1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void 650 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 651 SDValue *Flag, const Value *V, 652 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 SDLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 MVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (!Flag) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 if (NumZeroBits == RegSize) { 717 // The current value is a zero. 718 // Explicitly express that as it would be easier for 719 // optimizations to kick in. 720 Parts[i] = DAG.getConstant(0, RegisterVT); 721 continue; 722 } 723 724 // FIXME: We capture more information than the dag can represent. For 725 // now, just use the tightest assertzext/assertsext possible. 726 bool isSExt = true; 727 EVT FromVT(MVT::Other); 728 if (NumSignBits == RegSize) 729 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 730 else if (NumZeroBits >= RegSize-1) 731 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 732 else if (NumSignBits > RegSize-8) 733 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 734 else if (NumZeroBits >= RegSize-8) 735 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 736 else if (NumSignBits > RegSize-16) 737 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 738 else if (NumZeroBits >= RegSize-16) 739 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 740 else if (NumSignBits > RegSize-32) 741 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 742 else if (NumZeroBits >= RegSize-32) 743 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 744 else 745 continue; 746 747 // Add an assertion node. 748 assert(FromVT != MVT::Other); 749 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 750 RegisterVT, P, DAG.getValueType(FromVT)); 751 } 752 753 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 754 NumRegs, RegisterVT, ValueVT, V); 755 Part += NumRegs; 756 Parts.clear(); 757 } 758 759 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 760 } 761 762 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 763 /// specified value into the registers specified by this object. This uses 764 /// Chain/Flag as the input and updates them for the output Chain/Flag. 765 /// If the Flag pointer is NULL, no flag is used. 766 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 767 SDValue &Chain, SDValue *Flag, const Value *V, 768 ISD::NodeType PreferredExtendType) const { 769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 770 ISD::NodeType ExtendKind = PreferredExtendType; 771 772 // Get the list of the values's legal parts. 773 unsigned NumRegs = Regs.size(); 774 SmallVector<SDValue, 8> Parts(NumRegs); 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 EVT ValueVT = ValueVTs[Value]; 777 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 778 MVT RegisterVT = RegVTs[Value]; 779 780 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 781 ExtendKind = ISD::ZERO_EXTEND; 782 783 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 784 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 785 Part += NumParts; 786 } 787 788 // Copy the parts into the registers. 789 SmallVector<SDValue, 8> Chains(NumRegs); 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 SDValue Part; 792 if (!Flag) { 793 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 794 } else { 795 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 796 *Flag = Part.getValue(1); 797 } 798 799 Chains[i] = Part.getValue(0); 800 } 801 802 if (NumRegs == 1 || Flag) 803 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 804 // flagged to it. That is the CopyToReg nodes and the user are considered 805 // a single scheduling unit. If we create a TokenFactor and return it as 806 // chain, then the TokenFactor is both a predecessor (operand) of the 807 // user as well as a successor (the TF operands are flagged to the user). 808 // c1, f1 = CopyToReg 809 // c2, f2 = CopyToReg 810 // c3 = TokenFactor c1, c2 811 // ... 812 // = op c3, ..., f2 813 Chain = Chains[NumRegs-1]; 814 else 815 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 816 } 817 818 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 819 /// operand list. This adds the code marker and includes the number of 820 /// values added into it. 821 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 822 unsigned MatchingIdx, 823 SelectionDAG &DAG, 824 std::vector<SDValue> &Ops) const { 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 828 if (HasMatching) 829 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 830 else if (!Regs.empty() && 831 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 832 // Put the register class of the virtual registers in the flag word. That 833 // way, later passes can recompute register class constraints for inline 834 // assembly as well as normal instructions. 835 // Don't do this for tied operands that can use the regclass information 836 // from the def. 837 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 838 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 839 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 840 } 841 842 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 843 Ops.push_back(Res); 844 845 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 846 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 848 MVT RegisterVT = RegVTs[Value]; 849 for (unsigned i = 0; i != NumRegs; ++i) { 850 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 851 unsigned TheReg = Regs[Reg++]; 852 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 853 854 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 855 // If we clobbered the stack pointer, MFI should know about it. 856 assert(DAG.getMachineFunction().getFrameInfo()-> 857 hasInlineAsmWithSPAdjust()); 858 } 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 DL = DAG.getSubtarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = nullptr; 885 HasTailCall = false; 886 SDNodeOrder = LowestSDNodeOrder; 887 } 888 889 /// clearDanglingDebugInfo - Clear the dangling debug information 890 /// map. This function is separated from the clear so that debug 891 /// information that is dangling in a basic block can be properly 892 /// resolved in a different basic block. This allows the 893 /// SelectionDAG to resolve dangling debug information attached 894 /// to PHI nodes. 895 void SelectionDAGBuilder::clearDanglingDebugInfo() { 896 DanglingDebugInfoMap.clear(); 897 } 898 899 /// getRoot - Return the current virtual root of the Selection DAG, 900 /// flushing any PendingLoad items. This must be done before emitting 901 /// a store or any other node that may need to be ordered after any 902 /// prior load instructions. 903 /// 904 SDValue SelectionDAGBuilder::getRoot() { 905 if (PendingLoads.empty()) 906 return DAG.getRoot(); 907 908 if (PendingLoads.size() == 1) { 909 SDValue Root = PendingLoads[0]; 910 DAG.setRoot(Root); 911 PendingLoads.clear(); 912 return Root; 913 } 914 915 // Otherwise, we have to make a token factor node. 916 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 917 PendingLoads); 918 PendingLoads.clear(); 919 DAG.setRoot(Root); 920 return Root; 921 } 922 923 /// getControlRoot - Similar to getRoot, but instead of flushing all the 924 /// PendingLoad items, flush all the PendingExports items. It is necessary 925 /// to do this before emitting a terminator instruction. 926 /// 927 SDValue SelectionDAGBuilder::getControlRoot() { 928 SDValue Root = DAG.getRoot(); 929 930 if (PendingExports.empty()) 931 return Root; 932 933 // Turn all of the CopyToReg chains into one factored node. 934 if (Root.getOpcode() != ISD::EntryToken) { 935 unsigned i = 0, e = PendingExports.size(); 936 for (; i != e; ++i) { 937 assert(PendingExports[i].getNode()->getNumOperands() > 1); 938 if (PendingExports[i].getNode()->getOperand(0) == Root) 939 break; // Don't add the root if we already indirectly depend on it. 940 } 941 942 if (i == e) 943 PendingExports.push_back(Root); 944 } 945 946 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 947 PendingExports); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = nullptr; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 MDNode *Expr = DI->getExpression(); 997 uint64_t Offset = DI->getOffset(); 998 // A dbg.value for an alloca is always indirect. 999 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1000 SDDbgValue *SDV; 1001 if (Val.getNode()) { 1002 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1003 Val)) { 1004 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1005 IsIndirect, Offset, dl, DbgSDNodeOrder); 1006 DAG.AddDbgValue(SDV, Val.getNode(), false); 1007 } 1008 } else 1009 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1010 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1011 } 1012 } 1013 1014 /// getValue - Return an SDValue for the given Value. 1015 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. It's important 1017 // to do this first, so that we don't create a CopyFromReg if we already 1018 // have a regular SDValue. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) return N; 1021 1022 // If there's a virtual register allocated and initialized for this 1023 // value, use it. 1024 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 V->getType()); 1029 SDValue Chain = DAG.getEntryNode(); 1030 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, N); 1032 return N; 1033 } 1034 1035 // Otherwise create a new SDValue and remember it. 1036 SDValue Val = getValueImpl(V); 1037 NodeMap[V] = Val; 1038 resolveDanglingDebugInfo(V, Val); 1039 return Val; 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // Otherwise create a new SDValue and remember it. 1050 SDValue Val = getValueImpl(V); 1051 NodeMap[V] = Val; 1052 resolveDanglingDebugInfo(V, Val); 1053 return Val; 1054 } 1055 1056 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1057 /// Create an SDValue for the given value. 1058 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1060 1061 if (const Constant *C = dyn_cast<Constant>(V)) { 1062 EVT VT = TLI.getValueType(V->getType(), true); 1063 1064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1065 return DAG.getConstant(*CI, VT); 1066 1067 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1068 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1069 1070 if (isa<ConstantPointerNull>(C)) { 1071 unsigned AS = V->getType()->getPointerAddressSpace(); 1072 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1073 } 1074 1075 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1076 return DAG.getConstantFP(*CFP, VT); 1077 1078 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1079 return DAG.getUNDEF(VT); 1080 1081 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1082 visit(CE->getOpcode(), *CE); 1083 SDValue N1 = NodeMap[V]; 1084 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1085 return N1; 1086 } 1087 1088 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1089 SmallVector<SDValue, 4> Constants; 1090 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1091 OI != OE; ++OI) { 1092 SDNode *Val = getValue(*OI).getNode(); 1093 // If the operand is an empty aggregate, there are no values. 1094 if (!Val) continue; 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Constants.push_back(SDValue(Val, i)); 1099 } 1100 1101 return DAG.getMergeValues(Constants, getCurSDLoc()); 1102 } 1103 1104 if (const ConstantDataSequential *CDS = 1105 dyn_cast<ConstantDataSequential>(C)) { 1106 SmallVector<SDValue, 4> Ops; 1107 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1108 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1109 // Add each leaf value from the operand to the Constants list 1110 // to form a flattened list of all the values. 1111 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1112 Ops.push_back(SDValue(Val, i)); 1113 } 1114 1115 if (isa<ArrayType>(CDS->getType())) 1116 return DAG.getMergeValues(Ops, getCurSDLoc()); 1117 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1118 VT, Ops); 1119 } 1120 1121 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1122 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1123 "Unknown struct or array constant!"); 1124 1125 SmallVector<EVT, 4> ValueVTs; 1126 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1127 unsigned NumElts = ValueVTs.size(); 1128 if (NumElts == 0) 1129 return SDValue(); // empty struct 1130 SmallVector<SDValue, 4> Constants(NumElts); 1131 for (unsigned i = 0; i != NumElts; ++i) { 1132 EVT EltVT = ValueVTs[i]; 1133 if (isa<UndefValue>(C)) 1134 Constants[i] = DAG.getUNDEF(EltVT); 1135 else if (EltVT.isFloatingPoint()) 1136 Constants[i] = DAG.getConstantFP(0, EltVT); 1137 else 1138 Constants[i] = DAG.getConstant(0, EltVT); 1139 } 1140 1141 return DAG.getMergeValues(Constants, getCurSDLoc()); 1142 } 1143 1144 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1145 return DAG.getBlockAddress(BA, VT); 1146 1147 VectorType *VecTy = cast<VectorType>(V->getType()); 1148 unsigned NumElements = VecTy->getNumElements(); 1149 1150 // Now that we know the number and type of the elements, get that number of 1151 // elements into the Ops array based on what kind of constant it is. 1152 SmallVector<SDValue, 16> Ops; 1153 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1154 for (unsigned i = 0; i != NumElements; ++i) 1155 Ops.push_back(getValue(CV->getOperand(i))); 1156 } else { 1157 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1158 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1159 1160 SDValue Op; 1161 if (EltVT.isFloatingPoint()) 1162 Op = DAG.getConstantFP(0, EltVT); 1163 else 1164 Op = DAG.getConstant(0, EltVT); 1165 Ops.assign(NumElements, Op); 1166 } 1167 1168 // Create a BUILD_VECTOR node. 1169 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1170 } 1171 1172 // If this is a static alloca, generate it as the frameindex instead of 1173 // computation. 1174 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1175 DenseMap<const AllocaInst*, int>::iterator SI = 1176 FuncInfo.StaticAllocaMap.find(AI); 1177 if (SI != FuncInfo.StaticAllocaMap.end()) 1178 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1179 } 1180 1181 // If this is an instruction which fast-isel has deferred, select it now. 1182 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1183 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1184 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1185 SDValue Chain = DAG.getEntryNode(); 1186 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1187 } 1188 1189 llvm_unreachable("Can't get register for value!"); 1190 } 1191 1192 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1194 SDValue Chain = getControlRoot(); 1195 SmallVector<ISD::OutputArg, 8> Outs; 1196 SmallVector<SDValue, 8> OutVals; 1197 1198 if (!FuncInfo.CanLowerReturn) { 1199 unsigned DemoteReg = FuncInfo.DemoteRegister; 1200 const Function *F = I.getParent()->getParent(); 1201 1202 // Emit a store of the return value through the virtual register. 1203 // Leave Outs empty so that LowerReturn won't try to load return 1204 // registers the usual way. 1205 SmallVector<EVT, 1> PtrValueVTs; 1206 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1207 PtrValueVTs); 1208 1209 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1210 SDValue RetOp = getValue(I.getOperand(0)); 1211 1212 SmallVector<EVT, 4> ValueVTs; 1213 SmallVector<uint64_t, 4> Offsets; 1214 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1215 unsigned NumValues = ValueVTs.size(); 1216 1217 SmallVector<SDValue, 4> Chains(NumValues); 1218 for (unsigned i = 0; i != NumValues; ++i) { 1219 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1220 RetPtr.getValueType(), RetPtr, 1221 DAG.getIntPtrConstant(Offsets[i])); 1222 Chains[i] = 1223 DAG.getStore(Chain, getCurSDLoc(), 1224 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1225 // FIXME: better loc info would be nice. 1226 Add, MachinePointerInfo(), false, false, 0); 1227 } 1228 1229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1230 MVT::Other, Chains); 1231 } else if (I.getNumOperands() != 0) { 1232 SmallVector<EVT, 4> ValueVTs; 1233 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1234 unsigned NumValues = ValueVTs.size(); 1235 if (NumValues) { 1236 SDValue RetOp = getValue(I.getOperand(0)); 1237 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1238 EVT VT = ValueVTs[j]; 1239 1240 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1241 1242 const Function *F = I.getParent()->getParent(); 1243 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::SExt)) 1245 ExtendKind = ISD::SIGN_EXTEND; 1246 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::ZExt)) 1248 ExtendKind = ISD::ZERO_EXTEND; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1254 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1263 Attribute::InReg)) 1264 Flags.setInReg(); 1265 1266 // Propagate extension type if any 1267 if (ExtendKind == ISD::SIGN_EXTEND) 1268 Flags.setSExt(); 1269 else if (ExtendKind == ISD::ZERO_EXTEND) 1270 Flags.setZExt(); 1271 1272 for (unsigned i = 0; i < NumParts; ++i) { 1273 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1274 VT, /*isfixed=*/true, 0, 0)); 1275 OutVals.push_back(Parts[i]); 1276 } 1277 } 1278 } 1279 } 1280 1281 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1282 CallingConv::ID CallConv = 1283 DAG.getMachineFunction().getFunction()->getCallingConv(); 1284 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1285 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1286 1287 // Verify that the target's LowerReturn behaved as expected. 1288 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1289 "LowerReturn didn't return a valid chain!"); 1290 1291 // Update the DAG with the new chain value resulting from return lowering. 1292 DAG.setRoot(Chain); 1293 } 1294 1295 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1296 /// created for it, emit nodes to copy the value into the virtual 1297 /// registers. 1298 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1299 // Skip empty types 1300 if (V->getType()->isEmptyTy()) 1301 return; 1302 1303 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1304 if (VMI != FuncInfo.ValueMap.end()) { 1305 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1306 CopyValueToVirtualRegister(V, VMI->second); 1307 } 1308 } 1309 1310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1311 /// the current basic block, add it to ValueMap now so that we'll get a 1312 /// CopyTo/FromReg. 1313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1314 // No need to export constants. 1315 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1316 1317 // Already exported? 1318 if (FuncInfo.isExportedInst(V)) return; 1319 1320 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1321 CopyValueToVirtualRegister(V, Reg); 1322 } 1323 1324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1325 const BasicBlock *FromBB) { 1326 // The operands of the setcc have to be in this block. We don't know 1327 // how to export them from some other block. 1328 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1329 // Can export from current BB. 1330 if (VI->getParent() == FromBB) 1331 return true; 1332 1333 // Is already exported, noop. 1334 return FuncInfo.isExportedInst(V); 1335 } 1336 1337 // If this is an argument, we can export it if the BB is the entry block or 1338 // if it is already exported. 1339 if (isa<Argument>(V)) { 1340 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1341 return true; 1342 1343 // Otherwise, can only export this if it is already exported. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // Otherwise, constants can always be exported. 1348 return true; 1349 } 1350 1351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1352 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1353 const MachineBasicBlock *Dst) const { 1354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1355 if (!BPI) 1356 return 0; 1357 const BasicBlock *SrcBB = Src->getBasicBlock(); 1358 const BasicBlock *DstBB = Dst->getBasicBlock(); 1359 return BPI->getEdgeWeight(SrcBB, DstBB); 1360 } 1361 1362 void SelectionDAGBuilder:: 1363 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1364 uint32_t Weight /* = 0 */) { 1365 if (!Weight) 1366 Weight = getEdgeWeight(Src, Dst); 1367 Src->addSuccessor(Dst, Weight); 1368 } 1369 1370 1371 static bool InBlock(const Value *V, const BasicBlock *BB) { 1372 if (const Instruction *I = dyn_cast<Instruction>(V)) 1373 return I->getParent() == BB; 1374 return true; 1375 } 1376 1377 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1378 /// This function emits a branch and is used at the leaves of an OR or an 1379 /// AND operator tree. 1380 /// 1381 void 1382 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1383 MachineBasicBlock *TBB, 1384 MachineBasicBlock *FBB, 1385 MachineBasicBlock *CurBB, 1386 MachineBasicBlock *SwitchBB, 1387 uint32_t TWeight, 1388 uint32_t FWeight) { 1389 const BasicBlock *BB = CurBB->getBasicBlock(); 1390 1391 // If the leaf of the tree is a comparison, merge the condition into 1392 // the caseblock. 1393 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1394 // The operands of the cmp have to be in this block. We don't know 1395 // how to export them from some other block. If this is the first block 1396 // of the sequence, no exporting is needed. 1397 if (CurBB == SwitchBB || 1398 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1399 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1400 ISD::CondCode Condition; 1401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1402 Condition = getICmpCondCode(IC->getPredicate()); 1403 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } else { 1408 Condition = ISD::SETEQ; // silence warning. 1409 llvm_unreachable("Unknown compare instruction"); 1410 } 1411 1412 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1413 TBB, FBB, CurBB, TWeight, FWeight); 1414 SwitchCases.push_back(CB); 1415 return; 1416 } 1417 } 1418 1419 // Create a CaseBlock record representing this branch. 1420 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1421 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1422 SwitchCases.push_back(CB); 1423 } 1424 1425 /// Scale down both weights to fit into uint32_t. 1426 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1427 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1428 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1429 NewTrue = NewTrue / Scale; 1430 NewFalse = NewFalse / Scale; 1431 } 1432 1433 /// FindMergedConditions - If Cond is an expression like 1434 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1435 MachineBasicBlock *TBB, 1436 MachineBasicBlock *FBB, 1437 MachineBasicBlock *CurBB, 1438 MachineBasicBlock *SwitchBB, 1439 unsigned Opc, uint32_t TWeight, 1440 uint32_t FWeight) { 1441 // If this node is not part of the or/and tree, emit it as a branch. 1442 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1443 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1444 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1445 BOp->getParent() != CurBB->getBasicBlock() || 1446 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1447 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1448 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1449 TWeight, FWeight); 1450 return; 1451 } 1452 1453 // Create TmpBB after CurBB. 1454 MachineFunction::iterator BBI = CurBB; 1455 MachineFunction &MF = DAG.getMachineFunction(); 1456 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1457 CurBB->getParent()->insert(++BBI, TmpBB); 1458 1459 if (Opc == Instruction::Or) { 1460 // Codegen X | Y as: 1461 // BB1: 1462 // jmp_if_X TBB 1463 // jmp TmpBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 1469 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1470 // The requirement is that 1471 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1472 // = TrueProb for orignal BB. 1473 // Assuming the orignal weights are A and B, one choice is to set BB1's 1474 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1475 // assumes that 1476 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1477 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1478 // TmpBB, but the math is more complicated. 1479 1480 uint64_t NewTrueWeight = TWeight; 1481 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1482 ScaleWeights(NewTrueWeight, NewFalseWeight); 1483 // Emit the LHS condition. 1484 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1485 NewTrueWeight, NewFalseWeight); 1486 1487 NewTrueWeight = TWeight; 1488 NewFalseWeight = 2 * (uint64_t)FWeight; 1489 ScaleWeights(NewTrueWeight, NewFalseWeight); 1490 // Emit the RHS condition into TmpBB. 1491 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1492 NewTrueWeight, NewFalseWeight); 1493 } else { 1494 assert(Opc == Instruction::And && "Unknown merge op!"); 1495 // Codegen X & Y as: 1496 // BB1: 1497 // jmp_if_X TmpBB 1498 // jmp FBB 1499 // TmpBB: 1500 // jmp_if_Y TBB 1501 // jmp FBB 1502 // 1503 // This requires creation of TmpBB after CurBB. 1504 1505 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1506 // The requirement is that 1507 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1508 // = FalseProb for orignal BB. 1509 // Assuming the orignal weights are A and B, one choice is to set BB1's 1510 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1511 // assumes that 1512 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1513 1514 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1515 uint64_t NewFalseWeight = FWeight; 1516 ScaleWeights(NewTrueWeight, NewFalseWeight); 1517 // Emit the LHS condition. 1518 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1519 NewTrueWeight, NewFalseWeight); 1520 1521 NewTrueWeight = 2 * (uint64_t)TWeight; 1522 NewFalseWeight = FWeight; 1523 ScaleWeights(NewTrueWeight, NewFalseWeight); 1524 // Emit the RHS condition into TmpBB. 1525 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1526 NewTrueWeight, NewFalseWeight); 1527 } 1528 } 1529 1530 /// If the set of cases should be emitted as a series of branches, return true. 1531 /// If we should emit this as a bunch of and/or'd together conditions, return 1532 /// false. 1533 bool 1534 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1535 if (Cases.size() != 2) return true; 1536 1537 // If this is two comparisons of the same values or'd or and'd together, they 1538 // will get folded into a single comparison, so don't emit two blocks. 1539 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1540 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1541 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1542 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1543 return false; 1544 } 1545 1546 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1547 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1548 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1549 Cases[0].CC == Cases[1].CC && 1550 isa<Constant>(Cases[0].CmpRHS) && 1551 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1552 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1553 return false; 1554 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1562 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1563 1564 // Update machine-CFG edges. 1565 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1566 1567 // Figure out which block is immediately after the current one. 1568 MachineBasicBlock *NextBlock = nullptr; 1569 MachineFunction::iterator BBI = BrMBB; 1570 if (++BBI != FuncInfo.MF->end()) 1571 NextBlock = BBI; 1572 1573 if (I.isUnconditional()) { 1574 // Update machine-CFG edges. 1575 BrMBB->addSuccessor(Succ0MBB); 1576 1577 // If this is not a fall-through branch or optimizations are switched off, 1578 // emit the branch. 1579 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1581 MVT::Other, getControlRoot(), 1582 DAG.getBasicBlock(Succ0MBB))); 1583 1584 return; 1585 } 1586 1587 // If this condition is one of the special cases we handle, do special stuff 1588 // now. 1589 const Value *CondVal = I.getCondition(); 1590 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1591 1592 // If this is a series of conditions that are or'd or and'd together, emit 1593 // this as a sequence of branches instead of setcc's with and/or operations. 1594 // As long as jumps are not expensive, this should improve performance. 1595 // For example, instead of something like: 1596 // cmp A, B 1597 // C = seteq 1598 // cmp D, E 1599 // F = setle 1600 // or C, F 1601 // jnz foo 1602 // Emit: 1603 // cmp A, B 1604 // je foo 1605 // cmp D, E 1606 // jle foo 1607 // 1608 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1609 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1610 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1611 BOp->getOpcode() == Instruction::Or)) { 1612 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1613 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1614 getEdgeWeight(BrMBB, Succ1MBB)); 1615 // If the compares in later blocks need to use values not currently 1616 // exported from this block, export them now. This block should always 1617 // be the first entry. 1618 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1619 1620 // Allow some cases to be rejected. 1621 if (ShouldEmitAsBranches(SwitchCases)) { 1622 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1623 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1624 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1625 } 1626 1627 // Emit the branch for this block. 1628 visitSwitchCase(SwitchCases[0], BrMBB); 1629 SwitchCases.erase(SwitchCases.begin()); 1630 return; 1631 } 1632 1633 // Okay, we decided not to do this, remove any inserted MBB's and clear 1634 // SwitchCases. 1635 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1636 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1637 1638 SwitchCases.clear(); 1639 } 1640 } 1641 1642 // Create a CaseBlock record representing this branch. 1643 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1644 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1645 1646 // Use visitSwitchCase to actually insert the fast branch sequence for this 1647 // cond branch. 1648 visitSwitchCase(CB, BrMBB); 1649 } 1650 1651 /// visitSwitchCase - Emits the necessary code to represent a single node in 1652 /// the binary search tree resulting from lowering a switch instruction. 1653 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1654 MachineBasicBlock *SwitchBB) { 1655 SDValue Cond; 1656 SDValue CondLHS = getValue(CB.CmpLHS); 1657 SDLoc dl = getCurSDLoc(); 1658 1659 // Build the setcc now. 1660 if (!CB.CmpMHS) { 1661 // Fold "(X == true)" to X and "(X == false)" to !X to 1662 // handle common cases produced by branch lowering. 1663 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1664 CB.CC == ISD::SETEQ) 1665 Cond = CondLHS; 1666 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1667 CB.CC == ISD::SETEQ) { 1668 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1669 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1670 } else 1671 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1672 } else { 1673 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1674 1675 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1676 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1677 1678 SDValue CmpOp = getValue(CB.CmpMHS); 1679 EVT VT = CmpOp.getValueType(); 1680 1681 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1682 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1683 ISD::SETLE); 1684 } else { 1685 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1686 VT, CmpOp, DAG.getConstant(Low, VT)); 1687 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1688 DAG.getConstant(High-Low, VT), ISD::SETULE); 1689 } 1690 } 1691 1692 // Update successor info 1693 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1694 // TrueBB and FalseBB are always different unless the incoming IR is 1695 // degenerate. This only happens when running llc on weird IR. 1696 if (CB.TrueBB != CB.FalseBB) 1697 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1698 1699 // Set NextBlock to be the MBB immediately after the current one, if any. 1700 // This is used to avoid emitting unnecessary branches to the next block. 