1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <iterator> 108 #include <limits> 109 #include <optional> 110 #include <tuple> 111 112 using namespace llvm; 113 using namespace PatternMatch; 114 using namespace SwitchCG; 115 116 #define DEBUG_TYPE "isel" 117 118 /// LimitFloatPrecision - Generate low-precision inline sequences for 119 /// some float libcalls (6, 8 or 12 bits). 120 static unsigned LimitFloatPrecision; 121 122 static cl::opt<bool> 123 InsertAssertAlign("insert-assert-align", cl::init(true), 124 cl::desc("Insert the experimental `assertalign` node."), 125 cl::ReallyHidden); 126 127 static cl::opt<unsigned, true> 128 LimitFPPrecision("limit-float-precision", 129 cl::desc("Generate low-precision inline sequences " 130 "for some float libcalls"), 131 cl::location(LimitFloatPrecision), cl::Hidden, 132 cl::init(0)); 133 134 static cl::opt<unsigned> SwitchPeelThreshold( 135 "switch-peel-threshold", cl::Hidden, cl::init(66), 136 cl::desc("Set the case probability threshold for peeling the case from a " 137 "switch statement. A value greater than 100 will void this " 138 "optimization")); 139 140 // Limit the width of DAG chains. This is important in general to prevent 141 // DAG-based analysis from blowing up. For example, alias analysis and 142 // load clustering may not complete in reasonable time. It is difficult to 143 // recognize and avoid this situation within each individual analysis, and 144 // future analyses are likely to have the same behavior. Limiting DAG width is 145 // the safe approach and will be especially important with global DAGs. 146 // 147 // MaxParallelChains default is arbitrarily high to avoid affecting 148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 149 // sequence over this should have been converted to llvm.memcpy by the 150 // frontend. It is easy to induce this behavior with .ll code such as: 151 // %buffer = alloca [4096 x i8] 152 // %data = load [4096 x i8]* %argPtr 153 // store [4096 x i8] %data, [4096 x i8]* %buffer 154 static const unsigned MaxParallelChains = 64; 155 156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 157 const SDValue *Parts, unsigned NumParts, 158 MVT PartVT, EVT ValueVT, const Value *V, 159 SDValue InChain, 160 std::optional<CallingConv::ID> CC); 161 162 /// getCopyFromParts - Create a value that contains the specified legal parts 163 /// combined into the value they represent. If the parts combine to a type 164 /// larger than ValueVT then AssertOp can be used to specify whether the extra 165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 166 /// (ISD::AssertSext). 167 static SDValue 168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 169 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 170 SDValue InChain, 171 std::optional<CallingConv::ID> CC = std::nullopt, 172 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 173 // Let the target assemble the parts if it wants to 174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 175 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 176 PartVT, ValueVT, CC)) 177 return Val; 178 179 if (ValueVT.isVector()) 180 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 181 InChain, CC); 182 183 assert(NumParts > 0 && "No parts to assemble!"); 184 SDValue Val = Parts[0]; 185 186 if (NumParts > 1) { 187 // Assemble the value from multiple parts. 188 if (ValueVT.isInteger()) { 189 unsigned PartBits = PartVT.getSizeInBits(); 190 unsigned ValueBits = ValueVT.getSizeInBits(); 191 192 // Assemble the power of 2 part. 193 unsigned RoundParts = llvm::bit_floor(NumParts); 194 unsigned RoundBits = PartBits * RoundParts; 195 EVT RoundVT = RoundBits == ValueBits ? 196 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 197 SDValue Lo, Hi; 198 199 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 200 201 if (RoundParts > 2) { 202 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 203 InChain); 204 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 205 PartVT, HalfVT, V, InChain); 206 } else { 207 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 208 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 209 } 210 211 if (DAG.getDataLayout().isBigEndian()) 212 std::swap(Lo, Hi); 213 214 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 215 216 if (RoundParts < NumParts) { 217 // Assemble the trailing non-power-of-2 part. 218 unsigned OddParts = NumParts - RoundParts; 219 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 220 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 221 OddVT, V, InChain, CC); 222 223 // Combine the round and odd parts. 224 Lo = Val; 225 if (DAG.getDataLayout().isBigEndian()) 226 std::swap(Lo, Hi); 227 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 228 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 229 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 230 DAG.getConstant(Lo.getValueSizeInBits(), DL, 231 TLI.getShiftAmountTy( 232 TotalVT, DAG.getDataLayout()))); 233 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 234 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 235 } 236 } else if (PartVT.isFloatingPoint()) { 237 // FP split into multiple FP parts (for ppcf128) 238 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 239 "Unexpected split"); 240 SDValue Lo, Hi; 241 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 242 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 243 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 244 std::swap(Lo, Hi); 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 246 } else { 247 // FP split into integer parts (soft fp) 248 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 249 !PartVT.isVector() && "Unexpected split"); 250 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 251 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 252 InChain, CC); 253 } 254 } 255 256 // There is now one part, held in Val. Correct it to match ValueVT. 257 // PartEVT is the type of the register class that holds the value. 258 // ValueVT is the type of the inline asm operation. 259 EVT PartEVT = Val.getValueType(); 260 261 if (PartEVT == ValueVT) 262 return Val; 263 264 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 265 ValueVT.bitsLT(PartEVT)) { 266 // For an FP value in an integer part, we need to truncate to the right 267 // width first. 268 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 270 } 271 272 // Handle types that have the same size. 273 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 274 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 275 276 // Handle types with different sizes. 277 if (PartEVT.isInteger() && ValueVT.isInteger()) { 278 if (ValueVT.bitsLT(PartEVT)) { 279 // For a truncate, see if we have any information to 280 // indicate whether the truncated bits will always be 281 // zero or sign-extension. 282 if (AssertOp) 283 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 284 DAG.getValueType(ValueVT)); 285 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 286 } 287 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 288 } 289 290 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 291 // FP_ROUND's are always exact here. 292 if (ValueVT.bitsLT(Val.getValueType())) { 293 294 SDValue NoChange = 295 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 296 297 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 298 llvm::Attribute::StrictFP)) { 299 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 300 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 301 NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 305 } 306 307 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 308 } 309 310 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 311 // then truncating. 312 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 313 ValueVT.bitsLT(PartEVT)) { 314 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 318 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (CI->isInlineAsm()) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 SDValue InChain, 344 std::optional<CallingConv::ID> CallConv) { 345 assert(ValueVT.isVector() && "Not a vector value"); 346 assert(NumParts > 0 && "No parts to assemble!"); 347 const bool IsABIRegCopy = CallConv.has_value(); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 SDValue Val = Parts[0]; 351 352 // Handle a multi-element vector. 353 if (NumParts > 1) { 354 EVT IntermediateVT; 355 MVT RegisterVT; 356 unsigned NumIntermediates; 357 unsigned NumRegs; 358 359 if (IsABIRegCopy) { 360 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 361 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } else { 364 NumRegs = 365 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } 368 369 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 370 NumParts = NumRegs; // Silence a compiler warning. 371 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 372 assert(RegisterVT.getSizeInBits() == 373 Parts[0].getSimpleValueType().getSizeInBits() && 374 "Part type sizes don't match!"); 375 376 // Assemble the parts into intermediate operands. 377 SmallVector<SDValue, 8> Ops(NumIntermediates); 378 if (NumIntermediates == NumParts) { 379 // If the register was not expanded, truncate or copy the value, 380 // as appropriate. 381 for (unsigned i = 0; i != NumParts; ++i) 382 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 383 V, InChain, CallConv); 384 } else if (NumParts > 0) { 385 // If the intermediate type was expanded, build the intermediate 386 // operands from the parts. 387 assert(NumParts % NumIntermediates == 0 && 388 "Must expand into a divisible number of parts!"); 389 unsigned Factor = NumParts / NumIntermediates; 390 for (unsigned i = 0; i != NumIntermediates; ++i) 391 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 392 IntermediateVT, V, InChain, CallConv); 393 } 394 395 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 396 // intermediate operands. 397 EVT BuiltVectorTy = 398 IntermediateVT.isVector() 399 ? EVT::getVectorVT( 400 *DAG.getContext(), IntermediateVT.getScalarType(), 401 IntermediateVT.getVectorElementCount() * NumParts) 402 : EVT::getVectorVT(*DAG.getContext(), 403 IntermediateVT.getScalarType(), 404 NumIntermediates); 405 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 406 : ISD::BUILD_VECTOR, 407 DL, BuiltVectorTy, Ops); 408 } 409 410 // There is now one part, held in Val. Correct it to match ValueVT. 411 EVT PartEVT = Val.getValueType(); 412 413 if (PartEVT == ValueVT) 414 return Val; 415 416 if (PartEVT.isVector()) { 417 // Vector/Vector bitcast. 418 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 419 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 421 // If the parts vector has more elements than the value vector, then we 422 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 423 // Extract the elements we want. 424 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 425 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 426 ValueVT.getVectorElementCount().getKnownMinValue()) && 427 (PartEVT.getVectorElementCount().isScalable() == 428 ValueVT.getVectorElementCount().isScalable()) && 429 "Cannot narrow, it would be a lossy transformation"); 430 PartEVT = 431 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 432 ValueVT.getVectorElementCount()); 433 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 434 DAG.getVectorIdxConstant(0, DL)); 435 if (PartEVT == ValueVT) 436 return Val; 437 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 } 444 445 // Promoted vector extract 446 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 447 } 448 449 // Trivial bitcast if the types are the same size and the destination 450 // vector type is legal. 451 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 452 TLI.isTypeLegal(ValueVT)) 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 455 if (ValueVT.getVectorNumElements() != 1) { 456 // Certain ABIs require that vectors are passed as integers. For vectors 457 // are the same size, this is an obvious bitcast. 458 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 459 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 460 } else if (ValueVT.bitsLT(PartEVT)) { 461 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 462 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 463 // Drop the extra bits. 464 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 465 return DAG.getBitcast(ValueVT, Val); 466 } 467 468 diagnosePossiblyInvalidConstraint( 469 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 470 return DAG.getUNDEF(ValueVT); 471 } 472 473 // Handle cases such as i8 -> <1 x i1> 474 EVT ValueSVT = ValueVT.getVectorElementType(); 475 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 476 unsigned ValueSize = ValueSVT.getSizeInBits(); 477 if (ValueSize == PartEVT.getSizeInBits()) { 478 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 479 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 480 // It's possible a scalar floating point type gets softened to integer and 481 // then promoted to a larger integer. If PartEVT is the larger integer 482 // we need to truncate it and then bitcast to the FP type. 483 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 484 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 485 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 486 Val = DAG.getBitcast(ValueSVT, Val); 487 } else { 488 Val = ValueVT.isFloatingPoint() 489 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 490 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 491 } 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 std::optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void 506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 507 unsigned NumParts, MVT PartVT, const Value *V, 508 std::optional<CallingConv::ID> CallConv = std::nullopt, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 // Let the target split the parts if it wants to 511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 512 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 513 CallConv)) 514 return; 515 EVT ValueVT = Val.getValueType(); 516 517 // Handle the vector case separately. 518 if (ValueVT.isVector()) 519 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 520 CallConv); 521 522 unsigned OrigNumParts = NumParts; 523 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 524 "Copying to an illegal type!"); 525 526 if (NumParts == 0) 527 return; 528 529 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 530 EVT PartEVT = PartVT; 531 if (PartEVT == ValueVT) { 532 assert(NumParts == 1 && "No-op copy with multiple parts!"); 533 Parts[0] = Val; 534 return; 535 } 536 537 unsigned PartBits = PartVT.getSizeInBits(); 538 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 539 // If the parts cover more bits than the value has, promote the value. 540 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 541 assert(NumParts == 1 && "Do not know what to promote to!"); 542 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 543 } else { 544 if (ValueVT.isFloatingPoint()) { 545 // FP values need to be bitcast, then extended if they are being put 546 // into a larger container. 547 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 548 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 549 } 550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 551 ValueVT.isInteger() && 552 "Unknown mismatch!"); 553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 554 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 555 if (PartVT == MVT::x86mmx) 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } 558 } else if (PartBits == ValueVT.getSizeInBits()) { 559 // Different types of the same size. 560 assert(NumParts == 1 && PartEVT != ValueVT); 561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 562 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 563 // If the parts cover less bits than value has, truncate the value. 564 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 565 ValueVT.isInteger() && 566 "Unknown mismatch!"); 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 if (PartVT == MVT::x86mmx) 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 // The value may have changed - recompute ValueVT. 574 ValueVT = Val.getValueType(); 575 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 576 "Failed to tile the value with PartVT!"); 577 578 if (NumParts == 1) { 579 if (PartEVT != ValueVT) { 580 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 581 "scalar-to-vector conversion failed"); 582 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 583 } 584 585 Parts[0] = Val; 586 return; 587 } 588 589 // Expand the value into multiple parts. 590 if (NumParts & (NumParts - 1)) { 591 // The number of parts is not a power of 2. Split off and copy the tail. 592 assert(PartVT.isInteger() && ValueVT.isInteger() && 593 "Do not know what to expand to!"); 594 unsigned RoundParts = llvm::bit_floor(NumParts); 595 unsigned RoundBits = RoundParts * PartBits; 596 unsigned OddParts = NumParts - RoundParts; 597 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 598 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 599 600 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 601 CallConv); 602 603 if (DAG.getDataLayout().isBigEndian()) 604 // The odd parts were reversed by getCopyToParts - unreverse them. 605 std::reverse(Parts + RoundParts, Parts + NumParts); 606 607 NumParts = RoundParts; 608 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 609 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 610 } 611 612 // The number of parts is a power of 2. Repeatedly bisect the value using 613 // EXTRACT_ELEMENT. 614 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 615 EVT::getIntegerVT(*DAG.getContext(), 616 ValueVT.getSizeInBits()), 617 Val); 618 619 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 620 for (unsigned i = 0; i < NumParts; i += StepSize) { 621 unsigned ThisBits = StepSize * PartBits / 2; 622 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 623 SDValue &Part0 = Parts[i]; 624 SDValue &Part1 = Parts[i+StepSize/2]; 625 626 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 628 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 629 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 630 631 if (ThisBits == PartBits && ThisVT != PartVT) { 632 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 633 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 634 } 635 } 636 } 637 638 if (DAG.getDataLayout().isBigEndian()) 639 std::reverse(Parts, Parts + OrigNumParts); 640 } 641 642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 643 const SDLoc &DL, EVT PartVT) { 644 if (!PartVT.isVector()) 645 return SDValue(); 646 647 EVT ValueVT = Val.getValueType(); 648 EVT PartEVT = PartVT.getVectorElementType(); 649 EVT ValueEVT = ValueVT.getVectorElementType(); 650 ElementCount PartNumElts = PartVT.getVectorElementCount(); 651 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 652 653 // We only support widening vectors with equivalent element types and 654 // fixed/scalable properties. If a target needs to widen a fixed-length type 655 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 656 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 657 PartNumElts.isScalable() != ValueNumElts.isScalable()) 658 return SDValue(); 659 660 // Have a try for bf16 because some targets share its ABI with fp16. 661 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 662 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 663 "Cannot widen to illegal type"); 664 Val = DAG.getNode(ISD::BITCAST, DL, 665 ValueVT.changeVectorElementType(MVT::f16), Val); 666 } else if (PartEVT != ValueEVT) { 667 return SDValue(); 668 } 669 670 // Widening a scalable vector to another scalable vector is done by inserting 671 // the vector into a larger undef one. 672 if (PartNumElts.isScalable()) 673 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 674 Val, DAG.getVectorIdxConstant(0, DL)); 675 676 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 677 // undef elements. 678 SmallVector<SDValue, 16> Ops; 679 DAG.ExtractVectorElements(Val, Ops); 680 SDValue EltUndef = DAG.getUNDEF(PartEVT); 681 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 682 683 // FIXME: Use CONCAT for 2x -> 4x. 684 return DAG.getBuildVector(PartVT, DL, Ops); 685 } 686 687 /// getCopyToPartsVector - Create a series of nodes that contain the specified 688 /// value split into legal parts. 689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 690 SDValue Val, SDValue *Parts, unsigned NumParts, 691 MVT PartVT, const Value *V, 692 std::optional<CallingConv::ID> CallConv) { 693 EVT ValueVT = Val.getValueType(); 694 assert(ValueVT.isVector() && "Not a vector"); 695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 696 const bool IsABIRegCopy = CallConv.has_value(); 697 698 if (NumParts == 1) { 699 EVT PartEVT = PartVT; 700 if (PartEVT == ValueVT) { 701 // Nothing to do. 702 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 703 // Bitconvert vector->vector case. 704 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 705 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 706 Val = Widened; 707 } else if (PartVT.isVector() && 708 PartEVT.getVectorElementType().bitsGE( 709 ValueVT.getVectorElementType()) && 710 PartEVT.getVectorElementCount() == 711 ValueVT.getVectorElementCount()) { 712 713 // Promoted vector extract 714 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 715 } else if (PartEVT.isVector() && 716 PartEVT.getVectorElementType() != 717 ValueVT.getVectorElementType() && 718 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 719 TargetLowering::TypeWidenVector) { 720 // Combination of widening and promotion. 721 EVT WidenVT = 722 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 723 PartVT.getVectorElementCount()); 724 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 725 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 726 } else { 727 // Don't extract an integer from a float vector. This can happen if the 728 // FP type gets softened to integer and then promoted. The promotion 729 // prevents it from being picked up by the earlier bitcast case. 730 if (ValueVT.getVectorElementCount().isScalar() && 731 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 732 // If we reach this condition and PartVT is FP, this means that 733 // ValueVT is also FP and both have a different size, otherwise we 734 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 735 // would be invalid since that would mean the smaller FP type has to 736 // be extended to the larger one. 737 if (PartVT.isFloatingPoint()) { 738 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 739 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 740 } else 741 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 742 DAG.getVectorIdxConstant(0, DL)); 743 } else { 744 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 745 assert(PartVT.getFixedSizeInBits() > ValueSize && 746 "lossy conversion of vector to scalar type"); 747 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 748 Val = DAG.getBitcast(IntermediateType, Val); 749 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 750 } 751 } 752 753 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 754 Parts[0] = Val; 755 return; 756 } 757 758 // Handle a multi-element vector. 759 EVT IntermediateVT; 760 MVT RegisterVT; 761 unsigned NumIntermediates; 762 unsigned NumRegs; 763 if (IsABIRegCopy) { 764 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 765 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 766 RegisterVT); 767 } else { 768 NumRegs = 769 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 770 NumIntermediates, RegisterVT); 771 } 772 773 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 774 NumParts = NumRegs; // Silence a compiler warning. 775 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 776 777 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 778 "Mixing scalable and fixed vectors when copying in parts"); 779 780 std::optional<ElementCount> DestEltCnt; 781 782 if (IntermediateVT.isVector()) 783 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 784 else 785 DestEltCnt = ElementCount::getFixed(NumIntermediates); 786 787 EVT BuiltVectorTy = EVT::getVectorVT( 788 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 789 790 if (ValueVT == BuiltVectorTy) { 791 // Nothing to do. 792 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 793 // Bitconvert vector->vector case. 794 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 795 } else { 796 if (BuiltVectorTy.getVectorElementType().bitsGT( 797 ValueVT.getVectorElementType())) { 798 // Integer promotion. 799 ValueVT = EVT::getVectorVT(*DAG.getContext(), 800 BuiltVectorTy.getVectorElementType(), 801 ValueVT.getVectorElementCount()); 802 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 803 } 804 805 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 806 Val = Widened; 807 } 808 } 809 810 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 811 812 // Split the vector into intermediate operands. 813 SmallVector<SDValue, 8> Ops(NumIntermediates); 814 for (unsigned i = 0; i != NumIntermediates; ++i) { 815 if (IntermediateVT.isVector()) { 816 // This does something sensible for scalable vectors - see the 817 // definition of EXTRACT_SUBVECTOR for further details. 818 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 819 Ops[i] = 820 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 821 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 822 } else { 823 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 824 DAG.getVectorIdxConstant(i, DL)); 825 } 826 } 827 828 // Split the intermediate operands into legal parts. 829 if (NumParts == NumIntermediates) { 830 // If the register was not expanded, promote or copy the value, 831 // as appropriate. 832 for (unsigned i = 0; i != NumParts; ++i) 833 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 834 } else if (NumParts > 0) { 835 // If the intermediate type was expanded, split each the value into 836 // legal parts. 837 assert(NumIntermediates != 0 && "division by zero"); 838 assert(NumParts % NumIntermediates == 0 && 839 "Must expand into a divisible number of parts!"); 840 unsigned Factor = NumParts / NumIntermediates; 841 for (unsigned i = 0; i != NumIntermediates; ++i) 842 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 843 CallConv); 844 } 845 } 846 847 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 848 EVT valuevt, std::optional<CallingConv::ID> CC) 849 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 850 RegCount(1, regs.size()), CallConv(CC) {} 851 852 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 853 const DataLayout &DL, unsigned Reg, Type *Ty, 854 std::optional<CallingConv::ID> CC) { 855 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 856 857 CallConv = CC; 858 859 for (EVT ValueVT : ValueVTs) { 860 unsigned NumRegs = 861 isABIMangled() 862 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 863 : TLI.getNumRegisters(Context, ValueVT); 864 MVT RegisterVT = 865 isABIMangled() 866 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 867 : TLI.getRegisterType(Context, ValueVT); 868 for (unsigned i = 0; i != NumRegs; ++i) 869 Regs.push_back(Reg + i); 870 RegVTs.push_back(RegisterVT); 871 RegCount.push_back(NumRegs); 872 Reg += NumRegs; 873 } 874 } 875 876 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 877 FunctionLoweringInfo &FuncInfo, 878 const SDLoc &dl, SDValue &Chain, 879 SDValue *Glue, const Value *V) const { 880 // A Value with type {} or [0 x %t] needs no registers. 881 if (ValueVTs.empty()) 882 return SDValue(); 883 884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 885 886 // Assemble the legal parts into the final values. 887 SmallVector<SDValue, 4> Values(ValueVTs.size()); 888 SmallVector<SDValue, 8> Parts; 889 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 890 // Copy the legal parts from the registers. 891 EVT ValueVT = ValueVTs[Value]; 892 unsigned NumRegs = RegCount[Value]; 893 MVT RegisterVT = isABIMangled() 894 ? TLI.getRegisterTypeForCallingConv( 895 *DAG.getContext(), *CallConv, RegVTs[Value]) 896 : RegVTs[Value]; 897 898 Parts.resize(NumRegs); 899 for (unsigned i = 0; i != NumRegs; ++i) { 900 SDValue P; 901 if (!Glue) { 902 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 903 } else { 904 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 905 *Glue = P.getValue(2); 906 } 907 908 Chain = P.getValue(1); 909 Parts[i] = P; 910 911 // If the source register was virtual and if we know something about it, 912 // add an assert node. 913 if (!Register::isVirtualRegister(Regs[Part + i]) || 914 !RegisterVT.isInteger()) 915 continue; 916 917 const FunctionLoweringInfo::LiveOutInfo *LOI = 918 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 919 if (!LOI) 920 continue; 921 922 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 923 unsigned NumSignBits = LOI->NumSignBits; 924 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 925 926 if (NumZeroBits == RegSize) { 927 // The current value is a zero. 928 // Explicitly express that as it would be easier for 929 // optimizations to kick in. 930 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 931 continue; 932 } 933 934 // FIXME: We capture more information than the dag can represent. For 935 // now, just use the tightest assertzext/assertsext possible. 936 bool isSExt; 937 EVT FromVT(MVT::Other); 938 if (NumZeroBits) { 939 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 940 isSExt = false; 941 } else if (NumSignBits > 1) { 942 FromVT = 943 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 944 isSExt = true; 945 } else { 946 continue; 947 } 948 // Add an assertion node. 949 assert(FromVT != MVT::Other); 950 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 951 RegisterVT, P, DAG.getValueType(FromVT)); 952 } 953 954 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 955 RegisterVT, ValueVT, V, Chain, CallConv); 956 Part += NumRegs; 957 Parts.clear(); 958 } 959 960 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 961 } 962 963 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 964 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 965 const Value *V, 966 ISD::NodeType PreferredExtendType) const { 967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 968 ISD::NodeType ExtendKind = PreferredExtendType; 969 970 // Get the list of the values's legal parts. 971 unsigned NumRegs = Regs.size(); 972 SmallVector<SDValue, 8> Parts(NumRegs); 973 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 974 unsigned NumParts = RegCount[Value]; 975 976 MVT RegisterVT = isABIMangled() 977 ? TLI.getRegisterTypeForCallingConv( 978 *DAG.getContext(), *CallConv, RegVTs[Value]) 979 : RegVTs[Value]; 980 981 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 982 ExtendKind = ISD::ZERO_EXTEND; 983 984 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 985 NumParts, RegisterVT, V, CallConv, ExtendKind); 986 Part += NumParts; 987 } 988 989 // Copy the parts into the registers. 990 SmallVector<SDValue, 8> Chains(NumRegs); 991 for (unsigned i = 0; i != NumRegs; ++i) { 992 SDValue Part; 993 if (!Glue) { 994 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 995 } else { 996 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 997 *Glue = Part.getValue(1); 998 } 999 1000 Chains[i] = Part.getValue(0); 1001 } 1002 1003 if (NumRegs == 1 || Glue) 1004 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1005 // flagged to it. That is the CopyToReg nodes and the user are considered 1006 // a single scheduling unit. If we create a TokenFactor and return it as 1007 // chain, then the TokenFactor is both a predecessor (operand) of the 1008 // user as well as a successor (the TF operands are flagged to the user). 1009 // c1, f1 = CopyToReg 1010 // c2, f2 = CopyToReg 1011 // c3 = TokenFactor c1, c2 1012 // ... 1013 // = op c3, ..., f2 1014 Chain = Chains[NumRegs-1]; 1015 else 1016 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1017 } 1018 1019 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1020 unsigned MatchingIdx, const SDLoc &dl, 1021 SelectionDAG &DAG, 1022 std::vector<SDValue> &Ops) const { 1023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1024 1025 InlineAsm::Flag Flag(Code, Regs.size()); 1026 if (HasMatching) 1027 Flag.setMatchingOp(MatchingIdx); 1028 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1029 // Put the register class of the virtual registers in the flag word. That 1030 // way, later passes can recompute register class constraints for inline 1031 // assembly as well as normal instructions. 1032 // Don't do this for tied operands that can use the regclass information 1033 // from the def. 1034 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1035 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1036 Flag.setRegClass(RC->getID()); 1037 } 1038 1039 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1040 Ops.push_back(Res); 1041 1042 if (Code == InlineAsm::Kind::Clobber) { 1043 // Clobbers should always have a 1:1 mapping with registers, and may 1044 // reference registers that have illegal (e.g. vector) types. Hence, we 1045 // shouldn't try to apply any sort of splitting logic to them. 1046 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1047 "No 1:1 mapping from clobbers to regs?"); 1048 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1049 (void)SP; 1050 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1051 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1052 assert( 1053 (Regs[I] != SP || 1054 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1055 "If we clobbered the stack pointer, MFI should know about it."); 1056 } 1057 return; 1058 } 1059 1060 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1061 MVT RegisterVT = RegVTs[Value]; 1062 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1063 RegisterVT); 1064 for (unsigned i = 0; i != NumRegs; ++i) { 1065 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1066 unsigned TheReg = Regs[Reg++]; 1067 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1068 } 1069 } 1070 } 1071 1072 SmallVector<std::pair<unsigned, TypeSize>, 4> 1073 RegsForValue::getRegsAndSizes() const { 1074 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1075 unsigned I = 0; 1076 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1077 unsigned RegCount = std::get<0>(CountAndVT); 1078 MVT RegisterVT = std::get<1>(CountAndVT); 1079 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1080 for (unsigned E = I + RegCount; I != E; ++I) 1081 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1082 } 1083 return OutVec; 1084 } 1085 1086 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1087 AssumptionCache *ac, 1088 const TargetLibraryInfo *li) { 1089 AA = aa; 1090 AC = ac; 1091 GFI = gfi; 1092 LibInfo = li; 1093 Context = DAG.getContext(); 1094 LPadToCallSiteMap.clear(); 1095 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1096 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1097 *DAG.getMachineFunction().getFunction().getParent()); 1098 } 1099 1100 void SelectionDAGBuilder::clear() { 1101 NodeMap.clear(); 1102 UnusedArgNodeMap.clear(); 1103 PendingLoads.clear(); 1104 PendingExports.clear(); 1105 PendingConstrainedFP.clear(); 1106 PendingConstrainedFPStrict.clear(); 1107 CurInst = nullptr; 1108 HasTailCall = false; 1109 SDNodeOrder = LowestSDNodeOrder; 1110 StatepointLowering.clear(); 1111 } 1112 1113 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1114 DanglingDebugInfoMap.clear(); 1115 } 1116 1117 // Update DAG root to include dependencies on Pending chains. 1118 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1119 SDValue Root = DAG.getRoot(); 1120 1121 if (Pending.empty()) 1122 return Root; 1123 1124 // Add current root to PendingChains, unless we already indirectly 1125 // depend on it. 1126 if (Root.getOpcode() != ISD::EntryToken) { 1127 unsigned i = 0, e = Pending.size(); 1128 for (; i != e; ++i) { 1129 assert(Pending[i].getNode()->getNumOperands() > 1); 1130 if (Pending[i].getNode()->getOperand(0) == Root) 1131 break; // Don't add the root if we already indirectly depend on it. 1132 } 1133 1134 if (i == e) 1135 Pending.push_back(Root); 1136 } 1137 1138 if (Pending.size() == 1) 1139 Root = Pending[0]; 1140 else 1141 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1142 1143 DAG.setRoot(Root); 1144 Pending.clear(); 1145 return Root; 1146 } 1147 1148 SDValue SelectionDAGBuilder::getMemoryRoot() { 1149 return updateRoot(PendingLoads); 1150 } 1151 1152 SDValue SelectionDAGBuilder::getRoot() { 1153 // Chain up all pending constrained intrinsics together with all 1154 // pending loads, by simply appending them to PendingLoads and 1155 // then calling getMemoryRoot(). 1156 PendingLoads.reserve(PendingLoads.size() + 1157 PendingConstrainedFP.size() + 1158 PendingConstrainedFPStrict.size()); 1159 PendingLoads.append(PendingConstrainedFP.begin(), 1160 PendingConstrainedFP.end()); 1161 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1162 PendingConstrainedFPStrict.end()); 1163 PendingConstrainedFP.clear(); 1164 PendingConstrainedFPStrict.clear(); 1165 return getMemoryRoot(); 1166 } 1167 1168 SDValue SelectionDAGBuilder::getControlRoot() { 1169 // We need to emit pending fpexcept.strict constrained intrinsics, 1170 // so append them to the PendingExports list. 1171 PendingExports.append(PendingConstrainedFPStrict.begin(), 1172 PendingConstrainedFPStrict.end()); 1173 PendingConstrainedFPStrict.clear(); 1174 return updateRoot(PendingExports); 1175 } 1176 1177 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1178 DILocalVariable *Variable, 1179 DIExpression *Expression, 1180 DebugLoc DL) { 1181 assert(Variable && "Missing variable"); 1182 1183 // Check if address has undef value. 1184 if (!Address || isa<UndefValue>(Address) || 1185 (Address->use_empty() && !isa<Argument>(Address))) { 1186 LLVM_DEBUG( 1187 dbgs() 1188 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1189 return; 1190 } 1191 1192 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1193 1194 SDValue &N = NodeMap[Address]; 1195 if (!N.getNode() && isa<Argument>(Address)) 1196 // Check unused arguments map. 1197 N = UnusedArgNodeMap[Address]; 1198 SDDbgValue *SDV; 1199 if (N.getNode()) { 1200 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1201 Address = BCI->getOperand(0); 1202 // Parameters are handled specially. 1203 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1204 if (IsParameter && FINode) { 1205 // Byval parameter. We have a frame index at this point. 1206 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1207 /*IsIndirect*/ true, DL, SDNodeOrder); 1208 } else if (isa<Argument>(Address)) { 1209 // Address is an argument, so try to emit its dbg value using 1210 // virtual register info from the FuncInfo.ValueMap. 1211 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1212 FuncArgumentDbgValueKind::Declare, N); 1213 return; 1214 } else { 1215 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1216 true, DL, SDNodeOrder); 1217 } 1218 DAG.AddDbgValue(SDV, IsParameter); 1219 } else { 1220 // If Address is an argument then try to emit its dbg value using 1221 // virtual register info from the FuncInfo.ValueMap. 