1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1188 } 1189 1190 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1191 // Update machine-CFG edge. 1192 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1193 FuncInfo.MBB->addSuccessor(TargetMBB); 1194 1195 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1196 bool IsSEH = isAsynchronousEHPersonality(Pers); 1197 if (IsSEH) { 1198 // If this is not a fall-through branch or optimizations are switched off, 1199 // emit the branch. 1200 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1201 TM.getOptLevel() == CodeGenOpt::None) 1202 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1203 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1204 return; 1205 } 1206 1207 // Figure out the funclet membership for the catchret's successor. 1208 // This will be used by the FuncletLayout pass to determine how to order the 1209 // BB's. 1210 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1211 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1212 assert(SuccessorColor && "No parent funclet for catchret!"); 1213 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1214 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1215 1216 // Create the terminator node. 1217 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1218 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1219 DAG.getBasicBlock(SuccessorColorMBB)); 1220 DAG.setRoot(Ret); 1221 } 1222 1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1224 // Don't emit any special code for the cleanuppad instruction. It just marks 1225 // the start of a funclet. 1226 FuncInfo.MBB->setIsEHFuncletEntry(); 1227 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1228 } 1229 1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1231 /// many places it could ultimately go. In the IR, we have a single unwind 1232 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1233 /// This function skips over imaginary basic blocks that hold catchswitch or 1234 /// terminatepad instructions, and finds all the "real" machine 1235 /// basic block destinations. As those destinations may not be successors of 1236 /// EHPadBB, here we also calculate the edge probability to those destinations. 1237 /// The passed-in Prob is the edge probability to EHPadBB. 1238 static void findUnwindDestinations( 1239 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1240 BranchProbability Prob, 1241 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1242 &UnwindDests) { 1243 EHPersonality Personality = 1244 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1245 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1246 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1247 1248 while (EHPadBB) { 1249 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1250 BasicBlock *NewEHPadBB = nullptr; 1251 if (isa<LandingPadInst>(Pad)) { 1252 // Stop on landingpads. They are not funclets. 1253 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1254 break; 1255 } else if (isa<CleanupPadInst>(Pad)) { 1256 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1257 // personalities. 1258 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1259 UnwindDests.back().first->setIsEHFuncletEntry(); 1260 break; 1261 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1262 // Add the catchpad handlers to the possible destinations. 1263 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1265 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1266 if (IsMSVCCXX || IsCoreCLR) 1267 UnwindDests.back().first->setIsEHFuncletEntry(); 1268 } 1269 NewEHPadBB = CatchSwitch->getUnwindDest(); 1270 } else { 1271 continue; 1272 } 1273 1274 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1275 if (BPI && NewEHPadBB) 1276 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1277 EHPadBB = NewEHPadBB; 1278 } 1279 } 1280 1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1282 // Update successor info. 1283 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1284 auto UnwindDest = I.getUnwindDest(); 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 BranchProbability UnwindDestProb = 1287 (BPI && UnwindDest) 1288 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1289 : BranchProbability::getZero(); 1290 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1291 for (auto &UnwindDest : UnwindDests) { 1292 UnwindDest.first->setIsEHPad(); 1293 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1294 } 1295 FuncInfo.MBB->normalizeSuccProbs(); 1296 1297 // Create the terminator node. 1298 SDValue Ret = 1299 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1300 DAG.setRoot(Ret); 1301 } 1302 1303 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1304 report_fatal_error("visitTerminatePad not yet implemented!"); 1305 } 1306 1307 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1308 report_fatal_error("visitCatchSwitch not yet implemented!"); 1309 } 1310 1311 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1313 auto &DL = DAG.getDataLayout(); 1314 SDValue Chain = getControlRoot(); 1315 SmallVector<ISD::OutputArg, 8> Outs; 1316 SmallVector<SDValue, 8> OutVals; 1317 1318 if (!FuncInfo.CanLowerReturn) { 1319 unsigned DemoteReg = FuncInfo.DemoteRegister; 1320 const Function *F = I.getParent()->getParent(); 1321 1322 // Emit a store of the return value through the virtual register. 1323 // Leave Outs empty so that LowerReturn won't try to load return 1324 // registers the usual way. 1325 SmallVector<EVT, 1> PtrValueVTs; 1326 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1327 PtrValueVTs); 1328 1329 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1330 DemoteReg, PtrValueVTs[0]); 1331 SDValue RetOp = getValue(I.getOperand(0)); 1332 1333 SmallVector<EVT, 4> ValueVTs; 1334 SmallVector<uint64_t, 4> Offsets; 1335 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1336 unsigned NumValues = ValueVTs.size(); 1337 1338 SmallVector<SDValue, 4> Chains(NumValues); 1339 for (unsigned i = 0; i != NumValues; ++i) { 1340 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1341 RetPtr.getValueType(), RetPtr, 1342 DAG.getIntPtrConstant(Offsets[i], 1343 getCurSDLoc())); 1344 Chains[i] = 1345 DAG.getStore(Chain, getCurSDLoc(), 1346 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1347 // FIXME: better loc info would be nice. 1348 Add, MachinePointerInfo(), false, false, 0); 1349 } 1350 1351 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1352 MVT::Other, Chains); 1353 } else if (I.getNumOperands() != 0) { 1354 SmallVector<EVT, 4> ValueVTs; 1355 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1356 unsigned NumValues = ValueVTs.size(); 1357 if (NumValues) { 1358 SDValue RetOp = getValue(I.getOperand(0)); 1359 1360 const Function *F = I.getParent()->getParent(); 1361 1362 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1363 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1364 Attribute::SExt)) 1365 ExtendKind = ISD::SIGN_EXTEND; 1366 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1367 Attribute::ZExt)) 1368 ExtendKind = ISD::ZERO_EXTEND; 1369 1370 LLVMContext &Context = F->getContext(); 1371 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1372 Attribute::InReg); 1373 1374 for (unsigned j = 0; j != NumValues; ++j) { 1375 EVT VT = ValueVTs[j]; 1376 1377 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1378 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1379 1380 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1381 MVT PartVT = TLI.getRegisterType(Context, VT); 1382 SmallVector<SDValue, 4> Parts(NumParts); 1383 getCopyToParts(DAG, getCurSDLoc(), 1384 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1385 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1386 1387 // 'inreg' on function refers to return value 1388 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1389 if (RetInReg) 1390 Flags.setInReg(); 1391 1392 // Propagate extension type if any 1393 if (ExtendKind == ISD::SIGN_EXTEND) 1394 Flags.setSExt(); 1395 else if (ExtendKind == ISD::ZERO_EXTEND) 1396 Flags.setZExt(); 1397 1398 for (unsigned i = 0; i < NumParts; ++i) { 1399 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1400 VT, /*isfixed=*/true, 0, 0)); 1401 OutVals.push_back(Parts[i]); 1402 } 1403 } 1404 } 1405 } 1406 1407 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1408 CallingConv::ID CallConv = 1409 DAG.getMachineFunction().getFunction()->getCallingConv(); 1410 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1411 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1412 1413 // Verify that the target's LowerReturn behaved as expected. 1414 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1415 "LowerReturn didn't return a valid chain!"); 1416 1417 // Update the DAG with the new chain value resulting from return lowering. 1418 DAG.setRoot(Chain); 1419 } 1420 1421 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1422 /// created for it, emit nodes to copy the value into the virtual 1423 /// registers. 1424 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1425 // Skip empty types 1426 if (V->getType()->isEmptyTy()) 1427 return; 1428 1429 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1430 if (VMI != FuncInfo.ValueMap.end()) { 1431 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1432 CopyValueToVirtualRegister(V, VMI->second); 1433 } 1434 } 1435 1436 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1437 /// the current basic block, add it to ValueMap now so that we'll get a 1438 /// CopyTo/FromReg. 1439 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1440 // No need to export constants. 1441 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1442 1443 // Already exported? 1444 if (FuncInfo.isExportedInst(V)) return; 1445 1446 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1447 CopyValueToVirtualRegister(V, Reg); 1448 } 1449 1450 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1451 const BasicBlock *FromBB) { 1452 // The operands of the setcc have to be in this block. We don't know 1453 // how to export them from some other block. 1454 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1455 // Can export from current BB. 1456 if (VI->getParent() == FromBB) 1457 return true; 1458 1459 // Is already exported, noop. 1460 return FuncInfo.isExportedInst(V); 1461 } 1462 1463 // If this is an argument, we can export it if the BB is the entry block or 1464 // if it is already exported. 1465 if (isa<Argument>(V)) { 1466 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1467 return true; 1468 1469 // Otherwise, can only export this if it is already exported. 1470 return FuncInfo.isExportedInst(V); 1471 } 1472 1473 // Otherwise, constants can always be exported. 1474 return true; 1475 } 1476 1477 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1478 BranchProbability 1479 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1480 const MachineBasicBlock *Dst) const { 1481 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1482 const BasicBlock *SrcBB = Src->getBasicBlock(); 1483 const BasicBlock *DstBB = Dst->getBasicBlock(); 1484 if (!BPI) { 1485 // If BPI is not available, set the default probability as 1 / N, where N is 1486 // the number of successors. 1487 auto SuccSize = std::max<uint32_t>( 1488 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1489 return BranchProbability(1, SuccSize); 1490 } 1491 return BPI->getEdgeProbability(SrcBB, DstBB); 1492 } 1493 1494 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1495 MachineBasicBlock *Dst, 1496 BranchProbability Prob) { 1497 if (!FuncInfo.BPI) 1498 Src->addSuccessorWithoutProb(Dst); 1499 else { 1500 if (Prob.isUnknown()) 1501 Prob = getEdgeProbability(Src, Dst); 1502 Src->addSuccessor(Dst, Prob); 1503 } 1504 } 1505 1506 static bool InBlock(const Value *V, const BasicBlock *BB) { 1507 if (const Instruction *I = dyn_cast<Instruction>(V)) 1508 return I->getParent() == BB; 1509 return true; 1510 } 1511 1512 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1513 /// This function emits a branch and is used at the leaves of an OR or an 1514 /// AND operator tree. 1515 /// 1516 void 1517 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1518 MachineBasicBlock *TBB, 1519 MachineBasicBlock *FBB, 1520 MachineBasicBlock *CurBB, 1521 MachineBasicBlock *SwitchBB, 1522 BranchProbability TProb, 1523 BranchProbability FProb) { 1524 const BasicBlock *BB = CurBB->getBasicBlock(); 1525 1526 // If the leaf of the tree is a comparison, merge the condition into 1527 // the caseblock. 1528 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1529 // The operands of the cmp have to be in this block. We don't know 1530 // how to export them from some other block. If this is the first block 1531 // of the sequence, no exporting is needed. 1532 if (CurBB == SwitchBB || 1533 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1534 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1535 ISD::CondCode Condition; 1536 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1537 Condition = getICmpCondCode(IC->getPredicate()); 1538 } else { 1539 const FCmpInst *FC = cast<FCmpInst>(Cond); 1540 Condition = getFCmpCondCode(FC->getPredicate()); 1541 if (TM.Options.NoNaNsFPMath) 1542 Condition = getFCmpCodeWithoutNaN(Condition); 1543 } 1544 1545 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1546 TBB, FBB, CurBB, TProb, FProb); 1547 SwitchCases.push_back(CB); 1548 return; 1549 } 1550 } 1551 1552 // Create a CaseBlock record representing this branch. 1553 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1554 nullptr, TBB, FBB, CurBB, TProb, FProb); 1555 SwitchCases.push_back(CB); 1556 } 1557 1558 /// FindMergedConditions - If Cond is an expression like 1559 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1560 MachineBasicBlock *TBB, 1561 MachineBasicBlock *FBB, 1562 MachineBasicBlock *CurBB, 1563 MachineBasicBlock *SwitchBB, 1564 Instruction::BinaryOps Opc, 1565 BranchProbability TProb, 1566 BranchProbability FProb) { 1567 // If this node is not part of the or/and tree, emit it as a branch. 1568 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1569 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1570 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1571 BOp->getParent() != CurBB->getBasicBlock() || 1572 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1573 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1574 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1575 TProb, FProb); 1576 return; 1577 } 1578 1579 // Create TmpBB after CurBB. 1580 MachineFunction::iterator BBI(CurBB); 1581 MachineFunction &MF = DAG.getMachineFunction(); 1582 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1583 CurBB->getParent()->insert(++BBI, TmpBB); 1584 1585 if (Opc == Instruction::Or) { 1586 // Codegen X | Y as: 1587 // BB1: 1588 // jmp_if_X TBB 1589 // jmp TmpBB 1590 // TmpBB: 1591 // jmp_if_Y TBB 1592 // jmp FBB 1593 // 1594 1595 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1596 // The requirement is that 1597 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1598 // = TrueProb for original BB. 1599 // Assuming the original probabilities are A and B, one choice is to set 1600 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1601 // A/(1+B) and 2B/(1+B). This choice assumes that 1602 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1603 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1604 // TmpBB, but the math is more complicated. 1605 1606 auto NewTrueProb = TProb / 2; 1607 auto NewFalseProb = TProb / 2 + FProb; 1608 // Emit the LHS condition. 1609 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1610 NewTrueProb, NewFalseProb); 1611 1612 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1613 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1614 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1615 // Emit the RHS condition into TmpBB. 1616 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1617 Probs[0], Probs[1]); 1618 } else { 1619 assert(Opc == Instruction::And && "Unknown merge op!"); 1620 // Codegen X & Y as: 1621 // BB1: 1622 // jmp_if_X TmpBB 1623 // jmp FBB 1624 // TmpBB: 1625 // jmp_if_Y TBB 1626 // jmp FBB 1627 // 1628 // This requires creation of TmpBB after CurBB. 1629 1630 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1631 // The requirement is that 1632 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1633 // = FalseProb for original BB. 1634 // Assuming the original probabilities are A and B, one choice is to set 1635 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1636 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1637 // TrueProb for BB1 * FalseProb for TmpBB. 1638 1639 auto NewTrueProb = TProb + FProb / 2; 1640 auto NewFalseProb = FProb / 2; 1641 // Emit the LHS condition. 1642 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1643 NewTrueProb, NewFalseProb); 1644 1645 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1646 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1647 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1648 // Emit the RHS condition into TmpBB. 1649 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1650 Probs[0], Probs[1]); 1651 } 1652 } 1653 1654 /// If the set of cases should be emitted as a series of branches, return true. 1655 /// If we should emit this as a bunch of and/or'd together conditions, return 1656 /// false. 1657 bool 1658 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1659 if (Cases.size() != 2) return true; 1660 1661 // If this is two comparisons of the same values or'd or and'd together, they 1662 // will get folded into a single comparison, so don't emit two blocks. 1663 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1664 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1665 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1666 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1667 return false; 1668 } 1669 1670 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1671 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1672 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1673 Cases[0].CC == Cases[1].CC && 1674 isa<Constant>(Cases[0].CmpRHS) && 1675 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1676 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1677 return false; 1678 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1679 return false; 1680 } 1681 1682 return true; 1683 } 1684 1685 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1686 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1687 1688 // Update machine-CFG edges. 1689 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1690 1691 if (I.isUnconditional()) { 1692 // Update machine-CFG edges. 1693 BrMBB->addSuccessor(Succ0MBB); 1694 1695 // If this is not a fall-through branch or optimizations are switched off, 1696 // emit the branch. 1697 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1698 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1699 MVT::Other, getControlRoot(), 1700 DAG.getBasicBlock(Succ0MBB))); 1701 1702 return; 1703 } 1704 1705 // If this condition is one of the special cases we handle, do special stuff 1706 // now. 1707 const Value *CondVal = I.getCondition(); 1708 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1709 1710 // If this is a series of conditions that are or'd or and'd together, emit 1711 // this as a sequence of branches instead of setcc's with and/or operations. 1712 // As long as jumps are not expensive, this should improve performance. 1713 // For example, instead of something like: 1714 // cmp A, B 1715 // C = seteq 1716 // cmp D, E 1717 // F = setle 1718 // or C, F 1719 // jnz foo 1720 // Emit: 1721 // cmp A, B 1722 // je foo 1723 // cmp D, E 1724 // jle foo 1725 // 1726 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1727 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1728 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1729 !I.getMetadata(LLVMContext::MD_unpredictable) && 1730 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1731 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1732 Opcode, 1733 getEdgeProbability(BrMBB, Succ0MBB), 1734 getEdgeProbability(BrMBB, Succ1MBB)); 1735 // If the compares in later blocks need to use values not currently 1736 // exported from this block, export them now. This block should always 1737 // be the first entry. 1738 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1739 1740 // Allow some cases to be rejected. 1741 if (ShouldEmitAsBranches(SwitchCases)) { 1742 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1743 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1744 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1745 } 1746 1747 // Emit the branch for this block. 1748 visitSwitchCase(SwitchCases[0], BrMBB); 1749 SwitchCases.erase(SwitchCases.begin()); 1750 return; 1751 } 1752 1753 // Okay, we decided not to do this, remove any inserted MBB's and clear 1754 // SwitchCases. 1755 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1756 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1757 1758 SwitchCases.clear(); 1759 } 1760 } 1761 1762 // Create a CaseBlock record representing this branch. 1763 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1764 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1765 1766 // Use visitSwitchCase to actually insert the fast branch sequence for this 1767 // cond branch. 1768 visitSwitchCase(CB, BrMBB); 1769 } 1770 1771 /// visitSwitchCase - Emits the necessary code to represent a single node in 1772 /// the binary search tree resulting from lowering a switch instruction. 1773 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1774 MachineBasicBlock *SwitchBB) { 1775 SDValue Cond; 1776 SDValue CondLHS = getValue(CB.CmpLHS); 1777 SDLoc dl = getCurSDLoc(); 1778 1779 // Build the setcc now. 1780 if (!CB.CmpMHS) { 1781 // Fold "(X == true)" to X and "(X == false)" to !X to 1782 // handle common cases produced by branch lowering. 1783 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1784 CB.CC == ISD::SETEQ) 1785 Cond = CondLHS; 1786 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1787 CB.CC == ISD::SETEQ) { 1788 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1789 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1790 } else 1791 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1792 } else { 1793 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1794 1795 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1796 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1797 1798 SDValue CmpOp = getValue(CB.CmpMHS); 1799 EVT VT = CmpOp.getValueType(); 1800 1801 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1802 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1803 ISD::SETLE); 1804 } else { 1805 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1806 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1807 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1808 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1809 } 1810 } 1811 1812 // Update successor info 1813 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1814 // TrueBB and FalseBB are always different unless the incoming IR is 1815 // degenerate. This only happens when running llc on weird IR. 1816 if (CB.TrueBB != CB.FalseBB) 1817 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1818 SwitchBB->normalizeSuccProbs(); 1819 1820 // If the lhs block is the next block, invert the condition so that we can 1821 // fall through to the lhs instead of the rhs block. 1822 if (CB.TrueBB == NextBlock(SwitchBB)) { 1823 std::swap(CB.TrueBB, CB.FalseBB); 1824 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1825 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1826 } 1827 1828 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1829 MVT::Other, getControlRoot(), Cond, 1830 DAG.getBasicBlock(CB.TrueBB)); 1831 1832 // Insert the false branch. Do this even if it's a fall through branch, 1833 // this makes it easier to do DAG optimizations which require inverting 1834 // the branch condition. 1835 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1836 DAG.getBasicBlock(CB.FalseBB)); 1837 1838 DAG.setRoot(BrCond); 1839 } 1840 1841 /// visitJumpTable - Emit JumpTable node in the current MBB 1842 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1843 // Emit the code for the jump table 1844 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1845 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1846 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1847 JT.Reg, PTy); 1848 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1849 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1850 MVT::Other, Index.getValue(1), 1851 Table, Index); 1852 DAG.setRoot(BrJumpTable); 1853 } 1854 1855 /// visitJumpTableHeader - This function emits necessary code to produce index 1856 /// in the JumpTable from switch case. 1857 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1858 JumpTableHeader &JTH, 1859 MachineBasicBlock *SwitchBB) { 1860 SDLoc dl = getCurSDLoc(); 1861 1862 // Subtract the lowest switch case value from the value being switched on and 1863 // conditional branch to default mbb if the result is greater than the 1864 // difference between smallest and largest cases. 1865 SDValue SwitchOp = getValue(JTH.SValue); 1866 EVT VT = SwitchOp.getValueType(); 1867 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1868 DAG.getConstant(JTH.First, dl, VT)); 1869 1870 // The SDNode we just created, which holds the value being switched on minus 1871 // the smallest case value, needs to be copied to a virtual register so it 1872 // can be used as an index into the jump table in a subsequent basic block. 1873 // This value may be smaller or larger than the target's pointer type, and 1874 // therefore require extension or truncating. 1875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1876 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1877 1878 unsigned JumpTableReg = 1879 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1880 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1881 JumpTableReg, SwitchOp); 1882 JT.Reg = JumpTableReg; 1883 1884 // Emit the range check for the jump table, and branch to the default block 1885 // for the switch statement if the value being switched on exceeds the largest 1886 // case in the switch. 1887 SDValue CMP = DAG.getSetCC( 1888 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1889 Sub.getValueType()), 1890 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1891 1892 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1893 MVT::Other, CopyTo, CMP, 1894 DAG.getBasicBlock(JT.Default)); 1895 1896 // Avoid emitting unnecessary branches to the next block. 1897 if (JT.MBB != NextBlock(SwitchBB)) 1898 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1899 DAG.getBasicBlock(JT.MBB)); 1900 1901 DAG.setRoot(BrCond); 1902 } 1903 1904 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1905 /// tail spliced into a stack protector check success bb. 1906 /// 1907 /// For a high level explanation of how this fits into the stack protector 1908 /// generation see the comment on the declaration of class 1909 /// StackProtectorDescriptor. 1910 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1911 MachineBasicBlock *ParentBB) { 1912 1913 // First create the loads to the guard/stack slot for the comparison. 1914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1915 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1916 1917 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1918 int FI = MFI->getStackProtectorIndex(); 1919 1920 const Value *IRGuard = SPD.getGuard(); 1921 SDValue GuardPtr = getValue(IRGuard); 1922 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1923 1924 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1925 1926 SDValue Guard; 1927 SDLoc dl = getCurSDLoc(); 1928 1929 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1930 // guard value from the virtual register holding the value. Otherwise, emit a 1931 // volatile load to retrieve the stack guard value. 1932 unsigned GuardReg = SPD.getGuardReg(); 1933 1934 if (GuardReg && TLI.useLoadStackGuardNode()) 1935 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1936 PtrTy); 1937 else 1938 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1939 GuardPtr, MachinePointerInfo(IRGuard, 0), 1940 true, false, false, Align); 1941 1942 SDValue StackSlot = DAG.getLoad( 1943 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1944 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1945 false, false, Align); 1946 1947 // Perform the comparison via a subtract/getsetcc. 1948 EVT VT = Guard.getValueType(); 1949 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1950 1951 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1952 *DAG.getContext(), 1953 Sub.getValueType()), 1954 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1955 1956 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1957 // branch to failure MBB. 1958 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1959 MVT::Other, StackSlot.getOperand(0), 1960 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1961 // Otherwise branch to success MBB. 1962 SDValue Br = DAG.getNode(ISD::BR, dl, 1963 MVT::Other, BrCond, 1964 DAG.getBasicBlock(SPD.getSuccessMBB())); 1965 1966 DAG.setRoot(Br); 1967 } 1968 1969 /// Codegen the failure basic block for a stack protector check. 1970 /// 1971 /// A failure stack protector machine basic block consists simply of a call to 1972 /// __stack_chk_fail(). 1973 /// 1974 /// For a high level explanation of how this fits into the stack protector 1975 /// generation see the comment on the declaration of class 1976 /// StackProtectorDescriptor. 1977 void 1978 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1980 SDValue Chain = 1981 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1982 None, false, getCurSDLoc(), false, false).second; 1983 DAG.setRoot(Chain); 1984 } 1985 1986 /// visitBitTestHeader - This function emits necessary code to produce value 1987 /// suitable for "bit tests" 1988 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1989 MachineBasicBlock *SwitchBB) { 1990 SDLoc dl = getCurSDLoc(); 1991 1992 // Subtract the minimum value 1993 SDValue SwitchOp = getValue(B.SValue); 1994 EVT VT = SwitchOp.getValueType(); 1995 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1996 DAG.getConstant(B.First, dl, VT)); 1997 1998 // Check range 1999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2000 SDValue RangeCmp = DAG.getSetCC( 2001 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2002 Sub.getValueType()), 2003 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2004 2005 // Determine the type of the test operands. 2006 bool UsePtrType = false; 2007 if (!TLI.isTypeLegal(VT)) 2008 UsePtrType = true; 2009 else { 2010 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2011 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2012 // Switch table case range are encoded into series of masks. 2013 // Just use pointer type, it's guaranteed to fit. 2014 UsePtrType = true; 2015 break; 2016 } 2017 } 2018 if (UsePtrType) { 2019 VT = TLI.getPointerTy(DAG.getDataLayout()); 2020 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2021 } 2022 2023 B.RegVT = VT.getSimpleVT(); 2024 B.Reg = FuncInfo.CreateReg(B.RegVT); 2025 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2026 2027 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2028 2029 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2030 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2031 SwitchBB->normalizeSuccProbs(); 2032 2033 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2034 MVT::Other, CopyTo, RangeCmp, 2035 DAG.getBasicBlock(B.Default)); 2036 2037 // Avoid emitting unnecessary branches to the next block. 2038 if (MBB != NextBlock(SwitchBB)) 2039 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2040 DAG.getBasicBlock(MBB)); 2041 2042 DAG.setRoot(BrRange); 2043 } 2044 2045 /// visitBitTestCase - this function produces one "bit test" 2046 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2047 MachineBasicBlock* NextMBB, 2048 BranchProbability BranchProbToNext, 2049 unsigned Reg, 2050 BitTestCase &B, 2051 MachineBasicBlock *SwitchBB) { 2052 SDLoc dl = getCurSDLoc(); 2053 MVT VT = BB.RegVT; 2054 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2055 SDValue Cmp; 2056 unsigned PopCount = countPopulation(B.Mask); 2057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2058 if (PopCount == 1) { 2059 // Testing for a single bit; just compare the shift count with what it 2060 // would need to be to shift a 1 bit in that position. 2061 Cmp = DAG.getSetCC( 2062 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2063 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2064 ISD::SETEQ); 2065 } else if (PopCount == BB.Range) { 2066 // There is only one zero bit in the range, test for it directly. 2067 Cmp = DAG.getSetCC( 2068 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2069 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2070 ISD::SETNE); 2071 } else { 2072 // Make desired shift 2073 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2074 DAG.getConstant(1, dl, VT), ShiftOp); 2075 2076 // Emit bit tests and jumps 2077 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2078 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2079 Cmp = DAG.getSetCC( 2080 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2081 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2082 } 2083 2084 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2085 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2086 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2087 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2088 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2089 // one as they are relative probabilities (and thus work more like weights), 2090 // and hence we need to normalize them to let the sum of them become one. 2091 SwitchBB->normalizeSuccProbs(); 2092 2093 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2094 MVT::Other, getControlRoot(), 2095 Cmp, DAG.getBasicBlock(B.TargetBB)); 2096 2097 // Avoid emitting unnecessary branches to the next block. 