1701 MachineBasicBlock *NextBlock = nullptr; 1702 MachineFunction::iterator BBI = SwitchBB; 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 // If the lhs block is the next block, invert the condition so that we can 1707 // fall through to the lhs instead of the rhs block. 1708 if (CB.TrueBB == NextBlock) { 1709 std::swap(CB.TrueBB, CB.FalseBB); 1710 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1711 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1712 } 1713 1714 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1715 MVT::Other, getControlRoot(), Cond, 1716 DAG.getBasicBlock(CB.TrueBB)); 1717 1718 // Insert the false branch. Do this even if it's a fall through branch, 1719 // this makes it easier to do DAG optimizations which require inverting 1720 // the branch condition. 1721 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1722 DAG.getBasicBlock(CB.FalseBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitJumpTable - Emit JumpTable node in the current MBB 1728 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1729 // Emit the code for the jump table 1730 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1731 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1732 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1733 JT.Reg, PTy); 1734 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1735 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1736 MVT::Other, Index.getValue(1), 1737 Table, Index); 1738 DAG.setRoot(BrJumpTable); 1739 } 1740 1741 /// visitJumpTableHeader - This function emits necessary code to produce index 1742 /// in the JumpTable from switch case. 1743 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1744 JumpTableHeader &JTH, 1745 MachineBasicBlock *SwitchBB) { 1746 // Subtract the lowest switch case value from the value being switched on and 1747 // conditional branch to default mbb if the result is greater than the 1748 // difference between smallest and largest cases. 1749 SDValue SwitchOp = getValue(JTH.SValue); 1750 EVT VT = SwitchOp.getValueType(); 1751 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1752 DAG.getConstant(JTH.First, VT)); 1753 1754 // The SDNode we just created, which holds the value being switched on minus 1755 // the smallest case value, needs to be copied to a virtual register so it 1756 // can be used as an index into the jump table in a subsequent basic block. 1757 // This value may be smaller or larger than the target's pointer type, and 1758 // therefore require extension or truncating. 1759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1760 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1761 1762 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1764 JumpTableReg, SwitchOp); 1765 JT.Reg = JumpTableReg; 1766 1767 // Emit the range check for the jump table, and branch to the default block 1768 // for the switch statement if the value being switched on exceeds the largest 1769 // case in the switch. 1770 SDValue CMP = 1771 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1772 Sub.getValueType()), 1773 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = nullptr; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 1780 if (++BBI != FuncInfo.MF->end()) 1781 NextBlock = BBI; 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 if (JT.MBB != NextBlock) 1788 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1789 DAG.getBasicBlock(JT.MBB)); 1790 1791 DAG.setRoot(BrCond); 1792 } 1793 1794 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1795 /// tail spliced into a stack protector check success bb. 1796 /// 1797 /// For a high level explanation of how this fits into the stack protector 1798 /// generation see the comment on the declaration of class 1799 /// StackProtectorDescriptor. 1800 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1801 MachineBasicBlock *ParentBB) { 1802 1803 // First create the loads to the guard/stack slot for the comparison. 1804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1805 EVT PtrTy = TLI.getPointerTy(); 1806 1807 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1808 int FI = MFI->getStackProtectorIndex(); 1809 1810 const Value *IRGuard = SPD.getGuard(); 1811 SDValue GuardPtr = getValue(IRGuard); 1812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1813 1814 unsigned Align = 1815 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1816 1817 SDValue Guard; 1818 1819 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1820 // guard value from the virtual register holding the value. Otherwise, emit a 1821 // volatile load to retrieve the stack guard value. 1822 unsigned GuardReg = SPD.getGuardReg(); 1823 1824 if (GuardReg && TLI.useLoadStackGuardNode()) 1825 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1826 PtrTy); 1827 else 1828 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 GuardPtr, MachinePointerInfo(IRGuard, 0), 1830 true, false, false, Align); 1831 1832 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 StackSlotPtr, 1834 MachinePointerInfo::getFixedStack(FI), 1835 true, false, false, Align); 1836 1837 // Perform the comparison via a subtract/getsetcc. 1838 EVT VT = Guard.getValueType(); 1839 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1840 1841 SDValue Cmp = 1842 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1843 Sub.getValueType()), 1844 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1845 1846 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1847 // branch to failure MBB. 1848 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1849 MVT::Other, StackSlot.getOperand(0), 1850 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1851 // Otherwise branch to success MBB. 1852 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1853 MVT::Other, BrCond, 1854 DAG.getBasicBlock(SPD.getSuccessMBB())); 1855 1856 DAG.setRoot(Br); 1857 } 1858 1859 /// Codegen the failure basic block for a stack protector check. 1860 /// 1861 /// A failure stack protector machine basic block consists simply of a call to 1862 /// __stack_chk_fail(). 1863 /// 1864 /// For a high level explanation of how this fits into the stack protector 1865 /// generation see the comment on the declaration of class 1866 /// StackProtectorDescriptor. 1867 void 1868 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1870 SDValue Chain = 1871 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1872 nullptr, 0, false, getCurSDLoc(), false, false).second; 1873 DAG.setRoot(Chain); 1874 } 1875 1876 /// visitBitTestHeader - This function emits necessary code to produce value 1877 /// suitable for "bit tests" 1878 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1879 MachineBasicBlock *SwitchBB) { 1880 // Subtract the minimum value 1881 SDValue SwitchOp = getValue(B.SValue); 1882 EVT VT = SwitchOp.getValueType(); 1883 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1884 DAG.getConstant(B.First, VT)); 1885 1886 // Check range 1887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1888 SDValue RangeCmp = 1889 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1890 Sub.getValueType()), 1891 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1892 1893 // Determine the type of the test operands. 1894 bool UsePtrType = false; 1895 if (!TLI.isTypeLegal(VT)) 1896 UsePtrType = true; 1897 else { 1898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1900 // Switch table case range are encoded into series of masks. 1901 // Just use pointer type, it's guaranteed to fit. 1902 UsePtrType = true; 1903 break; 1904 } 1905 } 1906 if (UsePtrType) { 1907 VT = TLI.getPointerTy(); 1908 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1909 } 1910 1911 B.RegVT = VT.getSimpleVT(); 1912 B.Reg = FuncInfo.CreateReg(B.RegVT); 1913 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1914 B.Reg, Sub); 1915 1916 // Set NextBlock to be the MBB immediately after the current one, if any. 1917 // This is used to avoid emitting unnecessary branches to the next block. 1918 MachineBasicBlock *NextBlock = nullptr; 1919 MachineFunction::iterator BBI = SwitchBB; 1920 if (++BBI != FuncInfo.MF->end()) 1921 NextBlock = BBI; 1922 1923 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1924 1925 addSuccessorWithWeight(SwitchBB, B.Default); 1926 addSuccessorWithWeight(SwitchBB, MBB); 1927 1928 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1929 MVT::Other, CopyTo, RangeCmp, 1930 DAG.getBasicBlock(B.Default)); 1931 1932 if (MBB != NextBlock) 1933 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1934 DAG.getBasicBlock(MBB)); 1935 1936 DAG.setRoot(BrRange); 1937 } 1938 1939 /// visitBitTestCase - this function produces one "bit test" 1940 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1941 MachineBasicBlock* NextMBB, 1942 uint32_t BranchWeightToNext, 1943 unsigned Reg, 1944 BitTestCase &B, 1945 MachineBasicBlock *SwitchBB) { 1946 MVT VT = BB.RegVT; 1947 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1948 Reg, VT); 1949 SDValue Cmp; 1950 unsigned PopCount = CountPopulation_64(B.Mask); 1951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1952 if (PopCount == 1) { 1953 // Testing for a single bit; just compare the shift count with what it 1954 // would need to be to shift a 1 bit in that position. 1955 Cmp = DAG.getSetCC( 1956 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1957 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1958 } else if (PopCount == BB.Range) { 1959 // There is only one zero bit in the range, test for it directly. 1960 Cmp = DAG.getSetCC( 1961 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1962 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1963 } else { 1964 // Make desired shift 1965 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1966 DAG.getConstant(1, VT), ShiftOp); 1967 1968 // Emit bit tests and jumps 1969 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1970 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1971 Cmp = DAG.getSetCC(getCurSDLoc(), 1972 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1973 DAG.getConstant(0, VT), ISD::SETNE); 1974 } 1975 1976 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1977 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1978 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1979 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1980 1981 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1982 MVT::Other, getControlRoot(), 1983 Cmp, DAG.getBasicBlock(B.TargetBB)); 1984 1985 // Set NextBlock to be the MBB immediately after the current one, if any. 1986 // This is used to avoid emitting unnecessary branches to the next block. 1987 MachineBasicBlock *NextBlock = nullptr; 1988 MachineFunction::iterator BBI = SwitchBB; 1989 if (++BBI != FuncInfo.MF->end()) 1990 NextBlock = BBI; 1991 1992 if (NextMBB != NextBlock) 1993 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1994 DAG.getBasicBlock(NextMBB)); 1995 1996 DAG.setRoot(BrAnd); 1997 } 1998 1999 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2000 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2001 2002 // Retrieve successors. 2003 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2004 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2005 2006 const Value *Callee(I.getCalledValue()); 2007 const Function *Fn = dyn_cast<Function>(Callee); 2008 if (isa<InlineAsm>(Callee)) 2009 visitInlineAsm(&I); 2010 else if (Fn && Fn->isIntrinsic()) { 2011 switch (Fn->getIntrinsicID()) { 2012 default: 2013 llvm_unreachable("Cannot invoke this intrinsic"); 2014 case Intrinsic::donothing: 2015 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2016 break; 2017 case Intrinsic::experimental_patchpoint_void: 2018 case Intrinsic::experimental_patchpoint_i64: 2019 visitPatchpoint(&I, LandingPad); 2020 break; 2021 } 2022 } else 2023 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2024 2025 // If the value of the invoke is used outside of its defining block, make it 2026 // available as a virtual register. 2027 CopyToExportRegsIfNeeded(&I); 2028 2029 // Update successor info 2030 addSuccessorWithWeight(InvokeMBB, Return); 2031 addSuccessorWithWeight(InvokeMBB, LandingPad); 2032 2033 // Drop into normal successor. 2034 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2035 MVT::Other, getControlRoot(), 2036 DAG.getBasicBlock(Return))); 2037 } 2038 2039 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2040 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2041 } 2042 2043 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2044 assert(FuncInfo.MBB->isLandingPad() && 2045 "Call to landingpad not in landing pad!"); 2046 2047 MachineBasicBlock *MBB = FuncInfo.MBB; 2048 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2049 AddLandingPadInfo(LP, MMI, MBB); 2050 2051 // If there aren't registers to copy the values into (e.g., during SjLj 2052 // exceptions), then don't bother to create these DAG nodes. 2053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2054 if (TLI.getExceptionPointerRegister() == 0 && 2055 TLI.getExceptionSelectorRegister() == 0) 2056 return; 2057 2058 SmallVector<EVT, 2> ValueVTs; 2059 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2060 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2061 2062 // Get the two live-in registers as SDValues. The physregs have already been 2063 // copied into virtual registers. 2064 SDValue Ops[2]; 2065 Ops[0] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2068 getCurSDLoc(), ValueVTs[0]); 2069 Ops[1] = DAG.getZExtOrTrunc( 2070 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2071 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2072 getCurSDLoc(), ValueVTs[1]); 2073 2074 // Merge into one. 2075 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2076 DAG.getVTList(ValueVTs), Ops); 2077 setValue(&LP, Res); 2078 } 2079 2080 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2081 /// small case ranges). 2082 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2083 CaseRecVector& WorkList, 2084 const Value* SV, 2085 MachineBasicBlock *Default, 2086 MachineBasicBlock *SwitchBB) { 2087 // Size is the number of Cases represented by this range. 2088 size_t Size = CR.Range.second - CR.Range.first; 2089 if (Size > 3) 2090 return false; 2091 2092 // Get the MachineFunction which holds the current MBB. This is used when 2093 // inserting any additional MBBs necessary to represent the switch. 2094 MachineFunction *CurMF = FuncInfo.MF; 2095 2096 // Figure out which block is immediately after the current one. 2097 MachineBasicBlock *NextBlock = nullptr; 2098 MachineFunction::iterator BBI = CR.CaseBB; 2099 2100 if (++BBI != FuncInfo.MF->end()) 2101 NextBlock = BBI; 2102 2103 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2104 // If any two of the cases has the same destination, and if one value 2105 // is the same as the other, but has one bit unset that the other has set, 2106 // use bit manipulation to do two compares at once. For example: 2107 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2108 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2109 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2110 if (Size == 2 && CR.CaseBB == SwitchBB) { 2111 Case &Small = *CR.Range.first; 2112 Case &Big = *(CR.Range.second-1); 2113 2114 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2115 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2116 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2117 2118 // Check that there is only one bit different. 2119 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2120 (SmallValue | BigValue) == BigValue) { 2121 // Isolate the common bit. 2122 APInt CommonBit = BigValue & ~SmallValue; 2123 assert((SmallValue | CommonBit) == BigValue && 2124 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2125 2126 SDValue CondLHS = getValue(SV); 2127 EVT VT = CondLHS.getValueType(); 2128 SDLoc DL = getCurSDLoc(); 2129 2130 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2131 DAG.getConstant(CommonBit, VT)); 2132 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2133 Or, DAG.getConstant(BigValue, VT), 2134 ISD::SETEQ); 2135 2136 // Update successor info. 2137 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2138 addSuccessorWithWeight(SwitchBB, Small.BB, 2139 Small.ExtraWeight + Big.ExtraWeight); 2140 addSuccessorWithWeight(SwitchBB, Default, 2141 // The default destination is the first successor in IR. 2142 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2143 2144 // Insert the true branch. 2145 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2146 getControlRoot(), Cond, 2147 DAG.getBasicBlock(Small.BB)); 2148 2149 // Insert the false branch. 2150 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2151 DAG.getBasicBlock(Default)); 2152 2153 DAG.setRoot(BrCond); 2154 return true; 2155 } 2156 } 2157 } 2158 2159 // Order cases by weight so the most likely case will be checked first. 2160 uint32_t UnhandledWeights = 0; 2161 if (BPI) { 2162 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2163 uint32_t IWeight = I->ExtraWeight; 2164 UnhandledWeights += IWeight; 2165 for (CaseItr J = CR.Range.first; J < I; ++J) { 2166 uint32_t JWeight = J->ExtraWeight; 2167 if (IWeight > JWeight) 2168 std::swap(*I, *J); 2169 } 2170 } 2171 } 2172 // Rearrange the case blocks so that the last one falls through if possible. 2173 Case &BackCase = *(CR.Range.second-1); 2174 if (Size > 1 && 2175 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2176 // The last case block won't fall through into 'NextBlock' if we emit the 2177 // branches in this order. See if rearranging a case value would help. 2178 // We start at the bottom as it's the case with the least weight. 2179 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2180 if (I->BB == NextBlock) { 2181 std::swap(*I, BackCase); 2182 break; 2183 } 2184 } 2185 2186 // Create a CaseBlock record representing a conditional branch to 2187 // the Case's target mbb if the value being switched on SV is equal 2188 // to C. 2189 MachineBasicBlock *CurBlock = CR.CaseBB; 2190 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2191 MachineBasicBlock *FallThrough; 2192 if (I != E-1) { 2193 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2194 CurMF->insert(BBI, FallThrough); 2195 2196 // Put SV in a virtual register to make it available from the new blocks. 2197 ExportFromCurrentBlock(SV); 2198 } else { 2199 // If the last case doesn't match, go to the default block. 2200 FallThrough = Default; 2201 } 2202 2203 const Value *RHS, *LHS, *MHS; 2204 ISD::CondCode CC; 2205 if (I->High == I->Low) { 2206 // This is just small small case range :) containing exactly 1 case 2207 CC = ISD::SETEQ; 2208 LHS = SV; RHS = I->High; MHS = nullptr; 2209 } else { 2210 CC = ISD::SETLE; 2211 LHS = I->Low; MHS = SV; RHS = I->High; 2212 } 2213 2214 // The false weight should be sum of all un-handled cases. 2215 UnhandledWeights -= I->ExtraWeight; 2216 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2217 /* me */ CurBlock, 2218 /* trueweight */ I->ExtraWeight, 2219 /* falseweight */ UnhandledWeights); 2220 2221 // If emitting the first comparison, just call visitSwitchCase to emit the 2222 // code into the current block. Otherwise, push the CaseBlock onto the 2223 // vector to be later processed by SDISel, and insert the node's MBB 2224 // before the next MBB. 2225 if (CurBlock == SwitchBB) 2226 visitSwitchCase(CB, SwitchBB); 2227 else 2228 SwitchCases.push_back(CB); 2229 2230 CurBlock = FallThrough; 2231 } 2232 2233 return true; 2234 } 2235 2236 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2237 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2238 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2239 } 2240 2241 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2242 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2243 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2244 return (LastExt - FirstExt + 1ULL); 2245 } 2246 2247 /// handleJTSwitchCase - Emit jumptable for current switch case range 2248 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2249 CaseRecVector &WorkList, 2250 const Value *SV, 2251 MachineBasicBlock *Default, 2252 MachineBasicBlock *SwitchBB) { 2253 Case& FrontCase = *CR.Range.first; 2254 Case& BackCase = *(CR.Range.second-1); 2255 2256 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2257 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2258 2259 APInt TSize(First.getBitWidth(), 0); 2260 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2261 TSize += I->size(); 2262 2263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2264 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2265 return false; 2266 2267 APInt Range = ComputeRange(First, Last); 2268 // The density is TSize / Range. Require at least 40%. 2269 // It should not be possible for IntTSize to saturate for sane code, but make 2270 // sure we handle Range saturation correctly. 2271 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2272 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2273 if (IntTSize * 10 < IntRange * 4) 2274 return false; 2275 2276 DEBUG(dbgs() << "Lowering jump table\n" 2277 << "First entry: " << First << ". Last entry: " << Last << '\n' 2278 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2279 2280 // Get the MachineFunction which holds the current MBB. This is used when 2281 // inserting any additional MBBs necessary to represent the switch. 2282 MachineFunction *CurMF = FuncInfo.MF; 2283 2284 // Figure out which block is immediately after the current one. 2285 MachineFunction::iterator BBI = CR.CaseBB; 2286 ++BBI; 2287 2288 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2289 2290 // Create a new basic block to hold the code for loading the address 2291 // of the jump table, and jumping to it. Update successor information; 2292 // we will either branch to the default case for the switch, or the jump 2293 // table. 2294 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2295 CurMF->insert(BBI, JumpTableBB); 2296 2297 addSuccessorWithWeight(CR.CaseBB, Default); 2298 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2299 2300 // Build a vector of destination BBs, corresponding to each target 2301 // of the jump table. If the value of the jump table slot corresponds to 2302 // a case statement, push the case's BB onto the vector, otherwise, push 2303 // the default BB. 2304 std::vector<MachineBasicBlock*> DestBBs; 2305 APInt TEI = First; 2306 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2307 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2308 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2309 2310 if (Low.sle(TEI) && TEI.sle(High)) { 2311 DestBBs.push_back(I->BB); 2312 if (TEI==High) 2313 ++I; 2314 } else { 2315 DestBBs.push_back(Default); 2316 } 2317 } 2318 2319 // Calculate weight for each unique destination in CR. 2320 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2321 if (FuncInfo.BPI) 2322 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2323 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2324 DestWeights.find(I->BB); 2325 if (Itr != DestWeights.end()) 2326 Itr->second += I->ExtraWeight; 2327 else 2328 DestWeights[I->BB] = I->ExtraWeight; 2329 } 2330 2331 // Update successor info. Add one edge to each unique successor. 2332 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2333 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2334 E = DestBBs.end(); I != E; ++I) { 2335 if (!SuccsHandled[(*I)->getNumber()]) { 2336 SuccsHandled[(*I)->getNumber()] = true; 2337 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2338 DestWeights.find(*I); 2339 addSuccessorWithWeight(JumpTableBB, *I, 2340 Itr != DestWeights.end() ? Itr->second : 0); 2341 } 2342 } 2343 2344 // Create a jump table index for this jump table. 2345 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2346 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2347 ->createJumpTableIndex(DestBBs); 2348 2349 // Set the jump table information so that we can codegen it as a second 2350 // MachineBasicBlock 2351 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2352 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2353 if (CR.CaseBB == SwitchBB) 2354 visitJumpTableHeader(JT, JTH, SwitchBB); 2355 2356 JTCases.push_back(JumpTableBlock(JTH, JT)); 2357 return true; 2358 } 2359 2360 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2361 /// 2 subtrees. 2362 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2363 CaseRecVector& WorkList, 2364 const Value* SV, 2365 MachineBasicBlock* SwitchBB) { 2366 // Get the MachineFunction which holds the current MBB. This is used when 2367 // inserting any additional MBBs necessary to represent the switch. 2368 MachineFunction *CurMF = FuncInfo.MF; 2369 2370 // Figure out which block is immediately after the current one. 2371 MachineFunction::iterator BBI = CR.CaseBB; 2372 ++BBI; 2373 2374 Case& FrontCase = *CR.Range.first; 2375 Case& BackCase = *(CR.Range.second-1); 2376 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2377 2378 // Size is the number of Cases represented by this range. 2379 unsigned Size = CR.Range.second - CR.Range.first; 2380 2381 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2382 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2383 double FMetric = 0; 2384 CaseItr Pivot = CR.Range.first + Size/2; 2385 2386 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2387 // (heuristically) allow us to emit JumpTable's later. 2388 APInt TSize(First.getBitWidth(), 0); 2389 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2390 I!=E; ++I) 2391 TSize += I->size(); 2392 2393 APInt LSize = FrontCase.size(); 2394 APInt RSize = TSize-LSize; 2395 DEBUG(dbgs() << "Selecting best pivot: \n" 2396 << "First: " << First << ", Last: " << Last <<'\n' 2397 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2398 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2399 J!=E; ++I, ++J) { 2400 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2401 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2402 APInt Range = ComputeRange(LEnd, RBegin); 2403 assert((Range - 2ULL).isNonNegative() && 2404 "Invalid case distance"); 2405 // Use volatile double here to avoid excess precision issues on some hosts, 2406 // e.g. that use 80-bit X87 registers. 2407 volatile double LDensity = 2408 (double)LSize.roundToDouble() / 2409 (LEnd - First + 1ULL).roundToDouble(); 2410 volatile double RDensity = 2411 (double)RSize.roundToDouble() / 2412 (Last - RBegin + 1ULL).roundToDouble(); 2413 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2414 // Should always split in some non-trivial place 2415 DEBUG(dbgs() <<"=>Step\n" 2416 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2417 << "LDensity: " << LDensity 2418 << ", RDensity: " << RDensity << '\n' 2419 << "Metric: " << Metric << '\n'); 2420 if (FMetric < Metric) { 2421 Pivot = J; 2422 FMetric = Metric; 2423 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2424 } 2425 2426 LSize += J->size(); 2427 RSize -= J->size(); 2428 } 2429 2430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2431 if (areJTsAllowed(TLI)) { 2432 // If our case is dense we *really* should handle it earlier! 2433 assert((FMetric > 0) && "Should handle dense range earlier!"); 2434 } else { 2435 Pivot = CR.Range.first + Size/2; 2436 } 2437 2438 CaseRange LHSR(CR.Range.first, Pivot); 2439 CaseRange RHSR(Pivot, CR.Range.second); 2440 const Constant *C = Pivot->Low; 2441 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2442 2443 // We know that we branch to the LHS if the Value being switched on is 2444 // less than the Pivot value, C. We use this to optimize our binary 2445 // tree a bit, by recognizing that if SV is greater than or equal to the 2446 // LHS's Case Value, and that Case Value is exactly one less than the 2447 // Pivot's Value, then we can branch directly to the LHS's Target, 2448 // rather than creating a leaf node for it. 2449 if ((LHSR.second - LHSR.first) == 1 && 2450 LHSR.first->High == CR.GE && 2451 cast<ConstantInt>(C)->getValue() == 2452 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2453 TrueBB = LHSR.first->BB; 2454 } else { 2455 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2456 CurMF->insert(BBI, TrueBB); 2457 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2458 2459 // Put SV in a virtual register to make it available from the new blocks. 2460 ExportFromCurrentBlock(SV); 2461 } 2462 2463 // Similar to the optimization above, if the Value being switched on is 2464 // known to be less than the Constant CR.LT, and the current Case Value 2465 // is CR.LT - 1, then we can branch directly to the target block for 2466 // the current Case Value, rather than emitting a RHS leaf node for it. 2467 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2468 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2469 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2470 FalseBB = RHSR.first->BB; 2471 } else { 2472 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2473 CurMF->insert(BBI, FalseBB); 2474 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2475 2476 // Put SV in a virtual register to make it available from the new blocks. 2477 ExportFromCurrentBlock(SV); 2478 } 2479 2480 // Create a CaseBlock record representing a conditional branch to 2481 // the LHS node if the value being switched on SV is less than C. 2482 // Otherwise, branch to LHS. 2483 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2484 2485 if (CR.CaseBB == SwitchBB) 2486 visitSwitchCase(CB, SwitchBB); 2487 else 2488 SwitchCases.push_back(CB); 2489 2490 return true; 2491 } 2492 2493 /// handleBitTestsSwitchCase - if current case range has few destination and 2494 /// range span less, than machine word bitwidth, encode case range into series 2495 /// of masks and emit bit tests with these masks. 2496 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2497 CaseRecVector& WorkList, 2498 const Value* SV, 2499 MachineBasicBlock* Default, 2500 MachineBasicBlock* SwitchBB) { 2501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2502 EVT PTy = TLI.getPointerTy(); 2503 unsigned IntPtrBits = PTy.getSizeInBits(); 2504 2505 Case& FrontCase = *CR.Range.first; 2506 Case& BackCase = *(CR.Range.second-1); 2507 2508 // Get the MachineFunction which holds the current MBB. This is used when 2509 // inserting any additional MBBs necessary to represent the switch. 2510 MachineFunction *CurMF = FuncInfo.MF; 2511 2512 // If target does not have legal shift left, do not emit bit tests at all. 2513 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2514 return false; 2515 2516 size_t numCmps = 0; 2517 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2518 // Single case counts one, case range - two. 2519 numCmps += (I->Low == I->High ? 1 : 2); 2520 } 2521 2522 // Count unique destinations 2523 SmallSet<MachineBasicBlock*, 4> Dests; 2524 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2525 Dests.insert(I->BB); 2526 if (Dests.size() > 3) 2527 // Don't bother the code below, if there are too much unique destinations 2528 return false; 2529 } 2530 DEBUG(dbgs() << "Total number of unique destinations: " 2531 << Dests.size() << '\n' 2532 << "Total number of comparisons: " << numCmps << '\n'); 2533 2534 // Compute span of values. 2535 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2536 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2537 APInt cmpRange = maxValue - minValue; 2538 2539 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2540 << "Low bound: " << minValue << '\n' 2541 << "High bound: " << maxValue << '\n'); 2542 2543 if (cmpRange.uge(IntPtrBits) || 2544 (!(Dests.size() == 1 && numCmps >= 3) && 2545 !(Dests.size() == 2 && numCmps >= 5) && 2546 !