349 case Intrinsic::var_annotation: 7350 case Intrinsic::sideeffect: 7351 // Discard annotate attributes, noalias scope declarations, assumptions, and 7352 // artificial side-effects. 7353 return; 7354 7355 case Intrinsic::codeview_annotation: { 7356 // Emit a label associated with this metadata. 7357 MachineFunction &MF = DAG.getMachineFunction(); 7358 MCSymbol *Label = 7359 MF.getMMI().getContext().createTempSymbol("annotation", true); 7360 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7361 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7362 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7363 DAG.setRoot(Res); 7364 return; 7365 } 7366 7367 case Intrinsic::init_trampoline: { 7368 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7369 7370 SDValue Ops[6]; 7371 Ops[0] = getRoot(); 7372 Ops[1] = getValue(I.getArgOperand(0)); 7373 Ops[2] = getValue(I.getArgOperand(1)); 7374 Ops[3] = getValue(I.getArgOperand(2)); 7375 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7376 Ops[5] = DAG.getSrcValue(F); 7377 7378 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7379 7380 DAG.setRoot(Res); 7381 return; 7382 } 7383 case Intrinsic::adjust_trampoline: 7384 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7385 TLI.getPointerTy(DAG.getDataLayout()), 7386 getValue(I.getArgOperand(0)))); 7387 return; 7388 case Intrinsic::gcroot: { 7389 assert(DAG.getMachineFunction().getFunction().hasGC() && 7390 "only valid in functions with gc specified, enforced by Verifier"); 7391 assert(GFI && "implied by previous"); 7392 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7393 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7394 7395 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7396 GFI->addStackRoot(FI->getIndex(), TypeMap); 7397 return; 7398 } 7399 case Intrinsic::gcread: 7400 case Intrinsic::gcwrite: 7401 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7402 case Intrinsic::get_rounding: 7403 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7404 setValue(&I, Res); 7405 DAG.setRoot(Res.getValue(1)); 7406 return; 7407 7408 case Intrinsic::expect: 7409 // Just replace __builtin_expect(exp, c) with EXP. 7410 setValue(&I, getValue(I.getArgOperand(0))); 7411 return; 7412 7413 case Intrinsic::ubsantrap: 7414 case Intrinsic::debugtrap: 7415 case Intrinsic::trap: { 7416 StringRef TrapFuncName = 7417 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7418 if (TrapFuncName.empty()) { 7419 switch (Intrinsic) { 7420 case Intrinsic::trap: 7421 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7422 break; 7423 case Intrinsic::debugtrap: 7424 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7425 break; 7426 case Intrinsic::ubsantrap: 7427 DAG.setRoot(DAG.getNode( 7428 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7429 DAG.getTargetConstant( 7430 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7431 MVT::i32))); 7432 break; 7433 default: llvm_unreachable("unknown trap intrinsic"); 7434 } 7435 return; 7436 } 7437 TargetLowering::ArgListTy Args; 7438 if (Intrinsic == Intrinsic::ubsantrap) { 7439 Args.push_back(TargetLoweringBase::ArgListEntry()); 7440 Args[0].Val = I.getArgOperand(0); 7441 Args[0].Node = getValue(Args[0].Val); 7442 Args[0].Ty = Args[0].Val->getType(); 7443 } 7444 7445 TargetLowering::CallLoweringInfo CLI(DAG); 7446 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7447 CallingConv::C, I.getType(), 7448 DAG.getExternalSymbol(TrapFuncName.data(), 7449 TLI.getPointerTy(DAG.getDataLayout())), 7450 std::move(Args)); 7451 7452 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7453 DAG.setRoot(Result.second); 7454 return; 7455 } 7456 7457 case Intrinsic::allow_runtime_check: 7458 case Intrinsic::allow_ubsan_check: 7459 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7460 return; 7461 7462 case Intrinsic::uadd_with_overflow: 7463 case Intrinsic::sadd_with_overflow: 7464 case Intrinsic::usub_with_overflow: 7465 case Intrinsic::ssub_with_overflow: 7466 case Intrinsic::umul_with_overflow: 7467 case Intrinsic::smul_with_overflow: { 7468 ISD::NodeType Op; 7469 switch (Intrinsic) { 7470 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7471 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7472 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7473 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7474 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7475 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7476 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7477 } 7478 SDValue Op1 = getValue(I.getArgOperand(0)); 7479 SDValue Op2 = getValue(I.getArgOperand(1)); 7480 7481 EVT ResultVT = Op1.getValueType(); 7482 EVT OverflowVT = MVT::i1; 7483 if (ResultVT.isVector()) 7484 OverflowVT = EVT::getVectorVT( 7485 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7486 7487 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7488 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7489 return; 7490 } 7491 case Intrinsic::prefetch: { 7492 SDValue Ops[5]; 7493 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7494 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7495 Ops[0] = DAG.getRoot(); 7496 Ops[1] = getValue(I.getArgOperand(0)); 7497 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7498 MVT::i32); 7499 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7500 MVT::i32); 7501 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7502 MVT::i32); 7503 SDValue Result = DAG.getMemIntrinsicNode( 7504 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7505 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7506 /* align */ std::nullopt, Flags); 7507 7508 // Chain the prefetch in parallel with any pending loads, to stay out of 7509 // the way of later optimizations. 7510 PendingLoads.push_back(Result); 7511 Result = getRoot(); 7512 DAG.setRoot(Result); 7513 return; 7514 } 7515 case Intrinsic::lifetime_start: 7516 case Intrinsic::lifetime_end: { 7517 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7518 // Stack coloring is not enabled in O0, discard region information. 7519 if (TM.getOptLevel() == CodeGenOptLevel::None) 7520 return; 7521 7522 const int64_t ObjectSize = 7523 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7524 Value *const ObjectPtr = I.getArgOperand(1); 7525 SmallVector<const Value *, 4> Allocas; 7526 getUnderlyingObjects(ObjectPtr, Allocas); 7527 7528 for (const Value *Alloca : Allocas) { 7529 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7530 7531 // Could not find an Alloca. 7532 if (!LifetimeObject) 7533 continue; 7534 7535 // First check that the Alloca is static, otherwise it won't have a 7536 // valid frame index. 7537 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7538 if (SI == FuncInfo.StaticAllocaMap.end()) 7539 return; 7540 7541 const int FrameIndex = SI->second; 7542 int64_t Offset; 7543 if (GetPointerBaseWithConstantOffset( 7544 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7545 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7546 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7547 Offset); 7548 DAG.setRoot(Res); 7549 } 7550 return; 7551 } 7552 case Intrinsic::pseudoprobe: { 7553 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7554 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7555 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7556 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7557 DAG.setRoot(Res); 7558 return; 7559 } 7560 case Intrinsic::invariant_start: 7561 // Discard region information. 7562 setValue(&I, 7563 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7564 return; 7565 case Intrinsic::invariant_end: 7566 // Discard region information. 7567 return; 7568 case Intrinsic::clear_cache: { 7569 SDValue InputChain = DAG.getRoot(); 7570 SDValue StartVal = getValue(I.getArgOperand(0)); 7571 SDValue EndVal = getValue(I.getArgOperand(1)); 7572 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7573 {InputChain, StartVal, EndVal}); 7574 setValue(&I, Res); 7575 DAG.setRoot(Res); 7576 return; 7577 } 7578 case Intrinsic::donothing: 7579 case Intrinsic::seh_try_begin: 7580 case Intrinsic::seh_scope_begin: 7581 case Intrinsic::seh_try_end: 7582 case Intrinsic::seh_scope_end: 7583 // ignore 7584 return; 7585 case Intrinsic::experimental_stackmap: 7586 visitStackmap(I); 7587 return; 7588 case Intrinsic::experimental_patchpoint_void: 7589 case Intrinsic::experimental_patchpoint: 7590 visitPatchpoint(I); 7591 return; 7592 case Intrinsic::experimental_gc_statepoint: 7593 LowerStatepoint(cast<GCStatepointInst>(I)); 7594 return; 7595 case Intrinsic::experimental_gc_result: 7596 visitGCResult(cast<GCResultInst>(I)); 7597 return; 7598 case Intrinsic::experimental_gc_relocate: 7599 visitGCRelocate(cast<GCRelocateInst>(I)); 7600 return; 7601 case Intrinsic::instrprof_cover: 7602 llvm_unreachable("instrprof failed to lower a cover"); 7603 case Intrinsic::instrprof_increment: 7604 llvm_unreachable("instrprof failed to lower an increment"); 7605 case Intrinsic::instrprof_timestamp: 7606 llvm_unreachable("instrprof failed to lower a timestamp"); 7607 case Intrinsic::instrprof_value_profile: 7608 llvm_unreachable("instrprof failed to lower a value profiling call"); 7609 case Intrinsic::instrprof_mcdc_parameters: 7610 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7611 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7612 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7613 case Intrinsic::localescape: { 7614 MachineFunction &MF = DAG.getMachineFunction(); 7615 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7616 7617 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7618 // is the same on all targets. 7619 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7620 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7621 if (isa<ConstantPointerNull>(Arg)) 7622 continue; // Skip null pointers. They represent a hole in index space. 7623 AllocaInst *Slot = cast<AllocaInst>(Arg); 7624 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7625 "can only escape static allocas"); 7626 int FI = FuncInfo.StaticAllocaMap[Slot]; 7627 MCSymbol *FrameAllocSym = 7628 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7629 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7630 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7631 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7632 .addSym(FrameAllocSym) 7633 .addFrameIndex(FI); 7634 } 7635 7636 return; 7637 } 7638 7639 case Intrinsic::localrecover: { 7640 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7641 MachineFunction &MF = DAG.getMachineFunction(); 7642 7643 // Get the symbol that defines the frame offset. 7644 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7645 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7646 unsigned IdxVal = 7647 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7648 MCSymbol *FrameAllocSym = 7649 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7650 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7651 7652 Value *FP = I.getArgOperand(1); 7653 SDValue FPVal = getValue(FP); 7654 EVT PtrVT = FPVal.getValueType(); 7655 7656 // Create a MCSymbol for the label to avoid any target lowering 7657 // that would make this PC relative. 7658 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7659 SDValue OffsetVal = 7660 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7661 7662 // Add the offset to the FP. 7663 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7664 setValue(&I, Add); 7665 7666 return; 7667 } 7668 7669 case Intrinsic::eh_exceptionpointer: 7670 case Intrinsic::eh_exceptioncode: { 7671 // Get the exception pointer vreg, copy from it, and resize it to fit. 7672 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7673 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7674 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7675 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7676 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7677 if (Intrinsic == Intrinsic::eh_exceptioncode) 7678 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7679 setValue(&I, N); 7680 return; 7681 } 7682 case Intrinsic::xray_customevent: { 7683 // Here we want to make sure that the intrinsic behaves as if it has a 7684 // specific calling convention. 7685 const auto &Triple = DAG.getTarget().getTargetTriple(); 7686 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7687 return; 7688 7689 SmallVector<SDValue, 8> Ops; 7690 7691 // We want to say that we always want the arguments in registers. 7692 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7693 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7694 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7695 SDValue Chain = getRoot(); 7696 Ops.push_back(LogEntryVal); 7697 Ops.push_back(StrSizeVal); 7698 Ops.push_back(Chain); 7699 7700 // We need to enforce the calling convention for the callsite, so that 7701 // argument ordering is enforced correctly, and that register allocation can 7702 // see that some registers may be assumed clobbered and have to preserve 7703 // them across calls to the intrinsic. 7704 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7705 sdl, NodeTys, Ops); 7706 SDValue patchableNode = SDValue(MN, 0); 7707 DAG.setRoot(patchableNode); 7708 setValue(&I, patchableNode); 7709 return; 7710 } 7711 case Intrinsic::xray_typedevent: { 7712 // Here we want to make sure that the intrinsic behaves as if it has a 7713 // specific calling convention. 7714 const auto &Triple = DAG.getTarget().getTargetTriple(); 7715 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7716 return; 7717 7718 SmallVector<SDValue, 8> Ops; 7719 7720 // We want to say that we always want the arguments in registers. 7721 // It's unclear to me how manipulating the selection DAG here forces callers 7722 // to provide arguments in registers instead of on the stack. 7723 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7724 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7725 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7726 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7727 SDValue Chain = getRoot(); 7728 Ops.push_back(LogTypeId); 7729 Ops.push_back(LogEntryVal); 7730 Ops.push_back(StrSizeVal); 7731 Ops.push_back(Chain); 7732 7733 // We need to enforce the calling convention for the callsite, so that 7734 // argument ordering is enforced correctly, and that register allocation can 7735 // see that some registers may be assumed clobbered and have to preserve 7736 // them across calls to the intrinsic. 7737 MachineSDNode *MN = DAG.getMachineNode( 7738 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7739 SDValue patchableNode = SDValue(MN, 0); 7740 DAG.setRoot(patchableNode); 7741 setValue(&I, patchableNode); 7742 return; 7743 } 7744 case Intrinsic::experimental_deoptimize: 7745 LowerDeoptimizeCall(&I); 7746 return; 7747 case Intrinsic::experimental_stepvector: 7748 visitStepVector(I); 7749 return; 7750 case Intrinsic::vector_reduce_fadd: 7751 case Intrinsic::vector_reduce_fmul: 7752 case Intrinsic::vector_reduce_add: 7753 case Intrinsic::vector_reduce_mul: 7754 case Intrinsic::vector_reduce_and: 7755 case Intrinsic::vector_reduce_or: 7756 case Intrinsic::vector_reduce_xor: 7757 case Intrinsic::vector_reduce_smax: 7758 case Intrinsic::vector_reduce_smin: 7759 case Intrinsic::vector_reduce_umax: 7760 case Intrinsic::vector_reduce_umin: 7761 case Intrinsic::vector_reduce_fmax: 7762 case Intrinsic::vector_reduce_fmin: 7763 case Intrinsic::vector_reduce_fmaximum: 7764 case Intrinsic::vector_reduce_fminimum: 7765 visitVectorReduce(I, Intrinsic); 7766 return; 7767 7768 case Intrinsic::icall_branch_funnel: { 7769 SmallVector<SDValue, 16> Ops; 7770 Ops.push_back(getValue(I.getArgOperand(0))); 7771 7772 int64_t Offset; 7773 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7774 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7775 if (!Base) 7776 report_fatal_error( 7777 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7778 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7779 7780 struct BranchFunnelTarget { 7781 int64_t Offset; 7782 SDValue Target; 7783 }; 7784 SmallVector<BranchFunnelTarget, 8> Targets; 7785 7786 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7787 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7788 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7789 if (ElemBase != Base) 7790 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7791 "to the same GlobalValue"); 7792 7793 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7794 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7795 if (!GA) 7796 report_fatal_error( 7797 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7798 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7799 GA->getGlobal(), sdl, Val.getValueType(), 7800 GA->getOffset())}); 7801 } 7802 llvm::sort(Targets, 7803 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7804 return T1.Offset < T2.Offset; 7805 }); 7806 7807 for (auto &T : Targets) { 7808 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7809 Ops.push_back(T.Target); 7810 } 7811 7812 Ops.push_back(DAG.getRoot()); // Chain 7813 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7814 MVT::Other, Ops), 7815 0); 7816 DAG.setRoot(N); 7817 setValue(&I, N); 7818 HasTailCall = true; 7819 return; 7820 } 7821 7822 case Intrinsic::wasm_landingpad_index: 7823 // Information this intrinsic contained has been transferred to 7824 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7825 // delete it now. 7826 return; 7827 7828 case Intrinsic::aarch64_settag: 7829 case Intrinsic::aarch64_settag_zero: { 7830 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7831 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7832 SDValue Val = TSI.EmitTargetCodeForSetTag( 7833 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7834 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7835 ZeroMemory); 7836 DAG.setRoot(Val); 7837 setValue(&I, Val); 7838 return; 7839 } 7840 case Intrinsic::amdgcn_cs_chain: { 7841 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7842 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7843 "Non-zero flags not supported yet"); 7844 7845 // At this point we don't care if it's amdgpu_cs_chain or 7846 // amdgpu_cs_chain_preserve. 7847 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7848 7849 Type *RetTy = I.getType(); 7850 assert(RetTy->isVoidTy() && "Should not return"); 7851 7852 SDValue Callee = getValue(I.getOperand(0)); 7853 7854 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7855 // We'll also tack the value of the EXEC mask at the end. 7856 TargetLowering::ArgListTy Args; 7857 Args.reserve(3); 7858 7859 for (unsigned Idx : {2, 3, 1}) { 7860 TargetLowering::ArgListEntry Arg; 7861 Arg.Node = getValue(I.getOperand(Idx)); 7862 Arg.Ty = I.getOperand(Idx)->getType(); 7863 Arg.setAttributes(&I, Idx); 7864 Args.push_back(Arg); 7865 } 7866 7867 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7868 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7869 Args[2].IsInReg = true; // EXEC should be inreg 7870 7871 TargetLowering::CallLoweringInfo CLI(DAG); 7872 CLI.setDebugLoc(getCurSDLoc()) 7873 .setChain(getRoot()) 7874 .setCallee(CC, RetTy, Callee, std::move(Args)) 7875 .setNoReturn(true) 7876 .setTailCall(true) 7877 .setConvergent(I.isConvergent()); 7878 CLI.CB = &I; 7879 std::pair<SDValue, SDValue> Result = 7880 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7881 (void)Result; 7882 assert(!Result.first.getNode() && !Result.second.getNode() && 7883 "Should've lowered as tail call"); 7884 7885 HasTailCall = true; 7886 return; 7887 } 7888 case Intrinsic::ptrmask: { 7889 SDValue Ptr = getValue(I.getOperand(0)); 7890 SDValue Mask = getValue(I.getOperand(1)); 7891 7892 // On arm64_32, pointers are 32 bits when stored in memory, but 7893 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7894 // match the index type, but the pointer is 64 bits, so the the mask must be 7895 // zero-extended up to 64 bits to match the pointer. 7896 EVT PtrVT = 7897 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7898 EVT MemVT = 7899 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7900 assert(PtrVT == Ptr.getValueType()); 7901 assert(MemVT == Mask.getValueType()); 7902 if (MemVT != PtrVT) 7903 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7904 7905 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7906 return; 7907 } 7908 case Intrinsic::threadlocal_address: { 7909 setValue(&I, getValue(I.getOperand(0))); 7910 return; 7911 } 7912 case Intrinsic::get_active_lane_mask: { 7913 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7914 SDValue Index = getValue(I.getOperand(0)); 7915 EVT ElementVT = Index.getValueType(); 7916 7917 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7918 visitTargetIntrinsic(I, Intrinsic); 7919 return; 7920 } 7921 7922 SDValue TripCount = getValue(I.getOperand(1)); 7923 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7924 CCVT.getVectorElementCount()); 7925 7926 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7927 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7928 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7929 SDValue VectorInduction = DAG.getNode( 7930 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7931 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7932 VectorTripCount, ISD::CondCode::SETULT); 7933 setValue(&I, SetCC); 7934 return; 7935 } 7936 case Intrinsic::experimental_get_vector_length: { 7937 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7938 "Expected positive VF"); 7939 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7940 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7941 7942 SDValue Count = getValue(I.getOperand(0)); 7943 EVT CountVT = Count.getValueType(); 7944 7945 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7946 visitTargetIntrinsic(I, Intrinsic); 7947 return; 7948 } 7949 7950 // Expand to a umin between the trip count and the maximum elements the type 7951 // can hold. 7952 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7953 7954 // Extend the trip count to at least the result VT. 7955 if (CountVT.bitsLT(VT)) { 7956 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7957 CountVT = VT; 7958 } 7959 7960 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7961 ElementCount::get(VF, IsScalable)); 7962 7963 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7964 // Clip to the result type if needed. 7965 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7966 7967 setValue(&I, Trunc); 7968 return; 7969 } 7970 case Intrinsic::experimental_cttz_elts: { 7971 auto DL = getCurSDLoc(); 7972 SDValue Op = getValue(I.getOperand(0)); 7973 EVT OpVT = Op.getValueType(); 7974 7975 if (!TLI.shouldExpandCttzElements(OpVT)) { 7976 visitTargetIntrinsic(I, Intrinsic); 7977 return; 7978 } 7979 7980 if (OpVT.getScalarType() != MVT::i1) { 7981 // Compare the input vector elements to zero & use to count trailing zeros 7982 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7983 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7984 OpVT.getVectorElementCount()); 7985 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7986 } 7987 7988 // If the zero-is-poison flag is set, we can assume the upper limit 7989 // of the result is VF-1. 7990 bool ZeroIsPoison = 7991 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 7992 ConstantRange VScaleRange(1, true); // Dummy value. 7993 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 7994 VScaleRange = getVScaleRange(I.getCaller(), 64); 7995 unsigned EltWidth = TLI.getBitWidthForCttzElements( 7996 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 7997 7998 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7999 8000 // Create the new vector type & get the vector length 8001 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8002 OpVT.getVectorElementCount()); 8003 8004 SDValue VL = 8005 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8006 8007 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8008 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8009 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8010 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8011 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8012 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8013 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8014 8015 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8016 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8017 8018 setValue(&I, Ret); 8019 return; 8020 } 8021 case Intrinsic::vector_insert: { 8022 SDValue Vec = getValue(I.getOperand(0)); 8023 SDValue SubVec = getValue(I.getOperand(1)); 8024 SDValue Index = getValue(I.getOperand(2)); 8025 8026 // The intrinsic's index type is i64, but the SDNode requires an index type 8027 // suitable for the target. Convert the index as required. 