2098 if (NextMBB != NextBlock(SwitchBB)) 2099 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2100 DAG.getBasicBlock(NextMBB)); 2101 2102 DAG.setRoot(BrAnd); 2103 } 2104 2105 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2106 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2107 2108 // Retrieve successors. Look through artificial IR level blocks like 2109 // catchswitch for successors. 2110 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2111 const BasicBlock *EHPadBB = I.getSuccessor(1); 2112 2113 const Value *Callee(I.getCalledValue()); 2114 const Function *Fn = dyn_cast<Function>(Callee); 2115 if (isa<InlineAsm>(Callee)) 2116 visitInlineAsm(&I); 2117 else if (Fn && Fn->isIntrinsic()) { 2118 switch (Fn->getIntrinsicID()) { 2119 default: 2120 llvm_unreachable("Cannot invoke this intrinsic"); 2121 case Intrinsic::donothing: 2122 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2123 break; 2124 case Intrinsic::experimental_patchpoint_void: 2125 case Intrinsic::experimental_patchpoint_i64: 2126 visitPatchpoint(&I, EHPadBB); 2127 break; 2128 case Intrinsic::experimental_gc_statepoint: 2129 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2130 break; 2131 } 2132 } else 2133 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2134 2135 // If the value of the invoke is used outside of its defining block, make it 2136 // available as a virtual register. 2137 // We already took care of the exported value for the statepoint instruction 2138 // during call to the LowerStatepoint. 2139 if (!isStatepoint(I)) { 2140 CopyToExportRegsIfNeeded(&I); 2141 } 2142 2143 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability EHPadBBProb = 2146 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2147 : BranchProbability::getZero(); 2148 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2149 2150 // Update successor info. 2151 addSuccessorWithProb(InvokeMBB, Return); 2152 for (auto &UnwindDest : UnwindDests) { 2153 UnwindDest.first->setIsEHPad(); 2154 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2155 } 2156 InvokeMBB->normalizeSuccProbs(); 2157 2158 // Drop into normal successor. 2159 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2160 MVT::Other, getControlRoot(), 2161 DAG.getBasicBlock(Return))); 2162 } 2163 2164 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2165 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2166 } 2167 2168 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2169 assert(FuncInfo.MBB->isEHPad() && 2170 "Call to landingpad not in landing pad!"); 2171 2172 MachineBasicBlock *MBB = FuncInfo.MBB; 2173 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2174 AddLandingPadInfo(LP, MMI, MBB); 2175 2176 // If there aren't registers to copy the values into (e.g., during SjLj 2177 // exceptions), then don't bother to create these DAG nodes. 2178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2179 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2180 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2181 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2182 return; 2183 2184 SmallVector<EVT, 2> ValueVTs; 2185 SDLoc dl = getCurSDLoc(); 2186 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2187 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2188 2189 // Get the two live-in registers as SDValues. The physregs have already been 2190 // copied into virtual registers. 2191 SDValue Ops[2]; 2192 if (FuncInfo.ExceptionPointerVirtReg) { 2193 Ops[0] = DAG.getZExtOrTrunc( 2194 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2195 FuncInfo.ExceptionPointerVirtReg, 2196 TLI.getPointerTy(DAG.getDataLayout())), 2197 dl, ValueVTs[0]); 2198 } else { 2199 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2200 } 2201 Ops[1] = DAG.getZExtOrTrunc( 2202 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2203 FuncInfo.ExceptionSelectorVirtReg, 2204 TLI.getPointerTy(DAG.getDataLayout())), 2205 dl, ValueVTs[1]); 2206 2207 // Merge into one. 2208 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2209 DAG.getVTList(ValueVTs), Ops); 2210 setValue(&LP, Res); 2211 } 2212 2213 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2214 #ifndef NDEBUG 2215 for (const CaseCluster &CC : Clusters) 2216 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2217 #endif 2218 2219 std::sort(Clusters.begin(), Clusters.end(), 2220 [](const CaseCluster &a, const CaseCluster &b) { 2221 return a.Low->getValue().slt(b.Low->getValue()); 2222 }); 2223 2224 // Merge adjacent clusters with the same destination. 2225 const unsigned N = Clusters.size(); 2226 unsigned DstIndex = 0; 2227 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2228 CaseCluster &CC = Clusters[SrcIndex]; 2229 const ConstantInt *CaseVal = CC.Low; 2230 MachineBasicBlock *Succ = CC.MBB; 2231 2232 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2233 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2234 // If this case has the same successor and is a neighbour, merge it into 2235 // the previous cluster. 2236 Clusters[DstIndex - 1].High = CaseVal; 2237 Clusters[DstIndex - 1].Prob += CC.Prob; 2238 } else { 2239 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2240 sizeof(Clusters[SrcIndex])); 2241 } 2242 } 2243 Clusters.resize(DstIndex); 2244 } 2245 2246 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2247 MachineBasicBlock *Last) { 2248 // Update JTCases. 2249 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2250 if (JTCases[i].first.HeaderBB == First) 2251 JTCases[i].first.HeaderBB = Last; 2252 2253 // Update BitTestCases. 2254 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2255 if (BitTestCases[i].Parent == First) 2256 BitTestCases[i].Parent = Last; 2257 } 2258 2259 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2260 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2261 2262 // Update machine-CFG edges with unique successors. 2263 SmallSet<BasicBlock*, 32> Done; 2264 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2265 BasicBlock *BB = I.getSuccessor(i); 2266 bool Inserted = Done.insert(BB).second; 2267 if (!Inserted) 2268 continue; 2269 2270 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2271 addSuccessorWithProb(IndirectBrMBB, Succ); 2272 } 2273 2274 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2275 MVT::Other, getControlRoot(), 2276 getValue(I.getAddress()))); 2277 } 2278 2279 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2280 if (DAG.getTarget().Options.TrapUnreachable) 2281 DAG.setRoot( 2282 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2283 } 2284 2285 void SelectionDAGBuilder::visitFSub(const User &I) { 2286 // -0.0 - X --> fneg 2287 Type *Ty = I.getType(); 2288 if (isa<Constant>(I.getOperand(0)) && 2289 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2290 SDValue Op2 = getValue(I.getOperand(1)); 2291 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2292 Op2.getValueType(), Op2)); 2293 return; 2294 } 2295 2296 visitBinary(I, ISD::FSUB); 2297 } 2298 2299 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2300 SDValue Op1 = getValue(I.getOperand(0)); 2301 SDValue Op2 = getValue(I.getOperand(1)); 2302 2303 bool nuw = false; 2304 bool nsw = false; 2305 bool exact = false; 2306 FastMathFlags FMF; 2307 2308 if (const OverflowingBinaryOperator *OFBinOp = 2309 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2310 nuw = OFBinOp->hasNoUnsignedWrap(); 2311 nsw = OFBinOp->hasNoSignedWrap(); 2312 } 2313 if (const PossiblyExactOperator *ExactOp = 2314 dyn_cast<const PossiblyExactOperator>(&I)) 2315 exact = ExactOp->isExact(); 2316 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2317 FMF = FPOp->getFastMathFlags(); 2318 2319 SDNodeFlags Flags; 2320 Flags.setExact(exact); 2321 Flags.setNoSignedWrap(nsw); 2322 Flags.setNoUnsignedWrap(nuw); 2323 if (EnableFMFInDAG) { 2324 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2325 Flags.setNoInfs(FMF.noInfs()); 2326 Flags.setNoNaNs(FMF.noNaNs()); 2327 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2328 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2329 } 2330 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2331 Op1, Op2, &Flags); 2332 setValue(&I, BinNodeValue); 2333 } 2334 2335 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2336 SDValue Op1 = getValue(I.getOperand(0)); 2337 SDValue Op2 = getValue(I.getOperand(1)); 2338 2339 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2340 Op2.getValueType(), DAG.getDataLayout()); 2341 2342 // Coerce the shift amount to the right type if we can. 2343 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2344 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2345 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2346 SDLoc DL = getCurSDLoc(); 2347 2348 // If the operand is smaller than the shift count type, promote it. 2349 if (ShiftSize > Op2Size) 2350 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2351 2352 // If the operand is larger than the shift count type but the shift 2353 // count type has enough bits to represent any shift value, truncate 2354 // it now. This is a common case and it exposes the truncate to 2355 // optimization early. 2356 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2357 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2358 // Otherwise we'll need to temporarily settle for some other convenient 2359 // type. Type legalization will make adjustments once the shiftee is split. 2360 else 2361 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2362 } 2363 2364 bool nuw = false; 2365 bool nsw = false; 2366 bool exact = false; 2367 2368 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2369 2370 if (const OverflowingBinaryOperator *OFBinOp = 2371 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2372 nuw = OFBinOp->hasNoUnsignedWrap(); 2373 nsw = OFBinOp->hasNoSignedWrap(); 2374 } 2375 if (const PossiblyExactOperator *ExactOp = 2376 dyn_cast<const PossiblyExactOperator>(&I)) 2377 exact = ExactOp->isExact(); 2378 } 2379 SDNodeFlags Flags; 2380 Flags.setExact(exact); 2381 Flags.setNoSignedWrap(nsw); 2382 Flags.setNoUnsignedWrap(nuw); 2383 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2384 &Flags); 2385 setValue(&I, Res); 2386 } 2387 2388 void SelectionDAGBuilder::visitSDiv(const User &I) { 2389 SDValue Op1 = getValue(I.getOperand(0)); 2390 SDValue Op2 = getValue(I.getOperand(1)); 2391 2392 SDNodeFlags Flags; 2393 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2394 cast<PossiblyExactOperator>(&I)->isExact()); 2395 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2396 Op2, &Flags)); 2397 } 2398 2399 void SelectionDAGBuilder::visitICmp(const User &I) { 2400 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2402 predicate = IC->getPredicate(); 2403 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2404 predicate = ICmpInst::Predicate(IC->getPredicate()); 2405 SDValue Op1 = getValue(I.getOperand(0)); 2406 SDValue Op2 = getValue(I.getOperand(1)); 2407 ISD::CondCode Opcode = getICmpCondCode(predicate); 2408 2409 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2410 I.getType()); 2411 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2412 } 2413 2414 void SelectionDAGBuilder::visitFCmp(const User &I) { 2415 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2416 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2417 predicate = FC->getPredicate(); 2418 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2419 predicate = FCmpInst::Predicate(FC->getPredicate()); 2420 SDValue Op1 = getValue(I.getOperand(0)); 2421 SDValue Op2 = getValue(I.getOperand(1)); 2422 ISD::CondCode Condition = getFCmpCondCode(predicate); 2423 2424 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2425 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2426 // further optimization, but currently FMF is only applicable to binary nodes. 2427 if (TM.Options.NoNaNsFPMath) 2428 Condition = getFCmpCodeWithoutNaN(Condition); 2429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2430 I.getType()); 2431 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2432 } 2433 2434 void SelectionDAGBuilder::visitSelect(const User &I) { 2435 SmallVector<EVT, 4> ValueVTs; 2436 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2437 ValueVTs); 2438 unsigned NumValues = ValueVTs.size(); 2439 if (NumValues == 0) return; 2440 2441 SmallVector<SDValue, 4> Values(NumValues); 2442 SDValue Cond = getValue(I.getOperand(0)); 2443 SDValue LHSVal = getValue(I.getOperand(1)); 2444 SDValue RHSVal = getValue(I.getOperand(2)); 2445 auto BaseOps = {Cond}; 2446 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2447 ISD::VSELECT : ISD::SELECT; 2448 2449 // Min/max matching is only viable if all output VTs are the same. 2450 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2451 EVT VT = ValueVTs[0]; 2452 LLVMContext &Ctx = *DAG.getContext(); 2453 auto &TLI = DAG.getTargetLoweringInfo(); 2454 2455 // We care about the legality of the operation after it has been type 2456 // legalized. 2457 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 2458 VT = TLI.getTypeToTransformTo(Ctx, VT); 2459 2460 // If the vselect is legal, assume we want to leave this as a vector setcc + 2461 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2462 // min/max is legal on the scalar type. 2463 bool UseScalarMinMax = VT.isVector() && 2464 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2465 2466 Value *LHS, *RHS; 2467 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2468 ISD::NodeType Opc = ISD::DELETED_NODE; 2469 switch (SPR.Flavor) { 2470 case SPF_UMAX: Opc = ISD::UMAX; break; 2471 case SPF_UMIN: Opc = ISD::UMIN; break; 2472 case SPF_SMAX: Opc = ISD::SMAX; break; 2473 case SPF_SMIN: Opc = ISD::SMIN; break; 2474 case SPF_FMINNUM: 2475 switch (SPR.NaNBehavior) { 2476 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2477 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2478 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2479 case SPNB_RETURNS_ANY: { 2480 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2481 Opc = ISD::FMINNUM; 2482 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2483 Opc = ISD::FMINNAN; 2484 else if (UseScalarMinMax) 2485 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2486 ISD::FMINNUM : ISD::FMINNAN; 2487 break; 2488 } 2489 } 2490 break; 2491 case SPF_FMAXNUM: 2492 switch (SPR.NaNBehavior) { 2493 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2494 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2495 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2496 case SPNB_RETURNS_ANY: 2497 2498 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2499 Opc = ISD::FMAXNUM; 2500 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2501 Opc = ISD::FMAXNAN; 2502 else if (UseScalarMinMax) 2503 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2504 ISD::FMAXNUM : ISD::FMAXNAN; 2505 break; 2506 } 2507 break; 2508 default: break; 2509 } 2510 2511 if (Opc != ISD::DELETED_NODE && 2512 (TLI.isOperationLegalOrCustom(Opc, VT) || 2513 (UseScalarMinMax && 2514 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2515 // If the underlying comparison instruction is used by any other 2516 // instruction, the consumed instructions won't be destroyed, so it is 2517 // not profitable to convert to a min/max. 2518 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2519 OpCode = Opc; 2520 LHSVal = getValue(LHS); 2521 RHSVal = getValue(RHS); 2522 BaseOps = {}; 2523 } 2524 } 2525 2526 for (unsigned i = 0; i != NumValues; ++i) { 2527 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2528 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2529 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2530 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2531 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2532 Ops); 2533 } 2534 2535 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2536 DAG.getVTList(ValueVTs), Values)); 2537 } 2538 2539 void SelectionDAGBuilder::visitTrunc(const User &I) { 2540 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2541 SDValue N = getValue(I.getOperand(0)); 2542 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2543 I.getType()); 2544 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2545 } 2546 2547 void SelectionDAGBuilder::visitZExt(const User &I) { 2548 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2549 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2550 SDValue N = getValue(I.getOperand(0)); 2551 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2552 I.getType()); 2553 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2554 } 2555 2556 void SelectionDAGBuilder::visitSExt(const User &I) { 2557 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2558 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2559 SDValue N = getValue(I.getOperand(0)); 2560 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2561 I.getType()); 2562 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2563 } 2564 2565 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2566 // FPTrunc is never a no-op cast, no need to check 2567 SDValue N = getValue(I.getOperand(0)); 2568 SDLoc dl = getCurSDLoc(); 2569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2570 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2571 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2572 DAG.getTargetConstant( 2573 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2574 } 2575 2576 void SelectionDAGBuilder::visitFPExt(const User &I) { 2577 // FPExt is never a no-op cast, no need to check 2578 SDValue N = getValue(I.getOperand(0)); 2579 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2580 I.getType()); 2581 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2582 } 2583 2584 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2585 // FPToUI is never a no-op cast, no need to check 2586 SDValue N = getValue(I.getOperand(0)); 2587 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2588 I.getType()); 2589 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2590 } 2591 2592 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2593 // FPToSI is never a no-op cast, no need to check 2594 SDValue N = getValue(I.getOperand(0)); 2595 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2596 I.getType()); 2597 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2598 } 2599 2600 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2601 // UIToFP is never a no-op cast, no need to check 2602 SDValue N = getValue(I.getOperand(0)); 2603 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2604 I.getType()); 2605 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2606 } 2607 2608 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2609 // SIToFP is never a no-op cast, no need to check 2610 SDValue N = getValue(I.getOperand(0)); 2611 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2612 I.getType()); 2613 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2614 } 2615 2616 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2617 // What to do depends on the size of the integer and the size of the pointer. 2618 // We can either truncate, zero extend, or no-op, accordingly. 2619 SDValue N = getValue(I.getOperand(0)); 2620 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2621 I.getType()); 2622 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2623 } 2624 2625 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2626 // What to do depends on the size of the integer and the size of the pointer. 2627 // We can either truncate, zero extend, or no-op, accordingly. 2628 SDValue N = getValue(I.getOperand(0)); 2629 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2630 I.getType()); 2631 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2632 } 2633 2634 void SelectionDAGBuilder::visitBitCast(const User &I) { 2635 SDValue N = getValue(I.getOperand(0)); 2636 SDLoc dl = getCurSDLoc(); 2637 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2638 I.getType()); 2639 2640 // BitCast assures us that source and destination are the same size so this is 2641 // either a BITCAST or a no-op. 2642 if (DestVT != N.getValueType()) 2643 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2644 DestVT, N)); // convert types. 2645 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2646 // might fold any kind of constant expression to an integer constant and that 2647 // is not what we are looking for. Only regcognize a bitcast of a genuine 2648 // constant integer as an opaque constant. 2649 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2650 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2651 /*isOpaque*/true)); 2652 else 2653 setValue(&I, N); // noop cast. 2654 } 2655 2656 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2658 const Value *SV = I.getOperand(0); 2659 SDValue N = getValue(SV); 2660 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2661 2662 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2663 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2664 2665 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2666 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2667 2668 setValue(&I, N); 2669 } 2670 2671 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2673 SDValue InVec = getValue(I.getOperand(0)); 2674 SDValue InVal = getValue(I.getOperand(1)); 2675 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2676 TLI.getVectorIdxTy(DAG.getDataLayout())); 2677 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2678 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2679 InVec, InVal, InIdx)); 2680 } 2681 2682 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2684 SDValue InVec = getValue(I.getOperand(0)); 2685 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2686 TLI.getVectorIdxTy(DAG.getDataLayout())); 2687 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2688 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2689 InVec, InIdx)); 2690 } 2691 2692 // Utility for visitShuffleVector - Return true if every element in Mask, 2693 // beginning from position Pos and ending in Pos+Size, falls within the 2694 // specified sequential range [L, L+Pos). or is undef. 2695 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2696 unsigned Pos, unsigned Size, int Low) { 2697 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2698 if (Mask[i] >= 0 && Mask[i] != Low) 2699 return false; 2700 return true; 2701 } 2702 2703 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2704 SDValue Src1 = getValue(I.getOperand(0)); 2705 SDValue Src2 = getValue(I.getOperand(1)); 2706 2707 SmallVector<int, 8> Mask; 2708 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2709 unsigned MaskNumElts = Mask.size(); 2710 2711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2712 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2713 EVT SrcVT = Src1.getValueType(); 2714 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2715 2716 if (SrcNumElts == MaskNumElts) { 2717 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2718 &Mask[0])); 2719 return; 2720 } 2721 2722 // Normalize the shuffle vector since mask and vector length don't match. 2723 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2724 // Mask is longer than the source vectors and is a multiple of the source 2725 // vectors. We can use concatenate vector to make the mask and vectors 2726 // lengths match. 2727 if (SrcNumElts*2 == MaskNumElts) { 2728 // First check for Src1 in low and Src2 in high 2729 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2730 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2731 // The shuffle is concatenating two vectors together. 2732 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2733 VT, Src1, Src2)); 2734 return; 2735 } 2736 // Then check for Src2 in low and Src1 in high 2737 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2738 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2739 // The shuffle is concatenating two vectors together. 2740 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2741 VT, Src2, Src1)); 2742 return; 2743 } 2744 } 2745 2746 // Pad both vectors with undefs to make them the same length as the mask. 2747 unsigned NumConcat = MaskNumElts / SrcNumElts; 2748 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2749 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2750 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2751 2752 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2753 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2754 MOps1[0] = Src1; 2755 MOps2[0] = Src2; 2756 2757 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2758 getCurSDLoc(), VT, MOps1); 2759 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2760 getCurSDLoc(), VT, MOps2); 2761 2762 // Readjust mask for new input vector length. 2763 SmallVector<int, 8> MappedOps; 2764 for (unsigned i = 0; i != MaskNumElts; ++i) { 2765 int Idx = Mask[i]; 2766 if (Idx >= (int)SrcNumElts) 2767 Idx -= SrcNumElts - MaskNumElts; 2768 MappedOps.push_back(Idx); 2769 } 2770 2771 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2772 &MappedOps[0])); 2773 return; 2774 } 2775 2776 if (SrcNumElts > MaskNumElts) { 2777 // Analyze the access pattern of the vector to see if we can extract 2778 // two subvectors and do the shuffle. The analysis is done by calculating 2779 // the range of elements the mask access on both vectors. 2780 int MinRange[2] = { static_cast<int>(SrcNumElts), 2781 static_cast<int>(SrcNumElts)}; 2782 int MaxRange[2] = {-1, -1}; 2783 2784 for (unsigned i = 0; i != MaskNumElts; ++i) { 2785 int Idx = Mask[i]; 2786 unsigned Input = 0; 2787 if (Idx < 0) 2788 continue; 2789 2790 if (Idx >= (int)SrcNumElts) { 2791 Input = 1; 2792 Idx -= SrcNumElts; 2793 } 2794 if (Idx > MaxRange[Input]) 2795 MaxRange[Input] = Idx; 2796 if (Idx < MinRange[Input]) 2797 MinRange[Input] = Idx; 2798 } 2799 2800 // Check if the access is smaller than the vector size and can we find 2801 // a reasonable extract index. 2802 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2803 // Extract. 2804 int StartIdx[2]; // StartIdx to extract from 2805 for (unsigned Input = 0; Input < 2; ++Input) { 2806 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2807 RangeUse[Input] = 0; // Unused 2808 StartIdx[Input] = 0; 2809 continue; 2810 } 2811 2812 // Find a good start index that is a multiple of the mask length. Then 2813 // see if the rest of the elements are in range. 2814 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2815 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2816 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2817 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2818 } 2819 2820 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2821 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2822 return; 2823 } 2824 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2825 // Extract appropriate subvector and generate a vector shuffle 2826 for (unsigned Input = 0; Input < 2; ++Input) { 2827 SDValue &Src = Input == 0 ? Src1 : Src2; 2828 if (RangeUse[Input] == 0) 2829 Src = DAG.getUNDEF(VT); 2830 else { 2831 SDLoc dl = getCurSDLoc(); 2832 Src = DAG.getNode( 2833 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2834 DAG.getConstant(StartIdx[Input], dl, 2835 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2836 } 2837 } 2838 2839 // Calculate new mask. 2840 SmallVector<int, 8> MappedOps; 2841 for (unsigned i = 0; i != MaskNumElts; ++i) { 2842 int Idx = Mask[i]; 2843 if (Idx >= 0) { 2844 if (Idx < (int)SrcNumElts) 2845 Idx -= StartIdx[0]; 2846 else 2847 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2848 } 2849 MappedOps.push_back(Idx); 2850 } 2851 2852 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2853 &MappedOps[0])); 2854 return; 2855 } 2856 } 2857 2858 // We can't use either concat vectors or extract subvectors so fall back to 2859 // replacing the shuffle with extract and build vector. 2860 // to insert and build vector. 2861 EVT EltVT = VT.getVectorElementType(); 2862 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2863 SDLoc dl = getCurSDLoc(); 2864 SmallVector<SDValue,8> Ops; 2865 for (unsigned i = 0; i != MaskNumElts; ++i) { 2866 int Idx = Mask[i]; 2867 SDValue Res; 2868 2869 if (Idx < 0) { 2870 Res = DAG.getUNDEF(EltVT); 2871 } else { 2872 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2873 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2874 2875 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2876 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2877 } 2878 2879 Ops.push_back(Res); 2880 } 2881 2882 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2883 } 2884 2885 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2886 const Value *Op0 = I.getOperand(0); 2887 const Value *Op1 = I.getOperand(1); 2888 Type *AggTy = I.getType(); 2889 Type *ValTy = Op1->getType(); 2890 bool IntoUndef = isa<UndefValue>(Op0); 2891 bool FromUndef = isa<UndefValue>(Op1); 2892 2893 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2894 2895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2896 SmallVector<EVT, 4> AggValueVTs; 2897 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2898 SmallVector<EVT, 4> ValValueVTs; 2899 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2900 2901 unsigned NumAggValues = AggValueVTs.size(); 2902 unsigned NumValValues = ValValueVTs.size(); 2903 SmallVector<SDValue, 4> Values(NumAggValues); 2904 2905 // Ignore an insertvalue that produces an empty object 2906 if (!NumAggValues) { 2907 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2908 return; 2909 } 2910 2911 SDValue Agg = getValue(Op0); 2912 unsigned i = 0; 2913 // Copy the beginning value(s) from the original aggregate. 2914 for (; i != LinearIndex; ++i) 2915 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2916 SDValue(Agg.getNode(), Agg.getResNo() + i); 2917 // Copy values from the inserted value(s). 2918 if (NumValValues) { 2919 SDValue Val = getValue(Op1); 2920 for (; i != LinearIndex + NumValValues; ++i) 2921 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2922 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2923 } 2924 // Copy remaining value(s) from the original aggregate. 2925 for (; i != NumAggValues; ++i) 2926 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2927 SDValue(Agg.getNode(), Agg.getResNo() + i); 2928 2929 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2930 DAG.getVTList(AggValueVTs), Values)); 2931 } 2932 2933 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2934 const Value *Op0 = I.getOperand(0); 2935 Type *AggTy = Op0->getType(); 2936 Type *ValTy = I.getType(); 2937 bool OutOfUndef = isa<UndefValue>(Op0); 2938 2939 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2940 2941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2942 SmallVector<EVT, 4> ValValueVTs; 2943 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2944 2945 unsigned NumValValues = ValValueVTs.size(); 2946 2947 // Ignore a extractvalue that produces an empty object 2948 if (!NumValValues) { 2949 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2950 return; 2951 } 2952 2953 SmallVector<SDValue, 4> Values(NumValValues); 2954 2955 SDValue Agg = getValue(Op0); 2956 // Copy out the selected value(s). 2957 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2958 Values[i - LinearIndex] = 2959 OutOfUndef ? 2960 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2961 SDValue(Agg.getNode(), Agg.getResNo() + i); 2962 2963 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2964 DAG.getVTList(ValValueVTs), Values)); 2965 } 2966 2967 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2968 Value *Op0 = I.getOperand(0); 2969 // Note that the pointer operand may be a vector of pointers. Take the scalar 2970 // element which holds a pointer. 2971 Type *Ty = Op0->getType()->getScalarType(); 2972 unsigned AS = Ty->getPointerAddressSpace(); 2973 SDValue N = getValue(Op0); 2974 SDLoc dl = getCurSDLoc(); 2975 2976 // Normalize Vector GEP - all scalar operands should be converted to the 2977 // splat vector. 2978 unsigned VectorWidth = I.getType()->isVectorTy() ? 2979 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2980 2981 if (VectorWidth && !N.getValueType().isVector()) { 2982 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2983 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2984 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2985 } 2986 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2987 OI != E; ++OI) { 2988 const Value *Idx = *OI; 2989 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2990 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2991 if (Field) { 2992 // N = N + Offset 2993 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2994 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2995 DAG.getConstant(Offset, dl, N.getValueType())); 2996 } 2997 2998 Ty = StTy->getElementType(Field); 2999 } else { 3000 Ty = cast<SequentialType>(Ty)->getElementType(); 3001 MVT PtrTy = 3002 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3003 unsigned PtrSize = PtrTy.getSizeInBits(); 3004 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3005 3006 // If this is a scalar constant or a splat vector of constants, 3007 // handle it quickly. 3008 const auto *CI = dyn_cast<ConstantInt>(Idx); 3009 if (!CI && isa<ConstantDataVector>(Idx) && 3010 cast<ConstantDataVector>(Idx)->getSplatValue()) 3011 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3012 3013 if (CI) { 3014 if (CI->isZero()) 3015 continue; 3016 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3017 SDValue OffsVal = VectorWidth ? 