(Dests.size() >= 3 && numCmps >= 6))) 2547 return false; 2548 2549 DEBUG(dbgs() << "Emitting bit tests\n"); 2550 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2551 2552 // Optimize the case where all the case values fit in a 2553 // word without having to subtract minValue. In this case, 2554 // we can optimize away the subtraction. 2555 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2556 cmpRange = maxValue; 2557 } else { 2558 lowBound = minValue; 2559 } 2560 2561 CaseBitsVector CasesBits; 2562 unsigned i, count = 0; 2563 2564 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2565 MachineBasicBlock* Dest = I->BB; 2566 for (i = 0; i < count; ++i) 2567 if (Dest == CasesBits[i].BB) 2568 break; 2569 2570 if (i == count) { 2571 assert((count < 3) && "Too much destinations to test!"); 2572 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2573 count++; 2574 } 2575 2576 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2577 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2578 2579 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2580 uint64_t hi = (highValue - lowBound).getZExtValue(); 2581 CasesBits[i].ExtraWeight += I->ExtraWeight; 2582 2583 for (uint64_t j = lo; j <= hi; j++) { 2584 CasesBits[i].Mask |= 1ULL << j; 2585 CasesBits[i].Bits++; 2586 } 2587 2588 } 2589 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2590 2591 BitTestInfo BTC; 2592 2593 // Figure out which block is immediately after the current one. 2594 MachineFunction::iterator BBI = CR.CaseBB; 2595 ++BBI; 2596 2597 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2598 2599 DEBUG(dbgs() << "Cases:\n"); 2600 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2601 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2602 << ", Bits: " << CasesBits[i].Bits 2603 << ", BB: " << CasesBits[i].BB << '\n'); 2604 2605 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2606 CurMF->insert(BBI, CaseBB); 2607 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2608 CaseBB, 2609 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2610 2611 // Put SV in a virtual register to make it available from the new blocks. 2612 ExportFromCurrentBlock(SV); 2613 } 2614 2615 BitTestBlock BTB(lowBound, cmpRange, SV, 2616 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2617 CR.CaseBB, Default, std::move(BTC)); 2618 2619 if (CR.CaseBB == SwitchBB) 2620 visitBitTestHeader(BTB, SwitchBB); 2621 2622 BitTestCases.push_back(std::move(BTB)); 2623 2624 return true; 2625 } 2626 2627 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2628 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2629 const SwitchInst& SI) { 2630 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2631 // Start with "simple" cases. 2632 for (SwitchInst::ConstCaseIt i : SI.cases()) { 2633 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2634 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2635 2636 uint32_t ExtraWeight = 2637 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2638 2639 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2640 SMBB, ExtraWeight)); 2641 } 2642 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2643 2644 // Merge case into clusters 2645 if (Cases.size() >= 2) 2646 // Must recompute end() each iteration because it may be 2647 // invalidated by erase if we hold on to it 2648 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2649 J != Cases.end(); ) { 2650 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2651 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2652 MachineBasicBlock* nextBB = J->BB; 2653 MachineBasicBlock* currentBB = I->BB; 2654 2655 // If the two neighboring cases go to the same destination, merge them 2656 // into a single case. 2657 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2658 I->High = J->High; 2659 I->ExtraWeight += J->ExtraWeight; 2660 J = Cases.erase(J); 2661 } else { 2662 I = J++; 2663 } 2664 } 2665 2666 DEBUG({ 2667 size_t numCmps = 0; 2668 for (auto &I : Cases) 2669 // A range counts double, since it requires two compares. 2670 numCmps += I.Low != I.High ? 2 : 1; 2671 2672 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2673 << ". Total compares: " << numCmps << '\n'; 2674 }); 2675 } 2676 2677 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2678 MachineBasicBlock *Last) { 2679 // Update JTCases. 2680 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2681 if (JTCases[i].first.HeaderBB == First) 2682 JTCases[i].first.HeaderBB = Last; 2683 2684 // Update BitTestCases. 2685 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2686 if (BitTestCases[i].Parent == First) 2687 BitTestCases[i].Parent = Last; 2688 } 2689 2690 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2691 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2692 2693 // Figure out which block is immediately after the current one. 2694 MachineBasicBlock *NextBlock = nullptr; 2695 if (SwitchMBB + 1 != FuncInfo.MF->end()) 2696 NextBlock = SwitchMBB + 1; 2697 2698 2699 // Create a vector of Cases, sorted so that we can efficiently create a binary 2700 // search tree from them. 2701 CaseVector Cases; 2702 Clusterify(Cases, SI); 2703 2704 // Get the default destination MBB. 2705 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2706 2707 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg())) { 2708 // Replace an unreachable default destination with the most popular case 2709 // destination. 2710 DenseMap<const BasicBlock*, uint64_t> Popularity; 2711 uint64_t MaxPop = 0; 2712 const BasicBlock *MaxBB = nullptr; 2713 for (auto I : SI.cases()) { 2714 const BasicBlock *BB = I.getCaseSuccessor(); 2715 if (++Popularity[BB] > MaxPop) { 2716 MaxPop = Popularity[BB]; 2717 MaxBB = BB; 2718 } 2719 } 2720 2721 // Set new default. 2722 Default = FuncInfo.MBBMap[MaxBB]; 2723 2724 // Remove cases that have been replaced by the default. 2725 CaseItr I = Cases.begin(); 2726 while (I != Cases.end()) { 2727 if (I->BB == Default) { 2728 I = Cases.erase(I); 2729 continue; 2730 } 2731 ++I; 2732 } 2733 } 2734 2735 // If there is only the default destination, go there directly. 2736 if (Cases.empty()) { 2737 // Update machine-CFG edges. 2738 SwitchMBB->addSuccessor(Default); 2739 2740 // If this is not a fall-through branch, emit the branch. 2741 if (Default != NextBlock) { 2742 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2743 getControlRoot(), DAG.getBasicBlock(Default))); 2744 } 2745 return; 2746 } 2747 2748 // Get the Value to be switched on. 2749 const Value *SV = SI.getCondition(); 2750 2751 // Push the initial CaseRec onto the worklist 2752 CaseRecVector WorkList; 2753 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2754 CaseRange(Cases.begin(),Cases.end()))); 2755 2756 while (!WorkList.empty()) { 2757 // Grab a record representing a case range to process off the worklist 2758 CaseRec CR = WorkList.back(); 2759 WorkList.pop_back(); 2760 2761 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2762 continue; 2763 2764 // If the range has few cases (two or less) emit a series of specific 2765 // tests. 2766 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2767 continue; 2768 2769 // If the switch has more than N blocks, and is at least 40% dense, and the 2770 // target supports indirect branches, then emit a jump table rather than 2771 // lowering the switch to a binary tree of conditional branches. 2772 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2773 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2774 continue; 2775 2776 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2777 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2778 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2779 } 2780 } 2781 2782 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2783 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2784 2785 // Update machine-CFG edges with unique successors. 2786 SmallSet<BasicBlock*, 32> Done; 2787 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2788 BasicBlock *BB = I.getSuccessor(i); 2789 bool Inserted = Done.insert(BB).second; 2790 if (!Inserted) 2791 continue; 2792 2793 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2794 addSuccessorWithWeight(IndirectBrMBB, Succ); 2795 } 2796 2797 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2798 MVT::Other, getControlRoot(), 2799 getValue(I.getAddress()))); 2800 } 2801 2802 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2803 if (DAG.getTarget().Options.TrapUnreachable) 2804 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2805 } 2806 2807 void SelectionDAGBuilder::visitFSub(const User &I) { 2808 // -0.0 - X --> fneg 2809 Type *Ty = I.getType(); 2810 if (isa<Constant>(I.getOperand(0)) && 2811 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2812 SDValue Op2 = getValue(I.getOperand(1)); 2813 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2814 Op2.getValueType(), Op2)); 2815 return; 2816 } 2817 2818 visitBinary(I, ISD::FSUB); 2819 } 2820 2821 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2822 SDValue Op1 = getValue(I.getOperand(0)); 2823 SDValue Op2 = getValue(I.getOperand(1)); 2824 2825 bool nuw = false; 2826 bool nsw = false; 2827 bool exact = false; 2828 if (const OverflowingBinaryOperator *OFBinOp = 2829 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2830 nuw = OFBinOp->hasNoUnsignedWrap(); 2831 nsw = OFBinOp->hasNoSignedWrap(); 2832 } 2833 if (const PossiblyExactOperator *ExactOp = 2834 dyn_cast<const PossiblyExactOperator>(&I)) 2835 exact = ExactOp->isExact(); 2836 2837 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2838 Op1, Op2, nuw, nsw, exact); 2839 setValue(&I, BinNodeValue); 2840 } 2841 2842 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2843 SDValue Op1 = getValue(I.getOperand(0)); 2844 SDValue Op2 = getValue(I.getOperand(1)); 2845 2846 EVT ShiftTy = 2847 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2848 2849 // Coerce the shift amount to the right type if we can. 2850 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2851 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2852 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2853 SDLoc DL = getCurSDLoc(); 2854 2855 // If the operand is smaller than the shift count type, promote it. 2856 if (ShiftSize > Op2Size) 2857 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2858 2859 // If the operand is larger than the shift count type but the shift 2860 // count type has enough bits to represent any shift value, truncate 2861 // it now. This is a common case and it exposes the truncate to 2862 // optimization early. 2863 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2864 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2865 // Otherwise we'll need to temporarily settle for some other convenient 2866 // type. Type legalization will make adjustments once the shiftee is split. 2867 else 2868 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2869 } 2870 2871 bool nuw = false; 2872 bool nsw = false; 2873 bool exact = false; 2874 2875 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2876 2877 if (const OverflowingBinaryOperator *OFBinOp = 2878 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2879 nuw = OFBinOp->hasNoUnsignedWrap(); 2880 nsw = OFBinOp->hasNoSignedWrap(); 2881 } 2882 if (const PossiblyExactOperator *ExactOp = 2883 dyn_cast<const PossiblyExactOperator>(&I)) 2884 exact = ExactOp->isExact(); 2885 } 2886 2887 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2888 nuw, nsw, exact); 2889 setValue(&I, Res); 2890 } 2891 2892 void SelectionDAGBuilder::visitSDiv(const User &I) { 2893 SDValue Op1 = getValue(I.getOperand(0)); 2894 SDValue Op2 = getValue(I.getOperand(1)); 2895 2896 // Turn exact SDivs into multiplications. 2897 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2898 // exact bit. 2899 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2900 !isa<ConstantSDNode>(Op1) && 2901 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2902 setValue(&I, DAG.getTargetLoweringInfo() 2903 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2904 else 2905 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2906 Op1, Op2)); 2907 } 2908 2909 void SelectionDAGBuilder::visitICmp(const User &I) { 2910 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2911 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2912 predicate = IC->getPredicate(); 2913 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2914 predicate = ICmpInst::Predicate(IC->getPredicate()); 2915 SDValue Op1 = getValue(I.getOperand(0)); 2916 SDValue Op2 = getValue(I.getOperand(1)); 2917 ISD::CondCode Opcode = getICmpCondCode(predicate); 2918 2919 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2920 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2921 } 2922 2923 void SelectionDAGBuilder::visitFCmp(const User &I) { 2924 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2925 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2926 predicate = FC->getPredicate(); 2927 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2928 predicate = FCmpInst::Predicate(FC->getPredicate()); 2929 SDValue Op1 = getValue(I.getOperand(0)); 2930 SDValue Op2 = getValue(I.getOperand(1)); 2931 ISD::CondCode Condition = getFCmpCondCode(predicate); 2932 if (TM.Options.NoNaNsFPMath) 2933 Condition = getFCmpCodeWithoutNaN(Condition); 2934 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2935 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2936 } 2937 2938 void SelectionDAGBuilder::visitSelect(const User &I) { 2939 SmallVector<EVT, 4> ValueVTs; 2940 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2941 unsigned NumValues = ValueVTs.size(); 2942 if (NumValues == 0) return; 2943 2944 SmallVector<SDValue, 4> Values(NumValues); 2945 SDValue Cond = getValue(I.getOperand(0)); 2946 SDValue TrueVal = getValue(I.getOperand(1)); 2947 SDValue FalseVal = getValue(I.getOperand(2)); 2948 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2949 ISD::VSELECT : ISD::SELECT; 2950 2951 for (unsigned i = 0; i != NumValues; ++i) 2952 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2953 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2954 Cond, 2955 SDValue(TrueVal.getNode(), 2956 TrueVal.getResNo() + i), 2957 SDValue(FalseVal.getNode(), 2958 FalseVal.getResNo() + i)); 2959 2960 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2961 DAG.getVTList(ValueVTs), Values)); 2962 } 2963 2964 void SelectionDAGBuilder::visitTrunc(const User &I) { 2965 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2966 SDValue N = getValue(I.getOperand(0)); 2967 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2968 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2969 } 2970 2971 void SelectionDAGBuilder::visitZExt(const User &I) { 2972 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2973 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2974 SDValue N = getValue(I.getOperand(0)); 2975 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2976 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2977 } 2978 2979 void SelectionDAGBuilder::visitSExt(const User &I) { 2980 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2981 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2982 SDValue N = getValue(I.getOperand(0)); 2983 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2984 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2985 } 2986 2987 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2988 // FPTrunc is never a no-op cast, no need to check 2989 SDValue N = getValue(I.getOperand(0)); 2990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2991 EVT DestVT = TLI.getValueType(I.getType()); 2992 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2993 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2994 } 2995 2996 void SelectionDAGBuilder::visitFPExt(const User &I) { 2997 // FPExt is never a no-op cast, no need to check 2998 SDValue N = getValue(I.getOperand(0)); 2999 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3000 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3001 } 3002 3003 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3004 // FPToUI is never a no-op cast, no need to check 3005 SDValue N = getValue(I.getOperand(0)); 3006 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3007 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3008 } 3009 3010 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3011 // FPToSI is never a no-op cast, no need to check 3012 SDValue N = getValue(I.getOperand(0)); 3013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3014 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3015 } 3016 3017 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3018 // UIToFP is never a no-op cast, no need to check 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3021 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3022 } 3023 3024 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3025 // SIToFP is never a no-op cast, no need to check 3026 SDValue N = getValue(I.getOperand(0)); 3027 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3028 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3029 } 3030 3031 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3032 // What to do depends on the size of the integer and the size of the pointer. 3033 // We can either truncate, zero extend, or no-op, accordingly. 3034 SDValue N = getValue(I.getOperand(0)); 3035 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3036 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3037 } 3038 3039 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3040 // What to do depends on the size of the integer and the size of the pointer. 3041 // We can either truncate, zero extend, or no-op, accordingly. 3042 SDValue N = getValue(I.getOperand(0)); 3043 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3044 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3045 } 3046 3047 void SelectionDAGBuilder::visitBitCast(const User &I) { 3048 SDValue N = getValue(I.getOperand(0)); 3049 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3050 3051 // BitCast assures us that source and destination are the same size so this is 3052 // either a BITCAST or a no-op. 3053 if (DestVT != N.getValueType()) 3054 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3055 DestVT, N)); // convert types. 3056 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3057 // might fold any kind of constant expression to an integer constant and that 3058 // is not what we are looking for. Only regcognize a bitcast of a genuine 3059 // constant integer as an opaque constant. 3060 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3061 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3062 /*isOpaque*/true)); 3063 else 3064 setValue(&I, N); // noop cast. 3065 } 3066 3067 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3069 const Value *SV = I.getOperand(0); 3070 SDValue N = getValue(SV); 3071 EVT DestVT = TLI.getValueType(I.getType()); 3072 3073 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3074 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3075 3076 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3077 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3078 3079 setValue(&I, N); 3080 } 3081 3082 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3084 SDValue InVec = getValue(I.getOperand(0)); 3085 SDValue InVal = getValue(I.getOperand(1)); 3086 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3087 getCurSDLoc(), TLI.getVectorIdxTy()); 3088 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3089 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3090 } 3091 3092 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3094 SDValue InVec = getValue(I.getOperand(0)); 3095 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3096 getCurSDLoc(), TLI.getVectorIdxTy()); 3097 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3098 TLI.getValueType(I.getType()), InVec, InIdx)); 3099 } 3100 3101 // Utility for visitShuffleVector - Return true if every element in Mask, 3102 // beginning from position Pos and ending in Pos+Size, falls within the 3103 // specified sequential range [L, L+Pos). or is undef. 3104 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3105 unsigned Pos, unsigned Size, int Low) { 3106 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3107 if (Mask[i] >= 0 && Mask[i] != Low) 3108 return false; 3109 return true; 3110 } 3111 3112 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3113 SDValue Src1 = getValue(I.getOperand(0)); 3114 SDValue Src2 = getValue(I.getOperand(1)); 3115 3116 SmallVector<int, 8> Mask; 3117 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3118 unsigned MaskNumElts = Mask.size(); 3119 3120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3121 EVT VT = TLI.getValueType(I.getType()); 3122 EVT SrcVT = Src1.getValueType(); 3123 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3124 3125 if (SrcNumElts == MaskNumElts) { 3126 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3127 &Mask[0])); 3128 return; 3129 } 3130 3131 // Normalize the shuffle vector since mask and vector length don't match. 3132 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3133 // Mask is longer than the source vectors and is a multiple of the source 3134 // vectors. We can use concatenate vector to make the mask and vectors 3135 // lengths match. 3136 if (SrcNumElts*2 == MaskNumElts) { 3137 // First check for Src1 in low and Src2 in high 3138 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3139 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3140 // The shuffle is concatenating two vectors together. 3141 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3142 VT, Src1, Src2)); 3143 return; 3144 } 3145 // Then check for Src2 in low and Src1 in high 3146 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3147 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3148 // The shuffle is concatenating two vectors together. 3149 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3150 VT, Src2, Src1)); 3151 return; 3152 } 3153 } 3154 3155 // Pad both vectors with undefs to make them the same length as the mask. 3156 unsigned NumConcat = MaskNumElts / SrcNumElts; 3157 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3158 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3159 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3160 3161 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3162 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3163 MOps1[0] = Src1; 3164 MOps2[0] = Src2; 3165 3166 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3167 getCurSDLoc(), VT, MOps1); 3168 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3169 getCurSDLoc(), VT, MOps2); 3170 3171 // Readjust mask for new input vector length. 3172 SmallVector<int, 8> MappedOps; 3173 for (unsigned i = 0; i != MaskNumElts; ++i) { 3174 int Idx = Mask[i]; 3175 if (Idx >= (int)SrcNumElts) 3176 Idx -= SrcNumElts - MaskNumElts; 3177 MappedOps.push_back(Idx); 3178 } 3179 3180 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3181 &MappedOps[0])); 3182 return; 3183 } 3184 3185 if (SrcNumElts > MaskNumElts) { 3186 // Analyze the access pattern of the vector to see if we can extract 3187 // two subvectors and do the shuffle. The analysis is done by calculating 3188 // the range of elements the mask access on both vectors. 3189 int MinRange[2] = { static_cast<int>(SrcNumElts), 3190 static_cast<int>(SrcNumElts)}; 3191 int MaxRange[2] = {-1, -1}; 3192 3193 for (unsigned i = 0; i != MaskNumElts; ++i) { 3194 int Idx = Mask[i]; 3195 unsigned Input = 0; 3196 if (Idx < 0) 3197 continue; 3198 3199 if (Idx >= (int)SrcNumElts) { 3200 Input = 1; 3201 Idx -= SrcNumElts; 3202 } 3203 if (Idx > MaxRange[Input]) 3204 MaxRange[Input] = Idx; 3205 if (Idx < MinRange[Input]) 3206 MinRange[Input] = Idx; 3207 } 3208 3209 // Check if the access is smaller than the vector size and can we find 3210 // a reasonable extract index. 3211 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3212 // Extract. 3213 int StartIdx[2]; // StartIdx to extract from 3214 for (unsigned Input = 0; Input < 2; ++Input) { 3215 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3216 RangeUse[Input] = 0; // Unused 3217 StartIdx[Input] = 0; 3218 continue; 3219 } 3220 3221 // Find a good start index that is a multiple of the mask length. Then 3222 // see if the rest of the elements are in range. 3223 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3224 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3225 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3226 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3227 } 3228 3229 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3230 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3231 return; 3232 } 3233 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3234 // Extract appropriate subvector and generate a vector shuffle 3235 for (unsigned Input = 0; Input < 2; ++Input) { 3236 SDValue &Src = Input == 0 ? Src1 : Src2; 3237 if (RangeUse[Input] == 0) 3238 Src = DAG.getUNDEF(VT); 3239 else 3240 Src = DAG.getNode( 3241 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3242 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3243 } 3244 3245 // Calculate new mask. 3246 SmallVector<int, 8> MappedOps; 3247 for (unsigned i = 0; i != MaskNumElts; ++i) { 3248 int Idx = Mask[i]; 3249 if (Idx >= 0) { 3250 if (Idx < (int)SrcNumElts) 3251 Idx -= StartIdx[0]; 3252 else 3253 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3254 } 3255 MappedOps.push_back(Idx); 3256 } 3257 3258 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3259 &MappedOps[0])); 3260 return; 3261 } 3262 } 3263 3264 // We can't use either concat vectors or extract subvectors so fall back to 3265 // replacing the shuffle with extract and build vector. 3266 // to insert and build vector. 3267 EVT EltVT = VT.getVectorElementType(); 3268 EVT IdxVT = TLI.getVectorIdxTy(); 3269 SmallVector<SDValue,8> Ops; 3270 for (unsigned i = 0; i != MaskNumElts; ++i) { 3271 int Idx = Mask[i]; 3272 SDValue Res; 3273 3274 if (Idx < 0) { 3275 Res = DAG.getUNDEF(EltVT); 3276 } else { 3277 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3278 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3279 3280 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3281 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3282 } 3283 3284 Ops.push_back(Res); 3285 } 3286 3287 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3288 } 3289 3290 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3291 const Value *Op0 = I.getOperand(0); 3292 const Value *Op1 = I.getOperand(1); 3293 Type *AggTy = I.getType(); 3294 Type *ValTy = Op1->getType(); 3295 bool IntoUndef = isa<UndefValue>(Op0); 3296 bool FromUndef = isa<UndefValue>(Op1); 3297 3298 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3299 3300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3301 SmallVector<EVT, 4> AggValueVTs; 3302 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3303 SmallVector<EVT, 4> ValValueVTs; 3304 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3305 3306 unsigned NumAggValues = AggValueVTs.size(); 3307 unsigned NumValValues = ValValueVTs.size(); 3308 SmallVector<SDValue, 4> Values(NumAggValues); 3309 3310 // Ignore an insertvalue that produces an empty object 3311 if (!NumAggValues) { 3312 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3313 return; 3314 } 3315 3316 SDValue Agg = getValue(Op0); 3317 unsigned i = 0; 3318 // Copy the beginning value(s) from the original aggregate. 3319 for (; i != LinearIndex; ++i) 3320 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3321 SDValue(Agg.getNode(), Agg.getResNo() + i); 3322 // Copy values from the inserted value(s). 3323 if (NumValValues) { 3324 SDValue Val = getValue(Op1); 3325 for (; i != LinearIndex + NumValValues; ++i) 3326 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3327 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3328 } 3329 // Copy remaining value(s) from the original aggregate. 3330 for (; i != NumAggValues; ++i) 3331 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3332 SDValue(Agg.getNode(), Agg.getResNo() + i); 3333 3334 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3335 DAG.getVTList(AggValueVTs), Values)); 3336 } 3337 3338 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3339 const Value *Op0 = I.getOperand(0); 3340 Type *AggTy = Op0->getType(); 3341 Type *ValTy = I.getType(); 3342 bool OutOfUndef = isa<UndefValue>(Op0); 3343 3344 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3345 3346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3347 SmallVector<EVT, 4> ValValueVTs; 3348 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3349 3350 unsigned NumValValues = ValValueVTs.size(); 3351 3352 // Ignore a extractvalue that produces an empty object 3353 if (!NumValValues) { 3354 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3355 return; 3356 } 3357 3358 SmallVector<SDValue, 4> Values(NumValValues); 3359 3360 SDValue Agg = getValue(Op0); 3361 // Copy out the selected value(s). 3362 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3363 Values[i - LinearIndex] = 3364 OutOfUndef ? 3365 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3366 SDValue(Agg.getNode(), Agg.getResNo() + i); 3367 3368 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3369 DAG.getVTList(ValValueVTs), Values)); 3370 } 3371 3372 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3373 Value *Op0 = I.getOperand(0); 3374 // Note that the pointer operand may be a vector of pointers. Take the scalar 3375 // element which holds a pointer. 3376 Type *Ty = Op0->getType()->getScalarType(); 3377 unsigned AS = Ty->getPointerAddressSpace(); 3378 SDValue N = getValue(Op0); 3379 3380 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3381 OI != E; ++OI) { 3382 const Value *Idx = *OI; 3383 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3384 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3385 if (Field) { 3386 // N = N + Offset 3387 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3388 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3389 DAG.getConstant(Offset, N.getValueType())); 3390 } 3391 3392 Ty = StTy->getElementType(Field); 3393 } else { 3394 Ty = cast<SequentialType>(Ty)->getElementType(); 3395 3396 // If this is a constant subscript, handle it quickly. 3397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3398 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3399 if (CI->isZero()) continue; 3400 uint64_t Offs = 3401 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3402 SDValue OffsVal; 3403 EVT PTy = TLI.getPointerTy(AS); 3404 unsigned PtrBits = PTy.getSizeInBits(); 3405 if (PtrBits < 64) 3406 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3407 DAG.getConstant(Offs, MVT::i64)); 3408 else 3409 OffsVal = DAG.getConstant(Offs, PTy); 3410 3411 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3412 OffsVal); 3413 continue; 3414 } 3415 3416 // N = N + Idx * ElementSize; 3417 APInt ElementSize = 3418 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3419 SDValue IdxN = getValue(Idx); 3420 3421 // If the index is smaller or larger than intptr_t, truncate or extend 3422 // it. 3423 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3424 3425 // If this is a multiply by a power of two, turn it into a shl 3426 // immediately. This is a very common case. 3427 if (ElementSize != 1) { 3428 if (ElementSize.isPowerOf2()) { 3429 unsigned Amt = ElementSize.logBase2(); 3430 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3431 N.getValueType(), IdxN, 3432 DAG.getConstant(Amt, IdxN.getValueType())); 3433 } else { 3434 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3435 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3436 N.getValueType(), IdxN, Scale); 3437 } 3438 } 3439 3440 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3441 N.getValueType(), N, IdxN); 3442 } 3443 } 3444 3445 setValue(&I, N); 3446 } 3447 3448 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3449 // If this is a fixed sized alloca in the entry block of the function, 3450 // allocate it statically on the stack. 