8028 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8029 if (Index.getValueType() != VectorIdxTy) 8030 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8031 8032 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8033 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8034 Index)); 8035 return; 8036 } 8037 case Intrinsic::vector_extract: { 8038 SDValue Vec = getValue(I.getOperand(0)); 8039 SDValue Index = getValue(I.getOperand(1)); 8040 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8041 8042 // The intrinsic's index type is i64, but the SDNode requires an index type 8043 // suitable for the target. Convert the index as required. 8044 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8045 if (Index.getValueType() != VectorIdxTy) 8046 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8047 8048 setValue(&I, 8049 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8050 return; 8051 } 8052 case Intrinsic::vector_reverse: 8053 visitVectorReverse(I); 8054 return; 8055 case Intrinsic::vector_splice: 8056 visitVectorSplice(I); 8057 return; 8058 case Intrinsic::callbr_landingpad: 8059 visitCallBrLandingPad(I); 8060 return; 8061 case Intrinsic::vector_interleave2: 8062 visitVectorInterleave(I); 8063 return; 8064 case Intrinsic::vector_deinterleave2: 8065 visitVectorDeinterleave(I); 8066 return; 8067 case Intrinsic::experimental_convergence_anchor: 8068 case Intrinsic::experimental_convergence_entry: 8069 case Intrinsic::experimental_convergence_loop: 8070 visitConvergenceControl(I, Intrinsic); 8071 return; 8072 case Intrinsic::experimental_vector_histogram_add: { 8073 visitVectorHistogram(I, Intrinsic); 8074 return; 8075 } 8076 } 8077 } 8078 8079 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8080 const ConstrainedFPIntrinsic &FPI) { 8081 SDLoc sdl = getCurSDLoc(); 8082 8083 // We do not need to serialize constrained FP intrinsics against 8084 // each other or against (nonvolatile) loads, so they can be 8085 // chained like loads. 8086 SDValue Chain = DAG.getRoot(); 8087 SmallVector<SDValue, 4> Opers; 8088 Opers.push_back(Chain); 8089 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8090 Opers.push_back(getValue(FPI.getArgOperand(I))); 8091 8092 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8093 assert(Result.getNode()->getNumValues() == 2); 8094 8095 // Push node to the appropriate list so that future instructions can be 8096 // chained up correctly. 8097 SDValue OutChain = Result.getValue(1); 8098 switch (EB) { 8099 case fp::ExceptionBehavior::ebIgnore: 8100 // The only reason why ebIgnore nodes still need to be chained is that 8101 // they might depend on the current rounding mode, and therefore must 8102 // not be moved across instruction that may change that mode. 8103 [[fallthrough]]; 8104 case fp::ExceptionBehavior::ebMayTrap: 8105 // These must not be moved across calls or instructions that may change 8106 // floating-point exception masks. 8107 PendingConstrainedFP.push_back(OutChain); 8108 break; 8109 case fp::ExceptionBehavior::ebStrict: 8110 // These must not be moved across calls or instructions that may change 8111 // floating-point exception masks or read floating-point exception flags. 8112 // In addition, they cannot be optimized out even if unused. 8113 PendingConstrainedFPStrict.push_back(OutChain); 8114 break; 8115 } 8116 }; 8117 8118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8119 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8120 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8121 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8122 8123 SDNodeFlags Flags; 8124 if (EB == fp::ExceptionBehavior::ebIgnore) 8125 Flags.setNoFPExcept(true); 8126 8127 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8128 Flags.copyFMF(*FPOp); 8129 8130 unsigned Opcode; 8131 switch (FPI.getIntrinsicID()) { 8132 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8133 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8134 case Intrinsic::INTRINSIC: \ 8135 Opcode = ISD::STRICT_##DAGN; \ 8136 break; 8137 #include "llvm/IR/ConstrainedOps.def" 8138 case Intrinsic::experimental_constrained_fmuladd: { 8139 Opcode = ISD::STRICT_FMA; 8140 // Break fmuladd into fmul and fadd. 8141 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8142 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8143 Opers.pop_back(); 8144 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8145 pushOutChain(Mul, EB); 8146 Opcode = ISD::STRICT_FADD; 8147 Opers.clear(); 8148 Opers.push_back(Mul.getValue(1)); 8149 Opers.push_back(Mul.getValue(0)); 8150 Opers.push_back(getValue(FPI.getArgOperand(2))); 8151 } 8152 break; 8153 } 8154 } 8155 8156 // A few strict DAG nodes carry additional operands that are not 8157 // set up by the default code above. 8158 switch (Opcode) { 8159 default: break; 8160 case ISD::STRICT_FP_ROUND: 8161 Opers.push_back( 8162 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8163 break; 8164 case ISD::STRICT_FSETCC: 8165 case ISD::STRICT_FSETCCS: { 8166 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8167 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8168 if (TM.Options.NoNaNsFPMath) 8169 Condition = getFCmpCodeWithoutNaN(Condition); 8170 Opers.push_back(DAG.getCondCode(Condition)); 8171 break; 8172 } 8173 } 8174 8175 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8176 pushOutChain(Result, EB); 8177 8178 SDValue FPResult = Result.getValue(0); 8179 setValue(&FPI, FPResult); 8180 } 8181 8182 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8183 std::optional<unsigned> ResOPC; 8184 switch (VPIntrin.getIntrinsicID()) { 8185 case Intrinsic::vp_ctlz: { 8186 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8187 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8188 break; 8189 } 8190 case Intrinsic::vp_cttz: { 8191 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8192 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8193 break; 8194 } 8195 case Intrinsic::vp_cttz_elts: { 8196 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8197 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8198 break; 8199 } 8200 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8201 case Intrinsic::VPID: \ 8202 ResOPC = ISD::VPSD; \ 8203 break; 8204 #include "llvm/IR/VPIntrinsics.def" 8205 } 8206 8207 if (!ResOPC) 8208 llvm_unreachable( 8209 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8210 8211 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8212 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8213 if (VPIntrin.getFastMathFlags().allowReassoc()) 8214 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8215 : ISD::VP_REDUCE_FMUL; 8216 } 8217 8218 return *ResOPC; 8219 } 8220 8221 void SelectionDAGBuilder::visitVPLoad( 8222 const VPIntrinsic &VPIntrin, EVT VT, 8223 const SmallVectorImpl<SDValue> &OpValues) { 8224 SDLoc DL = getCurSDLoc(); 8225 Value *PtrOperand = VPIntrin.getArgOperand(0); 8226 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8227 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8228 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8229 SDValue LD; 8230 // Do not serialize variable-length loads of constant memory with 8231 // anything. 8232 if (!Alignment) 8233 Alignment = DAG.getEVTAlign(VT); 8234 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8235 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8236 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8237 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8238 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8239 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8240 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8241 MMO, false /*IsExpanding */); 8242 if (AddToChain) 8243 PendingLoads.push_back(LD.getValue(1)); 8244 setValue(&VPIntrin, LD); 8245 } 8246 8247 void SelectionDAGBuilder::visitVPGather( 8248 const VPIntrinsic &VPIntrin, EVT VT, 8249 const SmallVectorImpl<SDValue> &OpValues) { 8250 SDLoc DL = getCurSDLoc(); 8251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8252 Value *PtrOperand = VPIntrin.getArgOperand(0); 8253 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8254 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8255 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8256 SDValue LD; 8257 if (!Alignment) 8258 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8259 unsigned AS = 8260 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8261 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8262 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8263 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8264 SDValue Base, Index, Scale; 8265 ISD::MemIndexType IndexType; 8266 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8267 this, VPIntrin.getParent(), 8268 VT.getScalarStoreSize()); 8269 if (!UniformBase) { 8270 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8271 Index = getValue(PtrOperand); 8272 IndexType = ISD::SIGNED_SCALED; 8273 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8274 } 8275 EVT IdxVT = Index.getValueType(); 8276 EVT EltTy = IdxVT.getVectorElementType(); 8277 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8278 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8279 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8280 } 8281 LD = DAG.getGatherVP( 8282 DAG.getVTList(VT, MVT::Other), VT, DL, 8283 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8284 IndexType); 8285 PendingLoads.push_back(LD.getValue(1)); 8286 setValue(&VPIntrin, LD); 8287 } 8288 8289 void SelectionDAGBuilder::visitVPStore( 8290 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8291 SDLoc DL = getCurSDLoc(); 8292 Value *PtrOperand = VPIntrin.getArgOperand(1); 8293 EVT VT = OpValues[0].getValueType(); 8294 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8295 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8296 SDValue ST; 8297 if (!Alignment) 8298 Alignment = DAG.getEVTAlign(VT); 8299 SDValue Ptr = OpValues[1]; 8300 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8301 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8302 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8303 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8304 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8305 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8306 /* IsTruncating */ false, /*IsCompressing*/ false); 8307 DAG.setRoot(ST); 8308 setValue(&VPIntrin, ST); 8309 } 8310 8311 void SelectionDAGBuilder::visitVPScatter( 8312 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8313 SDLoc DL = getCurSDLoc(); 8314 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8315 Value *PtrOperand = VPIntrin.getArgOperand(1); 8316 EVT VT = OpValues[0].getValueType(); 8317 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8318 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8319 SDValue ST; 8320 if (!Alignment) 8321 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8322 unsigned AS = 8323 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8324 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8325 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8326 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8327 SDValue Base, Index, Scale; 8328 ISD::MemIndexType IndexType; 8329 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8330 this, VPIntrin.getParent(), 8331 VT.getScalarStoreSize()); 8332 if (!UniformBase) { 8333 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8334 Index = getValue(PtrOperand); 8335 IndexType = ISD::SIGNED_SCALED; 8336 Scale = 8337 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8338 } 8339 EVT IdxVT = Index.getValueType(); 8340 EVT EltTy = IdxVT.getVectorElementType(); 8341 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8342 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8343 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8344 } 8345 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8346 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8347 OpValues[2], OpValues[3]}, 8348 MMO, IndexType); 8349 DAG.setRoot(ST); 8350 setValue(&VPIntrin, ST); 8351 } 8352 8353 void SelectionDAGBuilder::visitVPStridedLoad( 8354 const VPIntrinsic &VPIntrin, EVT VT, 8355 const SmallVectorImpl<SDValue> &OpValues) { 8356 SDLoc DL = getCurSDLoc(); 8357 Value *PtrOperand = VPIntrin.getArgOperand(0); 8358 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8359 if (!Alignment) 8360 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8361 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8362 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8363 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8364 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8365 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8366 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8367 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8368 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8369 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8370 8371 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8372 OpValues[2], OpValues[3], MMO, 8373 false /*IsExpanding*/); 8374 8375 if (AddToChain) 8376 PendingLoads.push_back(LD.getValue(1)); 8377 setValue(&VPIntrin, LD); 8378 } 8379 8380 void SelectionDAGBuilder::visitVPStridedStore( 8381 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8382 SDLoc DL = getCurSDLoc(); 8383 Value *PtrOperand = VPIntrin.getArgOperand(1); 8384 EVT VT = OpValues[0].getValueType(); 8385 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8386 if (!Alignment) 8387 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8388 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8389 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8390 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8391 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8392 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8393 8394 SDValue ST = DAG.getStridedStoreVP( 8395 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8396 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8397 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8398 /*IsCompressing*/ false); 8399 8400 DAG.setRoot(ST); 8401 setValue(&VPIntrin, ST); 8402 } 8403 8404 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8406 SDLoc DL = getCurSDLoc(); 8407 8408 ISD::CondCode Condition; 8409 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8410 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8411 if (IsFP) { 8412 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8413 // flags, but calls that don't return floating-point types can't be 8414 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8415 Condition = getFCmpCondCode(CondCode); 8416 if (TM.Options.NoNaNsFPMath) 8417 Condition = getFCmpCodeWithoutNaN(Condition); 8418 } else { 8419 Condition = getICmpCondCode(CondCode); 8420 } 8421 8422 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8423 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8424 // #2 is the condition code 8425 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8426 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8427 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8428 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8429 "Unexpected target EVL type"); 8430 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8431 8432 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8433 VPIntrin.getType()); 8434 setValue(&VPIntrin, 8435 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8436 } 8437 8438 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8439 const VPIntrinsic &VPIntrin) { 8440 SDLoc DL = getCurSDLoc(); 8441 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8442 8443 auto IID = VPIntrin.getIntrinsicID(); 8444 8445 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8446 return visitVPCmp(*CmpI); 8447 8448 SmallVector<EVT, 4> ValueVTs; 8449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8450 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8451 SDVTList VTs = DAG.getVTList(ValueVTs); 8452 8453 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8454 8455 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8456 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8457 "Unexpected target EVL type"); 8458 8459 // Request operands. 8460 SmallVector<SDValue, 7> OpValues; 8461 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8462 auto Op = getValue(VPIntrin.getArgOperand(I)); 8463 if (I == EVLParamPos) 8464 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8465 OpValues.push_back(Op); 8466 } 8467 8468 switch (Opcode) { 8469 default: { 8470 SDNodeFlags SDFlags; 8471 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8472 SDFlags.copyFMF(*FPMO); 8473 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8474 setValue(&VPIntrin, Result); 8475 break; 8476 } 8477 case ISD::VP_LOAD: 8478 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8479 break; 8480 case ISD::VP_GATHER: 8481 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8482 break; 8483 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8484 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8485 break; 8486 case ISD::VP_STORE: 8487 visitVPStore(VPIntrin, OpValues); 8488 break; 8489 case ISD::VP_SCATTER: 8490 visitVPScatter(VPIntrin, OpValues); 8491 break; 8492 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8493 visitVPStridedStore(VPIntrin, OpValues); 8494 break; 8495 case ISD::VP_FMULADD: { 8496 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8497 SDNodeFlags SDFlags; 8498 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8499 SDFlags.copyFMF(*FPMO); 8500 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8501 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8502 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8503 } else { 8504 SDValue Mul = DAG.getNode( 8505 ISD::VP_FMUL, DL, VTs, 8506 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8507 SDValue Add = 8508 DAG.getNode(ISD::VP_FADD, DL, VTs, 8509 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8510 setValue(&VPIntrin, Add); 8511 } 8512 break; 8513 } 8514 case ISD::VP_IS_FPCLASS: { 8515 const DataLayout DLayout = DAG.getDataLayout(); 8516 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8517 auto Constant = OpValues[1]->getAsZExtVal(); 8518 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8519 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8520 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8521 setValue(&VPIntrin, V); 8522 return; 8523 } 8524 case ISD::VP_INTTOPTR: { 8525 SDValue N = OpValues[0]; 8526 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8527 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8528 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8529 OpValues[2]); 8530 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8531 OpValues[2]); 8532 setValue(&VPIntrin, N); 8533 break; 8534 } 8535 case ISD::VP_PTRTOINT: { 8536 SDValue N = OpValues[0]; 8537 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8538 VPIntrin.getType()); 8539 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8540 VPIntrin.getOperand(0)->getType()); 8541 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8542 OpValues[2]); 8543 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8544 OpValues[2]); 8545 setValue(&VPIntrin, N); 8546 break; 8547 } 8548 case ISD::VP_ABS: 8549 case ISD::VP_CTLZ: 8550 case ISD::VP_CTLZ_ZERO_UNDEF: 8551 case ISD::VP_CTTZ: 8552 case ISD::VP_CTTZ_ZERO_UNDEF: 8553 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8554 case ISD::VP_CTTZ_ELTS: { 8555 SDValue Result = 8556 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8557 setValue(&VPIntrin, Result); 8558 break; 8559 } 8560 } 8561 } 8562 8563 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8564 const BasicBlock *EHPadBB, 8565 MCSymbol *&BeginLabel) { 8566 MachineFunction &MF = DAG.getMachineFunction(); 8567 MachineModuleInfo &MMI = MF.getMMI(); 8568 8569 // Insert a label before the invoke call to mark the try range. This can be 8570 // used to detect deletion of the invoke via the MachineModuleInfo. 8571 BeginLabel = MMI.getContext().createTempSymbol(); 8572 8573 // For SjLj, keep track of which landing pads go with which invokes 8574 // so as to maintain the ordering of pads in the LSDA. 8575 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8576 if (CallSiteIndex) { 8577 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8578 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8579 8580 // Now that the call site is handled, stop tracking it. 8581 MMI.setCurrentCallSite(0); 8582 } 8583 8584 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8585 } 8586 8587 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8588 const BasicBlock *EHPadBB, 8589 MCSymbol *BeginLabel) { 8590 assert(BeginLabel && "BeginLabel should've been set"); 8591 8592 MachineFunction &MF = DAG.getMachineFunction(); 8593 MachineModuleInfo &MMI = MF.getMMI(); 8594 8595 // Insert a label at the end of the invoke call to mark the try range. This 8596 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8597 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8598 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8599 8600 // Inform MachineModuleInfo of range. 8601 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8602 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8603 // actually use outlined funclets and their LSDA info style. 8604 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8605 assert(II && "II should've been set"); 8606 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8607 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8608 } else if (!isScopedEHPersonality(Pers)) { 8609 assert(EHPadBB); 8610 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8611 } 8612 8613 return Chain; 8614 } 8615 8616 std::pair<SDValue, SDValue> 8617 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8618 const BasicBlock *EHPadBB) { 8619 MCSymbol *BeginLabel = nullptr; 8620 8621 if (EHPadBB) { 8622 // Both PendingLoads and PendingExports must be flushed here; 8623 // this call might not return. 8624 (void)getRoot(); 8625 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8626 CLI.setChain(getRoot()); 8627 } 8628 8629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8630 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8631 8632 assert((CLI.IsTailCall || Result.second.getNode()) && 8633 "Non-null chain expected with non-tail call!"); 8634 assert((Result.second.getNode() || !Result.first.getNode()) && 8635 "Null value expected with tail call!"); 8636 8637 if (!Result.second.getNode()) { 8638 // As a special case, a null chain means that a tail call has been emitted 8639 // and the DAG root is already updated. 8640 HasTailCall = true; 8641 8642 // Since there's no actual continuation from this block, nothing can be 8643 // relying on us setting vregs for them. 8644 PendingExports.clear(); 8645 } else { 8646 DAG.setRoot(Result.second); 8647 } 8648 8649 if (EHPadBB) { 8650 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8651 BeginLabel)); 8652 Result.second = getRoot(); 8653 } 8654 8655 return Result; 8656 } 8657 8658 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8659 bool isTailCall, bool isMustTailCall, 8660 const BasicBlock *EHPadBB, 8661 const TargetLowering::PtrAuthInfo *PAI) { 8662 auto &DL = DAG.getDataLayout(); 8663 FunctionType *FTy = CB.getFunctionType(); 8664 Type *RetTy = CB.getType(); 8665 8666 TargetLowering::ArgListTy Args; 8667 Args.reserve(CB.arg_size()); 8668 8669 const Value *SwiftErrorVal = nullptr; 8670 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8671 8672 if (isTailCall) { 8673 // Avoid emitting tail calls in functions with the disable-tail-calls 8674 // attribute. 