3018 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3019 DAG.getConstant(Offs, dl, PtrTy); 3020 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3021 continue; 3022 } 3023 3024 // N = N + Idx * ElementSize; 3025 SDValue IdxN = getValue(Idx); 3026 3027 if (!IdxN.getValueType().isVector() && VectorWidth) { 3028 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3029 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3030 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3031 } 3032 // If the index is smaller or larger than intptr_t, truncate or extend 3033 // it. 3034 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3035 3036 // If this is a multiply by a power of two, turn it into a shl 3037 // immediately. This is a very common case. 3038 if (ElementSize != 1) { 3039 if (ElementSize.isPowerOf2()) { 3040 unsigned Amt = ElementSize.logBase2(); 3041 IdxN = DAG.getNode(ISD::SHL, dl, 3042 N.getValueType(), IdxN, 3043 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3044 } else { 3045 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3046 IdxN = DAG.getNode(ISD::MUL, dl, 3047 N.getValueType(), IdxN, Scale); 3048 } 3049 } 3050 3051 N = DAG.getNode(ISD::ADD, dl, 3052 N.getValueType(), N, IdxN); 3053 } 3054 } 3055 3056 setValue(&I, N); 3057 } 3058 3059 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3060 // If this is a fixed sized alloca in the entry block of the function, 3061 // allocate it statically on the stack. 3062 if (FuncInfo.StaticAllocaMap.count(&I)) 3063 return; // getValue will auto-populate this. 3064 3065 SDLoc dl = getCurSDLoc(); 3066 Type *Ty = I.getAllocatedType(); 3067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3068 auto &DL = DAG.getDataLayout(); 3069 uint64_t TySize = DL.getTypeAllocSize(Ty); 3070 unsigned Align = 3071 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3072 3073 SDValue AllocSize = getValue(I.getArraySize()); 3074 3075 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3076 if (AllocSize.getValueType() != IntPtr) 3077 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3078 3079 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3080 AllocSize, 3081 DAG.getConstant(TySize, dl, IntPtr)); 3082 3083 // Handle alignment. If the requested alignment is less than or equal to 3084 // the stack alignment, ignore it. If the size is greater than or equal to 3085 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3086 unsigned StackAlign = 3087 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3088 if (Align <= StackAlign) 3089 Align = 0; 3090 3091 // Round the size of the allocation up to the stack alignment size 3092 // by add SA-1 to the size. 3093 AllocSize = DAG.getNode(ISD::ADD, dl, 3094 AllocSize.getValueType(), AllocSize, 3095 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3096 3097 // Mask out the low bits for alignment purposes. 3098 AllocSize = DAG.getNode(ISD::AND, dl, 3099 AllocSize.getValueType(), AllocSize, 3100 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3101 dl)); 3102 3103 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3104 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3105 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3106 setValue(&I, DSA); 3107 DAG.setRoot(DSA.getValue(1)); 3108 3109 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3110 } 3111 3112 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3113 if (I.isAtomic()) 3114 return visitAtomicLoad(I); 3115 3116 const Value *SV = I.getOperand(0); 3117 SDValue Ptr = getValue(SV); 3118 3119 Type *Ty = I.getType(); 3120 3121 bool isVolatile = I.isVolatile(); 3122 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3123 3124 // The IR notion of invariant_load only guarantees that all *non-faulting* 3125 // invariant loads result in the same value. The MI notion of invariant load 3126 // guarantees that the load can be legally moved to any location within its 3127 // containing function. The MI notion of invariant_load is stronger than the 3128 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3129 // with a guarantee that the location being loaded from is dereferenceable 3130 // throughout the function's lifetime. 3131 3132 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3133 isDereferenceablePointer(SV, DAG.getDataLayout()); 3134 unsigned Alignment = I.getAlignment(); 3135 3136 AAMDNodes AAInfo; 3137 I.getAAMetadata(AAInfo); 3138 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3139 3140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3141 SmallVector<EVT, 4> ValueVTs; 3142 SmallVector<uint64_t, 4> Offsets; 3143 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3144 unsigned NumValues = ValueVTs.size(); 3145 if (NumValues == 0) 3146 return; 3147 3148 SDValue Root; 3149 bool ConstantMemory = false; 3150 if (isVolatile || NumValues > MaxParallelChains) 3151 // Serialize volatile loads with other side effects. 3152 Root = getRoot(); 3153 else if (AA->pointsToConstantMemory(MemoryLocation( 3154 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3155 // Do not serialize (non-volatile) loads of constant memory with anything. 3156 Root = DAG.getEntryNode(); 3157 ConstantMemory = true; 3158 } else { 3159 // Do not serialize non-volatile loads against each other. 3160 Root = DAG.getRoot(); 3161 } 3162 3163 SDLoc dl = getCurSDLoc(); 3164 3165 if (isVolatile) 3166 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3167 3168 SmallVector<SDValue, 4> Values(NumValues); 3169 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3170 EVT PtrVT = Ptr.getValueType(); 3171 unsigned ChainI = 0; 3172 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3173 // Serializing loads here may result in excessive register pressure, and 3174 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3175 // could recover a bit by hoisting nodes upward in the chain by recognizing 3176 // they are side-effect free or do not alias. The optimizer should really 3177 // avoid this case by converting large object/array copies to llvm.memcpy 3178 // (MaxParallelChains should always remain as failsafe). 3179 if (ChainI == MaxParallelChains) { 3180 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3181 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3182 makeArrayRef(Chains.data(), ChainI)); 3183 Root = Chain; 3184 ChainI = 0; 3185 } 3186 SDValue A = DAG.getNode(ISD::ADD, dl, 3187 PtrVT, Ptr, 3188 DAG.getConstant(Offsets[i], dl, PtrVT)); 3189 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3190 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3191 isNonTemporal, isInvariant, Alignment, AAInfo, 3192 Ranges); 3193 3194 Values[i] = L; 3195 Chains[ChainI] = L.getValue(1); 3196 } 3197 3198 if (!ConstantMemory) { 3199 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3200 makeArrayRef(Chains.data(), ChainI)); 3201 if (isVolatile) 3202 DAG.setRoot(Chain); 3203 else 3204 PendingLoads.push_back(Chain); 3205 } 3206 3207 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3208 DAG.getVTList(ValueVTs), Values)); 3209 } 3210 3211 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3212 if (I.isAtomic()) 3213 return visitAtomicStore(I); 3214 3215 const Value *SrcV = I.getOperand(0); 3216 const Value *PtrV = I.getOperand(1); 3217 3218 SmallVector<EVT, 4> ValueVTs; 3219 SmallVector<uint64_t, 4> Offsets; 3220 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3221 SrcV->getType(), ValueVTs, &Offsets); 3222 unsigned NumValues = ValueVTs.size(); 3223 if (NumValues == 0) 3224 return; 3225 3226 // Get the lowered operands. Note that we do this after 3227 // checking if NumResults is zero, because with zero results 3228 // the operands won't have values in the map. 3229 SDValue Src = getValue(SrcV); 3230 SDValue Ptr = getValue(PtrV); 3231 3232 SDValue Root = getRoot(); 3233 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3234 EVT PtrVT = Ptr.getValueType(); 3235 bool isVolatile = I.isVolatile(); 3236 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3237 unsigned Alignment = I.getAlignment(); 3238 SDLoc dl = getCurSDLoc(); 3239 3240 AAMDNodes AAInfo; 3241 I.getAAMetadata(AAInfo); 3242 3243 unsigned ChainI = 0; 3244 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3245 // See visitLoad comments. 3246 if (ChainI == MaxParallelChains) { 3247 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3248 makeArrayRef(Chains.data(), ChainI)); 3249 Root = Chain; 3250 ChainI = 0; 3251 } 3252 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3253 DAG.getConstant(Offsets[i], dl, PtrVT)); 3254 SDValue St = DAG.getStore(Root, dl, 3255 SDValue(Src.getNode(), Src.getResNo() + i), 3256 Add, MachinePointerInfo(PtrV, Offsets[i]), 3257 isVolatile, isNonTemporal, Alignment, AAInfo); 3258 Chains[ChainI] = St; 3259 } 3260 3261 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3262 makeArrayRef(Chains.data(), ChainI)); 3263 DAG.setRoot(StoreNode); 3264 } 3265 3266 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3267 SDLoc sdl = getCurSDLoc(); 3268 3269 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3270 Value *PtrOperand = I.getArgOperand(1); 3271 SDValue Ptr = getValue(PtrOperand); 3272 SDValue Src0 = getValue(I.getArgOperand(0)); 3273 SDValue Mask = getValue(I.getArgOperand(3)); 3274 EVT VT = Src0.getValueType(); 3275 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3276 if (!Alignment) 3277 Alignment = DAG.getEVTAlignment(VT); 3278 3279 AAMDNodes AAInfo; 3280 I.getAAMetadata(AAInfo); 3281 3282 MachineMemOperand *MMO = 3283 DAG.getMachineFunction(). 3284 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3285 MachineMemOperand::MOStore, VT.getStoreSize(), 3286 Alignment, AAInfo); 3287 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3288 MMO, false); 3289 DAG.setRoot(StoreNode); 3290 setValue(&I, StoreNode); 3291 } 3292 3293 // Get a uniform base for the Gather/Scatter intrinsic. 3294 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3295 // We try to represent it as a base pointer + vector of indices. 3296 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3297 // The first operand of the GEP may be a single pointer or a vector of pointers 3298 // Example: 3299 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3300 // or 3301 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3302 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3303 // 3304 // When the first GEP operand is a single pointer - it is the uniform base we 3305 // are looking for. If first operand of the GEP is a splat vector - we 3306 // extract the spalt value and use it as a uniform base. 3307 // In all other cases the function returns 'false'. 3308 // 3309 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3310 SelectionDAGBuilder* SDB) { 3311 3312 SelectionDAG& DAG = SDB->DAG; 3313 LLVMContext &Context = *DAG.getContext(); 3314 3315 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3316 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3317 if (!GEP || GEP->getNumOperands() > 2) 3318 return false; 3319 3320 const Value *GEPPtr = GEP->getPointerOperand(); 3321 if (!GEPPtr->getType()->isVectorTy()) 3322 Ptr = GEPPtr; 3323 else if (!(Ptr = getSplatValue(GEPPtr))) 3324 return false; 3325 3326 Value *IndexVal = GEP->getOperand(1); 3327 3328 // The operands of the GEP may be defined in another basic block. 3329 // In this case we'll not find nodes for the operands. 3330 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3331 return false; 3332 3333 Base = SDB->getValue(Ptr); 3334 Index = SDB->getValue(IndexVal); 3335 3336 // Suppress sign extension. 3337 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3338 if (SDB->findValue(Sext->getOperand(0))) { 3339 IndexVal = Sext->getOperand(0); 3340 Index = SDB->getValue(IndexVal); 3341 } 3342 } 3343 if (!Index.getValueType().isVector()) { 3344 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3345 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3346 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3347 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3348 } 3349 return true; 3350 } 3351 3352 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3353 SDLoc sdl = getCurSDLoc(); 3354 3355 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3356 const Value *Ptr = I.getArgOperand(1); 3357 SDValue Src0 = getValue(I.getArgOperand(0)); 3358 SDValue Mask = getValue(I.getArgOperand(3)); 3359 EVT VT = Src0.getValueType(); 3360 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3361 if (!Alignment) 3362 Alignment = DAG.getEVTAlignment(VT); 3363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3364 3365 AAMDNodes AAInfo; 3366 I.getAAMetadata(AAInfo); 3367 3368 SDValue Base; 3369 SDValue Index; 3370 const Value *BasePtr = Ptr; 3371 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3372 3373 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3374 MachineMemOperand *MMO = DAG.getMachineFunction(). 3375 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3376 MachineMemOperand::MOStore, VT.getStoreSize(), 3377 Alignment, AAInfo); 3378 if (!UniformBase) { 3379 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3380 Index = getValue(Ptr); 3381 } 3382 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3383 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3384 Ops, MMO); 3385 DAG.setRoot(Scatter); 3386 setValue(&I, Scatter); 3387 } 3388 3389 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3390 SDLoc sdl = getCurSDLoc(); 3391 3392 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3393 Value *PtrOperand = I.getArgOperand(0); 3394 SDValue Ptr = getValue(PtrOperand); 3395 SDValue Src0 = getValue(I.getArgOperand(3)); 3396 SDValue Mask = getValue(I.getArgOperand(2)); 3397 3398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3399 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3400 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3401 if (!Alignment) 3402 Alignment = DAG.getEVTAlignment(VT); 3403 3404 AAMDNodes AAInfo; 3405 I.getAAMetadata(AAInfo); 3406 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3407 3408 SDValue InChain = DAG.getRoot(); 3409 if (AA->pointsToConstantMemory(MemoryLocation( 3410 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3411 AAInfo))) { 3412 // Do not serialize (non-volatile) loads of constant memory with anything. 3413 InChain = DAG.getEntryNode(); 3414 } 3415 3416 MachineMemOperand *MMO = 3417 DAG.getMachineFunction(). 3418 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3419 MachineMemOperand::MOLoad, VT.getStoreSize(), 3420 Alignment, AAInfo, Ranges); 3421 3422 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3423 ISD::NON_EXTLOAD); 3424 SDValue OutChain = Load.getValue(1); 3425 DAG.setRoot(OutChain); 3426 setValue(&I, Load); 3427 } 3428 3429 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3430 SDLoc sdl = getCurSDLoc(); 3431 3432 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3433 const Value *Ptr = I.getArgOperand(0); 3434 SDValue Src0 = getValue(I.getArgOperand(3)); 3435 SDValue Mask = getValue(I.getArgOperand(2)); 3436 3437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3438 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3439 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3440 if (!Alignment) 3441 Alignment = DAG.getEVTAlignment(VT); 3442 3443 AAMDNodes AAInfo; 3444 I.getAAMetadata(AAInfo); 3445 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3446 3447 SDValue Root = DAG.getRoot(); 3448 SDValue Base; 3449 SDValue Index; 3450 const Value *BasePtr = Ptr; 3451 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3452 bool ConstantMemory = false; 3453 if (UniformBase && 3454 AA->pointsToConstantMemory(MemoryLocation( 3455 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3456 AAInfo))) { 3457 // Do not serialize (non-volatile) loads of constant memory with anything. 3458 Root = DAG.getEntryNode(); 3459 ConstantMemory = true; 3460 } 3461 3462 MachineMemOperand *MMO = 3463 DAG.getMachineFunction(). 3464 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3465 MachineMemOperand::MOLoad, VT.getStoreSize(), 3466 Alignment, AAInfo, Ranges); 3467 3468 if (!UniformBase) { 3469 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3470 Index = getValue(Ptr); 3471 } 3472 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3473 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3474 Ops, MMO); 3475 3476 SDValue OutChain = Gather.getValue(1); 3477 if (!ConstantMemory) 3478 PendingLoads.push_back(OutChain); 3479 setValue(&I, Gather); 3480 } 3481 3482 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3483 SDLoc dl = getCurSDLoc(); 3484 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3485 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3486 SynchronizationScope Scope = I.getSynchScope(); 3487 3488 SDValue InChain = getRoot(); 3489 3490 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3491 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3492 SDValue L = DAG.getAtomicCmpSwap( 3493 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3494 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3495 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3496 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3497 3498 SDValue OutChain = L.getValue(2); 3499 3500 setValue(&I, L); 3501 DAG.setRoot(OutChain); 3502 } 3503 3504 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3505 SDLoc dl = getCurSDLoc(); 3506 ISD::NodeType NT; 3507 switch (I.getOperation()) { 3508 default: llvm_unreachable("Unknown atomicrmw operation"); 3509 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3510 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3511 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3512 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3513 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3514 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3515 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3516 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3517 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3518 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3519 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3520 } 3521 AtomicOrdering Order = I.getOrdering(); 3522 SynchronizationScope Scope = I.getSynchScope(); 3523 3524 SDValue InChain = getRoot(); 3525 3526 SDValue L = 3527 DAG.getAtomic(NT, dl, 3528 getValue(I.getValOperand()).getSimpleValueType(), 3529 InChain, 3530 getValue(I.getPointerOperand()), 3531 getValue(I.getValOperand()), 3532 I.getPointerOperand(), 3533 /* Alignment=*/ 0, Order, Scope); 3534 3535 SDValue OutChain = L.getValue(1); 3536 3537 setValue(&I, L); 3538 DAG.setRoot(OutChain); 3539 } 3540 3541 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3542 SDLoc dl = getCurSDLoc(); 3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3544 SDValue Ops[3]; 3545 Ops[0] = getRoot(); 3546 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3547 TLI.getPointerTy(DAG.getDataLayout())); 3548 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3549 TLI.getPointerTy(DAG.getDataLayout())); 3550 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3551 } 3552 3553 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3554 SDLoc dl = getCurSDLoc(); 3555 AtomicOrdering Order = I.getOrdering(); 3556 SynchronizationScope Scope = I.getSynchScope(); 3557 3558 SDValue InChain = getRoot(); 3559 3560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3561 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3562 3563 if (I.getAlignment() < VT.getSizeInBits() / 8) 3564 report_fatal_error("Cannot generate unaligned atomic load"); 3565 3566 MachineMemOperand *MMO = 3567 DAG.getMachineFunction(). 3568 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3569 MachineMemOperand::MOVolatile | 3570 MachineMemOperand::MOLoad, 3571 VT.getStoreSize(), 3572 I.getAlignment() ? I.getAlignment() : 3573 DAG.getEVTAlignment(VT)); 3574 3575 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3576 SDValue L = 3577 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3578 getValue(I.getPointerOperand()), MMO, 3579 Order, Scope); 3580 3581 SDValue OutChain = L.getValue(1); 3582 3583 setValue(&I, L); 3584 DAG.setRoot(OutChain); 3585 } 3586 3587 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3588 SDLoc dl = getCurSDLoc(); 3589 3590 AtomicOrdering Order = I.getOrdering(); 3591 SynchronizationScope Scope = I.getSynchScope(); 3592 3593 SDValue InChain = getRoot(); 3594 3595 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3596 EVT VT = 3597 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3598 3599 if (I.getAlignment() < VT.getSizeInBits() / 8) 3600 report_fatal_error("Cannot generate unaligned atomic store"); 3601 3602 SDValue OutChain = 3603 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3604 InChain, 3605 getValue(I.getPointerOperand()), 3606 getValue(I.getValueOperand()), 3607 I.getPointerOperand(), I.getAlignment(), 3608 Order, Scope); 3609 3610 DAG.setRoot(OutChain); 3611 } 3612 3613 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3614 /// node. 3615 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3616 unsigned Intrinsic) { 3617 bool HasChain = !I.doesNotAccessMemory(); 3618 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3619 3620 // Build the operand list. 3621 SmallVector<SDValue, 8> Ops; 3622 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3623 if (OnlyLoad) { 3624 // We don't need to serialize loads against other loads. 3625 Ops.push_back(DAG.getRoot()); 3626 } else { 3627 Ops.push_back(getRoot()); 3628 } 3629 } 3630 3631 // Info is set by getTgtMemInstrinsic 3632 TargetLowering::IntrinsicInfo Info; 3633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3634 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3635 3636 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3637 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3638 Info.opc == ISD::INTRINSIC_W_CHAIN) 3639 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3640 TLI.getPointerTy(DAG.getDataLayout()))); 3641 3642 // Add all operands of the call to the operand list. 3643 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3644 SDValue Op = getValue(I.getArgOperand(i)); 3645 Ops.push_back(Op); 3646 } 3647 3648 SmallVector<EVT, 4> ValueVTs; 3649 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3650 3651 if (HasChain) 3652 ValueVTs.push_back(MVT::Other); 3653 3654 SDVTList VTs = DAG.getVTList(ValueVTs); 3655 3656 // Create the node. 3657 SDValue Result; 3658 if (IsTgtIntrinsic) { 3659 // This is target intrinsic that touches memory 3660 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3661 VTs, Ops, Info.memVT, 3662 MachinePointerInfo(Info.ptrVal, Info.offset), 3663 Info.align, Info.vol, 3664 Info.readMem, Info.writeMem, Info.size); 3665 } else if (!HasChain) { 3666 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3667 } else if (!I.getType()->isVoidTy()) { 3668 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3669 } else { 3670 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3671 } 3672 3673 if (HasChain) { 3674 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3675 if (OnlyLoad) 3676 PendingLoads.push_back(Chain); 3677 else 3678 DAG.setRoot(Chain); 3679 } 3680 3681 if (!I.getType()->isVoidTy()) { 3682 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3683 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3684 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3685 } 3686 3687 setValue(&I, Result); 3688 } 3689 } 3690 3691 /// GetSignificand - Get the significand and build it into a floating-point 3692 /// number with exponent of 1: 3693 /// 3694 /// Op = (Op & 0x007fffff) | 0x3f800000; 3695 /// 3696 /// where Op is the hexadecimal representation of floating point value. 3697 static SDValue 3698 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3699 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3700 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3701 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3702 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3703 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3704 } 3705 3706 /// GetExponent - Get the exponent: 3707 /// 3708 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3709 /// 3710 /// where Op is the hexadecimal representation of floating point value. 3711 static SDValue 3712 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3713 SDLoc dl) { 3714 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3715 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3716 SDValue t1 = DAG.getNode( 3717 ISD::SRL, dl, MVT::i32, t0, 3718 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3719 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3720 DAG.getConstant(127, dl, MVT::i32)); 3721 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3722 } 3723 3724 /// getF32Constant - Get 32-bit floating point constant. 3725 static SDValue 3726 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3727 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3728 MVT::f32); 3729 } 3730 3731 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3732 SelectionDAG &DAG) { 3733 // TODO: What fast-math-flags should be set on the floating-point nodes? 3734 3735 // IntegerPartOfX = ((int32_t)(t0); 3736 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3737 3738 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3739 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3740 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3741 3742 // IntegerPartOfX <<= 23; 3743 IntegerPartOfX = DAG.getNode( 3744 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3745 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3746 DAG.getDataLayout()))); 3747 3748 SDValue TwoToFractionalPartOfX; 3749 if (LimitFloatPrecision <= 6) { 3750 // For floating-point precision of 6: 3751 // 3752 // TwoToFractionalPartOfX = 3753 // 0.997535578f + 3754 // (0.735607626f + 0.252464424f * x) * x; 3755 // 3756 // error 0.0144103317, which is 6 bits 3757 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3758 getF32Constant(DAG, 0x3e814304, dl)); 3759 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3760 getF32Constant(DAG, 0x3f3c50c8, dl)); 3761 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3762 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3763 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3764 } else if (LimitFloatPrecision <= 12) { 3765 // For floating-point precision of 12: 3766 // 3767 // TwoToFractionalPartOfX = 3768 // 0.999892986f + 3769 // (0.696457318f + 3770 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3771 // 3772 // error 0.000107046256, which is 13 to 14 bits 3773 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3774 getF32Constant(DAG, 0x3da235e3, dl)); 3775 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3776 getF32Constant(DAG, 0x3e65b8f3, dl)); 3777 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3778 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3779 getF32Constant(DAG, 0x3f324b07, dl)); 3780 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3781 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3782 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3783 } else { // LimitFloatPrecision <= 18 3784 // For floating-point precision of 18: 3785 // 3786 // TwoToFractionalPartOfX = 3787 // 0.999999982f + 3788 // (0.693148872f + 3789 // (0.240227044f + 3790 // (0.554906021e-1f + 3791 // (0.961591928e-2f + 3792 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3793 // error 2.47208000*10^(-7), which is better than 18 bits 3794 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3795 getF32Constant(DAG, 0x3924b03e, dl)); 3796 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3797 getF32Constant(DAG, 0x3ab24b87, dl)); 3798 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3799 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3800 getF32Constant(DAG, 0x3c1d8c17, dl)); 3801 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3802 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3803 getF32Constant(DAG, 0x3d634a1d, dl)); 3804 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3805 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3806 getF32Constant(DAG, 0x3e75fe14, dl)); 3807 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3808 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3809 getF32Constant(DAG, 0x3f317234, dl)); 3810 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3811 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3812 getF32Constant(DAG, 0x3f800000, dl)); 3813 } 3814 3815 // Add the exponent into the result in integer domain. 3816 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3817 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3818 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3819 } 3820 3821 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3822 /// limited-precision mode. 3823 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3824 const TargetLowering &TLI) { 3825 if (Op.getValueType() == MVT::f32 && 3826 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3827 3828 // Put the exponent in the right bit position for later addition to the 3829 // final result: 3830 // 3831 // #define LOG2OFe 1.4426950f 3832 // t0 = Op * LOG2OFe 3833 3834 // TODO: What fast-math-flags should be set here? 3835 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3836 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3837 return getLimitedPrecisionExp2(t0, dl, DAG); 3838 } 3839 3840 // No special expansion. 3841 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3842 } 3843 3844 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3845 /// limited-precision mode. 3846 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3847 const TargetLowering &TLI) { 3848 3849 // TODO: What fast-math-flags should be set on the floating-point nodes? 3850 3851 if (Op.getValueType() == MVT::f32 && 3852 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3853 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3854 3855 // Scale the exponent by log(2) [0.69314718f]. 3856 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3857 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3858 getF32Constant(DAG, 0x3f317218, dl)); 3859 3860 // Get the significand and build it into a floating-point number with 3861 // exponent of 1. 3862 SDValue X = GetSignificand(DAG, Op1, dl); 3863 3864 SDValue LogOfMantissa; 3865 if (LimitFloatPrecision <= 6) { 3866 // For floating-point precision of 6: 3867 // 3868 // LogofMantissa = 3869 // -1.1609546f + 3870 // (1.4034025f - 0.23903021f * x) * x; 3871 // 3872 // error 0.0034276066, which is better than 8 bits 3873 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3874 getF32Constant(DAG, 0xbe74c456, dl)); 3875 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3876 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3877 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3878 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3879 getF32Constant(DAG, 0x3f949a29, dl)); 3880 } else if (LimitFloatPrecision <= 12) { 3881 // For floating-point precision of 12: 3882 // 3883 // LogOfMantissa = 3884 // -1.7417939f + 3885 // (2.8212026f + 3886 // (-1.4699568f + 3887 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3888 // 3889 // error 0.000061011436, which is 14 bits 3890 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3891 getF32Constant(DAG, 0xbd67b6d6, dl)); 3892 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3893 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3895 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3896 getF32Constant(DAG, 0x3fbc278b, dl)); 3897 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3898 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3899 getF32Constant(DAG, 0x40348e95, dl)); 3900 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3901 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3902 getF32Constant(DAG, 0x3fdef31a, dl)); 3903 } else { // LimitFloatPrecision <= 18 3904 // For floating-point precision of 18: 3905 // 3906 // LogOfMantissa = 3907 // -2.1072184f + 3908 // (4.2372794f + 3909 // (-3.7029485f + 3910 // (2.2781945f + 3911 // (-0.87823314f + 3912 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3913 // 3914 // error 0.0000023660568, which is better than 18 bits 3915 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3916 getF32Constant(DAG, 0xbc91e5ac, dl)); 3917 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3918 getF32Constant(DAG, 0x3e4350aa, dl)); 3919 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3920 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3921 getF32Constant(DAG, 0x3f60d3e3, dl)); 3922 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3923 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3924 getF32Constant(DAG, 0x4011cdf0, dl)); 3925 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3926 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3927 getF32Constant(DAG, 0x406cfd1c, dl)); 3928 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3929 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3930 getF32Constant(DAG, 0x408797cb, dl)); 3931 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3932 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3933 getF32Constant(DAG, 0x4006dcab, dl)); 3934 } 3935 3936 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3937 } 3938 3939 // No special expansion. 3940 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3941 } 3942 3943 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3944 /// limited-precision mode. 3945 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3946 const TargetLowering &TLI) { 3947 3948 // TODO: What fast-math-flags should be set on the floating-point nodes? 