3451 if (FuncInfo.StaticAllocaMap.count(&I)) 3452 return; // getValue will auto-populate this. 3453 3454 Type *Ty = I.getAllocatedType(); 3455 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3456 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3457 unsigned Align = 3458 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3459 I.getAlignment()); 3460 3461 SDValue AllocSize = getValue(I.getArraySize()); 3462 3463 EVT IntPtr = TLI.getPointerTy(); 3464 if (AllocSize.getValueType() != IntPtr) 3465 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3466 3467 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3468 AllocSize, 3469 DAG.getConstant(TySize, IntPtr)); 3470 3471 // Handle alignment. If the requested alignment is less than or equal to 3472 // the stack alignment, ignore it. If the size is greater than or equal to 3473 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3474 unsigned StackAlign = 3475 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3476 if (Align <= StackAlign) 3477 Align = 0; 3478 3479 // Round the size of the allocation up to the stack alignment size 3480 // by add SA-1 to the size. 3481 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3482 AllocSize.getValueType(), AllocSize, 3483 DAG.getIntPtrConstant(StackAlign-1)); 3484 3485 // Mask out the low bits for alignment purposes. 3486 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3487 AllocSize.getValueType(), AllocSize, 3488 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3489 3490 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3491 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3492 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3493 setValue(&I, DSA); 3494 DAG.setRoot(DSA.getValue(1)); 3495 3496 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3497 } 3498 3499 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3500 if (I.isAtomic()) 3501 return visitAtomicLoad(I); 3502 3503 const Value *SV = I.getOperand(0); 3504 SDValue Ptr = getValue(SV); 3505 3506 Type *Ty = I.getType(); 3507 3508 bool isVolatile = I.isVolatile(); 3509 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3510 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3511 unsigned Alignment = I.getAlignment(); 3512 3513 AAMDNodes AAInfo; 3514 I.getAAMetadata(AAInfo); 3515 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3516 3517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3518 SmallVector<EVT, 4> ValueVTs; 3519 SmallVector<uint64_t, 4> Offsets; 3520 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3521 unsigned NumValues = ValueVTs.size(); 3522 if (NumValues == 0) 3523 return; 3524 3525 SDValue Root; 3526 bool ConstantMemory = false; 3527 if (isVolatile || NumValues > MaxParallelChains) 3528 // Serialize volatile loads with other side effects. 3529 Root = getRoot(); 3530 else if (AA->pointsToConstantMemory( 3531 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3532 // Do not serialize (non-volatile) loads of constant memory with anything. 3533 Root = DAG.getEntryNode(); 3534 ConstantMemory = true; 3535 } else { 3536 // Do not serialize non-volatile loads against each other. 3537 Root = DAG.getRoot(); 3538 } 3539 3540 if (isVolatile) 3541 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3542 3543 SmallVector<SDValue, 4> Values(NumValues); 3544 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3545 NumValues)); 3546 EVT PtrVT = Ptr.getValueType(); 3547 unsigned ChainI = 0; 3548 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3549 // Serializing loads here may result in excessive register pressure, and 3550 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3551 // could recover a bit by hoisting nodes upward in the chain by recognizing 3552 // they are side-effect free or do not alias. The optimizer should really 3553 // avoid this case by converting large object/array copies to llvm.memcpy 3554 // (MaxParallelChains should always remain as failsafe). 3555 if (ChainI == MaxParallelChains) { 3556 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3557 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3558 makeArrayRef(Chains.data(), ChainI)); 3559 Root = Chain; 3560 ChainI = 0; 3561 } 3562 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3563 PtrVT, Ptr, 3564 DAG.getConstant(Offsets[i], PtrVT)); 3565 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3566 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3567 isNonTemporal, isInvariant, Alignment, AAInfo, 3568 Ranges); 3569 3570 Values[i] = L; 3571 Chains[ChainI] = L.getValue(1); 3572 } 3573 3574 if (!ConstantMemory) { 3575 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3576 makeArrayRef(Chains.data(), ChainI)); 3577 if (isVolatile) 3578 DAG.setRoot(Chain); 3579 else 3580 PendingLoads.push_back(Chain); 3581 } 3582 3583 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3584 DAG.getVTList(ValueVTs), Values)); 3585 } 3586 3587 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3588 if (I.isAtomic()) 3589 return visitAtomicStore(I); 3590 3591 const Value *SrcV = I.getOperand(0); 3592 const Value *PtrV = I.getOperand(1); 3593 3594 SmallVector<EVT, 4> ValueVTs; 3595 SmallVector<uint64_t, 4> Offsets; 3596 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3597 ValueVTs, &Offsets); 3598 unsigned NumValues = ValueVTs.size(); 3599 if (NumValues == 0) 3600 return; 3601 3602 // Get the lowered operands. Note that we do this after 3603 // checking if NumResults is zero, because with zero results 3604 // the operands won't have values in the map. 3605 SDValue Src = getValue(SrcV); 3606 SDValue Ptr = getValue(PtrV); 3607 3608 SDValue Root = getRoot(); 3609 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3610 NumValues)); 3611 EVT PtrVT = Ptr.getValueType(); 3612 bool isVolatile = I.isVolatile(); 3613 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3614 unsigned Alignment = I.getAlignment(); 3615 3616 AAMDNodes AAInfo; 3617 I.getAAMetadata(AAInfo); 3618 3619 unsigned ChainI = 0; 3620 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3621 // See visitLoad comments. 3622 if (ChainI == MaxParallelChains) { 3623 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3624 makeArrayRef(Chains.data(), ChainI)); 3625 Root = Chain; 3626 ChainI = 0; 3627 } 3628 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3629 DAG.getConstant(Offsets[i], PtrVT)); 3630 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3631 SDValue(Src.getNode(), Src.getResNo() + i), 3632 Add, MachinePointerInfo(PtrV, Offsets[i]), 3633 isVolatile, isNonTemporal, Alignment, AAInfo); 3634 Chains[ChainI] = St; 3635 } 3636 3637 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3638 makeArrayRef(Chains.data(), ChainI)); 3639 DAG.setRoot(StoreNode); 3640 } 3641 3642 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3643 SDLoc dl = getCurSDLoc(); 3644 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3645 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3646 SynchronizationScope Scope = I.getSynchScope(); 3647 3648 SDValue InChain = getRoot(); 3649 3650 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3651 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3652 SDValue L = DAG.getAtomicCmpSwap( 3653 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3654 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3655 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3656 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3657 3658 SDValue OutChain = L.getValue(2); 3659 3660 setValue(&I, L); 3661 DAG.setRoot(OutChain); 3662 } 3663 3664 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3665 SDLoc dl = getCurSDLoc(); 3666 ISD::NodeType NT; 3667 switch (I.getOperation()) { 3668 default: llvm_unreachable("Unknown atomicrmw operation"); 3669 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3670 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3671 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3672 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3673 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3674 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3675 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3676 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3677 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3678 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3679 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3680 } 3681 AtomicOrdering Order = I.getOrdering(); 3682 SynchronizationScope Scope = I.getSynchScope(); 3683 3684 SDValue InChain = getRoot(); 3685 3686 SDValue L = 3687 DAG.getAtomic(NT, dl, 3688 getValue(I.getValOperand()).getSimpleValueType(), 3689 InChain, 3690 getValue(I.getPointerOperand()), 3691 getValue(I.getValOperand()), 3692 I.getPointerOperand(), 3693 /* Alignment=*/ 0, Order, Scope); 3694 3695 SDValue OutChain = L.getValue(1); 3696 3697 setValue(&I, L); 3698 DAG.setRoot(OutChain); 3699 } 3700 3701 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3702 SDLoc dl = getCurSDLoc(); 3703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3704 SDValue Ops[3]; 3705 Ops[0] = getRoot(); 3706 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3707 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3708 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3709 } 3710 3711 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3712 SDLoc dl = getCurSDLoc(); 3713 AtomicOrdering Order = I.getOrdering(); 3714 SynchronizationScope Scope = I.getSynchScope(); 3715 3716 SDValue InChain = getRoot(); 3717 3718 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3719 EVT VT = TLI.getValueType(I.getType()); 3720 3721 if (I.getAlignment() < VT.getSizeInBits() / 8) 3722 report_fatal_error("Cannot generate unaligned atomic load"); 3723 3724 MachineMemOperand *MMO = 3725 DAG.getMachineFunction(). 3726 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3727 MachineMemOperand::MOVolatile | 3728 MachineMemOperand::MOLoad, 3729 VT.getStoreSize(), 3730 I.getAlignment() ? I.getAlignment() : 3731 DAG.getEVTAlignment(VT)); 3732 3733 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3734 SDValue L = 3735 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3736 getValue(I.getPointerOperand()), MMO, 3737 Order, Scope); 3738 3739 SDValue OutChain = L.getValue(1); 3740 3741 setValue(&I, L); 3742 DAG.setRoot(OutChain); 3743 } 3744 3745 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3746 SDLoc dl = getCurSDLoc(); 3747 3748 AtomicOrdering Order = I.getOrdering(); 3749 SynchronizationScope Scope = I.getSynchScope(); 3750 3751 SDValue InChain = getRoot(); 3752 3753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3754 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3755 3756 if (I.getAlignment() < VT.getSizeInBits() / 8) 3757 report_fatal_error("Cannot generate unaligned atomic store"); 3758 3759 SDValue OutChain = 3760 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3761 InChain, 3762 getValue(I.getPointerOperand()), 3763 getValue(I.getValueOperand()), 3764 I.getPointerOperand(), I.getAlignment(), 3765 Order, Scope); 3766 3767 DAG.setRoot(OutChain); 3768 } 3769 3770 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3771 /// node. 3772 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3773 unsigned Intrinsic) { 3774 bool HasChain = !I.doesNotAccessMemory(); 3775 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3776 3777 // Build the operand list. 3778 SmallVector<SDValue, 8> Ops; 3779 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3780 if (OnlyLoad) { 3781 // We don't need to serialize loads against other loads. 3782 Ops.push_back(DAG.getRoot()); 3783 } else { 3784 Ops.push_back(getRoot()); 3785 } 3786 } 3787 3788 // Info is set by getTgtMemInstrinsic 3789 TargetLowering::IntrinsicInfo Info; 3790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3791 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3792 3793 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3794 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3795 Info.opc == ISD::INTRINSIC_W_CHAIN) 3796 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3797 3798 // Add all operands of the call to the operand list. 3799 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3800 SDValue Op = getValue(I.getArgOperand(i)); 3801 Ops.push_back(Op); 3802 } 3803 3804 SmallVector<EVT, 4> ValueVTs; 3805 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3806 3807 if (HasChain) 3808 ValueVTs.push_back(MVT::Other); 3809 3810 SDVTList VTs = DAG.getVTList(ValueVTs); 3811 3812 // Create the node. 3813 SDValue Result; 3814 if (IsTgtIntrinsic) { 3815 // This is target intrinsic that touches memory 3816 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3817 VTs, Ops, Info.memVT, 3818 MachinePointerInfo(Info.ptrVal, Info.offset), 3819 Info.align, Info.vol, 3820 Info.readMem, Info.writeMem, Info.size); 3821 } else if (!HasChain) { 3822 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3823 } else if (!I.getType()->isVoidTy()) { 3824 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3825 } else { 3826 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3827 } 3828 3829 if (HasChain) { 3830 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3831 if (OnlyLoad) 3832 PendingLoads.push_back(Chain); 3833 else 3834 DAG.setRoot(Chain); 3835 } 3836 3837 if (!I.getType()->isVoidTy()) { 3838 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3839 EVT VT = TLI.getValueType(PTy); 3840 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3841 } 3842 3843 setValue(&I, Result); 3844 } 3845 } 3846 3847 /// GetSignificand - Get the significand and build it into a floating-point 3848 /// number with exponent of 1: 3849 /// 3850 /// Op = (Op & 0x007fffff) | 0x3f800000; 3851 /// 3852 /// where Op is the hexadecimal representation of floating point value. 3853 static SDValue 3854 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3855 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3856 DAG.getConstant(0x007fffff, MVT::i32)); 3857 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3858 DAG.getConstant(0x3f800000, MVT::i32)); 3859 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3860 } 3861 3862 /// GetExponent - Get the exponent: 3863 /// 3864 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3865 /// 3866 /// where Op is the hexadecimal representation of floating point value. 3867 static SDValue 3868 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3869 SDLoc dl) { 3870 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3871 DAG.getConstant(0x7f800000, MVT::i32)); 3872 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3873 DAG.getConstant(23, TLI.getPointerTy())); 3874 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3875 DAG.getConstant(127, MVT::i32)); 3876 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3877 } 3878 3879 /// getF32Constant - Get 32-bit floating point constant. 3880 static SDValue 3881 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3882 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3883 MVT::f32); 3884 } 3885 3886 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3887 /// limited-precision mode. 3888 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3889 const TargetLowering &TLI) { 3890 if (Op.getValueType() == MVT::f32 && 3891 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3892 3893 // Put the exponent in the right bit position for later addition to the 3894 // final result: 3895 // 3896 // #define LOG2OFe 1.4426950f 3897 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3898 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3899 getF32Constant(DAG, 0x3fb8aa3b)); 3900 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3901 3902 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3903 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3904 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3905 3906 // IntegerPartOfX <<= 23; 3907 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3908 DAG.getConstant(23, TLI.getPointerTy())); 3909 3910 SDValue TwoToFracPartOfX; 3911 if (LimitFloatPrecision <= 6) { 3912 // For floating-point precision of 6: 3913 // 3914 // TwoToFractionalPartOfX = 3915 // 0.997535578f + 3916 // (0.735607626f + 0.252464424f * x) * x; 3917 // 3918 // error 0.0144103317, which is 6 bits 3919 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3920 getF32Constant(DAG, 0x3e814304)); 3921 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3922 getF32Constant(DAG, 0x3f3c50c8)); 3923 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3924 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3925 getF32Constant(DAG, 0x3f7f5e7e)); 3926 } else if (LimitFloatPrecision <= 12) { 3927 // For floating-point precision of 12: 3928 // 3929 // TwoToFractionalPartOfX = 3930 // 0.999892986f + 3931 // (0.696457318f + 3932 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3933 // 3934 // 0.000107046256 error, which is 13 to 14 bits 3935 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3936 getF32Constant(DAG, 0x3da235e3)); 3937 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3938 getF32Constant(DAG, 0x3e65b8f3)); 3939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3940 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3941 getF32Constant(DAG, 0x3f324b07)); 3942 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3943 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3944 getF32Constant(DAG, 0x3f7ff8fd)); 3945 } else { // LimitFloatPrecision <= 18 3946 // For floating-point precision of 18: 3947 // 3948 // TwoToFractionalPartOfX = 3949 // 0.999999982f + 3950 // (0.693148872f + 3951 // (0.240227044f + 3952 // (0.554906021e-1f + 3953 // (0.961591928e-2f + 3954 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3955 // 3956 // error 2.47208000*10^(-7), which is better than 18 bits 3957 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3958 getF32Constant(DAG, 0x3924b03e)); 3959 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3960 getF32Constant(DAG, 0x3ab24b87)); 3961 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3962 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3963 getF32Constant(DAG, 0x3c1d8c17)); 3964 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3965 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3966 getF32Constant(DAG, 0x3d634a1d)); 3967 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3968 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3969 getF32Constant(DAG, 0x3e75fe14)); 3970 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3971 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3972 getF32Constant(DAG, 0x3f317234)); 3973 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3974 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3975 getF32Constant(DAG, 0x3f800000)); 3976 } 3977 3978 // Add the exponent into the result in integer domain. 3979 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3980 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3981 DAG.getNode(ISD::ADD, dl, MVT::i32, 3982 t13, IntegerPartOfX)); 3983 } 3984 3985 // No special expansion. 3986 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3987 } 3988 3989 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3990 /// limited-precision mode. 3991 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3992 const TargetLowering &TLI) { 3993 if (Op.getValueType() == MVT::f32 && 3994 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3995 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3996 3997 // Scale the exponent by log(2) [0.69314718f]. 3998 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3999 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4000 getF32Constant(DAG, 0x3f317218)); 4001 4002 // Get the significand and build it into a floating-point number with 4003 // exponent of 1. 4004 SDValue X = GetSignificand(DAG, Op1, dl); 4005 4006 SDValue LogOfMantissa; 4007 if (LimitFloatPrecision <= 6) { 4008 // For floating-point precision of 6: 4009 // 4010 // LogofMantissa = 4011 // -1.1609546f + 4012 // (1.4034025f - 0.23903021f * x) * x; 4013 // 4014 // error 0.0034276066, which is better than 8 bits 4015 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4016 getF32Constant(DAG, 0xbe74c456)); 4017 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4018 getF32Constant(DAG, 0x3fb3a2b1)); 4019 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4020 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4021 getF32Constant(DAG, 0x3f949a29)); 4022 } else if (LimitFloatPrecision <= 12) { 4023 // For floating-point precision of 12: 4024 // 4025 // LogOfMantissa = 4026 // -1.7417939f + 4027 // (2.8212026f + 4028 // (-1.4699568f + 4029 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4030 // 4031 // error 0.000061011436, which is 14 bits 4032 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4033 getF32Constant(DAG, 0xbd67b6d6)); 4034 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4035 getF32Constant(DAG, 0x3ee4f4b8)); 4036 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4037 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4038 getF32Constant(DAG, 0x3fbc278b)); 4039 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4040 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4041 getF32Constant(DAG, 0x40348e95)); 4042 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4043 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4044 getF32Constant(DAG, 0x3fdef31a)); 4045 } else { // LimitFloatPrecision <= 18 4046 // For floating-point precision of 18: 4047 // 4048 // LogOfMantissa = 4049 // -2.1072184f + 4050 // (4.2372794f + 4051 // (-3.7029485f + 4052 // (2.2781945f + 4053 // (-0.87823314f + 4054 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4055 // 4056 // error 0.0000023660568, which is better than 18 bits 4057 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4058 getF32Constant(DAG, 0xbc91e5ac)); 4059 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4060 getF32Constant(DAG, 0x3e4350aa)); 4061 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4062 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4063 getF32Constant(DAG, 0x3f60d3e3)); 4064 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4065 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4066 getF32Constant(DAG, 0x4011cdf0)); 4067 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4068 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4069 getF32Constant(DAG, 0x406cfd1c)); 4070 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4071 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4072 getF32Constant(DAG, 0x408797cb)); 4073 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4074 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4075 getF32Constant(DAG, 0x4006dcab)); 4076 } 4077 4078 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4079 } 4080 4081 // No special expansion. 4082 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4083 } 4084 4085 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4086 /// limited-precision mode. 4087 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4088 const TargetLowering &TLI) { 4089 if (Op.getValueType() == MVT::f32 && 4090 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4091 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4092 4093 // Get the exponent. 4094 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4095 4096 // Get the significand and build it into a floating-point number with 4097 // exponent of 1. 4098 SDValue X = GetSignificand(DAG, Op1, dl); 4099 4100 // Different possible minimax approximations of significand in 4101 // floating-point for various degrees of accuracy over [1,2]. 4102 SDValue Log2ofMantissa; 4103 if (LimitFloatPrecision <= 6) { 4104 // For floating-point precision of 6: 4105 // 4106 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4107 // 4108 // error 0.0049451742, which is more than 7 bits 4109 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4110 getF32Constant(DAG, 0xbeb08fe0)); 4111 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4112 getF32Constant(DAG, 0x40019463)); 4113 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4114 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4115 getF32Constant(DAG, 0x3fd6633d)); 4116 } else if (LimitFloatPrecision <= 12) { 4117 // For floating-point precision of 12: 4118 // 4119 // Log2ofMantissa = 4120 // -2.51285454f + 4121 // (4.07009056f + 4122 // (-2.12067489f + 4123 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4124 // 4125 // error 0.0000876136000, which is better than 13 bits 4126 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4127 getF32Constant(DAG, 0xbda7262e)); 4128 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4129 getF32Constant(DAG, 0x3f25280b)); 4130 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4131 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4132 getF32Constant(DAG, 0x4007b923)); 4133 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4134 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4135 getF32Constant(DAG, 0x40823e2f)); 4136 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4137 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4138 getF32Constant(DAG, 0x4020d29c)); 4139 } else { // LimitFloatPrecision <= 18 4140 // For floating-point precision of 18: 4141 // 4142 // Log2ofMantissa = 4143 // -3.0400495f + 4144 // (6.1129976f + 4145 // (-5.3420409f + 4146 // (3.2865683f + 4147 // (-1.2669343f + 4148 // (0.27515199f - 4149 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4150 // 4151 // error 0.0000018516, which is better than 18 bits 4152 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4153 getF32Constant(DAG, 0xbcd2769e)); 4154 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4155 getF32Constant(DAG, 0x3e8ce0b9)); 4156 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4157 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4158 getF32Constant(DAG, 0x3fa22ae7)); 4159 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4160 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4161 getF32Constant(DAG, 0x40525723)); 4162 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4163 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4164 getF32Constant(DAG, 0x40aaf200)); 4165 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4166 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4167 getF32Constant(DAG, 0x40c39dad)); 4168 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4169 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4170 getF32Constant(DAG, 0x4042902c)); 4171 } 4172 4173 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4174 } 4175 4176 // No special expansion. 4177 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4178 } 4179 4180 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4181 /// limited-precision mode. 4182 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4183 const TargetLowering &TLI) { 4184 if (Op.getValueType() == MVT::f32 && 4185 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4186 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4187 4188 // Scale the exponent by log10(2) [0.30102999f]. 4189 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4190 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4191 getF32Constant(DAG, 0x3e9a209a)); 4192 4193 // Get the significand and build it into a floating-point number with 4194 // exponent of 1. 4195 SDValue X = GetSignificand(DAG, Op1, dl); 4196 4197 SDValue Log10ofMantissa; 4198 if (LimitFloatPrecision <= 6) { 4199 // For floating-point precision of 6: 4200 // 4201 // Log10ofMantissa = 4202 // -0.50419619f + 4203 // (0.60948995f - 0.10380950f * x) * x; 4204 // 4205 // error 0.0014886165, which is 6 bits 4206 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4207 getF32Constant(DAG, 0xbdd49a13)); 4208 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4209 getF32Constant(DAG, 0x3f1c0789)); 4210 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4211 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4212 getF32Constant(DAG, 0x3f011300)); 4213 } else if (LimitFloatPrecision <= 12) { 4214 // For floating-point precision of 12: 4215 // 4216 // Log10ofMantissa = 4217 // -0.64831180f + 4218 // (0.91751397f + 4219 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4220 // 4221 // error 0.00019228036, which is better than 12 bits 4222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4223 getF32Constant(DAG, 0x3d431f31)); 4224 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4225 getF32Constant(DAG, 0x3ea21fb2)); 4226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4227 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4228 getF32Constant(DAG, 0x3f6ae232)); 4229 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4230 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4231 getF32Constant(DAG, 0x3f25f7c3)); 4232 } else { // LimitFloatPrecision <= 18 4233 // For floating-point precision of 18: 4234 // 4235 // Log10ofMantissa = 4236 // -0.84299375f + 4237 // (1.5327582f + 4238 // (-1.0688956f + 4239 // (0.49102474f + 4240 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4241 // 4242 // error 0.0000037995730, which is better than 18 bits 4243 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4244 getF32Constant(DAG, 0x3c5d51ce)); 4245 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4246 getF32Constant(DAG, 0x3e00685a)); 4247 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4248 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4249 getF32Constant(DAG, 0x3efb6798)); 4250 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4251 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4252 getF32Constant(DAG, 0x3f88d192)); 4253 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4254 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4255 getF32Constant(DAG, 0x3fc4316c)); 4256 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4257 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4258 getF32Constant(DAG, 0x3f57ce70)); 4259 } 4260 4261 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4262 } 4263 4264 // No special expansion. 4265 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4266 } 4267 4268 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4269 /// limited-precision mode. 4270 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4271 const TargetLowering &TLI) { 4272 if (Op.getValueType() == MVT::f32 && 4273 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4274 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4275 4276 // FractionalPartOfX = x - (float)IntegerPartOfX; 4277 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4278 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4279 4280 // IntegerPartOfX <<= 23; 4281 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4282 DAG.getConstant(23, TLI.getPointerTy())); 4283 4284 SDValue TwoToFractionalPartOfX; 4285 if (LimitFloatPrecision <= 6) { 4286 // For floating-point precision of 6: 4287 // 4288 // TwoToFractionalPartOfX = 4289 // 0.997535578f + 4290 // (0.735607626f + 0.252464424f * x) * x; 4291 // 4292 // error 0.0144103317, which is 6 bits 4293 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4294 getF32Constant(DAG, 0x3e814304)); 4295 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4296 getF32Constant(DAG, 0x3f3c50c8)); 4297 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4298 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4299 getF32Constant(DAG, 0x3f7f5e7e)); 4300 } else if (LimitFloatPrecision <= 12) { 4301 // For floating-point precision of 12: 4302 // 4303 // TwoToFractionalPartOfX = 4304 // 0.999892986f + 4305 // (0.696457318f + 4306 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4307 // 4308 // error 0.000107046256, which is 13 to 14 bits 4309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4310 getF32Constant(DAG, 0x3da235e3)); 4311 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4312 getF32Constant(DAG, 0x3e65b8f3)); 4313 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4314 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4315 getF32Constant(DAG, 0x3f324b07)); 4316 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4317 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4318 getF32Constant(DAG, 0x3f7ff8fd)); 4319 } else { // LimitFloatPrecision <= 18 4320 // For floating-point precision of 18: 4321 // 4322 // TwoToFractionalPartOfX = 4323 // 0.999999982f + 4324 // (0.693148872f + 4325 // (0.240227044f + 4326 // (0.554906021e-1f + 4327 // (0.961591928e-2f + 4328 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4329 // error 2.47208000*10^(-7), which is better than 18 bits 4330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4331 getF32Constant(DAG, 0x3924b03e)); 4332 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4333 getF32Constant(DAG, 0x3ab24b87)); 4334 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4335 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4336 getF32Constant(DAG, 0x3c1d8c17)); 4337 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4338 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4339 getF32Constant(DAG, 0x3d634a1d)); 4340 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4341 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4342 getF32Constant(DAG, 0x3e75fe14)); 4343 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4344 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4345 getF32Constant(DAG, 0x3f317234)); 4346 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4347 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4348 getF32Constant(DAG, 0x3f800000)); 4349 } 4350 4351 // Add the exponent into the result in integer domain. 