8675 auto *Caller = CB.getParent()->getParent(); 8676 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8677 "true" && !isMustTailCall) 8678 isTailCall = false; 8679 8680 // We can't tail call inside a function with a swifterror argument. Lowering 8681 // does not support this yet. It would have to move into the swifterror 8682 // register before the call. 8683 if (TLI.supportSwiftError() && 8684 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8685 isTailCall = false; 8686 } 8687 8688 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8689 TargetLowering::ArgListEntry Entry; 8690 const Value *V = *I; 8691 8692 // Skip empty types 8693 if (V->getType()->isEmptyTy()) 8694 continue; 8695 8696 SDValue ArgNode = getValue(V); 8697 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8698 8699 Entry.setAttributes(&CB, I - CB.arg_begin()); 8700 8701 // Use swifterror virtual register as input to the call. 8702 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8703 SwiftErrorVal = V; 8704 // We find the virtual register for the actual swifterror argument. 8705 // Instead of using the Value, we use the virtual register instead. 8706 Entry.Node = 8707 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8708 EVT(TLI.getPointerTy(DL))); 8709 } 8710 8711 Args.push_back(Entry); 8712 8713 // If we have an explicit sret argument that is an Instruction, (i.e., it 8714 // might point to function-local memory), we can't meaningfully tail-call. 8715 if (Entry.IsSRet && isa<Instruction>(V)) 8716 isTailCall = false; 8717 } 8718 8719 // If call site has a cfguardtarget operand bundle, create and add an 8720 // additional ArgListEntry. 8721 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8722 TargetLowering::ArgListEntry Entry; 8723 Value *V = Bundle->Inputs[0]; 8724 SDValue ArgNode = getValue(V); 8725 Entry.Node = ArgNode; 8726 Entry.Ty = V->getType(); 8727 Entry.IsCFGuardTarget = true; 8728 Args.push_back(Entry); 8729 } 8730 8731 // Check if target-independent constraints permit a tail call here. 8732 // Target-dependent constraints are checked within TLI->LowerCallTo. 8733 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8734 isTailCall = false; 8735 8736 // Disable tail calls if there is an swifterror argument. Targets have not 8737 // been updated to support tail calls. 8738 if (TLI.supportSwiftError() && SwiftErrorVal) 8739 isTailCall = false; 8740 8741 ConstantInt *CFIType = nullptr; 8742 if (CB.isIndirectCall()) { 8743 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8744 if (!TLI.supportKCFIBundles()) 8745 report_fatal_error( 8746 "Target doesn't support calls with kcfi operand bundles."); 8747 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8748 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8749 } 8750 } 8751 8752 SDValue ConvControlToken; 8753 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8754 auto *Token = Bundle->Inputs[0].get(); 8755 ConvControlToken = getValue(Token); 8756 } 8757 8758 TargetLowering::CallLoweringInfo CLI(DAG); 8759 CLI.setDebugLoc(getCurSDLoc()) 8760 .setChain(getRoot()) 8761 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8762 .setTailCall(isTailCall) 8763 .setConvergent(CB.isConvergent()) 8764 .setIsPreallocated( 8765 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8766 .setCFIType(CFIType) 8767 .setConvergenceControlToken(ConvControlToken); 8768 8769 // Set the pointer authentication info if we have it. 8770 if (PAI) { 8771 if (!TLI.supportPtrAuthBundles()) 8772 report_fatal_error( 8773 "This target doesn't support calls with ptrauth operand bundles."); 8774 CLI.setPtrAuth(*PAI); 8775 } 8776 8777 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8778 8779 if (Result.first.getNode()) { 8780 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8781 setValue(&CB, Result.first); 8782 } 8783 8784 // The last element of CLI.InVals has the SDValue for swifterror return. 8785 // Here we copy it to a virtual register and update SwiftErrorMap for 8786 // book-keeping. 8787 if (SwiftErrorVal && TLI.supportSwiftError()) { 8788 // Get the last element of InVals. 8789 SDValue Src = CLI.InVals.back(); 8790 Register VReg = 8791 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8792 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8793 DAG.setRoot(CopyNode); 8794 } 8795 } 8796 8797 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8798 SelectionDAGBuilder &Builder) { 8799 // Check to see if this load can be trivially constant folded, e.g. if the 8800 // input is from a string literal. 8801 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8802 // Cast pointer to the type we really want to load. 8803 Type *LoadTy = 8804 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8805 if (LoadVT.isVector()) 8806 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8807 8808 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8809 PointerType::getUnqual(LoadTy)); 8810 8811 if (const Constant *LoadCst = 8812 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8813 LoadTy, Builder.DAG.getDataLayout())) 8814 return Builder.getValue(LoadCst); 8815 } 8816 8817 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8818 // still constant memory, the input chain can be the entry node. 8819 SDValue Root; 8820 bool ConstantMemory = false; 8821 8822 // Do not serialize (non-volatile) loads of constant memory with anything. 8823 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8824 Root = Builder.DAG.getEntryNode(); 8825 ConstantMemory = true; 8826 } else { 8827 // Do not serialize non-volatile loads against each other. 8828 Root = Builder.DAG.getRoot(); 8829 } 8830 8831 SDValue Ptr = Builder.getValue(PtrVal); 8832 SDValue LoadVal = 8833 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8834 MachinePointerInfo(PtrVal), Align(1)); 8835 8836 if (!ConstantMemory) 8837 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8838 return LoadVal; 8839 } 8840 8841 /// Record the value for an instruction that produces an integer result, 8842 /// converting the type where necessary. 8843 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8844 SDValue Value, 8845 bool IsSigned) { 8846 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8847 I.getType(), true); 8848 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8849 setValue(&I, Value); 8850 } 8851 8852 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8853 /// true and lower it. Otherwise return false, and it will be lowered like a 8854 /// normal call. 8855 /// The caller already checked that \p I calls the appropriate LibFunc with a 8856 /// correct prototype. 8857 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8858 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8859 const Value *Size = I.getArgOperand(2); 8860 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8861 if (CSize && CSize->getZExtValue() == 0) { 8862 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8863 I.getType(), true); 8864 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8865 return true; 8866 } 8867 8868 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8869 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8870 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8871 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8872 if (Res.first.getNode()) { 8873 processIntegerCallValue(I, Res.first, true); 8874 PendingLoads.push_back(Res.second); 8875 return true; 8876 } 8877 8878 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8879 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8880 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8881 return false; 8882 8883 // If the target has a fast compare for the given size, it will return a 8884 // preferred load type for that size. Require that the load VT is legal and 8885 // that the target supports unaligned loads of that type. Otherwise, return 8886 // INVALID. 8887 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8889 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8890 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8891 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8892 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8893 // TODO: Check alignment of src and dest ptrs. 8894 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8895 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8896 if (!TLI.isTypeLegal(LVT) || 8897 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8898 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8899 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8900 } 8901 8902 return LVT; 8903 }; 8904 8905 // This turns into unaligned loads. We only do this if the target natively 8906 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8907 // we'll only produce a small number of byte loads. 8908 MVT LoadVT; 8909 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8910 switch (NumBitsToCompare) { 8911 default: 8912 return false; 8913 case 16: 8914 LoadVT = MVT::i16; 8915 break; 8916 case 32: 8917 LoadVT = MVT::i32; 8918 break; 8919 case 64: 8920 case 128: 8921 case 256: 8922 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8923 break; 8924 } 8925 8926 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8927 return false; 8928 8929 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8930 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8931 8932 // Bitcast to a wide integer type if the loads are vectors. 8933 if (LoadVT.isVector()) { 8934 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8935 LoadL = DAG.getBitcast(CmpVT, LoadL); 8936 LoadR = DAG.getBitcast(CmpVT, LoadR); 8937 } 8938 8939 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8940 processIntegerCallValue(I, Cmp, false); 8941 return true; 8942 } 8943 8944 /// See if we can lower a memchr call into an optimized form. If so, return 8945 /// true and lower it. Otherwise return false, and it will be lowered like a 8946 /// normal call. 8947 /// The caller already checked that \p I calls the appropriate LibFunc with a 8948 /// correct prototype. 8949 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8950 const Value *Src = I.getArgOperand(0); 8951 const Value *Char = I.getArgOperand(1); 8952 const Value *Length = I.getArgOperand(2); 8953 8954 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8955 std::pair<SDValue, SDValue> Res = 8956 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8957 getValue(Src), getValue(Char), getValue(Length), 8958 MachinePointerInfo(Src)); 8959 if (Res.first.getNode()) { 8960 setValue(&I, Res.first); 8961 PendingLoads.push_back(Res.second); 8962 return true; 8963 } 8964 8965 return false; 8966 } 8967 8968 /// See if we can lower a mempcpy call into an optimized form. If so, return 8969 /// true and lower it. Otherwise return false, and it will be lowered like a 8970 /// normal call. 8971 /// The caller already checked that \p I calls the appropriate LibFunc with a 8972 /// correct prototype. 8973 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8974 SDValue Dst = getValue(I.getArgOperand(0)); 8975 SDValue Src = getValue(I.getArgOperand(1)); 8976 SDValue Size = getValue(I.getArgOperand(2)); 8977 8978 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8979 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8980 // DAG::getMemcpy needs Alignment to be defined. 8981 Align Alignment = std::min(DstAlign, SrcAlign); 8982 8983 SDLoc sdl = getCurSDLoc(); 8984 8985 // In the mempcpy context we need to pass in a false value for isTailCall 8986 // because the return pointer needs to be adjusted by the size of 8987 // the copied memory. 8988 SDValue Root = getMemoryRoot(); 8989 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8990 /*isTailCall=*/false, 8991 MachinePointerInfo(I.getArgOperand(0)), 8992 MachinePointerInfo(I.getArgOperand(1)), 8993 I.getAAMetadata()); 8994 assert(MC.getNode() != nullptr && 8995 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8996 DAG.setRoot(MC); 8997 8998 // Check if Size needs to be truncated or extended. 8999 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9000 9001 // Adjust return pointer to point just past the last dst byte. 9002 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9003 Dst, Size); 9004 setValue(&I, DstPlusSize); 9005 return true; 9006 } 9007 9008 /// See if we can lower a strcpy call into an optimized form. If so, return 9009 /// true and lower it, otherwise return false and it will be lowered like a 9010 /// normal call. 9011 /// The caller already checked that \p I calls the appropriate LibFunc with a 9012 /// correct prototype. 9013 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9014 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9015 9016 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9017 std::pair<SDValue, SDValue> Res = 9018 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9019 getValue(Arg0), getValue(Arg1), 9020 MachinePointerInfo(Arg0), 9021 MachinePointerInfo(Arg1), isStpcpy); 9022 if (Res.first.getNode()) { 9023 setValue(&I, Res.first); 9024 DAG.setRoot(Res.second); 9025 return true; 9026 } 9027 9028 return false; 9029 } 9030 9031 /// See if we can lower a strcmp call into an optimized form. If so, return 9032 /// true and lower it, otherwise return false and it will be lowered like a 9033 /// normal call. 9034 /// The caller already checked that \p I calls the appropriate LibFunc with a 9035 /// correct prototype. 9036 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9037 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9038 9039 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9040 std::pair<SDValue, SDValue> Res = 9041 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9042 getValue(Arg0), getValue(Arg1), 9043 MachinePointerInfo(Arg0), 9044 MachinePointerInfo(Arg1)); 9045 if (Res.first.getNode()) { 9046 processIntegerCallValue(I, Res.first, true); 9047 PendingLoads.push_back(Res.second); 9048 return true; 9049 } 9050 9051 return false; 9052 } 9053 9054 /// See if we can lower a strlen call into an optimized form. If so, return 9055 /// true and lower it, otherwise return false and it will be lowered like a 9056 /// normal call. 9057 /// The caller already checked that \p I calls the appropriate LibFunc with a 9058 /// correct prototype. 9059 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9060 const Value *Arg0 = I.getArgOperand(0); 9061 9062 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9063 std::pair<SDValue, SDValue> Res = 9064 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9065 getValue(Arg0), MachinePointerInfo(Arg0)); 9066 if (Res.first.getNode()) { 9067 processIntegerCallValue(I, Res.first, false); 9068 PendingLoads.push_back(Res.second); 9069 return true; 9070 } 9071 9072 return false; 9073 } 9074 9075 /// See if we can lower a strnlen call into an optimized form. If so, return 9076 /// true and lower it, otherwise return false and it will be lowered like a 9077 /// normal call. 9078 /// The caller already checked that \p I calls the appropriate LibFunc with a 9079 /// correct prototype. 9080 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9081 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9082 9083 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9084 std::pair<SDValue, SDValue> Res = 9085 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9086 getValue(Arg0), getValue(Arg1), 9087 MachinePointerInfo(Arg0)); 9088 if (Res.first.getNode()) { 9089 processIntegerCallValue(I, Res.first, false); 9090 PendingLoads.push_back(Res.second); 9091 return true; 9092 } 9093 9094 return false; 9095 } 9096 9097 /// See if we can lower a unary floating-point operation into an SDNode with 9098 /// the specified Opcode. If so, return true and lower it, otherwise return 9099 /// false and it will be lowered like a normal call. 9100 /// The caller already checked that \p I calls the appropriate LibFunc with a 9101 /// correct prototype. 9102 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9103 unsigned Opcode) { 9104 // We already checked this call's prototype; verify it doesn't modify errno. 9105 if (!I.onlyReadsMemory()) 9106 return false; 9107 9108 SDNodeFlags Flags; 9109 Flags.copyFMF(cast<FPMathOperator>(I)); 9110 9111 SDValue Tmp = getValue(I.getArgOperand(0)); 9112 setValue(&I, 9113 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9114 return true; 9115 } 9116 9117 /// See if we can lower a binary floating-point operation into an SDNode with 9118 /// the specified Opcode. If so, return true and lower it. Otherwise return 9119 /// false, and it will be lowered like a normal call. 9120 /// The caller already checked that \p I calls the appropriate LibFunc with a 9121 /// correct prototype. 9122 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9123 unsigned Opcode) { 9124 // We already checked this call's prototype; verify it doesn't modify errno. 9125 if (!I.onlyReadsMemory()) 9126 return false; 9127 9128 SDNodeFlags Flags; 9129 Flags.copyFMF(cast<FPMathOperator>(I)); 9130 9131 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9132 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9133 EVT VT = Tmp0.getValueType(); 9134 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9135 return true; 9136 } 9137 9138 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9139 // Handle inline assembly differently. 9140 if (I.isInlineAsm()) { 9141 visitInlineAsm(I); 9142 return; 9143 } 9144 9145 diagnoseDontCall(I); 9146 9147 if (Function *F = I.getCalledFunction()) { 9148 if (F->isDeclaration()) { 9149 // Is this an LLVM intrinsic or a target-specific intrinsic? 9150 unsigned IID = F->getIntrinsicID(); 9151 if (!IID) 9152 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9153 IID = II->getIntrinsicID(F); 9154 9155 if (IID) { 9156 visitIntrinsicCall(I, IID); 9157 return; 9158 } 9159 } 9160 9161 // Check for well-known libc/libm calls. If the function is internal, it 9162 // can't be a library call. Don't do the check if marked as nobuiltin for 9163 // some reason or the call site requires strict floating point semantics. 9164 LibFunc Func; 9165 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9166 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9167 LibInfo->hasOptimizedCodeGen(Func)) { 9168 switch (Func) { 9169 default: break; 9170 case LibFunc_bcmp: 9171 if (visitMemCmpBCmpCall(I)) 9172 return; 9173 break; 9174 case LibFunc_copysign: 9175 case LibFunc_copysignf: 9176 case LibFunc_copysignl: 9177 // We already checked this call's prototype; verify it doesn't modify 9178 // errno. 9179 if (I.onlyReadsMemory()) { 9180 SDValue LHS = getValue(I.getArgOperand(0)); 9181 SDValue RHS = getValue(I.getArgOperand(1)); 9182 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9183 LHS.getValueType(), LHS, RHS)); 9184 return; 9185 } 9186 break; 9187 case LibFunc_fabs: 9188 case LibFunc_fabsf: 9189 case LibFunc_fabsl: 9190 if (visitUnaryFloatCall(I, ISD::FABS)) 9191 return; 9192 break; 9193 case LibFunc_fmin: 9194 case LibFunc_fminf: 9195 case LibFunc_fminl: 9196 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9197 return; 9198 break; 9199 case LibFunc_fmax: 9200 case LibFunc_fmaxf: 9201 case LibFunc_fmaxl: 9202 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9203 return; 9204 break; 9205 case LibFunc_sin: 9206 case LibFunc_sinf: 9207 case LibFunc_sinl: 9208 if (visitUnaryFloatCall(I, ISD::FSIN)) 9209 return; 9210 break; 9211 case LibFunc_cos: 9212 case LibFunc_cosf: 9213 case LibFunc_cosl: 9214 if (visitUnaryFloatCall(I, ISD::FCOS)) 9215 return; 9216 break; 9217 case LibFunc_tan: 9218 case LibFunc_tanf: 9219 case LibFunc_tanl: 9220 if (visitUnaryFloatCall(I, ISD::FTAN)) 9221 return; 9222 break; 9223 case LibFunc_sqrt: 9224 case LibFunc_sqrtf: 9225 case LibFunc_sqrtl: 9226 case LibFunc_sqrt_finite: 9227 case LibFunc_sqrtf_finite: 9228 case LibFunc_sqrtl_finite: 9229 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9230 return; 9231 break; 9232 case LibFunc_floor: 9233 case LibFunc_floorf: 9234 case LibFunc_floorl: 9235 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9236 return; 9237 break; 9238 case LibFunc_nearbyint: 9239 case LibFunc_nearbyintf: 9240 case LibFunc_nearbyintl: 9241 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9242 return; 9243 break; 9244 case LibFunc_ceil: 9245 case LibFunc_ceilf: 9246 case LibFunc_ceill: 9247 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9248 return; 9249 break; 9250 case LibFunc_rint: 9251 case LibFunc_rintf: 9252 case LibFunc_rintl: 9253 if (visitUnaryFloatCall(I, ISD::FRINT)) 9254 return; 9255 break; 9256 case LibFunc_round: 9257 case LibFunc_roundf: 9258 case LibFunc_roundl: 9259 if (visitUnaryFloatCall(I, ISD::FROUND)) 9260 return; 9261 break; 9262 case LibFunc_trunc: 9263 case LibFunc_truncf: 9264 case LibFunc_truncl: 9265 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9266 return; 9267 break; 9268 case LibFunc_log2: 9269 case LibFunc_log2f: 9270 case LibFunc_log2l: 9271 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9272 return; 9273 break; 9274 case LibFunc_exp2: 9275 case LibFunc_exp2f: 9276 case LibFunc_exp2l: 9277 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9278 return; 9279 break; 9280 case LibFunc_exp10: 9281 case LibFunc_exp10f: 9282 case LibFunc_exp10l: 9283 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9284 return; 9285 break; 9286 case LibFunc_ldexp: 9287 case LibFunc_ldexpf: 9288 case LibFunc_ldexpl: 9289 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9290 return; 9291 break; 9292 case LibFunc_memcmp: 9293 if (visitMemCmpBCmpCall(I)) 9294 return; 9295 break; 9296 case LibFunc_mempcpy: 9297 if (visitMemPCpyCall(I)) 9298 return; 9299 break; 9300 case LibFunc_memchr: 9301 if (visitMemChrCall(I)) 9302 return; 9303 break; 9304 case LibFunc_strcpy: 9305 if (visitStrCpyCall(I, false)) 9306 return; 9307 break; 9308 case LibFunc_stpcpy: 9309 if (visitStrCpyCall(I, true)) 9310 return; 9311 break; 9312 case LibFunc_strcmp: 9313 if (visitStrCmpCall(I)) 9314 return; 9315 break; 9316 case LibFunc_strlen: 9317 if (visitStrLenCall(I)) 9318 return; 9319 break; 9320 case LibFunc_strnlen: 9321 if (visitStrNLenCall(I)) 9322 return; 9323 break; 9324 } 9325 } 9326 } 9327 9328 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9329 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9330 return; 9331 } 9332 9333 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9334 // have to do anything here to lower funclet bundles. 9335 // CFGuardTarget bundles are lowered in LowerCallTo. 9336 assert(!I.hasOperandBundlesOtherThan( 9337 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9338 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9339 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9340 LLVMContext::OB_convergencectrl}) && 9341 "Cannot lower calls with arbitrary operand bundles!"); 9342 9343 SDValue Callee = getValue(I.getCalledOperand()); 9344 9345 if (I.hasDeoptState()) 9346 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9347 else 9348 // Check if we can potentially perform a tail call. More detailed checking 9349 // is be done within LowerCallTo, after more information about the call is 9350 // known. 9351 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9352 } 9353 9354 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9355 const CallBase &CB, const BasicBlock *EHPadBB) { 9356 auto PAB = CB.getOperandBundle("ptrauth"); 9357 const Value *CalleeV = CB.getCalledOperand(); 9358 9359 // Gather the call ptrauth data from the operand bundle: 9360 // [ i32 <key>, i64 <discriminator> ] 9361 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9362 const Value *Discriminator = PAB->Inputs[1]; 9363 9364 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9365 assert(Discriminator->getType()->isIntegerTy(64) && 9366 "Invalid ptrauth discriminator"); 9367 9368 // Functions should never be ptrauth-called directly. 9369 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9370 9371 // Otherwise, do an authenticated indirect call. 9372 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9373 getValue(Discriminator)}; 9374 9375 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9376 EHPadBB, &PAI); 9377 } 9378 9379 namespace { 9380 9381 /// AsmOperandInfo - This contains information for each constraint that we are 9382 /// lowering. 9383 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9384 public: 9385 /// CallOperand - If this is the result output operand or a clobber 9386 /// this is null, otherwise it is the incoming operand to the CallInst. 