1222 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1223 FuncArgumentDbgValueKind::Declare, N)) { 1224 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1225 << " (could not emit func-arg dbg_value)\n"); 1226 } 1227 } 1228 return; 1229 } 1230 1231 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1232 // Add SDDbgValue nodes for any var locs here. Do so before updating 1233 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1234 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1235 // Add SDDbgValue nodes for any var locs here. Do so before updating 1236 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1237 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1238 It != End; ++It) { 1239 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1240 dropDanglingDebugInfo(Var, It->Expr); 1241 if (It->Values.isKillLocation(It->Expr)) { 1242 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1243 continue; 1244 } 1245 SmallVector<Value *> Values(It->Values.location_ops()); 1246 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1247 It->Values.hasArgList())) { 1248 SmallVector<Value *, 4> Vals; 1249 for (Value *V : It->Values.location_ops()) 1250 Vals.push_back(V); 1251 addDanglingDebugInfo(Vals, 1252 FnVarLocs->getDILocalVariable(It->VariableID), 1253 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1254 } 1255 } 1256 } 1257 1258 // We must skip DbgVariableRecords if they've already been processed above as 1259 // we have just emitted the debug values resulting from assignment tracking 1260 // analysis, making any existing DbgVariableRecords redundant (and probably 1261 // less correct). We still need to process DbgLabelRecords. This does sink 1262 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1263 // be important as it does so deterministcally and ordering between 1264 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1265 // printing). 1266 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1267 // Is there is any debug-info attached to this instruction, in the form of 1268 // DbgRecord non-instruction debug-info records. 1269 for (DbgRecord &DR : I.getDbgRecordRange()) { 1270 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1271 assert(DLR->getLabel() && "Missing label"); 1272 SDDbgLabel *SDV = 1273 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1274 DAG.AddDbgLabel(SDV); 1275 continue; 1276 } 1277 1278 if (SkipDbgVariableRecords) 1279 continue; 1280 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1281 DILocalVariable *Variable = DVR.getVariable(); 1282 DIExpression *Expression = DVR.getExpression(); 1283 dropDanglingDebugInfo(Variable, Expression); 1284 1285 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1286 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1287 continue; 1288 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1289 << "\n"); 1290 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1291 DVR.getDebugLoc()); 1292 continue; 1293 } 1294 1295 // A DbgVariableRecord with no locations is a kill location. 1296 SmallVector<Value *, 4> Values(DVR.location_ops()); 1297 if (Values.empty()) { 1298 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1299 SDNodeOrder); 1300 continue; 1301 } 1302 1303 // A DbgVariableRecord with an undef or absent location is also a kill 1304 // location. 1305 if (llvm::any_of(Values, 1306 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1307 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1308 SDNodeOrder); 1309 continue; 1310 } 1311 1312 bool IsVariadic = DVR.hasArgList(); 1313 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1314 SDNodeOrder, IsVariadic)) { 1315 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1316 DVR.getDebugLoc(), SDNodeOrder); 1317 } 1318 } 1319 } 1320 1321 void SelectionDAGBuilder::visit(const Instruction &I) { 1322 visitDbgInfo(I); 1323 1324 // Set up outgoing PHI node register values before emitting the terminator. 1325 if (I.isTerminator()) { 1326 HandlePHINodesInSuccessorBlocks(I.getParent()); 1327 } 1328 1329 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1330 if (!isa<DbgInfoIntrinsic>(I)) 1331 ++SDNodeOrder; 1332 1333 CurInst = &I; 1334 1335 // Set inserted listener only if required. 1336 bool NodeInserted = false; 1337 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1338 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1339 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1340 if (PCSectionsMD || MMRA) { 1341 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1342 DAG, [&](SDNode *) { NodeInserted = true; }); 1343 } 1344 1345 visit(I.getOpcode(), I); 1346 1347 if (!I.isTerminator() && !HasTailCall && 1348 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1349 CopyToExportRegsIfNeeded(&I); 1350 1351 // Handle metadata. 1352 if (PCSectionsMD || MMRA) { 1353 auto It = NodeMap.find(&I); 1354 if (It != NodeMap.end()) { 1355 if (PCSectionsMD) 1356 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1357 if (MMRA) 1358 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1359 } else if (NodeInserted) { 1360 // This should not happen; if it does, don't let it go unnoticed so we can 1361 // fix it. Relevant visit*() function is probably missing a setValue(). 1362 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1363 << I.getModule()->getName() << "]\n"; 1364 LLVM_DEBUG(I.dump()); 1365 assert(false); 1366 } 1367 } 1368 1369 CurInst = nullptr; 1370 } 1371 1372 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1373 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1374 } 1375 1376 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1377 // Note: this doesn't use InstVisitor, because it has to work with 1378 // ConstantExpr's in addition to instructions. 1379 switch (Opcode) { 1380 default: llvm_unreachable("Unknown instruction type encountered!"); 1381 // Build the switch statement using the Instruction.def file. 1382 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1383 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1384 #include "llvm/IR/Instruction.def" 1385 } 1386 } 1387 1388 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1389 DILocalVariable *Variable, 1390 DebugLoc DL, unsigned Order, 1391 SmallVectorImpl<Value *> &Values, 1392 DIExpression *Expression) { 1393 // For variadic dbg_values we will now insert an undef. 1394 // FIXME: We can potentially recover these! 1395 SmallVector<SDDbgOperand, 2> Locs; 1396 for (const Value *V : Values) { 1397 auto *Undef = UndefValue::get(V->getType()); 1398 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1399 } 1400 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1401 /*IsIndirect=*/false, DL, Order, 1402 /*IsVariadic=*/true); 1403 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1404 return true; 1405 } 1406 1407 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1408 DILocalVariable *Var, 1409 DIExpression *Expr, 1410 bool IsVariadic, DebugLoc DL, 1411 unsigned Order) { 1412 if (IsVariadic) { 1413 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1414 return; 1415 } 1416 // TODO: Dangling debug info will eventually either be resolved or produce 1417 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1418 // between the original dbg.value location and its resolved DBG_VALUE, 1419 // which we should ideally fill with an extra Undef DBG_VALUE. 1420 assert(Values.size() == 1); 1421 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1422 } 1423 1424 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1425 const DIExpression *Expr) { 1426 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1427 DIVariable *DanglingVariable = DDI.getVariable(); 1428 DIExpression *DanglingExpr = DDI.getExpression(); 1429 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1430 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1431 << printDDI(nullptr, DDI) << "\n"); 1432 return true; 1433 } 1434 return false; 1435 }; 1436 1437 for (auto &DDIMI : DanglingDebugInfoMap) { 1438 DanglingDebugInfoVector &DDIV = DDIMI.second; 1439 1440 // If debug info is to be dropped, run it through final checks to see 1441 // whether it can be salvaged. 1442 for (auto &DDI : DDIV) 1443 if (isMatchingDbgValue(DDI)) 1444 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1445 1446 erase_if(DDIV, isMatchingDbgValue); 1447 } 1448 } 1449 1450 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1451 // generate the debug data structures now that we've seen its definition. 1452 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1453 SDValue Val) { 1454 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1455 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1456 return; 1457 1458 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1459 for (auto &DDI : DDIV) { 1460 DebugLoc DL = DDI.getDebugLoc(); 1461 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1462 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1463 DILocalVariable *Variable = DDI.getVariable(); 1464 DIExpression *Expr = DDI.getExpression(); 1465 assert(Variable->isValidLocationForIntrinsic(DL) && 1466 "Expected inlined-at fields to agree"); 1467 SDDbgValue *SDV; 1468 if (Val.getNode()) { 1469 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1470 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1471 // we couldn't resolve it directly when examining the DbgValue intrinsic 1472 // in the first place we should not be more successful here). Unless we 1473 // have some test case that prove this to be correct we should avoid 1474 // calling EmitFuncArgumentDbgValue here. 1475 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1476 FuncArgumentDbgValueKind::Value, Val)) { 1477 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1478 << printDDI(V, DDI) << "\n"); 1479 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1480 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1481 // inserted after the definition of Val when emitting the instructions 1482 // after ISel. An alternative could be to teach 1483 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1484 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1485 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1486 << ValSDNodeOrder << "\n"); 1487 SDV = getDbgValue(Val, Variable, Expr, DL, 1488 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1489 DAG.AddDbgValue(SDV, false); 1490 } else 1491 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1492 << printDDI(V, DDI) 1493 << " in EmitFuncArgumentDbgValue\n"); 1494 } else { 1495 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1496 << "\n"); 1497 auto Undef = UndefValue::get(V->getType()); 1498 auto SDV = 1499 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1500 DAG.AddDbgValue(SDV, false); 1501 } 1502 } 1503 DDIV.clear(); 1504 } 1505 1506 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1507 DanglingDebugInfo &DDI) { 1508 // TODO: For the variadic implementation, instead of only checking the fail 1509 // state of `handleDebugValue`, we need know specifically which values were 1510 // invalid, so that we attempt to salvage only those values when processing 1511 // a DIArgList. 1512 const Value *OrigV = V; 1513 DILocalVariable *Var = DDI.getVariable(); 1514 DIExpression *Expr = DDI.getExpression(); 1515 DebugLoc DL = DDI.getDebugLoc(); 1516 unsigned SDOrder = DDI.getSDNodeOrder(); 1517 1518 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1519 // that DW_OP_stack_value is desired. 1520 bool StackValue = true; 1521 1522 // Can this Value can be encoded without any further work? 1523 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1524 return; 1525 1526 // Attempt to salvage back through as many instructions as possible. Bail if 1527 // a non-instruction is seen, such as a constant expression or global 1528 // variable. FIXME: Further work could recover those too. 1529 while (isa<Instruction>(V)) { 1530 const Instruction &VAsInst = *cast<const Instruction>(V); 1531 // Temporary "0", awaiting real implementation. 1532 SmallVector<uint64_t, 16> Ops; 1533 SmallVector<Value *, 4> AdditionalValues; 1534 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1535 Expr->getNumLocationOperands(), Ops, 1536 AdditionalValues); 1537 // If we cannot salvage any further, and haven't yet found a suitable debug 1538 // expression, bail out. 1539 if (!V) 1540 break; 1541 1542 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1543 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1544 // here for variadic dbg_values, remove that condition. 1545 if (!AdditionalValues.empty()) 1546 break; 1547 1548 // New value and expr now represent this debuginfo. 1549 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1550 1551 // Some kind of simplification occurred: check whether the operand of the 1552 // salvaged debug expression can be encoded in this DAG. 1553 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1554 LLVM_DEBUG( 1555 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1556 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1557 return; 1558 } 1559 } 1560 1561 // This was the final opportunity to salvage this debug information, and it 1562 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1563 // any earlier variable location. 1564 assert(OrigV && "V shouldn't be null"); 1565 auto *Undef = UndefValue::get(OrigV->getType()); 1566 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1567 DAG.AddDbgValue(SDV, false); 1568 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1569 << printDDI(OrigV, DDI) << "\n"); 1570 } 1571 1572 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1573 DIExpression *Expr, 1574 DebugLoc DbgLoc, 1575 unsigned Order) { 1576 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1577 DIExpression *NewExpr = 1578 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1579 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1580 /*IsVariadic*/ false); 1581 } 1582 1583 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1584 DILocalVariable *Var, 1585 DIExpression *Expr, DebugLoc DbgLoc, 1586 unsigned Order, bool IsVariadic) { 1587 if (Values.empty()) 1588 return true; 1589 1590 // Filter EntryValue locations out early. 1591 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1592 return true; 1593 1594 SmallVector<SDDbgOperand> LocationOps; 1595 SmallVector<SDNode *> Dependencies; 1596 for (const Value *V : Values) { 1597 // Constant value. 1598 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1599 isa<ConstantPointerNull>(V)) { 1600 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1601 continue; 1602 } 1603 1604 // Look through IntToPtr constants. 1605 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1606 if (CE->getOpcode() == Instruction::IntToPtr) { 1607 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1608 continue; 1609 } 1610 1611 // If the Value is a frame index, we can create a FrameIndex debug value 1612 // without relying on the DAG at all. 1613 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1614 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1615 if (SI != FuncInfo.StaticAllocaMap.end()) { 1616 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1617 continue; 1618 } 1619 } 1620 1621 // Do not use getValue() in here; we don't want to generate code at 1622 // this point if it hasn't been done yet. 1623 SDValue N = NodeMap[V]; 1624 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1625 N = UnusedArgNodeMap[V]; 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1806 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1807 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1808 getValue(CPA->getAddrDiscriminator()), 1809 getValue(CPA->getDiscriminator())); 1810 } 1811 1812 if (isa<ConstantPointerNull>(C)) { 1813 unsigned AS = V->getType()->getPointerAddressSpace(); 1814 return DAG.getConstant(0, getCurSDLoc(), 1815 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1816 } 1817 1818 if (match(C, m_VScale())) 1819 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1820 1821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1822 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1823 1824 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1825 return DAG.getUNDEF(VT); 1826 1827 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1828 visit(CE->getOpcode(), *CE); 1829 SDValue N1 = NodeMap[V]; 1830 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1831 return N1; 1832 } 1833 1834 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1835 SmallVector<SDValue, 4> Constants; 1836 for (const Use &U : C->operands()) { 1837 SDNode *Val = getValue(U).getNode(); 1838 // If the operand is an empty aggregate, there are no values. 1839 if (!Val) continue; 1840 // Add each leaf value from the operand to the Constants list 1841 // to form a flattened list of all the values. 1842 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1843 Constants.push_back(SDValue(Val, i)); 1844 } 1845 1846 return DAG.getMergeValues(Constants, getCurSDLoc()); 1847 } 1848 1849 if (const ConstantDataSequential *CDS = 1850 dyn_cast<ConstantDataSequential>(C)) { 1851 SmallVector<SDValue, 4> Ops; 1852 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1853 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1854 // Add each leaf value from the operand to the Constants list 1855 // to form a flattened list of all the values. 1856 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1857 Ops.push_back(SDValue(Val, i)); 1858 } 1859 1860 if (isa<ArrayType>(CDS->getType())) 1861 return DAG.getMergeValues(Ops, getCurSDLoc()); 1862 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1863 } 1864 1865 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1866 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1867 "Unknown struct or array constant!"); 1868 1869 SmallVector<EVT, 4> ValueVTs; 1870 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1871 unsigned NumElts = ValueVTs.size(); 1872 if (NumElts == 0) 1873 return SDValue(); // empty struct 1874 SmallVector<SDValue, 4> Constants(NumElts); 1875 for (unsigned i = 0; i != NumElts; ++i) { 1876 EVT EltVT = ValueVTs[i]; 1877 if (isa<UndefValue>(C)) 1878 Constants[i] = DAG.getUNDEF(EltVT); 1879 else if (EltVT.isFloatingPoint()) 1880 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1881 else 1882 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1883 } 1884 1885 return DAG.getMergeValues(Constants, getCurSDLoc()); 1886 } 1887 1888 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1889 return DAG.getBlockAddress(BA, VT); 1890 1891 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1892 return getValue(Equiv->getGlobalValue()); 1893 1894 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1895 return getValue(NC->getGlobalValue()); 1896 1897 if (VT == MVT::aarch64svcount) { 1898 assert(C->isNullValue() && "Can only zero this target type!"); 1899 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1900 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1901 } 1902 1903 VectorType *VecTy = cast<VectorType>(V->getType()); 1904 1905 // Now that we know the number and type of the elements, get that number of 1906 // elements into the Ops array based on what kind of constant it is. 1907 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1908 SmallVector<SDValue, 16> Ops; 1909 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1910 for (unsigned i = 0; i != NumElements; ++i) 1911 Ops.push_back(getValue(CV->getOperand(i))); 1912 1913 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1914 } 1915 1916 if (isa<ConstantAggregateZero>(C)) { 1917 EVT EltVT = 1918 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1919 1920 SDValue Op; 1921 if (EltVT.isFloatingPoint()) 1922 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1923 else 1924 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1925 1926 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1927 } 1928 1929 llvm_unreachable("Unknown vector constant"); 1930 } 1931 1932 // If this is a static alloca, generate it as the frameindex instead of 1933 // computation. 1934 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1935 DenseMap<const AllocaInst*, int>::iterator SI = 1936 FuncInfo.StaticAllocaMap.find(AI); 1937 if (SI != FuncInfo.StaticAllocaMap.end()) 1938 return DAG.getFrameIndex( 1939 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1940 } 1941 1942 // If this is an instruction which fast-isel has deferred, select it now. 1943 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1944 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1945 1946 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1947 Inst->getType(), std::nullopt); 1948 SDValue Chain = DAG.getEntryNode(); 1949 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1950 } 1951 1952 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1953 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1954 1955 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1956 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1957 1958 llvm_unreachable("Can't get register for value!"); 1959 } 1960 1961 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1962 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1963 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1964 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1965 bool IsSEH = isAsynchronousEHPersonality(Pers); 1966 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1967 if (!IsSEH) 1968 CatchPadMBB->setIsEHScopeEntry(); 1969 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1970 if (IsMSVCCXX || IsCoreCLR) 1971 CatchPadMBB->setIsEHFuncletEntry(); 1972 } 1973 1974 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1975 // Update machine-CFG edge. 1976 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1977 FuncInfo.MBB->addSuccessor(TargetMBB); 1978 TargetMBB->setIsEHCatchretTarget(true); 1979 DAG.getMachineFunction().setHasEHCatchret(true); 1980 1981 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1982 bool IsSEH = isAsynchronousEHPersonality(Pers); 1983 if (IsSEH) { 1984 // If this is not a fall-through branch or optimizations are switched off, 1985 // emit the branch. 1986 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1987 TM.getOptLevel() == CodeGenOptLevel::None) 1988 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1989 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1990 return; 1991 } 1992 1993 // Figure out the funclet membership for the catchret's successor. 1994 // This will be used by the FuncletLayout pass to determine how to order the 1995 // BB's. 1996 // A 'catchret' returns to the outer scope's color. 1997 Value *ParentPad = I.getCatchSwitchParentPad(); 1998 const BasicBlock *SuccessorColor; 1999 if (isa<ConstantTokenNone>(ParentPad)) 2000 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2001 else 2002 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2003 assert(SuccessorColor && "No parent funclet for catchret!"); 2004 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 2005 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2006 2007 // Create the terminator node. 2008 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2009 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2010 DAG.getBasicBlock(SuccessorColorMBB)); 2011 DAG.setRoot(Ret); 2012 } 2013 2014 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2015 // Don't emit any special code for the cleanuppad instruction. It just marks 2016 // the start of an EH scope/funclet. 2017 FuncInfo.MBB->setIsEHScopeEntry(); 2018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2019 if (Pers != EHPersonality::Wasm_CXX) { 2020 FuncInfo.MBB->setIsEHFuncletEntry(); 2021 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2022 } 2023 } 2024 2025 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2026 // not match, it is OK to add only the first unwind destination catchpad to the 2027 // successors, because there will be at least one invoke instruction within the 2028 // catch scope that points to the next unwind destination, if one exists, so 2029 // CFGSort cannot mess up with BB sorting order. 2030 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2031 // call within them, and catchpads only consisting of 'catch (...)' have a 2032 // '__cxa_end_catch' call within them, both of which generate invokes in case 2033 // the next unwind destination exists, i.e., the next unwind destination is not 2034 // the caller.) 2035 // 2036 // Having at most one EH pad successor is also simpler and helps later 2037 // transformations. 2038 // 2039 // For example, 2040 // current: 2041 // invoke void @foo to ... unwind label %catch.dispatch 2042 // catch.dispatch: 2043 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2044 // catch.start: 2045 // ... 2046 // ... in this BB or some other child BB dominated by this BB there will be an 2047 // invoke that points to 'next' BB as an unwind destination 2048 // 2049 // next: ; We don't need to add this to 'current' BB's successor 2050 // ... 2051 static void findWasmUnwindDestinations( 2052 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2053 BranchProbability Prob, 2054 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2055 &UnwindDests) { 2056 while (EHPadBB) { 2057 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2058 if (isa<CleanupPadInst>(Pad)) { 2059 // Stop on cleanup pads. 2060 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 break; 2063 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2064 // Add the catchpad handlers to the possible destinations. We don't 2065 // continue to the unwind destination of the catchswitch for wasm. 2066 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2067 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2068 UnwindDests.back().first->setIsEHScopeEntry(); 2069 } 2070 break; 2071 } else { 2072 continue; 2073 } 2074 } 2075 } 2076 2077 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2078 /// many places it could ultimately go. In the IR, we have a single unwind 2079 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2080 /// This function skips over imaginary basic blocks that hold catchswitch 2081 /// instructions, and finds all the "real" machine 2082 /// basic block destinations. As those destinations may not be successors of 2083 /// EHPadBB, here we also calculate the edge probability to those destinations. 2084 /// The passed-in Prob is the edge probability to EHPadBB. 2085 static void findUnwindDestinations( 2086 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2087 BranchProbability Prob, 2088 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2089 &UnwindDests) { 2090 EHPersonality Personality = 2091 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2092 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2093 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2094 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2095 bool IsSEH = isAsynchronousEHPersonality(Personality); 2096 2097 if (IsWasmCXX) { 2098 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2099 assert(UnwindDests.size() <= 1 && 2100 "There should be at most one unwind destination for wasm"); 2101 return; 2102 } 2103 2104 while (EHPadBB) { 2105 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2106 BasicBlock *NewEHPadBB = nullptr; 2107 if (isa<LandingPadInst>(Pad)) { 2108 // Stop on landingpads. They are not funclets. 2109 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2110 break; 2111 } else if (isa<CleanupPadInst>(Pad)) { 2112 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2113 // personalities. 2114 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2115 UnwindDests.back().first->setIsEHScopeEntry(); 2116 UnwindDests.back().first->setIsEHFuncletEntry(); 2117 break; 2118 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2119 // Add the catchpad handlers to the possible destinations. 2120 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2121 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2122 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2123 if (IsMSVCCXX || IsCoreCLR) 2124 UnwindDests.back().first->setIsEHFuncletEntry(); 2125 if (!IsSEH) 2126 UnwindDests.back().first->setIsEHScopeEntry(); 2127 } 2128 NewEHPadBB = CatchSwitch->getUnwindDest(); 2129 } else { 2130 continue; 2131 } 2132 2133 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2134 if (BPI && NewEHPadBB) 2135 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2136 EHPadBB = NewEHPadBB; 2137 } 2138 } 2139 2140 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2141 // Update successor info. 2142 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2143 auto UnwindDest = I.getUnwindDest(); 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability UnwindDestProb = 2146 (BPI && UnwindDest) 2147 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2148 : BranchProbability::getZero(); 2149 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2150 for (auto &UnwindDest : UnwindDests) { 2151 UnwindDest.first->setIsEHPad(); 2152 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2153 } 2154 FuncInfo.MBB->normalizeSuccProbs(); 2155 2156 // Create the terminator node. 2157 SDValue Ret = 2158 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2159 DAG.setRoot(Ret); 2160 } 2161 2162 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2163 report_fatal_error("visitCatchSwitch not yet implemented!"); 2164 } 2165 2166 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 auto &DL = DAG.getDataLayout(); 2169 SDValue Chain = getControlRoot(); 2170 SmallVector<ISD::OutputArg, 8> Outs; 2171 SmallVector<SDValue, 8> OutVals; 2172 2173 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2174 // lower 2175 // 2176 // %val = call <ty> @llvm.experimental.deoptimize() 2177 // ret <ty> %val 2178 // 2179 // differently. 2180 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2181 LowerDeoptimizingReturn(); 2182 return; 2183 } 2184 2185 if (!FuncInfo.CanLowerReturn) { 2186 unsigned DemoteReg = FuncInfo.DemoteRegister; 2187 const Function *F = I.getParent()->getParent(); 2188 2189 // Emit a store of the return value through the virtual register. 2190 // Leave Outs empty so that LowerReturn won't try to load return 2191 // registers the usual way. 2192 SmallVector<EVT, 1> PtrValueVTs; 2193 ComputeValueVTs(TLI, DL, 2194 PointerType::get(F->getContext(), 2195 DAG.getDataLayout().getAllocaAddrSpace()), 2196 PtrValueVTs); 2197 2198 SDValue RetPtr = 2199 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2200 SDValue RetOp = getValue(I.getOperand(0)); 2201 2202 SmallVector<EVT, 4> ValueVTs, MemVTs; 2203 SmallVector<uint64_t, 4> Offsets; 2204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2205 &Offsets, 0); 2206 unsigned NumValues = ValueVTs.size(); 2207 2208 SmallVector<SDValue, 4> Chains(NumValues); 2209 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2210 for (unsigned i = 0; i != NumValues; ++i) { 2211 // An aggregate return value cannot wrap around the address space, so 2212 // offsets to its parts don't wrap either. 2213 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2214 TypeSize::getFixed(Offsets[i])); 2215 2216 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2217 if (MemVTs[i] != ValueVTs[i]) 2218 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2219 Chains[i] = DAG.getStore( 2220 Chain, getCurSDLoc(), Val, 2221 // FIXME: better loc info would be nice. 2222 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2223 commonAlignment(BaseAlign, Offsets[i])); 2224 } 2225 2226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2227 MVT::Other, Chains); 2228 } else if (I.getNumOperands() != 0) { 2229 SmallVector<EVT, 4> ValueVTs; 2230 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2231 unsigned NumValues = ValueVTs.size(); 2232 if (NumValues) { 2233 SDValue RetOp = getValue(I.getOperand(0)); 2234 2235 const Function *F = I.getParent()->getParent(); 2236 2237 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2238 I.getOperand(0)->getType(), F->getCallingConv(), 2239 /*IsVarArg*/ false, DL); 2240 2241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2242 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2243 ExtendKind = ISD::SIGN_EXTEND; 2244 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2245 ExtendKind = ISD::ZERO_EXTEND; 2246 2247 LLVMContext &Context = F->getContext(); 2248 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2249 2250 for (unsigned j = 0; j != NumValues; ++j) { 2251 EVT VT = ValueVTs[j]; 2252 2253 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2254 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2255 2256 CallingConv::ID CC = F->getCallingConv(); 2257 2258 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2259 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2260 SmallVector<SDValue, 4> Parts(NumParts); 2261 getCopyToParts(DAG, getCurSDLoc(), 2262 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2263 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2264 2265 // 'inreg' on function refers to return value 2266 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2267 if (RetInReg) 2268 Flags.setInReg(); 2269 2270 if (I.getOperand(0)->getType()->isPointerTy()) { 2271 Flags.setPointer(); 2272 Flags.setPointerAddrSpace( 2273 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2274 } 2275 2276 if (NeedsRegBlock) { 2277 Flags.setInConsecutiveRegs(); 2278 if (j == NumValues - 1) 2279 Flags.setInConsecutiveRegsLast(); 2280 } 2281 2282 // Propagate extension type if any 2283 if (ExtendKind == ISD::SIGN_EXTEND) 2284 Flags.setSExt(); 2285 else if (ExtendKind == ISD::ZERO_EXTEND) 2286 Flags.setZExt(); 2287 2288 for (unsigned i = 0; i < NumParts; ++i) { 2289 Outs.push_back(ISD::OutputArg(Flags, 2290 Parts[i].getValueType().getSimpleVT(), 2291 VT, /*isfixed=*/true, 0, 0)); 2292 OutVals.push_back(Parts[i]); 2293 } 2294 } 2295 } 2296 } 2297 2298 // Push in swifterror virtual register as the last element of Outs. This makes 2299 // sure swifterror virtual register will be returned in the swifterror 2300 // physical register. 2301 const Function *F = I.getParent()->getParent(); 2302 if (TLI.supportSwiftError() && 2303 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2304 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2305 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2306 Flags.setSwiftError(); 2307 Outs.push_back(ISD::OutputArg( 2308 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2309 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2310 // Create SDNode for the swifterror virtual register. 2311 OutVals.push_back( 2312 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2313 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2314 EVT(TLI.getPointerTy(DL)))); 2315 } 2316 2317 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2318 CallingConv::ID CallConv = 2319 DAG.getMachineFunction().getFunction().getCallingConv(); 2320 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2321 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2322 2323 // Verify that the target's LowerReturn behaved as expected. 2324 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2325 "LowerReturn didn't return a valid chain!"); 2326 2327 // Update the DAG with the new chain value resulting from return lowering. 2328 DAG.setRoot(Chain); 2329 } 2330 2331 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2332 /// created for it, emit nodes to copy the value into the virtual 2333 /// registers. 2334 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2335 // Skip empty types 2336 if (V->getType()->isEmptyTy()) 2337 return; 2338 2339 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2340 if (VMI != FuncInfo.ValueMap.end()) { 2341 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2342 "Unused value assigned virtual registers!"); 2343 CopyValueToVirtualRegister(V, VMI->second); 2344 } 2345 } 2346 2347 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2348 /// the current basic block, add it to ValueMap now so that we'll get a 2349 /// CopyTo/FromReg. 2350 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2351 // No need to export constants. 2352 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2353 2354 // Already exported? 2355 if (FuncInfo.isExportedInst(V)) return; 2356 2357 Register Reg = FuncInfo.InitializeRegForValue(V); 2358 CopyValueToVirtualRegister(V, Reg); 2359 } 2360 2361 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2362 const BasicBlock *FromBB) { 2363 // The operands of the setcc have to be in this block. We don't know 2364 // how to export them from some other block. 2365 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2366 // Can export from current BB. 2367 if (VI->getParent() == FromBB) 2368 return true; 2369 2370 // Is already exported, noop. 2371 return FuncInfo.isExportedInst(V); 2372 } 2373 2374 // If this is an argument, we can export it if the BB is the entry block or 2375 // if it is already exported. 2376 if (isa<Argument>(V)) { 2377 if (FromBB->isEntryBlock()) 2378 return true; 2379 2380 // Otherwise, can only export this if it is already exported. 2381 return FuncInfo.isExportedInst(V); 2382 } 2383 2384 // Otherwise, constants can always be exported. 2385 return true; 2386 } 2387 2388 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2389 BranchProbability 2390 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2391 const MachineBasicBlock *Dst) const { 2392 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2393 const BasicBlock *SrcBB = Src->getBasicBlock(); 2394 const BasicBlock *DstBB = Dst->getBasicBlock(); 2395 if (!BPI) { 2396 // If BPI is not available, set the default probability as 1 / N, where N is 2397 // the number of successors. 2398 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2399 return BranchProbability(1, SuccSize); 2400 } 2401 return BPI->getEdgeProbability(SrcBB, DstBB); 2402 } 2403 2404 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2405 MachineBasicBlock *Dst, 2406 BranchProbability Prob) { 2407 if (!FuncInfo.BPI) 2408 Src->addSuccessorWithoutProb(Dst); 2409 else { 2410 if (Prob.isUnknown()) 2411 Prob = getEdgeProbability(Src, Dst); 2412 Src->addSuccessor(Dst, Prob); 2413 } 2414 } 2415 2416 static bool InBlock(const Value *V, const BasicBlock *BB) { 2417 if (const Instruction *I = dyn_cast<Instruction>(V)) 2418 return I->getParent() == BB; 2419 return true; 2420 } 2421 2422 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2423 /// This function emits a branch and is used at the leaves of an OR or an 2424 /// AND operator tree. 2425 void 2426 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2427 MachineBasicBlock *TBB, 2428 MachineBasicBlock *FBB, 2429 MachineBasicBlock *CurBB, 2430 MachineBasicBlock *SwitchBB, 2431 BranchProbability TProb, 2432 BranchProbability FProb, 2433 bool InvertCond) { 2434 const BasicBlock *BB = CurBB->getBasicBlock(); 2435 2436 // If the leaf of the tree is a comparison, merge the condition into 2437 // the caseblock. 2438 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2439 // The operands of the cmp have to be in this block. We don't know 2440 // how to export them from some other block. If this is the first block 2441 // of the sequence, no exporting is needed. 2442 if (CurBB == SwitchBB || 2443 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2444 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2445 ISD::CondCode Condition; 2446 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2447 ICmpInst::Predicate Pred = 2448 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2449 Condition = getICmpCondCode(Pred); 2450 } else { 2451 const FCmpInst *FC = cast<FCmpInst>(Cond); 2452 FCmpInst::Predicate Pred = 2453 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2454 Condition = getFCmpCondCode(Pred); 2455 if (TM.Options.NoNaNsFPMath) 2456 Condition = getFCmpCodeWithoutNaN(Condition); 2457 } 2458 2459 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2460 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2461 SL->SwitchCases.push_back(CB); 2462 return; 2463 } 2464 } 2465 2466 // Create a CaseBlock record representing this branch. 