4352 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4353 TwoToFractionalPartOfX); 4354 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4355 DAG.getNode(ISD::ADD, dl, MVT::i32, 4356 t13, IntegerPartOfX)); 4357 } 4358 4359 // No special expansion. 4360 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4361 } 4362 4363 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4364 /// limited-precision mode with x == 10.0f. 4365 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4366 SelectionDAG &DAG, const TargetLowering &TLI) { 4367 bool IsExp10 = false; 4368 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4369 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4370 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4371 APFloat Ten(10.0f); 4372 IsExp10 = LHSC->isExactlyValue(Ten); 4373 } 4374 } 4375 4376 if (IsExp10) { 4377 // Put the exponent in the right bit position for later addition to the 4378 // final result: 4379 // 4380 // #define LOG2OF10 3.3219281f 4381 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4382 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4383 getF32Constant(DAG, 0x40549a78)); 4384 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4385 4386 // FractionalPartOfX = x - (float)IntegerPartOfX; 4387 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4388 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4389 4390 // IntegerPartOfX <<= 23; 4391 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4392 DAG.getConstant(23, TLI.getPointerTy())); 4393 4394 SDValue TwoToFractionalPartOfX; 4395 if (LimitFloatPrecision <= 6) { 4396 // For floating-point precision of 6: 4397 // 4398 // twoToFractionalPartOfX = 4399 // 0.997535578f + 4400 // (0.735607626f + 0.252464424f * x) * x; 4401 // 4402 // error 0.0144103317, which is 6 bits 4403 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4404 getF32Constant(DAG, 0x3e814304)); 4405 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4406 getF32Constant(DAG, 0x3f3c50c8)); 4407 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4408 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4409 getF32Constant(DAG, 0x3f7f5e7e)); 4410 } else if (LimitFloatPrecision <= 12) { 4411 // For floating-point precision of 12: 4412 // 4413 // TwoToFractionalPartOfX = 4414 // 0.999892986f + 4415 // (0.696457318f + 4416 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4417 // 4418 // error 0.000107046256, which is 13 to 14 bits 4419 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4420 getF32Constant(DAG, 0x3da235e3)); 4421 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4422 getF32Constant(DAG, 0x3e65b8f3)); 4423 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4424 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4425 getF32Constant(DAG, 0x3f324b07)); 4426 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4427 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4428 getF32Constant(DAG, 0x3f7ff8fd)); 4429 } else { // LimitFloatPrecision <= 18 4430 // For floating-point precision of 18: 4431 // 4432 // TwoToFractionalPartOfX = 4433 // 0.999999982f + 4434 // (0.693148872f + 4435 // (0.240227044f + 4436 // (0.554906021e-1f + 4437 // (0.961591928e-2f + 4438 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4439 // error 2.47208000*10^(-7), which is better than 18 bits 4440 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4441 getF32Constant(DAG, 0x3924b03e)); 4442 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4443 getF32Constant(DAG, 0x3ab24b87)); 4444 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4445 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4446 getF32Constant(DAG, 0x3c1d8c17)); 4447 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4448 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4449 getF32Constant(DAG, 0x3d634a1d)); 4450 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4451 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4452 getF32Constant(DAG, 0x3e75fe14)); 4453 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4454 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4455 getF32Constant(DAG, 0x3f317234)); 4456 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4457 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4458 getF32Constant(DAG, 0x3f800000)); 4459 } 4460 4461 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4462 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4463 DAG.getNode(ISD::ADD, dl, MVT::i32, 4464 t13, IntegerPartOfX)); 4465 } 4466 4467 // No special expansion. 4468 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4469 } 4470 4471 4472 /// ExpandPowI - Expand a llvm.powi intrinsic. 4473 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4474 SelectionDAG &DAG) { 4475 // If RHS is a constant, we can expand this out to a multiplication tree, 4476 // otherwise we end up lowering to a call to __powidf2 (for example). When 4477 // optimizing for size, we only want to do this if the expansion would produce 4478 // a small number of multiplies, otherwise we do the full expansion. 4479 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4480 // Get the exponent as a positive value. 4481 unsigned Val = RHSC->getSExtValue(); 4482 if ((int)Val < 0) Val = -Val; 4483 4484 // powi(x, 0) -> 1.0 4485 if (Val == 0) 4486 return DAG.getConstantFP(1.0, LHS.getValueType()); 4487 4488 const Function *F = DAG.getMachineFunction().getFunction(); 4489 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4490 Attribute::OptimizeForSize) || 4491 // If optimizing for size, don't insert too many multiplies. This 4492 // inserts up to 5 multiplies. 4493 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4494 // We use the simple binary decomposition method to generate the multiply 4495 // sequence. There are more optimal ways to do this (for example, 4496 // powi(x,15) generates one more multiply than it should), but this has 4497 // the benefit of being both really simple and much better than a libcall. 4498 SDValue Res; // Logically starts equal to 1.0 4499 SDValue CurSquare = LHS; 4500 while (Val) { 4501 if (Val & 1) { 4502 if (Res.getNode()) 4503 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4504 else 4505 Res = CurSquare; // 1.0*CurSquare. 4506 } 4507 4508 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4509 CurSquare, CurSquare); 4510 Val >>= 1; 4511 } 4512 4513 // If the original was negative, invert the result, producing 1/(x*x*x). 4514 if (RHSC->getSExtValue() < 0) 4515 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4516 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4517 return Res; 4518 } 4519 } 4520 4521 // Otherwise, expand to a libcall. 4522 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4523 } 4524 4525 // getTruncatedArgReg - Find underlying register used for an truncated 4526 // argument. 4527 static unsigned getTruncatedArgReg(const SDValue &N) { 4528 if (N.getOpcode() != ISD::TRUNCATE) 4529 return 0; 4530 4531 const SDValue &Ext = N.getOperand(0); 4532 if (Ext.getOpcode() == ISD::AssertZext || 4533 Ext.getOpcode() == ISD::AssertSext) { 4534 const SDValue &CFR = Ext.getOperand(0); 4535 if (CFR.getOpcode() == ISD::CopyFromReg) 4536 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4537 if (CFR.getOpcode() == ISD::TRUNCATE) 4538 return getTruncatedArgReg(CFR); 4539 } 4540 return 0; 4541 } 4542 4543 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4544 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4545 /// At the end of instruction selection, they will be inserted to the entry BB. 4546 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4547 MDNode *Variable, 4548 MDNode *Expr, int64_t Offset, 4549 bool IsIndirect, 4550 const SDValue &N) { 4551 const Argument *Arg = dyn_cast<Argument>(V); 4552 if (!Arg) 4553 return false; 4554 4555 MachineFunction &MF = DAG.getMachineFunction(); 4556 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4557 4558 // Ignore inlined function arguments here. 4559 DIVariable DV(Variable); 4560 if (DV.isInlinedFnArgument(MF.getFunction())) 4561 return false; 4562 4563 Optional<MachineOperand> Op; 4564 // Some arguments' frame index is recorded during argument lowering. 4565 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4566 Op = MachineOperand::CreateFI(FI); 4567 4568 if (!Op && N.getNode()) { 4569 unsigned Reg; 4570 if (N.getOpcode() == ISD::CopyFromReg) 4571 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4572 else 4573 Reg = getTruncatedArgReg(N); 4574 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4575 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4576 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4577 if (PR) 4578 Reg = PR; 4579 } 4580 if (Reg) 4581 Op = MachineOperand::CreateReg(Reg, false); 4582 } 4583 4584 if (!Op) { 4585 // Check if ValueMap has reg number. 4586 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4587 if (VMI != FuncInfo.ValueMap.end()) 4588 Op = MachineOperand::CreateReg(VMI->second, false); 4589 } 4590 4591 if (!Op && N.getNode()) 4592 // Check if frame index is available. 4593 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4594 if (FrameIndexSDNode *FINode = 4595 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4596 Op = MachineOperand::CreateFI(FINode->getIndex()); 4597 4598 if (!Op) 4599 return false; 4600 4601 if (Op->isReg()) 4602 FuncInfo.ArgDbgValues.push_back( 4603 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4604 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4605 else 4606 FuncInfo.ArgDbgValues.push_back( 4607 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4608 .addOperand(*Op) 4609 .addImm(Offset) 4610 .addMetadata(Variable) 4611 .addMetadata(Expr)); 4612 4613 return true; 4614 } 4615 4616 // VisualStudio defines setjmp as _setjmp 4617 #if defined(_MSC_VER) && defined(setjmp) && \ 4618 !defined(setjmp_undefined_for_msvc) 4619 # pragma push_macro("setjmp") 4620 # undef setjmp 4621 # define setjmp_undefined_for_msvc 4622 #endif 4623 4624 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4625 /// we want to emit this as a call to a named external function, return the name 4626 /// otherwise lower it and return null. 4627 const char * 4628 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4630 SDLoc sdl = getCurSDLoc(); 4631 DebugLoc dl = getCurDebugLoc(); 4632 SDValue Res; 4633 4634 switch (Intrinsic) { 4635 default: 4636 // By default, turn this into a target intrinsic node. 4637 visitTargetIntrinsic(I, Intrinsic); 4638 return nullptr; 4639 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4640 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4641 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4642 case Intrinsic::returnaddress: 4643 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4644 getValue(I.getArgOperand(0)))); 4645 return nullptr; 4646 case Intrinsic::frameaddress: 4647 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4648 getValue(I.getArgOperand(0)))); 4649 return nullptr; 4650 case Intrinsic::read_register: { 4651 Value *Reg = I.getArgOperand(0); 4652 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4653 EVT VT = TLI.getValueType(I.getType()); 4654 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4655 return nullptr; 4656 } 4657 case Intrinsic::write_register: { 4658 Value *Reg = I.getArgOperand(0); 4659 Value *RegValue = I.getArgOperand(1); 4660 SDValue Chain = getValue(RegValue).getOperand(0); 4661 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4662 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4663 RegName, getValue(RegValue))); 4664 return nullptr; 4665 } 4666 case Intrinsic::setjmp: 4667 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4668 case Intrinsic::longjmp: 4669 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4670 case Intrinsic::memcpy: { 4671 // Assert for address < 256 since we support only user defined address 4672 // spaces. 4673 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4674 < 256 && 4675 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4676 < 256 && 4677 "Unknown address space"); 4678 SDValue Op1 = getValue(I.getArgOperand(0)); 4679 SDValue Op2 = getValue(I.getArgOperand(1)); 4680 SDValue Op3 = getValue(I.getArgOperand(2)); 4681 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4682 if (!Align) 4683 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4684 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4685 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4686 MachinePointerInfo(I.getArgOperand(0)), 4687 MachinePointerInfo(I.getArgOperand(1)))); 4688 return nullptr; 4689 } 4690 case Intrinsic::memset: { 4691 // Assert for address < 256 since we support only user defined address 4692 // spaces. 4693 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4694 < 256 && 4695 "Unknown address space"); 4696 SDValue Op1 = getValue(I.getArgOperand(0)); 4697 SDValue Op2 = getValue(I.getArgOperand(1)); 4698 SDValue Op3 = getValue(I.getArgOperand(2)); 4699 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4700 if (!Align) 4701 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4702 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4703 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4704 MachinePointerInfo(I.getArgOperand(0)))); 4705 return nullptr; 4706 } 4707 case Intrinsic::memmove: { 4708 // Assert for address < 256 since we support only user defined address 4709 // spaces. 4710 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4711 < 256 && 4712 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4713 < 256 && 4714 "Unknown address space"); 4715 SDValue Op1 = getValue(I.getArgOperand(0)); 4716 SDValue Op2 = getValue(I.getArgOperand(1)); 4717 SDValue Op3 = getValue(I.getArgOperand(2)); 4718 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4719 if (!Align) 4720 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4721 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4722 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4723 MachinePointerInfo(I.getArgOperand(0)), 4724 MachinePointerInfo(I.getArgOperand(1)))); 4725 return nullptr; 4726 } 4727 case Intrinsic::dbg_declare: { 4728 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4729 MDNode *Variable = DI.getVariable(); 4730 MDNode *Expression = DI.getExpression(); 4731 const Value *Address = DI.getAddress(); 4732 DIVariable DIVar(Variable); 4733 assert((!DIVar || DIVar.isVariable()) && 4734 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4735 if (!Address || !DIVar) { 4736 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4737 return nullptr; 4738 } 4739 4740 // Check if address has undef value. 4741 if (isa<UndefValue>(Address) || 4742 (Address->use_empty() && !isa<Argument>(Address))) { 4743 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4744 return nullptr; 4745 } 4746 4747 SDValue &N = NodeMap[Address]; 4748 if (!N.getNode() && isa<Argument>(Address)) 4749 // Check unused arguments map. 4750 N = UnusedArgNodeMap[Address]; 4751 SDDbgValue *SDV; 4752 if (N.getNode()) { 4753 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4754 Address = BCI->getOperand(0); 4755 // Parameters are handled specially. 4756 bool isParameter = 4757 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4758 isa<Argument>(Address)); 4759 4760 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4761 4762 if (isParameter && !AI) { 4763 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4764 if (FINode) 4765 // Byval parameter. We have a frame index at this point. 4766 SDV = DAG.getFrameIndexDbgValue( 4767 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4768 else { 4769 // Address is an argument, so try to emit its dbg value using 4770 // virtual register info from the FuncInfo.ValueMap. 4771 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4772 return nullptr; 4773 } 4774 } else if (AI) 4775 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4776 true, 0, dl, SDNodeOrder); 4777 else { 4778 // Can't do anything with other non-AI cases yet. 4779 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4780 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4781 DEBUG(Address->dump()); 4782 return nullptr; 4783 } 4784 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4785 } else { 4786 // If Address is an argument then try to emit its dbg value using 4787 // virtual register info from the FuncInfo.ValueMap. 4788 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4789 N)) { 4790 // If variable is pinned by a alloca in dominating bb then 4791 // use StaticAllocaMap. 4792 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4793 if (AI->getParent() != DI.getParent()) { 4794 DenseMap<const AllocaInst*, int>::iterator SI = 4795 FuncInfo.StaticAllocaMap.find(AI); 4796 if (SI != FuncInfo.StaticAllocaMap.end()) { 4797 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4798 0, dl, SDNodeOrder); 4799 DAG.AddDbgValue(SDV, nullptr, false); 4800 return nullptr; 4801 } 4802 } 4803 } 4804 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4805 } 4806 } 4807 return nullptr; 4808 } 4809 case Intrinsic::dbg_value: { 4810 const DbgValueInst &DI = cast<DbgValueInst>(I); 4811 DIVariable DIVar(DI.getVariable()); 4812 assert((!DIVar || DIVar.isVariable()) && 4813 "Variable in DbgValueInst should be either null or a DIVariable."); 4814 if (!DIVar) 4815 return nullptr; 4816 4817 MDNode *Variable = DI.getVariable(); 4818 MDNode *Expression = DI.getExpression(); 4819 uint64_t Offset = DI.getOffset(); 4820 const Value *V = DI.getValue(); 4821 if (!V) 4822 return nullptr; 4823 4824 SDDbgValue *SDV; 4825 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4826 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4827 SDNodeOrder); 4828 DAG.AddDbgValue(SDV, nullptr, false); 4829 } else { 4830 // Do not use getValue() in here; we don't want to generate code at 4831 // this point if it hasn't been done yet. 4832 SDValue N = NodeMap[V]; 4833 if (!N.getNode() && isa<Argument>(V)) 4834 // Check unused arguments map. 4835 N = UnusedArgNodeMap[V]; 4836 if (N.getNode()) { 4837 // A dbg.value for an alloca is always indirect. 4838 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4839 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4840 IsIndirect, N)) { 4841 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4842 IsIndirect, Offset, dl, SDNodeOrder); 4843 DAG.AddDbgValue(SDV, N.getNode(), false); 4844 } 4845 } else if (!V->use_empty() ) { 4846 // Do not call getValue(V) yet, as we don't want to generate code. 4847 // Remember it for later. 4848 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4849 DanglingDebugInfoMap[V] = DDI; 4850 } else { 4851 // We may expand this to cover more cases. One case where we have no 4852 // data available is an unreferenced parameter. 4853 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4854 } 4855 } 4856 4857 // Build a debug info table entry. 4858 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4859 V = BCI->getOperand(0); 4860 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4861 // Don't handle byval struct arguments or VLAs, for example. 4862 if (!AI) { 4863 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4864 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4865 return nullptr; 4866 } 4867 DenseMap<const AllocaInst*, int>::iterator SI = 4868 FuncInfo.StaticAllocaMap.find(AI); 4869 if (SI == FuncInfo.StaticAllocaMap.end()) 4870 return nullptr; // VLAs. 4871 return nullptr; 4872 } 4873 4874 case Intrinsic::eh_typeid_for: { 4875 // Find the type id for the given typeinfo. 4876 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4877 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4878 Res = DAG.getConstant(TypeID, MVT::i32); 4879 setValue(&I, Res); 4880 return nullptr; 4881 } 4882 4883 case Intrinsic::eh_return_i32: 4884 case Intrinsic::eh_return_i64: 4885 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4886 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4887 MVT::Other, 4888 getControlRoot(), 4889 getValue(I.getArgOperand(0)), 4890 getValue(I.getArgOperand(1)))); 4891 return nullptr; 4892 case Intrinsic::eh_unwind_init: 4893 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4894 return nullptr; 4895 case Intrinsic::eh_dwarf_cfa: { 4896 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4897 TLI.getPointerTy()); 4898 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4899 CfaArg.getValueType(), 4900 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4901 CfaArg.getValueType()), 4902 CfaArg); 4903 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4904 DAG.getConstant(0, TLI.getPointerTy())); 4905 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4906 FA, Offset)); 4907 return nullptr; 4908 } 4909 case Intrinsic::eh_sjlj_callsite: { 4910 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4911 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4912 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4913 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4914 4915 MMI.setCurrentCallSite(CI->getZExtValue()); 4916 return nullptr; 4917 } 4918 case Intrinsic::eh_sjlj_functioncontext: { 4919 // Get and store the index of the function context. 4920 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4921 AllocaInst *FnCtx = 4922 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4923 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4924 MFI->setFunctionContextIndex(FI); 4925 return nullptr; 4926 } 4927 case Intrinsic::eh_sjlj_setjmp: { 4928 SDValue Ops[2]; 4929 Ops[0] = getRoot(); 4930 Ops[1] = getValue(I.getArgOperand(0)); 4931 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4932 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4933 setValue(&I, Op.getValue(0)); 4934 DAG.setRoot(Op.getValue(1)); 4935 return nullptr; 4936 } 4937 case Intrinsic::eh_sjlj_longjmp: { 4938 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4939 getRoot(), getValue(I.getArgOperand(0)))); 4940 return nullptr; 4941 } 4942 4943 case Intrinsic::x86_mmx_pslli_w: 4944 case Intrinsic::x86_mmx_pslli_d: 4945 case Intrinsic::x86_mmx_pslli_q: 4946 case Intrinsic::x86_mmx_psrli_w: 4947 case Intrinsic::x86_mmx_psrli_d: 4948 case Intrinsic::x86_mmx_psrli_q: 4949 case Intrinsic::x86_mmx_psrai_w: 4950 case Intrinsic::x86_mmx_psrai_d: { 4951 SDValue ShAmt = getValue(I.getArgOperand(1)); 4952 if (isa<ConstantSDNode>(ShAmt)) { 4953 visitTargetIntrinsic(I, Intrinsic); 4954 return nullptr; 4955 } 4956 unsigned NewIntrinsic = 0; 4957 EVT ShAmtVT = MVT::v2i32; 4958 switch (Intrinsic) { 4959 case Intrinsic::x86_mmx_pslli_w: 4960 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4961 break; 4962 case Intrinsic::x86_mmx_pslli_d: 4963 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4964 break; 4965 case Intrinsic::x86_mmx_pslli_q: 4966 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4967 break; 4968 case Intrinsic::x86_mmx_psrli_w: 4969 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4970 break; 4971 case Intrinsic::x86_mmx_psrli_d: 4972 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4973 break; 4974 case Intrinsic::x86_mmx_psrli_q: 4975 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4976 break; 4977 case Intrinsic::x86_mmx_psrai_w: 4978 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4979 break; 4980 case Intrinsic::x86_mmx_psrai_d: 4981 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4982 break; 4983 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4984 } 4985 4986 // The vector shift intrinsics with scalars uses 32b shift amounts but 4987 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4988 // to be zero. 4989 // We must do this early because v2i32 is not a legal type. 4990 SDValue ShOps[2]; 4991 ShOps[0] = ShAmt; 4992 ShOps[1] = DAG.getConstant(0, MVT::i32); 4993 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4994 EVT DestVT = TLI.getValueType(I.getType()); 4995 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4996 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4997 DAG.getConstant(NewIntrinsic, MVT::i32), 4998 getValue(I.getArgOperand(0)), ShAmt); 4999 setValue(&I, Res); 5000 return nullptr; 5001 } 5002 case Intrinsic::x86_avx_vinsertf128_pd_256: 5003 case Intrinsic::x86_avx_vinsertf128_ps_256: 5004 case Intrinsic::x86_avx_vinsertf128_si_256: 5005 case Intrinsic::x86_avx2_vinserti128: { 5006 EVT DestVT = TLI.getValueType(I.getType()); 5007 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 5008 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5009 ElVT.getVectorNumElements(); 5010 Res = 5011 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5012 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 5013 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5014 setValue(&I, Res); 5015 return nullptr; 5016 } 5017 case Intrinsic::x86_avx_vextractf128_pd_256: 5018 case Intrinsic::x86_avx_vextractf128_ps_256: 5019 case Intrinsic::x86_avx_vextractf128_si_256: 5020 case Intrinsic::x86_avx2_vextracti128: { 5021 EVT DestVT = TLI.getValueType(I.getType()); 5022 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5023 DestVT.getVectorNumElements(); 5024 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5025 getValue(I.getArgOperand(0)), 5026 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5027 setValue(&I, Res); 5028 return nullptr; 5029 } 5030 case Intrinsic::convertff: 5031 case Intrinsic::convertfsi: 5032 case Intrinsic::convertfui: 5033 case Intrinsic::convertsif: 5034 case Intrinsic::convertuif: 5035 case Intrinsic::convertss: 5036 case Intrinsic::convertsu: 5037 case Intrinsic::convertus: 5038 case Intrinsic::convertuu: { 5039 ISD::CvtCode Code = ISD::CVT_INVALID; 5040 switch (Intrinsic) { 5041 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5042 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5043 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5044 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5045 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5046 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5047 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5048 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5049 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5050 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5051 } 5052 EVT DestVT = TLI.getValueType(I.getType()); 5053 const Value *Op1 = I.getArgOperand(0); 5054 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5055 DAG.getValueType(DestVT), 5056 DAG.getValueType(getValue(Op1).getValueType()), 5057 getValue(I.getArgOperand(1)), 5058 getValue(I.getArgOperand(2)), 5059 Code); 5060 setValue(&I, Res); 5061 return nullptr; 5062 } 5063 case Intrinsic::powi: 5064 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5065 getValue(I.getArgOperand(1)), DAG)); 5066 return nullptr; 5067 case Intrinsic::log: 5068 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5069 return nullptr; 5070 case Intrinsic::log2: 5071 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5072 return nullptr; 5073 case Intrinsic::log10: 5074 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5075 return nullptr; 5076 case Intrinsic::exp: 5077 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5078 return nullptr; 5079 case Intrinsic::exp2: 5080 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5081 return nullptr; 5082 case Intrinsic::pow: 5083 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5084 getValue(I.getArgOperand(1)), DAG, TLI)); 5085 return nullptr; 5086 case Intrinsic::sqrt: 5087 case Intrinsic::fabs: 5088 case Intrinsic::sin: 5089 case Intrinsic::cos: 5090 case Intrinsic::floor: 5091 case Intrinsic::ceil: 5092 case Intrinsic::trunc: 5093 case Intrinsic::rint: 5094 case Intrinsic::nearbyint: 5095 case Intrinsic::round: { 5096 unsigned Opcode; 5097 switch (Intrinsic) { 5098 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5099 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5100 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5101 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5102 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5103 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5104 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5105 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5106 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5107 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5108 case Intrinsic::round: Opcode = ISD::FROUND; break; 5109 } 5110 5111 setValue(&I, DAG.getNode(Opcode, sdl, 5112 getValue(I.getArgOperand(0)).getValueType(), 5113 getValue(I.getArgOperand(0)))); 5114 return nullptr; 5115 } 5116 case Intrinsic::minnum: 5117 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5118 getValue(I.getArgOperand(0)).getValueType(), 5119 getValue(I.getArgOperand(0)), 5120 getValue(I.getArgOperand(1)))); 5121 return nullptr; 5122 case Intrinsic::maxnum: 5123 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5124 getValue(I.getArgOperand(0)).getValueType(), 5125 getValue(I.getArgOperand(0)), 5126 getValue(I.getArgOperand(1)))); 5127 return nullptr; 5128 case Intrinsic::copysign: 5129 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5130 getValue(I.getArgOperand(0)).getValueType(), 5131 getValue(I.getArgOperand(0)), 5132 getValue(I.getArgOperand(1)))); 5133 return nullptr; 5134 case Intrinsic::fma: 5135 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5136 getValue(I.getArgOperand(0)).getValueType(), 5137 getValue(I.getArgOperand(0)), 5138 getValue(I.getArgOperand(1)), 5139 getValue(I.getArgOperand(2)))); 5140 return nullptr; 5141 case Intrinsic::fmuladd: { 5142 EVT VT = TLI.getValueType(I.getType()); 5143 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5144 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5145 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5146 getValue(I.getArgOperand(0)).getValueType(), 5147 getValue(I.getArgOperand(0)), 5148 getValue(I.getArgOperand(1)), 5149 getValue(I.getArgOperand(2)))); 5150 } else { 5151 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5152 getValue(I.getArgOperand(0)).getValueType(), 5153 getValue(I.getArgOperand(0)), 5154 getValue(I.getArgOperand(1))); 5155 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5156 getValue(I.getArgOperand(0)).getValueType(), 5157 Mul, 5158 getValue(I.getArgOperand(2))); 5159 setValue(&I, Add); 5160 } 5161 return nullptr; 5162 } 5163 case Intrinsic::convert_to_fp16: 5164 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5165 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5166 getValue(I.getArgOperand(0)), 5167 DAG.getTargetConstant(0, MVT::i32)))); 5168 return nullptr; 5169 case Intrinsic::convert_from_fp16: 5170 setValue(&I, 5171 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5172 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5173 getValue(I.getArgOperand(0))))); 5174 return nullptr; 5175 case Intrinsic::pcmarker: { 5176 SDValue Tmp = getValue(I.getArgOperand(0)); 5177 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5178 return nullptr; 5179 } 5180 case Intrinsic::readcyclecounter: { 5181 SDValue Op = getRoot(); 5182 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5183 DAG.getVTList(MVT::i64, MVT::Other), Op); 5184 setValue(&I, Res); 5185 DAG.setRoot(Res.getValue(1)); 5186 return nullptr; 5187 } 5188 case Intrinsic::bswap: 5189 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5190 getValue(I.getArgOperand(0)).getValueType(), 5191 getValue(I.getArgOperand(0)))); 5192 return nullptr; 5193 case Intrinsic::cttz: { 5194 SDValue Arg = getValue(I.getArgOperand(0)); 5195 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5196 EVT Ty = Arg.getValueType(); 5197 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5198 sdl, Ty, Arg)); 5199 return nullptr; 5200 } 5201 case Intrinsic::ctlz: { 5202 SDValue Arg = getValue(I.getArgOperand(0)); 5203 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5204 EVT Ty = Arg.getValueType(); 5205 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5206 sdl, Ty, Arg)); 5207 return nullptr; 5208 } 5209 case Intrinsic::ctpop: { 5210 SDValue Arg = getValue(I.getArgOperand(0)); 5211 EVT Ty = Arg.getValueType(); 5212 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5213 return nullptr; 5214 } 5215 case Intrinsic::stacksave: { 5216 SDValue Op = getRoot(); 5217 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5218 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5219 setValue(&I, Res); 5220 DAG.setRoot(Res.getValue(1)); 5221 return nullptr; 5222 } 5223 case Intrinsic::stackrestore: { 5224 Res = getValue(I.getArgOperand(0)); 5225 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5226 return nullptr; 5227 } 5228 case Intrinsic::stackprotector: { 5229 // Emit code into the DAG to store the stack guard onto the stack. 