9387 /// This gets modified as the asm is processed. 9388 SDValue CallOperand; 9389 9390 /// AssignedRegs - If this is a register or register class operand, this 9391 /// contains the set of register corresponding to the operand. 9392 RegsForValue AssignedRegs; 9393 9394 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9395 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9396 } 9397 9398 /// Whether or not this operand accesses memory 9399 bool hasMemory(const TargetLowering &TLI) const { 9400 // Indirect operand accesses access memory. 9401 if (isIndirect) 9402 return true; 9403 9404 for (const auto &Code : Codes) 9405 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9406 return true; 9407 9408 return false; 9409 } 9410 }; 9411 9412 9413 } // end anonymous namespace 9414 9415 /// Make sure that the output operand \p OpInfo and its corresponding input 9416 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9417 /// out). 9418 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9419 SDISelAsmOperandInfo &MatchingOpInfo, 9420 SelectionDAG &DAG) { 9421 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9422 return; 9423 9424 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9425 const auto &TLI = DAG.getTargetLoweringInfo(); 9426 9427 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9428 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9429 OpInfo.ConstraintVT); 9430 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9431 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9432 MatchingOpInfo.ConstraintVT); 9433 if ((OpInfo.ConstraintVT.isInteger() != 9434 MatchingOpInfo.ConstraintVT.isInteger()) || 9435 (MatchRC.second != InputRC.second)) { 9436 // FIXME: error out in a more elegant fashion 9437 report_fatal_error("Unsupported asm: input constraint" 9438 " with a matching output constraint of" 9439 " incompatible type!"); 9440 } 9441 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9442 } 9443 9444 /// Get a direct memory input to behave well as an indirect operand. 9445 /// This may introduce stores, hence the need for a \p Chain. 9446 /// \return The (possibly updated) chain. 9447 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9448 SDISelAsmOperandInfo &OpInfo, 9449 SelectionDAG &DAG) { 9450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9451 9452 // If we don't have an indirect input, put it in the constpool if we can, 9453 // otherwise spill it to a stack slot. 9454 // TODO: This isn't quite right. We need to handle these according to 9455 // the addressing mode that the constraint wants. Also, this may take 9456 // an additional register for the computation and we don't want that 9457 // either. 9458 9459 // If the operand is a float, integer, or vector constant, spill to a 9460 // constant pool entry to get its address. 9461 const Value *OpVal = OpInfo.CallOperandVal; 9462 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9463 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9464 OpInfo.CallOperand = DAG.getConstantPool( 9465 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9466 return Chain; 9467 } 9468 9469 // Otherwise, create a stack slot and emit a store to it before the asm. 9470 Type *Ty = OpVal->getType(); 9471 auto &DL = DAG.getDataLayout(); 9472 uint64_t TySize = DL.getTypeAllocSize(Ty); 9473 MachineFunction &MF = DAG.getMachineFunction(); 9474 int SSFI = MF.getFrameInfo().CreateStackObject( 9475 TySize, DL.getPrefTypeAlign(Ty), false); 9476 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9477 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9478 MachinePointerInfo::getFixedStack(MF, SSFI), 9479 TLI.getMemValueType(DL, Ty)); 9480 OpInfo.CallOperand = StackSlot; 9481 9482 return Chain; 9483 } 9484 9485 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9486 /// specified operand. We prefer to assign virtual registers, to allow the 9487 /// register allocator to handle the assignment process. However, if the asm 9488 /// uses features that we can't model on machineinstrs, we have SDISel do the 9489 /// allocation. This produces generally horrible, but correct, code. 9490 /// 9491 /// OpInfo describes the operand 9492 /// RefOpInfo describes the matching operand if any, the operand otherwise 9493 static std::optional<unsigned> 9494 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9495 SDISelAsmOperandInfo &OpInfo, 9496 SDISelAsmOperandInfo &RefOpInfo) { 9497 LLVMContext &Context = *DAG.getContext(); 9498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9499 9500 MachineFunction &MF = DAG.getMachineFunction(); 9501 SmallVector<unsigned, 4> Regs; 9502 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9503 9504 // No work to do for memory/address operands. 9505 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9506 OpInfo.ConstraintType == TargetLowering::C_Address) 9507 return std::nullopt; 9508 9509 // If this is a constraint for a single physreg, or a constraint for a 9510 // register class, find it. 9511 unsigned AssignedReg; 9512 const TargetRegisterClass *RC; 9513 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9514 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9515 // RC is unset only on failure. Return immediately. 9516 if (!RC) 9517 return std::nullopt; 9518 9519 // Get the actual register value type. This is important, because the user 9520 // may have asked for (e.g.) the AX register in i32 type. We need to 9521 // remember that AX is actually i16 to get the right extension. 9522 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9523 9524 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9525 // If this is an FP operand in an integer register (or visa versa), or more 9526 // generally if the operand value disagrees with the register class we plan 9527 // to stick it in, fix the operand type. 9528 // 9529 // If this is an input value, the bitcast to the new type is done now. 9530 // Bitcast for output value is done at the end of visitInlineAsm(). 9531 if ((OpInfo.Type == InlineAsm::isOutput || 9532 OpInfo.Type == InlineAsm::isInput) && 9533 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9534 // Try to convert to the first EVT that the reg class contains. If the 9535 // types are identical size, use a bitcast to convert (e.g. two differing 9536 // vector types). Note: output bitcast is done at the end of 9537 // visitInlineAsm(). 9538 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9539 // Exclude indirect inputs while they are unsupported because the code 9540 // to perform the load is missing and thus OpInfo.CallOperand still 9541 // refers to the input address rather than the pointed-to value. 9542 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9543 OpInfo.CallOperand = 9544 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9545 OpInfo.ConstraintVT = RegVT; 9546 // If the operand is an FP value and we want it in integer registers, 9547 // use the corresponding integer type. This turns an f64 value into 9548 // i64, which can be passed with two i32 values on a 32-bit machine. 9549 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9550 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9551 if (OpInfo.Type == InlineAsm::isInput) 9552 OpInfo.CallOperand = 9553 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9554 OpInfo.ConstraintVT = VT; 9555 } 9556 } 9557 } 9558 9559 // No need to allocate a matching input constraint since the constraint it's 9560 // matching to has already been allocated. 9561 if (OpInfo.isMatchingInputConstraint()) 9562 return std::nullopt; 9563 9564 EVT ValueVT = OpInfo.ConstraintVT; 9565 if (OpInfo.ConstraintVT == MVT::Other) 9566 ValueVT = RegVT; 9567 9568 // Initialize NumRegs. 9569 unsigned NumRegs = 1; 9570 if (OpInfo.ConstraintVT != MVT::Other) 9571 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9572 9573 // If this is a constraint for a specific physical register, like {r17}, 9574 // assign it now. 9575 9576 // If this associated to a specific register, initialize iterator to correct 9577 // place. If virtual, make sure we have enough registers 9578 9579 // Initialize iterator if necessary 9580 TargetRegisterClass::iterator I = RC->begin(); 9581 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9582 9583 // Do not check for single registers. 9584 if (AssignedReg) { 9585 I = std::find(I, RC->end(), AssignedReg); 9586 if (I == RC->end()) { 9587 // RC does not contain the selected register, which indicates a 9588 // mismatch between the register and the required type/bitwidth. 9589 return {AssignedReg}; 9590 } 9591 } 9592 9593 for (; NumRegs; --NumRegs, ++I) { 9594 assert(I != RC->end() && "Ran out of registers to allocate!"); 9595 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9596 Regs.push_back(R); 9597 } 9598 9599 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9600 return std::nullopt; 9601 } 9602 9603 static unsigned 9604 findMatchingInlineAsmOperand(unsigned OperandNo, 9605 const std::vector<SDValue> &AsmNodeOperands) { 9606 // Scan until we find the definition we already emitted of this operand. 9607 unsigned CurOp = InlineAsm::Op_FirstOperand; 9608 for (; OperandNo; --OperandNo) { 9609 // Advance to the next operand. 9610 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9611 const InlineAsm::Flag F(OpFlag); 9612 assert( 9613 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9614 "Skipped past definitions?"); 9615 CurOp += F.getNumOperandRegisters() + 1; 9616 } 9617 return CurOp; 9618 } 9619 9620 namespace { 9621 9622 class ExtraFlags { 9623 unsigned Flags = 0; 9624 9625 public: 9626 explicit ExtraFlags(const CallBase &Call) { 9627 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9628 if (IA->hasSideEffects()) 9629 Flags |= InlineAsm::Extra_HasSideEffects; 9630 if (IA->isAlignStack()) 9631 Flags |= InlineAsm::Extra_IsAlignStack; 9632 if (Call.isConvergent()) 9633 Flags |= InlineAsm::Extra_IsConvergent; 9634 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9635 } 9636 9637 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9638 // Ideally, we would only check against memory constraints. However, the 9639 // meaning of an Other constraint can be target-specific and we can't easily 9640 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9641 // for Other constraints as well. 9642 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9643 OpInfo.ConstraintType == TargetLowering::C_Other) { 9644 if (OpInfo.Type == InlineAsm::isInput) 9645 Flags |= InlineAsm::Extra_MayLoad; 9646 else if (OpInfo.Type == InlineAsm::isOutput) 9647 Flags |= InlineAsm::Extra_MayStore; 9648 else if (OpInfo.Type == InlineAsm::isClobber) 9649 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9650 } 9651 } 9652 9653 unsigned get() const { return Flags; } 9654 }; 9655 9656 } // end anonymous namespace 9657 9658 static bool isFunction(SDValue Op) { 9659 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9660 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9661 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9662 9663 // In normal "call dllimport func" instruction (non-inlineasm) it force 9664 // indirect access by specifing call opcode. And usually specially print 9665 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9666 // not do in this way now. (In fact, this is similar with "Data Access" 9667 // action). So here we ignore dllimport function. 9668 if (Fn && !Fn->hasDLLImportStorageClass()) 9669 return true; 9670 } 9671 } 9672 return false; 9673 } 9674 9675 /// visitInlineAsm - Handle a call to an InlineAsm object. 9676 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9677 const BasicBlock *EHPadBB) { 9678 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9679 9680 /// ConstraintOperands - Information about all of the constraints. 9681 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9682 9683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9684 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9685 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9686 9687 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9688 // AsmDialect, MayLoad, MayStore). 9689 bool HasSideEffect = IA->hasSideEffects(); 9690 ExtraFlags ExtraInfo(Call); 9691 9692 for (auto &T : TargetConstraints) { 9693 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9694 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9695 9696 if (OpInfo.CallOperandVal) 9697 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9698 9699 if (!HasSideEffect) 9700 HasSideEffect = OpInfo.hasMemory(TLI); 9701 9702 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9703 // FIXME: Could we compute this on OpInfo rather than T? 9704 9705 // Compute the constraint code and ConstraintType to use. 9706 TLI.ComputeConstraintToUse(T, SDValue()); 9707 9708 if (T.ConstraintType == TargetLowering::C_Immediate && 9709 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9710 // We've delayed emitting a diagnostic like the "n" constraint because 9711 // inlining could cause an integer showing up. 9712 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9713 "' expects an integer constant " 9714 "expression"); 9715 9716 ExtraInfo.update(T); 9717 } 9718 9719 // We won't need to flush pending loads if this asm doesn't touch 9720 // memory and is nonvolatile. 9721 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9722 9723 bool EmitEHLabels = isa<InvokeInst>(Call); 9724 if (EmitEHLabels) { 9725 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9726 } 9727 bool IsCallBr = isa<CallBrInst>(Call); 9728 9729 if (IsCallBr || EmitEHLabels) { 9730 // If this is a callbr or invoke we need to flush pending exports since 9731 // inlineasm_br and invoke are terminators. 9732 // We need to do this before nodes are glued to the inlineasm_br node. 9733 Chain = getControlRoot(); 9734 } 9735 9736 MCSymbol *BeginLabel = nullptr; 9737 if (EmitEHLabels) { 9738 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9739 } 9740 9741 int OpNo = -1; 9742 SmallVector<StringRef> AsmStrs; 9743 IA->collectAsmStrs(AsmStrs); 9744 9745 // Second pass over the constraints: compute which constraint option to use. 9746 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9747 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9748 OpNo++; 9749 9750 // If this is an output operand with a matching input operand, look up the 9751 // matching input. If their types mismatch, e.g. one is an integer, the 9752 // other is floating point, or their sizes are different, flag it as an 9753 // error. 9754 if (OpInfo.hasMatchingInput()) { 9755 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9756 patchMatchingInput(OpInfo, Input, DAG); 9757 } 9758 9759 // Compute the constraint code and ConstraintType to use. 9760 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9761 9762 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9763 OpInfo.Type == InlineAsm::isClobber) || 9764 OpInfo.ConstraintType == TargetLowering::C_Address) 9765 continue; 9766 9767 // In Linux PIC model, there are 4 cases about value/label addressing: 9768 // 9769 // 1: Function call or Label jmp inside the module. 9770 // 2: Data access (such as global variable, static variable) inside module. 9771 // 3: Function call or Label jmp outside the module. 9772 // 4: Data access (such as global variable) outside the module. 9773 // 9774 // Due to current llvm inline asm architecture designed to not "recognize" 9775 // the asm code, there are quite troubles for us to treat mem addressing 9776 // differently for same value/adress used in different instuctions. 9777 // For example, in pic model, call a func may in plt way or direclty 9778 // pc-related, but lea/mov a function adress may use got. 9779 // 9780 // Here we try to "recognize" function call for the case 1 and case 3 in 9781 // inline asm. And try to adjust the constraint for them. 9782 // 9783 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9784 // label, so here we don't handle jmp function label now, but we need to 9785 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9786 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9787 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9788 TM.getCodeModel() != CodeModel::Large) { 9789 OpInfo.isIndirect = false; 9790 OpInfo.ConstraintType = TargetLowering::C_Address; 9791 } 9792 9793 // If this is a memory input, and if the operand is not indirect, do what we 9794 // need to provide an address for the memory input. 9795 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9796 !OpInfo.isIndirect) { 9797 assert((OpInfo.isMultipleAlternative || 9798 (OpInfo.Type == InlineAsm::isInput)) && 9799 "Can only indirectify direct input operands!"); 9800 9801 // Memory operands really want the address of the value. 9802 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9803 9804 // There is no longer a Value* corresponding to this operand. 9805 OpInfo.CallOperandVal = nullptr; 9806 9807 // It is now an indirect operand. 9808 OpInfo.isIndirect = true; 9809 } 9810 9811 } 9812 9813 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9814 std::vector<SDValue> AsmNodeOperands; 9815 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9816 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9817 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9818 9819 // If we have a !srcloc metadata node associated with it, we want to attach 9820 // this to the ultimately generated inline asm machineinstr. To do this, we 9821 // pass in the third operand as this (potentially null) inline asm MDNode. 9822 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9823 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9824 9825 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9826 // bits as operand 3. 9827 AsmNodeOperands.push_back(DAG.getTargetConstant( 9828 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9829 9830 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9831 // this, assign virtual and physical registers for inputs and otput. 9832 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9833 // Assign Registers. 9834 SDISelAsmOperandInfo &RefOpInfo = 9835 OpInfo.isMatchingInputConstraint() 9836 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9837 : OpInfo; 9838 const auto RegError = 9839 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9840 if (RegError) { 9841 const MachineFunction &MF = DAG.getMachineFunction(); 9842 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9843 const char *RegName = TRI.getName(*RegError); 9844 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9845 "' allocated for constraint '" + 9846 Twine(OpInfo.ConstraintCode) + 9847 "' does not match required type"); 9848 return; 9849 } 9850 9851 auto DetectWriteToReservedRegister = [&]() { 9852 const MachineFunction &MF = DAG.getMachineFunction(); 9853 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9854 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9855 if (Register::isPhysicalRegister(Reg) && 9856 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9857 const char *RegName = TRI.getName(Reg); 9858 emitInlineAsmError(Call, "write to reserved register '" + 9859 Twine(RegName) + "'"); 9860 return true; 9861 } 9862 } 9863 return false; 9864 }; 9865 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9866 (OpInfo.Type == InlineAsm::isInput && 9867 !OpInfo.isMatchingInputConstraint())) && 9868 "Only address as input operand is allowed."); 9869 9870 switch (OpInfo.Type) { 9871 case InlineAsm::isOutput: 9872 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9873 const InlineAsm::ConstraintCode ConstraintID = 9874 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9875 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9876 "Failed to convert memory constraint code to constraint id."); 9877 9878 // Add information to the INLINEASM node to know about this output. 9879 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9880 OpFlags.setMemConstraint(ConstraintID); 9881 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9882 MVT::i32)); 9883 AsmNodeOperands.push_back(OpInfo.CallOperand); 9884 } else { 9885 // Otherwise, this outputs to a register (directly for C_Register / 9886 // C_RegisterClass, and a target-defined fashion for 9887 // C_Immediate/C_Other). Find a register that we can use. 9888 if (OpInfo.AssignedRegs.Regs.empty()) { 9889 emitInlineAsmError( 9890 Call, "couldn't allocate output register for constraint '" + 9891 Twine(OpInfo.ConstraintCode) + "'"); 9892 return; 9893 } 9894 9895 if (DetectWriteToReservedRegister()) 9896 return; 9897 9898 // Add information to the INLINEASM node to know that this register is 9899 // set. 9900 OpInfo.AssignedRegs.AddInlineAsmOperands( 9901 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9902 : InlineAsm::Kind::RegDef, 9903 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9904 } 9905 break; 9906 9907 case InlineAsm::isInput: 9908 case InlineAsm::isLabel: { 9909 SDValue InOperandVal = OpInfo.CallOperand; 9910 9911 if (OpInfo.isMatchingInputConstraint()) { 9912 // If this is required to match an output register we have already set, 9913 // just use its register. 9914 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9915 AsmNodeOperands); 9916 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9917 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9918 if (OpInfo.isIndirect) { 9919 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9920 emitInlineAsmError(Call, "inline asm not supported yet: " 9921 "don't know how to handle tied " 9922 "indirect register inputs"); 9923 return; 9924 } 9925 9926 SmallVector<unsigned, 4> Regs; 9927 MachineFunction &MF = DAG.getMachineFunction(); 9928 MachineRegisterInfo &MRI = MF.getRegInfo(); 9929 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9930 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9931 Register TiedReg = R->getReg(); 9932 MVT RegVT = R->getSimpleValueType(0); 9933 const TargetRegisterClass *RC = 9934 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9935 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9936 : TRI.getMinimalPhysRegClass(TiedReg); 9937 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9938 Regs.push_back(MRI.createVirtualRegister(RC)); 9939 9940 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9941 9942 SDLoc dl = getCurSDLoc(); 9943 // Use the produced MatchedRegs object to 9944 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9945 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9946 OpInfo.getMatchedOperand(), dl, DAG, 9947 AsmNodeOperands); 9948 break; 9949 } 9950 9951 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9952 assert(Flag.getNumOperandRegisters() == 1 && 9953 "Unexpected number of operands"); 9954 // Add information to the INLINEASM node to know about this input. 9955 // See InlineAsm.h isUseOperandTiedToDef. 9956 Flag.clearMemConstraint(); 9957 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9958 AsmNodeOperands.push_back(DAG.getTargetConstant( 9959 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9960 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9961 break; 9962 } 9963 9964 // Treat indirect 'X' constraint as memory. 9965 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9966 OpInfo.isIndirect) 9967 OpInfo.ConstraintType = TargetLowering::C_Memory; 9968 9969 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9970 OpInfo.ConstraintType == TargetLowering::C_Other) { 9971 std::vector<SDValue> Ops; 9972 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9973 Ops, DAG); 9974 if (Ops.empty()) { 9975 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9976 if (isa<ConstantSDNode>(InOperandVal)) { 9977 emitInlineAsmError(Call, "value out of range for constraint '" + 9978 Twine(OpInfo.ConstraintCode) + "'"); 9979 return; 9980 } 9981 9982 emitInlineAsmError(Call, 9983 "invalid operand for inline asm constraint '" + 9984 Twine(OpInfo.ConstraintCode) + "'"); 9985 return; 9986 } 9987 9988 // Add information to the INLINEASM node to know about this input. 