3949 3950 if (Op.getValueType() == MVT::f32 && 3951 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3952 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3953 3954 // Get the exponent. 3955 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3956 3957 // Get the significand and build it into a floating-point number with 3958 // exponent of 1. 3959 SDValue X = GetSignificand(DAG, Op1, dl); 3960 3961 // Different possible minimax approximations of significand in 3962 // floating-point for various degrees of accuracy over [1,2]. 3963 SDValue Log2ofMantissa; 3964 if (LimitFloatPrecision <= 6) { 3965 // For floating-point precision of 6: 3966 // 3967 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3968 // 3969 // error 0.0049451742, which is more than 7 bits 3970 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3971 getF32Constant(DAG, 0xbeb08fe0, dl)); 3972 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3973 getF32Constant(DAG, 0x40019463, dl)); 3974 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3975 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3976 getF32Constant(DAG, 0x3fd6633d, dl)); 3977 } else if (LimitFloatPrecision <= 12) { 3978 // For floating-point precision of 12: 3979 // 3980 // Log2ofMantissa = 3981 // -2.51285454f + 3982 // (4.07009056f + 3983 // (-2.12067489f + 3984 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3985 // 3986 // error 0.0000876136000, which is better than 13 bits 3987 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3988 getF32Constant(DAG, 0xbda7262e, dl)); 3989 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3990 getF32Constant(DAG, 0x3f25280b, dl)); 3991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3992 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3993 getF32Constant(DAG, 0x4007b923, dl)); 3994 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3995 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3996 getF32Constant(DAG, 0x40823e2f, dl)); 3997 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3998 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3999 getF32Constant(DAG, 0x4020d29c, dl)); 4000 } else { // LimitFloatPrecision <= 18 4001 // For floating-point precision of 18: 4002 // 4003 // Log2ofMantissa = 4004 // -3.0400495f + 4005 // (6.1129976f + 4006 // (-5.3420409f + 4007 // (3.2865683f + 4008 // (-1.2669343f + 4009 // (0.27515199f - 4010 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4011 // 4012 // error 0.0000018516, which is better than 18 bits 4013 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4014 getF32Constant(DAG, 0xbcd2769e, dl)); 4015 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4016 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4017 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4018 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4019 getF32Constant(DAG, 0x3fa22ae7, dl)); 4020 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4021 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4022 getF32Constant(DAG, 0x40525723, dl)); 4023 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4024 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4025 getF32Constant(DAG, 0x40aaf200, dl)); 4026 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4027 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4028 getF32Constant(DAG, 0x40c39dad, dl)); 4029 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4030 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4031 getF32Constant(DAG, 0x4042902c, dl)); 4032 } 4033 4034 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4035 } 4036 4037 // No special expansion. 4038 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4039 } 4040 4041 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4042 /// limited-precision mode. 4043 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4044 const TargetLowering &TLI) { 4045 4046 // TODO: What fast-math-flags should be set on the floating-point nodes? 4047 4048 if (Op.getValueType() == MVT::f32 && 4049 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4050 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4051 4052 // Scale the exponent by log10(2) [0.30102999f]. 4053 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4054 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4055 getF32Constant(DAG, 0x3e9a209a, dl)); 4056 4057 // Get the significand and build it into a floating-point number with 4058 // exponent of 1. 4059 SDValue X = GetSignificand(DAG, Op1, dl); 4060 4061 SDValue Log10ofMantissa; 4062 if (LimitFloatPrecision <= 6) { 4063 // For floating-point precision of 6: 4064 // 4065 // Log10ofMantissa = 4066 // -0.50419619f + 4067 // (0.60948995f - 0.10380950f * x) * x; 4068 // 4069 // error 0.0014886165, which is 6 bits 4070 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4071 getF32Constant(DAG, 0xbdd49a13, dl)); 4072 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4073 getF32Constant(DAG, 0x3f1c0789, dl)); 4074 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4075 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4076 getF32Constant(DAG, 0x3f011300, dl)); 4077 } else if (LimitFloatPrecision <= 12) { 4078 // For floating-point precision of 12: 4079 // 4080 // Log10ofMantissa = 4081 // -0.64831180f + 4082 // (0.91751397f + 4083 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4084 // 4085 // error 0.00019228036, which is better than 12 bits 4086 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4087 getF32Constant(DAG, 0x3d431f31, dl)); 4088 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4089 getF32Constant(DAG, 0x3ea21fb2, dl)); 4090 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4091 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4092 getF32Constant(DAG, 0x3f6ae232, dl)); 4093 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4094 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4095 getF32Constant(DAG, 0x3f25f7c3, dl)); 4096 } else { // LimitFloatPrecision <= 18 4097 // For floating-point precision of 18: 4098 // 4099 // Log10ofMantissa = 4100 // -0.84299375f + 4101 // (1.5327582f + 4102 // (-1.0688956f + 4103 // (0.49102474f + 4104 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4105 // 4106 // error 0.0000037995730, which is better than 18 bits 4107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4108 getF32Constant(DAG, 0x3c5d51ce, dl)); 4109 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4110 getF32Constant(DAG, 0x3e00685a, dl)); 4111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4112 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4113 getF32Constant(DAG, 0x3efb6798, dl)); 4114 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4115 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4116 getF32Constant(DAG, 0x3f88d192, dl)); 4117 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4118 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4119 getF32Constant(DAG, 0x3fc4316c, dl)); 4120 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4121 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4122 getF32Constant(DAG, 0x3f57ce70, dl)); 4123 } 4124 4125 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4126 } 4127 4128 // No special expansion. 4129 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4130 } 4131 4132 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4133 /// limited-precision mode. 4134 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4135 const TargetLowering &TLI) { 4136 if (Op.getValueType() == MVT::f32 && 4137 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4138 return getLimitedPrecisionExp2(Op, dl, DAG); 4139 4140 // No special expansion. 4141 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4142 } 4143 4144 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4145 /// limited-precision mode with x == 10.0f. 4146 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4147 SelectionDAG &DAG, const TargetLowering &TLI) { 4148 bool IsExp10 = false; 4149 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4150 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4151 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4152 APFloat Ten(10.0f); 4153 IsExp10 = LHSC->isExactlyValue(Ten); 4154 } 4155 } 4156 4157 // TODO: What fast-math-flags should be set on the FMUL node? 4158 if (IsExp10) { 4159 // Put the exponent in the right bit position for later addition to the 4160 // final result: 4161 // 4162 // #define LOG2OF10 3.3219281f 4163 // t0 = Op * LOG2OF10; 4164 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4165 getF32Constant(DAG, 0x40549a78, dl)); 4166 return getLimitedPrecisionExp2(t0, dl, DAG); 4167 } 4168 4169 // No special expansion. 4170 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4171 } 4172 4173 4174 /// ExpandPowI - Expand a llvm.powi intrinsic. 4175 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4176 SelectionDAG &DAG) { 4177 // If RHS is a constant, we can expand this out to a multiplication tree, 4178 // otherwise we end up lowering to a call to __powidf2 (for example). When 4179 // optimizing for size, we only want to do this if the expansion would produce 4180 // a small number of multiplies, otherwise we do the full expansion. 4181 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4182 // Get the exponent as a positive value. 4183 unsigned Val = RHSC->getSExtValue(); 4184 if ((int)Val < 0) Val = -Val; 4185 4186 // powi(x, 0) -> 1.0 4187 if (Val == 0) 4188 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4189 4190 const Function *F = DAG.getMachineFunction().getFunction(); 4191 if (!F->optForSize() || 4192 // If optimizing for size, don't insert too many multiplies. 4193 // This inserts up to 5 multiplies. 4194 countPopulation(Val) + Log2_32(Val) < 7) { 4195 // We use the simple binary decomposition method to generate the multiply 4196 // sequence. There are more optimal ways to do this (for example, 4197 // powi(x,15) generates one more multiply than it should), but this has 4198 // the benefit of being both really simple and much better than a libcall. 4199 SDValue Res; // Logically starts equal to 1.0 4200 SDValue CurSquare = LHS; 4201 // TODO: Intrinsics should have fast-math-flags that propagate to these 4202 // nodes. 4203 while (Val) { 4204 if (Val & 1) { 4205 if (Res.getNode()) 4206 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4207 else 4208 Res = CurSquare; // 1.0*CurSquare. 4209 } 4210 4211 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4212 CurSquare, CurSquare); 4213 Val >>= 1; 4214 } 4215 4216 // If the original was negative, invert the result, producing 1/(x*x*x). 4217 if (RHSC->getSExtValue() < 0) 4218 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4219 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4220 return Res; 4221 } 4222 } 4223 4224 // Otherwise, expand to a libcall. 4225 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4226 } 4227 4228 // getUnderlyingArgReg - Find underlying register used for a truncated or 4229 // bitcasted argument. 4230 static unsigned getUnderlyingArgReg(const SDValue &N) { 4231 switch (N.getOpcode()) { 4232 case ISD::CopyFromReg: 4233 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4234 case ISD::BITCAST: 4235 case ISD::AssertZext: 4236 case ISD::AssertSext: 4237 case ISD::TRUNCATE: 4238 return getUnderlyingArgReg(N.getOperand(0)); 4239 default: 4240 return 0; 4241 } 4242 } 4243 4244 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4245 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4246 /// At the end of instruction selection, they will be inserted to the entry BB. 4247 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4248 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4249 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4250 const Argument *Arg = dyn_cast<Argument>(V); 4251 if (!Arg) 4252 return false; 4253 4254 MachineFunction &MF = DAG.getMachineFunction(); 4255 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4256 4257 // Ignore inlined function arguments here. 4258 // 4259 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4260 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4261 return false; 4262 4263 Optional<MachineOperand> Op; 4264 // Some arguments' frame index is recorded during argument lowering. 4265 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4266 Op = MachineOperand::CreateFI(FI); 4267 4268 if (!Op && N.getNode()) { 4269 unsigned Reg = getUnderlyingArgReg(N); 4270 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4271 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4272 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4273 if (PR) 4274 Reg = PR; 4275 } 4276 if (Reg) 4277 Op = MachineOperand::CreateReg(Reg, false); 4278 } 4279 4280 if (!Op) { 4281 // Check if ValueMap has reg number. 4282 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4283 if (VMI != FuncInfo.ValueMap.end()) 4284 Op = MachineOperand::CreateReg(VMI->second, false); 4285 } 4286 4287 if (!Op && N.getNode()) 4288 // Check if frame index is available. 4289 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4290 if (FrameIndexSDNode *FINode = 4291 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4292 Op = MachineOperand::CreateFI(FINode->getIndex()); 4293 4294 if (!Op) 4295 return false; 4296 4297 assert(Variable->isValidLocationForIntrinsic(DL) && 4298 "Expected inlined-at fields to agree"); 4299 if (Op->isReg()) 4300 FuncInfo.ArgDbgValues.push_back( 4301 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4302 Op->getReg(), Offset, Variable, Expr)); 4303 else 4304 FuncInfo.ArgDbgValues.push_back( 4305 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4306 .addOperand(*Op) 4307 .addImm(Offset) 4308 .addMetadata(Variable) 4309 .addMetadata(Expr)); 4310 4311 return true; 4312 } 4313 4314 // VisualStudio defines setjmp as _setjmp 4315 #if defined(_MSC_VER) && defined(setjmp) && \ 4316 !defined(setjmp_undefined_for_msvc) 4317 # pragma push_macro("setjmp") 4318 # undef setjmp 4319 # define setjmp_undefined_for_msvc 4320 #endif 4321 4322 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4323 /// we want to emit this as a call to a named external function, return the name 4324 /// otherwise lower it and return null. 4325 const char * 4326 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4328 SDLoc sdl = getCurSDLoc(); 4329 DebugLoc dl = getCurDebugLoc(); 4330 SDValue Res; 4331 4332 switch (Intrinsic) { 4333 default: 4334 // By default, turn this into a target intrinsic node. 4335 visitTargetIntrinsic(I, Intrinsic); 4336 return nullptr; 4337 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4338 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4339 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4340 case Intrinsic::returnaddress: 4341 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4342 TLI.getPointerTy(DAG.getDataLayout()), 4343 getValue(I.getArgOperand(0)))); 4344 return nullptr; 4345 case Intrinsic::frameaddress: 4346 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4347 TLI.getPointerTy(DAG.getDataLayout()), 4348 getValue(I.getArgOperand(0)))); 4349 return nullptr; 4350 case Intrinsic::read_register: { 4351 Value *Reg = I.getArgOperand(0); 4352 SDValue Chain = getRoot(); 4353 SDValue RegName = 4354 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4355 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4356 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4357 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4358 setValue(&I, Res); 4359 DAG.setRoot(Res.getValue(1)); 4360 return nullptr; 4361 } 4362 case Intrinsic::write_register: { 4363 Value *Reg = I.getArgOperand(0); 4364 Value *RegValue = I.getArgOperand(1); 4365 SDValue Chain = getRoot(); 4366 SDValue RegName = 4367 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4368 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4369 RegName, getValue(RegValue))); 4370 return nullptr; 4371 } 4372 case Intrinsic::setjmp: 4373 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4374 case Intrinsic::longjmp: 4375 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4376 case Intrinsic::memcpy: { 4377 SDValue Op1 = getValue(I.getArgOperand(0)); 4378 SDValue Op2 = getValue(I.getArgOperand(1)); 4379 SDValue Op3 = getValue(I.getArgOperand(2)); 4380 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4381 if (!Align) 4382 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4383 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4384 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4385 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4386 false, isTC, 4387 MachinePointerInfo(I.getArgOperand(0)), 4388 MachinePointerInfo(I.getArgOperand(1))); 4389 updateDAGForMaybeTailCall(MC); 4390 return nullptr; 4391 } 4392 case Intrinsic::memset: { 4393 SDValue Op1 = getValue(I.getArgOperand(0)); 4394 SDValue Op2 = getValue(I.getArgOperand(1)); 4395 SDValue Op3 = getValue(I.getArgOperand(2)); 4396 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4397 if (!Align) 4398 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4399 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4400 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4401 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4402 isTC, MachinePointerInfo(I.getArgOperand(0))); 4403 updateDAGForMaybeTailCall(MS); 4404 return nullptr; 4405 } 4406 case Intrinsic::memmove: { 4407 SDValue Op1 = getValue(I.getArgOperand(0)); 4408 SDValue Op2 = getValue(I.getArgOperand(1)); 4409 SDValue Op3 = getValue(I.getArgOperand(2)); 4410 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4411 if (!Align) 4412 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4413 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4414 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4415 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4416 isTC, MachinePointerInfo(I.getArgOperand(0)), 4417 MachinePointerInfo(I.getArgOperand(1))); 4418 updateDAGForMaybeTailCall(MM); 4419 return nullptr; 4420 } 4421 case Intrinsic::dbg_declare: { 4422 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4423 DILocalVariable *Variable = DI.getVariable(); 4424 DIExpression *Expression = DI.getExpression(); 4425 const Value *Address = DI.getAddress(); 4426 assert(Variable && "Missing variable"); 4427 if (!Address) { 4428 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4429 return nullptr; 4430 } 4431 4432 // Check if address has undef value. 4433 if (isa<UndefValue>(Address) || 4434 (Address->use_empty() && !isa<Argument>(Address))) { 4435 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4436 return nullptr; 4437 } 4438 4439 SDValue &N = NodeMap[Address]; 4440 if (!N.getNode() && isa<Argument>(Address)) 4441 // Check unused arguments map. 4442 N = UnusedArgNodeMap[Address]; 4443 SDDbgValue *SDV; 4444 if (N.getNode()) { 4445 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4446 Address = BCI->getOperand(0); 4447 // Parameters are handled specially. 4448 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4449 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4450 if (isParameter && FINode) { 4451 // Byval parameter. We have a frame index at this point. 4452 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4453 FINode->getIndex(), 0, dl, SDNodeOrder); 4454 } else if (isa<Argument>(Address)) { 4455 // Address is an argument, so try to emit its dbg value using 4456 // virtual register info from the FuncInfo.ValueMap. 4457 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4458 N); 4459 return nullptr; 4460 } else { 4461 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4462 true, 0, dl, SDNodeOrder); 4463 } 4464 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4465 } else { 4466 // If Address is an argument then try to emit its dbg value using 4467 // virtual register info from the FuncInfo.ValueMap. 4468 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4469 N)) { 4470 // If variable is pinned by a alloca in dominating bb then 4471 // use StaticAllocaMap. 4472 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4473 if (AI->getParent() != DI.getParent()) { 4474 DenseMap<const AllocaInst*, int>::iterator SI = 4475 FuncInfo.StaticAllocaMap.find(AI); 4476 if (SI != FuncInfo.StaticAllocaMap.end()) { 4477 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4478 0, dl, SDNodeOrder); 4479 DAG.AddDbgValue(SDV, nullptr, false); 4480 return nullptr; 4481 } 4482 } 4483 } 4484 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4485 } 4486 } 4487 return nullptr; 4488 } 4489 case Intrinsic::dbg_value: { 4490 const DbgValueInst &DI = cast<DbgValueInst>(I); 4491 assert(DI.getVariable() && "Missing variable"); 4492 4493 DILocalVariable *Variable = DI.getVariable(); 4494 DIExpression *Expression = DI.getExpression(); 4495 uint64_t Offset = DI.getOffset(); 4496 const Value *V = DI.getValue(); 4497 if (!V) 4498 return nullptr; 4499 4500 SDDbgValue *SDV; 4501 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4502 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4503 SDNodeOrder); 4504 DAG.AddDbgValue(SDV, nullptr, false); 4505 } else { 4506 // Do not use getValue() in here; we don't want to generate code at 4507 // this point if it hasn't been done yet. 4508 SDValue N = NodeMap[V]; 4509 if (!N.getNode() && isa<Argument>(V)) 4510 // Check unused arguments map. 4511 N = UnusedArgNodeMap[V]; 4512 if (N.getNode()) { 4513 // A dbg.value for an alloca is always indirect. 4514 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4515 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4516 IsIndirect, N)) { 4517 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4518 IsIndirect, Offset, dl, SDNodeOrder); 4519 DAG.AddDbgValue(SDV, N.getNode(), false); 4520 } 4521 } else if (!V->use_empty() ) { 4522 // Do not call getValue(V) yet, as we don't want to generate code. 4523 // Remember it for later. 4524 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4525 DanglingDebugInfoMap[V] = DDI; 4526 } else { 4527 // We may expand this to cover more cases. One case where we have no 4528 // data available is an unreferenced parameter. 4529 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4530 } 4531 } 4532 4533 // Build a debug info table entry. 4534 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4535 V = BCI->getOperand(0); 4536 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4537 // Don't handle byval struct arguments or VLAs, for example. 4538 if (!AI) { 4539 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4540 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4541 return nullptr; 4542 } 4543 DenseMap<const AllocaInst*, int>::iterator SI = 4544 FuncInfo.StaticAllocaMap.find(AI); 4545 if (SI == FuncInfo.StaticAllocaMap.end()) 4546 return nullptr; // VLAs. 4547 return nullptr; 4548 } 4549 4550 case Intrinsic::eh_typeid_for: { 4551 // Find the type id for the given typeinfo. 4552 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4553 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4554 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4555 setValue(&I, Res); 4556 return nullptr; 4557 } 4558 4559 case Intrinsic::eh_return_i32: 4560 case Intrinsic::eh_return_i64: 4561 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4562 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4563 MVT::Other, 4564 getControlRoot(), 4565 getValue(I.getArgOperand(0)), 4566 getValue(I.getArgOperand(1)))); 4567 return nullptr; 4568 case Intrinsic::eh_unwind_init: 4569 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4570 return nullptr; 4571 case Intrinsic::eh_dwarf_cfa: { 4572 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4573 TLI.getPointerTy(DAG.getDataLayout())); 4574 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4575 CfaArg.getValueType(), 4576 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4577 CfaArg.getValueType()), 4578 CfaArg); 4579 SDValue FA = DAG.getNode( 4580 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4581 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4582 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4583 FA, Offset)); 4584 return nullptr; 4585 } 4586 case Intrinsic::eh_sjlj_callsite: { 4587 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4588 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4589 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4590 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4591 4592 MMI.setCurrentCallSite(CI->getZExtValue()); 4593 return nullptr; 4594 } 4595 case Intrinsic::eh_sjlj_functioncontext: { 4596 // Get and store the index of the function context. 4597 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4598 AllocaInst *FnCtx = 4599 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4600 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4601 MFI->setFunctionContextIndex(FI); 4602 return nullptr; 4603 } 4604 case Intrinsic::eh_sjlj_setjmp: { 4605 SDValue Ops[2]; 4606 Ops[0] = getRoot(); 4607 Ops[1] = getValue(I.getArgOperand(0)); 4608 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4609 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4610 setValue(&I, Op.getValue(0)); 4611 DAG.setRoot(Op.getValue(1)); 4612 return nullptr; 4613 } 4614 case Intrinsic::eh_sjlj_longjmp: { 4615 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4616 getRoot(), getValue(I.getArgOperand(0)))); 4617 return nullptr; 4618 } 4619 case Intrinsic::eh_sjlj_setup_dispatch: { 4620 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4621 getRoot())); 4622 return nullptr; 4623 } 4624 4625 case Intrinsic::masked_gather: 4626 visitMaskedGather(I); 4627 return nullptr; 4628 case Intrinsic::masked_load: 4629 visitMaskedLoad(I); 4630 return nullptr; 4631 case Intrinsic::masked_scatter: 4632 visitMaskedScatter(I); 4633 return nullptr; 4634 case Intrinsic::masked_store: 4635 visitMaskedStore(I); 4636 return nullptr; 4637 case Intrinsic::x86_mmx_pslli_w: 4638 case Intrinsic::x86_mmx_pslli_d: 4639 case Intrinsic::x86_mmx_pslli_q: 4640 case Intrinsic::x86_mmx_psrli_w: 4641 case Intrinsic::x86_mmx_psrli_d: 4642 case Intrinsic::x86_mmx_psrli_q: 4643 case Intrinsic::x86_mmx_psrai_w: 4644 case Intrinsic::x86_mmx_psrai_d: { 4645 SDValue ShAmt = getValue(I.getArgOperand(1)); 4646 if (isa<ConstantSDNode>(ShAmt)) { 4647 visitTargetIntrinsic(I, Intrinsic); 4648 return nullptr; 4649 } 4650 unsigned NewIntrinsic = 0; 4651 EVT ShAmtVT = MVT::v2i32; 4652 switch (Intrinsic) { 4653 case Intrinsic::x86_mmx_pslli_w: 4654 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4655 break; 4656 case Intrinsic::x86_mmx_pslli_d: 4657 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4658 break; 4659 case Intrinsic::x86_mmx_pslli_q: 4660 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4661 break; 4662 case Intrinsic::x86_mmx_psrli_w: 4663 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4664 break; 4665 case Intrinsic::x86_mmx_psrli_d: 4666 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4667 break; 4668 case Intrinsic::x86_mmx_psrli_q: 4669 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4670 break; 4671 case Intrinsic::x86_mmx_psrai_w: 4672 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4673 break; 4674 case Intrinsic::x86_mmx_psrai_d: 4675 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4676 break; 4677 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4678 } 4679 4680 // The vector shift intrinsics with scalars uses 32b shift amounts but 4681 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4682 // to be zero. 4683 // We must do this early because v2i32 is not a legal type. 4684 SDValue ShOps[2]; 4685 ShOps[0] = ShAmt; 4686 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4687 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4688 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4689 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4690 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4691 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4692 getValue(I.getArgOperand(0)), ShAmt); 4693 setValue(&I, Res); 4694 return nullptr; 4695 } 4696 case Intrinsic::convertff: 4697 case Intrinsic::convertfsi: 4698 case Intrinsic::convertfui: 4699 case Intrinsic::convertsif: 4700 case Intrinsic::convertuif: 4701 case Intrinsic::convertss: 4702 case Intrinsic::convertsu: 4703 case Intrinsic::convertus: 4704 case Intrinsic::convertuu: { 4705 ISD::CvtCode Code = ISD::CVT_INVALID; 4706 switch (Intrinsic) { 4707 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4708 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4709 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4710 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4711 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4712 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4713 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4714 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4715 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4716 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4717 } 4718 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4719 const Value *Op1 = I.getArgOperand(0); 4720 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4721 DAG.getValueType(DestVT), 4722 DAG.getValueType(getValue(Op1).getValueType()), 4723 getValue(I.getArgOperand(1)), 4724 getValue(I.getArgOperand(2)), 4725 Code); 4726 setValue(&I, Res); 4727 return nullptr; 4728 } 4729 case Intrinsic::powi: 4730 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4731 getValue(I.getArgOperand(1)), DAG)); 4732 return nullptr; 4733 case Intrinsic::log: 4734 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4735 return nullptr; 4736 case Intrinsic::log2: 4737 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4738 return nullptr; 4739 case Intrinsic::log10: 4740 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4741 return nullptr; 4742 case Intrinsic::exp: 4743 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4744 return nullptr; 4745 case Intrinsic::exp2: 4746 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4747 return nullptr; 4748 case Intrinsic::pow: 4749 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4750 getValue(I.getArgOperand(1)), DAG, TLI)); 4751 return nullptr; 4752 case Intrinsic::sqrt: 4753 case Intrinsic::fabs: 4754 case Intrinsic::sin: 4755 case Intrinsic::cos: 4756 case Intrinsic::floor: 4757 case Intrinsic::ceil: 4758 case Intrinsic::trunc: 4759 case Intrinsic::rint: 4760 case Intrinsic::nearbyint: 4761 case Intrinsic::round: { 4762 unsigned Opcode; 4763 switch (Intrinsic) { 4764 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4765 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4766 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4767 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4768 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4769 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4770 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4771 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4772 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4773 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4774 case Intrinsic::round: Opcode = ISD::FROUND; break; 4775 } 4776 4777 setValue(&I, DAG.getNode(Opcode, sdl, 4778 getValue(I.getArgOperand(0)).getValueType(), 4779 getValue(I.getArgOperand(0)))); 4780 return nullptr; 4781 } 4782 case Intrinsic::minnum: 4783 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4784 getValue(I.getArgOperand(0)).getValueType(), 4785 getValue(I.getArgOperand(0)), 4786 getValue(I.getArgOperand(1)))); 4787 return nullptr; 4788 case Intrinsic::maxnum: 4789 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4790 getValue(I.getArgOperand(0)).getValueType(), 4791 getValue(I.getArgOperand(0)), 4792 getValue(I.getArgOperand(1)))); 4793 return nullptr; 4794 case Intrinsic::copysign: 4795 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4796 getValue(I.getArgOperand(0)).getValueType(), 4797 getValue(I.getArgOperand(0)), 4798 getValue(I.getArgOperand(1)))); 4799 return nullptr; 4800 case Intrinsic::fma: 4801 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4802 getValue(I.getArgOperand(0)).getValueType(), 4803 getValue(I.getArgOperand(0)), 4804 getValue(I.getArgOperand(1)), 4805 getValue(I.getArgOperand(2)))); 4806 return nullptr; 4807 case Intrinsic::fmuladd: { 4808 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4809 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4810 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4811 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4812 getValue(I.getArgOperand(0)).getValueType(), 4813 getValue(I.getArgOperand(0)), 4814 getValue(I.getArgOperand(1)), 4815 getValue(I.getArgOperand(2)))); 4816 } else { 4817 // TODO: Intrinsic calls should have fast-math-flags. 