2467 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2468 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2469 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2470 SL->SwitchCases.push_back(CB); 2471 } 2472 2473 // Collect dependencies on V recursively. This is used for the cost analysis in 2474 // `shouldKeepJumpConditionsTogether`. 2475 static bool collectInstructionDeps( 2476 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2477 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2478 unsigned Depth = 0) { 2479 // Return false if we have an incomplete count. 2480 if (Depth >= SelectionDAG::MaxRecursionDepth) 2481 return false; 2482 2483 auto *I = dyn_cast<Instruction>(V); 2484 if (I == nullptr) 2485 return true; 2486 2487 if (Necessary != nullptr) { 2488 // This instruction is necessary for the other side of the condition so 2489 // don't count it. 2490 if (Necessary->contains(I)) 2491 return true; 2492 } 2493 2494 // Already added this dep. 2495 if (!Deps->try_emplace(I, false).second) 2496 return true; 2497 2498 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2499 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2500 Depth + 1)) 2501 return false; 2502 return true; 2503 } 2504 2505 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2506 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2507 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2508 TargetLoweringBase::CondMergingParams Params) const { 2509 if (I.getNumSuccessors() != 2) 2510 return false; 2511 2512 if (!I.isConditional()) 2513 return false; 2514 2515 if (Params.BaseCost < 0) 2516 return false; 2517 2518 // Baseline cost. 2519 InstructionCost CostThresh = Params.BaseCost; 2520 2521 BranchProbabilityInfo *BPI = nullptr; 2522 if (Params.LikelyBias || Params.UnlikelyBias) 2523 BPI = FuncInfo.BPI; 2524 if (BPI != nullptr) { 2525 // See if we are either likely to get an early out or compute both lhs/rhs 2526 // of the condition. 2527 BasicBlock *IfFalse = I.getSuccessor(0); 2528 BasicBlock *IfTrue = I.getSuccessor(1); 2529 2530 std::optional<bool> Likely; 2531 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2532 Likely = true; 2533 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2534 Likely = false; 2535 2536 if (Likely) { 2537 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2538 // Its likely we will have to compute both lhs and rhs of condition 2539 CostThresh += Params.LikelyBias; 2540 else { 2541 if (Params.UnlikelyBias < 0) 2542 return false; 2543 // Its likely we will get an early out. 2544 CostThresh -= Params.UnlikelyBias; 2545 } 2546 } 2547 } 2548 2549 if (CostThresh <= 0) 2550 return false; 2551 2552 // Collect "all" instructions that lhs condition is dependent on. 2553 // Use map for stable iteration (to avoid non-determanism of iteration of 2554 // SmallPtrSet). The `bool` value is just a dummy. 2555 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2556 collectInstructionDeps(&LhsDeps, Lhs); 2557 // Collect "all" instructions that rhs condition is dependent on AND are 2558 // dependencies of lhs. This gives us an estimate on which instructions we 2559 // stand to save by splitting the condition. 2560 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2561 return false; 2562 // Add the compare instruction itself unless its a dependency on the LHS. 2563 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2564 if (!LhsDeps.contains(RhsI)) 2565 RhsDeps.try_emplace(RhsI, false); 2566 2567 const auto &TLI = DAG.getTargetLoweringInfo(); 2568 const auto &TTI = 2569 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2570 2571 InstructionCost CostOfIncluding = 0; 2572 // See if this instruction will need to computed independently of whether RHS 2573 // is. 2574 Value *BrCond = I.getCondition(); 2575 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2576 for (const auto *U : Ins->users()) { 2577 // If user is independent of RHS calculation we don't need to count it. 2578 if (auto *UIns = dyn_cast<Instruction>(U)) 2579 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2580 return false; 2581 } 2582 return true; 2583 }; 2584 2585 // Prune instructions from RHS Deps that are dependencies of unrelated 2586 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2587 // arbitrary and just meant to cap the how much time we spend in the pruning 2588 // loop. Its highly unlikely to come into affect. 2589 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2590 // Stop after a certain point. No incorrectness from including too many 2591 // instructions. 2592 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2593 const Instruction *ToDrop = nullptr; 2594 for (const auto &InsPair : RhsDeps) { 2595 if (!ShouldCountInsn(InsPair.first)) { 2596 ToDrop = InsPair.first; 2597 break; 2598 } 2599 } 2600 if (ToDrop == nullptr) 2601 break; 2602 RhsDeps.erase(ToDrop); 2603 } 2604 2605 for (const auto &InsPair : RhsDeps) { 2606 // Finally accumulate latency that we can only attribute to computing the 2607 // RHS condition. Use latency because we are essentially trying to calculate 2608 // the cost of the dependency chain. 2609 // Possible TODO: We could try to estimate ILP and make this more precise. 2610 CostOfIncluding += 2611 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2612 2613 if (CostOfIncluding > CostThresh) 2614 return false; 2615 } 2616 return true; 2617 } 2618 2619 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2620 MachineBasicBlock *TBB, 2621 MachineBasicBlock *FBB, 2622 MachineBasicBlock *CurBB, 2623 MachineBasicBlock *SwitchBB, 2624 Instruction::BinaryOps Opc, 2625 BranchProbability TProb, 2626 BranchProbability FProb, 2627 bool InvertCond) { 2628 // Skip over not part of the tree and remember to invert op and operands at 2629 // next level. 2630 Value *NotCond; 2631 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2632 InBlock(NotCond, CurBB->getBasicBlock())) { 2633 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2634 !InvertCond); 2635 return; 2636 } 2637 2638 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2639 const Value *BOpOp0, *BOpOp1; 2640 // Compute the effective opcode for Cond, taking into account whether it needs 2641 // to be inverted, e.g. 2642 // and (not (or A, B)), C 2643 // gets lowered as 2644 // and (and (not A, not B), C) 2645 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2646 if (BOp) { 2647 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2648 ? Instruction::And 2649 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2650 ? Instruction::Or 2651 : (Instruction::BinaryOps)0); 2652 if (InvertCond) { 2653 if (BOpc == Instruction::And) 2654 BOpc = Instruction::Or; 2655 else if (BOpc == Instruction::Or) 2656 BOpc = Instruction::And; 2657 } 2658 } 2659 2660 // If this node is not part of the or/and tree, emit it as a branch. 2661 // Note that all nodes in the tree should have same opcode. 2662 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2663 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2664 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2665 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2666 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2667 TProb, FProb, InvertCond); 2668 return; 2669 } 2670 2671 // Create TmpBB after CurBB. 2672 MachineFunction::iterator BBI(CurBB); 2673 MachineFunction &MF = DAG.getMachineFunction(); 2674 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2675 CurBB->getParent()->insert(++BBI, TmpBB); 2676 2677 if (Opc == Instruction::Or) { 2678 // Codegen X | Y as: 2679 // BB1: 2680 // jmp_if_X TBB 2681 // jmp TmpBB 2682 // TmpBB: 2683 // jmp_if_Y TBB 2684 // jmp FBB 2685 // 2686 2687 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2688 // The requirement is that 2689 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2690 // = TrueProb for original BB. 2691 // Assuming the original probabilities are A and B, one choice is to set 2692 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2693 // A/(1+B) and 2B/(1+B). This choice assumes that 2694 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2695 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2696 // TmpBB, but the math is more complicated. 2697 2698 auto NewTrueProb = TProb / 2; 2699 auto NewFalseProb = TProb / 2 + FProb; 2700 // Emit the LHS condition. 2701 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2702 NewFalseProb, InvertCond); 2703 2704 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2705 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2706 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2707 // Emit the RHS condition into TmpBB. 2708 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2709 Probs[1], InvertCond); 2710 } else { 2711 assert(Opc == Instruction::And && "Unknown merge op!"); 2712 // Codegen X & Y as: 2713 // BB1: 2714 // jmp_if_X TmpBB 2715 // jmp FBB 2716 // TmpBB: 2717 // jmp_if_Y TBB 2718 // jmp FBB 2719 // 2720 // This requires creation of TmpBB after CurBB. 2721 2722 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2723 // The requirement is that 2724 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2725 // = FalseProb for original BB. 2726 // Assuming the original probabilities are A and B, one choice is to set 2727 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2728 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2729 // TrueProb for BB1 * FalseProb for TmpBB. 2730 2731 auto NewTrueProb = TProb + FProb / 2; 2732 auto NewFalseProb = FProb / 2; 2733 // Emit the LHS condition. 2734 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2735 NewFalseProb, InvertCond); 2736 2737 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2738 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2739 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2740 // Emit the RHS condition into TmpBB. 2741 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2742 Probs[1], InvertCond); 2743 } 2744 } 2745 2746 /// If the set of cases should be emitted as a series of branches, return true. 2747 /// If we should emit this as a bunch of and/or'd together conditions, return 2748 /// false. 2749 bool 2750 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2751 if (Cases.size() != 2) return true; 2752 2753 // If this is two comparisons of the same values or'd or and'd together, they 2754 // will get folded into a single comparison, so don't emit two blocks. 2755 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2756 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2757 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2758 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2759 return false; 2760 } 2761 2762 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2763 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2764 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2765 Cases[0].CC == Cases[1].CC && 2766 isa<Constant>(Cases[0].CmpRHS) && 2767 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2768 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2769 return false; 2770 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2771 return false; 2772 } 2773 2774 return true; 2775 } 2776 2777 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2778 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2779 2780 // Update machine-CFG edges. 2781 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2782 2783 if (I.isUnconditional()) { 2784 // Update machine-CFG edges. 2785 BrMBB->addSuccessor(Succ0MBB); 2786 2787 // If this is not a fall-through branch or optimizations are switched off, 2788 // emit the branch. 2789 if (Succ0MBB != NextBlock(BrMBB) || 2790 TM.getOptLevel() == CodeGenOptLevel::None) { 2791 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2792 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2793 setValue(&I, Br); 2794 DAG.setRoot(Br); 2795 } 2796 2797 return; 2798 } 2799 2800 // If this condition is one of the special cases we handle, do special stuff 2801 // now. 2802 const Value *CondVal = I.getCondition(); 2803 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2804 2805 // If this is a series of conditions that are or'd or and'd together, emit 2806 // this as a sequence of branches instead of setcc's with and/or operations. 2807 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2808 // unpredictable branches, and vector extracts because those jumps are likely 2809 // expensive for any target), this should improve performance. 2810 // For example, instead of something like: 2811 // cmp A, B 2812 // C = seteq 2813 // cmp D, E 2814 // F = setle 2815 // or C, F 2816 // jnz foo 2817 // Emit: 2818 // cmp A, B 2819 // je foo 2820 // cmp D, E 2821 // jle foo 2822 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2823 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2824 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2825 Value *Vec; 2826 const Value *BOp0, *BOp1; 2827 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2828 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2829 Opcode = Instruction::And; 2830 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2831 Opcode = Instruction::Or; 2832 2833 if (Opcode && 2834 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2835 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2836 !shouldKeepJumpConditionsTogether( 2837 FuncInfo, I, Opcode, BOp0, BOp1, 2838 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2839 Opcode, BOp0, BOp1))) { 2840 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2841 getEdgeProbability(BrMBB, Succ0MBB), 2842 getEdgeProbability(BrMBB, Succ1MBB), 2843 /*InvertCond=*/false); 2844 // If the compares in later blocks need to use values not currently 2845 // exported from this block, export them now. This block should always 2846 // be the first entry. 2847 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2848 2849 // Allow some cases to be rejected. 2850 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2851 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2852 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2853 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2854 } 2855 2856 // Emit the branch for this block. 2857 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2858 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2859 return; 2860 } 2861 2862 // Okay, we decided not to do this, remove any inserted MBB's and clear 2863 // SwitchCases. 2864 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2865 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2866 2867 SL->SwitchCases.clear(); 2868 } 2869 } 2870 2871 // Create a CaseBlock record representing this branch. 2872 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2873 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2874 2875 // Use visitSwitchCase to actually insert the fast branch sequence for this 2876 // cond branch. 2877 visitSwitchCase(CB, BrMBB); 2878 } 2879 2880 /// visitSwitchCase - Emits the necessary code to represent a single node in 2881 /// the binary search tree resulting from lowering a switch instruction. 2882 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2883 MachineBasicBlock *SwitchBB) { 2884 SDValue Cond; 2885 SDValue CondLHS = getValue(CB.CmpLHS); 2886 SDLoc dl = CB.DL; 2887 2888 if (CB.CC == ISD::SETTRUE) { 2889 // Branch or fall through to TrueBB. 2890 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2891 SwitchBB->normalizeSuccProbs(); 2892 if (CB.TrueBB != NextBlock(SwitchBB)) { 2893 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2894 DAG.getBasicBlock(CB.TrueBB))); 2895 } 2896 return; 2897 } 2898 2899 auto &TLI = DAG.getTargetLoweringInfo(); 2900 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2901 2902 // Build the setcc now. 2903 if (!CB.CmpMHS) { 2904 // Fold "(X == true)" to X and "(X == false)" to !X to 2905 // handle common cases produced by branch lowering. 2906 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2907 CB.CC == ISD::SETEQ) 2908 Cond = CondLHS; 2909 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2910 CB.CC == ISD::SETEQ) { 2911 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2912 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2913 } else { 2914 SDValue CondRHS = getValue(CB.CmpRHS); 2915 2916 // If a pointer's DAG type is larger than its memory type then the DAG 2917 // values are zero-extended. This breaks signed comparisons so truncate 2918 // back to the underlying type before doing the compare. 2919 if (CondLHS.getValueType() != MemVT) { 2920 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2921 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2922 } 2923 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2924 } 2925 } else { 2926 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2927 2928 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2929 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2930 2931 SDValue CmpOp = getValue(CB.CmpMHS); 2932 EVT VT = CmpOp.getValueType(); 2933 2934 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2935 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2936 ISD::SETLE); 2937 } else { 2938 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2939 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2940 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2941 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2942 } 2943 } 2944 2945 // Update successor info 2946 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2947 // TrueBB and FalseBB are always different unless the incoming IR is 2948 // degenerate. This only happens when running llc on weird IR. 2949 if (CB.TrueBB != CB.FalseBB) 2950 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2951 SwitchBB->normalizeSuccProbs(); 2952 2953 // If the lhs block is the next block, invert the condition so that we can 2954 // fall through to the lhs instead of the rhs block. 2955 if (CB.TrueBB == NextBlock(SwitchBB)) { 2956 std::swap(CB.TrueBB, CB.FalseBB); 2957 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2958 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2959 } 2960 2961 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2962 MVT::Other, getControlRoot(), Cond, 2963 DAG.getBasicBlock(CB.TrueBB)); 2964 2965 setValue(CurInst, BrCond); 2966 2967 // Insert the false branch. Do this even if it's a fall through branch, 2968 // this makes it easier to do DAG optimizations which require inverting 2969 // the branch condition. 2970 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2971 DAG.getBasicBlock(CB.FalseBB)); 2972 2973 DAG.setRoot(BrCond); 2974 } 2975 2976 /// visitJumpTable - Emit JumpTable node in the current MBB 2977 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2978 // Emit the code for the jump table 2979 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2980 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2981 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2982 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2983 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2984 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2985 Index.getValue(1), Table, Index); 2986 DAG.setRoot(BrJumpTable); 2987 } 2988 2989 /// visitJumpTableHeader - This function emits necessary code to produce index 2990 /// in the JumpTable from switch case. 2991 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2992 JumpTableHeader &JTH, 2993 MachineBasicBlock *SwitchBB) { 2994 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2995 const SDLoc &dl = *JT.SL; 2996 2997 // Subtract the lowest switch case value from the value being switched on. 2998 SDValue SwitchOp = getValue(JTH.SValue); 2999 EVT VT = SwitchOp.getValueType(); 3000 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3001 DAG.getConstant(JTH.First, dl, VT)); 3002 3003 // The SDNode we just created, which holds the value being switched on minus 3004 // the smallest case value, needs to be copied to a virtual register so it 3005 // can be used as an index into the jump table in a subsequent basic block. 3006 // This value may be smaller or larger than the target's pointer type, and 3007 // therefore require extension or truncating. 3008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3009 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 3010 3011 unsigned JumpTableReg = 3012 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 3013 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 3014 JumpTableReg, SwitchOp); 3015 JT.Reg = JumpTableReg; 3016 3017 if (!JTH.FallthroughUnreachable) { 3018 // Emit the range check for the jump table, and branch to the default block 3019 // for the switch statement if the value being switched on exceeds the 3020 // largest case in the switch. 3021 SDValue CMP = DAG.getSetCC( 3022 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3023 Sub.getValueType()), 3024 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3025 3026 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3027 MVT::Other, CopyTo, CMP, 3028 DAG.getBasicBlock(JT.Default)); 3029 3030 // Avoid emitting unnecessary branches to the next block. 3031 if (JT.MBB != NextBlock(SwitchBB)) 3032 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3033 DAG.getBasicBlock(JT.MBB)); 3034 3035 DAG.setRoot(BrCond); 3036 } else { 3037 // Avoid emitting unnecessary branches to the next block. 3038 if (JT.MBB != NextBlock(SwitchBB)) 3039 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3040 DAG.getBasicBlock(JT.MBB))); 3041 else 3042 DAG.setRoot(CopyTo); 3043 } 3044 } 3045 3046 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3047 /// variable if there exists one. 3048 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3049 SDValue &Chain) { 3050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3051 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3052 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3053 MachineFunction &MF = DAG.getMachineFunction(); 3054 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3055 MachineSDNode *Node = 3056 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3057 if (Global) { 3058 MachinePointerInfo MPInfo(Global); 3059 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3060 MachineMemOperand::MODereferenceable; 3061 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3062 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3063 DAG.getEVTAlign(PtrTy)); 3064 DAG.setNodeMemRefs(Node, {MemRef}); 3065 } 3066 if (PtrTy != PtrMemTy) 3067 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3068 return SDValue(Node, 0); 3069 } 3070 3071 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3072 /// tail spliced into a stack protector check success bb. 3073 /// 3074 /// For a high level explanation of how this fits into the stack protector 3075 /// generation see the comment on the declaration of class 3076 /// StackProtectorDescriptor. 3077 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3078 MachineBasicBlock *ParentBB) { 3079 3080 // First create the loads to the guard/stack slot for the comparison. 3081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3082 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3083 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3084 3085 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3086 int FI = MFI.getStackProtectorIndex(); 3087 3088 SDValue Guard; 3089 SDLoc dl = getCurSDLoc(); 3090 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3091 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3092 Align Align = 3093 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3094 3095 // Generate code to load the content of the guard slot. 3096 SDValue GuardVal = DAG.getLoad( 3097 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3098 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3099 MachineMemOperand::MOVolatile); 3100 3101 if (TLI.useStackGuardXorFP()) 3102 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3103 3104 // Retrieve guard check function, nullptr if instrumentation is inlined. 3105 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3106 // The target provides a guard check function to validate the guard value. 3107 // Generate a call to that function with the content of the guard slot as 3108 // argument. 3109 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3110 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3111 3112 TargetLowering::ArgListTy Args; 3113 TargetLowering::ArgListEntry Entry; 3114 Entry.Node = GuardVal; 3115 Entry.Ty = FnTy->getParamType(0); 3116 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3117 Entry.IsInReg = true; 3118 Args.push_back(Entry); 3119 3120 TargetLowering::CallLoweringInfo CLI(DAG); 3121 CLI.setDebugLoc(getCurSDLoc()) 3122 .setChain(DAG.getEntryNode()) 3123 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3124 getValue(GuardCheckFn), std::move(Args)); 3125 3126 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3127 DAG.setRoot(Result.second); 3128 return; 3129 } 3130 3131 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3132 // Otherwise, emit a volatile load to retrieve the stack guard value. 3133 SDValue Chain = DAG.getEntryNode(); 3134 if (TLI.useLoadStackGuardNode()) { 3135 Guard = getLoadStackGuard(DAG, dl, Chain); 3136 } else { 3137 const Value *IRGuard = TLI.getSDagStackGuard(M); 3138 SDValue GuardPtr = getValue(IRGuard); 3139 3140 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3141 MachinePointerInfo(IRGuard, 0), Align, 3142 MachineMemOperand::MOVolatile); 3143 } 3144 3145 // Perform the comparison via a getsetcc. 3146 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3147 *DAG.getContext(), 3148 Guard.getValueType()), 3149 Guard, GuardVal, ISD::SETNE); 3150 3151 // If the guard/stackslot do not equal, branch to failure MBB. 3152 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3153 MVT::Other, GuardVal.getOperand(0), 3154 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3155 // Otherwise branch to success MBB. 3156 SDValue Br = DAG.getNode(ISD::BR, dl, 3157 MVT::Other, BrCond, 3158 DAG.getBasicBlock(SPD.getSuccessMBB())); 3159 3160 DAG.setRoot(Br); 3161 } 3162 3163 /// Codegen the failure basic block for a stack protector check. 3164 /// 3165 /// A failure stack protector machine basic block consists simply of a call to 3166 /// __stack_chk_fail(). 3167 /// 3168 /// For a high level explanation of how this fits into the stack protector 3169 /// generation see the comment on the declaration of class 3170 /// StackProtectorDescriptor. 3171 void 3172 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3174 TargetLowering::MakeLibCallOptions CallOptions; 3175 CallOptions.setDiscardResult(true); 3176 SDValue Chain = 3177 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3178 std::nullopt, CallOptions, getCurSDLoc()) 3179 .second; 3180 // On PS4/PS5, the "return address" must still be within the calling 3181 // function, even if it's at the very end, so emit an explicit TRAP here. 3182 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3183 if (TM.getTargetTriple().isPS()) 3184 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3185 // WebAssembly needs an unreachable instruction after a non-returning call, 3186 // because the function return type can be different from __stack_chk_fail's 3187 // return type (void). 3188 if (TM.getTargetTriple().isWasm()) 3189 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3190 3191 DAG.setRoot(Chain); 3192 } 3193 3194 /// visitBitTestHeader - This function emits necessary code to produce value 3195 /// suitable for "bit tests" 3196 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3197 MachineBasicBlock *SwitchBB) { 3198 SDLoc dl = getCurSDLoc(); 3199 3200 // Subtract the minimum value. 3201 SDValue SwitchOp = getValue(B.SValue); 3202 EVT VT = SwitchOp.getValueType(); 3203 SDValue RangeSub = 3204 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3205 3206 // Determine the type of the test operands. 3207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3208 bool UsePtrType = false; 3209 if (!TLI.isTypeLegal(VT)) { 3210 UsePtrType = true; 3211 } else { 3212 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3213 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3214 // Switch table case range are encoded into series of masks. 3215 // Just use pointer type, it's guaranteed to fit. 3216 UsePtrType = true; 3217 break; 3218 } 3219 } 3220 SDValue Sub = RangeSub; 3221 if (UsePtrType) { 3222 VT = TLI.getPointerTy(DAG.getDataLayout()); 3223 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3224 } 3225 3226 B.RegVT = VT.getSimpleVT(); 3227 B.Reg = FuncInfo.CreateReg(B.RegVT); 3228 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3229 3230 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3231 3232 if (!B.FallthroughUnreachable) 3233 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3234 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3235 SwitchBB->normalizeSuccProbs(); 3236 3237 SDValue Root = CopyTo; 3238 if (!B.FallthroughUnreachable) { 3239 // Conditional branch to the default block. 3240 SDValue RangeCmp = DAG.getSetCC(dl, 3241 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3242 RangeSub.getValueType()), 3243 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3244 ISD::SETUGT); 3245 3246 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3247 DAG.getBasicBlock(B.Default)); 3248 } 3249 3250 // Avoid emitting unnecessary branches to the next block. 3251 if (MBB != NextBlock(SwitchBB)) 3252 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3253 3254 DAG.setRoot(Root); 3255 } 3256 3257 /// visitBitTestCase - this function produces one "bit test" 3258 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3259 MachineBasicBlock* NextMBB, 3260 BranchProbability BranchProbToNext, 3261 unsigned Reg, 3262 BitTestCase &B, 3263 MachineBasicBlock *SwitchBB) { 3264 SDLoc dl = getCurSDLoc(); 3265 MVT VT = BB.RegVT; 3266 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3267 SDValue Cmp; 3268 unsigned PopCount = llvm::popcount(B.Mask); 3269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3270 if (PopCount == 1) { 3271 // Testing for a single bit; just compare the shift count with what it 3272 // would need to be to shift a 1 bit in that position. 3273 Cmp = DAG.getSetCC( 3274 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3275 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3276 ISD::SETEQ); 3277 } else if (PopCount == BB.Range) { 3278 // There is only one zero bit in the range, test for it directly. 3279 Cmp = DAG.getSetCC( 3280 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3281 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3282 } else { 3283 // Make desired shift 3284 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3285 DAG.getConstant(1, dl, VT), ShiftOp); 3286 3287 // Emit bit tests and jumps 3288 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3289 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3290 Cmp = DAG.getSetCC( 3291 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3292 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3293 } 3294 3295 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3296 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3297 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3298 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3299 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3300 // one as they are relative probabilities (and thus work more like weights), 3301 // and hence we need to normalize them to let the sum of them become one. 3302 SwitchBB->normalizeSuccProbs(); 3303 3304 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3305 MVT::Other, getControlRoot(), 3306 Cmp, DAG.getBasicBlock(B.TargetBB)); 3307 3308 // Avoid emitting unnecessary branches to the next block. 3309 if (NextMBB != NextBlock(SwitchBB)) 3310 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3311 DAG.getBasicBlock(NextMBB)); 3312 3313 DAG.setRoot(BrAnd); 3314 } 3315 3316 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3317 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3318 3319 // Retrieve successors. Look through artificial IR level blocks like 3320 // catchswitch for successors. 3321 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3322 const BasicBlock *EHPadBB = I.getSuccessor(1); 3323 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3324 3325 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3326 // have to do anything here to lower funclet bundles. 3327 assert(!I.hasOperandBundlesOtherThan( 3328 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3329 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3330 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3331 LLVMContext::OB_clang_arc_attachedcall}) && 3332 "Cannot lower invokes with arbitrary operand bundles yet!"); 3333 3334 const Value *Callee(I.getCalledOperand()); 3335 const Function *Fn = dyn_cast<Function>(Callee); 3336 if (isa<InlineAsm>(Callee)) 3337 visitInlineAsm(I, EHPadBB); 3338 else if (Fn && Fn->isIntrinsic()) { 3339 switch (Fn->getIntrinsicID()) { 3340 default: 3341 llvm_unreachable("Cannot invoke this intrinsic"); 3342 case Intrinsic::donothing: 3343 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3344 case Intrinsic::seh_try_begin: 3345 case Intrinsic::seh_scope_begin: 3346 case Intrinsic::seh_try_end: 3347 case Intrinsic::seh_scope_end: 3348 if (EHPadMBB) 3349 // a block referenced by EH table 3350 // so dtor-funclet not removed by opts 3351 EHPadMBB->setMachineBlockAddressTaken(); 3352 break; 3353 case Intrinsic::experimental_patchpoint_void: 3354 case Intrinsic::experimental_patchpoint: 3355 visitPatchpoint(I, EHPadBB); 3356 break; 3357 case Intrinsic::experimental_gc_statepoint: 3358 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3359 break; 3360 case Intrinsic::wasm_rethrow: { 3361 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3362 // special because it can be invoked, so we manually lower it to a DAG 3363 // node here. 3364 SmallVector<SDValue, 8> Ops; 3365 Ops.push_back(getControlRoot()); // inchain for the terminator node 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 Ops.push_back( 3368 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3369 TLI.getPointerTy(DAG.getDataLayout()))); 3370 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3371 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3372 break; 3373 } 3374 } 3375 } else if (I.hasDeoptState()) { 3376 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3377 // Eventually we will support lowering the @llvm.experimental.deoptimize 3378 // intrinsic, and right now there are no plans to support other intrinsics 3379 // with deopt state. 3380 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3381 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3382 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3383 } else { 3384 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3385 } 3386 3387 // If the value of the invoke is used outside of its defining block, make it 3388 // available as a virtual register. 3389 // We already took care of the exported value for the statepoint instruction 3390 // during call to the LowerStatepoint. 3391 if (!isa<GCStatepointInst>(I)) { 3392 CopyToExportRegsIfNeeded(&I); 3393 } 3394 3395 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3396 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3397 BranchProbability EHPadBBProb = 3398 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3399 : BranchProbability::getZero(); 3400 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3401 3402 // Update successor info. 3403 addSuccessorWithProb(InvokeMBB, Return); 3404 for (auto &UnwindDest : UnwindDests) { 3405 UnwindDest.first->setIsEHPad(); 3406 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3407 } 3408 InvokeMBB->normalizeSuccProbs(); 3409 3410 // Drop into normal successor. 3411 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3412 DAG.getBasicBlock(Return))); 3413 } 3414 3415 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3416 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3417 3418 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3419 // have to do anything here to lower funclet bundles. 3420 assert(!I.hasOperandBundlesOtherThan( 3421 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3422 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3423 3424 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3425 visitInlineAsm(I); 3426 CopyToExportRegsIfNeeded(&I); 3427 3428 // Retrieve successors. 3429 SmallPtrSet<BasicBlock *, 8> Dests; 3430 Dests.insert(I.getDefaultDest()); 3431 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3432 3433 // Update successor info. 3434 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3435 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3436 BasicBlock *Dest = I.getIndirectDest(i); 3437 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3438 Target->setIsInlineAsmBrIndirectTarget(); 3439 Target->setMachineBlockAddressTaken(); 3440 Target->setLabelMustBeEmitted(); 3441 // Don't add duplicate machine successors. 3442 if (Dests.insert(Dest).second) 3443 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3444 } 3445 CallBrMBB->normalizeSuccProbs(); 3446 3447 // Drop into default successor. 3448 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3449 MVT::Other, getControlRoot(), 3450 DAG.getBasicBlock(Return))); 3451 } 3452 3453 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3454 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3455 } 3456 3457 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3458 assert(FuncInfo.MBB->isEHPad() && 3459 "Call to landingpad not in landing pad!"); 3460 3461 // If there aren't registers to copy the values into (e.g., during SjLj 3462 // exceptions), then don't bother to create these DAG nodes. 3463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3464 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3465 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3466 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3467 return; 3468 3469 // If landingpad's return type is token type, we don't create DAG nodes 3470 // for its exception pointer and selector value. The extraction of exception 3471 // pointer or selector value from token type landingpads is not currently 3472 // supported. 3473 if (LP.getType()->isTokenTy()) 3474 return; 3475 3476 SmallVector<EVT, 2> ValueVTs; 3477 SDLoc dl = getCurSDLoc(); 3478 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3479 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3480 3481 // Get the two live-in registers as SDValues. The physregs have already been 3482 // copied into virtual registers. 3483 SDValue Ops[2]; 3484 if (FuncInfo.ExceptionPointerVirtReg) { 3485 Ops[0] = DAG.getZExtOrTrunc( 3486 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3487 FuncInfo.ExceptionPointerVirtReg, 3488 TLI.getPointerTy(DAG.getDataLayout())), 3489 dl, ValueVTs[0]); 3490 } else { 3491 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3492 } 3493 Ops[1] = DAG.getZExtOrTrunc( 3494 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3495 FuncInfo.ExceptionSelectorVirtReg, 3496 TLI.getPointerTy(DAG.getDataLayout())), 3497 dl, ValueVTs[1]); 3498 3499 // Merge into one. 3500 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3501 DAG.getVTList(ValueVTs), Ops); 3502 setValue(&LP, Res); 3503 } 3504 3505 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3506 MachineBasicBlock *Last) { 3507 // Update JTCases. 