5230 MachineFunction &MF = DAG.getMachineFunction(); 5231 MachineFrameInfo *MFI = MF.getFrameInfo(); 5232 EVT PtrTy = TLI.getPointerTy(); 5233 SDValue Src, Chain = getRoot(); 5234 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5235 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5236 5237 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5238 // global variable __stack_chk_guard. 5239 if (!GV) 5240 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5241 if (BC->getOpcode() == Instruction::BitCast) 5242 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5243 5244 if (GV && TLI.useLoadStackGuardNode()) { 5245 // Emit a LOAD_STACK_GUARD node. 5246 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5247 sdl, PtrTy, Chain); 5248 MachinePointerInfo MPInfo(GV); 5249 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5250 unsigned Flags = MachineMemOperand::MOLoad | 5251 MachineMemOperand::MOInvariant; 5252 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5253 PtrTy.getSizeInBits() / 8, 5254 DAG.getEVTAlignment(PtrTy)); 5255 Node->setMemRefs(MemRefs, MemRefs + 1); 5256 5257 // Copy the guard value to a virtual register so that it can be 5258 // retrieved in the epilogue. 5259 Src = SDValue(Node, 0); 5260 const TargetRegisterClass *RC = 5261 TLI.getRegClassFor(Src.getSimpleValueType()); 5262 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5263 5264 SPDescriptor.setGuardReg(Reg); 5265 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5266 } else { 5267 Src = getValue(I.getArgOperand(0)); // The guard's value. 5268 } 5269 5270 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5271 5272 int FI = FuncInfo.StaticAllocaMap[Slot]; 5273 MFI->setStackProtectorIndex(FI); 5274 5275 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5276 5277 // Store the stack protector onto the stack. 5278 Res = DAG.getStore(Chain, sdl, Src, FIN, 5279 MachinePointerInfo::getFixedStack(FI), 5280 true, false, 0); 5281 setValue(&I, Res); 5282 DAG.setRoot(Res); 5283 return nullptr; 5284 } 5285 case Intrinsic::objectsize: { 5286 // If we don't know by now, we're never going to know. 5287 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5288 5289 assert(CI && "Non-constant type in __builtin_object_size?"); 5290 5291 SDValue Arg = getValue(I.getCalledValue()); 5292 EVT Ty = Arg.getValueType(); 5293 5294 if (CI->isZero()) 5295 Res = DAG.getConstant(-1ULL, Ty); 5296 else 5297 Res = DAG.getConstant(0, Ty); 5298 5299 setValue(&I, Res); 5300 return nullptr; 5301 } 5302 case Intrinsic::annotation: 5303 case Intrinsic::ptr_annotation: 5304 // Drop the intrinsic, but forward the value 5305 setValue(&I, getValue(I.getOperand(0))); 5306 return nullptr; 5307 case Intrinsic::assume: 5308 case Intrinsic::var_annotation: 5309 // Discard annotate attributes and assumptions 5310 return nullptr; 5311 5312 case Intrinsic::init_trampoline: { 5313 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5314 5315 SDValue Ops[6]; 5316 Ops[0] = getRoot(); 5317 Ops[1] = getValue(I.getArgOperand(0)); 5318 Ops[2] = getValue(I.getArgOperand(1)); 5319 Ops[3] = getValue(I.getArgOperand(2)); 5320 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5321 Ops[5] = DAG.getSrcValue(F); 5322 5323 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5324 5325 DAG.setRoot(Res); 5326 return nullptr; 5327 } 5328 case Intrinsic::adjust_trampoline: { 5329 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5330 TLI.getPointerTy(), 5331 getValue(I.getArgOperand(0)))); 5332 return nullptr; 5333 } 5334 case Intrinsic::gcroot: 5335 if (GFI) { 5336 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5337 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5338 5339 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5340 GFI->addStackRoot(FI->getIndex(), TypeMap); 5341 } 5342 return nullptr; 5343 case Intrinsic::gcread: 5344 case Intrinsic::gcwrite: 5345 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5346 case Intrinsic::flt_rounds: 5347 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5348 return nullptr; 5349 5350 case Intrinsic::expect: { 5351 // Just replace __builtin_expect(exp, c) with EXP. 5352 setValue(&I, getValue(I.getArgOperand(0))); 5353 return nullptr; 5354 } 5355 5356 case Intrinsic::debugtrap: 5357 case Intrinsic::trap: { 5358 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5359 if (TrapFuncName.empty()) { 5360 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5361 ISD::TRAP : ISD::DEBUGTRAP; 5362 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5363 return nullptr; 5364 } 5365 TargetLowering::ArgListTy Args; 5366 5367 TargetLowering::CallLoweringInfo CLI(DAG); 5368 CLI.setDebugLoc(sdl).setChain(getRoot()) 5369 .setCallee(CallingConv::C, I.getType(), 5370 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5371 std::move(Args), 0); 5372 5373 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5374 DAG.setRoot(Result.second); 5375 return nullptr; 5376 } 5377 5378 case Intrinsic::uadd_with_overflow: 5379 case Intrinsic::sadd_with_overflow: 5380 case Intrinsic::usub_with_overflow: 5381 case Intrinsic::ssub_with_overflow: 5382 case Intrinsic::umul_with_overflow: 5383 case Intrinsic::smul_with_overflow: { 5384 ISD::NodeType Op; 5385 switch (Intrinsic) { 5386 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5387 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5388 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5389 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5390 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5391 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5392 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5393 } 5394 SDValue Op1 = getValue(I.getArgOperand(0)); 5395 SDValue Op2 = getValue(I.getArgOperand(1)); 5396 5397 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5398 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5399 return nullptr; 5400 } 5401 case Intrinsic::prefetch: { 5402 SDValue Ops[5]; 5403 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5404 Ops[0] = getRoot(); 5405 Ops[1] = getValue(I.getArgOperand(0)); 5406 Ops[2] = getValue(I.getArgOperand(1)); 5407 Ops[3] = getValue(I.getArgOperand(2)); 5408 Ops[4] = getValue(I.getArgOperand(3)); 5409 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5410 DAG.getVTList(MVT::Other), Ops, 5411 EVT::getIntegerVT(*Context, 8), 5412 MachinePointerInfo(I.getArgOperand(0)), 5413 0, /* align */ 5414 false, /* volatile */ 5415 rw==0, /* read */ 5416 rw==1)); /* write */ 5417 return nullptr; 5418 } 5419 case Intrinsic::lifetime_start: 5420 case Intrinsic::lifetime_end: { 5421 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5422 // Stack coloring is not enabled in O0, discard region information. 5423 if (TM.getOptLevel() == CodeGenOpt::None) 5424 return nullptr; 5425 5426 SmallVector<Value *, 4> Allocas; 5427 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5428 5429 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5430 E = Allocas.end(); Object != E; ++Object) { 5431 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5432 5433 // Could not find an Alloca. 5434 if (!LifetimeObject) 5435 continue; 5436 5437 // First check that the Alloca is static, otherwise it won't have a 5438 // valid frame index. 5439 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5440 if (SI == FuncInfo.StaticAllocaMap.end()) 5441 return nullptr; 5442 5443 int FI = SI->second; 5444 5445 SDValue Ops[2]; 5446 Ops[0] = getRoot(); 5447 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5448 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5449 5450 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5451 DAG.setRoot(Res); 5452 } 5453 return nullptr; 5454 } 5455 case Intrinsic::invariant_start: 5456 // Discard region information. 5457 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5458 return nullptr; 5459 case Intrinsic::invariant_end: 5460 // Discard region information. 5461 return nullptr; 5462 case Intrinsic::stackprotectorcheck: { 5463 // Do not actually emit anything for this basic block. Instead we initialize 5464 // the stack protector descriptor and export the guard variable so we can 5465 // access it in FinishBasicBlock. 5466 const BasicBlock *BB = I.getParent(); 5467 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5468 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5469 5470 // Flush our exports since we are going to process a terminator. 5471 (void)getControlRoot(); 5472 return nullptr; 5473 } 5474 case Intrinsic::clear_cache: 5475 return TLI.getClearCacheBuiltinName(); 5476 case Intrinsic::donothing: 5477 // ignore 5478 return nullptr; 5479 case Intrinsic::experimental_stackmap: { 5480 visitStackmap(I); 5481 return nullptr; 5482 } 5483 case Intrinsic::experimental_patchpoint_void: 5484 case Intrinsic::experimental_patchpoint_i64: { 5485 visitPatchpoint(&I); 5486 return nullptr; 5487 } 5488 } 5489 } 5490 5491 std::pair<SDValue, SDValue> 5492 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5493 MachineBasicBlock *LandingPad) { 5494 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5495 MCSymbol *BeginLabel = nullptr; 5496 5497 if (LandingPad) { 5498 // Insert a label before the invoke call to mark the try range. This can be 5499 // used to detect deletion of the invoke via the MachineModuleInfo. 5500 BeginLabel = MMI.getContext().CreateTempSymbol(); 5501 5502 // For SjLj, keep track of which landing pads go with which invokes 5503 // so as to maintain the ordering of pads in the LSDA. 5504 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5505 if (CallSiteIndex) { 5506 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5507 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5508 5509 // Now that the call site is handled, stop tracking it. 5510 MMI.setCurrentCallSite(0); 5511 } 5512 5513 // Both PendingLoads and PendingExports must be flushed here; 5514 // this call might not return. 5515 (void)getRoot(); 5516 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5517 5518 CLI.setChain(getRoot()); 5519 } 5520 5521 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5522 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5523 5524 assert((CLI.IsTailCall || Result.second.getNode()) && 5525 "Non-null chain expected with non-tail call!"); 5526 assert((Result.second.getNode() || !Result.first.getNode()) && 5527 "Null value expected with tail call!"); 5528 5529 if (!Result.second.getNode()) { 5530 // As a special case, a null chain means that a tail call has been emitted 5531 // and the DAG root is already updated. 5532 HasTailCall = true; 5533 5534 // Since there's no actual continuation from this block, nothing can be 5535 // relying on us setting vregs for them. 5536 PendingExports.clear(); 5537 } else { 5538 DAG.setRoot(Result.second); 5539 } 5540 5541 if (LandingPad) { 5542 // Insert a label at the end of the invoke call to mark the try range. This 5543 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5544 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5545 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5546 5547 // Inform MachineModuleInfo of range. 5548 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5549 } 5550 5551 return Result; 5552 } 5553 5554 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5555 bool isTailCall, 5556 MachineBasicBlock *LandingPad) { 5557 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5558 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5559 Type *RetTy = FTy->getReturnType(); 5560 5561 TargetLowering::ArgListTy Args; 5562 TargetLowering::ArgListEntry Entry; 5563 Args.reserve(CS.arg_size()); 5564 5565 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5566 i != e; ++i) { 5567 const Value *V = *i; 5568 5569 // Skip empty types 5570 if (V->getType()->isEmptyTy()) 5571 continue; 5572 5573 SDValue ArgNode = getValue(V); 5574 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5575 5576 // Skip the first return-type Attribute to get to params. 5577 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5578 Args.push_back(Entry); 5579 } 5580 5581 // Check if target-independent constraints permit a tail call here. 5582 // Target-dependent constraints are checked within TLI->LowerCallTo. 5583 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5584 isTailCall = false; 5585 5586 TargetLowering::CallLoweringInfo CLI(DAG); 5587 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5588 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5589 .setTailCall(isTailCall); 5590 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5591 5592 if (Result.first.getNode()) 5593 setValue(CS.getInstruction(), Result.first); 5594 } 5595 5596 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5597 /// value is equal or not-equal to zero. 5598 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5599 for (const User *U : V->users()) { 5600 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5601 if (IC->isEquality()) 5602 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5603 if (C->isNullValue()) 5604 continue; 5605 // Unknown instruction. 5606 return false; 5607 } 5608 return true; 5609 } 5610 5611 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5612 Type *LoadTy, 5613 SelectionDAGBuilder &Builder) { 5614 5615 // Check to see if this load can be trivially constant folded, e.g. if the 5616 // input is from a string literal. 5617 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5618 // Cast pointer to the type we really want to load. 5619 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5620 PointerType::getUnqual(LoadTy)); 5621 5622 if (const Constant *LoadCst = 5623 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5624 Builder.DL)) 5625 return Builder.getValue(LoadCst); 5626 } 5627 5628 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5629 // still constant memory, the input chain can be the entry node. 5630 SDValue Root; 5631 bool ConstantMemory = false; 5632 5633 // Do not serialize (non-volatile) loads of constant memory with anything. 5634 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5635 Root = Builder.DAG.getEntryNode(); 5636 ConstantMemory = true; 5637 } else { 5638 // Do not serialize non-volatile loads against each other. 5639 Root = Builder.DAG.getRoot(); 5640 } 5641 5642 SDValue Ptr = Builder.getValue(PtrVal); 5643 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5644 Ptr, MachinePointerInfo(PtrVal), 5645 false /*volatile*/, 5646 false /*nontemporal*/, 5647 false /*isinvariant*/, 1 /* align=1 */); 5648 5649 if (!ConstantMemory) 5650 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5651 return LoadVal; 5652 } 5653 5654 /// processIntegerCallValue - Record the value for an instruction that 5655 /// produces an integer result, converting the type where necessary. 5656 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5657 SDValue Value, 5658 bool IsSigned) { 5659 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5660 if (IsSigned) 5661 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5662 else 5663 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5664 setValue(&I, Value); 5665 } 5666 5667 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5668 /// If so, return true and lower it, otherwise return false and it will be 5669 /// lowered like a normal call. 5670 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5671 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5672 if (I.getNumArgOperands() != 3) 5673 return false; 5674 5675 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5676 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5677 !I.getArgOperand(2)->getType()->isIntegerTy() || 5678 !I.getType()->isIntegerTy()) 5679 return false; 5680 5681 const Value *Size = I.getArgOperand(2); 5682 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5683 if (CSize && CSize->getZExtValue() == 0) { 5684 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5685 setValue(&I, DAG.getConstant(0, CallVT)); 5686 return true; 5687 } 5688 5689 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5690 std::pair<SDValue, SDValue> Res = 5691 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5692 getValue(LHS), getValue(RHS), getValue(Size), 5693 MachinePointerInfo(LHS), 5694 MachinePointerInfo(RHS)); 5695 if (Res.first.getNode()) { 5696 processIntegerCallValue(I, Res.first, true); 5697 PendingLoads.push_back(Res.second); 5698 return true; 5699 } 5700 5701 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5702 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5703 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5704 bool ActuallyDoIt = true; 5705 MVT LoadVT; 5706 Type *LoadTy; 5707 switch (CSize->getZExtValue()) { 5708 default: 5709 LoadVT = MVT::Other; 5710 LoadTy = nullptr; 5711 ActuallyDoIt = false; 5712 break; 5713 case 2: 5714 LoadVT = MVT::i16; 5715 LoadTy = Type::getInt16Ty(CSize->getContext()); 5716 break; 5717 case 4: 5718 LoadVT = MVT::i32; 5719 LoadTy = Type::getInt32Ty(CSize->getContext()); 5720 break; 5721 case 8: 5722 LoadVT = MVT::i64; 5723 LoadTy = Type::getInt64Ty(CSize->getContext()); 5724 break; 5725 /* 5726 case 16: 5727 LoadVT = MVT::v4i32; 5728 LoadTy = Type::getInt32Ty(CSize->getContext()); 5729 LoadTy = VectorType::get(LoadTy, 4); 5730 break; 5731 */ 5732 } 5733 5734 // This turns into unaligned loads. We only do this if the target natively 5735 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5736 // we'll only produce a small number of byte loads. 5737 5738 // Require that we can find a legal MVT, and only do this if the target 5739 // supports unaligned loads of that type. Expanding into byte loads would 5740 // bloat the code. 5741 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5742 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5743 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5744 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5745 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5746 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5747 // TODO: Check alignment of src and dest ptrs. 5748 if (!TLI.isTypeLegal(LoadVT) || 5749 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5750 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5751 ActuallyDoIt = false; 5752 } 5753 5754 if (ActuallyDoIt) { 5755 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5756 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5757 5758 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5759 ISD::SETNE); 5760 processIntegerCallValue(I, Res, false); 5761 return true; 5762 } 5763 } 5764 5765 5766 return false; 5767 } 5768 5769 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5770 /// form. If so, return true and lower it, otherwise return false and it 5771 /// will be lowered like a normal call. 5772 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5773 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5774 if (I.getNumArgOperands() != 3) 5775 return false; 5776 5777 const Value *Src = I.getArgOperand(0); 5778 const Value *Char = I.getArgOperand(1); 5779 const Value *Length = I.getArgOperand(2); 5780 if (!Src->getType()->isPointerTy() || 5781 !Char->getType()->isIntegerTy() || 5782 !Length->getType()->isIntegerTy() || 5783 !I.getType()->isPointerTy()) 5784 return false; 5785 5786 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5787 std::pair<SDValue, SDValue> Res = 5788 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5789 getValue(Src), getValue(Char), getValue(Length), 5790 MachinePointerInfo(Src)); 5791 if (Res.first.getNode()) { 5792 setValue(&I, Res.first); 5793 PendingLoads.push_back(Res.second); 5794 return true; 5795 } 5796 5797 return false; 5798 } 5799 5800 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5801 /// optimized form. If so, return true and lower it, otherwise return false 5802 /// and it will be lowered like a normal call. 5803 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5804 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5805 if (I.getNumArgOperands() != 2) 5806 return false; 5807 5808 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5809 if (!Arg0->getType()->isPointerTy() || 5810 !Arg1->getType()->isPointerTy() || 5811 !I.getType()->isPointerTy()) 5812 return false; 5813 5814 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5815 std::pair<SDValue, SDValue> Res = 5816 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5817 getValue(Arg0), getValue(Arg1), 5818 MachinePointerInfo(Arg0), 5819 MachinePointerInfo(Arg1), isStpcpy); 5820 if (Res.first.getNode()) { 5821 setValue(&I, Res.first); 5822 DAG.setRoot(Res.second); 5823 return true; 5824 } 5825 5826 return false; 5827 } 5828 5829 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5830 /// If so, return true and lower it, otherwise return false and it will be 5831 /// lowered like a normal call. 5832 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5833 // Verify that the prototype makes sense. int strcmp(void*,void*) 5834 if (I.getNumArgOperands() != 2) 5835 return false; 5836 5837 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5838 if (!Arg0->getType()->isPointerTy() || 5839 !Arg1->getType()->isPointerTy() || 5840 !I.getType()->isIntegerTy()) 5841 return false; 5842 5843 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5844 std::pair<SDValue, SDValue> Res = 5845 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5846 getValue(Arg0), getValue(Arg1), 5847 MachinePointerInfo(Arg0), 5848 MachinePointerInfo(Arg1)); 5849 if (Res.first.getNode()) { 5850 processIntegerCallValue(I, Res.first, true); 5851 PendingLoads.push_back(Res.second); 5852 return true; 5853 } 5854 5855 return false; 5856 } 5857 5858 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5859 /// form. If so, return true and lower it, otherwise return false and it 5860 /// will be lowered like a normal call. 5861 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5862 // Verify that the prototype makes sense. size_t strlen(char *) 5863 if (I.getNumArgOperands() != 1) 5864 return false; 5865 5866 const Value *Arg0 = I.getArgOperand(0); 5867 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5868 return false; 5869 5870 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5871 std::pair<SDValue, SDValue> Res = 5872 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5873 getValue(Arg0), MachinePointerInfo(Arg0)); 5874 if (Res.first.getNode()) { 5875 processIntegerCallValue(I, Res.first, false); 5876 PendingLoads.push_back(Res.second); 5877 return true; 5878 } 5879 5880 return false; 5881 } 5882 5883 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5884 /// form. If so, return true and lower it, otherwise return false and it 5885 /// will be lowered like a normal call. 5886 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5887 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5888 if (I.getNumArgOperands() != 2) 5889 return false; 5890 5891 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5892 if (!Arg0->getType()->isPointerTy() || 5893 !Arg1->getType()->isIntegerTy() || 5894 !I.getType()->isIntegerTy()) 5895 return false; 5896 5897 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5898 std::pair<SDValue, SDValue> Res = 5899 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5900 getValue(Arg0), getValue(Arg1), 5901 MachinePointerInfo(Arg0)); 5902 if (Res.first.getNode()) { 5903 processIntegerCallValue(I, Res.first, false); 5904 PendingLoads.push_back(Res.second); 5905 return true; 5906 } 5907 5908 return false; 5909 } 5910 5911 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5912 /// operation (as expected), translate it to an SDNode with the specified opcode 5913 /// and return true. 5914 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5915 unsigned Opcode) { 5916 // Sanity check that it really is a unary floating-point call. 5917 if (I.getNumArgOperands() != 1 || 5918 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5919 I.getType() != I.getArgOperand(0)->getType() || 5920 !I.onlyReadsMemory()) 5921 return false; 5922 5923 SDValue Tmp = getValue(I.getArgOperand(0)); 5924 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5925 return true; 5926 } 5927 5928 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5929 /// operation (as expected), translate it to an SDNode with the specified opcode 5930 /// and return true. 5931 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5932 unsigned Opcode) { 5933 // Sanity check that it really is a binary floating-point call. 5934 if (I.getNumArgOperands() != 2 || 5935 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5936 I.getType() != I.getArgOperand(0)->getType() || 5937 I.getType() != I.getArgOperand(1)->getType() || 5938 !I.onlyReadsMemory()) 5939 return false; 5940 5941 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5942 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5943 EVT VT = Tmp0.getValueType(); 5944 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5945 return true; 5946 } 5947 5948 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5949 // Handle inline assembly differently. 5950 if (isa<InlineAsm>(I.getCalledValue())) { 5951 visitInlineAsm(&I); 5952 return; 5953 } 5954 5955 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5956 ComputeUsesVAFloatArgument(I, &MMI); 5957 5958 const char *RenameFn = nullptr; 5959 if (Function *F = I.getCalledFunction()) { 5960 if (F->isDeclaration()) { 5961 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5962 if (unsigned IID = II->getIntrinsicID(F)) { 5963 RenameFn = visitIntrinsicCall(I, IID); 5964 if (!RenameFn) 5965 return; 5966 } 5967 } 5968 if (unsigned IID = F->getIntrinsicID()) { 5969 RenameFn = visitIntrinsicCall(I, IID); 5970 if (!RenameFn) 5971 return; 5972 } 5973 } 5974 5975 // Check for well-known libc/libm calls. If the function is internal, it 5976 // can't be a library call. 5977 LibFunc::Func Func; 5978 if (!F->hasLocalLinkage() && F->hasName() && 5979 LibInfo->getLibFunc(F->getName(), Func) && 5980 LibInfo->hasOptimizedCodeGen(Func)) { 5981 switch (Func) { 5982 default: break; 5983 case LibFunc::copysign: 5984 case LibFunc::copysignf: 5985 case LibFunc::copysignl: 5986 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5987 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5988 I.getType() == I.getArgOperand(0)->getType() && 5989 I.getType() == I.getArgOperand(1)->getType() && 5990 I.onlyReadsMemory()) { 5991 SDValue LHS = getValue(I.getArgOperand(0)); 5992 SDValue RHS = getValue(I.getArgOperand(1)); 5993 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5994 LHS.getValueType(), LHS, RHS)); 5995 return; 5996 } 5997 break; 5998 case LibFunc::fabs: 5999 case LibFunc::fabsf: 6000 case LibFunc::fabsl: 6001 if (visitUnaryFloatCall(I, ISD::FABS)) 6002 return; 6003 break; 6004 case LibFunc::fmin: 6005 case LibFunc::fminf: 6006 case LibFunc::fminl: 6007 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6008 return; 6009 break; 6010 case LibFunc::fmax: 6011 case LibFunc::fmaxf: 6012 case LibFunc::fmaxl: 6013 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6014 return; 6015 break; 6016 case LibFunc::sin: 6017 case LibFunc::sinf: 6018 case LibFunc::sinl: 6019 if (visitUnaryFloatCall(I, ISD::FSIN)) 6020 return; 6021 break; 6022 case LibFunc::cos: 6023 case LibFunc::cosf: 6024 case LibFunc::cosl: 6025 if (visitUnaryFloatCall(I, ISD::FCOS)) 6026 return; 6027 break; 6028 case LibFunc::sqrt: 6029 case LibFunc::sqrtf: 6030 case LibFunc::sqrtl: 6031 case LibFunc::sqrt_finite: 6032 case LibFunc::sqrtf_finite: 6033 case LibFunc::sqrtl_finite: 6034 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6035 return; 6036 break; 6037 case LibFunc::floor: 6038 case LibFunc::floorf: 6039 case LibFunc::floorl: 6040 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6041 return; 6042 break; 6043 case LibFunc::nearbyint: 6044 case LibFunc::nearbyintf: 6045 case LibFunc::nearbyintl: 6046 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6047 return; 6048 break; 6049 case LibFunc::ceil: 6050 case LibFunc::ceilf: 6051 case LibFunc::ceill: 6052 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6053 return; 6054 break; 6055 case LibFunc::rint: 6056 case LibFunc::rintf: 6057 case LibFunc::rintl: 6058 if (visitUnaryFloatCall(I, ISD::FRINT)) 6059 return; 6060 break; 6061 case LibFunc::round: 6062 case LibFunc::roundf: 6063 case LibFunc::roundl: 6064 if (visitUnaryFloatCall(I, ISD::FROUND)) 6065 return; 6066 break; 6067 case LibFunc::trunc: 6068 case LibFunc::truncf: 6069 case LibFunc::truncl: 6070 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6071 return; 6072 break; 6073 case LibFunc::log2: 6074 case LibFunc::log2f: 6075 case LibFunc::log2l: 6076 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6077 return; 6078 break; 6079 case LibFunc::exp2: 6080 case LibFunc::exp2f: 6081 case LibFunc::exp2l: 6082 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6083 return; 6084 break; 6085 case LibFunc::memcmp: 6086 if (visitMemCmpCall(I)) 6087 return; 6088 break; 6089 case LibFunc::memchr: 6090 if (visitMemChrCall(I)) 6091 return; 6092 break; 6093 case LibFunc::strcpy: 6094 if (visitStrCpyCall(I, false)) 6095 return; 6096 break; 6097 case LibFunc::stpcpy: 6098 if (visitStrCpyCall(I, true)) 6099 return; 6100 break; 6101 case LibFunc::strcmp: 6102 if (visitStrCmpCall(I)) 6103 return; 6104 break; 6105 case LibFunc::strlen: 6106 if (visitStrLenCall(I)) 6107 return; 6108 break; 6109 case LibFunc::strnlen: 6110 if (visitStrNLenCall(I)) 6111 return; 6112 break; 6113 } 6114 } 6115 } 6116 6117 SDValue Callee; 6118 if (!RenameFn) 6119 Callee = getValue(I.getCalledValue()); 6120 else 6121 Callee = DAG.getExternalSymbol(RenameFn, 6122 DAG.getTargetLoweringInfo().getPointerTy()); 6123 6124 // Check if we can potentially perform a tail call. More detailed checking is 6125 // be done within LowerCallTo, after more information about the call is known. 