4818 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4819 getValue(I.getArgOperand(0)).getValueType(), 4820 getValue(I.getArgOperand(0)), 4821 getValue(I.getArgOperand(1))); 4822 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4823 getValue(I.getArgOperand(0)).getValueType(), 4824 Mul, 4825 getValue(I.getArgOperand(2))); 4826 setValue(&I, Add); 4827 } 4828 return nullptr; 4829 } 4830 case Intrinsic::convert_to_fp16: 4831 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4832 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4833 getValue(I.getArgOperand(0)), 4834 DAG.getTargetConstant(0, sdl, 4835 MVT::i32)))); 4836 return nullptr; 4837 case Intrinsic::convert_from_fp16: 4838 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4839 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4840 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4841 getValue(I.getArgOperand(0))))); 4842 return nullptr; 4843 case Intrinsic::pcmarker: { 4844 SDValue Tmp = getValue(I.getArgOperand(0)); 4845 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4846 return nullptr; 4847 } 4848 case Intrinsic::readcyclecounter: { 4849 SDValue Op = getRoot(); 4850 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4851 DAG.getVTList(MVT::i64, MVT::Other), Op); 4852 setValue(&I, Res); 4853 DAG.setRoot(Res.getValue(1)); 4854 return nullptr; 4855 } 4856 case Intrinsic::bitreverse: 4857 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4858 getValue(I.getArgOperand(0)).getValueType(), 4859 getValue(I.getArgOperand(0)))); 4860 return nullptr; 4861 case Intrinsic::bswap: 4862 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4863 getValue(I.getArgOperand(0)).getValueType(), 4864 getValue(I.getArgOperand(0)))); 4865 return nullptr; 4866 case Intrinsic::cttz: { 4867 SDValue Arg = getValue(I.getArgOperand(0)); 4868 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4869 EVT Ty = Arg.getValueType(); 4870 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4871 sdl, Ty, Arg)); 4872 return nullptr; 4873 } 4874 case Intrinsic::ctlz: { 4875 SDValue Arg = getValue(I.getArgOperand(0)); 4876 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4877 EVT Ty = Arg.getValueType(); 4878 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4879 sdl, Ty, Arg)); 4880 return nullptr; 4881 } 4882 case Intrinsic::ctpop: { 4883 SDValue Arg = getValue(I.getArgOperand(0)); 4884 EVT Ty = Arg.getValueType(); 4885 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4886 return nullptr; 4887 } 4888 case Intrinsic::stacksave: { 4889 SDValue Op = getRoot(); 4890 Res = DAG.getNode( 4891 ISD::STACKSAVE, sdl, 4892 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4893 setValue(&I, Res); 4894 DAG.setRoot(Res.getValue(1)); 4895 return nullptr; 4896 } 4897 case Intrinsic::stackrestore: { 4898 Res = getValue(I.getArgOperand(0)); 4899 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4900 return nullptr; 4901 } 4902 case Intrinsic::get_dynamic_area_offset: { 4903 SDValue Op = getRoot(); 4904 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4905 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4906 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4907 // target. 4908 if (PtrTy != ResTy) 4909 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4910 " intrinsic!"); 4911 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4912 Op); 4913 DAG.setRoot(Op); 4914 setValue(&I, Res); 4915 return nullptr; 4916 } 4917 case Intrinsic::stackprotector: { 4918 // Emit code into the DAG to store the stack guard onto the stack. 4919 MachineFunction &MF = DAG.getMachineFunction(); 4920 MachineFrameInfo *MFI = MF.getFrameInfo(); 4921 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4922 SDValue Src, Chain = getRoot(); 4923 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4924 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4925 4926 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4927 // global variable __stack_chk_guard. 4928 if (!GV) 4929 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4930 if (BC->getOpcode() == Instruction::BitCast) 4931 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4932 4933 if (GV && TLI.useLoadStackGuardNode()) { 4934 // Emit a LOAD_STACK_GUARD node. 4935 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4936 sdl, PtrTy, Chain); 4937 MachinePointerInfo MPInfo(GV); 4938 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4939 unsigned Flags = MachineMemOperand::MOLoad | 4940 MachineMemOperand::MOInvariant; 4941 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4942 PtrTy.getSizeInBits() / 8, 4943 DAG.getEVTAlignment(PtrTy)); 4944 Node->setMemRefs(MemRefs, MemRefs + 1); 4945 4946 // Copy the guard value to a virtual register so that it can be 4947 // retrieved in the epilogue. 4948 Src = SDValue(Node, 0); 4949 const TargetRegisterClass *RC = 4950 TLI.getRegClassFor(Src.getSimpleValueType()); 4951 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4952 4953 SPDescriptor.setGuardReg(Reg); 4954 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4955 } else { 4956 Src = getValue(I.getArgOperand(0)); // The guard's value. 4957 } 4958 4959 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4960 4961 int FI = FuncInfo.StaticAllocaMap[Slot]; 4962 MFI->setStackProtectorIndex(FI); 4963 4964 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4965 4966 // Store the stack protector onto the stack. 4967 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4968 DAG.getMachineFunction(), FI), 4969 true, false, 0); 4970 setValue(&I, Res); 4971 DAG.setRoot(Res); 4972 return nullptr; 4973 } 4974 case Intrinsic::objectsize: { 4975 // If we don't know by now, we're never going to know. 4976 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4977 4978 assert(CI && "Non-constant type in __builtin_object_size?"); 4979 4980 SDValue Arg = getValue(I.getCalledValue()); 4981 EVT Ty = Arg.getValueType(); 4982 4983 if (CI->isZero()) 4984 Res = DAG.getConstant(-1ULL, sdl, Ty); 4985 else 4986 Res = DAG.getConstant(0, sdl, Ty); 4987 4988 setValue(&I, Res); 4989 return nullptr; 4990 } 4991 case Intrinsic::annotation: 4992 case Intrinsic::ptr_annotation: 4993 // Drop the intrinsic, but forward the value 4994 setValue(&I, getValue(I.getOperand(0))); 4995 return nullptr; 4996 case Intrinsic::assume: 4997 case Intrinsic::var_annotation: 4998 // Discard annotate attributes and assumptions 4999 return nullptr; 5000 5001 case Intrinsic::init_trampoline: { 5002 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5003 5004 SDValue Ops[6]; 5005 Ops[0] = getRoot(); 5006 Ops[1] = getValue(I.getArgOperand(0)); 5007 Ops[2] = getValue(I.getArgOperand(1)); 5008 Ops[3] = getValue(I.getArgOperand(2)); 5009 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5010 Ops[5] = DAG.getSrcValue(F); 5011 5012 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5013 5014 DAG.setRoot(Res); 5015 return nullptr; 5016 } 5017 case Intrinsic::adjust_trampoline: { 5018 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5019 TLI.getPointerTy(DAG.getDataLayout()), 5020 getValue(I.getArgOperand(0)))); 5021 return nullptr; 5022 } 5023 case Intrinsic::gcroot: 5024 if (GFI) { 5025 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5026 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5027 5028 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5029 GFI->addStackRoot(FI->getIndex(), TypeMap); 5030 } 5031 return nullptr; 5032 case Intrinsic::gcread: 5033 case Intrinsic::gcwrite: 5034 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5035 case Intrinsic::flt_rounds: 5036 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5037 return nullptr; 5038 5039 case Intrinsic::expect: { 5040 // Just replace __builtin_expect(exp, c) with EXP. 5041 setValue(&I, getValue(I.getArgOperand(0))); 5042 return nullptr; 5043 } 5044 5045 case Intrinsic::debugtrap: 5046 case Intrinsic::trap: { 5047 StringRef TrapFuncName = 5048 I.getAttributes() 5049 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5050 .getValueAsString(); 5051 if (TrapFuncName.empty()) { 5052 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5053 ISD::TRAP : ISD::DEBUGTRAP; 5054 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5055 return nullptr; 5056 } 5057 TargetLowering::ArgListTy Args; 5058 5059 TargetLowering::CallLoweringInfo CLI(DAG); 5060 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5061 CallingConv::C, I.getType(), 5062 DAG.getExternalSymbol(TrapFuncName.data(), 5063 TLI.getPointerTy(DAG.getDataLayout())), 5064 std::move(Args), 0); 5065 5066 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5067 DAG.setRoot(Result.second); 5068 return nullptr; 5069 } 5070 5071 case Intrinsic::uadd_with_overflow: 5072 case Intrinsic::sadd_with_overflow: 5073 case Intrinsic::usub_with_overflow: 5074 case Intrinsic::ssub_with_overflow: 5075 case Intrinsic::umul_with_overflow: 5076 case Intrinsic::smul_with_overflow: { 5077 ISD::NodeType Op; 5078 switch (Intrinsic) { 5079 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5080 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5081 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5082 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5083 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5084 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5085 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5086 } 5087 SDValue Op1 = getValue(I.getArgOperand(0)); 5088 SDValue Op2 = getValue(I.getArgOperand(1)); 5089 5090 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5091 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5092 return nullptr; 5093 } 5094 case Intrinsic::prefetch: { 5095 SDValue Ops[5]; 5096 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5097 Ops[0] = getRoot(); 5098 Ops[1] = getValue(I.getArgOperand(0)); 5099 Ops[2] = getValue(I.getArgOperand(1)); 5100 Ops[3] = getValue(I.getArgOperand(2)); 5101 Ops[4] = getValue(I.getArgOperand(3)); 5102 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5103 DAG.getVTList(MVT::Other), Ops, 5104 EVT::getIntegerVT(*Context, 8), 5105 MachinePointerInfo(I.getArgOperand(0)), 5106 0, /* align */ 5107 false, /* volatile */ 5108 rw==0, /* read */ 5109 rw==1)); /* write */ 5110 return nullptr; 5111 } 5112 case Intrinsic::lifetime_start: 5113 case Intrinsic::lifetime_end: { 5114 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5115 // Stack coloring is not enabled in O0, discard region information. 5116 if (TM.getOptLevel() == CodeGenOpt::None) 5117 return nullptr; 5118 5119 SmallVector<Value *, 4> Allocas; 5120 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5121 5122 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5123 E = Allocas.end(); Object != E; ++Object) { 5124 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5125 5126 // Could not find an Alloca. 5127 if (!LifetimeObject) 5128 continue; 5129 5130 // First check that the Alloca is static, otherwise it won't have a 5131 // valid frame index. 5132 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5133 if (SI == FuncInfo.StaticAllocaMap.end()) 5134 return nullptr; 5135 5136 int FI = SI->second; 5137 5138 SDValue Ops[2]; 5139 Ops[0] = getRoot(); 5140 Ops[1] = 5141 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5142 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5143 5144 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5145 DAG.setRoot(Res); 5146 } 5147 return nullptr; 5148 } 5149 case Intrinsic::invariant_start: 5150 // Discard region information. 5151 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5152 return nullptr; 5153 case Intrinsic::invariant_end: 5154 // Discard region information. 5155 return nullptr; 5156 case Intrinsic::stackprotectorcheck: { 5157 // Do not actually emit anything for this basic block. Instead we initialize 5158 // the stack protector descriptor and export the guard variable so we can 5159 // access it in FinishBasicBlock. 5160 const BasicBlock *BB = I.getParent(); 5161 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5162 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5163 5164 // Flush our exports since we are going to process a terminator. 5165 (void)getControlRoot(); 5166 return nullptr; 5167 } 5168 case Intrinsic::clear_cache: 5169 return TLI.getClearCacheBuiltinName(); 5170 case Intrinsic::donothing: 5171 // ignore 5172 return nullptr; 5173 case Intrinsic::experimental_stackmap: { 5174 visitStackmap(I); 5175 return nullptr; 5176 } 5177 case Intrinsic::experimental_patchpoint_void: 5178 case Intrinsic::experimental_patchpoint_i64: { 5179 visitPatchpoint(&I); 5180 return nullptr; 5181 } 5182 case Intrinsic::experimental_gc_statepoint: { 5183 visitStatepoint(I); 5184 return nullptr; 5185 } 5186 case Intrinsic::experimental_gc_result_int: 5187 case Intrinsic::experimental_gc_result_float: 5188 case Intrinsic::experimental_gc_result_ptr: 5189 case Intrinsic::experimental_gc_result: { 5190 visitGCResult(I); 5191 return nullptr; 5192 } 5193 case Intrinsic::experimental_gc_relocate: { 5194 visitGCRelocate(I); 5195 return nullptr; 5196 } 5197 case Intrinsic::instrprof_increment: 5198 llvm_unreachable("instrprof failed to lower an increment"); 5199 case Intrinsic::instrprof_value_profile: 5200 llvm_unreachable("instrprof failed to lower a value profiling call"); 5201 case Intrinsic::localescape: { 5202 MachineFunction &MF = DAG.getMachineFunction(); 5203 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5204 5205 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5206 // is the same on all targets. 5207 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5208 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5209 if (isa<ConstantPointerNull>(Arg)) 5210 continue; // Skip null pointers. They represent a hole in index space. 5211 AllocaInst *Slot = cast<AllocaInst>(Arg); 5212 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5213 "can only escape static allocas"); 5214 int FI = FuncInfo.StaticAllocaMap[Slot]; 5215 MCSymbol *FrameAllocSym = 5216 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5217 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5218 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5219 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5220 .addSym(FrameAllocSym) 5221 .addFrameIndex(FI); 5222 } 5223 5224 return nullptr; 5225 } 5226 5227 case Intrinsic::localrecover: { 5228 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5229 MachineFunction &MF = DAG.getMachineFunction(); 5230 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5231 5232 // Get the symbol that defines the frame offset. 5233 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5234 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5235 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5236 MCSymbol *FrameAllocSym = 5237 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5238 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5239 5240 // Create a MCSymbol for the label to avoid any target lowering 5241 // that would make this PC relative. 5242 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5243 SDValue OffsetVal = 5244 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5245 5246 // Add the offset to the FP. 5247 Value *FP = I.getArgOperand(1); 5248 SDValue FPVal = getValue(FP); 5249 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5250 setValue(&I, Add); 5251 5252 return nullptr; 5253 } 5254 5255 case Intrinsic::eh_exceptionpointer: 5256 case Intrinsic::eh_exceptioncode: { 5257 // Get the exception pointer vreg, copy from it, and resize it to fit. 5258 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5259 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5260 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5261 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5262 SDValue N = 5263 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5264 if (Intrinsic == Intrinsic::eh_exceptioncode) 5265 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5266 setValue(&I, N); 5267 return nullptr; 5268 } 5269 } 5270 } 5271 5272 std::pair<SDValue, SDValue> 5273 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5274 const BasicBlock *EHPadBB) { 5275 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5276 MCSymbol *BeginLabel = nullptr; 5277 5278 if (EHPadBB) { 5279 // Insert a label before the invoke call to mark the try range. This can be 5280 // used to detect deletion of the invoke via the MachineModuleInfo. 5281 BeginLabel = MMI.getContext().createTempSymbol(); 5282 5283 // For SjLj, keep track of which landing pads go with which invokes 5284 // so as to maintain the ordering of pads in the LSDA. 5285 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5286 if (CallSiteIndex) { 5287 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5288 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5289 5290 // Now that the call site is handled, stop tracking it. 5291 MMI.setCurrentCallSite(0); 5292 } 5293 5294 // Both PendingLoads and PendingExports must be flushed here; 5295 // this call might not return. 5296 (void)getRoot(); 5297 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5298 5299 CLI.setChain(getRoot()); 5300 } 5301 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5302 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5303 5304 assert((CLI.IsTailCall || Result.second.getNode()) && 5305 "Non-null chain expected with non-tail call!"); 5306 assert((Result.second.getNode() || !Result.first.getNode()) && 5307 "Null value expected with tail call!"); 5308 5309 if (!Result.second.getNode()) { 5310 // As a special case, a null chain means that a tail call has been emitted 5311 // and the DAG root is already updated. 5312 HasTailCall = true; 5313 5314 // Since there's no actual continuation from this block, nothing can be 5315 // relying on us setting vregs for them. 5316 PendingExports.clear(); 5317 } else { 5318 DAG.setRoot(Result.second); 5319 } 5320 5321 if (EHPadBB) { 5322 // Insert a label at the end of the invoke call to mark the try range. This 5323 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5324 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5325 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5326 5327 // Inform MachineModuleInfo of range. 5328 if (MMI.hasEHFunclets()) { 5329 assert(CLI.CS); 5330 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5331 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5332 BeginLabel, EndLabel); 5333 } else { 5334 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5335 } 5336 } 5337 5338 return Result; 5339 } 5340 5341 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5342 bool isTailCall, 5343 const BasicBlock *EHPadBB) { 5344 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5345 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5346 Type *RetTy = FTy->getReturnType(); 5347 5348 TargetLowering::ArgListTy Args; 5349 TargetLowering::ArgListEntry Entry; 5350 Args.reserve(CS.arg_size()); 5351 5352 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5353 i != e; ++i) { 5354 const Value *V = *i; 5355 5356 // Skip empty types 5357 if (V->getType()->isEmptyTy()) 5358 continue; 5359 5360 SDValue ArgNode = getValue(V); 5361 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5362 5363 // Skip the first return-type Attribute to get to params. 5364 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5365 Args.push_back(Entry); 5366 5367 // If we have an explicit sret argument that is an Instruction, (i.e., it 5368 // might point to function-local memory), we can't meaningfully tail-call. 5369 if (Entry.isSRet && isa<Instruction>(V)) 5370 isTailCall = false; 5371 } 5372 5373 // Check if target-independent constraints permit a tail call here. 5374 // Target-dependent constraints are checked within TLI->LowerCallTo. 5375 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5376 isTailCall = false; 5377 5378 TargetLowering::CallLoweringInfo CLI(DAG); 5379 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5380 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5381 .setTailCall(isTailCall); 5382 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5383 5384 if (Result.first.getNode()) 5385 setValue(CS.getInstruction(), Result.first); 5386 } 5387 5388 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5389 /// value is equal or not-equal to zero. 5390 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5391 for (const User *U : V->users()) { 5392 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5393 if (IC->isEquality()) 5394 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5395 if (C->isNullValue()) 5396 continue; 5397 // Unknown instruction. 5398 return false; 5399 } 5400 return true; 5401 } 5402 5403 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5404 Type *LoadTy, 5405 SelectionDAGBuilder &Builder) { 5406 5407 // Check to see if this load can be trivially constant folded, e.g. if the 5408 // input is from a string literal. 5409 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5410 // Cast pointer to the type we really want to load. 5411 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5412 PointerType::getUnqual(LoadTy)); 5413 5414 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5415 const_cast<Constant *>(LoadInput), *Builder.DL)) 5416 return Builder.getValue(LoadCst); 5417 } 5418 5419 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5420 // still constant memory, the input chain can be the entry node. 5421 SDValue Root; 5422 bool ConstantMemory = false; 5423 5424 // Do not serialize (non-volatile) loads of constant memory with anything. 5425 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5426 Root = Builder.DAG.getEntryNode(); 5427 ConstantMemory = true; 5428 } else { 5429 // Do not serialize non-volatile loads against each other. 5430 Root = Builder.DAG.getRoot(); 5431 } 5432 5433 SDValue Ptr = Builder.getValue(PtrVal); 5434 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5435 Ptr, MachinePointerInfo(PtrVal), 5436 false /*volatile*/, 5437 false /*nontemporal*/, 5438 false /*isinvariant*/, 1 /* align=1 */); 5439 5440 if (!ConstantMemory) 5441 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5442 return LoadVal; 5443 } 5444 5445 /// processIntegerCallValue - Record the value for an instruction that 5446 /// produces an integer result, converting the type where necessary. 5447 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5448 SDValue Value, 5449 bool IsSigned) { 5450 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5451 I.getType(), true); 5452 if (IsSigned) 5453 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5454 else 5455 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5456 setValue(&I, Value); 5457 } 5458 5459 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5460 /// If so, return true and lower it, otherwise return false and it will be 5461 /// lowered like a normal call. 5462 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5463 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5464 if (I.getNumArgOperands() != 3) 5465 return false; 5466 5467 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5468 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5469 !I.getArgOperand(2)->getType()->isIntegerTy() || 5470 !I.getType()->isIntegerTy()) 5471 return false; 5472 5473 const Value *Size = I.getArgOperand(2); 5474 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5475 if (CSize && CSize->getZExtValue() == 0) { 5476 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5477 I.getType(), true); 5478 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5479 return true; 5480 } 5481 5482 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5483 std::pair<SDValue, SDValue> Res = 5484 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5485 getValue(LHS), getValue(RHS), getValue(Size), 5486 MachinePointerInfo(LHS), 5487 MachinePointerInfo(RHS)); 5488 if (Res.first.getNode()) { 5489 processIntegerCallValue(I, Res.first, true); 5490 PendingLoads.push_back(Res.second); 5491 return true; 5492 } 5493 5494 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5495 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5496 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5497 bool ActuallyDoIt = true; 5498 MVT LoadVT; 5499 Type *LoadTy; 5500 switch (CSize->getZExtValue()) { 5501 default: 5502 LoadVT = MVT::Other; 5503 LoadTy = nullptr; 5504 ActuallyDoIt = false; 5505 break; 5506 case 2: 5507 LoadVT = MVT::i16; 5508 LoadTy = Type::getInt16Ty(CSize->getContext()); 5509 break; 5510 case 4: 5511 LoadVT = MVT::i32; 5512 LoadTy = Type::getInt32Ty(CSize->getContext()); 5513 break; 5514 case 8: 5515 LoadVT = MVT::i64; 5516 LoadTy = Type::getInt64Ty(CSize->getContext()); 5517 break; 5518 /* 5519 case 16: 5520 LoadVT = MVT::v4i32; 5521 LoadTy = Type::getInt32Ty(CSize->getContext()); 5522 LoadTy = VectorType::get(LoadTy, 4); 5523 break; 5524 */ 5525 } 5526 5527 // This turns into unaligned loads. We only do this if the target natively 5528 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5529 // we'll only produce a small number of byte loads. 5530 5531 // Require that we can find a legal MVT, and only do this if the target 5532 // supports unaligned loads of that type. Expanding into byte loads would 5533 // bloat the code. 5534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5535 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5536 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5537 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5538 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5539 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5540 // TODO: Check alignment of src and dest ptrs. 5541 if (!TLI.isTypeLegal(LoadVT) || 5542 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5543 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5544 ActuallyDoIt = false; 5545 } 5546 5547 if (ActuallyDoIt) { 5548 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5549 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5550 5551 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5552 ISD::SETNE); 5553 processIntegerCallValue(I, Res, false); 5554 return true; 5555 } 5556 } 5557 5558 5559 return false; 5560 } 5561 5562 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5563 /// form. If so, return true and lower it, otherwise return false and it 5564 /// will be lowered like a normal call. 5565 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5566 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5567 if (I.getNumArgOperands() != 3) 5568 return false; 5569 5570 const Value *Src = I.getArgOperand(0); 5571 const Value *Char = I.getArgOperand(1); 5572 const Value *Length = I.getArgOperand(2); 5573 if (!Src->getType()->isPointerTy() || 5574 !Char->getType()->isIntegerTy() || 5575 !Length->getType()->isIntegerTy() || 5576 !I.getType()->isPointerTy()) 5577 return false; 5578 5579 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5580 std::pair<SDValue, SDValue> Res = 5581 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5582 getValue(Src), getValue(Char), getValue(Length), 5583 MachinePointerInfo(Src)); 5584 if (Res.first.getNode()) { 5585 setValue(&I, Res.first); 5586 PendingLoads.push_back(Res.second); 5587 return true; 5588 } 5589 5590 return false; 5591 } 5592 5593 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5594 /// optimized form. If so, return true and lower it, otherwise return false 5595 /// and it will be lowered like a normal call. 5596 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5597 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5598 if (I.getNumArgOperands() != 2) 5599 return false; 5600 5601 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5602 if (!Arg0->getType()->isPointerTy() || 5603 !Arg1->getType()->isPointerTy() || 5604 !I.getType()->isPointerTy()) 5605 return false; 5606 5607 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5608 std::pair<SDValue, SDValue> Res = 5609 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5610 getValue(Arg0), getValue(Arg1), 5611 MachinePointerInfo(Arg0), 5612 MachinePointerInfo(Arg1), isStpcpy); 5613 if (Res.first.getNode()) { 5614 setValue(&I, Res.first); 5615 DAG.setRoot(Res.second); 5616 return true; 5617 } 5618 5619 return false; 5620 } 5621 5622 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5623 /// If so, return true and lower it, otherwise return false and it will be 5624 /// lowered like a normal call. 5625 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5626 // Verify that the prototype makes sense. int strcmp(void*,void*) 5627 if (I.getNumArgOperands() != 2) 5628 return false; 5629 5630 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5631 if (!Arg0->getType()->isPointerTy() || 5632 !Arg1->getType()->isPointerTy() || 5633 !I.getType()->isIntegerTy()) 5634 return false; 5635 5636 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5637 std::pair<SDValue, SDValue> Res = 5638 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5639 getValue(Arg0), getValue(Arg1), 5640 MachinePointerInfo(Arg0), 5641 MachinePointerInfo(Arg1)); 5642 if (Res.first.getNode()) { 5643 processIntegerCallValue(I, Res.first, true); 5644 PendingLoads.push_back(Res.second); 5645 return true; 5646 } 5647 5648 return false; 5649 } 5650 5651 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5652 /// form. If so, return true and lower it, otherwise return false and it 5653 /// will be lowered like a normal call. 5654 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5655 // Verify that the prototype makes sense. size_t strlen(char *) 5656 if (I.getNumArgOperands() != 1) 5657 return false; 5658 5659 const Value *Arg0 = I.getArgOperand(0); 5660 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5661 return false; 5662 5663 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5664 std::pair<SDValue, SDValue> Res = 5665 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5666 getValue(Arg0), MachinePointerInfo(Arg0)); 5667 if (Res.first.getNode()) { 5668 processIntegerCallValue(I, Res.first, false); 5669 PendingLoads.push_back(Res.second); 5670 return true; 5671 } 5672 5673 return false; 5674 } 5675 5676 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5677 /// form. If so, return true and lower it, otherwise return false and it 5678 /// will be lowered like a normal call. 5679 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5680 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5681 if (I.getNumArgOperands() != 2) 5682 return false; 5683 5684 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5685 if (!Arg0->getType()->isPointerTy() || 5686 !Arg1->getType()->isIntegerTy() || 5687 !I.getType()->isIntegerTy()) 5688 return false; 5689 5690 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5691 std::pair<SDValue, SDValue> Res = 5692 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5693 getValue(Arg0), getValue(Arg1), 5694 MachinePointerInfo(Arg0)); 5695 if (Res.first.getNode()) { 5696 processIntegerCallValue(I, Res.first, false); 5697 PendingLoads.push_back(Res.second); 5698 return true; 5699 } 5700 5701 return false; 5702 } 5703 5704 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5705 /// operation (as expected), translate it to an SDNode with the specified opcode 5706 /// and return true. 5707 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5708 unsigned Opcode) { 5709 // Sanity check that it really is a unary floating-point call. 5710 if (I.getNumArgOperands() != 1 || 5711 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5712 I.getType() != I.getArgOperand(0)->getType() || 5713 !I.onlyReadsMemory()) 5714 return false; 5715 5716 SDValue Tmp = getValue(I.getArgOperand(0)); 5717 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5718 return true; 5719 } 5720 5721 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5722 /// operation (as expected), translate it to an SDNode with the specified opcode 5723 /// and return true. 5724 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5725 unsigned Opcode) { 5726 // Sanity check that it really is a binary floating-point call. 5727 if (I.getNumArgOperands() != 2 || 5728 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5729 I.getType() != I.getArgOperand(0)->getType() || 5730 I.getType() != I.getArgOperand(1)->getType() || 5731 !I.onlyReadsMemory()) 5732 return false; 5733 5734 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5735 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5736 EVT VT = Tmp0.getValueType(); 5737 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5738 return true; 5739 } 5740 5741 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5742 // Handle inline assembly differently. 