3508 for (JumpTableBlock &JTB : SL->JTCases) 3509 if (JTB.first.HeaderBB == First) 3510 JTB.first.HeaderBB = Last; 3511 3512 // Update BitTestCases. 3513 for (BitTestBlock &BTB : SL->BitTestCases) 3514 if (BTB.Parent == First) 3515 BTB.Parent = Last; 3516 } 3517 3518 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3519 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3520 3521 // Update machine-CFG edges with unique successors. 3522 SmallSet<BasicBlock*, 32> Done; 3523 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3524 BasicBlock *BB = I.getSuccessor(i); 3525 bool Inserted = Done.insert(BB).second; 3526 if (!Inserted) 3527 continue; 3528 3529 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3530 addSuccessorWithProb(IndirectBrMBB, Succ); 3531 } 3532 IndirectBrMBB->normalizeSuccProbs(); 3533 3534 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3535 MVT::Other, getControlRoot(), 3536 getValue(I.getAddress()))); 3537 } 3538 3539 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3540 if (!DAG.getTarget().Options.TrapUnreachable) 3541 return; 3542 3543 // We may be able to ignore unreachable behind a noreturn call. 3544 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3545 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3546 if (Call->doesNotReturn()) 3547 return; 3548 } 3549 } 3550 3551 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3552 } 3553 3554 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3555 SDNodeFlags Flags; 3556 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3557 Flags.copyFMF(*FPOp); 3558 3559 SDValue Op = getValue(I.getOperand(0)); 3560 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3561 Op, Flags); 3562 setValue(&I, UnNodeValue); 3563 } 3564 3565 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3566 SDNodeFlags Flags; 3567 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3568 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3569 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3570 } 3571 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3572 Flags.setExact(ExactOp->isExact()); 3573 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3574 Flags.setDisjoint(DisjointOp->isDisjoint()); 3575 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3576 Flags.copyFMF(*FPOp); 3577 3578 SDValue Op1 = getValue(I.getOperand(0)); 3579 SDValue Op2 = getValue(I.getOperand(1)); 3580 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3581 Op1, Op2, Flags); 3582 setValue(&I, BinNodeValue); 3583 } 3584 3585 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3586 SDValue Op1 = getValue(I.getOperand(0)); 3587 SDValue Op2 = getValue(I.getOperand(1)); 3588 3589 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3590 Op1.getValueType(), DAG.getDataLayout()); 3591 3592 // Coerce the shift amount to the right type if we can. This exposes the 3593 // truncate or zext to optimization early. 3594 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3595 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3596 "Unexpected shift type"); 3597 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3598 } 3599 3600 bool nuw = false; 3601 bool nsw = false; 3602 bool exact = false; 3603 3604 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3605 3606 if (const OverflowingBinaryOperator *OFBinOp = 3607 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3608 nuw = OFBinOp->hasNoUnsignedWrap(); 3609 nsw = OFBinOp->hasNoSignedWrap(); 3610 } 3611 if (const PossiblyExactOperator *ExactOp = 3612 dyn_cast<const PossiblyExactOperator>(&I)) 3613 exact = ExactOp->isExact(); 3614 } 3615 SDNodeFlags Flags; 3616 Flags.setExact(exact); 3617 Flags.setNoSignedWrap(nsw); 3618 Flags.setNoUnsignedWrap(nuw); 3619 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3620 Flags); 3621 setValue(&I, Res); 3622 } 3623 3624 void SelectionDAGBuilder::visitSDiv(const User &I) { 3625 SDValue Op1 = getValue(I.getOperand(0)); 3626 SDValue Op2 = getValue(I.getOperand(1)); 3627 3628 SDNodeFlags Flags; 3629 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3630 cast<PossiblyExactOperator>(&I)->isExact()); 3631 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3632 Op2, Flags)); 3633 } 3634 3635 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3636 ICmpInst::Predicate predicate = I.getPredicate(); 3637 SDValue Op1 = getValue(I.getOperand(0)); 3638 SDValue Op2 = getValue(I.getOperand(1)); 3639 ISD::CondCode Opcode = getICmpCondCode(predicate); 3640 3641 auto &TLI = DAG.getTargetLoweringInfo(); 3642 EVT MemVT = 3643 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3644 3645 // If a pointer's DAG type is larger than its memory type then the DAG values 3646 // are zero-extended. This breaks signed comparisons so truncate back to the 3647 // underlying type before doing the compare. 3648 if (Op1.getValueType() != MemVT) { 3649 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3650 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3651 } 3652 3653 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3654 I.getType()); 3655 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3656 } 3657 3658 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3659 FCmpInst::Predicate predicate = I.getPredicate(); 3660 SDValue Op1 = getValue(I.getOperand(0)); 3661 SDValue Op2 = getValue(I.getOperand(1)); 3662 3663 ISD::CondCode Condition = getFCmpCondCode(predicate); 3664 auto *FPMO = cast<FPMathOperator>(&I); 3665 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3666 Condition = getFCmpCodeWithoutNaN(Condition); 3667 3668 SDNodeFlags Flags; 3669 Flags.copyFMF(*FPMO); 3670 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3671 3672 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3673 I.getType()); 3674 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3675 } 3676 3677 // Check if the condition of the select has one use or two users that are both 3678 // selects with the same condition. 3679 static bool hasOnlySelectUsers(const Value *Cond) { 3680 return llvm::all_of(Cond->users(), [](const Value *V) { 3681 return isa<SelectInst>(V); 3682 }); 3683 } 3684 3685 void SelectionDAGBuilder::visitSelect(const User &I) { 3686 SmallVector<EVT, 4> ValueVTs; 3687 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3688 ValueVTs); 3689 unsigned NumValues = ValueVTs.size(); 3690 if (NumValues == 0) return; 3691 3692 SmallVector<SDValue, 4> Values(NumValues); 3693 SDValue Cond = getValue(I.getOperand(0)); 3694 SDValue LHSVal = getValue(I.getOperand(1)); 3695 SDValue RHSVal = getValue(I.getOperand(2)); 3696 SmallVector<SDValue, 1> BaseOps(1, Cond); 3697 ISD::NodeType OpCode = 3698 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3699 3700 bool IsUnaryAbs = false; 3701 bool Negate = false; 3702 3703 SDNodeFlags Flags; 3704 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3705 Flags.copyFMF(*FPOp); 3706 3707 Flags.setUnpredictable( 3708 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3709 3710 // Min/max matching is only viable if all output VTs are the same. 3711 if (all_equal(ValueVTs)) { 3712 EVT VT = ValueVTs[0]; 3713 LLVMContext &Ctx = *DAG.getContext(); 3714 auto &TLI = DAG.getTargetLoweringInfo(); 3715 3716 // We care about the legality of the operation after it has been type 3717 // legalized. 3718 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3719 VT = TLI.getTypeToTransformTo(Ctx, VT); 3720 3721 // If the vselect is legal, assume we want to leave this as a vector setcc + 3722 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3723 // min/max is legal on the scalar type. 3724 bool UseScalarMinMax = VT.isVector() && 3725 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3726 3727 // ValueTracking's select pattern matching does not account for -0.0, 3728 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3729 // -0.0 is less than +0.0. 3730 Value *LHS, *RHS; 3731 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3732 ISD::NodeType Opc = ISD::DELETED_NODE; 3733 switch (SPR.Flavor) { 3734 case SPF_UMAX: Opc = ISD::UMAX; break; 3735 case SPF_UMIN: Opc = ISD::UMIN; break; 3736 case SPF_SMAX: Opc = ISD::SMAX; break; 3737 case SPF_SMIN: Opc = ISD::SMIN; break; 3738 case SPF_FMINNUM: 3739 switch (SPR.NaNBehavior) { 3740 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3741 case SPNB_RETURNS_NAN: break; 3742 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3743 case SPNB_RETURNS_ANY: 3744 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3745 (UseScalarMinMax && 3746 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3747 Opc = ISD::FMINNUM; 3748 break; 3749 } 3750 break; 3751 case SPF_FMAXNUM: 3752 switch (SPR.NaNBehavior) { 3753 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3754 case SPNB_RETURNS_NAN: break; 3755 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3756 case SPNB_RETURNS_ANY: 3757 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3758 (UseScalarMinMax && 3759 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3760 Opc = ISD::FMAXNUM; 3761 break; 3762 } 3763 break; 3764 case SPF_NABS: 3765 Negate = true; 3766 [[fallthrough]]; 3767 case SPF_ABS: 3768 IsUnaryAbs = true; 3769 Opc = ISD::ABS; 3770 break; 3771 default: break; 3772 } 3773 3774 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3775 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3776 (UseScalarMinMax && 3777 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3778 // If the underlying comparison instruction is used by any other 3779 // instruction, the consumed instructions won't be destroyed, so it is 3780 // not profitable to convert to a min/max. 3781 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3782 OpCode = Opc; 3783 LHSVal = getValue(LHS); 3784 RHSVal = getValue(RHS); 3785 BaseOps.clear(); 3786 } 3787 3788 if (IsUnaryAbs) { 3789 OpCode = Opc; 3790 LHSVal = getValue(LHS); 3791 BaseOps.clear(); 3792 } 3793 } 3794 3795 if (IsUnaryAbs) { 3796 for (unsigned i = 0; i != NumValues; ++i) { 3797 SDLoc dl = getCurSDLoc(); 3798 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3799 Values[i] = 3800 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3801 if (Negate) 3802 Values[i] = DAG.getNegative(Values[i], dl, VT); 3803 } 3804 } else { 3805 for (unsigned i = 0; i != NumValues; ++i) { 3806 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3807 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3808 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3809 Values[i] = DAG.getNode( 3810 OpCode, getCurSDLoc(), 3811 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3812 } 3813 } 3814 3815 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3816 DAG.getVTList(ValueVTs), Values)); 3817 } 3818 3819 void SelectionDAGBuilder::visitTrunc(const User &I) { 3820 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3821 SDValue N = getValue(I.getOperand(0)); 3822 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3823 I.getType()); 3824 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3825 } 3826 3827 void SelectionDAGBuilder::visitZExt(const User &I) { 3828 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3829 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3830 SDValue N = getValue(I.getOperand(0)); 3831 auto &TLI = DAG.getTargetLoweringInfo(); 3832 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3833 3834 SDNodeFlags Flags; 3835 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3836 Flags.setNonNeg(PNI->hasNonNeg()); 3837 3838 // Eagerly use nonneg information to canonicalize towards sign_extend if 3839 // that is the target's preference. 3840 // TODO: Let the target do this later. 3841 if (Flags.hasNonNeg() && 3842 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3843 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3844 return; 3845 } 3846 3847 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3848 } 3849 3850 void SelectionDAGBuilder::visitSExt(const User &I) { 3851 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3852 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3853 SDValue N = getValue(I.getOperand(0)); 3854 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3855 I.getType()); 3856 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3857 } 3858 3859 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3860 // FPTrunc is never a no-op cast, no need to check 3861 SDValue N = getValue(I.getOperand(0)); 3862 SDLoc dl = getCurSDLoc(); 3863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3864 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3865 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3866 DAG.getTargetConstant( 3867 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3868 } 3869 3870 void SelectionDAGBuilder::visitFPExt(const User &I) { 3871 // FPExt is never a no-op cast, no need to check 3872 SDValue N = getValue(I.getOperand(0)); 3873 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3874 I.getType()); 3875 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3876 } 3877 3878 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3879 // FPToUI is never a no-op cast, no need to check 3880 SDValue N = getValue(I.getOperand(0)); 3881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3882 I.getType()); 3883 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3884 } 3885 3886 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3887 // FPToSI is never a no-op cast, no need to check 3888 SDValue N = getValue(I.getOperand(0)); 3889 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3890 I.getType()); 3891 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3892 } 3893 3894 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3895 // UIToFP is never a no-op cast, no need to check 3896 SDValue N = getValue(I.getOperand(0)); 3897 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3898 I.getType()); 3899 SDNodeFlags Flags; 3900 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3901 Flags.setNonNeg(PNI->hasNonNeg()); 3902 3903 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3904 } 3905 3906 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3907 // SIToFP is never a no-op cast, no need to check 3908 SDValue N = getValue(I.getOperand(0)); 3909 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3910 I.getType()); 3911 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3912 } 3913 3914 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3915 // What to do depends on the size of the integer and the size of the pointer. 3916 // We can either truncate, zero extend, or no-op, accordingly. 3917 SDValue N = getValue(I.getOperand(0)); 3918 auto &TLI = DAG.getTargetLoweringInfo(); 3919 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3920 I.getType()); 3921 EVT PtrMemVT = 3922 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3923 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3924 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3925 setValue(&I, N); 3926 } 3927 3928 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3929 // What to do depends on the size of the integer and the size of the pointer. 3930 // We can either truncate, zero extend, or no-op, accordingly. 3931 SDValue N = getValue(I.getOperand(0)); 3932 auto &TLI = DAG.getTargetLoweringInfo(); 3933 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3934 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3935 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3936 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3937 setValue(&I, N); 3938 } 3939 3940 void SelectionDAGBuilder::visitBitCast(const User &I) { 3941 SDValue N = getValue(I.getOperand(0)); 3942 SDLoc dl = getCurSDLoc(); 3943 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3944 I.getType()); 3945 3946 // BitCast assures us that source and destination are the same size so this is 3947 // either a BITCAST or a no-op. 3948 if (DestVT != N.getValueType()) 3949 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3950 DestVT, N)); // convert types. 3951 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3952 // might fold any kind of constant expression to an integer constant and that 3953 // is not what we are looking for. Only recognize a bitcast of a genuine 3954 // constant integer as an opaque constant. 3955 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3956 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3957 /*isOpaque*/true)); 3958 else 3959 setValue(&I, N); // noop cast. 3960 } 3961 3962 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3964 const Value *SV = I.getOperand(0); 3965 SDValue N = getValue(SV); 3966 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3967 3968 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3969 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3970 3971 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3972 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3973 3974 setValue(&I, N); 3975 } 3976 3977 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3979 SDValue InVec = getValue(I.getOperand(0)); 3980 SDValue InVal = getValue(I.getOperand(1)); 3981 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3982 TLI.getVectorIdxTy(DAG.getDataLayout())); 3983 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3984 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3985 InVec, InVal, InIdx)); 3986 } 3987 3988 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3990 SDValue InVec = getValue(I.getOperand(0)); 3991 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3992 TLI.getVectorIdxTy(DAG.getDataLayout())); 3993 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3994 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3995 InVec, InIdx)); 3996 } 3997 3998 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3999 SDValue Src1 = getValue(I.getOperand(0)); 4000 SDValue Src2 = getValue(I.getOperand(1)); 4001 ArrayRef<int> Mask; 4002 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4003 Mask = SVI->getShuffleMask(); 4004 else 4005 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4006 SDLoc DL = getCurSDLoc(); 4007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4008 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4009 EVT SrcVT = Src1.getValueType(); 4010 4011 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4012 VT.isScalableVector()) { 4013 // Canonical splat form of first element of first input vector. 4014 SDValue FirstElt = 4015 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4016 DAG.getVectorIdxConstant(0, DL)); 4017 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4018 return; 4019 } 4020 4021 // For now, we only handle splats for scalable vectors. 4022 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4023 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4024 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4025 4026 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4027 unsigned MaskNumElts = Mask.size(); 4028 4029 if (SrcNumElts == MaskNumElts) { 4030 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4031 return; 4032 } 4033 4034 // Normalize the shuffle vector since mask and vector length don't match. 4035 if (SrcNumElts < MaskNumElts) { 4036 // Mask is longer than the source vectors. We can use concatenate vector to 4037 // make the mask and vectors lengths match. 4038 4039 if (MaskNumElts % SrcNumElts == 0) { 4040 // Mask length is a multiple of the source vector length. 4041 // Check if the shuffle is some kind of concatenation of the input 4042 // vectors. 4043 unsigned NumConcat = MaskNumElts / SrcNumElts; 4044 bool IsConcat = true; 4045 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4046 for (unsigned i = 0; i != MaskNumElts; ++i) { 4047 int Idx = Mask[i]; 4048 if (Idx < 0) 4049 continue; 4050 // Ensure the indices in each SrcVT sized piece are sequential and that 4051 // the same source is used for the whole piece. 4052 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4053 (ConcatSrcs[i / SrcNumElts] >= 0 && 4054 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4055 IsConcat = false; 4056 break; 4057 } 4058 // Remember which source this index came from. 4059 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4060 } 4061 4062 // The shuffle is concatenating multiple vectors together. Just emit 4063 // a CONCAT_VECTORS operation. 4064 if (IsConcat) { 4065 SmallVector<SDValue, 8> ConcatOps; 4066 for (auto Src : ConcatSrcs) { 4067 if (Src < 0) 4068 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4069 else if (Src == 0) 4070 ConcatOps.push_back(Src1); 4071 else 4072 ConcatOps.push_back(Src2); 4073 } 4074 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4075 return; 4076 } 4077 } 4078 4079 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4080 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4081 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4082 PaddedMaskNumElts); 4083 4084 // Pad both vectors with undefs to make them the same length as the mask. 4085 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4086 4087 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4088 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4089 MOps1[0] = Src1; 4090 MOps2[0] = Src2; 4091 4092 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4093 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4094 4095 // Readjust mask for new input vector length. 4096 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4097 for (unsigned i = 0; i != MaskNumElts; ++i) { 4098 int Idx = Mask[i]; 4099 if (Idx >= (int)SrcNumElts) 4100 Idx -= SrcNumElts - PaddedMaskNumElts; 4101 MappedOps[i] = Idx; 4102 } 4103 4104 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4105 4106 // If the concatenated vector was padded, extract a subvector with the 4107 // correct number of elements. 4108 if (MaskNumElts != PaddedMaskNumElts) 4109 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4110 DAG.getVectorIdxConstant(0, DL)); 4111 4112 setValue(&I, Result); 4113 return; 4114 } 4115 4116 if (SrcNumElts > MaskNumElts) { 4117 // Analyze the access pattern of the vector to see if we can extract 4118 // two subvectors and do the shuffle. 4119 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4120 bool CanExtract = true; 4121 for (int Idx : Mask) { 4122 unsigned Input = 0; 4123 if (Idx < 0) 4124 continue; 4125 4126 if (Idx >= (int)SrcNumElts) { 4127 Input = 1; 4128 Idx -= SrcNumElts; 4129 } 4130 4131 // If all the indices come from the same MaskNumElts sized portion of 4132 // the sources we can use extract. Also make sure the extract wouldn't 4133 // extract past the end of the source. 4134 int NewStartIdx = alignDown(Idx, MaskNumElts); 4135 if (NewStartIdx + MaskNumElts > SrcNumElts || 4136 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4137 CanExtract = false; 4138 // Make sure we always update StartIdx as we use it to track if all 4139 // elements are undef. 4140 StartIdx[Input] = NewStartIdx; 4141 } 4142 4143 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4144 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4145 return; 4146 } 4147 if (CanExtract) { 4148 // Extract appropriate subvector and generate a vector shuffle 4149 for (unsigned Input = 0; Input < 2; ++Input) { 4150 SDValue &Src = Input == 0 ? Src1 : Src2; 4151 if (StartIdx[Input] < 0) 4152 Src = DAG.getUNDEF(VT); 4153 else { 4154 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4155 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4156 } 4157 } 4158 4159 // Calculate new mask. 4160 SmallVector<int, 8> MappedOps(Mask); 4161 for (int &Idx : MappedOps) { 4162 if (Idx >= (int)SrcNumElts) 4163 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4164 else if (Idx >= 0) 4165 Idx -= StartIdx[0]; 4166 } 4167 4168 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4169 return; 4170 } 4171 } 4172 4173 // We can't use either concat vectors or extract subvectors so fall back to 4174 // replacing the shuffle with extract and build vector. 4175 // to insert and build vector. 4176 EVT EltVT = VT.getVectorElementType(); 4177 SmallVector<SDValue,8> Ops; 4178 for (int Idx : Mask) { 4179 SDValue Res; 4180 4181 if (Idx < 0) { 4182 Res = DAG.getUNDEF(EltVT); 4183 } else { 4184 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4185 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4186 4187 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4188 DAG.getVectorIdxConstant(Idx, DL)); 4189 } 4190 4191 Ops.push_back(Res); 4192 } 4193 4194 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4195 } 4196 4197 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4198 ArrayRef<unsigned> Indices = I.getIndices(); 4199 const Value *Op0 = I.getOperand(0); 4200 const Value *Op1 = I.getOperand(1); 4201 Type *AggTy = I.getType(); 4202 Type *ValTy = Op1->getType(); 4203 bool IntoUndef = isa<UndefValue>(Op0); 4204 bool FromUndef = isa<UndefValue>(Op1); 4205 4206 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4207 4208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4209 SmallVector<EVT, 4> AggValueVTs; 4210 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4211 SmallVector<EVT, 4> ValValueVTs; 4212 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4213 4214 unsigned NumAggValues = AggValueVTs.size(); 4215 unsigned NumValValues = ValValueVTs.size(); 4216 SmallVector<SDValue, 4> Values(NumAggValues); 4217 4218 // Ignore an insertvalue that produces an empty object 4219 if (!NumAggValues) { 4220 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4221 return; 4222 } 4223 4224 SDValue Agg = getValue(Op0); 4225 unsigned i = 0; 4226 // Copy the beginning value(s) from the original aggregate. 4227 for (; i != LinearIndex; ++i) 4228 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4229 SDValue(Agg.getNode(), Agg.getResNo() + i); 4230 // Copy values from the inserted value(s). 4231 if (NumValValues) { 4232 SDValue Val = getValue(Op1); 4233 for (; i != LinearIndex + NumValValues; ++i) 4234 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4235 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4236 } 4237 // Copy remaining value(s) from the original aggregate. 4238 for (; i != NumAggValues; ++i) 4239 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4240 SDValue(Agg.getNode(), Agg.getResNo() + i); 4241 4242 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4243 DAG.getVTList(AggValueVTs), Values)); 4244 } 4245 4246 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4247 ArrayRef<unsigned> Indices = I.getIndices(); 4248 const Value *Op0 = I.getOperand(0); 4249 Type *AggTy = Op0->getType(); 4250 Type *ValTy = I.getType(); 4251 bool OutOfUndef = isa<UndefValue>(Op0); 4252 4253 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4254 4255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4256 SmallVector<EVT, 4> ValValueVTs; 4257 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4258 4259 unsigned NumValValues = ValValueVTs.size(); 4260 4261 // Ignore a extractvalue that produces an empty object 4262 if (!NumValValues) { 4263 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4264 return; 4265 } 4266 4267 SmallVector<SDValue, 4> Values(NumValValues); 4268 4269 SDValue Agg = getValue(Op0); 4270 // Copy out the selected value(s). 4271 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4272 Values[i - LinearIndex] = 4273 OutOfUndef ? 4274 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4275 SDValue(Agg.getNode(), Agg.getResNo() + i); 4276 4277 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4278 DAG.getVTList(ValValueVTs), Values)); 4279 } 4280 4281 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4282 Value *Op0 = I.getOperand(0); 4283 // Note that the pointer operand may be a vector of pointers. Take the scalar 4284 // element which holds a pointer. 4285 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4286 SDValue N = getValue(Op0); 4287 SDLoc dl = getCurSDLoc(); 4288 auto &TLI = DAG.getTargetLoweringInfo(); 4289 4290 // Normalize Vector GEP - all scalar operands should be converted to the 4291 // splat vector. 4292 bool IsVectorGEP = I.getType()->isVectorTy(); 4293 ElementCount VectorElementCount = 4294 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4295 : ElementCount::getFixed(0); 4296 4297 if (IsVectorGEP && !N.getValueType().isVector()) { 4298 LLVMContext &Context = *DAG.getContext(); 4299 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4300 N = DAG.getSplat(VT, dl, N); 4301 } 4302 4303 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4304 GTI != E; ++GTI) { 4305 const Value *Idx = GTI.getOperand(); 4306 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4307 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4308 if (Field) { 4309 // N = N + Offset 4310 uint64_t Offset = 4311 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4312 4313 // In an inbounds GEP with an offset that is nonnegative even when 4314 // interpreted as signed, assume there is no unsigned overflow. 4315 SDNodeFlags Flags; 4316 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4317 Flags.setNoUnsignedWrap(true); 4318 4319 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4320 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4321 } 4322 } else { 4323 // IdxSize is the width of the arithmetic according to IR semantics. 4324 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4325 // (and fix up the result later). 4326 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4327 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4328 TypeSize ElementSize = 4329 GTI.getSequentialElementStride(DAG.getDataLayout()); 4330 // We intentionally mask away the high bits here; ElementSize may not 4331 // fit in IdxTy. 4332 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4333 bool ElementScalable = ElementSize.isScalable(); 4334 4335 // If this is a scalar constant or a splat vector of constants, 4336 // handle it quickly. 4337 const auto *C = dyn_cast<Constant>(Idx); 4338 if (C && isa<VectorType>(C->getType())) 4339 C = C->getSplatValue(); 4340 4341 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4342 if (CI && CI->isZero()) 4343 continue; 4344 if (CI && !ElementScalable) { 4345 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4346 LLVMContext &Context = *DAG.getContext(); 4347 SDValue OffsVal; 4348 if (IsVectorGEP) 4349 OffsVal = DAG.getConstant( 4350 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4351 else 4352 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4353 4354 // In an inbounds GEP with an offset that is nonnegative even when 4355 // interpreted as signed, assume there is no unsigned overflow. 4356 SDNodeFlags Flags; 4357 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4358 Flags.setNoUnsignedWrap(true); 4359 4360 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4361 4362 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4363 continue; 4364 } 4365 4366 // N = N + Idx * ElementMul; 4367 SDValue IdxN = getValue(Idx); 4368 4369 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4370 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4371 VectorElementCount); 4372 IdxN = DAG.getSplat(VT, dl, IdxN); 4373 } 4374 4375 // If the index is smaller or larger than intptr_t, truncate or extend 4376 // it. 4377 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4378 4379 if (ElementScalable) { 4380 EVT VScaleTy = N.getValueType().getScalarType(); 4381 SDValue VScale = DAG.getNode( 4382 ISD::VSCALE, dl, VScaleTy, 4383 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4384 if (IsVectorGEP) 4385 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4386 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4387 } else { 4388 // If this is a multiply by a power of two, turn it into a shl 4389 // immediately. This is a very common case. 4390 if (ElementMul != 1) { 4391 if (ElementMul.isPowerOf2()) { 4392 unsigned Amt = ElementMul.logBase2(); 4393 IdxN = DAG.getNode(ISD::SHL, dl, 4394 N.getValueType(), IdxN, 4395 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4396 } else { 4397 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4398 IdxN.getValueType()); 4399 IdxN = DAG.getNode(ISD::MUL, dl, 4400 N.getValueType(), IdxN, Scale); 4401 } 4402 } 4403 } 4404 4405 N = DAG.getNode(ISD::ADD, dl, 4406 N.getValueType(), N, IdxN); 4407 } 4408 } 4409 4410 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4411 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4412 if (IsVectorGEP) { 4413 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4414 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4415 } 4416 4417 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4418 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4419 4420 setValue(&I, N); 4421 } 4422 4423 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4424 // If this is a fixed sized alloca in the entry block of the function, 4425 // allocate it statically on the stack. 4426 if (FuncInfo.StaticAllocaMap.count(&I)) 4427 return; // getValue will auto-populate this. 4428 4429 SDLoc dl = getCurSDLoc(); 4430 Type *Ty = I.getAllocatedType(); 4431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4432 auto &DL = DAG.getDataLayout(); 4433 TypeSize TySize = DL.getTypeAllocSize(Ty); 4434 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4435 4436 SDValue AllocSize = getValue(I.getArraySize()); 4437 4438 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4439 if (AllocSize.getValueType() != IntPtr) 4440 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4441 4442 if (TySize.isScalable()) 4443 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4444 DAG.getVScale(dl, IntPtr, 4445 APInt(IntPtr.getScalarSizeInBits(), 4446 TySize.getKnownMinValue()))); 4447 else { 4448 SDValue TySizeValue = 4449 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4450 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4451 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4452 } 4453 4454 // Handle alignment. If the requested alignment is less than or equal to 4455 // the stack alignment, ignore it. If the size is greater than or equal to 4456 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4457 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4458 if (*Alignment <= StackAlign) 4459 Alignment = std::nullopt; 4460 4461 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4462 // Round the size of the allocation up to the stack alignment size 4463 // by add SA-1 to the size. This doesn't overflow because we're computing 4464 // an address inside an alloca. 4465 SDNodeFlags Flags; 4466 Flags.setNoUnsignedWrap(true); 4467 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4468 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4469 4470 // Mask out the low bits for alignment purposes. 4471 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4472 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4473 4474 SDValue Ops[] = { 4475 getRoot(), AllocSize, 4476 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4477 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4478 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4479 setValue(&I, DSA); 4480 DAG.setRoot(DSA.getValue(1)); 4481 4482 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4483 } 4484 4485 static const MDNode *getRangeMetadata(const Instruction &I) { 4486 // If !noundef is not present, then !range violation results in a poison 4487 // value rather than immediate undefined behavior. In theory, transferring 4488 // these annotations to SDAG is fine, but in practice there are key SDAG 4489 // transforms that are known not to be poison-safe, such as folding logical 4490 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4491 // also present. 4492 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4493 return nullptr; 4494 return I.getMetadata(LLVMContext::MD_range); 4495 } 4496 4497 static std::optional<ConstantRange> getRange(const Instruction &I) { 4498 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4499 // see comment in getRangeMetadata about this check 4500 if (CB->hasRetAttr(Attribute::NoUndef)) 4501 return CB->getRange(); 4502 } 4503 if (const MDNode *Range = getRangeMetadata(I)) 4504 return getConstantRangeFromMetadata(*Range); 4505 return std::nullopt; 4506 } 4507 4508 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4509 if (I.isAtomic()) 4510 return visitAtomicLoad(I); 4511 4512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4513 const Value *SV = I.getOperand(0); 4514 if (TLI.supportSwiftError()) { 4515 // Swifterror values can come from either a function parameter with 4516 // swifterror attribute or an alloca with swifterror attribute. 4517 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4518 if (Arg->hasSwiftErrorAttr()) 4519 return visitLoadFromSwiftError(I); 4520 } 4521 4522 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4523 if (Alloca->isSwiftError()) 4524 return visitLoadFromSwiftError(I); 4525 } 4526 } 4527 4528 SDValue Ptr = getValue(SV); 4529 4530 Type *Ty = I.getType(); 4531 SmallVector<EVT, 4> ValueVTs, MemVTs; 4532 SmallVector<TypeSize, 4> Offsets; 4533 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4534 unsigned NumValues = ValueVTs.size(); 4535 if (NumValues == 0) 4536 return; 4537 4538 Align Alignment = I.getAlign(); 4539 AAMDNodes AAInfo = I.getAAMetadata(); 4540 const MDNode *Ranges = getRangeMetadata(I); 4541 bool isVolatile = I.isVolatile(); 4542 MachineMemOperand::Flags MMOFlags = 4543 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4544 4545 SDValue Root; 4546 bool ConstantMemory = false; 4547 if (isVolatile) 4548 // Serialize volatile loads with other side effects. 4549 Root = getRoot(); 4550 else if (NumValues > MaxParallelChains) 4551 Root = getMemoryRoot(); 4552 else if (AA && 4553 AA->pointsToConstantMemory(MemoryLocation( 4554 SV, 4555 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4556 AAInfo))) { 4557 // Do not serialize (non-volatile) loads of constant memory with anything. 4558 Root = DAG.getEntryNode(); 4559 ConstantMemory = true; 4560 MMOFlags |= MachineMemOperand::MOInvariant; 4561 } else { 4562 // Do not serialize non-volatile loads against each other. 4563 Root = DAG.getRoot(); 4564 } 4565 4566 SDLoc dl = getCurSDLoc(); 4567 4568 if (isVolatile) 4569 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4570 4571 SmallVector<SDValue, 4> Values(NumValues); 4572 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4573 4574 unsigned ChainI = 0; 4575 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4576 // Serializing loads here may result in excessive register pressure, and 4577 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4578 // could recover a bit by hoisting nodes upward in the chain by recognizing 4579 // they are side-effect free or do not alias. The optimizer should really 4580 // avoid this case by converting large object/array copies to llvm.memcpy 4581 // (MaxParallelChains should always remain as failsafe). 4582 if (ChainI == MaxParallelChains) { 4583 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4584 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4585 ArrayRef(Chains.data(), ChainI)); 4586 Root = Chain; 4587 ChainI = 0; 4588 } 4589 4590 // TODO: MachinePointerInfo only supports a fixed length offset. 