6126 LowerCallTo(&I, Callee, I.isTailCall()); 6127 } 6128 6129 namespace { 6130 6131 /// AsmOperandInfo - This contains information for each constraint that we are 6132 /// lowering. 6133 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6134 public: 6135 /// CallOperand - If this is the result output operand or a clobber 6136 /// this is null, otherwise it is the incoming operand to the CallInst. 6137 /// This gets modified as the asm is processed. 6138 SDValue CallOperand; 6139 6140 /// AssignedRegs - If this is a register or register class operand, this 6141 /// contains the set of register corresponding to the operand. 6142 RegsForValue AssignedRegs; 6143 6144 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6145 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6146 } 6147 6148 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6149 /// corresponds to. If there is no Value* for this operand, it returns 6150 /// MVT::Other. 6151 EVT getCallOperandValEVT(LLVMContext &Context, 6152 const TargetLowering &TLI, 6153 const DataLayout *DL) const { 6154 if (!CallOperandVal) return MVT::Other; 6155 6156 if (isa<BasicBlock>(CallOperandVal)) 6157 return TLI.getPointerTy(); 6158 6159 llvm::Type *OpTy = CallOperandVal->getType(); 6160 6161 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6162 // If this is an indirect operand, the operand is a pointer to the 6163 // accessed type. 6164 if (isIndirect) { 6165 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6166 if (!PtrTy) 6167 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6168 OpTy = PtrTy->getElementType(); 6169 } 6170 6171 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6172 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6173 if (STy->getNumElements() == 1) 6174 OpTy = STy->getElementType(0); 6175 6176 // If OpTy is not a single value, it may be a struct/union that we 6177 // can tile with integers. 6178 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6179 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6180 switch (BitSize) { 6181 default: break; 6182 case 1: 6183 case 8: 6184 case 16: 6185 case 32: 6186 case 64: 6187 case 128: 6188 OpTy = IntegerType::get(Context, BitSize); 6189 break; 6190 } 6191 } 6192 6193 return TLI.getValueType(OpTy, true); 6194 } 6195 }; 6196 6197 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6198 6199 } // end anonymous namespace 6200 6201 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6202 /// specified operand. We prefer to assign virtual registers, to allow the 6203 /// register allocator to handle the assignment process. However, if the asm 6204 /// uses features that we can't model on machineinstrs, we have SDISel do the 6205 /// allocation. This produces generally horrible, but correct, code. 6206 /// 6207 /// OpInfo describes the operand. 6208 /// 6209 static void GetRegistersForValue(SelectionDAG &DAG, 6210 const TargetLowering &TLI, 6211 SDLoc DL, 6212 SDISelAsmOperandInfo &OpInfo) { 6213 LLVMContext &Context = *DAG.getContext(); 6214 6215 MachineFunction &MF = DAG.getMachineFunction(); 6216 SmallVector<unsigned, 4> Regs; 6217 6218 // If this is a constraint for a single physreg, or a constraint for a 6219 // register class, find it. 6220 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6221 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6222 OpInfo.ConstraintVT); 6223 6224 unsigned NumRegs = 1; 6225 if (OpInfo.ConstraintVT != MVT::Other) { 6226 // If this is a FP input in an integer register (or visa versa) insert a bit 6227 // cast of the input value. More generally, handle any case where the input 6228 // value disagrees with the register class we plan to stick this in. 6229 if (OpInfo.Type == InlineAsm::isInput && 6230 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6231 // Try to convert to the first EVT that the reg class contains. If the 6232 // types are identical size, use a bitcast to convert (e.g. two differing 6233 // vector types). 6234 MVT RegVT = *PhysReg.second->vt_begin(); 6235 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6236 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6237 RegVT, OpInfo.CallOperand); 6238 OpInfo.ConstraintVT = RegVT; 6239 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6240 // If the input is a FP value and we want it in FP registers, do a 6241 // bitcast to the corresponding integer type. This turns an f64 value 6242 // into i64, which can be passed with two i32 values on a 32-bit 6243 // machine. 6244 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6245 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6246 RegVT, OpInfo.CallOperand); 6247 OpInfo.ConstraintVT = RegVT; 6248 } 6249 } 6250 6251 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6252 } 6253 6254 MVT RegVT; 6255 EVT ValueVT = OpInfo.ConstraintVT; 6256 6257 // If this is a constraint for a specific physical register, like {r17}, 6258 // assign it now. 6259 if (unsigned AssignedReg = PhysReg.first) { 6260 const TargetRegisterClass *RC = PhysReg.second; 6261 if (OpInfo.ConstraintVT == MVT::Other) 6262 ValueVT = *RC->vt_begin(); 6263 6264 // Get the actual register value type. This is important, because the user 6265 // may have asked for (e.g.) the AX register in i32 type. We need to 6266 // remember that AX is actually i16 to get the right extension. 6267 RegVT = *RC->vt_begin(); 6268 6269 // This is a explicit reference to a physical register. 6270 Regs.push_back(AssignedReg); 6271 6272 // If this is an expanded reference, add the rest of the regs to Regs. 6273 if (NumRegs != 1) { 6274 TargetRegisterClass::iterator I = RC->begin(); 6275 for (; *I != AssignedReg; ++I) 6276 assert(I != RC->end() && "Didn't find reg!"); 6277 6278 // Already added the first reg. 6279 --NumRegs; ++I; 6280 for (; NumRegs; --NumRegs, ++I) { 6281 assert(I != RC->end() && "Ran out of registers to allocate!"); 6282 Regs.push_back(*I); 6283 } 6284 } 6285 6286 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6287 return; 6288 } 6289 6290 // Otherwise, if this was a reference to an LLVM register class, create vregs 6291 // for this reference. 6292 if (const TargetRegisterClass *RC = PhysReg.second) { 6293 RegVT = *RC->vt_begin(); 6294 if (OpInfo.ConstraintVT == MVT::Other) 6295 ValueVT = RegVT; 6296 6297 // Create the appropriate number of virtual registers. 6298 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6299 for (; NumRegs; --NumRegs) 6300 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6301 6302 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6303 return; 6304 } 6305 6306 // Otherwise, we couldn't allocate enough registers for this. 6307 } 6308 6309 /// visitInlineAsm - Handle a call to an InlineAsm object. 6310 /// 6311 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6312 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6313 6314 /// ConstraintOperands - Information about all of the constraints. 6315 SDISelAsmOperandInfoVector ConstraintOperands; 6316 6317 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6318 TargetLowering::AsmOperandInfoVector 6319 TargetConstraints = TLI.ParseConstraints(CS); 6320 6321 bool hasMemory = false; 6322 6323 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6324 unsigned ResNo = 0; // ResNo - The result number of the next output. 6325 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6326 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6327 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6328 6329 MVT OpVT = MVT::Other; 6330 6331 // Compute the value type for each operand. 6332 switch (OpInfo.Type) { 6333 case InlineAsm::isOutput: 6334 // Indirect outputs just consume an argument. 6335 if (OpInfo.isIndirect) { 6336 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6337 break; 6338 } 6339 6340 // The return value of the call is this value. As such, there is no 6341 // corresponding argument. 6342 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6343 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6344 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6345 } else { 6346 assert(ResNo == 0 && "Asm only has one result!"); 6347 OpVT = TLI.getSimpleValueType(CS.getType()); 6348 } 6349 ++ResNo; 6350 break; 6351 case InlineAsm::isInput: 6352 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6353 break; 6354 case InlineAsm::isClobber: 6355 // Nothing to do. 6356 break; 6357 } 6358 6359 // If this is an input or an indirect output, process the call argument. 6360 // BasicBlocks are labels, currently appearing only in asm's. 6361 if (OpInfo.CallOperandVal) { 6362 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6363 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6364 } else { 6365 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6366 } 6367 6368 OpVT = 6369 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6370 } 6371 6372 OpInfo.ConstraintVT = OpVT; 6373 6374 // Indirect operand accesses access memory. 6375 if (OpInfo.isIndirect) 6376 hasMemory = true; 6377 else { 6378 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6379 TargetLowering::ConstraintType 6380 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6381 if (CType == TargetLowering::C_Memory) { 6382 hasMemory = true; 6383 break; 6384 } 6385 } 6386 } 6387 } 6388 6389 SDValue Chain, Flag; 6390 6391 // We won't need to flush pending loads if this asm doesn't touch 6392 // memory and is nonvolatile. 6393 if (hasMemory || IA->hasSideEffects()) 6394 Chain = getRoot(); 6395 else 6396 Chain = DAG.getRoot(); 6397 6398 // Second pass over the constraints: compute which constraint option to use 6399 // and assign registers to constraints that want a specific physreg. 6400 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6401 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6402 6403 // If this is an output operand with a matching input operand, look up the 6404 // matching input. If their types mismatch, e.g. one is an integer, the 6405 // other is floating point, or their sizes are different, flag it as an 6406 // error. 6407 if (OpInfo.hasMatchingInput()) { 6408 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6409 6410 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6411 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6412 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6413 OpInfo.ConstraintVT); 6414 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6415 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6416 Input.ConstraintVT); 6417 if ((OpInfo.ConstraintVT.isInteger() != 6418 Input.ConstraintVT.isInteger()) || 6419 (MatchRC.second != InputRC.second)) { 6420 report_fatal_error("Unsupported asm: input constraint" 6421 " with a matching output constraint of" 6422 " incompatible type!"); 6423 } 6424 Input.ConstraintVT = OpInfo.ConstraintVT; 6425 } 6426 } 6427 6428 // Compute the constraint code and ConstraintType to use. 6429 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6430 6431 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6432 OpInfo.Type == InlineAsm::isClobber) 6433 continue; 6434 6435 // If this is a memory input, and if the operand is not indirect, do what we 6436 // need to to provide an address for the memory input. 6437 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6438 !OpInfo.isIndirect) { 6439 assert((OpInfo.isMultipleAlternative || 6440 (OpInfo.Type == InlineAsm::isInput)) && 6441 "Can only indirectify direct input operands!"); 6442 6443 // Memory operands really want the address of the value. If we don't have 6444 // an indirect input, put it in the constpool if we can, otherwise spill 6445 // it to a stack slot. 6446 // TODO: This isn't quite right. We need to handle these according to 6447 // the addressing mode that the constraint wants. Also, this may take 6448 // an additional register for the computation and we don't want that 6449 // either. 6450 6451 // If the operand is a float, integer, or vector constant, spill to a 6452 // constant pool entry to get its address. 6453 const Value *OpVal = OpInfo.CallOperandVal; 6454 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6455 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6456 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6457 TLI.getPointerTy()); 6458 } else { 6459 // Otherwise, create a stack slot and emit a store to it before the 6460 // asm. 6461 Type *Ty = OpVal->getType(); 6462 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6463 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6464 MachineFunction &MF = DAG.getMachineFunction(); 6465 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6466 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6467 Chain = DAG.getStore(Chain, getCurSDLoc(), 6468 OpInfo.CallOperand, StackSlot, 6469 MachinePointerInfo::getFixedStack(SSFI), 6470 false, false, 0); 6471 OpInfo.CallOperand = StackSlot; 6472 } 6473 6474 // There is no longer a Value* corresponding to this operand. 6475 OpInfo.CallOperandVal = nullptr; 6476 6477 // It is now an indirect operand. 6478 OpInfo.isIndirect = true; 6479 } 6480 6481 // If this constraint is for a specific register, allocate it before 6482 // anything else. 6483 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6484 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6485 } 6486 6487 // Second pass - Loop over all of the operands, assigning virtual or physregs 6488 // to register class operands. 6489 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6490 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6491 6492 // C_Register operands have already been allocated, Other/Memory don't need 6493 // to be. 6494 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6495 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6496 } 6497 6498 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6499 std::vector<SDValue> AsmNodeOperands; 6500 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6501 AsmNodeOperands.push_back( 6502 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6503 TLI.getPointerTy())); 6504 6505 // If we have a !srcloc metadata node associated with it, we want to attach 6506 // this to the ultimately generated inline asm machineinstr. To do this, we 6507 // pass in the third operand as this (potentially null) inline asm MDNode. 6508 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6509 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6510 6511 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6512 // bits as operand 3. 6513 unsigned ExtraInfo = 0; 6514 if (IA->hasSideEffects()) 6515 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6516 if (IA->isAlignStack()) 6517 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6518 // Set the asm dialect. 6519 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6520 6521 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6522 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6523 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6524 6525 // Compute the constraint code and ConstraintType to use. 6526 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6527 6528 // Ideally, we would only check against memory constraints. However, the 6529 // meaning of an other constraint can be target-specific and we can't easily 6530 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6531 // for other constriants as well. 6532 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6533 OpInfo.ConstraintType == TargetLowering::C_Other) { 6534 if (OpInfo.Type == InlineAsm::isInput) 6535 ExtraInfo |= InlineAsm::Extra_MayLoad; 6536 else if (OpInfo.Type == InlineAsm::isOutput) 6537 ExtraInfo |= InlineAsm::Extra_MayStore; 6538 else if (OpInfo.Type == InlineAsm::isClobber) 6539 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6540 } 6541 } 6542 6543 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6544 TLI.getPointerTy())); 6545 6546 // Loop over all of the inputs, copying the operand values into the 6547 // appropriate registers and processing the output regs. 6548 RegsForValue RetValRegs; 6549 6550 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6551 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6552 6553 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6554 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6555 6556 switch (OpInfo.Type) { 6557 case InlineAsm::isOutput: { 6558 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6559 OpInfo.ConstraintType != TargetLowering::C_Register) { 6560 // Memory output, or 'other' output (e.g. 'X' constraint). 6561 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6562 6563 // Add information to the INLINEASM node to know about this output. 6564 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6565 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6566 TLI.getPointerTy())); 6567 AsmNodeOperands.push_back(OpInfo.CallOperand); 6568 break; 6569 } 6570 6571 // Otherwise, this is a register or register class output. 6572 6573 // Copy the output from the appropriate register. Find a register that 6574 // we can use. 6575 if (OpInfo.AssignedRegs.Regs.empty()) { 6576 LLVMContext &Ctx = *DAG.getContext(); 6577 Ctx.emitError(CS.getInstruction(), 6578 "couldn't allocate output register for constraint '" + 6579 Twine(OpInfo.ConstraintCode) + "'"); 6580 return; 6581 } 6582 6583 // If this is an indirect operand, store through the pointer after the 6584 // asm. 6585 if (OpInfo.isIndirect) { 6586 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6587 OpInfo.CallOperandVal)); 6588 } else { 6589 // This is the result value of the call. 6590 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6591 // Concatenate this output onto the outputs list. 6592 RetValRegs.append(OpInfo.AssignedRegs); 6593 } 6594 6595 // Add information to the INLINEASM node to know that this register is 6596 // set. 6597 OpInfo.AssignedRegs 6598 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6599 ? InlineAsm::Kind_RegDefEarlyClobber 6600 : InlineAsm::Kind_RegDef, 6601 false, 0, DAG, AsmNodeOperands); 6602 break; 6603 } 6604 case InlineAsm::isInput: { 6605 SDValue InOperandVal = OpInfo.CallOperand; 6606 6607 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6608 // If this is required to match an output register we have already set, 6609 // just use its register. 6610 unsigned OperandNo = OpInfo.getMatchedOperand(); 6611 6612 // Scan until we find the definition we already emitted of this operand. 6613 // When we find it, create a RegsForValue operand. 6614 unsigned CurOp = InlineAsm::Op_FirstOperand; 6615 for (; OperandNo; --OperandNo) { 6616 // Advance to the next operand. 6617 unsigned OpFlag = 6618 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6619 assert((InlineAsm::isRegDefKind(OpFlag) || 6620 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6621 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6622 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6623 } 6624 6625 unsigned OpFlag = 6626 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6627 if (InlineAsm::isRegDefKind(OpFlag) || 6628 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6629 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6630 if (OpInfo.isIndirect) { 6631 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6632 LLVMContext &Ctx = *DAG.getContext(); 6633 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6634 " don't know how to handle tied " 6635 "indirect register inputs"); 6636 return; 6637 } 6638 6639 RegsForValue MatchedRegs; 6640 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6641 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6642 MatchedRegs.RegVTs.push_back(RegVT); 6643 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6644 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6645 i != e; ++i) { 6646 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6647 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6648 else { 6649 LLVMContext &Ctx = *DAG.getContext(); 6650 Ctx.emitError(CS.getInstruction(), 6651 "inline asm error: This value" 6652 " type register class is not natively supported!"); 6653 return; 6654 } 6655 } 6656 // Use the produced MatchedRegs object to 6657 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6658 Chain, &Flag, CS.getInstruction()); 6659 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6660 true, OpInfo.getMatchedOperand(), 6661 DAG, AsmNodeOperands); 6662 break; 6663 } 6664 6665 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6666 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6667 "Unexpected number of operands"); 6668 // Add information to the INLINEASM node to know about this input. 6669 // See InlineAsm.h isUseOperandTiedToDef. 6670 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6671 OpInfo.getMatchedOperand()); 6672 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6673 TLI.getPointerTy())); 6674 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6675 break; 6676 } 6677 6678 // Treat indirect 'X' constraint as memory. 6679 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6680 OpInfo.isIndirect) 6681 OpInfo.ConstraintType = TargetLowering::C_Memory; 6682 6683 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6684 std::vector<SDValue> Ops; 6685 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6686 Ops, DAG); 6687 if (Ops.empty()) { 6688 LLVMContext &Ctx = *DAG.getContext(); 6689 Ctx.emitError(CS.getInstruction(), 6690 "invalid operand for inline asm constraint '" + 6691 Twine(OpInfo.ConstraintCode) + "'"); 6692 return; 6693 } 6694 6695 // Add information to the INLINEASM node to know about this input. 6696 unsigned ResOpType = 6697 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6698 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6699 TLI.getPointerTy())); 6700 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6701 break; 6702 } 6703 6704 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6705 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6706 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6707 "Memory operands expect pointer values"); 6708 6709 // Add information to the INLINEASM node to know about this input. 6710 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6711 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6712 TLI.getPointerTy())); 6713 AsmNodeOperands.push_back(InOperandVal); 6714 break; 6715 } 6716 6717 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6718 OpInfo.ConstraintType == TargetLowering::C_Register) && 6719 "Unknown constraint type!"); 6720 6721 // TODO: Support this. 6722 if (OpInfo.isIndirect) { 6723 LLVMContext &Ctx = *DAG.getContext(); 6724 Ctx.emitError(CS.getInstruction(), 6725 "Don't know how to handle indirect register inputs yet " 6726 "for constraint '" + 6727 Twine(OpInfo.ConstraintCode) + "'"); 6728 return; 6729 } 6730 6731 // Copy the input into the appropriate registers. 6732 if (OpInfo.AssignedRegs.Regs.empty()) { 6733 LLVMContext &Ctx = *DAG.getContext(); 6734 Ctx.emitError(CS.getInstruction(), 6735 "couldn't allocate input reg for constraint '" + 6736 Twine(OpInfo.ConstraintCode) + "'"); 6737 return; 6738 } 6739 6740 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6741 Chain, &Flag, CS.getInstruction()); 6742 6743 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6744 DAG, AsmNodeOperands); 6745 break; 6746 } 6747 case InlineAsm::isClobber: { 6748 // Add the clobbered value to the operand list, so that the register 6749 // allocator is aware that the physreg got clobbered. 6750 if (!OpInfo.AssignedRegs.Regs.empty()) 6751 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6752 false, 0, DAG, 6753 AsmNodeOperands); 6754 break; 6755 } 6756 } 6757 } 6758 6759 // Finish up input operands. Set the input chain and add the flag last. 6760 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6761 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6762 6763 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6764 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6765 Flag = Chain.getValue(1); 6766 6767 // If this asm returns a register value, copy the result from that register 6768 // and set it as the value of the call. 6769 if (!RetValRegs.Regs.empty()) { 6770 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6771 Chain, &Flag, CS.getInstruction()); 6772 6773 // FIXME: Why don't we do this for inline asms with MRVs? 6774 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6775 EVT ResultType = TLI.getValueType(CS.getType()); 6776 6777 // If any of the results of the inline asm is a vector, it may have the 6778 // wrong width/num elts. This can happen for register classes that can 6779 // contain multiple different value types. The preg or vreg allocated may 6780 // not have the same VT as was expected. Convert it to the right type 6781 // with bit_convert. 6782 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6783 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6784 ResultType, Val); 6785 6786 } else if (ResultType != Val.getValueType() && 6787 ResultType.isInteger() && Val.getValueType().isInteger()) { 6788 // If a result value was tied to an input value, the computed result may 6789 // have a wider width than the expected result. Extract the relevant 6790 // portion. 6791 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6792 } 6793 6794 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6795 } 6796 6797 setValue(CS.getInstruction(), Val); 6798 // Don't need to use this as a chain in this case. 6799 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6800 return; 6801 } 6802 6803 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6804 6805 // Process indirect outputs, first output all of the flagged copies out of 6806 // physregs. 6807 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6808 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6809 const Value *Ptr = IndirectStoresToEmit[i].second; 6810 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6811 Chain, &Flag, IA); 6812 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6813 } 6814 6815 // Emit the non-flagged stores from the physregs. 6816 SmallVector<SDValue, 8> OutChains; 6817 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6818 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6819 StoresToEmit[i].first, 6820 getValue(StoresToEmit[i].second), 6821 MachinePointerInfo(StoresToEmit[i].second), 6822 false, false, 0); 6823 OutChains.push_back(Val); 6824 } 6825 6826 if (!OutChains.empty()) 6827 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6828 6829 DAG.setRoot(Chain); 6830 } 6831 6832 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6833 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6834 MVT::Other, getRoot(), 6835 getValue(I.getArgOperand(0)), 6836 DAG.getSrcValue(I.getArgOperand(0)))); 6837 } 6838 6839 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6841 const DataLayout &DL = *TLI.getDataLayout(); 6842 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6843 getRoot(), getValue(I.getOperand(0)), 6844 DAG.getSrcValue(I.getOperand(0)), 6845 DL.getABITypeAlignment(I.getType())); 6846 setValue(&I, V); 6847 DAG.setRoot(V.getValue(1)); 6848 } 6849 6850 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6851 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6852 MVT::Other, getRoot(), 6853 getValue(I.getArgOperand(0)), 6854 DAG.getSrcValue(I.getArgOperand(0)))); 6855 } 6856 6857 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6858 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6859 MVT::Other, getRoot(), 6860 getValue(I.getArgOperand(0)), 6861 getValue(I.getArgOperand(1)), 6862 DAG.getSrcValue(I.getArgOperand(0)), 6863 DAG.getSrcValue(I.getArgOperand(1)))); 6864 } 6865 6866 /// \brief Lower an argument list according to the target calling convention. 6867 /// 6868 /// \return A tuple of <return-value, token-chain> 6869 /// 6870 /// This is a helper for lowering intrinsics that follow a target calling 6871 /// convention or require stack pointer adjustment. Only a subset of the 6872 /// intrinsic's operands need to participate in the calling convention. 6873 std::pair<SDValue, SDValue> 6874 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6875 unsigned NumArgs, SDValue Callee, 6876 bool UseVoidTy, 6877 MachineBasicBlock *LandingPad) { 6878 TargetLowering::ArgListTy Args; 6879 Args.reserve(NumArgs); 6880 6881 // Populate the argument list. 6882 // Attributes for args start at offset 1, after the return attribute. 6883 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6884 ArgI != ArgE; ++ArgI) { 6885 const Value *V = CS->getOperand(ArgI); 6886 6887 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6888 6889 TargetLowering::ArgListEntry Entry; 6890 Entry.Node = getValue(V); 6891 Entry.Ty = V->getType(); 6892 Entry.setAttributes(&CS, AttrI); 6893 Args.push_back(Entry); 6894 } 6895 6896 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6897 TargetLowering::CallLoweringInfo CLI(DAG); 6898 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6899 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6900 .setDiscardResult(CS->use_empty()); 6901 6902 return lowerInvokable(CLI, LandingPad); 6903 } 6904 6905 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6906 /// or patchpoint target node's operand list. 6907 /// 6908 /// Constants are converted to TargetConstants purely as an optimization to 6909 /// avoid constant materialization and register allocation. 6910 /// 6911 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6912 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6913 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6914 /// address materialization and register allocation, but may also be required 6915 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6916 /// alloca in the entry block, then the runtime may assume that the alloca's 6917 /// StackMap location can be read immediately after compilation and that the 6918 /// location is valid at any point during execution (this is similar to the 6919 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6920 /// only available in a register, then the runtime would need to trap when 6921 /// execution reaches the StackMap in order to read the alloca's location. 6922 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6923 SmallVectorImpl<SDValue> &Ops, 6924 SelectionDAGBuilder &Builder) { 6925 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6926 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6927 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6928 Ops.push_back( 6929 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6930 Ops.push_back( 6931 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6932 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6933 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6934 Ops.push_back( 6935 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6936 } else 6937 Ops.push_back(OpVal); 6938 } 6939 } 6940 6941 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6942 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6943 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6944 // [live variables...]) 6945 6946 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6947 6948 SDValue Chain, InFlag, Callee, NullPtr; 6949 SmallVector<SDValue, 32> Ops; 6950 6951 SDLoc DL = getCurSDLoc(); 6952 Callee = getValue(CI.getCalledValue()); 6953 NullPtr = DAG.getIntPtrConstant(0, true); 6954 6955 // The stackmap intrinsic only records the live variables (the arguemnts 6956 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6957 // intrinsic, this won't be lowered to a function call. This means we don't 6958 // have to worry about calling conventions and target specific lowering code. 6959 // Instead we perform the call lowering right here. 6960 // 6961 // chain, flag = CALLSEQ_START(chain, 0) 6962 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6963 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6964 // 6965 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6966 InFlag = Chain.getValue(1); 6967 6968 // Add the <id> and <numBytes> constants. 