9989 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9990 AsmNodeOperands.push_back(DAG.getTargetConstant( 9991 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9992 llvm::append_range(AsmNodeOperands, Ops); 9993 break; 9994 } 9995 9996 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9997 assert((OpInfo.isIndirect || 9998 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9999 "Operand must be indirect to be a mem!"); 10000 assert(InOperandVal.getValueType() == 10001 TLI.getPointerTy(DAG.getDataLayout()) && 10002 "Memory operands expect pointer values"); 10003 10004 const InlineAsm::ConstraintCode ConstraintID = 10005 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10006 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10007 "Failed to convert memory constraint code to constraint id."); 10008 10009 // Add information to the INLINEASM node to know about this input. 10010 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10011 ResOpType.setMemConstraint(ConstraintID); 10012 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10013 getCurSDLoc(), 10014 MVT::i32)); 10015 AsmNodeOperands.push_back(InOperandVal); 10016 break; 10017 } 10018 10019 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10020 const InlineAsm::ConstraintCode ConstraintID = 10021 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10022 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10023 "Failed to convert memory constraint code to constraint id."); 10024 10025 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10026 10027 SDValue AsmOp = InOperandVal; 10028 if (isFunction(InOperandVal)) { 10029 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10030 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10031 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10032 InOperandVal.getValueType(), 10033 GA->getOffset()); 10034 } 10035 10036 // Add information to the INLINEASM node to know about this input. 10037 ResOpType.setMemConstraint(ConstraintID); 10038 10039 AsmNodeOperands.push_back( 10040 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10041 10042 AsmNodeOperands.push_back(AsmOp); 10043 break; 10044 } 10045 10046 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10047 OpInfo.ConstraintType != TargetLowering::C_Register) { 10048 emitInlineAsmError(Call, "unknown asm constraint '" + 10049 Twine(OpInfo.ConstraintCode) + "'"); 10050 return; 10051 } 10052 10053 // TODO: Support this. 10054 if (OpInfo.isIndirect) { 10055 emitInlineAsmError( 10056 Call, "Don't know how to handle indirect register inputs yet " 10057 "for constraint '" + 10058 Twine(OpInfo.ConstraintCode) + "'"); 10059 return; 10060 } 10061 10062 // Copy the input into the appropriate registers. 10063 if (OpInfo.AssignedRegs.Regs.empty()) { 10064 emitInlineAsmError(Call, 10065 "couldn't allocate input reg for constraint '" + 10066 Twine(OpInfo.ConstraintCode) + "'"); 10067 return; 10068 } 10069 10070 if (DetectWriteToReservedRegister()) 10071 return; 10072 10073 SDLoc dl = getCurSDLoc(); 10074 10075 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10076 &Call); 10077 10078 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10079 0, dl, DAG, AsmNodeOperands); 10080 break; 10081 } 10082 case InlineAsm::isClobber: 10083 // Add the clobbered value to the operand list, so that the register 10084 // allocator is aware that the physreg got clobbered. 10085 if (!OpInfo.AssignedRegs.Regs.empty()) 10086 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10087 false, 0, getCurSDLoc(), DAG, 10088 AsmNodeOperands); 10089 break; 10090 } 10091 } 10092 10093 // Finish up input operands. Set the input chain and add the flag last. 10094 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10095 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10096 10097 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10098 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10099 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10100 Glue = Chain.getValue(1); 10101 10102 // Do additional work to generate outputs. 10103 10104 SmallVector<EVT, 1> ResultVTs; 10105 SmallVector<SDValue, 1> ResultValues; 10106 SmallVector<SDValue, 8> OutChains; 10107 10108 llvm::Type *CallResultType = Call.getType(); 10109 ArrayRef<Type *> ResultTypes; 10110 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10111 ResultTypes = StructResult->elements(); 10112 else if (!CallResultType->isVoidTy()) 10113 ResultTypes = ArrayRef(CallResultType); 10114 10115 auto CurResultType = ResultTypes.begin(); 10116 auto handleRegAssign = [&](SDValue V) { 10117 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10118 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10119 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10120 ++CurResultType; 10121 // If the type of the inline asm call site return value is different but has 10122 // same size as the type of the asm output bitcast it. One example of this 10123 // is for vectors with different width / number of elements. This can 10124 // happen for register classes that can contain multiple different value 10125 // types. The preg or vreg allocated may not have the same VT as was 10126 // expected. 10127 // 10128 // This can also happen for a return value that disagrees with the register 10129 // class it is put in, eg. a double in a general-purpose register on a 10130 // 32-bit machine. 10131 if (ResultVT != V.getValueType() && 10132 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10133 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10134 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10135 V.getValueType().isInteger()) { 10136 // If a result value was tied to an input value, the computed result 10137 // may have a wider width than the expected result. Extract the 10138 // relevant portion. 10139 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10140 } 10141 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10142 ResultVTs.push_back(ResultVT); 10143 ResultValues.push_back(V); 10144 }; 10145 10146 // Deal with output operands. 10147 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10148 if (OpInfo.Type == InlineAsm::isOutput) { 10149 SDValue Val; 10150 // Skip trivial output operands. 10151 if (OpInfo.AssignedRegs.Regs.empty()) 10152 continue; 10153 10154 switch (OpInfo.ConstraintType) { 10155 case TargetLowering::C_Register: 10156 case TargetLowering::C_RegisterClass: 10157 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10158 Chain, &Glue, &Call); 10159 break; 10160 case TargetLowering::C_Immediate: 10161 case TargetLowering::C_Other: 10162 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10163 OpInfo, DAG); 10164 break; 10165 case TargetLowering::C_Memory: 10166 break; // Already handled. 10167 case TargetLowering::C_Address: 10168 break; // Silence warning. 10169 case TargetLowering::C_Unknown: 10170 assert(false && "Unexpected unknown constraint"); 10171 } 10172 10173 // Indirect output manifest as stores. Record output chains. 10174 if (OpInfo.isIndirect) { 10175 const Value *Ptr = OpInfo.CallOperandVal; 10176 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10177 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10178 MachinePointerInfo(Ptr)); 10179 OutChains.push_back(Store); 10180 } else { 10181 // generate CopyFromRegs to associated registers. 10182 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10183 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10184 for (const SDValue &V : Val->op_values()) 10185 handleRegAssign(V); 10186 } else 10187 handleRegAssign(Val); 10188 } 10189 } 10190 } 10191 10192 // Set results. 10193 if (!ResultValues.empty()) { 10194 assert(CurResultType == ResultTypes.end() && 10195 "Mismatch in number of ResultTypes"); 10196 assert(ResultValues.size() == ResultTypes.size() && 10197 "Mismatch in number of output operands in asm result"); 10198 10199 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10200 DAG.getVTList(ResultVTs), ResultValues); 10201 setValue(&Call, V); 10202 } 10203 10204 // Collect store chains. 10205 if (!OutChains.empty()) 10206 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10207 10208 if (EmitEHLabels) { 10209 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10210 } 10211 10212 // Only Update Root if inline assembly has a memory effect. 10213 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10214 EmitEHLabels) 10215 DAG.setRoot(Chain); 10216 } 10217 10218 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10219 const Twine &Message) { 10220 LLVMContext &Ctx = *DAG.getContext(); 10221 Ctx.emitError(&Call, Message); 10222 10223 // Make sure we leave the DAG in a valid state 10224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10225 SmallVector<EVT, 1> ValueVTs; 10226 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10227 10228 if (ValueVTs.empty()) 10229 return; 10230 10231 SmallVector<SDValue, 1> Ops; 10232 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 10233 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 10234 10235 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10236 } 10237 10238 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10239 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10240 MVT::Other, getRoot(), 10241 getValue(I.getArgOperand(0)), 10242 DAG.getSrcValue(I.getArgOperand(0)))); 10243 } 10244 10245 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10247 const DataLayout &DL = DAG.getDataLayout(); 10248 SDValue V = DAG.getVAArg( 10249 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10250 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10251 DL.getABITypeAlign(I.getType()).value()); 10252 DAG.setRoot(V.getValue(1)); 10253 10254 if (I.getType()->isPointerTy()) 10255 V = DAG.getPtrExtOrTrunc( 10256 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10257 setValue(&I, V); 10258 } 10259 10260 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10261 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10262 MVT::Other, getRoot(), 10263 getValue(I.getArgOperand(0)), 10264 DAG.getSrcValue(I.getArgOperand(0)))); 10265 } 10266 10267 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10268 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10269 MVT::Other, getRoot(), 10270 getValue(I.getArgOperand(0)), 10271 getValue(I.getArgOperand(1)), 10272 DAG.getSrcValue(I.getArgOperand(0)), 10273 DAG.getSrcValue(I.getArgOperand(1)))); 10274 } 10275 10276 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10277 const Instruction &I, 10278 SDValue Op) { 10279 std::optional<ConstantRange> CR = getRange(I); 10280 10281 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10282 return Op; 10283 10284 APInt Lo = CR->getUnsignedMin(); 10285 if (!Lo.isMinValue()) 10286 return Op; 10287 10288 APInt Hi = CR->getUnsignedMax(); 10289 unsigned Bits = std::max(Hi.getActiveBits(), 10290 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10291 10292 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10293 10294 SDLoc SL = getCurSDLoc(); 10295 10296 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10297 DAG.getValueType(SmallVT)); 10298 unsigned NumVals = Op.getNode()->getNumValues(); 10299 if (NumVals == 1) 10300 return ZExt; 10301 10302 SmallVector<SDValue, 4> Ops; 10303 10304 Ops.push_back(ZExt); 10305 for (unsigned I = 1; I != NumVals; ++I) 10306 Ops.push_back(Op.getValue(I)); 10307 10308 return DAG.getMergeValues(Ops, SL); 10309 } 10310 10311 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10312 /// the call being lowered. 10313 /// 10314 /// This is a helper for lowering intrinsics that follow a target calling 10315 /// convention or require stack pointer adjustment. Only a subset of the 10316 /// intrinsic's operands need to participate in the calling convention. 10317 void SelectionDAGBuilder::populateCallLoweringInfo( 10318 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10319 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10320 AttributeSet RetAttrs, bool IsPatchPoint) { 10321 TargetLowering::ArgListTy Args; 10322 Args.reserve(NumArgs); 10323 10324 // Populate the argument list. 10325 // Attributes for args start at offset 1, after the return attribute. 10326 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10327 ArgI != ArgE; ++ArgI) { 10328 const Value *V = Call->getOperand(ArgI); 10329 10330 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10331 10332 TargetLowering::ArgListEntry Entry; 10333 Entry.Node = getValue(V); 10334 Entry.Ty = V->getType(); 10335 Entry.setAttributes(Call, ArgI); 10336 Args.push_back(Entry); 10337 } 10338 10339 CLI.setDebugLoc(getCurSDLoc()) 10340 .setChain(getRoot()) 10341 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10342 RetAttrs) 10343 .setDiscardResult(Call->use_empty()) 10344 .setIsPatchPoint(IsPatchPoint) 10345 .setIsPreallocated( 10346 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10347 } 10348 10349 /// Add a stack map intrinsic call's live variable operands to a stackmap 10350 /// or patchpoint target node's operand list. 10351 /// 10352 /// Constants are converted to TargetConstants purely as an optimization to 10353 /// avoid constant materialization and register allocation. 10354 /// 10355 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10356 /// generate addess computation nodes, and so FinalizeISel can convert the 10357 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10358 /// address materialization and register allocation, but may also be required 10359 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10360 /// alloca in the entry block, then the runtime may assume that the alloca's 10361 /// StackMap location can be read immediately after compilation and that the 10362 /// location is valid at any point during execution (this is similar to the 10363 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10364 /// only available in a register, then the runtime would need to trap when 10365 /// execution reaches the StackMap in order to read the alloca's location. 10366 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10367 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10368 SelectionDAGBuilder &Builder) { 10369 SelectionDAG &DAG = Builder.DAG; 10370 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10371 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10372 10373 // Things on the stack are pointer-typed, meaning that they are already 10374 // legal and can be emitted directly to target nodes. 10375 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10376 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10377 } else { 10378 // Otherwise emit a target independent node to be legalised. 10379 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10380 } 10381 } 10382 } 10383 10384 /// Lower llvm.experimental.stackmap. 10385 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10386 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10387 // [live variables...]) 10388 10389 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10390 10391 SDValue Chain, InGlue, Callee; 10392 SmallVector<SDValue, 32> Ops; 10393 10394 SDLoc DL = getCurSDLoc(); 10395 Callee = getValue(CI.getCalledOperand()); 10396 10397 // The stackmap intrinsic only records the live variables (the arguments 10398 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10399 // intrinsic, this won't be lowered to a function call. This means we don't 10400 // have to worry about calling conventions and target specific lowering code. 10401 // Instead we perform the call lowering right here. 10402 // 10403 // chain, flag = CALLSEQ_START(chain, 0, 0) 10404 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10405 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10406 // 10407 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10408 InGlue = Chain.getValue(1); 10409 10410 // Add the STACKMAP operands, starting with DAG house-keeping. 10411 Ops.push_back(Chain); 10412 Ops.push_back(InGlue); 10413 10414 // Add the <id>, <numShadowBytes> operands. 10415 // 10416 // These do not require legalisation, and can be emitted directly to target 10417 // constant nodes. 10418 SDValue ID = getValue(CI.getArgOperand(0)); 10419 assert(ID.getValueType() == MVT::i64); 10420 SDValue IDConst = 10421 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10422 Ops.push_back(IDConst); 10423 10424 SDValue Shad = getValue(CI.getArgOperand(1)); 10425 assert(Shad.getValueType() == MVT::i32); 10426 SDValue ShadConst = 10427 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10428 Ops.push_back(ShadConst); 10429 10430 // Add the live variables. 10431 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10432 10433 // Create the STACKMAP node. 10434 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10435 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10436 InGlue = Chain.getValue(1); 10437 10438 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10439 10440 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10441 10442 // Set the root to the target-lowered call chain. 10443 DAG.setRoot(Chain); 10444 10445 // Inform the Frame Information that we have a stackmap in this function. 10446 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10447 } 10448 10449 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10450 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10451 const BasicBlock *EHPadBB) { 10452 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10453 // i32 <numBytes>, 10454 // i8* <target>, 10455 // i32 <numArgs>, 10456 // [Args...], 10457 // [live variables...]) 10458 10459 CallingConv::ID CC = CB.getCallingConv(); 10460 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10461 bool HasDef = !CB.getType()->isVoidTy(); 10462 SDLoc dl = getCurSDLoc(); 10463 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10464 10465 // Handle immediate and symbolic callees. 10466 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10467 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10468 /*isTarget=*/true); 10469 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10470 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10471 SDLoc(SymbolicCallee), 10472 SymbolicCallee->getValueType(0)); 10473 10474 // Get the real number of arguments participating in the call <numArgs> 10475 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10476 unsigned NumArgs = NArgVal->getAsZExtVal(); 10477 10478 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10479 // Intrinsics include all meta-operands up to but not including CC. 10480 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10481 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10482 "Not enough arguments provided to the patchpoint intrinsic"); 10483 10484 // For AnyRegCC the arguments are lowered later on manually. 10485 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10486 Type *ReturnTy = 10487 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10488 10489 TargetLowering::CallLoweringInfo CLI(DAG); 10490 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10491 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10492 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10493 10494 SDNode *CallEnd = Result.second.getNode(); 10495 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10496 CallEnd = CallEnd->getOperand(0).getNode(); 10497 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10498 CallEnd = CallEnd->getOperand(0).getNode(); 10499 10500 /// Get a call instruction from the call sequence chain. 10501 /// Tail calls are not allowed. 10502 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10503 "Expected a callseq node."); 10504 SDNode *Call = CallEnd->getOperand(0).getNode(); 10505 bool HasGlue = Call->getGluedNode(); 10506 10507 // Replace the target specific call node with the patchable intrinsic. 10508 SmallVector<SDValue, 8> Ops; 10509 10510 // Push the chain. 10511 Ops.push_back(*(Call->op_begin())); 10512 10513 // Optionally, push the glue (if any). 10514 if (HasGlue) 10515 Ops.push_back(*(Call->op_end() - 1)); 10516 10517 // Push the register mask info. 10518 if (HasGlue) 10519 Ops.push_back(*(Call->op_end() - 2)); 10520 else 10521 Ops.push_back(*(Call->op_end() - 1)); 10522 10523 // Add the <id> and <numBytes> constants. 10524 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10525 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10526 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10527 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10528 10529 // Add the callee. 10530 Ops.push_back(Callee); 10531 10532 // Adjust <numArgs> to account for any arguments that have been passed on the 10533 // stack instead. 10534 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10535 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10536 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10537 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10538 10539 // Add the calling convention 10540 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10541 10542 // Add the arguments we omitted previously. The register allocator should 10543 // place these in any free register. 10544 if (IsAnyRegCC) 10545 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10546 Ops.push_back(getValue(CB.getArgOperand(i))); 10547 10548 // Push the arguments from the call instruction. 10549 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10550 Ops.append(Call->op_begin() + 2, e); 10551 10552 // Push live variables for the stack map. 10553 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10554 10555 SDVTList NodeTys; 10556 if (IsAnyRegCC && HasDef) { 10557 // Create the return types based on the intrinsic definition 10558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10559 SmallVector<EVT, 3> ValueVTs; 10560 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10561 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10562 10563 // There is always a chain and a glue type at the end 10564 ValueVTs.push_back(MVT::Other); 10565 ValueVTs.push_back(MVT::Glue); 10566 NodeTys = DAG.getVTList(ValueVTs); 10567 } else 10568 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10569 10570 // Replace the target specific call node with a PATCHPOINT node. 10571 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10572 10573 // Update the NodeMap. 10574 if (HasDef) { 10575 if (IsAnyRegCC) 10576 setValue(&CB, SDValue(PPV.getNode(), 0)); 10577 else 10578 setValue(&CB, Result.first); 10579 } 10580 10581 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10582 // call sequence. Furthermore the location of the chain and glue can change 10583 // when the AnyReg calling convention is used and the intrinsic returns a 10584 // value. 10585 if (IsAnyRegCC && HasDef) { 10586 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10587 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10588 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10589 } else 10590 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10591 DAG.DeleteNode(Call); 10592 10593 // Inform the Frame Information that we have a patchpoint in this function. 