4591 MachinePointerInfo PtrInfo = 4592 !Offsets[i].isScalable() || Offsets[i].isZero() 4593 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4594 : MachinePointerInfo(); 4595 4596 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4597 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4598 MMOFlags, AAInfo, Ranges); 4599 Chains[ChainI] = L.getValue(1); 4600 4601 if (MemVTs[i] != ValueVTs[i]) 4602 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4603 4604 Values[i] = L; 4605 } 4606 4607 if (!ConstantMemory) { 4608 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4609 ArrayRef(Chains.data(), ChainI)); 4610 if (isVolatile) 4611 DAG.setRoot(Chain); 4612 else 4613 PendingLoads.push_back(Chain); 4614 } 4615 4616 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4617 DAG.getVTList(ValueVTs), Values)); 4618 } 4619 4620 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4621 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4622 "call visitStoreToSwiftError when backend supports swifterror"); 4623 4624 SmallVector<EVT, 4> ValueVTs; 4625 SmallVector<uint64_t, 4> Offsets; 4626 const Value *SrcV = I.getOperand(0); 4627 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4628 SrcV->getType(), ValueVTs, &Offsets, 0); 4629 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4630 "expect a single EVT for swifterror"); 4631 4632 SDValue Src = getValue(SrcV); 4633 // Create a virtual register, then update the virtual register. 4634 Register VReg = 4635 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4636 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4637 // Chain can be getRoot or getControlRoot. 4638 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4639 SDValue(Src.getNode(), Src.getResNo())); 4640 DAG.setRoot(CopyNode); 4641 } 4642 4643 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4644 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4645 "call visitLoadFromSwiftError when backend supports swifterror"); 4646 4647 assert(!I.isVolatile() && 4648 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4649 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4650 "Support volatile, non temporal, invariant for load_from_swift_error"); 4651 4652 const Value *SV = I.getOperand(0); 4653 Type *Ty = I.getType(); 4654 assert( 4655 (!AA || 4656 !AA->pointsToConstantMemory(MemoryLocation( 4657 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4658 I.getAAMetadata()))) && 4659 "load_from_swift_error should not be constant memory"); 4660 4661 SmallVector<EVT, 4> ValueVTs; 4662 SmallVector<uint64_t, 4> Offsets; 4663 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4664 ValueVTs, &Offsets, 0); 4665 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4666 "expect a single EVT for swifterror"); 4667 4668 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4669 SDValue L = DAG.getCopyFromReg( 4670 getRoot(), getCurSDLoc(), 4671 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4672 4673 setValue(&I, L); 4674 } 4675 4676 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4677 if (I.isAtomic()) 4678 return visitAtomicStore(I); 4679 4680 const Value *SrcV = I.getOperand(0); 4681 const Value *PtrV = I.getOperand(1); 4682 4683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4684 if (TLI.supportSwiftError()) { 4685 // Swifterror values can come from either a function parameter with 4686 // swifterror attribute or an alloca with swifterror attribute. 4687 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4688 if (Arg->hasSwiftErrorAttr()) 4689 return visitStoreToSwiftError(I); 4690 } 4691 4692 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4693 if (Alloca->isSwiftError()) 4694 return visitStoreToSwiftError(I); 4695 } 4696 } 4697 4698 SmallVector<EVT, 4> ValueVTs, MemVTs; 4699 SmallVector<TypeSize, 4> Offsets; 4700 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4701 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4702 unsigned NumValues = ValueVTs.size(); 4703 if (NumValues == 0) 4704 return; 4705 4706 // Get the lowered operands. Note that we do this after 4707 // checking if NumResults is zero, because with zero results 4708 // the operands won't have values in the map. 4709 SDValue Src = getValue(SrcV); 4710 SDValue Ptr = getValue(PtrV); 4711 4712 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4713 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4714 SDLoc dl = getCurSDLoc(); 4715 Align Alignment = I.getAlign(); 4716 AAMDNodes AAInfo = I.getAAMetadata(); 4717 4718 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4719 4720 unsigned ChainI = 0; 4721 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4722 // See visitLoad comments. 4723 if (ChainI == MaxParallelChains) { 4724 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4725 ArrayRef(Chains.data(), ChainI)); 4726 Root = Chain; 4727 ChainI = 0; 4728 } 4729 4730 // TODO: MachinePointerInfo only supports a fixed length offset. 4731 MachinePointerInfo PtrInfo = 4732 !Offsets[i].isScalable() || Offsets[i].isZero() 4733 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4734 : MachinePointerInfo(); 4735 4736 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4737 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4738 if (MemVTs[i] != ValueVTs[i]) 4739 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4740 SDValue St = 4741 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4742 Chains[ChainI] = St; 4743 } 4744 4745 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4746 ArrayRef(Chains.data(), ChainI)); 4747 setValue(&I, StoreNode); 4748 DAG.setRoot(StoreNode); 4749 } 4750 4751 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4752 bool IsCompressing) { 4753 SDLoc sdl = getCurSDLoc(); 4754 4755 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4756 Align &Alignment) { 4757 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4758 Src0 = I.getArgOperand(0); 4759 Ptr = I.getArgOperand(1); 4760 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4761 Mask = I.getArgOperand(3); 4762 }; 4763 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4764 Align &Alignment) { 4765 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4766 Src0 = I.getArgOperand(0); 4767 Ptr = I.getArgOperand(1); 4768 Mask = I.getArgOperand(2); 4769 Alignment = I.getParamAlign(1).valueOrOne(); 4770 }; 4771 4772 Value *PtrOperand, *MaskOperand, *Src0Operand; 4773 Align Alignment; 4774 if (IsCompressing) 4775 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4776 else 4777 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4778 4779 SDValue Ptr = getValue(PtrOperand); 4780 SDValue Src0 = getValue(Src0Operand); 4781 SDValue Mask = getValue(MaskOperand); 4782 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4783 4784 EVT VT = Src0.getValueType(); 4785 4786 auto MMOFlags = MachineMemOperand::MOStore; 4787 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4788 MMOFlags |= MachineMemOperand::MONonTemporal; 4789 4790 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4791 MachinePointerInfo(PtrOperand), MMOFlags, 4792 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4793 4794 const auto &TLI = DAG.getTargetLoweringInfo(); 4795 const auto &TTI = 4796 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4797 SDValue StoreNode = 4798 !IsCompressing && TTI.hasConditionalLoadStoreForType( 4799 I.getArgOperand(0)->getType()->getScalarType()) 4800 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4801 Mask) 4802 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4803 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4804 IsCompressing); 4805 DAG.setRoot(StoreNode); 4806 setValue(&I, StoreNode); 4807 } 4808 4809 // Get a uniform base for the Gather/Scatter intrinsic. 4810 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4811 // We try to represent it as a base pointer + vector of indices. 4812 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4813 // The first operand of the GEP may be a single pointer or a vector of pointers 4814 // Example: 4815 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4816 // or 4817 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4818 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4819 // 4820 // When the first GEP operand is a single pointer - it is the uniform base we 4821 // are looking for. If first operand of the GEP is a splat vector - we 4822 // extract the splat value and use it as a uniform base. 4823 // In all other cases the function returns 'false'. 4824 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4825 ISD::MemIndexType &IndexType, SDValue &Scale, 4826 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4827 uint64_t ElemSize) { 4828 SelectionDAG& DAG = SDB->DAG; 4829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4830 const DataLayout &DL = DAG.getDataLayout(); 4831 4832 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4833 4834 // Handle splat constant pointer. 4835 if (auto *C = dyn_cast<Constant>(Ptr)) { 4836 C = C->getSplatValue(); 4837 if (!C) 4838 return false; 4839 4840 Base = SDB->getValue(C); 4841 4842 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4843 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4844 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4845 IndexType = ISD::SIGNED_SCALED; 4846 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4847 return true; 4848 } 4849 4850 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4851 if (!GEP || GEP->getParent() != CurBB) 4852 return false; 4853 4854 if (GEP->getNumOperands() != 2) 4855 return false; 4856 4857 const Value *BasePtr = GEP->getPointerOperand(); 4858 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4859 4860 // Make sure the base is scalar and the index is a vector. 4861 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4862 return false; 4863 4864 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4865 if (ScaleVal.isScalable()) 4866 return false; 4867 4868 // Target may not support the required addressing mode. 4869 if (ScaleVal != 1 && 4870 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4871 return false; 4872 4873 Base = SDB->getValue(BasePtr); 4874 Index = SDB->getValue(IndexVal); 4875 IndexType = ISD::SIGNED_SCALED; 4876 4877 Scale = 4878 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4879 return true; 4880 } 4881 4882 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4883 SDLoc sdl = getCurSDLoc(); 4884 4885 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4886 const Value *Ptr = I.getArgOperand(1); 4887 SDValue Src0 = getValue(I.getArgOperand(0)); 4888 SDValue Mask = getValue(I.getArgOperand(3)); 4889 EVT VT = Src0.getValueType(); 4890 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4891 ->getMaybeAlignValue() 4892 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4894 4895 SDValue Base; 4896 SDValue Index; 4897 ISD::MemIndexType IndexType; 4898 SDValue Scale; 4899 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4900 I.getParent(), VT.getScalarStoreSize()); 4901 4902 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4903 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4904 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4905 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4906 if (!UniformBase) { 4907 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4908 Index = getValue(Ptr); 4909 IndexType = ISD::SIGNED_SCALED; 4910 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4911 } 4912 4913 EVT IdxVT = Index.getValueType(); 4914 EVT EltTy = IdxVT.getVectorElementType(); 4915 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4916 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4917 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4918 } 4919 4920 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4921 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4922 Ops, MMO, IndexType, false); 4923 DAG.setRoot(Scatter); 4924 setValue(&I, Scatter); 4925 } 4926 4927 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4928 SDLoc sdl = getCurSDLoc(); 4929 4930 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4931 Align &Alignment) { 4932 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4933 Ptr = I.getArgOperand(0); 4934 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4935 Mask = I.getArgOperand(2); 4936 Src0 = I.getArgOperand(3); 4937 }; 4938 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4939 Align &Alignment) { 4940 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4941 Ptr = I.getArgOperand(0); 4942 Alignment = I.getParamAlign(0).valueOrOne(); 4943 Mask = I.getArgOperand(1); 4944 Src0 = I.getArgOperand(2); 4945 }; 4946 4947 Value *PtrOperand, *MaskOperand, *Src0Operand; 4948 Align Alignment; 4949 if (IsExpanding) 4950 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4951 else 4952 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4953 4954 SDValue Ptr = getValue(PtrOperand); 4955 SDValue Src0 = getValue(Src0Operand); 4956 SDValue Mask = getValue(MaskOperand); 4957 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4958 4959 EVT VT = Src0.getValueType(); 4960 AAMDNodes AAInfo = I.getAAMetadata(); 4961 const MDNode *Ranges = getRangeMetadata(I); 4962 4963 // Do not serialize masked loads of constant memory with anything. 4964 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4965 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4966 4967 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4968 4969 auto MMOFlags = MachineMemOperand::MOLoad; 4970 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4971 MMOFlags |= MachineMemOperand::MONonTemporal; 4972 4973 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4974 MachinePointerInfo(PtrOperand), MMOFlags, 4975 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4976 4977 const auto &TLI = DAG.getTargetLoweringInfo(); 4978 const auto &TTI = 4979 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4980 // The Load/Res may point to different values and both of them are output 4981 // variables. 4982 SDValue Load; 4983 SDValue Res; 4984 if (!IsExpanding && TTI.hasConditionalLoadStoreForType( 4985 Src0Operand->getType()->getScalarType())) 4986 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 4987 else 4988 Res = Load = 4989 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4990 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4991 if (AddToChain) 4992 PendingLoads.push_back(Load.getValue(1)); 4993 setValue(&I, Res); 4994 } 4995 4996 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4997 SDLoc sdl = getCurSDLoc(); 4998 4999 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5000 const Value *Ptr = I.getArgOperand(0); 5001 SDValue Src0 = getValue(I.getArgOperand(3)); 5002 SDValue Mask = getValue(I.getArgOperand(2)); 5003 5004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5005 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5006 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5007 ->getMaybeAlignValue() 5008 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5009 5010 const MDNode *Ranges = getRangeMetadata(I); 5011 5012 SDValue Root = DAG.getRoot(); 5013 SDValue Base; 5014 SDValue Index; 5015 ISD::MemIndexType IndexType; 5016 SDValue Scale; 5017 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5018 I.getParent(), VT.getScalarStoreSize()); 5019 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5020 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5021 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5022 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5023 Ranges); 5024 5025 if (!UniformBase) { 5026 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5027 Index = getValue(Ptr); 5028 IndexType = ISD::SIGNED_SCALED; 5029 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5030 } 5031 5032 EVT IdxVT = Index.getValueType(); 5033 EVT EltTy = IdxVT.getVectorElementType(); 5034 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5035 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5036 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5037 } 5038 5039 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5040 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5041 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5042 5043 PendingLoads.push_back(Gather.getValue(1)); 5044 setValue(&I, Gather); 5045 } 5046 5047 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5048 SDLoc dl = getCurSDLoc(); 5049 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5050 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5051 SyncScope::ID SSID = I.getSyncScopeID(); 5052 5053 SDValue InChain = getRoot(); 5054 5055 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5056 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5057 5058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5059 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5060 5061 MachineFunction &MF = DAG.getMachineFunction(); 5062 MachineMemOperand *MMO = MF.getMachineMemOperand( 5063 MachinePointerInfo(I.getPointerOperand()), Flags, 5064 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5065 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5066 5067 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5068 dl, MemVT, VTs, InChain, 5069 getValue(I.getPointerOperand()), 5070 getValue(I.getCompareOperand()), 5071 getValue(I.getNewValOperand()), MMO); 5072 5073 SDValue OutChain = L.getValue(2); 5074 5075 setValue(&I, L); 5076 DAG.setRoot(OutChain); 5077 } 5078 5079 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5080 SDLoc dl = getCurSDLoc(); 5081 ISD::NodeType NT; 5082 switch (I.getOperation()) { 5083 default: llvm_unreachable("Unknown atomicrmw operation"); 5084 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5085 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5086 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5087 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5088 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5089 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5090 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5091 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5092 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5093 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5094 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5095 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5096 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5097 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5098 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5099 case AtomicRMWInst::UIncWrap: 5100 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5101 break; 5102 case AtomicRMWInst::UDecWrap: 5103 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5104 break; 5105 } 5106 AtomicOrdering Ordering = I.getOrdering(); 5107 SyncScope::ID SSID = I.getSyncScopeID(); 5108 5109 SDValue InChain = getRoot(); 5110 5111 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5113 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5114 5115 MachineFunction &MF = DAG.getMachineFunction(); 5116 MachineMemOperand *MMO = MF.getMachineMemOperand( 5117 MachinePointerInfo(I.getPointerOperand()), Flags, 5118 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5119 AAMDNodes(), nullptr, SSID, Ordering); 5120 5121 SDValue L = 5122 DAG.getAtomic(NT, dl, MemVT, InChain, 5123 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5124 MMO); 5125 5126 SDValue OutChain = L.getValue(1); 5127 5128 setValue(&I, L); 5129 DAG.setRoot(OutChain); 5130 } 5131 5132 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5133 SDLoc dl = getCurSDLoc(); 5134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5135 SDValue Ops[3]; 5136 Ops[0] = getRoot(); 5137 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5138 TLI.getFenceOperandTy(DAG.getDataLayout())); 5139 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5140 TLI.getFenceOperandTy(DAG.getDataLayout())); 5141 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5142 setValue(&I, N); 5143 DAG.setRoot(N); 5144 } 5145 5146 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5147 SDLoc dl = getCurSDLoc(); 5148 AtomicOrdering Order = I.getOrdering(); 5149 SyncScope::ID SSID = I.getSyncScopeID(); 5150 5151 SDValue InChain = getRoot(); 5152 5153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5154 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5155 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5156 5157 if (!TLI.supportsUnalignedAtomics() && 5158 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5159 report_fatal_error("Cannot generate unaligned atomic load"); 5160 5161 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5162 5163 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5164 MachinePointerInfo(I.getPointerOperand()), Flags, 5165 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5166 nullptr, SSID, Order); 5167 5168 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5169 5170 SDValue Ptr = getValue(I.getPointerOperand()); 5171 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5172 Ptr, MMO); 5173 5174 SDValue OutChain = L.getValue(1); 5175 if (MemVT != VT) 5176 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5177 5178 setValue(&I, L); 5179 DAG.setRoot(OutChain); 5180 } 5181 5182 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5183 SDLoc dl = getCurSDLoc(); 5184 5185 AtomicOrdering Ordering = I.getOrdering(); 5186 SyncScope::ID SSID = I.getSyncScopeID(); 5187 5188 SDValue InChain = getRoot(); 5189 5190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5191 EVT MemVT = 5192 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5193 5194 if (!TLI.supportsUnalignedAtomics() && 5195 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5196 report_fatal_error("Cannot generate unaligned atomic store"); 5197 5198 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5199 5200 MachineFunction &MF = DAG.getMachineFunction(); 5201 MachineMemOperand *MMO = MF.getMachineMemOperand( 5202 MachinePointerInfo(I.getPointerOperand()), Flags, 5203 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5204 nullptr, SSID, Ordering); 5205 5206 SDValue Val = getValue(I.getValueOperand()); 5207 if (Val.getValueType() != MemVT) 5208 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5209 SDValue Ptr = getValue(I.getPointerOperand()); 5210 5211 SDValue OutChain = 5212 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5213 5214 setValue(&I, OutChain); 5215 DAG.setRoot(OutChain); 5216 } 5217 5218 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5219 /// node. 5220 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5221 unsigned Intrinsic) { 5222 // Ignore the callsite's attributes. A specific call site may be marked with 5223 // readnone, but the lowering code will expect the chain based on the 5224 // definition. 5225 const Function *F = I.getCalledFunction(); 5226 bool HasChain = !F->doesNotAccessMemory(); 5227 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5228 5229 // Build the operand list. 5230 SmallVector<SDValue, 8> Ops; 5231 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5232 if (OnlyLoad) { 5233 // We don't need to serialize loads against other loads. 5234 Ops.push_back(DAG.getRoot()); 5235 } else { 5236 Ops.push_back(getRoot()); 5237 } 5238 } 5239 5240 // Info is set by getTgtMemIntrinsic 5241 TargetLowering::IntrinsicInfo Info; 5242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5243 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5244 DAG.getMachineFunction(), 5245 Intrinsic); 5246 5247 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5248 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5249 Info.opc == ISD::INTRINSIC_W_CHAIN) 5250 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5251 TLI.getPointerTy(DAG.getDataLayout()))); 5252 5253 // Add all operands of the call to the operand list. 5254 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5255 const Value *Arg = I.getArgOperand(i); 5256 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5257 Ops.push_back(getValue(Arg)); 5258 continue; 5259 } 5260 5261 // Use TargetConstant instead of a regular constant for immarg. 5262 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5263 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5264 assert(CI->getBitWidth() <= 64 && 5265 "large intrinsic immediates not handled"); 5266 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5267 } else { 5268 Ops.push_back( 5269 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5270 } 5271 } 5272 5273 SmallVector<EVT, 4> ValueVTs; 5274 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5275 5276 if (HasChain) 5277 ValueVTs.push_back(MVT::Other); 5278 5279 SDVTList VTs = DAG.getVTList(ValueVTs); 5280 5281 // Propagate fast-math-flags from IR to node(s). 5282 SDNodeFlags Flags; 5283 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5284 Flags.copyFMF(*FPMO); 5285 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5286 5287 // Create the node. 5288 SDValue Result; 5289 5290 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5291 auto *Token = Bundle->Inputs[0].get(); 5292 SDValue ConvControlToken = getValue(Token); 5293 assert(Ops.back().getValueType() != MVT::Glue && 5294 "Did not expected another glue node here."); 5295 ConvControlToken = 5296 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5297 Ops.push_back(ConvControlToken); 5298 } 5299 5300 // In some cases, custom collection of operands from CallInst I may be needed. 5301 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5302 if (IsTgtIntrinsic) { 5303 // This is target intrinsic that touches memory 5304 // 5305 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5306 // didn't yield anything useful. 5307 MachinePointerInfo MPI; 5308 if (Info.ptrVal) 5309 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5310 else if (Info.fallbackAddressSpace) 5311 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5312 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5313 Info.memVT, MPI, Info.align, Info.flags, 5314 Info.size, I.getAAMetadata()); 5315 } else if (!HasChain) { 5316 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5317 } else if (!I.getType()->isVoidTy()) { 5318 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5319 } else { 5320 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5321 } 5322 5323 if (HasChain) { 5324 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5325 if (OnlyLoad) 5326 PendingLoads.push_back(Chain); 5327 else 5328 DAG.setRoot(Chain); 5329 } 5330 5331 if (!I.getType()->isVoidTy()) { 5332 if (!isa<VectorType>(I.getType())) 5333 Result = lowerRangeToAssertZExt(DAG, I, Result); 5334 5335 MaybeAlign Alignment = I.getRetAlign(); 5336 5337 // Insert `assertalign` node if there's an alignment. 5338 if (InsertAssertAlign && Alignment) { 5339 Result = 5340 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5341 } 5342 } 5343 5344 setValue(&I, Result); 5345 } 5346 5347 /// GetSignificand - Get the significand and build it into a floating-point 5348 /// number with exponent of 1: 5349 /// 5350 /// Op = (Op & 0x007fffff) | 0x3f800000; 5351 /// 5352 /// where Op is the hexadecimal representation of floating point value. 5353 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5354 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5355 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5356 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5357 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5358 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5359 } 5360 5361 /// GetExponent - Get the exponent: 5362 /// 5363 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5364 /// 5365 /// where Op is the hexadecimal representation of floating point value. 5366 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5367 const TargetLowering &TLI, const SDLoc &dl) { 5368 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5369 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5370 SDValue t1 = DAG.getNode( 5371 ISD::SRL, dl, MVT::i32, t0, 5372 DAG.getConstant(23, dl, 5373 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5374 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5375 DAG.getConstant(127, dl, MVT::i32)); 5376 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5377 } 5378 5379 /// getF32Constant - Get 32-bit floating point constant. 5380 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5381 const SDLoc &dl) { 5382 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5383 MVT::f32); 5384 } 5385 5386 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5387 SelectionDAG &DAG) { 5388 // TODO: What fast-math-flags should be set on the floating-point nodes? 5389 5390 // IntegerPartOfX = ((int32_t)(t0); 5391 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5392 5393 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5394 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5395 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5396 5397 // IntegerPartOfX <<= 23; 5398 IntegerPartOfX = 5399 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5400 DAG.getConstant(23, dl, 5401 DAG.getTargetLoweringInfo().getShiftAmountTy( 5402 MVT::i32, DAG.getDataLayout()))); 5403 5404 SDValue TwoToFractionalPartOfX; 5405 if (LimitFloatPrecision <= 6) { 5406 // For floating-point precision of 6: 5407 // 5408 // TwoToFractionalPartOfX = 5409 // 0.997535578f + 5410 // (0.735607626f + 0.252464424f * x) * x; 5411 // 5412 // error 0.0144103317, which is 6 bits 5413 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5414 getF32Constant(DAG, 0x3e814304, dl)); 5415 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5416 getF32Constant(DAG, 0x3f3c50c8, dl)); 5417 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5418 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5419 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5420 } else if (LimitFloatPrecision <= 12) { 5421 // For floating-point precision of 12: 5422 // 5423 // TwoToFractionalPartOfX = 5424 // 0.999892986f + 5425 // (0.696457318f + 5426 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5427 // 5428 // error 0.000107046256, which is 13 to 14 bits 5429 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5430 getF32Constant(DAG, 0x3da235e3, dl)); 5431 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5432 getF32Constant(DAG, 0x3e65b8f3, dl)); 5433 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5434 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5435 getF32Constant(DAG, 0x3f324b07, dl)); 5436 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5437 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5438 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5439 } else { // LimitFloatPrecision <= 18 5440 // For floating-point precision of 18: 5441 // 5442 // TwoToFractionalPartOfX = 5443 // 0.999999982f + 5444 // (0.693148872f + 5445 // (0.240227044f + 5446 // (0.554906021e-1f + 5447 // (0.961591928e-2f + 5448 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5449 // error 2.47208000*10^(-7), which is better than 18 bits 5450 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5451 getF32Constant(DAG, 0x3924b03e, dl)); 5452 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5453 getF32Constant(DAG, 0x3ab24b87, dl)); 5454 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5455 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5456 getF32Constant(DAG, 0x3c1d8c17, dl)); 5457 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5458 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5459 getF32Constant(DAG, 0x3d634a1d, dl)); 5460 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5461 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5462 getF32Constant(DAG, 0x3e75fe14, dl)); 5463 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5464 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5465 getF32Constant(DAG, 0x3f317234, dl)); 5466 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5467 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5468 getF32Constant(DAG, 0x3f800000, dl)); 5469 } 5470 5471 // Add the exponent into the result in integer domain. 5472 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5473 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5474 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5475 } 5476 5477 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5478 /// limited-precision mode. 5479 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5480 const TargetLowering &TLI, SDNodeFlags Flags) { 5481 if (Op.getValueType() == MVT::f32 && 5482 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5483 5484 // Put the exponent in the right bit position for later addition to the 5485 // final result: 5486 // 5487 // t0 = Op * log2(e) 5488 5489 // TODO: What fast-math-flags should be set here? 5490 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5491 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5492 return getLimitedPrecisionExp2(t0, dl, DAG); 5493 } 5494 5495 // No special expansion. 5496 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5497 } 5498 5499 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5500 /// limited-precision mode. 5501 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5502 const TargetLowering &TLI, SDNodeFlags Flags) { 5503 // TODO: What fast-math-flags should be set on the floating-point nodes? 5504 5505 if (Op.getValueType() == MVT::f32 && 5506 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5507 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5508 5509 // Scale the exponent by log(2). 5510 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5511 SDValue LogOfExponent = 5512 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5513 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5514 5515 // Get the significand and build it into a floating-point number with 5516 // exponent of 1. 5517 SDValue X = GetSignificand(DAG, Op1, dl); 5518 5519 SDValue LogOfMantissa; 5520 if (LimitFloatPrecision <= 6) { 5521 // For floating-point precision of 6: 5522 // 5523 // LogofMantissa = 5524 // -1.1609546f + 5525 // (1.4034025f - 0.23903021f * x) * x; 5526 // 5527 // error 0.0034276066, which is better than 8 bits 5528 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5529 getF32Constant(DAG, 0xbe74c456, dl)); 5530 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5531 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5532 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5533 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5534 getF32Constant(DAG, 0x3f949a29, dl)); 5535 } else if (LimitFloatPrecision <= 12) { 5536 // For floating-point precision of 12: 5537 // 5538 // LogOfMantissa = 5539 // -1.7417939f + 5540 // (2.8212026f + 5541 // (-1.4699568f + 5542 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5543 // 5544 // error 0.000061011436, which is 14 bits 5545 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5546 getF32Constant(DAG, 0xbd67b6d6, dl)); 5547 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5548 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5549 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5550 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5551 getF32Constant(DAG, 0x3fbc278b, dl)); 5552 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5553 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5554 getF32Constant(DAG, 0x40348e95, dl)); 5555 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5556 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5557 getF32Constant(DAG, 0x3fdef31a, dl)); 5558 } else { // LimitFloatPrecision <= 18 5559 // For floating-point precision of 18: 5560 // 5561 // LogOfMantissa = 5562 // -2.1072184f + 5563 // (4.2372794f + 5564 // (-3.7029485f + 5565 // (2.2781945f + 5566 // (-0.87823314f + 5567 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5568 // 5569 // error 0.0000023660568, which is better than 18 bits 5570 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5571 getF32Constant(DAG, 0xbc91e5ac, dl)); 5572 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5573 getF32Constant(DAG, 0x3e4350aa, dl)); 5574 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5575 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5576 getF32Constant(DAG, 0x3f60d3e3, dl)); 5577 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5578 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5579 getF32Constant(DAG, 0x4011cdf0, dl)); 5580 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5581 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5582 getF32Constant(DAG, 0x406cfd1c, dl)); 5583 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5584 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5585 getF32Constant(DAG, 0x408797cb, dl)); 5586 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5587 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5588 getF32Constant(DAG, 0x4006dcab, dl)); 5589 } 5590 5591 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5592 } 5593 5594 // No special expansion. 5595 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5596 } 5597 5598 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5599 /// limited-precision mode. 5600 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5601 const TargetLowering &TLI, SDNodeFlags Flags) { 5602 // TODO: What fast-math-flags should be set on the floating-point nodes? 5603 5604 if (Op.getValueType() == MVT::f32 && 5605 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5606 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5607 5608 // Get the exponent. 5609 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5610 5611 // Get the significand and build it into a floating-point number with 5612 // exponent of 1. 5613 SDValue X = GetSignificand(DAG, Op1, dl); 5614 5615 // Different possible minimax approximations of significand in 5616 // floating-point for various degrees of accuracy over [1,2]. 5617 SDValue Log2ofMantissa; 5618 if (LimitFloatPrecision <= 6) { 5619 // For floating-point precision of 6: 5620 // 5621 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5622 // 5623 // error 0.0049451742, which is more than 7 bits 5624 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5625 getF32Constant(DAG, 0xbeb08fe0, dl)); 5626 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5627 getF32Constant(DAG, 0x40019463, dl)); 5628 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5629 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5630 getF32Constant(DAG, 0x3fd6633d, dl)); 5631 } else if (LimitFloatPrecision <= 12) { 5632 // For floating-point precision of 12: 5633 // 5634 // Log2ofMantissa = 5635 // -2.51285454f + 5636 // (4.07009056f + 5637 // (-2.12067489f + 5638 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5639 // 5640 // error 0.0000876136000, which is better than 13 bits 5641 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5642 getF32Constant(DAG, 0xbda7262e, dl)); 5643 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5644 getF32Constant(DAG, 0x3f25280b, dl)); 5645 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5646 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5647 getF32Constant(DAG, 0x4007b923, dl)); 5648 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5649 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5650 getF32Constant(DAG, 0x40823e2f, dl)); 5651 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5652 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5653 getF32Constant(DAG, 0x4020d29c, dl)); 5654 } else { // LimitFloatPrecision <= 18 5655 // For floating-point precision of 18: 5656 // 5657 // Log2ofMantissa = 5658 // -3.0400495f + 5659 // (6.1129976f + 5660 // (-5.3420409f + 5661 // (3.2865683f + 5662 // (-1.2669343f + 5663 // (0.27515199f - 5664 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5665 // 5666 // error 0.0000018516, which is better than 18 bits 5667 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5668 getF32Constant(DAG, 0xbcd2769e, dl)); 5669 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5670 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5671 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5672 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5673 getF32Constant(DAG, 0x3fa22ae7, dl)); 5674 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5675 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5676 getF32Constant(DAG, 0x40525723, dl)); 5677 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5678 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5679 getF32Constant(DAG, 0x40aaf200, dl)); 5680 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5681 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5682 getF32Constant(DAG, 0x40c39dad, dl)); 5683 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5684 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5685 getF32Constant(DAG, 0x4042902c, dl)); 5686 } 5687 5688 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5689 } 5690 5691 // No special expansion. 