6969 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6970 Ops.push_back(DAG.getTargetConstant( 6971 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6972 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6973 Ops.push_back(DAG.getTargetConstant( 6974 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6975 6976 // Push live variables for the stack map. 6977 addStackMapLiveVars(&CI, 2, Ops, *this); 6978 6979 // We are not pushing any register mask info here on the operands list, 6980 // because the stackmap doesn't clobber anything. 6981 6982 // Push the chain and the glue flag. 6983 Ops.push_back(Chain); 6984 Ops.push_back(InFlag); 6985 6986 // Create the STACKMAP node. 6987 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6988 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6989 Chain = SDValue(SM, 0); 6990 InFlag = Chain.getValue(1); 6991 6992 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6993 6994 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6995 6996 // Set the root to the target-lowered call chain. 6997 DAG.setRoot(Chain); 6998 6999 // Inform the Frame Information that we have a stackmap in this function. 7000 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7001 } 7002 7003 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7004 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7005 MachineBasicBlock *LandingPad) { 7006 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7007 // i32 <numBytes>, 7008 // i8* <target>, 7009 // i32 <numArgs>, 7010 // [Args...], 7011 // [live variables...]) 7012 7013 CallingConv::ID CC = CS.getCallingConv(); 7014 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7015 bool HasDef = !CS->getType()->isVoidTy(); 7016 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7017 7018 // Get the real number of arguments participating in the call <numArgs> 7019 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7020 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7021 7022 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7023 // Intrinsics include all meta-operands up to but not including CC. 7024 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7025 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7026 "Not enough arguments provided to the patchpoint intrinsic"); 7027 7028 // For AnyRegCC the arguments are lowered later on manually. 7029 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7030 std::pair<SDValue, SDValue> Result = 7031 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7032 LandingPad); 7033 7034 SDNode *CallEnd = Result.second.getNode(); 7035 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7036 CallEnd = CallEnd->getOperand(0).getNode(); 7037 7038 /// Get a call instruction from the call sequence chain. 7039 /// Tail calls are not allowed. 7040 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7041 "Expected a callseq node."); 7042 SDNode *Call = CallEnd->getOperand(0).getNode(); 7043 bool HasGlue = Call->getGluedNode(); 7044 7045 // Replace the target specific call node with the patchable intrinsic. 7046 SmallVector<SDValue, 8> Ops; 7047 7048 // Add the <id> and <numBytes> constants. 7049 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7050 Ops.push_back(DAG.getTargetConstant( 7051 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7052 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7053 Ops.push_back(DAG.getTargetConstant( 7054 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7055 7056 // Assume that the Callee is a constant address. 7057 // FIXME: handle function symbols in the future. 7058 Ops.push_back( 7059 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7060 /*isTarget=*/true)); 7061 7062 // Adjust <numArgs> to account for any arguments that have been passed on the 7063 // stack instead. 7064 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7065 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7066 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7067 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7068 7069 // Add the calling convention 7070 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7071 7072 // Add the arguments we omitted previously. The register allocator should 7073 // place these in any free register. 7074 if (IsAnyRegCC) 7075 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7076 Ops.push_back(getValue(CS.getArgument(i))); 7077 7078 // Push the arguments from the call instruction up to the register mask. 7079 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7080 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7081 Ops.push_back(*i); 7082 7083 // Push live variables for the stack map. 7084 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7085 7086 // Push the register mask info. 7087 if (HasGlue) 7088 Ops.push_back(*(Call->op_end()-2)); 7089 else 7090 Ops.push_back(*(Call->op_end()-1)); 7091 7092 // Push the chain (this is originally the first operand of the call, but 7093 // becomes now the last or second to last operand). 7094 Ops.push_back(*(Call->op_begin())); 7095 7096 // Push the glue flag (last operand). 7097 if (HasGlue) 7098 Ops.push_back(*(Call->op_end()-1)); 7099 7100 SDVTList NodeTys; 7101 if (IsAnyRegCC && HasDef) { 7102 // Create the return types based on the intrinsic definition 7103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7104 SmallVector<EVT, 3> ValueVTs; 7105 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7106 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7107 7108 // There is always a chain and a glue type at the end 7109 ValueVTs.push_back(MVT::Other); 7110 ValueVTs.push_back(MVT::Glue); 7111 NodeTys = DAG.getVTList(ValueVTs); 7112 } else 7113 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7114 7115 // Replace the target specific call node with a PATCHPOINT node. 7116 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7117 getCurSDLoc(), NodeTys, Ops); 7118 7119 // Update the NodeMap. 7120 if (HasDef) { 7121 if (IsAnyRegCC) 7122 setValue(CS.getInstruction(), SDValue(MN, 0)); 7123 else 7124 setValue(CS.getInstruction(), Result.first); 7125 } 7126 7127 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7128 // call sequence. Furthermore the location of the chain and glue can change 7129 // when the AnyReg calling convention is used and the intrinsic returns a 7130 // value. 7131 if (IsAnyRegCC && HasDef) { 7132 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7133 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7134 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7135 } else 7136 DAG.ReplaceAllUsesWith(Call, MN); 7137 DAG.DeleteNode(Call); 7138 7139 // Inform the Frame Information that we have a patchpoint in this function. 7140 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7141 } 7142 7143 /// Returns an AttributeSet representing the attributes applied to the return 7144 /// value of the given call. 7145 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7146 SmallVector<Attribute::AttrKind, 2> Attrs; 7147 if (CLI.RetSExt) 7148 Attrs.push_back(Attribute::SExt); 7149 if (CLI.RetZExt) 7150 Attrs.push_back(Attribute::ZExt); 7151 if (CLI.IsInReg) 7152 Attrs.push_back(Attribute::InReg); 7153 7154 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7155 Attrs); 7156 } 7157 7158 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7159 /// implementation, which just calls LowerCall. 7160 /// FIXME: When all targets are 7161 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7162 std::pair<SDValue, SDValue> 7163 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7164 // Handle the incoming return values from the call. 7165 CLI.Ins.clear(); 7166 Type *OrigRetTy = CLI.RetTy; 7167 SmallVector<EVT, 4> RetTys; 7168 SmallVector<uint64_t, 4> Offsets; 7169 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7170 7171 SmallVector<ISD::OutputArg, 4> Outs; 7172 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7173 7174 bool CanLowerReturn = 7175 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7176 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7177 7178 SDValue DemoteStackSlot; 7179 int DemoteStackIdx = -100; 7180 if (!CanLowerReturn) { 7181 // FIXME: equivalent assert? 7182 // assert(!CS.hasInAllocaArgument() && 7183 // "sret demotion is incompatible with inalloca"); 7184 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7185 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7186 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7187 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7188 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7189 7190 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7191 ArgListEntry Entry; 7192 Entry.Node = DemoteStackSlot; 7193 Entry.Ty = StackSlotPtrType; 7194 Entry.isSExt = false; 7195 Entry.isZExt = false; 7196 Entry.isInReg = false; 7197 Entry.isSRet = true; 7198 Entry.isNest = false; 7199 Entry.isByVal = false; 7200 Entry.isReturned = false; 7201 Entry.Alignment = Align; 7202 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7203 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7204 } else { 7205 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7206 EVT VT = RetTys[I]; 7207 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7208 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7209 for (unsigned i = 0; i != NumRegs; ++i) { 7210 ISD::InputArg MyFlags; 7211 MyFlags.VT = RegisterVT; 7212 MyFlags.ArgVT = VT; 7213 MyFlags.Used = CLI.IsReturnValueUsed; 7214 if (CLI.RetSExt) 7215 MyFlags.Flags.setSExt(); 7216 if (CLI.RetZExt) 7217 MyFlags.Flags.setZExt(); 7218 if (CLI.IsInReg) 7219 MyFlags.Flags.setInReg(); 7220 CLI.Ins.push_back(MyFlags); 7221 } 7222 } 7223 } 7224 7225 // Handle all of the outgoing arguments. 7226 CLI.Outs.clear(); 7227 CLI.OutVals.clear(); 7228 ArgListTy &Args = CLI.getArgs(); 7229 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7230 SmallVector<EVT, 4> ValueVTs; 7231 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7232 Type *FinalType = Args[i].Ty; 7233 if (Args[i].isByVal) 7234 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7235 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7236 FinalType, CLI.CallConv, CLI.IsVarArg); 7237 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7238 ++Value) { 7239 EVT VT = ValueVTs[Value]; 7240 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7241 SDValue Op = SDValue(Args[i].Node.getNode(), 7242 Args[i].Node.getResNo() + Value); 7243 ISD::ArgFlagsTy Flags; 7244 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7245 7246 if (Args[i].isZExt) 7247 Flags.setZExt(); 7248 if (Args[i].isSExt) 7249 Flags.setSExt(); 7250 if (Args[i].isInReg) 7251 Flags.setInReg(); 7252 if (Args[i].isSRet) 7253 Flags.setSRet(); 7254 if (Args[i].isByVal) 7255 Flags.setByVal(); 7256 if (Args[i].isInAlloca) { 7257 Flags.setInAlloca(); 7258 // Set the byval flag for CCAssignFn callbacks that don't know about 7259 // inalloca. This way we can know how many bytes we should've allocated 7260 // and how many bytes a callee cleanup function will pop. If we port 7261 // inalloca to more targets, we'll have to add custom inalloca handling 7262 // in the various CC lowering callbacks. 7263 Flags.setByVal(); 7264 } 7265 if (Args[i].isByVal || Args[i].isInAlloca) { 7266 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7267 Type *ElementTy = Ty->getElementType(); 7268 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7269 // For ByVal, alignment should come from FE. BE will guess if this 7270 // info is not there but there are cases it cannot get right. 7271 unsigned FrameAlign; 7272 if (Args[i].Alignment) 7273 FrameAlign = Args[i].Alignment; 7274 else 7275 FrameAlign = getByValTypeAlignment(ElementTy); 7276 Flags.setByValAlign(FrameAlign); 7277 } 7278 if (Args[i].isNest) 7279 Flags.setNest(); 7280 if (NeedsRegBlock) { 7281 Flags.setInConsecutiveRegs(); 7282 if (Value == NumValues - 1) 7283 Flags.setInConsecutiveRegsLast(); 7284 } 7285 Flags.setOrigAlign(OriginalAlignment); 7286 7287 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7288 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7289 SmallVector<SDValue, 4> Parts(NumParts); 7290 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7291 7292 if (Args[i].isSExt) 7293 ExtendKind = ISD::SIGN_EXTEND; 7294 else if (Args[i].isZExt) 7295 ExtendKind = ISD::ZERO_EXTEND; 7296 7297 // Conservatively only handle 'returned' on non-vectors for now 7298 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7299 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7300 "unexpected use of 'returned'"); 7301 // Before passing 'returned' to the target lowering code, ensure that 7302 // either the register MVT and the actual EVT are the same size or that 7303 // the return value and argument are extended in the same way; in these 7304 // cases it's safe to pass the argument register value unchanged as the 7305 // return register value (although it's at the target's option whether 7306 // to do so) 7307 // TODO: allow code generation to take advantage of partially preserved 7308 // registers rather than clobbering the entire register when the 7309 // parameter extension method is not compatible with the return 7310 // extension method 7311 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7312 (ExtendKind != ISD::ANY_EXTEND && 7313 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7314 Flags.setReturned(); 7315 } 7316 7317 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7318 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7319 7320 for (unsigned j = 0; j != NumParts; ++j) { 7321 // if it isn't first piece, alignment must be 1 7322 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7323 i < CLI.NumFixedArgs, 7324 i, j*Parts[j].getValueType().getStoreSize()); 7325 if (NumParts > 1 && j == 0) 7326 MyFlags.Flags.setSplit(); 7327 else if (j != 0) 7328 MyFlags.Flags.setOrigAlign(1); 7329 7330 CLI.Outs.push_back(MyFlags); 7331 CLI.OutVals.push_back(Parts[j]); 7332 } 7333 } 7334 } 7335 7336 SmallVector<SDValue, 4> InVals; 7337 CLI.Chain = LowerCall(CLI, InVals); 7338 7339 // Verify that the target's LowerCall behaved as expected. 7340 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7341 "LowerCall didn't return a valid chain!"); 7342 assert((!CLI.IsTailCall || InVals.empty()) && 7343 "LowerCall emitted a return value for a tail call!"); 7344 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7345 "LowerCall didn't emit the correct number of values!"); 7346 7347 // For a tail call, the return value is merely live-out and there aren't 7348 // any nodes in the DAG representing it. Return a special value to 7349 // indicate that a tail call has been emitted and no more Instructions 7350 // should be processed in the current block. 7351 if (CLI.IsTailCall) { 7352 CLI.DAG.setRoot(CLI.Chain); 7353 return std::make_pair(SDValue(), SDValue()); 7354 } 7355 7356 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7357 assert(InVals[i].getNode() && 7358 "LowerCall emitted a null value!"); 7359 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7360 "LowerCall emitted a value with the wrong type!"); 7361 }); 7362 7363 SmallVector<SDValue, 4> ReturnValues; 7364 if (!CanLowerReturn) { 7365 // The instruction result is the result of loading from the 7366 // hidden sret parameter. 7367 SmallVector<EVT, 1> PVTs; 7368 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7369 7370 ComputeValueVTs(*this, PtrRetTy, PVTs); 7371 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7372 EVT PtrVT = PVTs[0]; 7373 7374 unsigned NumValues = RetTys.size(); 7375 ReturnValues.resize(NumValues); 7376 SmallVector<SDValue, 4> Chains(NumValues); 7377 7378 for (unsigned i = 0; i < NumValues; ++i) { 7379 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7380 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7381 SDValue L = CLI.DAG.getLoad( 7382 RetTys[i], CLI.DL, CLI.Chain, Add, 7383 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7384 false, false, 1); 7385 ReturnValues[i] = L; 7386 Chains[i] = L.getValue(1); 7387 } 7388 7389 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7390 } else { 7391 // Collect the legal value parts into potentially illegal values 7392 // that correspond to the original function's return values. 7393 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7394 if (CLI.RetSExt) 7395 AssertOp = ISD::AssertSext; 7396 else if (CLI.RetZExt) 7397 AssertOp = ISD::AssertZext; 7398 unsigned CurReg = 0; 7399 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7400 EVT VT = RetTys[I]; 7401 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7402 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7403 7404 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7405 NumRegs, RegisterVT, VT, nullptr, 7406 AssertOp)); 7407 CurReg += NumRegs; 7408 } 7409 7410 // For a function returning void, there is no return value. We can't create 7411 // such a node, so we just return a null return value in that case. In 7412 // that case, nothing will actually look at the value. 7413 if (ReturnValues.empty()) 7414 return std::make_pair(SDValue(), CLI.Chain); 7415 } 7416 7417 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7418 CLI.DAG.getVTList(RetTys), ReturnValues); 7419 return std::make_pair(Res, CLI.Chain); 7420 } 7421 7422 void TargetLowering::LowerOperationWrapper(SDNode *N, 7423 SmallVectorImpl<SDValue> &Results, 7424 SelectionDAG &DAG) const { 7425 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7426 if (Res.getNode()) 7427 Results.push_back(Res); 7428 } 7429 7430 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7431 llvm_unreachable("LowerOperation not implemented for this target!"); 7432 } 7433 7434 void 7435 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7436 SDValue Op = getNonRegisterValue(V); 7437 assert((Op.getOpcode() != ISD::CopyFromReg || 7438 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7439 "Copy from a reg to the same reg!"); 7440 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7441 7442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7443 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7444 SDValue Chain = DAG.getEntryNode(); 7445 7446 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7447 FuncInfo.PreferredExtendType.end()) 7448 ? ISD::ANY_EXTEND 7449 : FuncInfo.PreferredExtendType[V]; 7450 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7451 PendingExports.push_back(Chain); 7452 } 7453 7454 #include "llvm/CodeGen/SelectionDAGISel.h" 7455 7456 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7457 /// entry block, return true. This includes arguments used by switches, since 7458 /// the switch may expand into multiple basic blocks. 7459 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7460 // With FastISel active, we may be splitting blocks, so force creation 7461 // of virtual registers for all non-dead arguments. 7462 if (FastISel) 7463 return A->use_empty(); 7464 7465 const BasicBlock *Entry = A->getParent()->begin(); 7466 for (const User *U : A->users()) 7467 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7468 return false; // Use not in entry block. 7469 7470 return true; 7471 } 7472 7473 void SelectionDAGISel::LowerArguments(const Function &F) { 7474 SelectionDAG &DAG = SDB->DAG; 7475 SDLoc dl = SDB->getCurSDLoc(); 7476 const DataLayout *DL = TLI->getDataLayout(); 7477 SmallVector<ISD::InputArg, 16> Ins; 7478 7479 if (!FuncInfo->CanLowerReturn) { 7480 // Put in an sret pointer parameter before all the other parameters. 7481 SmallVector<EVT, 1> ValueVTs; 7482 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7483 7484 // NOTE: Assuming that a pointer will never break down to more than one VT 7485 // or one register. 7486 ISD::ArgFlagsTy Flags; 7487 Flags.setSRet(); 7488 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7489 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7490 Ins.push_back(RetArg); 7491 } 7492 7493 // Set up the incoming argument description vector. 7494 unsigned Idx = 1; 7495 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7496 I != E; ++I, ++Idx) { 7497 SmallVector<EVT, 4> ValueVTs; 7498 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7499 bool isArgValueUsed = !I->use_empty(); 7500 unsigned PartBase = 0; 7501 Type *FinalType = I->getType(); 7502 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7503 FinalType = cast<PointerType>(FinalType)->getElementType(); 7504 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7505 FinalType, F.getCallingConv(), F.isVarArg()); 7506 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7507 Value != NumValues; ++Value) { 7508 EVT VT = ValueVTs[Value]; 7509 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7510 ISD::ArgFlagsTy Flags; 7511 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7512 7513 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7514 Flags.setZExt(); 7515 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7516 Flags.setSExt(); 7517 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7518 Flags.setInReg(); 7519 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7520 Flags.setSRet(); 7521 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7522 Flags.setByVal(); 7523 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7524 Flags.setInAlloca(); 7525 // Set the byval flag for CCAssignFn callbacks that don't know about 7526 // inalloca. This way we can know how many bytes we should've allocated 7527 // and how many bytes a callee cleanup function will pop. If we port 7528 // inalloca to more targets, we'll have to add custom inalloca handling 7529 // in the various CC lowering callbacks. 7530 Flags.setByVal(); 7531 } 7532 if (Flags.isByVal() || Flags.isInAlloca()) { 7533 PointerType *Ty = cast<PointerType>(I->getType()); 7534 Type *ElementTy = Ty->getElementType(); 7535 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7536 // For ByVal, alignment should be passed from FE. BE will guess if 7537 // this info is not there but there are cases it cannot get right. 7538 unsigned FrameAlign; 7539 if (F.getParamAlignment(Idx)) 7540 FrameAlign = F.getParamAlignment(Idx); 7541 else 7542 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7543 Flags.setByValAlign(FrameAlign); 7544 } 7545 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7546 Flags.setNest(); 7547 if (NeedsRegBlock) { 7548 Flags.setInConsecutiveRegs(); 7549 if (Value == NumValues - 1) 7550 Flags.setInConsecutiveRegsLast(); 7551 } 7552 Flags.setOrigAlign(OriginalAlignment); 7553 7554 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7555 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7556 for (unsigned i = 0; i != NumRegs; ++i) { 7557 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7558 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7559 if (NumRegs > 1 && i == 0) 7560 MyFlags.Flags.setSplit(); 7561 // if it isn't first piece, alignment must be 1 7562 else if (i > 0) 7563 MyFlags.Flags.setOrigAlign(1); 7564 Ins.push_back(MyFlags); 7565 } 7566 PartBase += VT.getStoreSize(); 7567 } 7568 } 7569 7570 // Call the target to set up the argument values. 7571 SmallVector<SDValue, 8> InVals; 7572 SDValue NewRoot = TLI->LowerFormalArguments( 7573 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7574 7575 // Verify that the target's LowerFormalArguments behaved as expected. 7576 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7577 "LowerFormalArguments didn't return a valid chain!"); 7578 assert(InVals.size() == Ins.size() && 7579 "LowerFormalArguments didn't emit the correct number of values!"); 7580 DEBUG({ 7581 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7582 assert(InVals[i].getNode() && 7583 "LowerFormalArguments emitted a null value!"); 7584 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7585 "LowerFormalArguments emitted a value with the wrong type!"); 7586 } 7587 }); 7588 7589 // Update the DAG with the new chain value resulting from argument lowering. 7590 DAG.setRoot(NewRoot); 7591 7592 // Set up the argument values. 7593 unsigned i = 0; 7594 Idx = 1; 7595 if (!FuncInfo->CanLowerReturn) { 7596 // Create a virtual register for the sret pointer, and put in a copy 7597 // from the sret argument into it. 7598 SmallVector<EVT, 1> ValueVTs; 7599 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7600 MVT VT = ValueVTs[0].getSimpleVT(); 7601 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7602 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7603 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7604 RegVT, VT, nullptr, AssertOp); 7605 7606 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7607 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7608 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7609 FuncInfo->DemoteRegister = SRetReg; 7610 NewRoot = 7611 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7612 DAG.setRoot(NewRoot); 7613 7614 // i indexes lowered arguments. Bump it past the hidden sret argument. 7615 // Idx indexes LLVM arguments. Don't touch it. 7616 ++i; 7617 } 7618 7619 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7620 ++I, ++Idx) { 7621 SmallVector<SDValue, 4> ArgValues; 7622 SmallVector<EVT, 4> ValueVTs; 7623 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7624 unsigned NumValues = ValueVTs.size(); 7625 7626 // If this argument is unused then remember its value. It is used to generate 7627 // debugging information. 7628 if (I->use_empty() && NumValues) { 7629 SDB->setUnusedArgValue(I, InVals[i]); 7630 7631 // Also remember any frame index for use in FastISel. 7632 if (FrameIndexSDNode *FI = 7633 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7634 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7635 } 7636 7637 for (unsigned Val = 0; Val != NumValues; ++Val) { 7638 EVT VT = ValueVTs[Val]; 7639 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7640 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7641 7642 if (!I->use_empty()) { 7643 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7644 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7645 AssertOp = ISD::AssertSext; 7646 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7647 AssertOp = ISD::AssertZext; 7648 7649 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7650 NumParts, PartVT, VT, 7651 nullptr, AssertOp)); 7652 } 7653 7654 i += NumParts; 7655 } 7656 7657 // We don't need to do anything else for unused arguments. 7658 if (ArgValues.empty()) 7659 continue; 7660 7661 // Note down frame index. 7662 if (FrameIndexSDNode *FI = 7663 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7664 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7665 7666 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7667 SDB->getCurSDLoc()); 7668 7669 SDB->setValue(I, Res); 7670 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7671 if (LoadSDNode *LNode = 7672 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7673 if (FrameIndexSDNode *FI = 7674 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7675 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7676 } 7677 7678 // If this argument is live outside of the entry block, insert a copy from 7679 // wherever we got it to the vreg that other BB's will reference it as. 7680 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7681 // If we can, though, try to skip creating an unnecessary vreg. 7682 // FIXME: This isn't very clean... it would be nice to make this more 7683 // general. It's also subtly incompatible with the hacks FastISel 7684 // uses with vregs. 7685 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7686 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7687 FuncInfo->ValueMap[I] = Reg; 7688 continue; 7689 } 7690 } 7691 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7692 FuncInfo->InitializeRegForValue(I); 7693 SDB->CopyToExportRegsIfNeeded(I); 7694 } 7695 } 7696 7697 assert(i == InVals.size() && "Argument register count mismatch!"); 7698 7699 // Finally, if the target has anything special to do, allow it to do so. 7700 // FIXME: this should insert code into the DAG! 7701 EmitFunctionEntryCode(); 7702 } 7703 7704 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7705 /// ensure constants are generated when needed. Remember the virtual registers 7706 /// that need to be added to the Machine PHI nodes as input. We cannot just 7707 /// directly add them, because expansion might result in multiple MBB's for one 7708 /// BB. As such, the start of the BB might correspond to a different MBB than 7709 /// the end. 7710 /// 7711 void 7712 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7713 const TerminatorInst *TI = LLVMBB->getTerminator(); 7714 7715 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7716 7717 // Check successor nodes' PHI nodes that expect a constant to be available 7718 // from this block. 7719 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7720 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7721 if (!isa<PHINode>(SuccBB->begin())) continue; 7722 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7723 7724 // If this terminator has multiple identical successors (common for 7725 // switches), only handle each succ once. 7726 if (!SuccsHandled.insert(SuccMBB).second) 7727 continue; 7728 7729 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7730 7731 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7732 // nodes and Machine PHI nodes, but the incoming operands have not been 7733 // emitted yet. 7734 for (BasicBlock::const_iterator I = SuccBB->begin(); 7735 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7736 // Ignore dead phi's. 7737 if (PN->use_empty()) continue; 7738 7739 // Skip empty types 7740 if (PN->getType()->isEmptyTy()) 7741 continue; 7742 7743 unsigned Reg; 7744 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7745 7746 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7747 unsigned &RegOut = ConstantsOut[C]; 7748 if (RegOut == 0) { 7749 RegOut = FuncInfo.CreateRegs(C->getType()); 7750 CopyValueToVirtualRegister(C, RegOut); 7751 } 7752 Reg = RegOut; 7753 } else { 7754 DenseMap<const Value *, unsigned>::iterator I = 7755 FuncInfo.ValueMap.find(PHIOp); 7756 if (I != FuncInfo.ValueMap.end()) 7757 Reg = I->second; 7758 else { 7759 assert(isa<AllocaInst>(PHIOp) && 7760 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7761 "Didn't codegen value into a register!??"); 7762 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7763 CopyValueToVirtualRegister(PHIOp, Reg); 7764 } 7765 } 7766 7767 // Remember that this register needs to added to the machine PHI node as 7768 // the input for this MBB. 7769 SmallVector<EVT, 4> ValueVTs; 7770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7771 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7772 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7773 EVT VT = ValueVTs[vti]; 7774 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7775 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7776 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7777 Reg += NumRegisters; 7778 } 7779 } 7780 } 7781 7782 ConstantsOut.clear(); 7783 } 7784 7785 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7786 /// is 0. 7787 MachineBasicBlock * 7788 SelectionDAGBuilder::StackProtectorDescriptor:: 7789 AddSuccessorMBB(const BasicBlock *BB, 7790 MachineBasicBlock *ParentMBB, 7791 bool IsLikely, 7792 MachineBasicBlock *SuccMBB) { 7793 // If SuccBB has not been created yet, create it. 7794 if (!SuccMBB) { 7795 MachineFunction *MF = ParentMBB->getParent(); 7796 MachineFunction::iterator BBI = ParentMBB; 7797 SuccMBB = MF->CreateMachineBasicBlock(BB); 7798 MF->insert(++BBI, SuccMBB); 7799 } 7800 // Add it as a successor of ParentMBB. 7801 ParentMBB->addSuccessor( 7802 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7803 return SuccMBB; 7804 } 7805