10594 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10595 } 10596 10597 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10598 unsigned Intrinsic) { 10599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10600 SDValue Op1 = getValue(I.getArgOperand(0)); 10601 SDValue Op2; 10602 if (I.arg_size() > 1) 10603 Op2 = getValue(I.getArgOperand(1)); 10604 SDLoc dl = getCurSDLoc(); 10605 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10606 SDValue Res; 10607 SDNodeFlags SDFlags; 10608 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10609 SDFlags.copyFMF(*FPMO); 10610 10611 switch (Intrinsic) { 10612 case Intrinsic::vector_reduce_fadd: 10613 if (SDFlags.hasAllowReassociation()) 10614 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10615 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10616 SDFlags); 10617 else 10618 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10619 break; 10620 case Intrinsic::vector_reduce_fmul: 10621 if (SDFlags.hasAllowReassociation()) 10622 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10623 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10624 SDFlags); 10625 else 10626 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10627 break; 10628 case Intrinsic::vector_reduce_add: 10629 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10630 break; 10631 case Intrinsic::vector_reduce_mul: 10632 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10633 break; 10634 case Intrinsic::vector_reduce_and: 10635 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10636 break; 10637 case Intrinsic::vector_reduce_or: 10638 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10639 break; 10640 case Intrinsic::vector_reduce_xor: 10641 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10642 break; 10643 case Intrinsic::vector_reduce_smax: 10644 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10645 break; 10646 case Intrinsic::vector_reduce_smin: 10647 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10648 break; 10649 case Intrinsic::vector_reduce_umax: 10650 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10651 break; 10652 case Intrinsic::vector_reduce_umin: 10653 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10654 break; 10655 case Intrinsic::vector_reduce_fmax: 10656 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10657 break; 10658 case Intrinsic::vector_reduce_fmin: 10659 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10660 break; 10661 case Intrinsic::vector_reduce_fmaximum: 10662 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10663 break; 10664 case Intrinsic::vector_reduce_fminimum: 10665 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10666 break; 10667 default: 10668 llvm_unreachable("Unhandled vector reduce intrinsic"); 10669 } 10670 setValue(&I, Res); 10671 } 10672 10673 /// Returns an AttributeList representing the attributes applied to the return 10674 /// value of the given call. 10675 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10676 SmallVector<Attribute::AttrKind, 2> Attrs; 10677 if (CLI.RetSExt) 10678 Attrs.push_back(Attribute::SExt); 10679 if (CLI.RetZExt) 10680 Attrs.push_back(Attribute::ZExt); 10681 if (CLI.IsInReg) 10682 Attrs.push_back(Attribute::InReg); 10683 10684 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10685 Attrs); 10686 } 10687 10688 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10689 /// implementation, which just calls LowerCall. 10690 /// FIXME: When all targets are 10691 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10692 std::pair<SDValue, SDValue> 10693 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10694 // Handle the incoming return values from the call. 10695 CLI.Ins.clear(); 10696 Type *OrigRetTy = CLI.RetTy; 10697 SmallVector<EVT, 4> RetTys; 10698 SmallVector<TypeSize, 4> Offsets; 10699 auto &DL = CLI.DAG.getDataLayout(); 10700 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10701 10702 if (CLI.IsPostTypeLegalization) { 10703 // If we are lowering a libcall after legalization, split the return type. 10704 SmallVector<EVT, 4> OldRetTys; 10705 SmallVector<TypeSize, 4> OldOffsets; 10706 RetTys.swap(OldRetTys); 10707 Offsets.swap(OldOffsets); 10708 10709 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10710 EVT RetVT = OldRetTys[i]; 10711 uint64_t Offset = OldOffsets[i]; 10712 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10713 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10714 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10715 RetTys.append(NumRegs, RegisterVT); 10716 for (unsigned j = 0; j != NumRegs; ++j) 10717 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10718 } 10719 } 10720 10721 SmallVector<ISD::OutputArg, 4> Outs; 10722 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10723 10724 bool CanLowerReturn = 10725 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10726 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10727 10728 SDValue DemoteStackSlot; 10729 int DemoteStackIdx = -100; 10730 if (!CanLowerReturn) { 10731 // FIXME: equivalent assert? 10732 // assert(!CS.hasInAllocaArgument() && 10733 // "sret demotion is incompatible with inalloca"); 10734 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10735 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10736 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10737 DemoteStackIdx = 10738 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10739 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10740 DL.getAllocaAddrSpace()); 10741 10742 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10743 ArgListEntry Entry; 10744 Entry.Node = DemoteStackSlot; 10745 Entry.Ty = StackSlotPtrType; 10746 Entry.IsSExt = false; 10747 Entry.IsZExt = false; 10748 Entry.IsInReg = false; 10749 Entry.IsSRet = true; 10750 Entry.IsNest = false; 10751 Entry.IsByVal = false; 10752 Entry.IsByRef = false; 10753 Entry.IsReturned = false; 10754 Entry.IsSwiftSelf = false; 10755 Entry.IsSwiftAsync = false; 10756 Entry.IsSwiftError = false; 10757 Entry.IsCFGuardTarget = false; 10758 Entry.Alignment = Alignment; 10759 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10760 CLI.NumFixedArgs += 1; 10761 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10762 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10763 10764 // sret demotion isn't compatible with tail-calls, since the sret argument 10765 // points into the callers stack frame. 10766 CLI.IsTailCall = false; 10767 } else { 10768 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10769 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10770 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10771 ISD::ArgFlagsTy Flags; 10772 if (NeedsRegBlock) { 10773 Flags.setInConsecutiveRegs(); 10774 if (I == RetTys.size() - 1) 10775 Flags.setInConsecutiveRegsLast(); 10776 } 10777 EVT VT = RetTys[I]; 10778 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10779 CLI.CallConv, VT); 10780 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10781 CLI.CallConv, VT); 10782 for (unsigned i = 0; i != NumRegs; ++i) { 10783 ISD::InputArg MyFlags; 10784 MyFlags.Flags = Flags; 10785 MyFlags.VT = RegisterVT; 10786 MyFlags.ArgVT = VT; 10787 MyFlags.Used = CLI.IsReturnValueUsed; 10788 if (CLI.RetTy->isPointerTy()) { 10789 MyFlags.Flags.setPointer(); 10790 MyFlags.Flags.setPointerAddrSpace( 10791 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10792 } 10793 if (CLI.RetSExt) 10794 MyFlags.Flags.setSExt(); 10795 if (CLI.RetZExt) 10796 MyFlags.Flags.setZExt(); 10797 if (CLI.IsInReg) 10798 MyFlags.Flags.setInReg(); 10799 CLI.Ins.push_back(MyFlags); 10800 } 10801 } 10802 } 10803 10804 // We push in swifterror return as the last element of CLI.Ins. 10805 ArgListTy &Args = CLI.getArgs(); 10806 if (supportSwiftError()) { 10807 for (const ArgListEntry &Arg : Args) { 10808 if (Arg.IsSwiftError) { 10809 ISD::InputArg MyFlags; 10810 MyFlags.VT = getPointerTy(DL); 10811 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10812 MyFlags.Flags.setSwiftError(); 10813 CLI.Ins.push_back(MyFlags); 10814 } 10815 } 10816 } 10817 10818 // Handle all of the outgoing arguments. 10819 CLI.Outs.clear(); 10820 CLI.OutVals.clear(); 10821 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10822 SmallVector<EVT, 4> ValueVTs; 10823 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10824 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10825 Type *FinalType = Args[i].Ty; 10826 if (Args[i].IsByVal) 10827 FinalType = Args[i].IndirectType; 10828 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10829 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10830 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10831 ++Value) { 10832 EVT VT = ValueVTs[Value]; 10833 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10834 SDValue Op = SDValue(Args[i].Node.getNode(), 10835 Args[i].Node.getResNo() + Value); 10836 ISD::ArgFlagsTy Flags; 10837 10838 // Certain targets (such as MIPS), may have a different ABI alignment 10839 // for a type depending on the context. Give the target a chance to 10840 // specify the alignment it wants. 10841 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10842 Flags.setOrigAlign(OriginalAlignment); 10843 10844 if (Args[i].Ty->isPointerTy()) { 10845 Flags.setPointer(); 10846 Flags.setPointerAddrSpace( 10847 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10848 } 10849 if (Args[i].IsZExt) 10850 Flags.setZExt(); 10851 if (Args[i].IsSExt) 10852 Flags.setSExt(); 10853 if (Args[i].IsInReg) { 10854 // If we are using vectorcall calling convention, a structure that is 10855 // passed InReg - is surely an HVA 10856 if (CLI.CallConv == CallingConv::X86_VectorCall && 10857 isa<StructType>(FinalType)) { 10858 // The first value of a structure is marked 10859 if (0 == Value) 10860 Flags.setHvaStart(); 10861 Flags.setHva(); 10862 } 10863 // Set InReg Flag 10864 Flags.setInReg(); 10865 } 10866 if (Args[i].IsSRet) 10867 Flags.setSRet(); 10868 if (Args[i].IsSwiftSelf) 10869 Flags.setSwiftSelf(); 10870 if (Args[i].IsSwiftAsync) 10871 Flags.setSwiftAsync(); 10872 if (Args[i].IsSwiftError) 10873 Flags.setSwiftError(); 10874 if (Args[i].IsCFGuardTarget) 10875 Flags.setCFGuardTarget(); 10876 if (Args[i].IsByVal) 10877 Flags.setByVal(); 10878 if (Args[i].IsByRef) 10879 Flags.setByRef(); 10880 if (Args[i].IsPreallocated) { 10881 Flags.setPreallocated(); 10882 // Set the byval flag for CCAssignFn callbacks that don't know about 10883 // preallocated. This way we can know how many bytes we should've 10884 // allocated and how many bytes a callee cleanup function will pop. If 10885 // we port preallocated to more targets, we'll have to add custom 10886 // preallocated handling in the various CC lowering callbacks. 10887 Flags.setByVal(); 10888 } 10889 if (Args[i].IsInAlloca) { 10890 Flags.setInAlloca(); 10891 // Set the byval flag for CCAssignFn callbacks that don't know about 10892 // inalloca. This way we can know how many bytes we should've allocated 10893 // and how many bytes a callee cleanup function will pop. If we port 10894 // inalloca to more targets, we'll have to add custom inalloca handling 10895 // in the various CC lowering callbacks. 10896 Flags.setByVal(); 10897 } 10898 Align MemAlign; 10899 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10900 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10901 Flags.setByValSize(FrameSize); 10902 10903 // info is not there but there are cases it cannot get right. 10904 if (auto MA = Args[i].Alignment) 10905 MemAlign = *MA; 10906 else 10907 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10908 } else if (auto MA = Args[i].Alignment) { 10909 MemAlign = *MA; 10910 } else { 10911 MemAlign = OriginalAlignment; 10912 } 10913 Flags.setMemAlign(MemAlign); 10914 if (Args[i].IsNest) 10915 Flags.setNest(); 10916 if (NeedsRegBlock) 10917 Flags.setInConsecutiveRegs(); 10918 10919 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10920 CLI.CallConv, VT); 10921 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10922 CLI.CallConv, VT); 10923 SmallVector<SDValue, 4> Parts(NumParts); 10924 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10925 10926 if (Args[i].IsSExt) 10927 ExtendKind = ISD::SIGN_EXTEND; 10928 else if (Args[i].IsZExt) 10929 ExtendKind = ISD::ZERO_EXTEND; 10930 10931 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10932 // for now. 10933 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10934 CanLowerReturn) { 10935 assert((CLI.RetTy == Args[i].Ty || 10936 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10937 CLI.RetTy->getPointerAddressSpace() == 10938 Args[i].Ty->getPointerAddressSpace())) && 10939 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10940 // Before passing 'returned' to the target lowering code, ensure that 10941 // either the register MVT and the actual EVT are the same size or that 10942 // the return value and argument are extended in the same way; in these 10943 // cases it's safe to pass the argument register value unchanged as the 10944 // return register value (although it's at the target's option whether 10945 // to do so) 10946 // TODO: allow code generation to take advantage of partially preserved 10947 // registers rather than clobbering the entire register when the 10948 // parameter extension method is not compatible with the return 10949 // extension method 10950 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10951 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10952 CLI.RetZExt == Args[i].IsZExt)) 10953 Flags.setReturned(); 10954 } 10955 10956 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10957 CLI.CallConv, ExtendKind); 10958 10959 for (unsigned j = 0; j != NumParts; ++j) { 10960 // if it isn't first piece, alignment must be 1 10961 // For scalable vectors the scalable part is currently handled 10962 // by individual targets, so we just use the known minimum size here. 10963 ISD::OutputArg MyFlags( 10964 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10965 i < CLI.NumFixedArgs, i, 10966 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10967 if (NumParts > 1 && j == 0) 10968 MyFlags.Flags.setSplit(); 10969 else if (j != 0) { 10970 MyFlags.Flags.setOrigAlign(Align(1)); 10971 if (j == NumParts - 1) 10972 MyFlags.Flags.setSplitEnd(); 10973 } 10974 10975 CLI.Outs.push_back(MyFlags); 10976 CLI.OutVals.push_back(Parts[j]); 10977 } 10978 10979 if (NeedsRegBlock && Value == NumValues - 1) 10980 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10981 } 10982 } 10983 10984 SmallVector<SDValue, 4> InVals; 10985 CLI.Chain = LowerCall(CLI, InVals); 10986 10987 // Update CLI.InVals to use outside of this function. 10988 CLI.InVals = InVals; 10989 10990 // Verify that the target's LowerCall behaved as expected. 10991 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10992 "LowerCall didn't return a valid chain!"); 10993 assert((!CLI.IsTailCall || InVals.empty()) && 10994 "LowerCall emitted a return value for a tail call!"); 10995 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10996 "LowerCall didn't emit the correct number of values!"); 10997 10998 // For a tail call, the return value is merely live-out and there aren't 10999 // any nodes in the DAG representing it. Return a special value to 11000 // indicate that a tail call has been emitted and no more Instructions 11001 // should be processed in the current block. 11002 if (CLI.IsTailCall) { 11003 CLI.DAG.setRoot(CLI.Chain); 11004 return std::make_pair(SDValue(), SDValue()); 11005 } 11006 11007 #ifndef NDEBUG 11008 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11009 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11010 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11011 "LowerCall emitted a value with the wrong type!"); 11012 } 11013 #endif 11014 11015 SmallVector<SDValue, 4> ReturnValues; 11016 if (!CanLowerReturn) { 11017 // The instruction result is the result of loading from the 11018 // hidden sret parameter. 11019 SmallVector<EVT, 1> PVTs; 11020 Type *PtrRetTy = 11021 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11022 11023 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11024 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11025 EVT PtrVT = PVTs[0]; 11026 11027 unsigned NumValues = RetTys.size(); 11028 ReturnValues.resize(NumValues); 11029 SmallVector<SDValue, 4> Chains(NumValues); 11030 11031 // An aggregate return value cannot wrap around the address space, so 11032 // offsets to its parts don't wrap either. 11033 SDNodeFlags Flags; 11034 Flags.setNoUnsignedWrap(true); 11035 11036 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11037 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11038 for (unsigned i = 0; i < NumValues; ++i) { 11039 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11040 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11041 PtrVT), Flags); 11042 SDValue L = CLI.DAG.getLoad( 11043 RetTys[i], CLI.DL, CLI.Chain, Add, 11044 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11045 DemoteStackIdx, Offsets[i]), 11046 HiddenSRetAlign); 11047 ReturnValues[i] = L; 11048 Chains[i] = L.getValue(1); 11049 } 11050 11051 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11052 } else { 11053 // Collect the legal value parts into potentially illegal values 11054 // that correspond to the original function's return values. 11055 std::optional<ISD::NodeType> AssertOp; 11056 if (CLI.RetSExt) 11057 AssertOp = ISD::AssertSext; 11058 else if (CLI.RetZExt) 11059 AssertOp = ISD::AssertZext; 11060 unsigned CurReg = 0; 11061 for (EVT VT : RetTys) { 11062 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11063 CLI.CallConv, VT); 11064 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11065 CLI.CallConv, VT); 11066 11067 ReturnValues.push_back(getCopyFromParts( 11068 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11069 CLI.Chain, CLI.CallConv, AssertOp)); 11070 CurReg += NumRegs; 11071 } 11072 11073 // For a function returning void, there is no return value. We can't create 11074 // such a node, so we just return a null return value in that case. In 11075 // that case, nothing will actually look at the value. 11076 if (ReturnValues.empty()) 11077 return std::make_pair(SDValue(), CLI.Chain); 11078 } 11079 11080 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11081 CLI.DAG.getVTList(RetTys), ReturnValues); 11082 return std::make_pair(Res, CLI.Chain); 11083 } 11084 11085 /// Places new result values for the node in Results (their number 11086 /// and types must exactly match those of the original return values of 11087 /// the node), or leaves Results empty, which indicates that the node is not 11088 /// to be custom lowered after all. 11089 void TargetLowering::LowerOperationWrapper(SDNode *N, 11090 SmallVectorImpl<SDValue> &Results, 11091 SelectionDAG &DAG) const { 11092 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11093 11094 if (!Res.getNode()) 11095 return; 11096 11097 // If the original node has one result, take the return value from 11098 // LowerOperation as is. It might not be result number 0. 11099 if (N->getNumValues() == 1) { 11100 Results.push_back(Res); 11101 return; 11102 } 11103 11104 // If the original node has multiple results, then the return node should 11105 // have the same number of results. 11106 assert((N->getNumValues() == Res->getNumValues()) && 11107 "Lowering returned the wrong number of results!"); 11108 11109 // Places new result values base on N result number. 11110 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11111 Results.push_back(Res.getValue(I)); 11112 } 11113 11114 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11115 llvm_unreachable("LowerOperation not implemented for this target!"); 11116 } 11117 11118 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11119 unsigned Reg, 11120 ISD::NodeType ExtendType) { 11121 SDValue Op = getNonRegisterValue(V); 11122 assert((Op.getOpcode() != ISD::CopyFromReg || 11123 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11124 "Copy from a reg to the same reg!"); 11125 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11126 11127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11128 // If this is an InlineAsm we have to match the registers required, not the 11129 // notional registers required by the type. 11130 11131 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11132 std::nullopt); // This is not an ABI copy. 11133 SDValue Chain = DAG.getEntryNode(); 11134 11135 if (ExtendType == ISD::ANY_EXTEND) { 11136 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11137 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11138 ExtendType = PreferredExtendIt->second; 11139 } 11140 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11141 PendingExports.push_back(Chain); 11142 } 11143 11144 #include "llvm/CodeGen/SelectionDAGISel.h" 11145 11146 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11147 /// entry block, return true. This includes arguments used by switches, since 11148 /// the switch may expand into multiple basic blocks. 11149 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11150 // With FastISel active, we may be splitting blocks, so force creation 11151 // of virtual registers for all non-dead arguments. 11152 if (FastISel) 11153 return A->use_empty(); 11154 11155 const BasicBlock &Entry = A->getParent()->front(); 11156 for (const User *U : A->users()) 11157 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11158 return false; // Use not in entry block. 11159 11160 return true; 11161 } 11162 11163 using ArgCopyElisionMapTy = 11164 DenseMap<const Argument *, 11165 std::pair<const AllocaInst *, const StoreInst *>>; 11166 11167 /// Scan the entry block of the function in FuncInfo for arguments that look 11168 /// like copies into a local alloca. Record any copied arguments in 11169 /// ArgCopyElisionCandidates. 11170 static void 11171 findArgumentCopyElisionCandidates(const DataLayout &DL, 11172 FunctionLoweringInfo *FuncInfo, 11173 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11174 // Record the state of every static alloca used in the entry block. Argument 11175 // allocas are all used in the entry block, so we need approximately as many 11176 // entries as we have arguments. 11177 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11178 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11179 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11180 StaticAllocas.reserve(NumArgs * 2); 11181 11182 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11183 if (!V) 11184 return nullptr; 11185 V = V->stripPointerCasts(); 11186 const auto *AI = dyn_cast<AllocaInst>(V); 11187 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11188 return nullptr; 11189 auto Iter = StaticAllocas.insert({AI, Unknown}); 11190 return &Iter.first->second; 11191 }; 11192 11193 // Look for stores of arguments to static allocas. Look through bitcasts and 11194 // GEPs to handle type coercions, as long as the alloca is fully initialized 11195 // by the store. Any non-store use of an alloca escapes it and any subsequent 11196 // unanalyzed store might write it. 11197 // FIXME: Handle structs initialized with multiple stores. 11198 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11199 // Look for stores, and handle non-store uses conservatively. 11200 const auto *SI = dyn_cast<StoreInst>(&I); 11201 if (!SI) { 11202 // We will look through cast uses, so ignore them completely. 11203 if (I.isCast()) 11204 continue; 11205 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11206 // to allocas. 11207 if (I.isDebugOrPseudoInst()) 11208 continue; 11209 // This is an unknown instruction. Assume it escapes or writes to all 11210 // static alloca operands. 11211 for (const Use &U : I.operands()) { 11212 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11213 *Info = StaticAllocaInfo::Clobbered; 11214 } 11215 continue; 11216 } 11217 11218 // If the stored value is a static alloca, mark it as escaped. 11219 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11220 *Info = StaticAllocaInfo::Clobbered; 11221 11222 // Check if the destination is a static alloca. 11223 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11224 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11225 if (!Info) 11226 continue; 11227 const AllocaInst *AI = cast<AllocaInst>(Dst); 11228 11229 // Skip allocas that have been initialized or clobbered. 11230 if (*Info != StaticAllocaInfo::Unknown) 11231 continue; 11232 11233 // Check if the stored value is an argument, and that this store fully 11234 // initializes the alloca. 11235 // If the argument type has padding bits we can't directly forward a pointer 11236 // as the upper bits may contain garbage. 11237 // Don't elide copies from the same argument twice. 11238 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11239 const auto *Arg = dyn_cast<Argument>(Val); 11240 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11241 Arg->getType()->isEmptyTy() || 11242 DL.getTypeStoreSize(Arg->getType()) != 11243 DL.getTypeAllocSize(AI->getAllocatedType()) || 11244 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11245 ArgCopyElisionCandidates.count(Arg)) { 11246 *Info = StaticAllocaInfo::Clobbered; 11247 continue; 11248 } 11249 11250 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11251 << '\n'); 11252 11253 // Mark this alloca and store for argument copy elision. 11254 *Info = StaticAllocaInfo::Elidable; 11255 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11256 11257 // Stop scanning if we've seen all arguments. This will happen early in -O0 11258 // builds, which is useful, because -O0 builds have large entry blocks and 11259 // many allocas. 11260 if (ArgCopyElisionCandidates.size() == NumArgs) 11261 break; 11262 } 11263 } 11264 11265 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11266 /// ArgVal is a load from a suitable fixed stack object. 11267 static void tryToElideArgumentCopy( 11268 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11269 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11270 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11271 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11272 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11273 // Check if this is a load from a fixed stack object. 