5692 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5693 } 5694 5695 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5696 /// limited-precision mode. 5697 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5698 const TargetLowering &TLI, SDNodeFlags Flags) { 5699 // TODO: What fast-math-flags should be set on the floating-point nodes? 5700 5701 if (Op.getValueType() == MVT::f32 && 5702 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5703 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5704 5705 // Scale the exponent by log10(2) [0.30102999f]. 5706 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5707 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5708 getF32Constant(DAG, 0x3e9a209a, dl)); 5709 5710 // Get the significand and build it into a floating-point number with 5711 // exponent of 1. 5712 SDValue X = GetSignificand(DAG, Op1, dl); 5713 5714 SDValue Log10ofMantissa; 5715 if (LimitFloatPrecision <= 6) { 5716 // For floating-point precision of 6: 5717 // 5718 // Log10ofMantissa = 5719 // -0.50419619f + 5720 // (0.60948995f - 0.10380950f * x) * x; 5721 // 5722 // error 0.0014886165, which is 6 bits 5723 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5724 getF32Constant(DAG, 0xbdd49a13, dl)); 5725 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5726 getF32Constant(DAG, 0x3f1c0789, dl)); 5727 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5728 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5729 getF32Constant(DAG, 0x3f011300, dl)); 5730 } else if (LimitFloatPrecision <= 12) { 5731 // For floating-point precision of 12: 5732 // 5733 // Log10ofMantissa = 5734 // -0.64831180f + 5735 // (0.91751397f + 5736 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5737 // 5738 // error 0.00019228036, which is better than 12 bits 5739 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5740 getF32Constant(DAG, 0x3d431f31, dl)); 5741 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5742 getF32Constant(DAG, 0x3ea21fb2, dl)); 5743 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5744 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5745 getF32Constant(DAG, 0x3f6ae232, dl)); 5746 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5747 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5748 getF32Constant(DAG, 0x3f25f7c3, dl)); 5749 } else { // LimitFloatPrecision <= 18 5750 // For floating-point precision of 18: 5751 // 5752 // Log10ofMantissa = 5753 // -0.84299375f + 5754 // (1.5327582f + 5755 // (-1.0688956f + 5756 // (0.49102474f + 5757 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5758 // 5759 // error 0.0000037995730, which is better than 18 bits 5760 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5761 getF32Constant(DAG, 0x3c5d51ce, dl)); 5762 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5763 getF32Constant(DAG, 0x3e00685a, dl)); 5764 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5765 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5766 getF32Constant(DAG, 0x3efb6798, dl)); 5767 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5768 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5769 getF32Constant(DAG, 0x3f88d192, dl)); 5770 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5771 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5772 getF32Constant(DAG, 0x3fc4316c, dl)); 5773 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5774 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5775 getF32Constant(DAG, 0x3f57ce70, dl)); 5776 } 5777 5778 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5779 } 5780 5781 // No special expansion. 5782 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5783 } 5784 5785 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5786 /// limited-precision mode. 5787 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5788 const TargetLowering &TLI, SDNodeFlags Flags) { 5789 if (Op.getValueType() == MVT::f32 && 5790 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5791 return getLimitedPrecisionExp2(Op, dl, DAG); 5792 5793 // No special expansion. 5794 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5795 } 5796 5797 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5798 /// limited-precision mode with x == 10.0f. 5799 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5800 SelectionDAG &DAG, const TargetLowering &TLI, 5801 SDNodeFlags Flags) { 5802 bool IsExp10 = false; 5803 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5804 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5805 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5806 APFloat Ten(10.0f); 5807 IsExp10 = LHSC->isExactlyValue(Ten); 5808 } 5809 } 5810 5811 // TODO: What fast-math-flags should be set on the FMUL node? 5812 if (IsExp10) { 5813 // Put the exponent in the right bit position for later addition to the 5814 // final result: 5815 // 5816 // #define LOG2OF10 3.3219281f 5817 // t0 = Op * LOG2OF10; 5818 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5819 getF32Constant(DAG, 0x40549a78, dl)); 5820 return getLimitedPrecisionExp2(t0, dl, DAG); 5821 } 5822 5823 // No special expansion. 5824 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5825 } 5826 5827 /// ExpandPowI - Expand a llvm.powi intrinsic. 5828 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5829 SelectionDAG &DAG) { 5830 // If RHS is a constant, we can expand this out to a multiplication tree if 5831 // it's beneficial on the target, otherwise we end up lowering to a call to 5832 // __powidf2 (for example). 5833 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5834 unsigned Val = RHSC->getSExtValue(); 5835 5836 // powi(x, 0) -> 1.0 5837 if (Val == 0) 5838 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5839 5840 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5841 Val, DAG.shouldOptForSize())) { 5842 // Get the exponent as a positive value. 5843 if ((int)Val < 0) 5844 Val = -Val; 5845 // We use the simple binary decomposition method to generate the multiply 5846 // sequence. There are more optimal ways to do this (for example, 5847 // powi(x,15) generates one more multiply than it should), but this has 5848 // the benefit of being both really simple and much better than a libcall. 5849 SDValue Res; // Logically starts equal to 1.0 5850 SDValue CurSquare = LHS; 5851 // TODO: Intrinsics should have fast-math-flags that propagate to these 5852 // nodes. 5853 while (Val) { 5854 if (Val & 1) { 5855 if (Res.getNode()) 5856 Res = 5857 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5858 else 5859 Res = CurSquare; // 1.0*CurSquare. 5860 } 5861 5862 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5863 CurSquare, CurSquare); 5864 Val >>= 1; 5865 } 5866 5867 // If the original was negative, invert the result, producing 1/(x*x*x). 5868 if (RHSC->getSExtValue() < 0) 5869 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5870 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5871 return Res; 5872 } 5873 } 5874 5875 // Otherwise, expand to a libcall. 5876 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5877 } 5878 5879 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5880 SDValue LHS, SDValue RHS, SDValue Scale, 5881 SelectionDAG &DAG, const TargetLowering &TLI) { 5882 EVT VT = LHS.getValueType(); 5883 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5884 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5885 LLVMContext &Ctx = *DAG.getContext(); 5886 5887 // If the type is legal but the operation isn't, this node might survive all 5888 // the way to operation legalization. If we end up there and we do not have 5889 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5890 // node. 5891 5892 // Coax the legalizer into expanding the node during type legalization instead 5893 // by bumping the size by one bit. This will force it to Promote, enabling the 5894 // early expansion and avoiding the need to expand later. 5895 5896 // We don't have to do this if Scale is 0; that can always be expanded, unless 5897 // it's a saturating signed operation. Those can experience true integer 5898 // division overflow, a case which we must avoid. 5899 5900 // FIXME: We wouldn't have to do this (or any of the early 5901 // expansion/promotion) if it was possible to expand a libcall of an 5902 // illegal type during operation legalization. But it's not, so things 5903 // get a bit hacky. 5904 unsigned ScaleInt = Scale->getAsZExtVal(); 5905 if ((ScaleInt > 0 || (Saturating && Signed)) && 5906 (TLI.isTypeLegal(VT) || 5907 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5908 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5909 Opcode, VT, ScaleInt); 5910 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5911 EVT PromVT; 5912 if (VT.isScalarInteger()) 5913 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5914 else if (VT.isVector()) { 5915 PromVT = VT.getVectorElementType(); 5916 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5917 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5918 } else 5919 llvm_unreachable("Wrong VT for DIVFIX?"); 5920 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5921 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5922 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5923 // For saturating operations, we need to shift up the LHS to get the 5924 // proper saturation width, and then shift down again afterwards. 5925 if (Saturating) 5926 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5927 DAG.getConstant(1, DL, ShiftTy)); 5928 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5929 if (Saturating) 5930 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5931 DAG.getConstant(1, DL, ShiftTy)); 5932 return DAG.getZExtOrTrunc(Res, DL, VT); 5933 } 5934 } 5935 5936 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5937 } 5938 5939 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5940 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5941 static void 5942 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5943 const SDValue &N) { 5944 switch (N.getOpcode()) { 5945 case ISD::CopyFromReg: { 5946 SDValue Op = N.getOperand(1); 5947 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5948 Op.getValueType().getSizeInBits()); 5949 return; 5950 } 5951 case ISD::BITCAST: 5952 case ISD::AssertZext: 5953 case ISD::AssertSext: 5954 case ISD::TRUNCATE: 5955 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5956 return; 5957 case ISD::BUILD_PAIR: 5958 case ISD::BUILD_VECTOR: 5959 case ISD::CONCAT_VECTORS: 5960 for (SDValue Op : N->op_values()) 5961 getUnderlyingArgRegs(Regs, Op); 5962 return; 5963 default: 5964 return; 5965 } 5966 } 5967 5968 /// If the DbgValueInst is a dbg_value of a function argument, create the 5969 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5970 /// instruction selection, they will be inserted to the entry BB. 5971 /// We don't currently support this for variadic dbg_values, as they shouldn't 5972 /// appear for function arguments or in the prologue. 5973 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5974 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5975 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5976 const Argument *Arg = dyn_cast<Argument>(V); 5977 if (!Arg) 5978 return false; 5979 5980 MachineFunction &MF = DAG.getMachineFunction(); 5981 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5982 5983 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5984 // we've been asked to pursue. 5985 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5986 bool Indirect) { 5987 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5988 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5989 // pointing at the VReg, which will be patched up later. 5990 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5991 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5992 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5993 /* isKill */ false, /* isDead */ false, 5994 /* isUndef */ false, /* isEarlyClobber */ false, 5995 /* SubReg */ 0, /* isDebug */ true)}); 5996 5997 auto *NewDIExpr = FragExpr; 5998 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5999 // the DIExpression. 6000 if (Indirect) 6001 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6002 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6003 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6004 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6005 } else { 6006 // Create a completely standard DBG_VALUE. 6007 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6008 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6009 } 6010 }; 6011 6012 if (Kind == FuncArgumentDbgValueKind::Value) { 6013 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6014 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6015 // the entry block. 6016 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6017 if (!IsInEntryBlock) 6018 return false; 6019 6020 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6021 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6022 // variable that also is a param. 6023 // 6024 // Although, if we are at the top of the entry block already, we can still 6025 // emit using ArgDbgValue. This might catch some situations when the 6026 // dbg.value refers to an argument that isn't used in the entry block, so 6027 // any CopyToReg node would be optimized out and the only way to express 6028 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6029 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6030 // we should only emit as ArgDbgValue if the Variable is an argument to the 6031 // current function, and the dbg.value intrinsic is found in the entry 6032 // block. 6033 bool VariableIsFunctionInputArg = Variable->isParameter() && 6034 !DL->getInlinedAt(); 6035 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6036 if (!IsInPrologue && !VariableIsFunctionInputArg) 6037 return false; 6038 6039 // Here we assume that a function argument on IR level only can be used to 6040 // describe one input parameter on source level. If we for example have 6041 // source code like this 6042 // 6043 // struct A { long x, y; }; 6044 // void foo(struct A a, long b) { 6045 // ... 6046 // b = a.x; 6047 // ... 6048 // } 6049 // 6050 // and IR like this 6051 // 6052 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6053 // entry: 6054 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6055 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6056 // call void @llvm.dbg.value(metadata i32 %b, "b", 6057 // ... 6058 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6059 // ... 6060 // 6061 // then the last dbg.value is describing a parameter "b" using a value that 6062 // is an argument. But since we already has used %a1 to describe a parameter 6063 // we should not handle that last dbg.value here (that would result in an 6064 // incorrect hoisting of the DBG_VALUE to the function entry). 6065 // Notice that we allow one dbg.value per IR level argument, to accommodate 6066 // for the situation with fragments above. 6067 // If there is no node for the value being handled, we return true to skip 6068 // the normal generation of debug info, as it would kill existing debug 6069 // info for the parameter in case of duplicates. 6070 if (VariableIsFunctionInputArg) { 6071 unsigned ArgNo = Arg->getArgNo(); 6072 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6073 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6074 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6075 return !NodeMap[V].getNode(); 6076 FuncInfo.DescribedArgs.set(ArgNo); 6077 } 6078 } 6079 6080 bool IsIndirect = false; 6081 std::optional<MachineOperand> Op; 6082 // Some arguments' frame index is recorded during argument lowering. 6083 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6084 if (FI != std::numeric_limits<int>::max()) 6085 Op = MachineOperand::CreateFI(FI); 6086 6087 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6088 if (!Op && N.getNode()) { 6089 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6090 Register Reg; 6091 if (ArgRegsAndSizes.size() == 1) 6092 Reg = ArgRegsAndSizes.front().first; 6093 6094 if (Reg && Reg.isVirtual()) { 6095 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6096 Register PR = RegInfo.getLiveInPhysReg(Reg); 6097 if (PR) 6098 Reg = PR; 6099 } 6100 if (Reg) { 6101 Op = MachineOperand::CreateReg(Reg, false); 6102 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6103 } 6104 } 6105 6106 if (!Op && N.getNode()) { 6107 // Check if frame index is available. 6108 SDValue LCandidate = peekThroughBitcasts(N); 6109 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6110 if (FrameIndexSDNode *FINode = 6111 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6112 Op = MachineOperand::CreateFI(FINode->getIndex()); 6113 } 6114 6115 if (!Op) { 6116 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6117 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6118 SplitRegs) { 6119 unsigned Offset = 0; 6120 for (const auto &RegAndSize : SplitRegs) { 6121 // If the expression is already a fragment, the current register 6122 // offset+size might extend beyond the fragment. In this case, only 6123 // the register bits that are inside the fragment are relevant. 6124 int RegFragmentSizeInBits = RegAndSize.second; 6125 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6126 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6127 // The register is entirely outside the expression fragment, 6128 // so is irrelevant for debug info. 6129 if (Offset >= ExprFragmentSizeInBits) 6130 break; 6131 // The register is partially outside the expression fragment, only 6132 // the low bits within the fragment are relevant for debug info. 6133 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6134 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6135 } 6136 } 6137 6138 auto FragmentExpr = DIExpression::createFragmentExpression( 6139 Expr, Offset, RegFragmentSizeInBits); 6140 Offset += RegAndSize.second; 6141 // If a valid fragment expression cannot be created, the variable's 6142 // correct value cannot be determined and so it is set as Undef. 6143 if (!FragmentExpr) { 6144 SDDbgValue *SDV = DAG.getConstantDbgValue( 6145 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6146 DAG.AddDbgValue(SDV, false); 6147 continue; 6148 } 6149 MachineInstr *NewMI = 6150 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6151 Kind != FuncArgumentDbgValueKind::Value); 6152 FuncInfo.ArgDbgValues.push_back(NewMI); 6153 } 6154 }; 6155 6156 // Check if ValueMap has reg number. 6157 DenseMap<const Value *, Register>::const_iterator 6158 VMI = FuncInfo.ValueMap.find(V); 6159 if (VMI != FuncInfo.ValueMap.end()) { 6160 const auto &TLI = DAG.getTargetLoweringInfo(); 6161 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6162 V->getType(), std::nullopt); 6163 if (RFV.occupiesMultipleRegs()) { 6164 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6165 return true; 6166 } 6167 6168 Op = MachineOperand::CreateReg(VMI->second, false); 6169 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6170 } else if (ArgRegsAndSizes.size() > 1) { 6171 // This was split due to the calling convention, and no virtual register 6172 // mapping exists for the value. 6173 splitMultiRegDbgValue(ArgRegsAndSizes); 6174 return true; 6175 } 6176 } 6177 6178 if (!Op) 6179 return false; 6180 6181 assert(Variable->isValidLocationForIntrinsic(DL) && 6182 "Expected inlined-at fields to agree"); 6183 MachineInstr *NewMI = nullptr; 6184 6185 if (Op->isReg()) 6186 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6187 else 6188 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6189 Variable, Expr); 6190 6191 // Otherwise, use ArgDbgValues. 6192 FuncInfo.ArgDbgValues.push_back(NewMI); 6193 return true; 6194 } 6195 6196 /// Return the appropriate SDDbgValue based on N. 6197 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6198 DILocalVariable *Variable, 6199 DIExpression *Expr, 6200 const DebugLoc &dl, 6201 unsigned DbgSDNodeOrder) { 6202 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6203 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6204 // stack slot locations. 6205 // 6206 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6207 // debug values here after optimization: 6208 // 6209 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6210 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6211 // 6212 // Both describe the direct values of their associated variables. 6213 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6214 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6215 } 6216 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6217 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6218 } 6219 6220 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6221 switch (Intrinsic) { 6222 case Intrinsic::smul_fix: 6223 return ISD::SMULFIX; 6224 case Intrinsic::umul_fix: 6225 return ISD::UMULFIX; 6226 case Intrinsic::smul_fix_sat: 6227 return ISD::SMULFIXSAT; 6228 case Intrinsic::umul_fix_sat: 6229 return ISD::UMULFIXSAT; 6230 case Intrinsic::sdiv_fix: 6231 return ISD::SDIVFIX; 6232 case Intrinsic::udiv_fix: 6233 return ISD::UDIVFIX; 6234 case Intrinsic::sdiv_fix_sat: 6235 return ISD::SDIVFIXSAT; 6236 case Intrinsic::udiv_fix_sat: 6237 return ISD::UDIVFIXSAT; 6238 default: 6239 llvm_unreachable("Unhandled fixed point intrinsic"); 6240 } 6241 } 6242 6243 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6244 const char *FunctionName) { 6245 assert(FunctionName && "FunctionName must not be nullptr"); 6246 SDValue Callee = DAG.getExternalSymbol( 6247 FunctionName, 6248 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6249 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6250 } 6251 6252 /// Given a @llvm.call.preallocated.setup, return the corresponding 6253 /// preallocated call. 6254 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6255 assert(cast<CallBase>(PreallocatedSetup) 6256 ->getCalledFunction() 6257 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6258 "expected call_preallocated_setup Value"); 6259 for (const auto *U : PreallocatedSetup->users()) { 6260 auto *UseCall = cast<CallBase>(U); 6261 const Function *Fn = UseCall->getCalledFunction(); 6262 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6263 return UseCall; 6264 } 6265 } 6266 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6267 } 6268 6269 /// If DI is a debug value with an EntryValue expression, lower it using the 6270 /// corresponding physical register of the associated Argument value 6271 /// (guaranteed to exist by the verifier). 6272 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6273 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6274 DIExpression *Expr, DebugLoc DbgLoc) { 6275 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6276 return false; 6277 6278 // These properties are guaranteed by the verifier. 6279 const Argument *Arg = cast<Argument>(Values[0]); 6280 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6281 6282 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6283 if (ArgIt == FuncInfo.ValueMap.end()) { 6284 LLVM_DEBUG( 6285 dbgs() << "Dropping dbg.value: expression is entry_value but " 6286 "couldn't find an associated register for the Argument\n"); 6287 return true; 6288 } 6289 Register ArgVReg = ArgIt->getSecond(); 6290 6291 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6292 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6293 SDDbgValue *SDV = DAG.getVRegDbgValue( 6294 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6295 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6296 return true; 6297 } 6298 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6299 "couldn't find a physical register\n"); 6300 return true; 6301 } 6302 6303 /// Lower the call to the specified intrinsic function. 6304 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6305 unsigned Intrinsic) { 6306 SDLoc sdl = getCurSDLoc(); 6307 switch (Intrinsic) { 6308 case Intrinsic::experimental_convergence_anchor: 6309 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6310 break; 6311 case Intrinsic::experimental_convergence_entry: 6312 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6313 break; 6314 case Intrinsic::experimental_convergence_loop: { 6315 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6316 auto *Token = Bundle->Inputs[0].get(); 6317 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6318 getValue(Token))); 6319 break; 6320 } 6321 } 6322 } 6323 6324 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6325 unsigned IntrinsicID) { 6326 // For now, we're only lowering an 'add' histogram. 6327 // We can add others later, e.g. saturating adds, min/max. 6328 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6329 "Tried to lower unsupported histogram type"); 6330 SDLoc sdl = getCurSDLoc(); 6331 Value *Ptr = I.getOperand(0); 6332 SDValue Inc = getValue(I.getOperand(1)); 6333 SDValue Mask = getValue(I.getOperand(2)); 6334 6335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6336 DataLayout TargetDL = DAG.getDataLayout(); 6337 EVT VT = Inc.getValueType(); 6338 Align Alignment = DAG.getEVTAlign(VT); 6339 6340 const MDNode *Ranges = getRangeMetadata(I); 6341 6342 SDValue Root = DAG.getRoot(); 6343 SDValue Base; 6344 SDValue Index; 6345 ISD::MemIndexType IndexType; 6346 SDValue Scale; 6347 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6348 I.getParent(), VT.getScalarStoreSize()); 6349 6350 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6351 6352 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6353 MachinePointerInfo(AS), 6354 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6355 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6356 6357 if (!UniformBase) { 6358 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6359 Index = getValue(Ptr); 6360 IndexType = ISD::SIGNED_SCALED; 6361 Scale = 6362 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6363 } 6364 6365 EVT IdxVT = Index.getValueType(); 6366 EVT EltTy = IdxVT.getVectorElementType(); 6367 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6368 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6369 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6370 } 6371 6372 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6373 6374 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6375 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6376 Ops, MMO, IndexType); 6377 6378 setValue(&I, Histogram); 6379 DAG.setRoot(Histogram); 6380 } 6381 6382 /// Lower the call to the specified intrinsic function. 6383 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6384 unsigned Intrinsic) { 6385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6386 SDLoc sdl = getCurSDLoc(); 6387 DebugLoc dl = getCurDebugLoc(); 6388 SDValue Res; 6389 6390 SDNodeFlags Flags; 6391 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6392 Flags.copyFMF(*FPOp); 6393 6394 switch (Intrinsic) { 6395 default: 6396 // By default, turn this into a target intrinsic node. 6397 visitTargetIntrinsic(I, Intrinsic); 6398 return; 6399 case Intrinsic::vscale: { 6400 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6401 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6402 return; 6403 } 6404 case Intrinsic::vastart: visitVAStart(I); return; 6405 case Intrinsic::vaend: visitVAEnd(I); return; 6406 case Intrinsic::vacopy: visitVACopy(I); return; 6407 case Intrinsic::returnaddress: 6408 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6409 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6410 getValue(I.getArgOperand(0)))); 6411 return; 6412 case Intrinsic::addressofreturnaddress: 6413 setValue(&I, 6414 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6415 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6416 return; 6417 case Intrinsic::sponentry: 6418 setValue(&I, 6419 DAG.getNode(ISD::SPONENTRY, sdl, 6420 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6421 return; 6422 case Intrinsic::frameaddress: 6423 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6424 TLI.getFrameIndexTy(DAG.getDataLayout()), 6425 getValue(I.getArgOperand(0)))); 6426 return; 6427 case Intrinsic::read_volatile_register: 6428 case Intrinsic::read_register: { 6429 Value *Reg = I.getArgOperand(0); 6430 SDValue Chain = getRoot(); 6431 SDValue RegName = 6432 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6433 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6434 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6435 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6436 setValue(&I, Res); 6437 DAG.setRoot(Res.getValue(1)); 6438 return; 6439 } 6440 case Intrinsic::write_register: { 6441 Value *Reg = I.getArgOperand(0); 6442 Value *RegValue = I.getArgOperand(1); 6443 SDValue Chain = getRoot(); 6444 SDValue RegName = 6445 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6446 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6447 RegName, getValue(RegValue))); 6448 return; 6449 } 6450 case Intrinsic::memcpy: { 6451 const auto &MCI = cast<MemCpyInst>(I); 6452 SDValue Op1 = getValue(I.getArgOperand(0)); 6453 SDValue Op2 = getValue(I.getArgOperand(1)); 6454 SDValue Op3 = getValue(I.getArgOperand(2)); 6455 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6456 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6457 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6458 Align Alignment = std::min(DstAlign, SrcAlign); 6459 bool isVol = MCI.isVolatile(); 6460 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6461 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6462 // node. 6463 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6464 SDValue MC = DAG.getMemcpy( 6465 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6466 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6467 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6468 updateDAGForMaybeTailCall(MC); 6469 return; 6470 } 6471 case Intrinsic::memcpy_inline: { 6472 const auto &MCI = cast<MemCpyInlineInst>(I); 6473 SDValue Dst = getValue(I.getArgOperand(0)); 6474 SDValue Src = getValue(I.getArgOperand(1)); 6475 SDValue Size = getValue(I.getArgOperand(2)); 6476 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6477 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6478 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6479 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6480 Align Alignment = std::min(DstAlign, SrcAlign); 6481 bool isVol = MCI.isVolatile(); 6482 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6483 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6484 // node. 6485 SDValue MC = DAG.getMemcpy( 6486 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6487 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6488 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6489 updateDAGForMaybeTailCall(MC); 6490 return; 6491 } 6492 case Intrinsic::memset: { 6493 const auto &MSI = cast<MemSetInst>(I); 6494 SDValue Op1 = getValue(I.getArgOperand(0)); 6495 SDValue Op2 = getValue(I.getArgOperand(1)); 6496 SDValue Op3 = getValue(I.getArgOperand(2)); 6497 // @llvm.memset defines 0 and 1 to both mean no alignment. 6498 Align Alignment = MSI.getDestAlign().valueOrOne(); 6499 bool isVol = MSI.isVolatile(); 6500 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6501 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6502 SDValue MS = DAG.getMemset( 6503 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6504 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6505 updateDAGForMaybeTailCall(MS); 6506 return; 6507 } 6508 case Intrinsic::memset_inline: { 6509 const auto &MSII = cast<MemSetInlineInst>(I); 6510 SDValue Dst = getValue(I.getArgOperand(0)); 6511 SDValue Value = getValue(I.getArgOperand(1)); 6512 SDValue Size = getValue(I.getArgOperand(2)); 6513 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6514 // @llvm.memset defines 0 and 1 to both mean no alignment. 6515 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6516 bool isVol = MSII.isVolatile(); 6517 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6518 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6519 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6520 /* AlwaysInline */ true, isTC, 6521 MachinePointerInfo(I.getArgOperand(0)), 6522 I.getAAMetadata()); 6523 updateDAGForMaybeTailCall(MC); 6524 return; 6525 } 6526 case Intrinsic::memmove: { 6527 const auto &MMI = cast<MemMoveInst>(I); 6528 SDValue Op1 = getValue(I.getArgOperand(0)); 6529 SDValue Op2 = getValue(I.getArgOperand(1)); 6530 SDValue Op3 = getValue(I.getArgOperand(2)); 6531 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6532 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6533 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6534 Align Alignment = std::min(DstAlign, SrcAlign); 6535 bool isVol = MMI.isVolatile(); 6536 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6537 // FIXME: Support passing different dest/src alignments to the memmove DAG 6538 // node. 6539 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6540 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6541 isTC, MachinePointerInfo(I.getArgOperand(0)), 6542 MachinePointerInfo(I.getArgOperand(1)), 6543 I.getAAMetadata(), AA); 6544 updateDAGForMaybeTailCall(MM); 6545 return; 6546 } 6547 case Intrinsic::memcpy_element_unordered_atomic: { 6548 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6549 SDValue Dst = getValue(MI.getRawDest()); 6550 SDValue Src = getValue(MI.getRawSource()); 6551 SDValue Length = getValue(MI.getLength()); 6552 6553 Type *LengthTy = MI.getLength()->getType(); 6554 unsigned ElemSz = MI.getElementSizeInBytes(); 6555 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6556 SDValue MC = 6557 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6558 isTC, MachinePointerInfo(MI.getRawDest()), 6559 MachinePointerInfo(MI.getRawSource())); 6560 updateDAGForMaybeTailCall(MC); 6561 return; 6562 } 6563 case Intrinsic::memmove_element_unordered_atomic: { 6564 auto &MI = cast<AtomicMemMoveInst>(I); 6565 SDValue Dst = getValue(MI.getRawDest()); 6566 SDValue Src = getValue(MI.getRawSource()); 6567 SDValue Length = getValue(MI.getLength()); 6568 6569 Type *LengthTy = MI.getLength()->getType(); 6570 unsigned ElemSz = MI.getElementSizeInBytes(); 6571 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6572 SDValue MC = 6573 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6574 isTC, MachinePointerInfo(MI.getRawDest()), 6575 MachinePointerInfo(MI.getRawSource())); 6576 updateDAGForMaybeTailCall(MC); 6577 return; 6578 } 6579 case Intrinsic::memset_element_unordered_atomic: { 6580 auto &MI = cast<AtomicMemSetInst>(I); 6581 SDValue Dst = getValue(MI.getRawDest()); 6582 SDValue Val = getValue(MI.getValue()); 6583 SDValue Length = getValue(MI.getLength()); 6584 6585 Type *LengthTy = MI.getLength()->getType(); 6586 unsigned ElemSz = MI.getElementSizeInBytes(); 6587 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6588 SDValue MC = 6589 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6590 isTC, MachinePointerInfo(MI.getRawDest())); 6591 updateDAGForMaybeTailCall(MC); 6592 return; 6593 } 6594 case Intrinsic::call_preallocated_setup: { 6595 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6596 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6597 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6598 getRoot(), SrcValue); 6599 setValue(&I, Res); 6600 DAG.setRoot(Res); 6601 return; 6602 } 6603 case Intrinsic::call_preallocated_arg: { 6604 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6605 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6606 SDValue Ops[3]; 6607 Ops[0] = getRoot(); 6608 Ops[1] = SrcValue; 6609 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6610 MVT::i32); // arg index 6611 SDValue Res = DAG.getNode( 6612 ISD::PREALLOCATED_ARG, sdl, 6613 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6614 setValue(&I, Res); 6615 DAG.setRoot(Res.getValue(1)); 6616 return; 6617 } 6618 case Intrinsic::dbg_declare: { 6619 const auto &DI = cast<DbgDeclareInst>(I); 6620 // Debug intrinsics are handled separately in assignment tracking mode. 6621 // Some intrinsics are handled right after Argument lowering. 6622 if (AssignmentTrackingEnabled || 6623 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6624 return; 6625 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6626 DILocalVariable *Variable = DI.getVariable(); 6627 DIExpression *Expression = DI.getExpression(); 6628 dropDanglingDebugInfo(Variable, Expression); 6629 // Assume dbg.declare can not currently use DIArgList, i.e. 6630 // it is non-variadic. 6631 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6632 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6633 DI.getDebugLoc()); 6634 return; 6635 } 6636 case Intrinsic::dbg_label: { 6637 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6638 DILabel *Label = DI.getLabel(); 6639 assert(Label && "Missing label"); 6640 6641 SDDbgLabel *SDV; 6642 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6643 DAG.AddDbgLabel(SDV); 6644 return; 6645 } 6646 case Intrinsic::dbg_assign: { 6647 // Debug intrinsics are handled separately in assignment tracking mode. 6648 if (AssignmentTrackingEnabled) 6649 return; 6650 // If assignment tracking hasn't been enabled then fall through and treat 6651 // the dbg.assign as a dbg.value. 6652 [[fallthrough]]; 6653 } 6654 case Intrinsic::dbg_value: { 6655 // Debug intrinsics are handled separately in assignment tracking mode. 6656 if (AssignmentTrackingEnabled) 6657 return; 6658 const DbgValueInst &DI = cast<DbgValueInst>(I); 6659 assert(DI.getVariable() && "Missing variable"); 6660 6661 DILocalVariable *Variable = DI.getVariable(); 6662 DIExpression *Expression = DI.getExpression(); 6663 dropDanglingDebugInfo(Variable, Expression); 6664 6665 if (DI.isKillLocation()) { 6666 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6667 return; 6668 } 6669 6670 SmallVector<Value *, 4> Values(DI.getValues()); 6671 if (Values.empty()) 6672 return; 6673 6674 bool IsVariadic = DI.hasArgList(); 6675 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6676 SDNodeOrder, IsVariadic)) 6677 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6678 DI.getDebugLoc(), SDNodeOrder); 6679 return; 6680 } 6681 6682 case Intrinsic::eh_typeid_for: { 6683 // Find the type id for the given typeinfo. 