5743 if (isa<InlineAsm>(I.getCalledValue())) { 5744 visitInlineAsm(&I); 5745 return; 5746 } 5747 5748 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5749 ComputeUsesVAFloatArgument(I, &MMI); 5750 5751 const char *RenameFn = nullptr; 5752 if (Function *F = I.getCalledFunction()) { 5753 if (F->isDeclaration()) { 5754 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5755 if (unsigned IID = II->getIntrinsicID(F)) { 5756 RenameFn = visitIntrinsicCall(I, IID); 5757 if (!RenameFn) 5758 return; 5759 } 5760 } 5761 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5762 RenameFn = visitIntrinsicCall(I, IID); 5763 if (!RenameFn) 5764 return; 5765 } 5766 } 5767 5768 // Check for well-known libc/libm calls. If the function is internal, it 5769 // can't be a library call. 5770 LibFunc::Func Func; 5771 if (!F->hasLocalLinkage() && F->hasName() && 5772 LibInfo->getLibFunc(F->getName(), Func) && 5773 LibInfo->hasOptimizedCodeGen(Func)) { 5774 switch (Func) { 5775 default: break; 5776 case LibFunc::copysign: 5777 case LibFunc::copysignf: 5778 case LibFunc::copysignl: 5779 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5780 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5781 I.getType() == I.getArgOperand(0)->getType() && 5782 I.getType() == I.getArgOperand(1)->getType() && 5783 I.onlyReadsMemory()) { 5784 SDValue LHS = getValue(I.getArgOperand(0)); 5785 SDValue RHS = getValue(I.getArgOperand(1)); 5786 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5787 LHS.getValueType(), LHS, RHS)); 5788 return; 5789 } 5790 break; 5791 case LibFunc::fabs: 5792 case LibFunc::fabsf: 5793 case LibFunc::fabsl: 5794 if (visitUnaryFloatCall(I, ISD::FABS)) 5795 return; 5796 break; 5797 case LibFunc::fmin: 5798 case LibFunc::fminf: 5799 case LibFunc::fminl: 5800 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5801 return; 5802 break; 5803 case LibFunc::fmax: 5804 case LibFunc::fmaxf: 5805 case LibFunc::fmaxl: 5806 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5807 return; 5808 break; 5809 case LibFunc::sin: 5810 case LibFunc::sinf: 5811 case LibFunc::sinl: 5812 if (visitUnaryFloatCall(I, ISD::FSIN)) 5813 return; 5814 break; 5815 case LibFunc::cos: 5816 case LibFunc::cosf: 5817 case LibFunc::cosl: 5818 if (visitUnaryFloatCall(I, ISD::FCOS)) 5819 return; 5820 break; 5821 case LibFunc::sqrt: 5822 case LibFunc::sqrtf: 5823 case LibFunc::sqrtl: 5824 case LibFunc::sqrt_finite: 5825 case LibFunc::sqrtf_finite: 5826 case LibFunc::sqrtl_finite: 5827 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5828 return; 5829 break; 5830 case LibFunc::floor: 5831 case LibFunc::floorf: 5832 case LibFunc::floorl: 5833 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5834 return; 5835 break; 5836 case LibFunc::nearbyint: 5837 case LibFunc::nearbyintf: 5838 case LibFunc::nearbyintl: 5839 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5840 return; 5841 break; 5842 case LibFunc::ceil: 5843 case LibFunc::ceilf: 5844 case LibFunc::ceill: 5845 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5846 return; 5847 break; 5848 case LibFunc::rint: 5849 case LibFunc::rintf: 5850 case LibFunc::rintl: 5851 if (visitUnaryFloatCall(I, ISD::FRINT)) 5852 return; 5853 break; 5854 case LibFunc::round: 5855 case LibFunc::roundf: 5856 case LibFunc::roundl: 5857 if (visitUnaryFloatCall(I, ISD::FROUND)) 5858 return; 5859 break; 5860 case LibFunc::trunc: 5861 case LibFunc::truncf: 5862 case LibFunc::truncl: 5863 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5864 return; 5865 break; 5866 case LibFunc::log2: 5867 case LibFunc::log2f: 5868 case LibFunc::log2l: 5869 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5870 return; 5871 break; 5872 case LibFunc::exp2: 5873 case LibFunc::exp2f: 5874 case LibFunc::exp2l: 5875 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5876 return; 5877 break; 5878 case LibFunc::memcmp: 5879 if (visitMemCmpCall(I)) 5880 return; 5881 break; 5882 case LibFunc::memchr: 5883 if (visitMemChrCall(I)) 5884 return; 5885 break; 5886 case LibFunc::strcpy: 5887 if (visitStrCpyCall(I, false)) 5888 return; 5889 break; 5890 case LibFunc::stpcpy: 5891 if (visitStrCpyCall(I, true)) 5892 return; 5893 break; 5894 case LibFunc::strcmp: 5895 if (visitStrCmpCall(I)) 5896 return; 5897 break; 5898 case LibFunc::strlen: 5899 if (visitStrLenCall(I)) 5900 return; 5901 break; 5902 case LibFunc::strnlen: 5903 if (visitStrNLenCall(I)) 5904 return; 5905 break; 5906 } 5907 } 5908 } 5909 5910 SDValue Callee; 5911 if (!RenameFn) 5912 Callee = getValue(I.getCalledValue()); 5913 else 5914 Callee = DAG.getExternalSymbol( 5915 RenameFn, 5916 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5917 5918 // Check if we can potentially perform a tail call. More detailed checking is 5919 // be done within LowerCallTo, after more information about the call is known. 5920 LowerCallTo(&I, Callee, I.isTailCall()); 5921 } 5922 5923 namespace { 5924 5925 /// AsmOperandInfo - This contains information for each constraint that we are 5926 /// lowering. 5927 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5928 public: 5929 /// CallOperand - If this is the result output operand or a clobber 5930 /// this is null, otherwise it is the incoming operand to the CallInst. 5931 /// This gets modified as the asm is processed. 5932 SDValue CallOperand; 5933 5934 /// AssignedRegs - If this is a register or register class operand, this 5935 /// contains the set of register corresponding to the operand. 5936 RegsForValue AssignedRegs; 5937 5938 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5939 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5940 } 5941 5942 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5943 /// corresponds to. If there is no Value* for this operand, it returns 5944 /// MVT::Other. 5945 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5946 const DataLayout &DL) const { 5947 if (!CallOperandVal) return MVT::Other; 5948 5949 if (isa<BasicBlock>(CallOperandVal)) 5950 return TLI.getPointerTy(DL); 5951 5952 llvm::Type *OpTy = CallOperandVal->getType(); 5953 5954 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5955 // If this is an indirect operand, the operand is a pointer to the 5956 // accessed type. 5957 if (isIndirect) { 5958 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5959 if (!PtrTy) 5960 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5961 OpTy = PtrTy->getElementType(); 5962 } 5963 5964 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5965 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5966 if (STy->getNumElements() == 1) 5967 OpTy = STy->getElementType(0); 5968 5969 // If OpTy is not a single value, it may be a struct/union that we 5970 // can tile with integers. 5971 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5972 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5973 switch (BitSize) { 5974 default: break; 5975 case 1: 5976 case 8: 5977 case 16: 5978 case 32: 5979 case 64: 5980 case 128: 5981 OpTy = IntegerType::get(Context, BitSize); 5982 break; 5983 } 5984 } 5985 5986 return TLI.getValueType(DL, OpTy, true); 5987 } 5988 }; 5989 5990 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5991 5992 } // end anonymous namespace 5993 5994 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5995 /// specified operand. We prefer to assign virtual registers, to allow the 5996 /// register allocator to handle the assignment process. However, if the asm 5997 /// uses features that we can't model on machineinstrs, we have SDISel do the 5998 /// allocation. This produces generally horrible, but correct, code. 5999 /// 6000 /// OpInfo describes the operand. 6001 /// 6002 static void GetRegistersForValue(SelectionDAG &DAG, 6003 const TargetLowering &TLI, 6004 SDLoc DL, 6005 SDISelAsmOperandInfo &OpInfo) { 6006 LLVMContext &Context = *DAG.getContext(); 6007 6008 MachineFunction &MF = DAG.getMachineFunction(); 6009 SmallVector<unsigned, 4> Regs; 6010 6011 // If this is a constraint for a single physreg, or a constraint for a 6012 // register class, find it. 6013 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6014 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6015 OpInfo.ConstraintCode, 6016 OpInfo.ConstraintVT); 6017 6018 unsigned NumRegs = 1; 6019 if (OpInfo.ConstraintVT != MVT::Other) { 6020 // If this is a FP input in an integer register (or visa versa) insert a bit 6021 // cast of the input value. More generally, handle any case where the input 6022 // value disagrees with the register class we plan to stick this in. 6023 if (OpInfo.Type == InlineAsm::isInput && 6024 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6025 // Try to convert to the first EVT that the reg class contains. If the 6026 // types are identical size, use a bitcast to convert (e.g. two differing 6027 // vector types). 6028 MVT RegVT = *PhysReg.second->vt_begin(); 6029 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6030 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6031 RegVT, OpInfo.CallOperand); 6032 OpInfo.ConstraintVT = RegVT; 6033 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6034 // If the input is a FP value and we want it in FP registers, do a 6035 // bitcast to the corresponding integer type. This turns an f64 value 6036 // into i64, which can be passed with two i32 values on a 32-bit 6037 // machine. 6038 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6039 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6040 RegVT, OpInfo.CallOperand); 6041 OpInfo.ConstraintVT = RegVT; 6042 } 6043 } 6044 6045 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6046 } 6047 6048 MVT RegVT; 6049 EVT ValueVT = OpInfo.ConstraintVT; 6050 6051 // If this is a constraint for a specific physical register, like {r17}, 6052 // assign it now. 6053 if (unsigned AssignedReg = PhysReg.first) { 6054 const TargetRegisterClass *RC = PhysReg.second; 6055 if (OpInfo.ConstraintVT == MVT::Other) 6056 ValueVT = *RC->vt_begin(); 6057 6058 // Get the actual register value type. This is important, because the user 6059 // may have asked for (e.g.) the AX register in i32 type. We need to 6060 // remember that AX is actually i16 to get the right extension. 6061 RegVT = *RC->vt_begin(); 6062 6063 // This is a explicit reference to a physical register. 6064 Regs.push_back(AssignedReg); 6065 6066 // If this is an expanded reference, add the rest of the regs to Regs. 6067 if (NumRegs != 1) { 6068 TargetRegisterClass::iterator I = RC->begin(); 6069 for (; *I != AssignedReg; ++I) 6070 assert(I != RC->end() && "Didn't find reg!"); 6071 6072 // Already added the first reg. 6073 --NumRegs; ++I; 6074 for (; NumRegs; --NumRegs, ++I) { 6075 assert(I != RC->end() && "Ran out of registers to allocate!"); 6076 Regs.push_back(*I); 6077 } 6078 } 6079 6080 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6081 return; 6082 } 6083 6084 // Otherwise, if this was a reference to an LLVM register class, create vregs 6085 // for this reference. 6086 if (const TargetRegisterClass *RC = PhysReg.second) { 6087 RegVT = *RC->vt_begin(); 6088 if (OpInfo.ConstraintVT == MVT::Other) 6089 ValueVT = RegVT; 6090 6091 // Create the appropriate number of virtual registers. 6092 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6093 for (; NumRegs; --NumRegs) 6094 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6095 6096 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6097 return; 6098 } 6099 6100 // Otherwise, we couldn't allocate enough registers for this. 6101 } 6102 6103 /// visitInlineAsm - Handle a call to an InlineAsm object. 6104 /// 6105 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6106 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6107 6108 /// ConstraintOperands - Information about all of the constraints. 6109 SDISelAsmOperandInfoVector ConstraintOperands; 6110 6111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6112 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6113 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6114 6115 bool hasMemory = false; 6116 6117 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6118 unsigned ResNo = 0; // ResNo - The result number of the next output. 6119 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6120 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6121 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6122 6123 MVT OpVT = MVT::Other; 6124 6125 // Compute the value type for each operand. 6126 switch (OpInfo.Type) { 6127 case InlineAsm::isOutput: 6128 // Indirect outputs just consume an argument. 6129 if (OpInfo.isIndirect) { 6130 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6131 break; 6132 } 6133 6134 // The return value of the call is this value. As such, there is no 6135 // corresponding argument. 6136 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6137 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6138 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6139 STy->getElementType(ResNo)); 6140 } else { 6141 assert(ResNo == 0 && "Asm only has one result!"); 6142 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6143 } 6144 ++ResNo; 6145 break; 6146 case InlineAsm::isInput: 6147 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6148 break; 6149 case InlineAsm::isClobber: 6150 // Nothing to do. 6151 break; 6152 } 6153 6154 // If this is an input or an indirect output, process the call argument. 6155 // BasicBlocks are labels, currently appearing only in asm's. 6156 if (OpInfo.CallOperandVal) { 6157 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6158 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6159 } else { 6160 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6161 } 6162 6163 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6164 DAG.getDataLayout()).getSimpleVT(); 6165 } 6166 6167 OpInfo.ConstraintVT = OpVT; 6168 6169 // Indirect operand accesses access memory. 6170 if (OpInfo.isIndirect) 6171 hasMemory = true; 6172 else { 6173 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6174 TargetLowering::ConstraintType 6175 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6176 if (CType == TargetLowering::C_Memory) { 6177 hasMemory = true; 6178 break; 6179 } 6180 } 6181 } 6182 } 6183 6184 SDValue Chain, Flag; 6185 6186 // We won't need to flush pending loads if this asm doesn't touch 6187 // memory and is nonvolatile. 6188 if (hasMemory || IA->hasSideEffects()) 6189 Chain = getRoot(); 6190 else 6191 Chain = DAG.getRoot(); 6192 6193 // Second pass over the constraints: compute which constraint option to use 6194 // and assign registers to constraints that want a specific physreg. 6195 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6196 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6197 6198 // If this is an output operand with a matching input operand, look up the 6199 // matching input. If their types mismatch, e.g. one is an integer, the 6200 // other is floating point, or their sizes are different, flag it as an 6201 // error. 6202 if (OpInfo.hasMatchingInput()) { 6203 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6204 6205 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6206 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6207 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6208 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6209 OpInfo.ConstraintVT); 6210 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6211 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6212 Input.ConstraintVT); 6213 if ((OpInfo.ConstraintVT.isInteger() != 6214 Input.ConstraintVT.isInteger()) || 6215 (MatchRC.second != InputRC.second)) { 6216 report_fatal_error("Unsupported asm: input constraint" 6217 " with a matching output constraint of" 6218 " incompatible type!"); 6219 } 6220 Input.ConstraintVT = OpInfo.ConstraintVT; 6221 } 6222 } 6223 6224 // Compute the constraint code and ConstraintType to use. 6225 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6226 6227 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6228 OpInfo.Type == InlineAsm::isClobber) 6229 continue; 6230 6231 // If this is a memory input, and if the operand is not indirect, do what we 6232 // need to to provide an address for the memory input. 6233 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6234 !OpInfo.isIndirect) { 6235 assert((OpInfo.isMultipleAlternative || 6236 (OpInfo.Type == InlineAsm::isInput)) && 6237 "Can only indirectify direct input operands!"); 6238 6239 // Memory operands really want the address of the value. If we don't have 6240 // an indirect input, put it in the constpool if we can, otherwise spill 6241 // it to a stack slot. 6242 // TODO: This isn't quite right. We need to handle these according to 6243 // the addressing mode that the constraint wants. Also, this may take 6244 // an additional register for the computation and we don't want that 6245 // either. 6246 6247 // If the operand is a float, integer, or vector constant, spill to a 6248 // constant pool entry to get its address. 6249 const Value *OpVal = OpInfo.CallOperandVal; 6250 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6251 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6252 OpInfo.CallOperand = DAG.getConstantPool( 6253 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6254 } else { 6255 // Otherwise, create a stack slot and emit a store to it before the 6256 // asm. 6257 Type *Ty = OpVal->getType(); 6258 auto &DL = DAG.getDataLayout(); 6259 uint64_t TySize = DL.getTypeAllocSize(Ty); 6260 unsigned Align = DL.getPrefTypeAlignment(Ty); 6261 MachineFunction &MF = DAG.getMachineFunction(); 6262 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6263 SDValue StackSlot = 6264 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6265 Chain = DAG.getStore( 6266 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6267 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6268 false, false, 0); 6269 OpInfo.CallOperand = StackSlot; 6270 } 6271 6272 // There is no longer a Value* corresponding to this operand. 6273 OpInfo.CallOperandVal = nullptr; 6274 6275 // It is now an indirect operand. 6276 OpInfo.isIndirect = true; 6277 } 6278 6279 // If this constraint is for a specific register, allocate it before 6280 // anything else. 6281 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6282 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6283 } 6284 6285 // Second pass - Loop over all of the operands, assigning virtual or physregs 6286 // to register class operands. 6287 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6288 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6289 6290 // C_Register operands have already been allocated, Other/Memory don't need 6291 // to be. 6292 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6293 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6294 } 6295 6296 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6297 std::vector<SDValue> AsmNodeOperands; 6298 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6299 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6300 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6301 6302 // If we have a !srcloc metadata node associated with it, we want to attach 6303 // this to the ultimately generated inline asm machineinstr. To do this, we 6304 // pass in the third operand as this (potentially null) inline asm MDNode. 6305 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6306 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6307 6308 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6309 // bits as operand 3. 6310 unsigned ExtraInfo = 0; 6311 if (IA->hasSideEffects()) 6312 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6313 if (IA->isAlignStack()) 6314 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6315 // Set the asm dialect. 6316 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6317 6318 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6319 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6320 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6321 6322 // Compute the constraint code and ConstraintType to use. 6323 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6324 6325 // Ideally, we would only check against memory constraints. However, the 6326 // meaning of an other constraint can be target-specific and we can't easily 6327 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6328 // for other constriants as well. 6329 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6330 OpInfo.ConstraintType == TargetLowering::C_Other) { 6331 if (OpInfo.Type == InlineAsm::isInput) 6332 ExtraInfo |= InlineAsm::Extra_MayLoad; 6333 else if (OpInfo.Type == InlineAsm::isOutput) 6334 ExtraInfo |= InlineAsm::Extra_MayStore; 6335 else if (OpInfo.Type == InlineAsm::isClobber) 6336 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6337 } 6338 } 6339 6340 AsmNodeOperands.push_back(DAG.getTargetConstant( 6341 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6342 6343 // Loop over all of the inputs, copying the operand values into the 6344 // appropriate registers and processing the output regs. 6345 RegsForValue RetValRegs; 6346 6347 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6348 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6349 6350 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6351 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6352 6353 switch (OpInfo.Type) { 6354 case InlineAsm::isOutput: { 6355 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6356 OpInfo.ConstraintType != TargetLowering::C_Register) { 6357 // Memory output, or 'other' output (e.g. 'X' constraint). 6358 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6359 6360 unsigned ConstraintID = 6361 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6362 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6363 "Failed to convert memory constraint code to constraint id."); 6364 6365 // Add information to the INLINEASM node to know about this output. 6366 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6367 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6368 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6369 MVT::i32)); 6370 AsmNodeOperands.push_back(OpInfo.CallOperand); 6371 break; 6372 } 6373 6374 // Otherwise, this is a register or register class output. 6375 6376 // Copy the output from the appropriate register. Find a register that 6377 // we can use. 6378 if (OpInfo.AssignedRegs.Regs.empty()) { 6379 LLVMContext &Ctx = *DAG.getContext(); 6380 Ctx.emitError(CS.getInstruction(), 6381 "couldn't allocate output register for constraint '" + 6382 Twine(OpInfo.ConstraintCode) + "'"); 6383 return; 6384 } 6385 6386 // If this is an indirect operand, store through the pointer after the 6387 // asm. 6388 if (OpInfo.isIndirect) { 6389 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6390 OpInfo.CallOperandVal)); 6391 } else { 6392 // This is the result value of the call. 6393 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6394 // Concatenate this output onto the outputs list. 6395 RetValRegs.append(OpInfo.AssignedRegs); 6396 } 6397 6398 // Add information to the INLINEASM node to know that this register is 6399 // set. 6400 OpInfo.AssignedRegs 6401 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6402 ? InlineAsm::Kind_RegDefEarlyClobber 6403 : InlineAsm::Kind_RegDef, 6404 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6405 break; 6406 } 6407 case InlineAsm::isInput: { 6408 SDValue InOperandVal = OpInfo.CallOperand; 6409 6410 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6411 // If this is required to match an output register we have already set, 6412 // just use its register. 6413 unsigned OperandNo = OpInfo.getMatchedOperand(); 6414 6415 // Scan until we find the definition we already emitted of this operand. 6416 // When we find it, create a RegsForValue operand. 6417 unsigned CurOp = InlineAsm::Op_FirstOperand; 6418 for (; OperandNo; --OperandNo) { 6419 // Advance to the next operand. 6420 unsigned OpFlag = 6421 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6422 assert((InlineAsm::isRegDefKind(OpFlag) || 6423 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6424 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6425 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6426 } 6427 6428 unsigned OpFlag = 6429 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6430 if (InlineAsm::isRegDefKind(OpFlag) || 6431 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6432 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6433 if (OpInfo.isIndirect) { 6434 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6435 LLVMContext &Ctx = *DAG.getContext(); 6436 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6437 " don't know how to handle tied " 6438 "indirect register inputs"); 6439 return; 6440 } 6441 6442 RegsForValue MatchedRegs; 6443 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6444 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6445 MatchedRegs.RegVTs.push_back(RegVT); 6446 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6447 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6448 i != e; ++i) { 6449 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6450 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6451 else { 6452 LLVMContext &Ctx = *DAG.getContext(); 6453 Ctx.emitError(CS.getInstruction(), 6454 "inline asm error: This value" 6455 " type register class is not natively supported!"); 6456 return; 6457 } 6458 } 6459 SDLoc dl = getCurSDLoc(); 6460 // Use the produced MatchedRegs object to 6461 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6462 Chain, &Flag, CS.getInstruction()); 6463 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6464 true, OpInfo.getMatchedOperand(), dl, 6465 DAG, AsmNodeOperands); 6466 break; 6467 } 6468 6469 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6470 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6471 "Unexpected number of operands"); 6472 // Add information to the INLINEASM node to know about this input. 6473 // See InlineAsm.h isUseOperandTiedToDef. 6474 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6475 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6476 OpInfo.getMatchedOperand()); 6477 AsmNodeOperands.push_back(DAG.getTargetConstant( 6478 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6479 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6480 break; 6481 } 6482 6483 // Treat indirect 'X' constraint as memory. 6484 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6485 OpInfo.isIndirect) 6486 OpInfo.ConstraintType = TargetLowering::C_Memory; 6487 6488 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6489 std::vector<SDValue> Ops; 6490 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6491 Ops, DAG); 6492 if (Ops.empty()) { 6493 LLVMContext &Ctx = *DAG.getContext(); 6494 Ctx.emitError(CS.getInstruction(), 6495 "invalid operand for inline asm constraint '" + 6496 Twine(OpInfo.ConstraintCode) + "'"); 6497 return; 6498 } 6499 6500 // Add information to the INLINEASM node to know about this input. 6501 unsigned ResOpType = 6502 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6503 AsmNodeOperands.push_back(DAG.getTargetConstant( 6504 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6505 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6506 break; 6507 } 6508 6509 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6510 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6511 assert(InOperandVal.getValueType() == 6512 TLI.getPointerTy(DAG.getDataLayout()) && 6513 "Memory operands expect pointer values"); 6514 6515 unsigned ConstraintID = 6516 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6517 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6518 "Failed to convert memory constraint code to constraint id."); 6519 6520 // Add information to the INLINEASM node to know about this input. 6521 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6522 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6523 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6524 getCurSDLoc(), 6525 MVT::i32)); 6526 AsmNodeOperands.push_back(InOperandVal); 6527 break; 6528 } 6529 6530 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6531 OpInfo.ConstraintType == TargetLowering::C_Register) && 6532 "Unknown constraint type!"); 6533 6534 // TODO: Support this. 6535 if (OpInfo.isIndirect) { 6536 LLVMContext &Ctx = *DAG.getContext(); 6537 Ctx.emitError(CS.getInstruction(), 6538 "Don't know how to handle indirect register inputs yet " 6539 "for constraint '" + 6540 Twine(OpInfo.ConstraintCode) + "'"); 6541 return; 6542 } 6543 6544 // Copy the input into the appropriate registers. 6545 if (OpInfo.AssignedRegs.Regs.empty()) { 6546 LLVMContext &Ctx = *DAG.getContext(); 6547 Ctx.emitError(CS.getInstruction(), 6548 "couldn't allocate input reg for constraint '" + 6549 Twine(OpInfo.ConstraintCode) + "'"); 6550 return; 6551 } 6552 6553 SDLoc dl = getCurSDLoc(); 6554 6555 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6556 Chain, &Flag, CS.getInstruction()); 6557 6558 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6559 dl, DAG, AsmNodeOperands); 6560 break; 6561 } 6562 case InlineAsm::isClobber: { 6563 // Add the clobbered value to the operand list, so that the register 6564 // allocator is aware that the physreg got clobbered. 6565 if (!OpInfo.AssignedRegs.Regs.empty()) 6566 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6567 false, 0, getCurSDLoc(), DAG, 6568 AsmNodeOperands); 6569 break; 6570 } 6571 } 6572 } 6573 6574 // Finish up input operands. Set the input chain and add the flag last. 6575 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6576 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6577 6578 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6579 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6580 Flag = Chain.getValue(1); 6581 6582 // If this asm returns a register value, copy the result from that register 6583 // and set it as the value of the call. 6584 if (!RetValRegs.Regs.empty()) { 6585 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6586 Chain, &Flag, CS.getInstruction()); 6587 6588 // FIXME: Why don't we do this for inline asms with MRVs? 6589 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6590 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6591 6592 // If any of the results of the inline asm is a vector, it may have the 6593 // wrong width/num elts. This can happen for register classes that can 6594 // contain multiple different value types. The preg or vreg allocated may 6595 // not have the same VT as was expected. Convert it to the right type 6596 // with bit_convert. 6597 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6598 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6599 ResultType, Val); 6600 6601 } else if (ResultType != Val.getValueType() && 6602 ResultType.isInteger() && Val.getValueType().isInteger()) { 6603 // If a result value was tied to an input value, the computed result may 6604 // have a wider width than the expected result. Extract the relevant 6605 // portion. 6606 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6607 } 6608 6609 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6610 } 6611 6612 setValue(CS.getInstruction(), Val); 6613 // Don't need to use this as a chain in this case. 6614 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6615 return; 6616 } 6617 6618 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6619 6620 // Process indirect outputs, first output all of the flagged copies out of 6621 // physregs. 6622 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6623 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6624 const Value *Ptr = IndirectStoresToEmit[i].second; 6625 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6626 Chain, &Flag, IA); 6627 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6628 } 6629 6630 // Emit the non-flagged stores from the physregs. 6631 SmallVector<SDValue, 8> OutChains; 6632 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6633 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6634 StoresToEmit[i].first, 6635 getValue(StoresToEmit[i].second), 6636 MachinePointerInfo(StoresToEmit[i].second), 6637 false, false, 0); 6638 OutChains.push_back(Val); 6639 } 6640 6641 if (!OutChains.empty()) 6642 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6643 6644 DAG.setRoot(Chain); 6645 } 6646 6647 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6648 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6649 MVT::Other, getRoot(), 6650 getValue(I.getArgOperand(0)), 6651 DAG.getSrcValue(I.getArgOperand(0)))); 6652 } 6653 6654 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6656 const DataLayout &DL = DAG.getDataLayout(); 6657 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6658 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6659 DAG.getSrcValue(I.getOperand(0)), 6660 DL.getABITypeAlignment(I.getType())); 6661 setValue(&I, V); 6662 DAG.setRoot(V.getValue(1)); 6663 } 6664 6665 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6666 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6667 MVT::Other, getRoot(), 6668 getValue(I.getArgOperand(0)), 6669 DAG.getSrcValue(I.getArgOperand(0)))); 6670 } 6671 6672 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6673 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6674 MVT::Other, getRoot(), 6675 getValue(I.getArgOperand(0)), 6676 getValue(I.getArgOperand(1)), 6677 DAG.getSrcValue(I.getArgOperand(0)), 6678 DAG.getSrcValue(I.getArgOperand(1)))); 6679 } 6680 6681 /// \brief Lower an argument list according to the target calling convention. 6682 /// 6683 /// \return A tuple of <return-value, token-chain> 6684 /// 6685 /// This is a helper for lowering intrinsics that follow a target calling 6686 /// convention or require stack pointer adjustment. Only a subset of the 6687 /// intrinsic's operands need to participate in the calling convention. 6688 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6689 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6690 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6691 TargetLowering::ArgListTy Args; 6692 Args.reserve(NumArgs); 6693 6694 // Populate the argument list. 6695 // Attributes for args start at offset 1, after the return attribute. 6696 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6697 ArgI != ArgE; ++ArgI) { 6698 const Value *V = CS->getOperand(ArgI); 6699 6700 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6701 6702 TargetLowering::ArgListEntry Entry; 6703 Entry.Node = getValue(V); 6704 Entry.Ty = V->getType(); 6705 Entry.setAttributes(&CS, AttrI); 6706 Args.push_back(Entry); 6707 } 6708 6709 TargetLowering::CallLoweringInfo CLI(DAG); 6710 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6711 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6712 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6713 6714 return lowerInvokable(CLI, EHPadBB); 6715 } 6716 6717 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6718 /// or patchpoint target node's operand list. 6719 /// 6720 /// Constants are converted to TargetConstants purely as an optimization to 6721 /// avoid constant materialization and register allocation. 6722 /// 6723 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6724 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6725 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6726 /// address materialization and register allocation, but may also be required 6727 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6728 /// alloca in the entry block, then the runtime may assume that the alloca's 6729 /// StackMap location can be read immediately after compilation and that the 6730 /// location is valid at any point during execution (this is similar to the 6731 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6732 /// only available in a register, then the runtime would need to trap when 6733 /// execution reaches the StackMap in order to read the alloca's location. 