11274 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11275 if (!LNode) 11276 return; 11277 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11278 if (!FINode) 11279 return; 11280 11281 // Check that the fixed stack object is the right size and alignment. 11282 // Look at the alignment that the user wrote on the alloca instead of looking 11283 // at the stack object. 11284 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11285 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11286 const AllocaInst *AI = ArgCopyIter->second.first; 11287 int FixedIndex = FINode->getIndex(); 11288 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11289 int OldIndex = AllocaIndex; 11290 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11291 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11292 LLVM_DEBUG( 11293 dbgs() << " argument copy elision failed due to bad fixed stack " 11294 "object size\n"); 11295 return; 11296 } 11297 Align RequiredAlignment = AI->getAlign(); 11298 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11299 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11300 "greater than stack argument alignment (" 11301 << DebugStr(RequiredAlignment) << " vs " 11302 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11303 return; 11304 } 11305 11306 // Perform the elision. Delete the old stack object and replace its only use 11307 // in the variable info map. Mark the stack object as mutable and aliased. 11308 LLVM_DEBUG({ 11309 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11310 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11311 << '\n'; 11312 }); 11313 MFI.RemoveStackObject(OldIndex); 11314 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11315 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11316 AllocaIndex = FixedIndex; 11317 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11318 for (SDValue ArgVal : ArgVals) 11319 Chains.push_back(ArgVal.getValue(1)); 11320 11321 // Avoid emitting code for the store implementing the copy. 11322 const StoreInst *SI = ArgCopyIter->second.second; 11323 ElidedArgCopyInstrs.insert(SI); 11324 11325 // Check for uses of the argument again so that we can avoid exporting ArgVal 11326 // if it is't used by anything other than the store. 11327 for (const Value *U : Arg.users()) { 11328 if (U != SI) { 11329 ArgHasUses = true; 11330 break; 11331 } 11332 } 11333 } 11334 11335 void SelectionDAGISel::LowerArguments(const Function &F) { 11336 SelectionDAG &DAG = SDB->DAG; 11337 SDLoc dl = SDB->getCurSDLoc(); 11338 const DataLayout &DL = DAG.getDataLayout(); 11339 SmallVector<ISD::InputArg, 16> Ins; 11340 11341 // In Naked functions we aren't going to save any registers. 11342 if (F.hasFnAttribute(Attribute::Naked)) 11343 return; 11344 11345 if (!FuncInfo->CanLowerReturn) { 11346 // Put in an sret pointer parameter before all the other parameters. 11347 SmallVector<EVT, 1> ValueVTs; 11348 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11349 PointerType::get(F.getContext(), 11350 DAG.getDataLayout().getAllocaAddrSpace()), 11351 ValueVTs); 11352 11353 // NOTE: Assuming that a pointer will never break down to more than one VT 11354 // or one register. 11355 ISD::ArgFlagsTy Flags; 11356 Flags.setSRet(); 11357 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11358 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11359 ISD::InputArg::NoArgIndex, 0); 11360 Ins.push_back(RetArg); 11361 } 11362 11363 // Look for stores of arguments to static allocas. Mark such arguments with a 11364 // flag to ask the target to give us the memory location of that argument if 11365 // available. 11366 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11367 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11368 ArgCopyElisionCandidates); 11369 11370 // Set up the incoming argument description vector. 11371 for (const Argument &Arg : F.args()) { 11372 unsigned ArgNo = Arg.getArgNo(); 11373 SmallVector<EVT, 4> ValueVTs; 11374 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11375 bool isArgValueUsed = !Arg.use_empty(); 11376 unsigned PartBase = 0; 11377 Type *FinalType = Arg.getType(); 11378 if (Arg.hasAttribute(Attribute::ByVal)) 11379 FinalType = Arg.getParamByValType(); 11380 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11381 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11382 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11383 Value != NumValues; ++Value) { 11384 EVT VT = ValueVTs[Value]; 11385 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11386 ISD::ArgFlagsTy Flags; 11387 11388 11389 if (Arg.getType()->isPointerTy()) { 11390 Flags.setPointer(); 11391 Flags.setPointerAddrSpace( 11392 cast<PointerType>(Arg.getType())->getAddressSpace()); 11393 } 11394 if (Arg.hasAttribute(Attribute::ZExt)) 11395 Flags.setZExt(); 11396 if (Arg.hasAttribute(Attribute::SExt)) 11397 Flags.setSExt(); 11398 if (Arg.hasAttribute(Attribute::InReg)) { 11399 // If we are using vectorcall calling convention, a structure that is 11400 // passed InReg - is surely an HVA 11401 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11402 isa<StructType>(Arg.getType())) { 11403 // The first value of a structure is marked 11404 if (0 == Value) 11405 Flags.setHvaStart(); 11406 Flags.setHva(); 11407 } 11408 // Set InReg Flag 11409 Flags.setInReg(); 11410 } 11411 if (Arg.hasAttribute(Attribute::StructRet)) 11412 Flags.setSRet(); 11413 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11414 Flags.setSwiftSelf(); 11415 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11416 Flags.setSwiftAsync(); 11417 if (Arg.hasAttribute(Attribute::SwiftError)) 11418 Flags.setSwiftError(); 11419 if (Arg.hasAttribute(Attribute::ByVal)) 11420 Flags.setByVal(); 11421 if (Arg.hasAttribute(Attribute::ByRef)) 11422 Flags.setByRef(); 11423 if (Arg.hasAttribute(Attribute::InAlloca)) { 11424 Flags.setInAlloca(); 11425 // Set the byval flag for CCAssignFn callbacks that don't know about 11426 // inalloca. This way we can know how many bytes we should've allocated 11427 // and how many bytes a callee cleanup function will pop. If we port 11428 // inalloca to more targets, we'll have to add custom inalloca handling 11429 // in the various CC lowering callbacks. 11430 Flags.setByVal(); 11431 } 11432 if (Arg.hasAttribute(Attribute::Preallocated)) { 11433 Flags.setPreallocated(); 11434 // Set the byval flag for CCAssignFn callbacks that don't know about 11435 // preallocated. This way we can know how many bytes we should've 11436 // allocated and how many bytes a callee cleanup function will pop. If 11437 // we port preallocated to more targets, we'll have to add custom 11438 // preallocated handling in the various CC lowering callbacks. 11439 Flags.setByVal(); 11440 } 11441 11442 // Certain targets (such as MIPS), may have a different ABI alignment 11443 // for a type depending on the context. Give the target a chance to 11444 // specify the alignment it wants. 11445 const Align OriginalAlignment( 11446 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11447 Flags.setOrigAlign(OriginalAlignment); 11448 11449 Align MemAlign; 11450 Type *ArgMemTy = nullptr; 11451 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11452 Flags.isByRef()) { 11453 if (!ArgMemTy) 11454 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11455 11456 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11457 11458 // For in-memory arguments, size and alignment should be passed from FE. 11459 // BE will guess if this info is not there but there are cases it cannot 11460 // get right. 11461 if (auto ParamAlign = Arg.getParamStackAlign()) 11462 MemAlign = *ParamAlign; 11463 else if ((ParamAlign = Arg.getParamAlign())) 11464 MemAlign = *ParamAlign; 11465 else 11466 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11467 if (Flags.isByRef()) 11468 Flags.setByRefSize(MemSize); 11469 else 11470 Flags.setByValSize(MemSize); 11471 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11472 MemAlign = *ParamAlign; 11473 } else { 11474 MemAlign = OriginalAlignment; 11475 } 11476 Flags.setMemAlign(MemAlign); 11477 11478 if (Arg.hasAttribute(Attribute::Nest)) 11479 Flags.setNest(); 11480 if (NeedsRegBlock) 11481 Flags.setInConsecutiveRegs(); 11482 if (ArgCopyElisionCandidates.count(&Arg)) 11483 Flags.setCopyElisionCandidate(); 11484 if (Arg.hasAttribute(Attribute::Returned)) 11485 Flags.setReturned(); 11486 11487 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11488 *CurDAG->getContext(), F.getCallingConv(), VT); 11489 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11490 *CurDAG->getContext(), F.getCallingConv(), VT); 11491 for (unsigned i = 0; i != NumRegs; ++i) { 11492 // For scalable vectors, use the minimum size; individual targets 11493 // are responsible for handling scalable vector arguments and 11494 // return values. 11495 ISD::InputArg MyFlags( 11496 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11497 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11498 if (NumRegs > 1 && i == 0) 11499 MyFlags.Flags.setSplit(); 11500 // if it isn't first piece, alignment must be 1 11501 else if (i > 0) { 11502 MyFlags.Flags.setOrigAlign(Align(1)); 11503 if (i == NumRegs - 1) 11504 MyFlags.Flags.setSplitEnd(); 11505 } 11506 Ins.push_back(MyFlags); 11507 } 11508 if (NeedsRegBlock && Value == NumValues - 1) 11509 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11510 PartBase += VT.getStoreSize().getKnownMinValue(); 11511 } 11512 } 11513 11514 // Call the target to set up the argument values. 11515 SmallVector<SDValue, 8> InVals; 11516 SDValue NewRoot = TLI->LowerFormalArguments( 11517 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11518 11519 // Verify that the target's LowerFormalArguments behaved as expected. 11520 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11521 "LowerFormalArguments didn't return a valid chain!"); 11522 assert(InVals.size() == Ins.size() && 11523 "LowerFormalArguments didn't emit the correct number of values!"); 11524 LLVM_DEBUG({ 11525 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11526 assert(InVals[i].getNode() && 11527 "LowerFormalArguments emitted a null value!"); 11528 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11529 "LowerFormalArguments emitted a value with the wrong type!"); 11530 } 11531 }); 11532 11533 // Update the DAG with the new chain value resulting from argument lowering. 11534 DAG.setRoot(NewRoot); 11535 11536 // Set up the argument values. 11537 unsigned i = 0; 11538 if (!FuncInfo->CanLowerReturn) { 11539 // Create a virtual register for the sret pointer, and put in a copy 11540 // from the sret argument into it. 11541 SmallVector<EVT, 1> ValueVTs; 11542 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11543 PointerType::get(F.getContext(), 11544 DAG.getDataLayout().getAllocaAddrSpace()), 11545 ValueVTs); 11546 MVT VT = ValueVTs[0].getSimpleVT(); 11547 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11548 std::optional<ISD::NodeType> AssertOp; 11549 SDValue ArgValue = 11550 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11551 F.getCallingConv(), AssertOp); 11552 11553 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11554 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11555 Register SRetReg = 11556 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11557 FuncInfo->DemoteRegister = SRetReg; 11558 NewRoot = 11559 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11560 DAG.setRoot(NewRoot); 11561 11562 // i indexes lowered arguments. Bump it past the hidden sret argument. 11563 ++i; 11564 } 11565 11566 SmallVector<SDValue, 4> Chains; 11567 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11568 for (const Argument &Arg : F.args()) { 11569 SmallVector<SDValue, 4> ArgValues; 11570 SmallVector<EVT, 4> ValueVTs; 11571 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11572 unsigned NumValues = ValueVTs.size(); 11573 if (NumValues == 0) 11574 continue; 11575 11576 bool ArgHasUses = !Arg.use_empty(); 11577 11578 // Elide the copying store if the target loaded this argument from a 11579 // suitable fixed stack object. 11580 if (Ins[i].Flags.isCopyElisionCandidate()) { 11581 unsigned NumParts = 0; 11582 for (EVT VT : ValueVTs) 11583 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11584 F.getCallingConv(), VT); 11585 11586 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11587 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11588 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11589 } 11590 11591 // If this argument is unused then remember its value. It is used to generate 11592 // debugging information. 11593 bool isSwiftErrorArg = 11594 TLI->supportSwiftError() && 11595 Arg.hasAttribute(Attribute::SwiftError); 11596 if (!ArgHasUses && !isSwiftErrorArg) { 11597 SDB->setUnusedArgValue(&Arg, InVals[i]); 11598 11599 // Also remember any frame index for use in FastISel. 11600 if (FrameIndexSDNode *FI = 11601 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11602 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11603 } 11604 11605 for (unsigned Val = 0; Val != NumValues; ++Val) { 11606 EVT VT = ValueVTs[Val]; 11607 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11608 F.getCallingConv(), VT); 11609 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11610 *CurDAG->getContext(), F.getCallingConv(), VT); 11611 11612 // Even an apparent 'unused' swifterror argument needs to be returned. So 11613 // we do generate a copy for it that can be used on return from the 11614 // function. 11615 if (ArgHasUses || isSwiftErrorArg) { 11616 std::optional<ISD::NodeType> AssertOp; 11617 if (Arg.hasAttribute(Attribute::SExt)) 11618 AssertOp = ISD::AssertSext; 11619 else if (Arg.hasAttribute(Attribute::ZExt)) 11620 AssertOp = ISD::AssertZext; 11621 11622 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11623 PartVT, VT, nullptr, NewRoot, 11624 F.getCallingConv(), AssertOp)); 11625 } 11626 11627 i += NumParts; 11628 } 11629 11630 // We don't need to do anything else for unused arguments. 11631 if (ArgValues.empty()) 11632 continue; 11633 11634 // Note down frame index. 11635 if (FrameIndexSDNode *FI = 11636 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11637 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11638 11639 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11640 SDB->getCurSDLoc()); 11641 11642 SDB->setValue(&Arg, Res); 11643 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11644 // We want to associate the argument with the frame index, among 11645 // involved operands, that correspond to the lowest address. The 11646 // getCopyFromParts function, called earlier, is swapping the order of 11647 // the operands to BUILD_PAIR depending on endianness. The result of 11648 // that swapping is that the least significant bits of the argument will 11649 // be in the first operand of the BUILD_PAIR node, and the most 11650 // significant bits will be in the second operand. 11651 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11652 if (LoadSDNode *LNode = 11653 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11654 if (FrameIndexSDNode *FI = 11655 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11656 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11657 } 11658 11659 // Analyses past this point are naive and don't expect an assertion. 11660 if (Res.getOpcode() == ISD::AssertZext) 11661 Res = Res.getOperand(0); 11662 11663 // Update the SwiftErrorVRegDefMap. 11664 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11665 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11666 if (Register::isVirtualRegister(Reg)) 11667 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11668 Reg); 11669 } 11670 11671 // If this argument is live outside of the entry block, insert a copy from 11672 // wherever we got it to the vreg that other BB's will reference it as. 11673 if (Res.getOpcode() == ISD::CopyFromReg) { 11674 // If we can, though, try to skip creating an unnecessary vreg. 11675 // FIXME: This isn't very clean... it would be nice to make this more 11676 // general. 11677 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11678 if (Register::isVirtualRegister(Reg)) { 11679 FuncInfo->ValueMap[&Arg] = Reg; 11680 continue; 11681 } 11682 } 11683 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11684 FuncInfo->InitializeRegForValue(&Arg); 11685 SDB->CopyToExportRegsIfNeeded(&Arg); 11686 } 11687 } 11688 11689 if (!Chains.empty()) { 11690 Chains.push_back(NewRoot); 11691 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11692 } 11693 11694 DAG.setRoot(NewRoot); 11695 11696 assert(i == InVals.size() && "Argument register count mismatch!"); 11697 11698 // If any argument copy elisions occurred and we have debug info, update the 11699 // stale frame indices used in the dbg.declare variable info table. 11700 if (!ArgCopyElisionFrameIndexMap.empty()) { 11701 for (MachineFunction::VariableDbgInfo &VI : 11702 MF->getInStackSlotVariableDbgInfo()) { 11703 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11704 if (I != ArgCopyElisionFrameIndexMap.end()) 11705 VI.updateStackSlot(I->second); 11706 } 11707 } 11708 11709 // Finally, if the target has anything special to do, allow it to do so. 11710 emitFunctionEntryCode(); 11711 } 11712 11713 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11714 /// ensure constants are generated when needed. Remember the virtual registers 11715 /// that need to be added to the Machine PHI nodes as input. We cannot just 11716 /// directly add them, because expansion might result in multiple MBB's for one 11717 /// BB. As such, the start of the BB might correspond to a different MBB than 11718 /// the end. 11719 void 11720 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11722 11723 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11724 11725 // Check PHI nodes in successors that expect a value to be available from this 11726 // block. 11727 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11728 if (!isa<PHINode>(SuccBB->begin())) continue; 11729 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11730 11731 // If this terminator has multiple identical successors (common for 11732 // switches), only handle each succ once. 11733 if (!SuccsHandled.insert(SuccMBB).second) 11734 continue; 11735 11736 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11737 11738 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11739 // nodes and Machine PHI nodes, but the incoming operands have not been 11740 // emitted yet. 11741 for (const PHINode &PN : SuccBB->phis()) { 11742 // Ignore dead phi's. 11743 if (PN.use_empty()) 11744 continue; 11745 11746 // Skip empty types 11747 if (PN.getType()->isEmptyTy()) 11748 continue; 11749 11750 unsigned Reg; 11751 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11752 11753 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11754 unsigned &RegOut = ConstantsOut[C]; 11755 if (RegOut == 0) { 11756 RegOut = FuncInfo.CreateRegs(C); 11757 // We need to zero/sign extend ConstantInt phi operands to match 11758 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11759 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11760 if (auto *CI = dyn_cast<ConstantInt>(C)) 11761 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11762 : ISD::ZERO_EXTEND; 11763 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11764 } 11765 Reg = RegOut; 11766 } else { 11767 DenseMap<const Value *, Register>::iterator I = 11768 FuncInfo.ValueMap.find(PHIOp); 11769 if (I != FuncInfo.ValueMap.end()) 11770 Reg = I->second; 11771 else { 11772 assert(isa<AllocaInst>(PHIOp) && 11773 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11774 "Didn't codegen value into a register!??"); 11775 Reg = FuncInfo.CreateRegs(PHIOp); 11776 CopyValueToVirtualRegister(PHIOp, Reg); 11777 } 11778 } 11779 11780 // Remember that this register needs to added to the machine PHI node as 11781 // the input for this MBB. 11782 SmallVector<EVT, 4> ValueVTs; 11783 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11784 for (EVT VT : ValueVTs) { 11785 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11786 for (unsigned i = 0; i != NumRegisters; ++i) 11787 FuncInfo.PHINodesToUpdate.push_back( 11788 std::make_pair(&*MBBI++, Reg + i)); 11789 Reg += NumRegisters; 11790 } 11791 } 11792 } 11793 11794 ConstantsOut.clear(); 11795 } 11796 11797 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11798 MachineFunction::iterator I(MBB); 11799 if (++I == FuncInfo.MF->end()) 11800 return nullptr; 11801 return &*I; 11802 } 11803 11804 /// During lowering new call nodes can be created (such as memset, etc.). 11805 /// Those will become new roots of the current DAG, but complications arise 11806 /// when they are tail calls. In such cases, the call lowering will update 11807 /// the root, but the builder still needs to know that a tail call has been 11808 /// lowered in order to avoid generating an additional return. 11809 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11810 // If the node is null, we do have a tail call. 11811 if (MaybeTC.getNode() != nullptr) 11812 DAG.setRoot(MaybeTC); 11813 else 11814 HasTailCall = true; 11815 } 11816 11817 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11818 MachineBasicBlock *SwitchMBB, 11819 MachineBasicBlock *DefaultMBB) { 11820 MachineFunction *CurMF = FuncInfo.MF; 11821 MachineBasicBlock *NextMBB = nullptr; 11822 MachineFunction::iterator BBI(W.MBB); 11823 if (++BBI != FuncInfo.MF->end()) 11824 NextMBB = &*BBI; 11825 11826 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11827 11828 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11829 11830 if (Size == 2 && W.MBB == SwitchMBB) { 11831 // If any two of the cases has the same destination, and if one value 11832 // is the same as the other, but has one bit unset that the other has set, 11833 // use bit manipulation to do two compares at once. For example: 11834 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11835 // TODO: This could be extended to merge any 2 cases in switches with 3 11836 // cases. 11837 // TODO: Handle cases where W.CaseBB != SwitchBB. 11838 CaseCluster &Small = *W.FirstCluster; 11839 CaseCluster &Big = *W.LastCluster; 11840 11841 if (Small.Low == Small.High && Big.Low == Big.High && 11842 Small.MBB == Big.MBB) { 11843 const APInt &SmallValue = Small.Low->getValue(); 11844 const APInt &BigValue = Big.Low->getValue(); 11845 11846 // Check that there is only one bit different. 11847 APInt CommonBit = BigValue ^ SmallValue; 11848 if (CommonBit.isPowerOf2()) { 11849 SDValue CondLHS = getValue(Cond); 11850 EVT VT = CondLHS.getValueType(); 11851 SDLoc DL = getCurSDLoc(); 11852 11853 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11854 DAG.getConstant(CommonBit, DL, VT)); 11855 SDValue Cond = DAG.getSetCC( 11856 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11857 ISD::SETEQ); 11858 11859 // Update successor info. 11860 // Both Small and Big will jump to Small.BB, so we sum up the 11861 // probabilities. 11862 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11863 if (BPI) 11864 addSuccessorWithProb( 11865 SwitchMBB, DefaultMBB, 11866 // The default destination is the first successor in IR. 11867 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11868 else 11869 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11870 11871 // Insert the true branch. 11872 SDValue BrCond = 11873 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11874 DAG.getBasicBlock(Small.MBB)); 11875 // Insert the false branch. 11876 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11877 DAG.getBasicBlock(DefaultMBB)); 11878 11879 DAG.setRoot(BrCond); 11880 return; 11881 } 11882 } 11883 } 11884 11885 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11886 // Here, we order cases by probability so the most likely case will be 11887 // checked first. However, two clusters can have the same probability in 11888 // which case their relative ordering is non-deterministic. So we use Low 11889 // as a tie-breaker as clusters are guaranteed to never overlap. 11890 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11891 [](const CaseCluster &a, const CaseCluster &b) { 11892 return a.Prob != b.Prob ? 