6684 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6685 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6686 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6687 setValue(&I, Res); 6688 return; 6689 } 6690 6691 case Intrinsic::eh_return_i32: 6692 case Intrinsic::eh_return_i64: 6693 DAG.getMachineFunction().setCallsEHReturn(true); 6694 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6695 MVT::Other, 6696 getControlRoot(), 6697 getValue(I.getArgOperand(0)), 6698 getValue(I.getArgOperand(1)))); 6699 return; 6700 case Intrinsic::eh_unwind_init: 6701 DAG.getMachineFunction().setCallsUnwindInit(true); 6702 return; 6703 case Intrinsic::eh_dwarf_cfa: 6704 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6705 TLI.getPointerTy(DAG.getDataLayout()), 6706 getValue(I.getArgOperand(0)))); 6707 return; 6708 case Intrinsic::eh_sjlj_callsite: { 6709 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6710 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6711 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6712 6713 MMI.setCurrentCallSite(CI->getZExtValue()); 6714 return; 6715 } 6716 case Intrinsic::eh_sjlj_functioncontext: { 6717 // Get and store the index of the function context. 6718 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6719 AllocaInst *FnCtx = 6720 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6721 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6722 MFI.setFunctionContextIndex(FI); 6723 return; 6724 } 6725 case Intrinsic::eh_sjlj_setjmp: { 6726 SDValue Ops[2]; 6727 Ops[0] = getRoot(); 6728 Ops[1] = getValue(I.getArgOperand(0)); 6729 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6730 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6731 setValue(&I, Op.getValue(0)); 6732 DAG.setRoot(Op.getValue(1)); 6733 return; 6734 } 6735 case Intrinsic::eh_sjlj_longjmp: 6736 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6737 getRoot(), getValue(I.getArgOperand(0)))); 6738 return; 6739 case Intrinsic::eh_sjlj_setup_dispatch: 6740 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6741 getRoot())); 6742 return; 6743 case Intrinsic::masked_gather: 6744 visitMaskedGather(I); 6745 return; 6746 case Intrinsic::masked_load: 6747 visitMaskedLoad(I); 6748 return; 6749 case Intrinsic::masked_scatter: 6750 visitMaskedScatter(I); 6751 return; 6752 case Intrinsic::masked_store: 6753 visitMaskedStore(I); 6754 return; 6755 case Intrinsic::masked_expandload: 6756 visitMaskedLoad(I, true /* IsExpanding */); 6757 return; 6758 case Intrinsic::masked_compressstore: 6759 visitMaskedStore(I, true /* IsCompressing */); 6760 return; 6761 case Intrinsic::powi: 6762 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6763 getValue(I.getArgOperand(1)), DAG)); 6764 return; 6765 case Intrinsic::log: 6766 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6767 return; 6768 case Intrinsic::log2: 6769 setValue(&I, 6770 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6771 return; 6772 case Intrinsic::log10: 6773 setValue(&I, 6774 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6775 return; 6776 case Intrinsic::exp: 6777 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6778 return; 6779 case Intrinsic::exp2: 6780 setValue(&I, 6781 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6782 return; 6783 case Intrinsic::pow: 6784 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6785 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6786 return; 6787 case Intrinsic::sqrt: 6788 case Intrinsic::fabs: 6789 case Intrinsic::sin: 6790 case Intrinsic::cos: 6791 case Intrinsic::tan: 6792 case Intrinsic::exp10: 6793 case Intrinsic::floor: 6794 case Intrinsic::ceil: 6795 case Intrinsic::trunc: 6796 case Intrinsic::rint: 6797 case Intrinsic::nearbyint: 6798 case Intrinsic::round: 6799 case Intrinsic::roundeven: 6800 case Intrinsic::canonicalize: { 6801 unsigned Opcode; 6802 // clang-format off 6803 switch (Intrinsic) { 6804 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6805 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6806 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6807 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6808 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6809 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6810 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6811 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6812 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6813 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6814 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6815 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6816 case Intrinsic::round: Opcode = ISD::FROUND; break; 6817 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6818 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6819 } 6820 // clang-format on 6821 6822 setValue(&I, DAG.getNode(Opcode, sdl, 6823 getValue(I.getArgOperand(0)).getValueType(), 6824 getValue(I.getArgOperand(0)), Flags)); 6825 return; 6826 } 6827 case Intrinsic::lround: 6828 case Intrinsic::llround: 6829 case Intrinsic::lrint: 6830 case Intrinsic::llrint: { 6831 unsigned Opcode; 6832 // clang-format off 6833 switch (Intrinsic) { 6834 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6835 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6836 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6837 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6838 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6839 } 6840 // clang-format on 6841 6842 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6843 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6844 getValue(I.getArgOperand(0)))); 6845 return; 6846 } 6847 case Intrinsic::minnum: 6848 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6849 getValue(I.getArgOperand(0)).getValueType(), 6850 getValue(I.getArgOperand(0)), 6851 getValue(I.getArgOperand(1)), Flags)); 6852 return; 6853 case Intrinsic::maxnum: 6854 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6855 getValue(I.getArgOperand(0)).getValueType(), 6856 getValue(I.getArgOperand(0)), 6857 getValue(I.getArgOperand(1)), Flags)); 6858 return; 6859 case Intrinsic::minimum: 6860 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6861 getValue(I.getArgOperand(0)).getValueType(), 6862 getValue(I.getArgOperand(0)), 6863 getValue(I.getArgOperand(1)), Flags)); 6864 return; 6865 case Intrinsic::maximum: 6866 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6867 getValue(I.getArgOperand(0)).getValueType(), 6868 getValue(I.getArgOperand(0)), 6869 getValue(I.getArgOperand(1)), Flags)); 6870 return; 6871 case Intrinsic::copysign: 6872 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6873 getValue(I.getArgOperand(0)).getValueType(), 6874 getValue(I.getArgOperand(0)), 6875 getValue(I.getArgOperand(1)), Flags)); 6876 return; 6877 case Intrinsic::ldexp: 6878 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6879 getValue(I.getArgOperand(0)).getValueType(), 6880 getValue(I.getArgOperand(0)), 6881 getValue(I.getArgOperand(1)), Flags)); 6882 return; 6883 case Intrinsic::frexp: { 6884 SmallVector<EVT, 2> ValueVTs; 6885 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6886 SDVTList VTs = DAG.getVTList(ValueVTs); 6887 setValue(&I, 6888 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6889 return; 6890 } 6891 case Intrinsic::arithmetic_fence: { 6892 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6893 getValue(I.getArgOperand(0)).getValueType(), 6894 getValue(I.getArgOperand(0)), Flags)); 6895 return; 6896 } 6897 case Intrinsic::fma: 6898 setValue(&I, DAG.getNode( 6899 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6900 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6901 getValue(I.getArgOperand(2)), Flags)); 6902 return; 6903 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6904 case Intrinsic::INTRINSIC: 6905 #include "llvm/IR/ConstrainedOps.def" 6906 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6907 return; 6908 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6909 #include "llvm/IR/VPIntrinsics.def" 6910 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6911 return; 6912 case Intrinsic::fptrunc_round: { 6913 // Get the last argument, the metadata and convert it to an integer in the 6914 // call 6915 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6916 std::optional<RoundingMode> RoundMode = 6917 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6918 6919 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6920 6921 // Propagate fast-math-flags from IR to node(s). 6922 SDNodeFlags Flags; 6923 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6924 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6925 6926 SDValue Result; 6927 Result = DAG.getNode( 6928 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6929 DAG.getTargetConstant((int)*RoundMode, sdl, 6930 TLI.getPointerTy(DAG.getDataLayout()))); 6931 setValue(&I, Result); 6932 6933 return; 6934 } 6935 case Intrinsic::fmuladd: { 6936 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6937 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6938 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6939 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6940 getValue(I.getArgOperand(0)).getValueType(), 6941 getValue(I.getArgOperand(0)), 6942 getValue(I.getArgOperand(1)), 6943 getValue(I.getArgOperand(2)), Flags)); 6944 } else { 6945 // TODO: Intrinsic calls should have fast-math-flags. 6946 SDValue Mul = DAG.getNode( 6947 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6948 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6949 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6950 getValue(I.getArgOperand(0)).getValueType(), 6951 Mul, getValue(I.getArgOperand(2)), Flags); 6952 setValue(&I, Add); 6953 } 6954 return; 6955 } 6956 case Intrinsic::convert_to_fp16: 6957 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6958 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6959 getValue(I.getArgOperand(0)), 6960 DAG.getTargetConstant(0, sdl, 6961 MVT::i32)))); 6962 return; 6963 case Intrinsic::convert_from_fp16: 6964 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6965 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6966 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6967 getValue(I.getArgOperand(0))))); 6968 return; 6969 case Intrinsic::fptosi_sat: { 6970 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6971 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6972 getValue(I.getArgOperand(0)), 6973 DAG.getValueType(VT.getScalarType()))); 6974 return; 6975 } 6976 case Intrinsic::fptoui_sat: { 6977 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6978 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6979 getValue(I.getArgOperand(0)), 6980 DAG.getValueType(VT.getScalarType()))); 6981 return; 6982 } 6983 case Intrinsic::set_rounding: 6984 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6985 {getRoot(), getValue(I.getArgOperand(0))}); 6986 setValue(&I, Res); 6987 DAG.setRoot(Res.getValue(0)); 6988 return; 6989 case Intrinsic::is_fpclass: { 6990 const DataLayout DLayout = DAG.getDataLayout(); 6991 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6992 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6993 FPClassTest Test = static_cast<FPClassTest>( 6994 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6995 MachineFunction &MF = DAG.getMachineFunction(); 6996 const Function &F = MF.getFunction(); 6997 SDValue Op = getValue(I.getArgOperand(0)); 6998 SDNodeFlags Flags; 6999 Flags.setNoFPExcept( 7000 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7001 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7002 // expansion can use illegal types. Making expansion early allows 7003 // legalizing these types prior to selection. 7004 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 7005 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7006 setValue(&I, Result); 7007 return; 7008 } 7009 7010 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7011 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7012 setValue(&I, V); 7013 return; 7014 } 7015 case Intrinsic::get_fpenv: { 7016 const DataLayout DLayout = DAG.getDataLayout(); 7017 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7018 Align TempAlign = DAG.getEVTAlign(EnvVT); 7019 SDValue Chain = getRoot(); 7020 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7021 // and temporary storage in stack. 7022 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7023 Res = DAG.getNode( 7024 ISD::GET_FPENV, sdl, 7025 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7026 MVT::Other), 7027 Chain); 7028 } else { 7029 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7030 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7031 auto MPI = 7032 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7033 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7034 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7035 TempAlign); 7036 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7037 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7038 } 7039 setValue(&I, Res); 7040 DAG.setRoot(Res.getValue(1)); 7041 return; 7042 } 7043 case Intrinsic::set_fpenv: { 7044 const DataLayout DLayout = DAG.getDataLayout(); 7045 SDValue Env = getValue(I.getArgOperand(0)); 7046 EVT EnvVT = Env.getValueType(); 7047 Align TempAlign = DAG.getEVTAlign(EnvVT); 7048 SDValue Chain = getRoot(); 7049 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7050 // environment from memory. 7051 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7052 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7053 } else { 7054 // Allocate space in stack, copy environment bits into it and use this 7055 // memory in SET_FPENV_MEM. 7056 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7057 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7058 auto MPI = 7059 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7060 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7061 MachineMemOperand::MOStore); 7062 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7063 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7064 TempAlign); 7065 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7066 } 7067 DAG.setRoot(Chain); 7068 return; 7069 } 7070 case Intrinsic::reset_fpenv: 7071 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7072 return; 7073 case Intrinsic::get_fpmode: 7074 Res = DAG.getNode( 7075 ISD::GET_FPMODE, sdl, 7076 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7077 MVT::Other), 7078 DAG.getRoot()); 7079 setValue(&I, Res); 7080 DAG.setRoot(Res.getValue(1)); 7081 return; 7082 case Intrinsic::set_fpmode: 7083 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7084 getValue(I.getArgOperand(0))); 7085 DAG.setRoot(Res); 7086 return; 7087 case Intrinsic::reset_fpmode: { 7088 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7089 DAG.setRoot(Res); 7090 return; 7091 } 7092 case Intrinsic::pcmarker: { 7093 SDValue Tmp = getValue(I.getArgOperand(0)); 7094 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7095 return; 7096 } 7097 case Intrinsic::readcyclecounter: { 7098 SDValue Op = getRoot(); 7099 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7100 DAG.getVTList(MVT::i64, MVT::Other), Op); 7101 setValue(&I, Res); 7102 DAG.setRoot(Res.getValue(1)); 7103 return; 7104 } 7105 case Intrinsic::readsteadycounter: { 7106 SDValue Op = getRoot(); 7107 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7108 DAG.getVTList(MVT::i64, MVT::Other), Op); 7109 setValue(&I, Res); 7110 DAG.setRoot(Res.getValue(1)); 7111 return; 7112 } 7113 case Intrinsic::bitreverse: 7114 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7115 getValue(I.getArgOperand(0)).getValueType(), 7116 getValue(I.getArgOperand(0)))); 7117 return; 7118 case Intrinsic::bswap: 7119 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7120 getValue(I.getArgOperand(0)).getValueType(), 7121 getValue(I.getArgOperand(0)))); 7122 return; 7123 case Intrinsic::cttz: { 7124 SDValue Arg = getValue(I.getArgOperand(0)); 7125 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7126 EVT Ty = Arg.getValueType(); 7127 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7128 sdl, Ty, Arg)); 7129 return; 7130 } 7131 case Intrinsic::ctlz: { 7132 SDValue Arg = getValue(I.getArgOperand(0)); 7133 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7134 EVT Ty = Arg.getValueType(); 7135 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7136 sdl, Ty, Arg)); 7137 return; 7138 } 7139 case Intrinsic::ctpop: { 7140 SDValue Arg = getValue(I.getArgOperand(0)); 7141 EVT Ty = Arg.getValueType(); 7142 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7143 return; 7144 } 7145 case Intrinsic::fshl: 7146 case Intrinsic::fshr: { 7147 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7148 SDValue X = getValue(I.getArgOperand(0)); 7149 SDValue Y = getValue(I.getArgOperand(1)); 7150 SDValue Z = getValue(I.getArgOperand(2)); 7151 EVT VT = X.getValueType(); 7152 7153 if (X == Y) { 7154 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7155 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7156 } else { 7157 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7158 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7159 } 7160 return; 7161 } 7162 case Intrinsic::sadd_sat: { 7163 SDValue Op1 = getValue(I.getArgOperand(0)); 7164 SDValue Op2 = getValue(I.getArgOperand(1)); 7165 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7166 return; 7167 } 7168 case Intrinsic::uadd_sat: { 7169 SDValue Op1 = getValue(I.getArgOperand(0)); 7170 SDValue Op2 = getValue(I.getArgOperand(1)); 7171 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7172 return; 7173 } 7174 case Intrinsic::ssub_sat: { 7175 SDValue Op1 = getValue(I.getArgOperand(0)); 7176 SDValue Op2 = getValue(I.getArgOperand(1)); 7177 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7178 return; 7179 } 7180 case Intrinsic::usub_sat: { 7181 SDValue Op1 = getValue(I.getArgOperand(0)); 7182 SDValue Op2 = getValue(I.getArgOperand(1)); 7183 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7184 return; 7185 } 7186 case Intrinsic::sshl_sat: { 7187 SDValue Op1 = getValue(I.getArgOperand(0)); 7188 SDValue Op2 = getValue(I.getArgOperand(1)); 7189 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7190 return; 7191 } 7192 case Intrinsic::ushl_sat: { 7193 SDValue Op1 = getValue(I.getArgOperand(0)); 7194 SDValue Op2 = getValue(I.getArgOperand(1)); 7195 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7196 return; 7197 } 7198 case Intrinsic::smul_fix: 7199 case Intrinsic::umul_fix: 7200 case Intrinsic::smul_fix_sat: 7201 case Intrinsic::umul_fix_sat: { 7202 SDValue Op1 = getValue(I.getArgOperand(0)); 7203 SDValue Op2 = getValue(I.getArgOperand(1)); 7204 SDValue Op3 = getValue(I.getArgOperand(2)); 7205 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7206 Op1.getValueType(), Op1, Op2, Op3)); 7207 return; 7208 } 7209 case Intrinsic::sdiv_fix: 7210 case Intrinsic::udiv_fix: 7211 case Intrinsic::sdiv_fix_sat: 7212 case Intrinsic::udiv_fix_sat: { 7213 SDValue Op1 = getValue(I.getArgOperand(0)); 7214 SDValue Op2 = getValue(I.getArgOperand(1)); 7215 SDValue Op3 = getValue(I.getArgOperand(2)); 7216 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7217 Op1, Op2, Op3, DAG, TLI)); 7218 return; 7219 } 7220 case Intrinsic::smax: { 7221 SDValue Op1 = getValue(I.getArgOperand(0)); 7222 SDValue Op2 = getValue(I.getArgOperand(1)); 7223 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7224 return; 7225 } 7226 case Intrinsic::smin: { 7227 SDValue Op1 = getValue(I.getArgOperand(0)); 7228 SDValue Op2 = getValue(I.getArgOperand(1)); 7229 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7230 return; 7231 } 7232 case Intrinsic::umax: { 7233 SDValue Op1 = getValue(I.getArgOperand(0)); 7234 SDValue Op2 = getValue(I.getArgOperand(1)); 7235 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7236 return; 7237 } 7238 case Intrinsic::umin: { 7239 SDValue Op1 = getValue(I.getArgOperand(0)); 7240 SDValue Op2 = getValue(I.getArgOperand(1)); 7241 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7242 return; 7243 } 7244 case Intrinsic::abs: { 7245 // TODO: Preserve "int min is poison" arg in SDAG? 7246 SDValue Op1 = getValue(I.getArgOperand(0)); 7247 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7248 return; 7249 } 7250 case Intrinsic::scmp: { 7251 SDValue Op1 = getValue(I.getArgOperand(0)); 7252 SDValue Op2 = getValue(I.getArgOperand(1)); 7253 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7254 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7255 break; 7256 } 7257 case Intrinsic::ucmp: { 7258 SDValue Op1 = getValue(I.getArgOperand(0)); 7259 SDValue Op2 = getValue(I.getArgOperand(1)); 7260 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7261 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7262 break; 7263 } 7264 case Intrinsic::stacksave: { 7265 SDValue Op = getRoot(); 7266 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7267 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7268 setValue(&I, Res); 7269 DAG.setRoot(Res.getValue(1)); 7270 return; 7271 } 7272 case Intrinsic::stackrestore: 7273 Res = getValue(I.getArgOperand(0)); 7274 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7275 return; 7276 case Intrinsic::get_dynamic_area_offset: { 7277 SDValue Op = getRoot(); 7278 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7279 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7280 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7281 // target. 7282 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7283 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7284 " intrinsic!"); 7285 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7286 Op); 7287 DAG.setRoot(Op); 7288 setValue(&I, Res); 7289 return; 7290 } 7291 case Intrinsic::stackguard: { 7292 MachineFunction &MF = DAG.getMachineFunction(); 7293 const Module &M = *MF.getFunction().getParent(); 7294 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7295 SDValue Chain = getRoot(); 7296 if (TLI.useLoadStackGuardNode()) { 7297 Res = getLoadStackGuard(DAG, sdl, Chain); 7298 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7299 } else { 7300 const Value *Global = TLI.getSDagStackGuard(M); 7301 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7302 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7303 MachinePointerInfo(Global, 0), Align, 7304 MachineMemOperand::MOVolatile); 7305 } 7306 if (TLI.useStackGuardXorFP()) 7307 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7308 DAG.setRoot(Chain); 7309 setValue(&I, Res); 7310 return; 7311 } 7312 case Intrinsic::stackprotector: { 7313 // Emit code into the DAG to store the stack guard onto the stack. 7314 MachineFunction &MF = DAG.getMachineFunction(); 7315 MachineFrameInfo &MFI = MF.getFrameInfo(); 7316 SDValue Src, Chain = getRoot(); 7317 7318 if (TLI.useLoadStackGuardNode()) 7319 Src = getLoadStackGuard(DAG, sdl, Chain); 7320 else 7321 Src = getValue(I.getArgOperand(0)); // The guard's value. 7322 7323 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7324 7325 int FI = FuncInfo.StaticAllocaMap[Slot]; 7326 MFI.setStackProtectorIndex(FI); 7327 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7328 7329 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7330 7331 // Store the stack protector onto the stack. 7332 Res = DAG.getStore( 7333 Chain, sdl, Src, FIN, 7334 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7335 MaybeAlign(), MachineMemOperand::MOVolatile); 7336 setValue(&I, Res); 7337 DAG.setRoot(Res); 7338 return; 7339 } 7340 case Intrinsic::objectsize: 7341 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7342 7343 case Intrinsic::is_constant: 7344 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7345 7346 case Intrinsic::annotation: 7347 case Intrinsic::ptr_annotation: 7348 case Intrinsic::launder_invariant_group: 7349 case Intrinsic::strip_invariant_group: 7350 // Drop the intrinsic, but forward the value 7351 setValue(&I, getValue(I.getOperand(0))); 7352 return; 7353 7354 case Intrinsic::assume: 7355 case Intrinsic::experimental_noalias_scope_decl: 7356 case Intrinsic::var_annotation: 7357 case Intrinsic::sideeffect: 7358 // Discard annotate attributes, noalias scope declarations, assumptions, and 7359 // artificial side-effects. 7360 return; 7361 7362 case Intrinsic::codeview_annotation: { 7363 // Emit a label associated with this metadata. 7364 MachineFunction &MF = DAG.getMachineFunction(); 7365 MCSymbol *Label = 7366 MF.getMMI().getContext().createTempSymbol("annotation", true); 7367 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7368 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7369 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7370 DAG.setRoot(Res); 7371 return; 7372 } 7373 7374 case Intrinsic::init_trampoline: { 7375 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7376 7377 SDValue Ops[6]; 7378 Ops[0] = getRoot(); 7379 Ops[1] = getValue(I.getArgOperand(0)); 7380 Ops[2] = getValue(I.getArgOperand(1)); 7381 Ops[3] = getValue(I.getArgOperand(2)); 7382 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7383 Ops[5] = DAG.getSrcValue(F); 7384 7385 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7386 7387 DAG.setRoot(Res); 7388 return; 7389 } 7390 case Intrinsic::adjust_trampoline: 7391 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7392 TLI.getPointerTy(DAG.getDataLayout()), 7393 getValue(I.getArgOperand(0)))); 7394 return; 7395 case Intrinsic::gcroot: { 7396 assert(DAG.getMachineFunction().getFunction().hasGC() && 7397 "only valid in functions with gc specified, enforced by Verifier"); 7398 assert(GFI && "implied by previous"); 7399 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7400 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7401 7402 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7403 GFI->addStackRoot(FI->getIndex(), TypeMap); 7404 return; 7405 } 7406 case Intrinsic::gcread: 7407 case Intrinsic::gcwrite: 7408 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7409 case Intrinsic::get_rounding: 7410 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7411 setValue(&I, Res); 7412 DAG.setRoot(Res.getValue(1)); 7413 return; 7414 7415 case Intrinsic::expect: 7416 // Just replace __builtin_expect(exp, c) with EXP. 7417 setValue(&I, getValue(I.getArgOperand(0))); 7418 return; 7419 7420 case Intrinsic::ubsantrap: 7421 case Intrinsic::debugtrap: 7422 case Intrinsic::trap: { 7423 StringRef TrapFuncName = 7424 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7425 if (TrapFuncName.empty()) { 7426 switch (Intrinsic) { 7427 case Intrinsic::trap: 7428 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7429 break; 7430 case Intrinsic::debugtrap: 7431 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7432 break; 7433 case Intrinsic::ubsantrap: 7434 DAG.setRoot(DAG.getNode( 7435 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7436 DAG.getTargetConstant( 7437 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7438 MVT::i32))); 7439 break; 7440 default: llvm_unreachable("unknown trap intrinsic"); 7441 } 7442 return; 7443 } 7444 TargetLowering::ArgListTy Args; 7445 if (Intrinsic == Intrinsic::ubsantrap) { 7446 Args.push_back(TargetLoweringBase::ArgListEntry()); 7447 Args[0].Val = I.getArgOperand(0); 7448 Args[0].Node = getValue(Args[0].Val); 7449 Args[0].Ty = Args[0].Val->getType(); 7450 } 7451 7452 TargetLowering::CallLoweringInfo CLI(DAG); 7453 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7454 CallingConv::C, I.getType(), 7455 DAG.getExternalSymbol(TrapFuncName.data(), 7456 TLI.getPointerTy(DAG.getDataLayout())), 7457 std::move(Args)); 7458 7459 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7460 DAG.setRoot(Result.second); 7461 return; 7462 } 7463 7464 case Intrinsic::allow_runtime_check: 7465 case Intrinsic::allow_ubsan_check: 7466 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7467 return; 7468 7469 case Intrinsic::uadd_with_overflow: 7470 case Intrinsic::sadd_with_overflow: 7471 case Intrinsic::usub_with_overflow: 7472 case Intrinsic::ssub_with_overflow: 7473 case Intrinsic::umul_with_overflow: 7474 case Intrinsic::smul_with_overflow: { 7475 ISD::NodeType Op; 7476 switch (Intrinsic) { 7477 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7478 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7479 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7480 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7481 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7482 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7483 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7484 } 7485 SDValue Op1 = getValue(I.getArgOperand(0)); 7486 SDValue Op2 = getValue(I.getArgOperand(1)); 7487 7488 EVT ResultVT = Op1.getValueType(); 7489 EVT OverflowVT = MVT::i1; 7490 if (ResultVT.isVector()) 7491 OverflowVT = EVT::getVectorVT( 7492 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7493 7494 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7495 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7496 return; 7497 } 7498 case Intrinsic::prefetch: { 7499 SDValue Ops[5]; 7500 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7501 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7502 Ops[0] = DAG.getRoot(); 7503 Ops[1] = getValue(I.getArgOperand(0)); 7504 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7505 MVT::i32); 7506 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7507 MVT::i32); 7508 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7509 MVT::i32); 7510 SDValue Result = DAG.getMemIntrinsicNode( 7511 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7512 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7513 /* align */ std::nullopt, Flags); 7514 7515 // Chain the prefetch in parallel with any pending loads, to stay out of 7516 // the way of later optimizations. 7517 PendingLoads.push_back(Result); 7518 Result = getRoot(); 7519 DAG.setRoot(Result); 7520 return; 7521 } 7522 case Intrinsic::lifetime_start: 7523 case Intrinsic::lifetime_end: { 7524 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7525 // Stack coloring is not enabled in O0, discard region information. 7526 if (TM.getOptLevel() == CodeGenOptLevel::None) 7527 return; 7528 7529 const int64_t ObjectSize = 7530 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7531 Value *const ObjectPtr = I.getArgOperand(1); 7532 SmallVector<const Value *, 4> Allocas; 7533 getUnderlyingObjects(ObjectPtr, Allocas); 7534 7535 for (const Value *Alloca : Allocas) { 7536 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7537 7538 // Could not find an Alloca. 7539 if (!LifetimeObject) 7540 continue; 7541 7542 // First check that the Alloca is static, otherwise it won't have a 7543 // valid frame index. 7544 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7545 if (SI == FuncInfo.StaticAllocaMap.end()) 7546 return; 7547 7548 const int FrameIndex = SI->second; 7549 int64_t Offset; 7550 if (GetPointerBaseWithConstantOffset( 7551 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7552 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7553 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7554 Offset); 7555 DAG.setRoot(Res); 7556 } 7557 return; 7558 } 7559 case Intrinsic::pseudoprobe: { 7560 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7561 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7562 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7563 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7564 DAG.setRoot(Res); 7565 return; 7566 } 7567 case Intrinsic::invariant_start: 7568 // Discard region information. 7569 setValue(&I, 7570 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7571 return; 7572 case Intrinsic::invariant_end: 7573 // Discard region information. 7574 return; 7575 case Intrinsic::clear_cache: { 7576 SDValue InputChain = DAG.getRoot(); 7577 SDValue StartVal = getValue(I.getArgOperand(0)); 7578 SDValue EndVal = getValue(I.getArgOperand(1)); 7579 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7580 {InputChain, StartVal, EndVal}); 7581 setValue(&I, Res); 7582 DAG.setRoot(Res); 7583 return; 7584 } 7585 case Intrinsic::donothing: 7586 case Intrinsic::seh_try_begin: 7587 case Intrinsic::seh_scope_begin: 7588 case Intrinsic::seh_try_end: 7589 case Intrinsic::seh_scope_end: 7590 // ignore 7591 return; 7592 case Intrinsic::experimental_stackmap: 7593 visitStackmap(I); 7594 return; 7595 case Intrinsic::experimental_patchpoint_void: 7596 case Intrinsic::experimental_patchpoint: 7597 visitPatchpoint(I); 7598 return; 7599 case Intrinsic::experimental_gc_statepoint: 7600 LowerStatepoint(cast<GCStatepointInst>(I)); 7601 return; 7602 case Intrinsic::experimental_gc_result: 7603 visitGCResult(cast<GCResultInst>(I)); 7604 return; 7605 case Intrinsic::experimental_gc_relocate: 7606 visitGCRelocate(cast<GCRelocateInst>(I)); 7607 return; 7608 case Intrinsic::instrprof_cover: 7609 llvm_unreachable("instrprof failed to lower a cover"); 7610 case Intrinsic::instrprof_increment: 7611 llvm_unreachable("instrprof failed to lower an increment"); 7612 case Intrinsic::instrprof_timestamp: 7613 llvm_unreachable("instrprof failed to lower a timestamp"); 7614 case Intrinsic::instrprof_value_profile: 7615 llvm_unreachable("instrprof failed to lower a value profiling call"); 7616 case Intrinsic::instrprof_mcdc_parameters: 7617 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7618 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7619 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7620 case Intrinsic::localescape: { 7621 MachineFunction &MF = DAG.getMachineFunction(); 7622 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7623 7624 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7625 // is the same on all targets. 7626 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7627 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7628 if (isa<ConstantPointerNull>(Arg)) 7629 continue; // Skip null pointers. They represent a hole in index space. 7630 AllocaInst *Slot = cast<AllocaInst>(Arg); 7631 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7632 "can only escape static allocas"); 7633 int FI = FuncInfo.StaticAllocaMap[Slot]; 7634 MCSymbol *FrameAllocSym = 7635 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7636 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7637 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7638 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7639 .addSym(FrameAllocSym) 7640 .addFrameIndex(FI); 7641 } 7642 7643 return; 7644 } 7645 7646 case Intrinsic::localrecover: { 7647 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7648 MachineFunction &MF = DAG.getMachineFunction(); 7649 7650 // Get the symbol that defines the frame offset. 7651 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7652 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7653 unsigned IdxVal = 7654 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7655 MCSymbol *FrameAllocSym = 7656 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7657 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7658 7659 Value *FP = I.getArgOperand(1); 7660 SDValue FPVal = getValue(FP); 7661 EVT PtrVT = FPVal.getValueType(); 7662 7663 // Create a MCSymbol for the label to avoid any target lowering 7664 // that would make this PC relative. 7665 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7666 SDValue OffsetVal = 7667 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7668 7669 // Add the offset to the FP. 7670 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7671 setValue(&I, Add); 7672 7673 return; 7674 } 7675 7676 case Intrinsic::eh_exceptionpointer: 7677 case Intrinsic::eh_exceptioncode: { 7678 // Get the exception pointer vreg, copy from it, and resize it to fit. 7679 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7680 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7681 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7682 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7683 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7684 if (Intrinsic == Intrinsic::eh_exceptioncode) 7685 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7686 setValue(&I, N); 7687 return; 7688 } 7689 case Intrinsic::xray_customevent: { 7690 // Here we want to make sure that the intrinsic behaves as if it has a 7691 // specific calling convention. 7692 const auto &Triple = DAG.getTarget().getTargetTriple(); 7693 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7694 return; 7695 7696 SmallVector<SDValue, 8> Ops; 7697 7698 // We want to say that we always want the arguments in registers. 7699 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7700 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7701 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7702 SDValue Chain = getRoot(); 7703 Ops.push_back(LogEntryVal); 7704 Ops.push_back(StrSizeVal); 7705 Ops.push_back(Chain); 7706 7707 // We need to enforce the calling convention for the callsite, so that 7708 // argument ordering is enforced correctly, and that register allocation can 7709 // see that some registers may be assumed clobbered and have to preserve 7710 // them across calls to the intrinsic. 7711 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7712 sdl, NodeTys, Ops); 7713 SDValue patchableNode = SDValue(MN, 0); 7714 DAG.setRoot(patchableNode); 7715 setValue(&I, patchableNode); 7716 return; 7717 } 7718 case Intrinsic::xray_typedevent: { 7719 // Here we want to make sure that the intrinsic behaves as if it has a 7720 // specific calling convention. 7721 const auto &Triple = DAG.getTarget().getTargetTriple(); 7722 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7723 return; 7724 7725 SmallVector<SDValue, 8> Ops; 7726 7727 // We want to say that we always want the arguments in registers. 7728 // It's unclear to me how manipulating the selection DAG here forces callers 7729 // to provide arguments in registers instead of on the stack. 7730 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7731 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7732 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7733 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7734 SDValue Chain = getRoot(); 7735 Ops.push_back(LogTypeId); 7736 Ops.push_back(LogEntryVal); 7737 Ops.push_back(StrSizeVal); 7738 Ops.push_back(Chain); 7739 7740 // We need to enforce the calling convention for the callsite, so that 7741 // argument ordering is enforced correctly, and that register allocation can 7742 // see that some registers may be assumed clobbered and have to preserve 7743 // them across calls to the intrinsic. 