6734 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6735 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6736 SelectionDAGBuilder &Builder) { 6737 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6738 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6739 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6740 Ops.push_back( 6741 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6742 Ops.push_back( 6743 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6744 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6745 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6746 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6747 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6748 } else 6749 Ops.push_back(OpVal); 6750 } 6751 } 6752 6753 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6754 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6755 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6756 // [live variables...]) 6757 6758 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6759 6760 SDValue Chain, InFlag, Callee, NullPtr; 6761 SmallVector<SDValue, 32> Ops; 6762 6763 SDLoc DL = getCurSDLoc(); 6764 Callee = getValue(CI.getCalledValue()); 6765 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6766 6767 // The stackmap intrinsic only records the live variables (the arguemnts 6768 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6769 // intrinsic, this won't be lowered to a function call. This means we don't 6770 // have to worry about calling conventions and target specific lowering code. 6771 // Instead we perform the call lowering right here. 6772 // 6773 // chain, flag = CALLSEQ_START(chain, 0) 6774 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6775 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6776 // 6777 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6778 InFlag = Chain.getValue(1); 6779 6780 // Add the <id> and <numBytes> constants. 6781 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6782 Ops.push_back(DAG.getTargetConstant( 6783 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6784 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6785 Ops.push_back(DAG.getTargetConstant( 6786 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6787 MVT::i32)); 6788 6789 // Push live variables for the stack map. 6790 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6791 6792 // We are not pushing any register mask info here on the operands list, 6793 // because the stackmap doesn't clobber anything. 6794 6795 // Push the chain and the glue flag. 6796 Ops.push_back(Chain); 6797 Ops.push_back(InFlag); 6798 6799 // Create the STACKMAP node. 6800 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6801 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6802 Chain = SDValue(SM, 0); 6803 InFlag = Chain.getValue(1); 6804 6805 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6806 6807 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6808 6809 // Set the root to the target-lowered call chain. 6810 DAG.setRoot(Chain); 6811 6812 // Inform the Frame Information that we have a stackmap in this function. 6813 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6814 } 6815 6816 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6817 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6818 const BasicBlock *EHPadBB) { 6819 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6820 // i32 <numBytes>, 6821 // i8* <target>, 6822 // i32 <numArgs>, 6823 // [Args...], 6824 // [live variables...]) 6825 6826 CallingConv::ID CC = CS.getCallingConv(); 6827 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6828 bool HasDef = !CS->getType()->isVoidTy(); 6829 SDLoc dl = getCurSDLoc(); 6830 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6831 6832 // Handle immediate and symbolic callees. 6833 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6834 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6835 /*isTarget=*/true); 6836 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6837 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6838 SDLoc(SymbolicCallee), 6839 SymbolicCallee->getValueType(0)); 6840 6841 // Get the real number of arguments participating in the call <numArgs> 6842 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6843 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6844 6845 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6846 // Intrinsics include all meta-operands up to but not including CC. 6847 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6848 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6849 "Not enough arguments provided to the patchpoint intrinsic"); 6850 6851 // For AnyRegCC the arguments are lowered later on manually. 6852 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6853 Type *ReturnTy = 6854 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6855 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6856 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6857 6858 SDNode *CallEnd = Result.second.getNode(); 6859 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6860 CallEnd = CallEnd->getOperand(0).getNode(); 6861 6862 /// Get a call instruction from the call sequence chain. 6863 /// Tail calls are not allowed. 6864 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6865 "Expected a callseq node."); 6866 SDNode *Call = CallEnd->getOperand(0).getNode(); 6867 bool HasGlue = Call->getGluedNode(); 6868 6869 // Replace the target specific call node with the patchable intrinsic. 6870 SmallVector<SDValue, 8> Ops; 6871 6872 // Add the <id> and <numBytes> constants. 6873 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6874 Ops.push_back(DAG.getTargetConstant( 6875 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6876 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6877 Ops.push_back(DAG.getTargetConstant( 6878 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6879 MVT::i32)); 6880 6881 // Add the callee. 6882 Ops.push_back(Callee); 6883 6884 // Adjust <numArgs> to account for any arguments that have been passed on the 6885 // stack instead. 6886 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6887 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6888 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6889 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6890 6891 // Add the calling convention 6892 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6893 6894 // Add the arguments we omitted previously. The register allocator should 6895 // place these in any free register. 6896 if (IsAnyRegCC) 6897 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6898 Ops.push_back(getValue(CS.getArgument(i))); 6899 6900 // Push the arguments from the call instruction up to the register mask. 6901 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6902 Ops.append(Call->op_begin() + 2, e); 6903 6904 // Push live variables for the stack map. 6905 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6906 6907 // Push the register mask info. 6908 if (HasGlue) 6909 Ops.push_back(*(Call->op_end()-2)); 6910 else 6911 Ops.push_back(*(Call->op_end()-1)); 6912 6913 // Push the chain (this is originally the first operand of the call, but 6914 // becomes now the last or second to last operand). 6915 Ops.push_back(*(Call->op_begin())); 6916 6917 // Push the glue flag (last operand). 6918 if (HasGlue) 6919 Ops.push_back(*(Call->op_end()-1)); 6920 6921 SDVTList NodeTys; 6922 if (IsAnyRegCC && HasDef) { 6923 // Create the return types based on the intrinsic definition 6924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6925 SmallVector<EVT, 3> ValueVTs; 6926 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6927 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6928 6929 // There is always a chain and a glue type at the end 6930 ValueVTs.push_back(MVT::Other); 6931 ValueVTs.push_back(MVT::Glue); 6932 NodeTys = DAG.getVTList(ValueVTs); 6933 } else 6934 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6935 6936 // Replace the target specific call node with a PATCHPOINT node. 6937 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6938 dl, NodeTys, Ops); 6939 6940 // Update the NodeMap. 6941 if (HasDef) { 6942 if (IsAnyRegCC) 6943 setValue(CS.getInstruction(), SDValue(MN, 0)); 6944 else 6945 setValue(CS.getInstruction(), Result.first); 6946 } 6947 6948 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6949 // call sequence. Furthermore the location of the chain and glue can change 6950 // when the AnyReg calling convention is used and the intrinsic returns a 6951 // value. 6952 if (IsAnyRegCC && HasDef) { 6953 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6954 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6955 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6956 } else 6957 DAG.ReplaceAllUsesWith(Call, MN); 6958 DAG.DeleteNode(Call); 6959 6960 // Inform the Frame Information that we have a patchpoint in this function. 6961 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6962 } 6963 6964 /// Returns an AttributeSet representing the attributes applied to the return 6965 /// value of the given call. 6966 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6967 SmallVector<Attribute::AttrKind, 2> Attrs; 6968 if (CLI.RetSExt) 6969 Attrs.push_back(Attribute::SExt); 6970 if (CLI.RetZExt) 6971 Attrs.push_back(Attribute::ZExt); 6972 if (CLI.IsInReg) 6973 Attrs.push_back(Attribute::InReg); 6974 6975 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6976 Attrs); 6977 } 6978 6979 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6980 /// implementation, which just calls LowerCall. 6981 /// FIXME: When all targets are 6982 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6983 std::pair<SDValue, SDValue> 6984 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6985 // Handle the incoming return values from the call. 6986 CLI.Ins.clear(); 6987 Type *OrigRetTy = CLI.RetTy; 6988 SmallVector<EVT, 4> RetTys; 6989 SmallVector<uint64_t, 4> Offsets; 6990 auto &DL = CLI.DAG.getDataLayout(); 6991 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6992 6993 SmallVector<ISD::OutputArg, 4> Outs; 6994 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6995 6996 bool CanLowerReturn = 6997 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6998 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6999 7000 SDValue DemoteStackSlot; 7001 int DemoteStackIdx = -100; 7002 if (!CanLowerReturn) { 7003 // FIXME: equivalent assert? 7004 // assert(!CS.hasInAllocaArgument() && 7005 // "sret demotion is incompatible with inalloca"); 7006 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7007 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7008 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7009 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7010 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7011 7012 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7013 ArgListEntry Entry; 7014 Entry.Node = DemoteStackSlot; 7015 Entry.Ty = StackSlotPtrType; 7016 Entry.isSExt = false; 7017 Entry.isZExt = false; 7018 Entry.isInReg = false; 7019 Entry.isSRet = true; 7020 Entry.isNest = false; 7021 Entry.isByVal = false; 7022 Entry.isReturned = false; 7023 Entry.Alignment = Align; 7024 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7025 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7026 7027 // sret demotion isn't compatible with tail-calls, since the sret argument 7028 // points into the callers stack frame. 7029 CLI.IsTailCall = false; 7030 } else { 7031 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7032 EVT VT = RetTys[I]; 7033 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7034 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7035 for (unsigned i = 0; i != NumRegs; ++i) { 7036 ISD::InputArg MyFlags; 7037 MyFlags.VT = RegisterVT; 7038 MyFlags.ArgVT = VT; 7039 MyFlags.Used = CLI.IsReturnValueUsed; 7040 if (CLI.RetSExt) 7041 MyFlags.Flags.setSExt(); 7042 if (CLI.RetZExt) 7043 MyFlags.Flags.setZExt(); 7044 if (CLI.IsInReg) 7045 MyFlags.Flags.setInReg(); 7046 CLI.Ins.push_back(MyFlags); 7047 } 7048 } 7049 } 7050 7051 // Handle all of the outgoing arguments. 7052 CLI.Outs.clear(); 7053 CLI.OutVals.clear(); 7054 ArgListTy &Args = CLI.getArgs(); 7055 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7056 SmallVector<EVT, 4> ValueVTs; 7057 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7058 Type *FinalType = Args[i].Ty; 7059 if (Args[i].isByVal) 7060 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7061 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7062 FinalType, CLI.CallConv, CLI.IsVarArg); 7063 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7064 ++Value) { 7065 EVT VT = ValueVTs[Value]; 7066 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7067 SDValue Op = SDValue(Args[i].Node.getNode(), 7068 Args[i].Node.getResNo() + Value); 7069 ISD::ArgFlagsTy Flags; 7070 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7071 7072 if (Args[i].isZExt) 7073 Flags.setZExt(); 7074 if (Args[i].isSExt) 7075 Flags.setSExt(); 7076 if (Args[i].isInReg) 7077 Flags.setInReg(); 7078 if (Args[i].isSRet) 7079 Flags.setSRet(); 7080 if (Args[i].isByVal) 7081 Flags.setByVal(); 7082 if (Args[i].isInAlloca) { 7083 Flags.setInAlloca(); 7084 // Set the byval flag for CCAssignFn callbacks that don't know about 7085 // inalloca. This way we can know how many bytes we should've allocated 7086 // and how many bytes a callee cleanup function will pop. If we port 7087 // inalloca to more targets, we'll have to add custom inalloca handling 7088 // in the various CC lowering callbacks. 7089 Flags.setByVal(); 7090 } 7091 if (Args[i].isByVal || Args[i].isInAlloca) { 7092 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7093 Type *ElementTy = Ty->getElementType(); 7094 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7095 // For ByVal, alignment should come from FE. BE will guess if this 7096 // info is not there but there are cases it cannot get right. 7097 unsigned FrameAlign; 7098 if (Args[i].Alignment) 7099 FrameAlign = Args[i].Alignment; 7100 else 7101 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7102 Flags.setByValAlign(FrameAlign); 7103 } 7104 if (Args[i].isNest) 7105 Flags.setNest(); 7106 if (NeedsRegBlock) 7107 Flags.setInConsecutiveRegs(); 7108 Flags.setOrigAlign(OriginalAlignment); 7109 7110 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7111 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7112 SmallVector<SDValue, 4> Parts(NumParts); 7113 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7114 7115 if (Args[i].isSExt) 7116 ExtendKind = ISD::SIGN_EXTEND; 7117 else if (Args[i].isZExt) 7118 ExtendKind = ISD::ZERO_EXTEND; 7119 7120 // Conservatively only handle 'returned' on non-vectors for now 7121 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7122 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7123 "unexpected use of 'returned'"); 7124 // Before passing 'returned' to the target lowering code, ensure that 7125 // either the register MVT and the actual EVT are the same size or that 7126 // the return value and argument are extended in the same way; in these 7127 // cases it's safe to pass the argument register value unchanged as the 7128 // return register value (although it's at the target's option whether 7129 // to do so) 7130 // TODO: allow code generation to take advantage of partially preserved 7131 // registers rather than clobbering the entire register when the 7132 // parameter extension method is not compatible with the return 7133 // extension method 7134 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7135 (ExtendKind != ISD::ANY_EXTEND && 7136 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7137 Flags.setReturned(); 7138 } 7139 7140 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7141 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7142 7143 for (unsigned j = 0; j != NumParts; ++j) { 7144 // if it isn't first piece, alignment must be 1 7145 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7146 i < CLI.NumFixedArgs, 7147 i, j*Parts[j].getValueType().getStoreSize()); 7148 if (NumParts > 1 && j == 0) 7149 MyFlags.Flags.setSplit(); 7150 else if (j != 0) 7151 MyFlags.Flags.setOrigAlign(1); 7152 7153 CLI.Outs.push_back(MyFlags); 7154 CLI.OutVals.push_back(Parts[j]); 7155 } 7156 7157 if (NeedsRegBlock && Value == NumValues - 1) 7158 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7159 } 7160 } 7161 7162 SmallVector<SDValue, 4> InVals; 7163 CLI.Chain = LowerCall(CLI, InVals); 7164 7165 // Verify that the target's LowerCall behaved as expected. 7166 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7167 "LowerCall didn't return a valid chain!"); 7168 assert((!CLI.IsTailCall || InVals.empty()) && 7169 "LowerCall emitted a return value for a tail call!"); 7170 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7171 "LowerCall didn't emit the correct number of values!"); 7172 7173 // For a tail call, the return value is merely live-out and there aren't 7174 // any nodes in the DAG representing it. Return a special value to 7175 // indicate that a tail call has been emitted and no more Instructions 7176 // should be processed in the current block. 7177 if (CLI.IsTailCall) { 7178 CLI.DAG.setRoot(CLI.Chain); 7179 return std::make_pair(SDValue(), SDValue()); 7180 } 7181 7182 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7183 assert(InVals[i].getNode() && 7184 "LowerCall emitted a null value!"); 7185 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7186 "LowerCall emitted a value with the wrong type!"); 7187 }); 7188 7189 SmallVector<SDValue, 4> ReturnValues; 7190 if (!CanLowerReturn) { 7191 // The instruction result is the result of loading from the 7192 // hidden sret parameter. 7193 SmallVector<EVT, 1> PVTs; 7194 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7195 7196 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7197 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7198 EVT PtrVT = PVTs[0]; 7199 7200 unsigned NumValues = RetTys.size(); 7201 ReturnValues.resize(NumValues); 7202 SmallVector<SDValue, 4> Chains(NumValues); 7203 7204 for (unsigned i = 0; i < NumValues; ++i) { 7205 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7206 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7207 PtrVT)); 7208 SDValue L = CLI.DAG.getLoad( 7209 RetTys[i], CLI.DL, CLI.Chain, Add, 7210 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7211 DemoteStackIdx, Offsets[i]), 7212 false, false, false, 1); 7213 ReturnValues[i] = L; 7214 Chains[i] = L.getValue(1); 7215 } 7216 7217 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7218 } else { 7219 // Collect the legal value parts into potentially illegal values 7220 // that correspond to the original function's return values. 7221 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7222 if (CLI.RetSExt) 7223 AssertOp = ISD::AssertSext; 7224 else if (CLI.RetZExt) 7225 AssertOp = ISD::AssertZext; 7226 unsigned CurReg = 0; 7227 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7228 EVT VT = RetTys[I]; 7229 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7230 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7231 7232 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7233 NumRegs, RegisterVT, VT, nullptr, 7234 AssertOp)); 7235 CurReg += NumRegs; 7236 } 7237 7238 // For a function returning void, there is no return value. We can't create 7239 // such a node, so we just return a null return value in that case. In 7240 // that case, nothing will actually look at the value. 7241 if (ReturnValues.empty()) 7242 return std::make_pair(SDValue(), CLI.Chain); 7243 } 7244 7245 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7246 CLI.DAG.getVTList(RetTys), ReturnValues); 7247 return std::make_pair(Res, CLI.Chain); 7248 } 7249 7250 void TargetLowering::LowerOperationWrapper(SDNode *N, 7251 SmallVectorImpl<SDValue> &Results, 7252 SelectionDAG &DAG) const { 7253 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7254 if (Res.getNode()) 7255 Results.push_back(Res); 7256 } 7257 7258 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7259 llvm_unreachable("LowerOperation not implemented for this target!"); 7260 } 7261 7262 void 7263 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7264 SDValue Op = getNonRegisterValue(V); 7265 assert((Op.getOpcode() != ISD::CopyFromReg || 7266 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7267 "Copy from a reg to the same reg!"); 7268 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7269 7270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7271 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7272 V->getType()); 7273 SDValue Chain = DAG.getEntryNode(); 7274 7275 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7276 FuncInfo.PreferredExtendType.end()) 7277 ? ISD::ANY_EXTEND 7278 : FuncInfo.PreferredExtendType[V]; 7279 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7280 PendingExports.push_back(Chain); 7281 } 7282 7283 #include "llvm/CodeGen/SelectionDAGISel.h" 7284 7285 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7286 /// entry block, return true. This includes arguments used by switches, since 7287 /// the switch may expand into multiple basic blocks. 7288 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7289 // With FastISel active, we may be splitting blocks, so force creation 7290 // of virtual registers for all non-dead arguments. 7291 if (FastISel) 7292 return A->use_empty(); 7293 7294 const BasicBlock &Entry = A->getParent()->front(); 7295 for (const User *U : A->users()) 7296 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7297 return false; // Use not in entry block. 7298 7299 return true; 7300 } 7301 7302 void SelectionDAGISel::LowerArguments(const Function &F) { 7303 SelectionDAG &DAG = SDB->DAG; 7304 SDLoc dl = SDB->getCurSDLoc(); 7305 const DataLayout &DL = DAG.getDataLayout(); 7306 SmallVector<ISD::InputArg, 16> Ins; 7307 7308 if (!FuncInfo->CanLowerReturn) { 7309 // Put in an sret pointer parameter before all the other parameters. 7310 SmallVector<EVT, 1> ValueVTs; 7311 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7312 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7313 7314 // NOTE: Assuming that a pointer will never break down to more than one VT 7315 // or one register. 7316 ISD::ArgFlagsTy Flags; 7317 Flags.setSRet(); 7318 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7319 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7320 ISD::InputArg::NoArgIndex, 0); 7321 Ins.push_back(RetArg); 7322 } 7323 7324 // Set up the incoming argument description vector. 7325 unsigned Idx = 1; 7326 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7327 I != E; ++I, ++Idx) { 7328 SmallVector<EVT, 4> ValueVTs; 7329 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7330 bool isArgValueUsed = !I->use_empty(); 7331 unsigned PartBase = 0; 7332 Type *FinalType = I->getType(); 7333 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7334 FinalType = cast<PointerType>(FinalType)->getElementType(); 7335 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7336 FinalType, F.getCallingConv(), F.isVarArg()); 7337 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7338 Value != NumValues; ++Value) { 7339 EVT VT = ValueVTs[Value]; 7340 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7341 ISD::ArgFlagsTy Flags; 7342 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7343 7344 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7345 Flags.setZExt(); 7346 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7347 Flags.setSExt(); 7348 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7349 Flags.setInReg(); 7350 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7351 Flags.setSRet(); 7352 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7353 Flags.setByVal(); 7354 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7355 Flags.setInAlloca(); 7356 // Set the byval flag for CCAssignFn callbacks that don't know about 7357 // inalloca. This way we can know how many bytes we should've allocated 7358 // and how many bytes a callee cleanup function will pop. If we port 7359 // inalloca to more targets, we'll have to add custom inalloca handling 7360 // in the various CC lowering callbacks. 7361 Flags.setByVal(); 7362 } 7363 if (Flags.isByVal() || Flags.isInAlloca()) { 7364 PointerType *Ty = cast<PointerType>(I->getType()); 7365 Type *ElementTy = Ty->getElementType(); 7366 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7367 // For ByVal, alignment should be passed from FE. BE will guess if 7368 // this info is not there but there are cases it cannot get right. 7369 unsigned FrameAlign; 7370 if (F.getParamAlignment(Idx)) 7371 FrameAlign = F.getParamAlignment(Idx); 7372 else 7373 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7374 Flags.setByValAlign(FrameAlign); 7375 } 7376 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7377 Flags.setNest(); 7378 if (NeedsRegBlock) 7379 Flags.setInConsecutiveRegs(); 7380 Flags.setOrigAlign(OriginalAlignment); 7381 7382 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7383 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7384 for (unsigned i = 0; i != NumRegs; ++i) { 7385 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7386 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7387 if (NumRegs > 1 && i == 0) 7388 MyFlags.Flags.setSplit(); 7389 // if it isn't first piece, alignment must be 1 7390 else if (i > 0) 7391 MyFlags.Flags.setOrigAlign(1); 7392 Ins.push_back(MyFlags); 7393 } 7394 if (NeedsRegBlock && Value == NumValues - 1) 7395 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7396 PartBase += VT.getStoreSize(); 7397 } 7398 } 7399 7400 // Call the target to set up the argument values. 7401 SmallVector<SDValue, 8> InVals; 7402 SDValue NewRoot = TLI->LowerFormalArguments( 7403 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7404 7405 // Verify that the target's LowerFormalArguments behaved as expected. 7406 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7407 "LowerFormalArguments didn't return a valid chain!"); 7408 assert(InVals.size() == Ins.size() && 7409 "LowerFormalArguments didn't emit the correct number of values!"); 7410 DEBUG({ 7411 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7412 assert(InVals[i].getNode() && 7413 "LowerFormalArguments emitted a null value!"); 7414 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7415 "LowerFormalArguments emitted a value with the wrong type!"); 7416 } 7417 }); 7418 7419 // Update the DAG with the new chain value resulting from argument lowering. 7420 DAG.setRoot(NewRoot); 7421 7422 // Set up the argument values. 7423 unsigned i = 0; 7424 Idx = 1; 7425 if (!FuncInfo->CanLowerReturn) { 7426 // Create a virtual register for the sret pointer, and put in a copy 7427 // from the sret argument into it. 7428 SmallVector<EVT, 1> ValueVTs; 7429 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7430 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7431 MVT VT = ValueVTs[0].getSimpleVT(); 7432 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7433 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7434 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7435 RegVT, VT, nullptr, AssertOp); 7436 7437 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7438 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7439 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7440 FuncInfo->DemoteRegister = SRetReg; 7441 NewRoot = 7442 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7443 DAG.setRoot(NewRoot); 7444 7445 // i indexes lowered arguments. Bump it past the hidden sret argument. 7446 // Idx indexes LLVM arguments. Don't touch it. 7447 ++i; 7448 } 7449 7450 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7451 ++I, ++Idx) { 7452 SmallVector<SDValue, 4> ArgValues; 7453 SmallVector<EVT, 4> ValueVTs; 7454 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7455 unsigned NumValues = ValueVTs.size(); 7456 7457 // If this argument is unused then remember its value. It is used to generate 7458 // debugging information. 7459 if (I->use_empty() && NumValues) { 7460 SDB->setUnusedArgValue(&*I, InVals[i]); 7461 7462 // Also remember any frame index for use in FastISel. 7463 if (FrameIndexSDNode *FI = 7464 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7465 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7466 } 7467 7468 for (unsigned Val = 0; Val != NumValues; ++Val) { 7469 EVT VT = ValueVTs[Val]; 7470 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7471 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7472 7473 if (!I->use_empty()) { 7474 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7475 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7476 AssertOp = ISD::AssertSext; 7477 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7478 AssertOp = ISD::AssertZext; 7479 7480 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7481 NumParts, PartVT, VT, 7482 nullptr, AssertOp)); 7483 } 7484 7485 i += NumParts; 7486 } 7487 7488 // We don't need to do anything else for unused arguments. 7489 if (ArgValues.empty()) 7490 continue; 7491 7492 // Note down frame index. 7493 if (FrameIndexSDNode *FI = 7494 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7495 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7496 7497 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7498 SDB->getCurSDLoc()); 7499 7500 SDB->setValue(&*I, Res); 7501 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7502 if (LoadSDNode *LNode = 7503 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7504 if (FrameIndexSDNode *FI = 7505 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7506 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7507 } 7508 7509 // If this argument is live outside of the entry block, insert a copy from 7510 // wherever we got it to the vreg that other BB's will reference it as. 7511 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7512 // If we can, though, try to skip creating an unnecessary vreg. 7513 // FIXME: This isn't very clean... it would be nice to make this more 7514 // general. It's also subtly incompatible with the hacks FastISel 7515 // uses with vregs. 7516 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7517 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7518 FuncInfo->ValueMap[&*I] = Reg; 7519 continue; 7520 } 7521 } 7522 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7523 FuncInfo->InitializeRegForValue(&*I); 7524 SDB->CopyToExportRegsIfNeeded(&*I); 7525 } 7526 } 7527 7528 assert(i == InVals.size() && "Argument register count mismatch!"); 7529 7530 // Finally, if the target has anything special to do, allow it to do so. 7531 EmitFunctionEntryCode(); 7532 } 7533 7534 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7535 /// ensure constants are generated when needed. Remember the virtual registers 7536 /// that need to be added to the Machine PHI nodes as input. We cannot just 7537 /// directly add them, because expansion might result in multiple MBB's for one 7538 /// BB. As such, the start of the BB might correspond to a different MBB than 7539 /// the end. 7540 /// 7541 void 7542 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7543 const TerminatorInst *TI = LLVMBB->getTerminator(); 7544 7545 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7546 7547 // Check PHI nodes in successors that expect a value to be available from this 7548 // block. 7549 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7550 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7551 if (!isa<PHINode>(SuccBB->begin())) continue; 7552 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7553 7554 // If this terminator has multiple identical successors (common for 7555 // switches), only handle each succ once. 7556 if (!SuccsHandled.insert(SuccMBB).second) 7557 continue; 7558 7559 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7560 7561 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7562 // nodes and Machine PHI nodes, but the incoming operands have not been 7563 // emitted yet. 7564 for (BasicBlock::const_iterator I = SuccBB->begin(); 7565 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7566 // Ignore dead phi's. 7567 if (PN->use_empty()) continue; 7568 7569 // Skip empty types 7570 if (PN->getType()->isEmptyTy()) 7571 continue; 7572 7573 unsigned Reg; 7574 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7575 7576 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7577 unsigned &RegOut = ConstantsOut[C]; 7578 if (RegOut == 0) { 7579 RegOut = FuncInfo.CreateRegs(C->getType()); 7580 CopyValueToVirtualRegister(C, RegOut); 7581 } 7582 Reg = RegOut; 7583 } else { 7584 DenseMap<const Value *, unsigned>::iterator I = 7585 FuncInfo.ValueMap.find(PHIOp); 7586 if (I != FuncInfo.ValueMap.end()) 7587 Reg = I->second; 7588 else { 7589 assert(isa<AllocaInst>(PHIOp) && 7590 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7591 "Didn't codegen value into a register!??"); 7592 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7593 CopyValueToVirtualRegister(PHIOp, Reg); 7594 } 7595 } 7596 7597 // Remember that this register needs to added to the machine PHI node as 7598 // the input for this MBB. 7599 SmallVector<EVT, 4> ValueVTs; 7600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7601 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7602 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7603 EVT VT = ValueVTs[vti]; 7604 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7605 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7606 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7607 Reg += NumRegisters; 7608 } 7609 } 7610 } 7611 7612 ConstantsOut.clear(); 7613 } 7614 7615 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7616 /// is 0. 