11893 a.Prob > b.Prob : 11894 a.Low->getValue().slt(b.Low->getValue()); 11895 }); 11896 11897 // Rearrange the case blocks so that the last one falls through if possible 11898 // without changing the order of probabilities. 11899 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11900 --I; 11901 if (I->Prob > W.LastCluster->Prob) 11902 break; 11903 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11904 std::swap(*I, *W.LastCluster); 11905 break; 11906 } 11907 } 11908 } 11909 11910 // Compute total probability. 11911 BranchProbability DefaultProb = W.DefaultProb; 11912 BranchProbability UnhandledProbs = DefaultProb; 11913 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11914 UnhandledProbs += I->Prob; 11915 11916 MachineBasicBlock *CurMBB = W.MBB; 11917 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11918 bool FallthroughUnreachable = false; 11919 MachineBasicBlock *Fallthrough; 11920 if (I == W.LastCluster) { 11921 // For the last cluster, fall through to the default destination. 11922 Fallthrough = DefaultMBB; 11923 FallthroughUnreachable = isa<UnreachableInst>( 11924 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11925 } else { 11926 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11927 CurMF->insert(BBI, Fallthrough); 11928 // Put Cond in a virtual register to make it available from the new blocks. 11929 ExportFromCurrentBlock(Cond); 11930 } 11931 UnhandledProbs -= I->Prob; 11932 11933 switch (I->Kind) { 11934 case CC_JumpTable: { 11935 // FIXME: Optimize away range check based on pivot comparisons. 11936 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11937 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11938 11939 // The jump block hasn't been inserted yet; insert it here. 11940 MachineBasicBlock *JumpMBB = JT->MBB; 11941 CurMF->insert(BBI, JumpMBB); 11942 11943 auto JumpProb = I->Prob; 11944 auto FallthroughProb = UnhandledProbs; 11945 11946 // If the default statement is a target of the jump table, we evenly 11947 // distribute the default probability to successors of CurMBB. Also 11948 // update the probability on the edge from JumpMBB to Fallthrough. 11949 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11950 SE = JumpMBB->succ_end(); 11951 SI != SE; ++SI) { 11952 if (*SI == DefaultMBB) { 11953 JumpProb += DefaultProb / 2; 11954 FallthroughProb -= DefaultProb / 2; 11955 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11956 JumpMBB->normalizeSuccProbs(); 11957 break; 11958 } 11959 } 11960 11961 // If the default clause is unreachable, propagate that knowledge into 11962 // JTH->FallthroughUnreachable which will use it to suppress the range 11963 // check. 11964 // 11965 // However, don't do this if we're doing branch target enforcement, 11966 // because a table branch _without_ a range check can be a tempting JOP 11967 // gadget - out-of-bounds inputs that are impossible in correct 11968 // execution become possible again if an attacker can influence the 11969 // control flow. So if an attacker doesn't already have a BTI bypass 11970 // available, we don't want them to be able to get one out of this 11971 // table branch. 11972 if (FallthroughUnreachable) { 11973 Function &CurFunc = CurMF->getFunction(); 11974 bool HasBranchTargetEnforcement = false; 11975 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11976 HasBranchTargetEnforcement = 11977 CurFunc.getFnAttribute("branch-target-enforcement") 11978 .getValueAsBool(); 11979 } else { 11980 HasBranchTargetEnforcement = 11981 CurMF->getMMI().getModule()->getModuleFlag( 11982 "branch-target-enforcement"); 11983 } 11984 if (!HasBranchTargetEnforcement) 11985 JTH->FallthroughUnreachable = true; 11986 } 11987 11988 if (!JTH->FallthroughUnreachable) 11989 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11990 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11991 CurMBB->normalizeSuccProbs(); 11992 11993 // The jump table header will be inserted in our current block, do the 11994 // range check, and fall through to our fallthrough block. 11995 JTH->HeaderBB = CurMBB; 11996 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11997 11998 // If we're in the right place, emit the jump table header right now. 11999 if (CurMBB == SwitchMBB) { 12000 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12001 JTH->Emitted = true; 12002 } 12003 break; 12004 } 12005 case CC_BitTests: { 12006 // FIXME: Optimize away range check based on pivot comparisons. 12007 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12008 12009 // The bit test blocks haven't been inserted yet; insert them here. 12010 for (BitTestCase &BTC : BTB->Cases) 12011 CurMF->insert(BBI, BTC.ThisBB); 12012 12013 // Fill in fields of the BitTestBlock. 12014 BTB->Parent = CurMBB; 12015 BTB->Default = Fallthrough; 12016 12017 BTB->DefaultProb = UnhandledProbs; 12018 // If the cases in bit test don't form a contiguous range, we evenly 12019 // distribute the probability on the edge to Fallthrough to two 12020 // successors of CurMBB. 12021 if (!BTB->ContiguousRange) { 12022 BTB->Prob += DefaultProb / 2; 12023 BTB->DefaultProb -= DefaultProb / 2; 12024 } 12025 12026 if (FallthroughUnreachable) 12027 BTB->FallthroughUnreachable = true; 12028 12029 // If we're in the right place, emit the bit test header right now. 12030 if (CurMBB == SwitchMBB) { 12031 visitBitTestHeader(*BTB, SwitchMBB); 12032 BTB->Emitted = true; 12033 } 12034 break; 12035 } 12036 case CC_Range: { 12037 const Value *RHS, *LHS, *MHS; 12038 ISD::CondCode CC; 12039 if (I->Low == I->High) { 12040 // Check Cond == I->Low. 12041 CC = ISD::SETEQ; 12042 LHS = Cond; 12043 RHS=I->Low; 12044 MHS = nullptr; 12045 } else { 12046 // Check I->Low <= Cond <= I->High. 12047 CC = ISD::SETLE; 12048 LHS = I->Low; 12049 MHS = Cond; 12050 RHS = I->High; 12051 } 12052 12053 // If Fallthrough is unreachable, fold away the comparison. 12054 if (FallthroughUnreachable) 12055 CC = ISD::SETTRUE; 12056 12057 // The false probability is the sum of all unhandled cases. 12058 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12059 getCurSDLoc(), I->Prob, UnhandledProbs); 12060 12061 if (CurMBB == SwitchMBB) 12062 visitSwitchCase(CB, SwitchMBB); 12063 else 12064 SL->SwitchCases.push_back(CB); 12065 12066 break; 12067 } 12068 } 12069 CurMBB = Fallthrough; 12070 } 12071 } 12072 12073 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12074 const SwitchWorkListItem &W, 12075 Value *Cond, 12076 MachineBasicBlock *SwitchMBB) { 12077 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12078 "Clusters not sorted?"); 12079 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12080 12081 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12082 SL->computeSplitWorkItemInfo(W); 12083 12084 // Use the first element on the right as pivot since we will make less-than 12085 // comparisons against it. 12086 CaseClusterIt PivotCluster = FirstRight; 12087 assert(PivotCluster > W.FirstCluster); 12088 assert(PivotCluster <= W.LastCluster); 12089 12090 CaseClusterIt FirstLeft = W.FirstCluster; 12091 CaseClusterIt LastRight = W.LastCluster; 12092 12093 const ConstantInt *Pivot = PivotCluster->Low; 12094 12095 // New blocks will be inserted immediately after the current one. 12096 MachineFunction::iterator BBI(W.MBB); 12097 ++BBI; 12098 12099 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12100 // we can branch to its destination directly if it's squeezed exactly in 12101 // between the known lower bound and Pivot - 1. 12102 MachineBasicBlock *LeftMBB; 12103 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12104 FirstLeft->Low == W.GE && 12105 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12106 LeftMBB = FirstLeft->MBB; 12107 } else { 12108 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12109 FuncInfo.MF->insert(BBI, LeftMBB); 12110 WorkList.push_back( 12111 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12112 // Put Cond in a virtual register to make it available from the new blocks. 12113 ExportFromCurrentBlock(Cond); 12114 } 12115 12116 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12117 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12118 // directly if RHS.High equals the current upper bound. 12119 MachineBasicBlock *RightMBB; 12120 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12121 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12122 RightMBB = FirstRight->MBB; 12123 } else { 12124 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12125 FuncInfo.MF->insert(BBI, RightMBB); 12126 WorkList.push_back( 12127 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12128 // Put Cond in a virtual register to make it available from the new blocks. 12129 ExportFromCurrentBlock(Cond); 12130 } 12131 12132 // Create the CaseBlock record that will be used to lower the branch. 12133 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12134 getCurSDLoc(), LeftProb, RightProb); 12135 12136 if (W.MBB == SwitchMBB) 12137 visitSwitchCase(CB, SwitchMBB); 12138 else 12139 SL->SwitchCases.push_back(CB); 12140 } 12141 12142 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12143 // from the swith statement. 12144 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12145 BranchProbability PeeledCaseProb) { 12146 if (PeeledCaseProb == BranchProbability::getOne()) 12147 return BranchProbability::getZero(); 12148 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12149 12150 uint32_t Numerator = CaseProb.getNumerator(); 12151 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12152 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12153 } 12154 12155 // Try to peel the top probability case if it exceeds the threshold. 12156 // Return current MachineBasicBlock for the switch statement if the peeling 12157 // does not occur. 12158 // If the peeling is performed, return the newly created MachineBasicBlock 12159 // for the peeled switch statement. Also update Clusters to remove the peeled 12160 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12161 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12162 const SwitchInst &SI, CaseClusterVector &Clusters, 12163 BranchProbability &PeeledCaseProb) { 12164 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12165 // Don't perform if there is only one cluster or optimizing for size. 12166 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12167 TM.getOptLevel() == CodeGenOptLevel::None || 12168 SwitchMBB->getParent()->getFunction().hasMinSize()) 12169 return SwitchMBB; 12170 12171 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12172 unsigned PeeledCaseIndex = 0; 12173 bool SwitchPeeled = false; 12174 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12175 CaseCluster &CC = Clusters[Index]; 12176 if (CC.Prob < TopCaseProb) 12177 continue; 12178 TopCaseProb = CC.Prob; 12179 PeeledCaseIndex = Index; 12180 SwitchPeeled = true; 12181 } 12182 if (!SwitchPeeled) 12183 return SwitchMBB; 12184 12185 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12186 << TopCaseProb << "\n"); 12187 12188 // Record the MBB for the peeled switch statement. 12189 MachineFunction::iterator BBI(SwitchMBB); 12190 ++BBI; 12191 MachineBasicBlock *PeeledSwitchMBB = 12192 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12193 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12194 12195 ExportFromCurrentBlock(SI.getCondition()); 12196 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12197 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12198 nullptr, nullptr, TopCaseProb.getCompl()}; 12199 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12200 12201 Clusters.erase(PeeledCaseIt); 12202 for (CaseCluster &CC : Clusters) { 12203 LLVM_DEBUG( 12204 dbgs() << "Scale the probablity for one cluster, before scaling: " 12205 << CC.Prob << "\n"); 12206 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12207 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12208 } 12209 PeeledCaseProb = TopCaseProb; 12210 return PeeledSwitchMBB; 12211 } 12212 12213 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12214 // Extract cases from the switch. 12215 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12216 CaseClusterVector Clusters; 12217 Clusters.reserve(SI.getNumCases()); 12218 for (auto I : SI.cases()) { 12219 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12220 const ConstantInt *CaseVal = I.getCaseValue(); 12221 BranchProbability Prob = 12222 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12223 : BranchProbability(1, SI.getNumCases() + 1); 12224 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12225 } 12226 12227 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12228 12229 // Cluster adjacent cases with the same destination. We do this at all 12230 // optimization levels because it's cheap to do and will make codegen faster 12231 // if there are many clusters. 12232 sortAndRangeify(Clusters); 12233 12234 // The branch probablity of the peeled case. 12235 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12236 MachineBasicBlock *PeeledSwitchMBB = 12237 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12238 12239 // If there is only the default destination, jump there directly. 12240 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12241 if (Clusters.empty()) { 12242 assert(PeeledSwitchMBB == SwitchMBB); 12243 SwitchMBB->addSuccessor(DefaultMBB); 12244 if (DefaultMBB != NextBlock(SwitchMBB)) { 12245 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12246 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12247 } 12248 return; 12249 } 12250 12251 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12252 DAG.getBFI()); 12253 SL->findBitTestClusters(Clusters, &SI); 12254 12255 LLVM_DEBUG({ 12256 dbgs() << "Case clusters: "; 12257 for (const CaseCluster &C : Clusters) { 12258 if (C.Kind == CC_JumpTable) 12259 dbgs() << "JT:"; 12260 if (C.Kind == CC_BitTests) 12261 dbgs() << "BT:"; 12262 12263 C.Low->getValue().print(dbgs(), true); 12264 if (C.Low != C.High) { 12265 dbgs() << '-'; 12266 C.High->getValue().print(dbgs(), true); 12267 } 12268 dbgs() << ' '; 12269 } 12270 dbgs() << '\n'; 12271 }); 12272 12273 assert(!Clusters.empty()); 12274 SwitchWorkList WorkList; 12275 CaseClusterIt First = Clusters.begin(); 12276 CaseClusterIt Last = Clusters.end() - 1; 12277 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12278 // Scale the branchprobability for DefaultMBB if the peel occurs and 12279 // DefaultMBB is not replaced. 12280 if (PeeledCaseProb != BranchProbability::getZero() && 12281 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12282 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12283 WorkList.push_back( 12284 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12285 12286 while (!WorkList.empty()) { 12287 SwitchWorkListItem W = WorkList.pop_back_val(); 12288 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12289 12290 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12291 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12292 // For optimized builds, lower large range as a balanced binary tree. 12293 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12294 continue; 12295 } 12296 12297 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12298 } 12299 } 12300 12301 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12303 auto DL = getCurSDLoc(); 12304 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12305 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12306 } 12307 12308 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12309 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12310 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12311 12312 SDLoc DL = getCurSDLoc(); 12313 SDValue V = getValue(I.getOperand(0)); 12314 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12315 12316 if (VT.isScalableVector()) { 12317 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12318 return; 12319 } 12320 12321 // Use VECTOR_SHUFFLE for the fixed-length vector 12322 // to maintain existing behavior. 12323 SmallVector<int, 8> Mask; 12324 unsigned NumElts = VT.getVectorMinNumElements(); 12325 for (unsigned i = 0; i != NumElts; ++i) 12326 Mask.push_back(NumElts - 1 - i); 12327 12328 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12329 } 12330 12331 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12332 auto DL = getCurSDLoc(); 12333 SDValue InVec = getValue(I.getOperand(0)); 12334 EVT OutVT = 12335 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12336 12337 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12338 12339 // ISD Node needs the input vectors split into two equal parts 12340 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12341 DAG.getVectorIdxConstant(0, DL)); 12342 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12343 DAG.getVectorIdxConstant(OutNumElts, DL)); 12344 12345 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12346 // legalisation and combines. 12347 if (OutVT.isFixedLengthVector()) { 12348 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12349 createStrideMask(0, 2, OutNumElts)); 12350 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12351 createStrideMask(1, 2, OutNumElts)); 12352 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12353 setValue(&I, Res); 12354 return; 12355 } 12356 12357 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12358 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12359 setValue(&I, Res); 12360 } 12361 12362 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12363 auto DL = getCurSDLoc(); 12364 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12365 SDValue InVec0 = getValue(I.getOperand(0)); 12366 SDValue InVec1 = getValue(I.getOperand(1)); 12367 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12368 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12369 12370 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12371 // legalisation and combines. 12372 if (OutVT.isFixedLengthVector()) { 12373 unsigned NumElts = InVT.getVectorMinNumElements(); 12374 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12375 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12376 createInterleaveMask(NumElts, 2))); 12377 return; 12378 } 12379 12380 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12381 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12382 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12383 Res.getValue(1)); 12384 setValue(&I, Res); 12385 } 12386 12387 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12388 SmallVector<EVT, 4> ValueVTs; 12389 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12390 ValueVTs); 12391 unsigned NumValues = ValueVTs.size(); 12392 if (NumValues == 0) return; 12393 12394 SmallVector<SDValue, 4> Values(NumValues); 12395 SDValue Op = getValue(I.getOperand(0)); 12396 12397 for (unsigned i = 0; i != NumValues; ++i) 12398 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12399 SDValue(Op.getNode(), Op.getResNo() + i)); 12400 12401 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12402 DAG.getVTList(ValueVTs), Values)); 12403 } 12404 12405 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12406 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12407 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12408 12409 SDLoc DL = getCurSDLoc(); 12410 SDValue V1 = getValue(I.getOperand(0)); 12411 SDValue V2 = getValue(I.getOperand(1)); 12412 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12413 12414 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12415 if (VT.isScalableVector()) { 12416 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12417 DAG.getVectorIdxConstant(Imm, DL))); 12418 return; 12419 } 12420 12421 unsigned NumElts = VT.getVectorNumElements(); 12422 12423 uint64_t Idx = (NumElts + Imm) % NumElts; 12424 12425 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12426 SmallVector<int, 8> Mask; 12427 for (unsigned i = 0; i < NumElts; ++i) 12428 Mask.push_back(Idx + i); 12429 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12430 } 12431 12432 // Consider the following MIR after SelectionDAG, which produces output in 12433 // phyregs in the first case or virtregs in the second case. 12434 // 12435 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12436 // %5:gr32 = COPY $ebx 12437 // %6:gr32 = COPY $edx 12438 // %1:gr32 = COPY %6:gr32 12439 // %0:gr32 = COPY %5:gr32 12440 // 12441 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12442 // %1:gr32 = COPY %6:gr32 12443 // %0:gr32 = COPY %5:gr32 12444 // 12445 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12446 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12447 // 12448 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12449 // to a single virtreg (such as %0). The remaining outputs monotonically 12450 // increase in virtreg number from there. If a callbr has no outputs, then it 12451 // should not have a corresponding callbr landingpad; in fact, the callbr 12452 // landingpad would not even be able to refer to such a callbr. 12453 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12454 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12455 // There is definitely at least one copy. 12456 assert(MI->getOpcode() == TargetOpcode::COPY && 12457 "start of copy chain MUST be COPY"); 12458 Reg = MI->getOperand(1).getReg(); 12459 MI = MRI.def_begin(Reg)->getParent(); 12460 // There may be an optional second copy. 12461 if (MI->getOpcode() == TargetOpcode::COPY) { 12462 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12463 Reg = MI->getOperand(1).getReg(); 12464 assert(Reg.isPhysical() && "expected COPY of physical register"); 12465 MI = MRI.def_begin(Reg)->getParent(); 12466 } 12467 // The start of the chain must be an INLINEASM_BR. 12468 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12469 "end of copy chain MUST be INLINEASM_BR"); 12470 return Reg; 12471 } 12472 12473 // We must do this walk rather than the simpler 12474 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12475 // otherwise we will end up with copies of virtregs only valid along direct 12476 // edges. 12477 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12478 SmallVector<EVT, 8> ResultVTs; 12479 SmallVector<SDValue, 8> ResultValues; 12480 const auto *CBR = 12481 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12482 12483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12484 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12485 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12486 12487 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12488 SDValue Chain = DAG.getRoot(); 12489 12490 // Re-parse the asm constraints string. 12491 TargetLowering::AsmOperandInfoVector TargetConstraints = 12492 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12493 for (auto &T : TargetConstraints) { 12494 SDISelAsmOperandInfo OpInfo(T); 12495 if (OpInfo.Type != InlineAsm::isOutput) 12496 continue; 12497 12498 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12499 // individual constraint. 12500 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12501 12502 switch (OpInfo.ConstraintType) { 12503 case TargetLowering::C_Register: 12504 case TargetLowering::C_RegisterClass: { 12505 // Fill in OpInfo.AssignedRegs.Regs. 12506 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12507 12508 // getRegistersForValue may produce 1 to many registers based on whether 12509 // the OpInfo.ConstraintVT is legal on the target or not. 12510 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12511 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12512 if (Register::isPhysicalRegister(OriginalDef)) 12513 FuncInfo.MBB->addLiveIn(OriginalDef); 12514 // Update the assigned registers to use the original defs. 12515 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12516 } 12517 12518 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12519 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12520 ResultValues.push_back(V); 12521 ResultVTs.push_back(OpInfo.ConstraintVT); 12522 break; 12523 } 12524 case TargetLowering::C_Other: { 12525 SDValue Flag; 12526 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12527 OpInfo, DAG); 12528 ++InitialDef; 12529 ResultValues.push_back(V); 12530 ResultVTs.push_back(OpInfo.ConstraintVT); 12531 break; 12532 } 12533 default: 12534 break; 12535 } 12536 } 12537 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12538 DAG.getVTList(ResultVTs), ResultValues); 12539 setValue(&I, V); 12540 } 12541