7617 MachineBasicBlock * 7618 SelectionDAGBuilder::StackProtectorDescriptor:: 7619 AddSuccessorMBB(const BasicBlock *BB, 7620 MachineBasicBlock *ParentMBB, 7621 bool IsLikely, 7622 MachineBasicBlock *SuccMBB) { 7623 // If SuccBB has not been created yet, create it. 7624 if (!SuccMBB) { 7625 MachineFunction *MF = ParentMBB->getParent(); 7626 MachineFunction::iterator BBI(ParentMBB); 7627 SuccMBB = MF->CreateMachineBasicBlock(BB); 7628 MF->insert(++BBI, SuccMBB); 7629 } 7630 // Add it as a successor of ParentMBB. 7631 ParentMBB->addSuccessor( 7632 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7633 return SuccMBB; 7634 } 7635 7636 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7637 MachineFunction::iterator I(MBB); 7638 if (++I == FuncInfo.MF->end()) 7639 return nullptr; 7640 return &*I; 7641 } 7642 7643 /// During lowering new call nodes can be created (such as memset, etc.). 7644 /// Those will become new roots of the current DAG, but complications arise 7645 /// when they are tail calls. In such cases, the call lowering will update 7646 /// the root, but the builder still needs to know that a tail call has been 7647 /// lowered in order to avoid generating an additional return. 7648 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7649 // If the node is null, we do have a tail call. 7650 if (MaybeTC.getNode() != nullptr) 7651 DAG.setRoot(MaybeTC); 7652 else 7653 HasTailCall = true; 7654 } 7655 7656 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7657 unsigned *TotalCases, unsigned First, 7658 unsigned Last) { 7659 assert(Last >= First); 7660 assert(TotalCases[Last] >= TotalCases[First]); 7661 7662 APInt LowCase = Clusters[First].Low->getValue(); 7663 APInt HighCase = Clusters[Last].High->getValue(); 7664 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7665 7666 // FIXME: A range of consecutive cases has 100% density, but only requires one 7667 // comparison to lower. We should discriminate against such consecutive ranges 7668 // in jump tables. 7669 7670 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7671 uint64_t Range = Diff + 1; 7672 7673 uint64_t NumCases = 7674 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7675 7676 assert(NumCases < UINT64_MAX / 100); 7677 assert(Range >= NumCases); 7678 7679 return NumCases * 100 >= Range * MinJumpTableDensity; 7680 } 7681 7682 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7683 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7684 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7685 } 7686 7687 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7688 unsigned First, unsigned Last, 7689 const SwitchInst *SI, 7690 MachineBasicBlock *DefaultMBB, 7691 CaseCluster &JTCluster) { 7692 assert(First <= Last); 7693 7694 auto Prob = BranchProbability::getZero(); 7695 unsigned NumCmps = 0; 7696 std::vector<MachineBasicBlock*> Table; 7697 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7698 7699 // Initialize probabilities in JTProbs. 7700 for (unsigned I = First; I <= Last; ++I) 7701 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7702 7703 for (unsigned I = First; I <= Last; ++I) { 7704 assert(Clusters[I].Kind == CC_Range); 7705 Prob += Clusters[I].Prob; 7706 APInt Low = Clusters[I].Low->getValue(); 7707 APInt High = Clusters[I].High->getValue(); 7708 NumCmps += (Low == High) ? 1 : 2; 7709 if (I != First) { 7710 // Fill the gap between this and the previous cluster. 7711 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7712 assert(PreviousHigh.slt(Low)); 7713 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7714 for (uint64_t J = 0; J < Gap; J++) 7715 Table.push_back(DefaultMBB); 7716 } 7717 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7718 for (uint64_t J = 0; J < ClusterSize; ++J) 7719 Table.push_back(Clusters[I].MBB); 7720 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7721 } 7722 7723 unsigned NumDests = JTProbs.size(); 7724 if (isSuitableForBitTests(NumDests, NumCmps, 7725 Clusters[First].Low->getValue(), 7726 Clusters[Last].High->getValue())) { 7727 // Clusters[First..Last] should be lowered as bit tests instead. 7728 return false; 7729 } 7730 7731 // Create the MBB that will load from and jump through the table. 7732 // Note: We create it here, but it's not inserted into the function yet. 7733 MachineFunction *CurMF = FuncInfo.MF; 7734 MachineBasicBlock *JumpTableMBB = 7735 CurMF->CreateMachineBasicBlock(SI->getParent()); 7736 7737 // Add successors. Note: use table order for determinism. 7738 SmallPtrSet<MachineBasicBlock *, 8> Done; 7739 for (MachineBasicBlock *Succ : Table) { 7740 if (Done.count(Succ)) 7741 continue; 7742 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7743 Done.insert(Succ); 7744 } 7745 JumpTableMBB->normalizeSuccProbs(); 7746 7747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7748 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7749 ->createJumpTableIndex(Table); 7750 7751 // Set up the jump table info. 7752 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7753 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7754 Clusters[Last].High->getValue(), SI->getCondition(), 7755 nullptr, false); 7756 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7757 7758 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7759 JTCases.size() - 1, Prob); 7760 return true; 7761 } 7762 7763 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7764 const SwitchInst *SI, 7765 MachineBasicBlock *DefaultMBB) { 7766 #ifndef NDEBUG 7767 // Clusters must be non-empty, sorted, and only contain Range clusters. 7768 assert(!Clusters.empty()); 7769 for (CaseCluster &C : Clusters) 7770 assert(C.Kind == CC_Range); 7771 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7772 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7773 #endif 7774 7775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7776 if (!areJTsAllowed(TLI)) 7777 return; 7778 7779 const int64_t N = Clusters.size(); 7780 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7781 7782 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7783 SmallVector<unsigned, 8> TotalCases(N); 7784 7785 for (unsigned i = 0; i < N; ++i) { 7786 APInt Hi = Clusters[i].High->getValue(); 7787 APInt Lo = Clusters[i].Low->getValue(); 7788 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7789 if (i != 0) 7790 TotalCases[i] += TotalCases[i - 1]; 7791 } 7792 7793 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7794 // Cheap case: the whole range might be suitable for jump table. 7795 CaseCluster JTCluster; 7796 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7797 Clusters[0] = JTCluster; 7798 Clusters.resize(1); 7799 return; 7800 } 7801 } 7802 7803 // The algorithm below is not suitable for -O0. 7804 if (TM.getOptLevel() == CodeGenOpt::None) 7805 return; 7806 7807 // Split Clusters into minimum number of dense partitions. The algorithm uses 7808 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7809 // for the Case Statement'" (1994), but builds the MinPartitions array in 7810 // reverse order to make it easier to reconstruct the partitions in ascending 7811 // order. In the choice between two optimal partitionings, it picks the one 7812 // which yields more jump tables. 7813 7814 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7815 SmallVector<unsigned, 8> MinPartitions(N); 7816 // LastElement[i] is the last element of the partition starting at i. 7817 SmallVector<unsigned, 8> LastElement(N); 7818 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7819 SmallVector<unsigned, 8> NumTables(N); 7820 7821 // Base case: There is only one way to partition Clusters[N-1]. 7822 MinPartitions[N - 1] = 1; 7823 LastElement[N - 1] = N - 1; 7824 assert(MinJumpTableSize > 1); 7825 NumTables[N - 1] = 0; 7826 7827 // Note: loop indexes are signed to avoid underflow. 7828 for (int64_t i = N - 2; i >= 0; i--) { 7829 // Find optimal partitioning of Clusters[i..N-1]. 7830 // Baseline: Put Clusters[i] into a partition on its own. 7831 MinPartitions[i] = MinPartitions[i + 1] + 1; 7832 LastElement[i] = i; 7833 NumTables[i] = NumTables[i + 1]; 7834 7835 // Search for a solution that results in fewer partitions. 7836 for (int64_t j = N - 1; j > i; j--) { 7837 // Try building a partition from Clusters[i..j]. 7838 if (isDense(Clusters, &TotalCases[0], i, j)) { 7839 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7840 bool IsTable = j - i + 1 >= MinJumpTableSize; 7841 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7842 7843 // If this j leads to fewer partitions, or same number of partitions 7844 // with more lookup tables, it is a better partitioning. 7845 if (NumPartitions < MinPartitions[i] || 7846 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7847 MinPartitions[i] = NumPartitions; 7848 LastElement[i] = j; 7849 NumTables[i] = Tables; 7850 } 7851 } 7852 } 7853 } 7854 7855 // Iterate over the partitions, replacing some with jump tables in-place. 7856 unsigned DstIndex = 0; 7857 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7858 Last = LastElement[First]; 7859 assert(Last >= First); 7860 assert(DstIndex <= First); 7861 unsigned NumClusters = Last - First + 1; 7862 7863 CaseCluster JTCluster; 7864 if (NumClusters >= MinJumpTableSize && 7865 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7866 Clusters[DstIndex++] = JTCluster; 7867 } else { 7868 for (unsigned I = First; I <= Last; ++I) 7869 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7870 } 7871 } 7872 Clusters.resize(DstIndex); 7873 } 7874 7875 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7876 // FIXME: Using the pointer type doesn't seem ideal. 7877 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7878 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7879 return Range <= BW; 7880 } 7881 7882 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7883 unsigned NumCmps, 7884 const APInt &Low, 7885 const APInt &High) { 7886 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7887 // range of cases both require only one branch to lower. Just looking at the 7888 // number of clusters and destinations should be enough to decide whether to 7889 // build bit tests. 7890 7891 // To lower a range with bit tests, the range must fit the bitwidth of a 7892 // machine word. 7893 if (!rangeFitsInWord(Low, High)) 7894 return false; 7895 7896 // Decide whether it's profitable to lower this range with bit tests. Each 7897 // destination requires a bit test and branch, and there is an overall range 7898 // check branch. For a small number of clusters, separate comparisons might be 7899 // cheaper, and for many destinations, splitting the range might be better. 7900 return (NumDests == 1 && NumCmps >= 3) || 7901 (NumDests == 2 && NumCmps >= 5) || 7902 (NumDests == 3 && NumCmps >= 6); 7903 } 7904 7905 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7906 unsigned First, unsigned Last, 7907 const SwitchInst *SI, 7908 CaseCluster &BTCluster) { 7909 assert(First <= Last); 7910 if (First == Last) 7911 return false; 7912 7913 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7914 unsigned NumCmps = 0; 7915 for (int64_t I = First; I <= Last; ++I) { 7916 assert(Clusters[I].Kind == CC_Range); 7917 Dests.set(Clusters[I].MBB->getNumber()); 7918 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7919 } 7920 unsigned NumDests = Dests.count(); 7921 7922 APInt Low = Clusters[First].Low->getValue(); 7923 APInt High = Clusters[Last].High->getValue(); 7924 assert(Low.slt(High)); 7925 7926 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7927 return false; 7928 7929 APInt LowBound; 7930 APInt CmpRange; 7931 7932 const int BitWidth = DAG.getTargetLoweringInfo() 7933 .getPointerTy(DAG.getDataLayout()) 7934 .getSizeInBits(); 7935 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7936 7937 // Check if the clusters cover a contiguous range such that no value in the 7938 // range will jump to the default statement. 7939 bool ContiguousRange = true; 7940 for (int64_t I = First + 1; I <= Last; ++I) { 7941 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7942 ContiguousRange = false; 7943 break; 7944 } 7945 } 7946 7947 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7948 // Optimize the case where all the case values fit in a word without having 7949 // to subtract minValue. In this case, we can optimize away the subtraction. 7950 LowBound = APInt::getNullValue(Low.getBitWidth()); 7951 CmpRange = High; 7952 ContiguousRange = false; 7953 } else { 7954 LowBound = Low; 7955 CmpRange = High - Low; 7956 } 7957 7958 CaseBitsVector CBV; 7959 auto TotalProb = BranchProbability::getZero(); 7960 for (unsigned i = First; i <= Last; ++i) { 7961 // Find the CaseBits for this destination. 7962 unsigned j; 7963 for (j = 0; j < CBV.size(); ++j) 7964 if (CBV[j].BB == Clusters[i].MBB) 7965 break; 7966 if (j == CBV.size()) 7967 CBV.push_back( 7968 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 7969 CaseBits *CB = &CBV[j]; 7970 7971 // Update Mask, Bits and ExtraProb. 7972 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7973 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7974 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7975 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7976 CB->Bits += Hi - Lo + 1; 7977 CB->ExtraProb += Clusters[i].Prob; 7978 TotalProb += Clusters[i].Prob; 7979 } 7980 7981 BitTestInfo BTI; 7982 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7983 // Sort by probability first, number of bits second. 7984 if (a.ExtraProb != b.ExtraProb) 7985 return a.ExtraProb > b.ExtraProb; 7986 return a.Bits > b.Bits; 7987 }); 7988 7989 for (auto &CB : CBV) { 7990 MachineBasicBlock *BitTestBB = 7991 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7992 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 7993 } 7994 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7995 SI->getCondition(), -1U, MVT::Other, false, 7996 ContiguousRange, nullptr, nullptr, std::move(BTI), 7997 TotalProb); 7998 7999 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8000 BitTestCases.size() - 1, TotalProb); 8001 return true; 8002 } 8003 8004 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8005 const SwitchInst *SI) { 8006 // Partition Clusters into as few subsets as possible, where each subset has a 8007 // range that fits in a machine word and has <= 3 unique destinations. 8008 8009 #ifndef NDEBUG 8010 // Clusters must be sorted and contain Range or JumpTable clusters. 8011 assert(!Clusters.empty()); 8012 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8013 for (const CaseCluster &C : Clusters) 8014 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8015 for (unsigned i = 1; i < Clusters.size(); ++i) 8016 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8017 #endif 8018 8019 // The algorithm below is not suitable for -O0. 8020 if (TM.getOptLevel() == CodeGenOpt::None) 8021 return; 8022 8023 // If target does not have legal shift left, do not emit bit tests at all. 8024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8025 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8026 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8027 return; 8028 8029 int BitWidth = PTy.getSizeInBits(); 8030 const int64_t N = Clusters.size(); 8031 8032 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8033 SmallVector<unsigned, 8> MinPartitions(N); 8034 // LastElement[i] is the last element of the partition starting at i. 8035 SmallVector<unsigned, 8> LastElement(N); 8036 8037 // FIXME: This might not be the best algorithm for finding bit test clusters. 8038 8039 // Base case: There is only one way to partition Clusters[N-1]. 8040 MinPartitions[N - 1] = 1; 8041 LastElement[N - 1] = N - 1; 8042 8043 // Note: loop indexes are signed to avoid underflow. 8044 for (int64_t i = N - 2; i >= 0; --i) { 8045 // Find optimal partitioning of Clusters[i..N-1]. 8046 // Baseline: Put Clusters[i] into a partition on its own. 8047 MinPartitions[i] = MinPartitions[i + 1] + 1; 8048 LastElement[i] = i; 8049 8050 // Search for a solution that results in fewer partitions. 8051 // Note: the search is limited by BitWidth, reducing time complexity. 8052 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8053 // Try building a partition from Clusters[i..j]. 8054 8055 // Check the range. 8056 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8057 Clusters[j].High->getValue())) 8058 continue; 8059 8060 // Check nbr of destinations and cluster types. 8061 // FIXME: This works, but doesn't seem very efficient. 8062 bool RangesOnly = true; 8063 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8064 for (int64_t k = i; k <= j; k++) { 8065 if (Clusters[k].Kind != CC_Range) { 8066 RangesOnly = false; 8067 break; 8068 } 8069 Dests.set(Clusters[k].MBB->getNumber()); 8070 } 8071 if (!RangesOnly || Dests.count() > 3) 8072 break; 8073 8074 // Check if it's a better partition. 8075 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8076 if (NumPartitions < MinPartitions[i]) { 8077 // Found a better partition. 8078 MinPartitions[i] = NumPartitions; 8079 LastElement[i] = j; 8080 } 8081 } 8082 } 8083 8084 // Iterate over the partitions, replacing with bit-test clusters in-place. 8085 unsigned DstIndex = 0; 8086 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8087 Last = LastElement[First]; 8088 assert(First <= Last); 8089 assert(DstIndex <= First); 8090 8091 CaseCluster BitTestCluster; 8092 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8093 Clusters[DstIndex++] = BitTestCluster; 8094 } else { 8095 size_t NumClusters = Last - First + 1; 8096 std::memmove(&Clusters[DstIndex], &Clusters[First], 8097 sizeof(Clusters[0]) * NumClusters); 8098 DstIndex += NumClusters; 8099 } 8100 } 8101 Clusters.resize(DstIndex); 8102 } 8103 8104 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8105 MachineBasicBlock *SwitchMBB, 8106 MachineBasicBlock *DefaultMBB) { 8107 MachineFunction *CurMF = FuncInfo.MF; 8108 MachineBasicBlock *NextMBB = nullptr; 8109 MachineFunction::iterator BBI(W.MBB); 8110 if (++BBI != FuncInfo.MF->end()) 8111 NextMBB = &*BBI; 8112 8113 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8114 8115 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8116 8117 if (Size == 2 && W.MBB == SwitchMBB) { 8118 // If any two of the cases has the same destination, and if one value 8119 // is the same as the other, but has one bit unset that the other has set, 8120 // use bit manipulation to do two compares at once. For example: 8121 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8122 // TODO: This could be extended to merge any 2 cases in switches with 3 8123 // cases. 8124 // TODO: Handle cases where W.CaseBB != SwitchBB. 8125 CaseCluster &Small = *W.FirstCluster; 8126 CaseCluster &Big = *W.LastCluster; 8127 8128 if (Small.Low == Small.High && Big.Low == Big.High && 8129 Small.MBB == Big.MBB) { 8130 const APInt &SmallValue = Small.Low->getValue(); 8131 const APInt &BigValue = Big.Low->getValue(); 8132 8133 // Check that there is only one bit different. 8134 APInt CommonBit = BigValue ^ SmallValue; 8135 if (CommonBit.isPowerOf2()) { 8136 SDValue CondLHS = getValue(Cond); 8137 EVT VT = CondLHS.getValueType(); 8138 SDLoc DL = getCurSDLoc(); 8139 8140 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8141 DAG.getConstant(CommonBit, DL, VT)); 8142 SDValue Cond = DAG.getSetCC( 8143 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8144 ISD::SETEQ); 8145 8146 // Update successor info. 8147 // Both Small and Big will jump to Small.BB, so we sum up the 8148 // probabilities. 8149 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8150 if (BPI) 8151 addSuccessorWithProb( 8152 SwitchMBB, DefaultMBB, 8153 // The default destination is the first successor in IR. 8154 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8155 else 8156 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8157 8158 // Insert the true branch. 8159 SDValue BrCond = 8160 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8161 DAG.getBasicBlock(Small.MBB)); 8162 // Insert the false branch. 8163 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8164 DAG.getBasicBlock(DefaultMBB)); 8165 8166 DAG.setRoot(BrCond); 8167 return; 8168 } 8169 } 8170 } 8171 8172 if (TM.getOptLevel() != CodeGenOpt::None) { 8173 // Order cases by probability so the most likely case will be checked first. 8174 std::sort(W.FirstCluster, W.LastCluster + 1, 8175 [](const CaseCluster &a, const CaseCluster &b) { 8176 return a.Prob > b.Prob; 8177 }); 8178 8179 // Rearrange the case blocks so that the last one falls through if possible 8180 // without without changing the order of probabilities. 8181 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8182 --I; 8183 if (I->Prob > W.LastCluster->Prob) 8184 break; 8185 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8186 std::swap(*I, *W.LastCluster); 8187 break; 8188 } 8189 } 8190 } 8191 8192 // Compute total probability. 8193 BranchProbability DefaultProb = W.DefaultProb; 8194 BranchProbability UnhandledProbs = DefaultProb; 8195 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8196 UnhandledProbs += I->Prob; 8197 8198 MachineBasicBlock *CurMBB = W.MBB; 8199 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8200 MachineBasicBlock *Fallthrough; 8201 if (I == W.LastCluster) { 8202 // For the last cluster, fall through to the default destination. 8203 Fallthrough = DefaultMBB; 8204 } else { 8205 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8206 CurMF->insert(BBI, Fallthrough); 8207 // Put Cond in a virtual register to make it available from the new blocks. 8208 ExportFromCurrentBlock(Cond); 8209 } 8210 UnhandledProbs -= I->Prob; 8211 8212 switch (I->Kind) { 8213 case CC_JumpTable: { 8214 // FIXME: Optimize away range check based on pivot comparisons. 8215 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8216 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8217 8218 // The jump block hasn't been inserted yet; insert it here. 8219 MachineBasicBlock *JumpMBB = JT->MBB; 8220 CurMF->insert(BBI, JumpMBB); 8221 8222 auto JumpProb = I->Prob; 8223 auto FallthroughProb = UnhandledProbs; 8224 8225 // If the default statement is a target of the jump table, we evenly 8226 // distribute the default probability to successors of CurMBB. Also 8227 // update the probability on the edge from JumpMBB to Fallthrough. 8228 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8229 SE = JumpMBB->succ_end(); 8230 SI != SE; ++SI) { 8231 if (*SI == DefaultMBB) { 8232 JumpProb += DefaultProb / 2; 8233 FallthroughProb -= DefaultProb / 2; 8234 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8235 JumpMBB->normalizeSuccProbs(); 8236 break; 8237 } 8238 } 8239 8240 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8241 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8242 CurMBB->normalizeSuccProbs(); 8243 8244 // The jump table header will be inserted in our current block, do the 8245 // range check, and fall through to our fallthrough block. 8246 JTH->HeaderBB = CurMBB; 8247 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8248 8249 // If we're in the right place, emit the jump table header right now. 8250 if (CurMBB == SwitchMBB) { 8251 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8252 JTH->Emitted = true; 8253 } 8254 break; 8255 } 8256 case CC_BitTests: { 8257 // FIXME: Optimize away range check based on pivot comparisons. 8258 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8259 8260 // The bit test blocks haven't been inserted yet; insert them here. 8261 for (BitTestCase &BTC : BTB->Cases) 8262 CurMF->insert(BBI, BTC.ThisBB); 8263 8264 // Fill in fields of the BitTestBlock. 8265 BTB->Parent = CurMBB; 8266 BTB->Default = Fallthrough; 8267 8268 BTB->DefaultProb = UnhandledProbs; 8269 // If the cases in bit test don't form a contiguous range, we evenly 8270 // distribute the probability on the edge to Fallthrough to two 8271 // successors of CurMBB. 8272 if (!BTB->ContiguousRange) { 8273 BTB->Prob += DefaultProb / 2; 8274 BTB->DefaultProb -= DefaultProb / 2; 8275 } 8276 8277 // If we're in the right place, emit the bit test header right now. 8278 if (CurMBB == SwitchMBB) { 8279 visitBitTestHeader(*BTB, SwitchMBB); 8280 BTB->Emitted = true; 8281 } 8282 break; 8283 } 8284 case CC_Range: { 8285 const Value *RHS, *LHS, *MHS; 8286 ISD::CondCode CC; 8287 if (I->Low == I->High) { 8288 // Check Cond == I->Low. 8289 CC = ISD::SETEQ; 8290 LHS = Cond; 8291 RHS=I->Low; 8292 MHS = nullptr; 8293 } else { 8294 // Check I->Low <= Cond <= I->High. 8295 CC = ISD::SETLE; 8296 LHS = I->Low; 8297 MHS = Cond; 8298 RHS = I->High; 8299 } 8300 8301 // The false probability is the sum of all unhandled cases. 8302 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8303 UnhandledProbs); 8304 8305 if (CurMBB == SwitchMBB) 8306 visitSwitchCase(CB, SwitchMBB); 8307 else 8308 SwitchCases.push_back(CB); 8309 8310 break; 8311 } 8312 } 8313 CurMBB = Fallthrough; 8314 } 8315 } 8316 8317 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8318 CaseClusterIt First, 8319 CaseClusterIt Last) { 8320 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8321 if (X.Prob != CC.Prob) 8322 return X.Prob > CC.Prob; 8323 8324 // Ties are broken by comparing the case value. 8325 return X.Low->getValue().slt(CC.Low->getValue()); 8326 }); 8327 } 8328 8329 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8330 const SwitchWorkListItem &W, 8331 Value *Cond, 8332 MachineBasicBlock *SwitchMBB) { 8333 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8334 "Clusters not sorted?"); 8335 8336 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8337 8338 // Balance the tree based on branch probabilities to create a near-optimal (in 8339 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8340 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8341 CaseClusterIt LastLeft = W.FirstCluster; 8342 CaseClusterIt FirstRight = W.LastCluster; 8343 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8344 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8345 8346 // Move LastLeft and FirstRight towards each other from opposite directions to 8347 // find a partitioning of the clusters which balances the probability on both 8348 // sides. If LeftProb and RightProb are equal, alternate which side is 8349 // taken to ensure 0-probability nodes are distributed evenly. 8350 unsigned I = 0; 8351 while (LastLeft + 1 < FirstRight) { 8352 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8353 LeftProb += (++LastLeft)->Prob; 8354 else 8355 RightProb += (--FirstRight)->Prob; 8356 I++; 8357 } 8358 8359 for (;;) { 8360 // Our binary search tree differs from a typical BST in that ours can have up 8361 // to three values in each leaf. The pivot selection above doesn't take that 8362 // into account, which means the tree might require more nodes and be less 8363 // efficient. We compensate for this here. 8364 8365 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8366 unsigned NumRight = W.LastCluster - FirstRight + 1; 8367 8368 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8369 // If one side has less than 3 clusters, and the other has more than 3, 8370 // consider taking a cluster from the other side. 8371 8372 if (NumLeft < NumRight) { 8373 // Consider moving the first cluster on the right to the left side. 8374 CaseCluster &CC = *FirstRight; 8375 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8376 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8377 if (LeftSideRank <= RightSideRank) { 8378 // Moving the cluster to the left does not demote it. 8379 ++LastLeft; 8380 ++FirstRight; 8381 continue; 8382 } 8383 } else { 8384 assert(NumRight < NumLeft); 8385 // Consider moving the last element on the left to the right side. 8386 CaseCluster &CC = *LastLeft; 8387 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8388 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8389 if (RightSideRank <= LeftSideRank) { 8390 // Moving the cluster to the right does not demot it. 8391 --LastLeft; 8392 --FirstRight; 8393 continue; 8394 } 8395 } 8396 } 8397 break; 8398 } 8399 8400 assert(LastLeft + 1 == FirstRight); 8401 assert(LastLeft >= W.FirstCluster); 8402 assert(FirstRight <= W.LastCluster); 8403 8404 // Use the first element on the right as pivot since we will make less-than 8405 // comparisons against it. 8406 CaseClusterIt PivotCluster = FirstRight; 8407 assert(PivotCluster > W.FirstCluster); 8408 assert(PivotCluster <= W.LastCluster); 8409 8410 CaseClusterIt FirstLeft = W.FirstCluster; 8411 CaseClusterIt LastRight = W.LastCluster; 8412 8413 const ConstantInt *Pivot = PivotCluster->Low; 8414 8415 // New blocks will be inserted immediately after the current one. 8416 MachineFunction::iterator BBI(W.MBB); 8417 ++BBI; 8418 8419 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8420 // we can branch to its destination directly if it's squeezed exactly in 8421 // between the known lower bound and Pivot - 1. 8422 MachineBasicBlock *LeftMBB; 8423 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8424 FirstLeft->Low == W.GE && 8425 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8426 LeftMBB = FirstLeft->MBB; 8427 } else { 8428 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8429 FuncInfo.MF->insert(BBI, LeftMBB); 8430 WorkList.push_back( 8431 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8432 // Put Cond in a virtual register to make it available from the new blocks. 8433 ExportFromCurrentBlock(Cond); 8434 } 8435 8436 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8437 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8438 // directly if RHS.High equals the current upper bound. 8439 MachineBasicBlock *RightMBB; 8440 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8441 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8442 RightMBB = FirstRight->MBB; 8443 } else { 8444 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8445 FuncInfo.MF->insert(BBI, RightMBB); 8446 WorkList.push_back( 8447 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8448 // Put Cond in a virtual register to make it available from the new blocks. 8449 ExportFromCurrentBlock(Cond); 8450 } 8451 8452 // Create the CaseBlock record that will be used to lower the branch. 8453 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8454 LeftProb, RightProb); 8455 8456 if (W.MBB == SwitchMBB) 8457 visitSwitchCase(CB, SwitchMBB); 8458 else 8459 SwitchCases.push_back(CB); 8460 } 8461 8462 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8463 // Extract cases from the switch. 8464 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8465 CaseClusterVector Clusters; 8466 Clusters.reserve(SI.getNumCases()); 8467 for (auto I : SI.cases()) { 8468 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8469 const ConstantInt *CaseVal = I.getCaseValue(); 8470 BranchProbability Prob = 8471 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8472 : BranchProbability(1, SI.getNumCases() + 1); 8473 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8474 } 8475 8476 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8477 8478 // Cluster adjacent cases with the same destination. We do this at all 8479 // optimization levels because it's cheap to do and will make codegen faster 8480 // if there are many clusters. 8481 sortAndRangeify(Clusters); 8482 8483 if (TM.getOptLevel() != CodeGenOpt::None) { 8484 // Replace an unreachable default with the most popular destination. 8485 // FIXME: Exploit unreachable default more aggressively. 8486 bool UnreachableDefault = 8487 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8488 if (UnreachableDefault && !Clusters.empty()) { 8489 DenseMap<const BasicBlock *, unsigned> Popularity; 8490 unsigned MaxPop = 0; 8491 const BasicBlock *MaxBB = nullptr; 8492 for (auto I : SI.cases()) { 8493 const BasicBlock *BB = I.getCaseSuccessor(); 8494 if (++Popularity[BB] > MaxPop) { 8495 MaxPop = Popularity[BB]; 8496 MaxBB = BB; 8497 } 8498 } 8499 // Set new default. 8500 assert(MaxPop > 0 && MaxBB); 8501 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8502 8503 // Remove cases that were pointing to the destination that is now the 8504 // default. 8505 CaseClusterVector New; 8506 New.reserve(Clusters.size()); 8507 for (CaseCluster &CC : Clusters) { 8508 if (CC.MBB != DefaultMBB) 8509 New.push_back(CC); 8510 } 8511 Clusters = std::move(New); 8512 } 8513 } 8514 8515 // If there is only the default destination, jump there directly. 8516 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8517 if (Clusters.empty()) { 8518 SwitchMBB->addSuccessor(DefaultMBB); 8519 if (DefaultMBB != NextBlock(SwitchMBB)) { 8520 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8521 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8522 } 8523 return; 8524 } 8525 8526 findJumpTables(Clusters, &SI, DefaultMBB); 8527 findBitTestClusters(Clusters, &SI); 8528 8529 DEBUG({ 8530 dbgs() << "Case clusters: "; 8531 for (const CaseCluster &C : Clusters) { 8532 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8533 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8534 8535 C.Low->getValue().print(dbgs(), true); 8536 if (C.Low != C.High) { 8537 dbgs() << '-'; 8538 C.High->getValue().print(dbgs(), true); 8539 } 8540 dbgs() << ' '; 8541 } 8542 dbgs() << '\n'; 8543 }); 8544 8545 assert(!Clusters.empty()); 8546 SwitchWorkList WorkList; 8547 CaseClusterIt First = Clusters.begin(); 8548 CaseClusterIt Last = Clusters.end() - 1; 8549 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8550 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8551 8552 while (!WorkList.empty()) { 8553 SwitchWorkListItem W = WorkList.back(); 8554 WorkList.pop_back(); 8555 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8556 8557 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8558 // For optimized builds, lower large range as a balanced binary tree. 8559 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8560 continue; 8561 } 8562 8563 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8564 } 8565 } 8566