7744 MachineSDNode *MN = DAG.getMachineNode( 7745 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7746 SDValue patchableNode = SDValue(MN, 0); 7747 DAG.setRoot(patchableNode); 7748 setValue(&I, patchableNode); 7749 return; 7750 } 7751 case Intrinsic::experimental_deoptimize: 7752 LowerDeoptimizeCall(&I); 7753 return; 7754 case Intrinsic::experimental_stepvector: 7755 visitStepVector(I); 7756 return; 7757 case Intrinsic::vector_reduce_fadd: 7758 case Intrinsic::vector_reduce_fmul: 7759 case Intrinsic::vector_reduce_add: 7760 case Intrinsic::vector_reduce_mul: 7761 case Intrinsic::vector_reduce_and: 7762 case Intrinsic::vector_reduce_or: 7763 case Intrinsic::vector_reduce_xor: 7764 case Intrinsic::vector_reduce_smax: 7765 case Intrinsic::vector_reduce_smin: 7766 case Intrinsic::vector_reduce_umax: 7767 case Intrinsic::vector_reduce_umin: 7768 case Intrinsic::vector_reduce_fmax: 7769 case Intrinsic::vector_reduce_fmin: 7770 case Intrinsic::vector_reduce_fmaximum: 7771 case Intrinsic::vector_reduce_fminimum: 7772 visitVectorReduce(I, Intrinsic); 7773 return; 7774 7775 case Intrinsic::icall_branch_funnel: { 7776 SmallVector<SDValue, 16> Ops; 7777 Ops.push_back(getValue(I.getArgOperand(0))); 7778 7779 int64_t Offset; 7780 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7781 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7782 if (!Base) 7783 report_fatal_error( 7784 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7785 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7786 7787 struct BranchFunnelTarget { 7788 int64_t Offset; 7789 SDValue Target; 7790 }; 7791 SmallVector<BranchFunnelTarget, 8> Targets; 7792 7793 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7794 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7795 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7796 if (ElemBase != Base) 7797 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7798 "to the same GlobalValue"); 7799 7800 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7801 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7802 if (!GA) 7803 report_fatal_error( 7804 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7805 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7806 GA->getGlobal(), sdl, Val.getValueType(), 7807 GA->getOffset())}); 7808 } 7809 llvm::sort(Targets, 7810 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7811 return T1.Offset < T2.Offset; 7812 }); 7813 7814 for (auto &T : Targets) { 7815 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7816 Ops.push_back(T.Target); 7817 } 7818 7819 Ops.push_back(DAG.getRoot()); // Chain 7820 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7821 MVT::Other, Ops), 7822 0); 7823 DAG.setRoot(N); 7824 setValue(&I, N); 7825 HasTailCall = true; 7826 return; 7827 } 7828 7829 case Intrinsic::wasm_landingpad_index: 7830 // Information this intrinsic contained has been transferred to 7831 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7832 // delete it now. 7833 return; 7834 7835 case Intrinsic::aarch64_settag: 7836 case Intrinsic::aarch64_settag_zero: { 7837 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7838 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7839 SDValue Val = TSI.EmitTargetCodeForSetTag( 7840 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7841 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7842 ZeroMemory); 7843 DAG.setRoot(Val); 7844 setValue(&I, Val); 7845 return; 7846 } 7847 case Intrinsic::amdgcn_cs_chain: { 7848 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7849 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7850 "Non-zero flags not supported yet"); 7851 7852 // At this point we don't care if it's amdgpu_cs_chain or 7853 // amdgpu_cs_chain_preserve. 7854 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7855 7856 Type *RetTy = I.getType(); 7857 assert(RetTy->isVoidTy() && "Should not return"); 7858 7859 SDValue Callee = getValue(I.getOperand(0)); 7860 7861 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7862 // We'll also tack the value of the EXEC mask at the end. 7863 TargetLowering::ArgListTy Args; 7864 Args.reserve(3); 7865 7866 for (unsigned Idx : {2, 3, 1}) { 7867 TargetLowering::ArgListEntry Arg; 7868 Arg.Node = getValue(I.getOperand(Idx)); 7869 Arg.Ty = I.getOperand(Idx)->getType(); 7870 Arg.setAttributes(&I, Idx); 7871 Args.push_back(Arg); 7872 } 7873 7874 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7875 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7876 Args[2].IsInReg = true; // EXEC should be inreg 7877 7878 TargetLowering::CallLoweringInfo CLI(DAG); 7879 CLI.setDebugLoc(getCurSDLoc()) 7880 .setChain(getRoot()) 7881 .setCallee(CC, RetTy, Callee, std::move(Args)) 7882 .setNoReturn(true) 7883 .setTailCall(true) 7884 .setConvergent(I.isConvergent()); 7885 CLI.CB = &I; 7886 std::pair<SDValue, SDValue> Result = 7887 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7888 (void)Result; 7889 assert(!Result.first.getNode() && !Result.second.getNode() && 7890 "Should've lowered as tail call"); 7891 7892 HasTailCall = true; 7893 return; 7894 } 7895 case Intrinsic::ptrmask: { 7896 SDValue Ptr = getValue(I.getOperand(0)); 7897 SDValue Mask = getValue(I.getOperand(1)); 7898 7899 // On arm64_32, pointers are 32 bits when stored in memory, but 7900 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7901 // match the index type, but the pointer is 64 bits, so the the mask must be 7902 // zero-extended up to 64 bits to match the pointer. 7903 EVT PtrVT = 7904 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7905 EVT MemVT = 7906 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7907 assert(PtrVT == Ptr.getValueType()); 7908 assert(MemVT == Mask.getValueType()); 7909 if (MemVT != PtrVT) 7910 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7911 7912 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7913 return; 7914 } 7915 case Intrinsic::threadlocal_address: { 7916 setValue(&I, getValue(I.getOperand(0))); 7917 return; 7918 } 7919 case Intrinsic::get_active_lane_mask: { 7920 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7921 SDValue Index = getValue(I.getOperand(0)); 7922 EVT ElementVT = Index.getValueType(); 7923 7924 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7925 visitTargetIntrinsic(I, Intrinsic); 7926 return; 7927 } 7928 7929 SDValue TripCount = getValue(I.getOperand(1)); 7930 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7931 CCVT.getVectorElementCount()); 7932 7933 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7934 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7935 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7936 SDValue VectorInduction = DAG.getNode( 7937 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7938 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7939 VectorTripCount, ISD::CondCode::SETULT); 7940 setValue(&I, SetCC); 7941 return; 7942 } 7943 case Intrinsic::experimental_get_vector_length: { 7944 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7945 "Expected positive VF"); 7946 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7947 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7948 7949 SDValue Count = getValue(I.getOperand(0)); 7950 EVT CountVT = Count.getValueType(); 7951 7952 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7953 visitTargetIntrinsic(I, Intrinsic); 7954 return; 7955 } 7956 7957 // Expand to a umin between the trip count and the maximum elements the type 7958 // can hold. 7959 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7960 7961 // Extend the trip count to at least the result VT. 7962 if (CountVT.bitsLT(VT)) { 7963 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7964 CountVT = VT; 7965 } 7966 7967 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7968 ElementCount::get(VF, IsScalable)); 7969 7970 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7971 // Clip to the result type if needed. 7972 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7973 7974 setValue(&I, Trunc); 7975 return; 7976 } 7977 case Intrinsic::experimental_cttz_elts: { 7978 auto DL = getCurSDLoc(); 7979 SDValue Op = getValue(I.getOperand(0)); 7980 EVT OpVT = Op.getValueType(); 7981 7982 if (!TLI.shouldExpandCttzElements(OpVT)) { 7983 visitTargetIntrinsic(I, Intrinsic); 7984 return; 7985 } 7986 7987 if (OpVT.getScalarType() != MVT::i1) { 7988 // Compare the input vector elements to zero & use to count trailing zeros 7989 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7990 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7991 OpVT.getVectorElementCount()); 7992 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7993 } 7994 7995 // If the zero-is-poison flag is set, we can assume the upper limit 7996 // of the result is VF-1. 7997 bool ZeroIsPoison = 7998 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 7999 ConstantRange VScaleRange(1, true); // Dummy value. 8000 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8001 VScaleRange = getVScaleRange(I.getCaller(), 64); 8002 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8003 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8004 8005 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8006 8007 // Create the new vector type & get the vector length 8008 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8009 OpVT.getVectorElementCount()); 8010 8011 SDValue VL = 8012 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8013 8014 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8015 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8016 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8017 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8018 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8019 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8020 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8021 8022 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8023 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8024 8025 setValue(&I, Ret); 8026 return; 8027 } 8028 case Intrinsic::vector_insert: { 8029 SDValue Vec = getValue(I.getOperand(0)); 8030 SDValue SubVec = getValue(I.getOperand(1)); 8031 SDValue Index = getValue(I.getOperand(2)); 8032 8033 // The intrinsic's index type is i64, but the SDNode requires an index type 8034 // suitable for the target. Convert the index as required. 8035 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8036 if (Index.getValueType() != VectorIdxTy) 8037 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8038 8039 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8040 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8041 Index)); 8042 return; 8043 } 8044 case Intrinsic::vector_extract: { 8045 SDValue Vec = getValue(I.getOperand(0)); 8046 SDValue Index = getValue(I.getOperand(1)); 8047 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8048 8049 // The intrinsic's index type is i64, but the SDNode requires an index type 8050 // suitable for the target. Convert the index as required. 8051 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8052 if (Index.getValueType() != VectorIdxTy) 8053 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8054 8055 setValue(&I, 8056 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8057 return; 8058 } 8059 case Intrinsic::vector_reverse: 8060 visitVectorReverse(I); 8061 return; 8062 case Intrinsic::vector_splice: 8063 visitVectorSplice(I); 8064 return; 8065 case Intrinsic::callbr_landingpad: 8066 visitCallBrLandingPad(I); 8067 return; 8068 case Intrinsic::vector_interleave2: 8069 visitVectorInterleave(I); 8070 return; 8071 case Intrinsic::vector_deinterleave2: 8072 visitVectorDeinterleave(I); 8073 return; 8074 case Intrinsic::experimental_convergence_anchor: 8075 case Intrinsic::experimental_convergence_entry: 8076 case Intrinsic::experimental_convergence_loop: 8077 visitConvergenceControl(I, Intrinsic); 8078 return; 8079 case Intrinsic::experimental_vector_histogram_add: { 8080 visitVectorHistogram(I, Intrinsic); 8081 return; 8082 } 8083 } 8084 } 8085 8086 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8087 const ConstrainedFPIntrinsic &FPI) { 8088 SDLoc sdl = getCurSDLoc(); 8089 8090 // We do not need to serialize constrained FP intrinsics against 8091 // each other or against (nonvolatile) loads, so they can be 8092 // chained like loads. 8093 SDValue Chain = DAG.getRoot(); 8094 SmallVector<SDValue, 4> Opers; 8095 Opers.push_back(Chain); 8096 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8097 Opers.push_back(getValue(FPI.getArgOperand(I))); 8098 8099 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8100 assert(Result.getNode()->getNumValues() == 2); 8101 8102 // Push node to the appropriate list so that future instructions can be 8103 // chained up correctly. 8104 SDValue OutChain = Result.getValue(1); 8105 switch (EB) { 8106 case fp::ExceptionBehavior::ebIgnore: 8107 // The only reason why ebIgnore nodes still need to be chained is that 8108 // they might depend on the current rounding mode, and therefore must 8109 // not be moved across instruction that may change that mode. 8110 [[fallthrough]]; 8111 case fp::ExceptionBehavior::ebMayTrap: 8112 // These must not be moved across calls or instructions that may change 8113 // floating-point exception masks. 8114 PendingConstrainedFP.push_back(OutChain); 8115 break; 8116 case fp::ExceptionBehavior::ebStrict: 8117 // These must not be moved across calls or instructions that may change 8118 // floating-point exception masks or read floating-point exception flags. 8119 // In addition, they cannot be optimized out even if unused. 8120 PendingConstrainedFPStrict.push_back(OutChain); 8121 break; 8122 } 8123 }; 8124 8125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8126 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8127 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8128 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8129 8130 SDNodeFlags Flags; 8131 if (EB == fp::ExceptionBehavior::ebIgnore) 8132 Flags.setNoFPExcept(true); 8133 8134 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8135 Flags.copyFMF(*FPOp); 8136 8137 unsigned Opcode; 8138 switch (FPI.getIntrinsicID()) { 8139 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8140 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8141 case Intrinsic::INTRINSIC: \ 8142 Opcode = ISD::STRICT_##DAGN; \ 8143 break; 8144 #include "llvm/IR/ConstrainedOps.def" 8145 case Intrinsic::experimental_constrained_fmuladd: { 8146 Opcode = ISD::STRICT_FMA; 8147 // Break fmuladd into fmul and fadd. 8148 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8149 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8150 Opers.pop_back(); 8151 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8152 pushOutChain(Mul, EB); 8153 Opcode = ISD::STRICT_FADD; 8154 Opers.clear(); 8155 Opers.push_back(Mul.getValue(1)); 8156 Opers.push_back(Mul.getValue(0)); 8157 Opers.push_back(getValue(FPI.getArgOperand(2))); 8158 } 8159 break; 8160 } 8161 } 8162 8163 // A few strict DAG nodes carry additional operands that are not 8164 // set up by the default code above. 8165 switch (Opcode) { 8166 default: break; 8167 case ISD::STRICT_FP_ROUND: 8168 Opers.push_back( 8169 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8170 break; 8171 case ISD::STRICT_FSETCC: 8172 case ISD::STRICT_FSETCCS: { 8173 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8174 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8175 if (TM.Options.NoNaNsFPMath) 8176 Condition = getFCmpCodeWithoutNaN(Condition); 8177 Opers.push_back(DAG.getCondCode(Condition)); 8178 break; 8179 } 8180 } 8181 8182 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8183 pushOutChain(Result, EB); 8184 8185 SDValue FPResult = Result.getValue(0); 8186 setValue(&FPI, FPResult); 8187 } 8188 8189 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8190 std::optional<unsigned> ResOPC; 8191 switch (VPIntrin.getIntrinsicID()) { 8192 case Intrinsic::vp_ctlz: { 8193 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8194 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8195 break; 8196 } 8197 case Intrinsic::vp_cttz: { 8198 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8199 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8200 break; 8201 } 8202 case Intrinsic::vp_cttz_elts: { 8203 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8204 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8205 break; 8206 } 8207 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8208 case Intrinsic::VPID: \ 8209 ResOPC = ISD::VPSD; \ 8210 break; 8211 #include "llvm/IR/VPIntrinsics.def" 8212 } 8213 8214 if (!ResOPC) 8215 llvm_unreachable( 8216 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8217 8218 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8219 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8220 if (VPIntrin.getFastMathFlags().allowReassoc()) 8221 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8222 : ISD::VP_REDUCE_FMUL; 8223 } 8224 8225 return *ResOPC; 8226 } 8227 8228 void SelectionDAGBuilder::visitVPLoad( 8229 const VPIntrinsic &VPIntrin, EVT VT, 8230 const SmallVectorImpl<SDValue> &OpValues) { 8231 SDLoc DL = getCurSDLoc(); 8232 Value *PtrOperand = VPIntrin.getArgOperand(0); 8233 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8234 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8235 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8236 SDValue LD; 8237 // Do not serialize variable-length loads of constant memory with 8238 // anything. 8239 if (!Alignment) 8240 Alignment = DAG.getEVTAlign(VT); 8241 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8242 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8243 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8244 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8245 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8246 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8247 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8248 MMO, false /*IsExpanding */); 8249 if (AddToChain) 8250 PendingLoads.push_back(LD.getValue(1)); 8251 setValue(&VPIntrin, LD); 8252 } 8253 8254 void SelectionDAGBuilder::visitVPGather( 8255 const VPIntrinsic &VPIntrin, EVT VT, 8256 const SmallVectorImpl<SDValue> &OpValues) { 8257 SDLoc DL = getCurSDLoc(); 8258 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8259 Value *PtrOperand = VPIntrin.getArgOperand(0); 8260 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8261 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8262 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8263 SDValue LD; 8264 if (!Alignment) 8265 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8266 unsigned AS = 8267 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8268 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8269 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8270 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8271 SDValue Base, Index, Scale; 8272 ISD::MemIndexType IndexType; 8273 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8274 this, VPIntrin.getParent(), 8275 VT.getScalarStoreSize()); 8276 if (!UniformBase) { 8277 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8278 Index = getValue(PtrOperand); 8279 IndexType = ISD::SIGNED_SCALED; 8280 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8281 } 8282 EVT IdxVT = Index.getValueType(); 8283 EVT EltTy = IdxVT.getVectorElementType(); 8284 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8285 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8286 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8287 } 8288 LD = DAG.getGatherVP( 8289 DAG.getVTList(VT, MVT::Other), VT, DL, 8290 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8291 IndexType); 8292 PendingLoads.push_back(LD.getValue(1)); 8293 setValue(&VPIntrin, LD); 8294 } 8295 8296 void SelectionDAGBuilder::visitVPStore( 8297 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8298 SDLoc DL = getCurSDLoc(); 8299 Value *PtrOperand = VPIntrin.getArgOperand(1); 8300 EVT VT = OpValues[0].getValueType(); 8301 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8302 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8303 SDValue ST; 8304 if (!Alignment) 8305 Alignment = DAG.getEVTAlign(VT); 8306 SDValue Ptr = OpValues[1]; 8307 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8308 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8309 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8310 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8311 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8312 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8313 /* IsTruncating */ false, /*IsCompressing*/ false); 8314 DAG.setRoot(ST); 8315 setValue(&VPIntrin, ST); 8316 } 8317 8318 void SelectionDAGBuilder::visitVPScatter( 8319 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8320 SDLoc DL = getCurSDLoc(); 8321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8322 Value *PtrOperand = VPIntrin.getArgOperand(1); 8323 EVT VT = OpValues[0].getValueType(); 8324 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8325 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8326 SDValue ST; 8327 if (!Alignment) 8328 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8329 unsigned AS = 8330 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8331 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8332 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8333 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8334 SDValue Base, Index, Scale; 8335 ISD::MemIndexType IndexType; 8336 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8337 this, VPIntrin.getParent(), 8338 VT.getScalarStoreSize()); 8339 if (!UniformBase) { 8340 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8341 Index = getValue(PtrOperand); 8342 IndexType = ISD::SIGNED_SCALED; 8343 Scale = 8344 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8345 } 8346 EVT IdxVT = Index.getValueType(); 8347 EVT EltTy = IdxVT.getVectorElementType(); 8348 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8349 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8350 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8351 } 8352 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8353 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8354 OpValues[2], OpValues[3]}, 8355 MMO, IndexType); 8356 DAG.setRoot(ST); 8357 setValue(&VPIntrin, ST); 8358 } 8359 8360 void SelectionDAGBuilder::visitVPStridedLoad( 8361 const VPIntrinsic &VPIntrin, EVT VT, 8362 const SmallVectorImpl<SDValue> &OpValues) { 8363 SDLoc DL = getCurSDLoc(); 8364 Value *PtrOperand = VPIntrin.getArgOperand(0); 8365 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8366 if (!Alignment) 8367 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8368 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8369 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8370 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8371 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8372 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8373 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8374 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8375 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8376 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8377 8378 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8379 OpValues[2], OpValues[3], MMO, 8380 false /*IsExpanding*/); 8381 8382 if (AddToChain) 8383 PendingLoads.push_back(LD.getValue(1)); 8384 setValue(&VPIntrin, LD); 8385 } 8386 8387 void SelectionDAGBuilder::visitVPStridedStore( 8388 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8389 SDLoc DL = getCurSDLoc(); 8390 Value *PtrOperand = VPIntrin.getArgOperand(1); 8391 EVT VT = OpValues[0].getValueType(); 8392 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8393 if (!Alignment) 8394 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8395 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8396 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8397 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8398 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8399 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8400 8401 SDValue ST = DAG.getStridedStoreVP( 8402 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8403 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8404 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8405 /*IsCompressing*/ false); 8406 8407 DAG.setRoot(ST); 8408 setValue(&VPIntrin, ST); 8409 } 8410 8411 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8413 SDLoc DL = getCurSDLoc(); 8414 8415 ISD::CondCode Condition; 8416 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8417 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8418 if (IsFP) { 8419 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8420 // flags, but calls that don't return floating-point types can't be 8421 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8422 Condition = getFCmpCondCode(CondCode); 8423 if (TM.Options.NoNaNsFPMath) 8424 Condition = getFCmpCodeWithoutNaN(Condition); 8425 } else { 8426 Condition = getICmpCondCode(CondCode); 8427 } 8428 8429 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8430 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8431 // #2 is the condition code 8432 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8433 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8434 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8435 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8436 "Unexpected target EVL type"); 8437 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8438 8439 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8440 VPIntrin.getType()); 8441 setValue(&VPIntrin, 8442 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8443 } 8444 8445 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8446 const VPIntrinsic &VPIntrin) { 8447 SDLoc DL = getCurSDLoc(); 8448 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8449 8450 auto IID = VPIntrin.getIntrinsicID(); 8451 8452 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8453 return visitVPCmp(*CmpI); 8454 8455 SmallVector<EVT, 4> ValueVTs; 8456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8457 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8458 SDVTList VTs = DAG.getVTList(ValueVTs); 8459 8460 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8461 8462 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8463 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8464 "Unexpected target EVL type"); 8465 8466 // Request operands. 8467 SmallVector<SDValue, 7> OpValues; 8468 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8469 auto Op = getValue(VPIntrin.getArgOperand(I)); 8470 if (I == EVLParamPos) 8471 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8472 OpValues.push_back(Op); 8473 } 8474 8475 switch (Opcode) { 8476 default: { 8477 SDNodeFlags SDFlags; 8478 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8479 SDFlags.copyFMF(*FPMO); 8480 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8481 setValue(&VPIntrin, Result); 8482 break; 8483 } 8484 case ISD::VP_LOAD: 8485 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8486 break; 8487 case ISD::VP_GATHER: 8488 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8489 break; 8490 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8491 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8492 break; 8493 case ISD::VP_STORE: 8494 visitVPStore(VPIntrin, OpValues); 8495 break; 8496 case ISD::VP_SCATTER: 8497 visitVPScatter(VPIntrin, OpValues); 8498 break; 8499 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8500 visitVPStridedStore(VPIntrin, OpValues); 8501 break; 8502 case ISD::VP_FMULADD: { 8503 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8504 SDNodeFlags SDFlags; 8505 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8506 SDFlags.copyFMF(*FPMO); 8507 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8508 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8509 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8510 } else { 8511 SDValue Mul = DAG.getNode( 8512 ISD::VP_FMUL, DL, VTs, 8513 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8514 SDValue Add = 8515 DAG.getNode(ISD::VP_FADD, DL, VTs, 8516 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8517 setValue(&VPIntrin, Add); 8518 } 8519 break; 8520 } 8521 case ISD::VP_IS_FPCLASS: { 8522 const DataLayout DLayout = DAG.getDataLayout(); 8523 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8524 auto Constant = OpValues[1]->getAsZExtVal(); 8525 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8526 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8527 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8528 setValue(&VPIntrin, V); 8529 return; 8530 } 8531 case ISD::VP_INTTOPTR: { 8532 SDValue N = OpValues[0]; 8533 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8534 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8535 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8536 OpValues[2]); 8537 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8538 OpValues[2]); 8539 setValue(&VPIntrin, N); 8540 break; 8541 } 8542 case ISD::VP_PTRTOINT: { 8543 SDValue N = OpValues[0]; 8544 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8545 VPIntrin.getType()); 8546 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8547 VPIntrin.getOperand(0)->getType()); 8548 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8549 OpValues[2]); 8550 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8551 OpValues[2]); 8552 setValue(&VPIntrin, N); 8553 break; 8554 } 8555 case ISD::VP_ABS: 8556 case ISD::VP_CTLZ: 8557 case ISD::VP_CTLZ_ZERO_UNDEF: 8558 case ISD::VP_CTTZ: 8559 case ISD::VP_CTTZ_ZERO_UNDEF: 8560 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8561 case ISD::VP_CTTZ_ELTS: { 8562 SDValue Result = 8563 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8564 setValue(&VPIntrin, Result); 8565 break; 8566 } 8567 } 8568 } 8569 8570 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8571 const BasicBlock *EHPadBB, 8572 MCSymbol *&BeginLabel) { 8573 MachineFunction &MF = DAG.getMachineFunction(); 8574 MachineModuleInfo &MMI = MF.getMMI(); 8575 8576 // Insert a label before the invoke call to mark the try range. This can be 8577 // used to detect deletion of the invoke via the MachineModuleInfo. 8578 BeginLabel = MMI.getContext().createTempSymbol(); 8579 8580 // For SjLj, keep track of which landing pads go with which invokes 8581 // so as to maintain the ordering of pads in the LSDA. 8582 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8583 if (CallSiteIndex) { 8584 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8585 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8586 8587 // Now that the call site is handled, stop tracking it. 8588 MMI.setCurrentCallSite(0); 8589 } 8590 8591 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8592 } 8593 8594 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8595 const BasicBlock *EHPadBB, 8596 MCSymbol *BeginLabel) { 8597 assert(BeginLabel && "BeginLabel should've been set"); 8598 8599 MachineFunction &MF = DAG.getMachineFunction(); 8600 MachineModuleInfo &MMI = MF.getMMI(); 8601 8602 // Insert a label at the end of the invoke call to mark the try range. This 8603 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8604 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8605 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8606 8607 // Inform MachineModuleInfo of range. 8608 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8609 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8610 // actually use outlined funclets and their LSDA info style. 8611 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8612 assert(II && "II should've been set"); 8613 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8614 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8615 } else if (!isScopedEHPersonality(Pers)) { 8616 assert(EHPadBB); 8617 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8618 } 8619 8620 return Chain; 8621 } 8622 8623 std::pair<SDValue, SDValue> 8624 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8625 const BasicBlock *EHPadBB) { 8626 MCSymbol *BeginLabel = nullptr; 8627 8628 if (EHPadBB) { 8629 // Both PendingLoads and PendingExports must be flushed here; 8630 // this call might not return. 8631 (void)getRoot(); 8632 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8633 CLI.setChain(getRoot()); 8634 } 8635 8636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8637 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8638 8639 assert((CLI.IsTailCall || Result.second.getNode()) && 8640 "Non-null chain expected with non-tail call!"); 8641 assert((Result.second.getNode() || !Result.first.getNode()) && 8642 "Null value expected with tail call!"); 8643 8644 if (!Result.second.getNode()) { 8645 // As a special case, a null chain means that a tail call has been emitted 8646 // and the DAG root is already updated. 8647 HasTailCall = true; 8648 8649 // Since there's no actual continuation from this block, nothing can be 8650 // relying on us setting vregs for them. 8651 PendingExports.clear(); 8652 } else { 8653 DAG.setRoot(Result.second); 8654 } 8655 8656 if (EHPadBB) { 8657 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8658 BeginLabel)); 8659 Result.second = getRoot(); 8660 } 8661 8662 return Result; 8663 } 8664 8665 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8666 bool isTailCall, bool isMustTailCall, 8667 const BasicBlock *EHPadBB, 8668 const TargetLowering::PtrAuthInfo *PAI) { 8669 auto &DL = DAG.getDataLayout(); 8670 FunctionType *FTy = CB.getFunctionType(); 8671 Type *RetTy = CB.getType(); 8672 8673 TargetLowering::ArgListTy Args; 8674 Args.reserve(CB.arg_size()); 8675 8676 const Value *SwiftErrorVal = nullptr; 8677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8678 8679 if (isTailCall) { 8680 // Avoid emitting tail calls in functions with the disable-tail-calls 8681 // attribute. 8682 auto *Caller = CB.getParent()->getParent(); 8683 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8684 "true" && !isMustTailCall) 8685 isTailCall = false; 8686 8687 // We can't tail call inside a function with a swifterror argument. Lowering 8688 // does not support this yet. It would have to move into the swifterror 8689 // register before the call. 8690 if (TLI.supportSwiftError() && 8691 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8692 isTailCall = false; 8693 } 8694 8695 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8696 TargetLowering::ArgListEntry Entry; 8697 const Value *V = *I; 8698 8699 // Skip empty types 8700 if (V->getType()->isEmptyTy()) 8701 continue; 8702 8703 SDValue ArgNode = getValue(V); 8704 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8705 8706 Entry.setAttributes(&CB, I - CB.arg_begin()); 8707 8708 // Use swifterror virtual register as input to the call. 8709 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8710 SwiftErrorVal = V; 8711 // We find the virtual register for the actual swifterror argument. 8712 // Instead of using the Value, we use the virtual register instead. 8713 Entry.Node = 8714 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8715 EVT(TLI.getPointerTy(DL))); 8716 } 8717 8718 Args.push_back(Entry); 8719 8720 // If we have an explicit sret argument that is an Instruction, (i.e., it 8721 // might point to function-local memory), we can't meaningfully tail-call. 8722 if (Entry.IsSRet && isa<Instruction>(V)) 8723 isTailCall = false; 8724 } 8725 8726 // If call site has a cfguardtarget operand bundle, create and add an 8727 // additional ArgListEntry. 8728 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8729 TargetLowering::ArgListEntry Entry; 8730 Value *V = Bundle->Inputs[0]; 8731 SDValue ArgNode = getValue(V); 8732 Entry.Node = ArgNode; 8733 Entry.Ty = V->getType(); 8734 Entry.IsCFGuardTarget = true; 8735 Args.push_back(Entry); 8736 } 8737 8738 // Check if target-independent constraints permit a tail call here. 8739 // Target-dependent constraints are checked within TLI->LowerCallTo. 8740 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8741 isTailCall = false; 8742 8743 // Disable tail calls if there is an swifterror argument. Targets have not 8744 // been updated to support tail calls. 8745 if (TLI.supportSwiftError() && SwiftErrorVal) 8746 isTailCall = false; 8747 8748 ConstantInt *CFIType = nullptr; 8749 if (CB.isIndirectCall()) { 8750 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8751 if (!TLI.supportKCFIBundles()) 8752 report_fatal_error( 8753 "Target doesn't support calls with kcfi operand bundles."); 8754 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8755 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8756 } 8757 } 8758 8759 SDValue ConvControlToken; 8760 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8761 auto *Token = Bundle->Inputs[0].get(); 8762 ConvControlToken = getValue(Token); 8763 } 8764 8765 TargetLowering::CallLoweringInfo CLI(DAG); 8766 CLI.setDebugLoc(getCurSDLoc()) 8767 .setChain(getRoot()) 8768 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8769 .setTailCall(isTailCall) 8770 .setConvergent(CB.isConvergent()) 8771 .setIsPreallocated( 8772 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8773 .setCFIType(CFIType) 8774 .setConvergenceControlToken(ConvControlToken); 8775 8776 // Set the pointer authentication info if we have it. 8777 if (PAI) { 8778 if (!TLI.supportPtrAuthBundles()) 8779 report_fatal_error( 8780 "This target doesn't support calls with ptrauth operand bundles."); 8781 CLI.setPtrAuth(*PAI); 8782 } 8783 8784 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8785 8786 if (Result.first.getNode()) { 8787 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8788 setValue(&CB, Result.first); 8789 } 8790 8791 // The last element of CLI.InVals has the SDValue for swifterror return. 8792 // Here we copy it to a virtual register and update SwiftErrorMap for 8793 // book-keeping. 8794 if (SwiftErrorVal && TLI.supportSwiftError()) { 8795 // Get the last element of InVals. 8796 SDValue Src = CLI.InVals.back(); 8797 Register VReg = 8798 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8799 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8800 DAG.setRoot(CopyNode); 8801 } 8802 } 8803 8804 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8805 SelectionDAGBuilder &Builder) { 8806 // Check to see if this load can be trivially constant folded, e.g. if the 8807 // input is from a string literal. 8808 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8809 // Cast pointer to the type we really want to load. 8810 Type *LoadTy = 8811 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8812 if (LoadVT.isVector()) 8813 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8814 8815 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8816 PointerType::getUnqual(LoadTy)); 8817 8818 if (const Constant *LoadCst = 8819 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8820 LoadTy, Builder.DAG.getDataLayout())) 8821 return Builder.getValue(LoadCst); 8822 } 8823 8824 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8825 // still constant memory, the input chain can be the entry node. 8826 SDValue Root; 8827 bool ConstantMemory = false; 8828 8829 // Do not serialize (non-volatile) loads of constant memory with anything. 8830 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8831 Root = Builder.DAG.getEntryNode(); 8832 ConstantMemory = true; 8833 } else { 8834 // Do not serialize non-volatile loads against each other. 8835 Root = Builder.DAG.getRoot(); 8836 } 8837 8838 SDValue Ptr = Builder.getValue(PtrVal); 8839 SDValue LoadVal = 8840 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8841 MachinePointerInfo(PtrVal), Align(1)); 8842 8843 if (!ConstantMemory) 8844 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8845 return LoadVal; 8846 } 8847 8848 /// Record the value for an instruction that produces an integer result, 8849 /// converting the type where necessary. 8850 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8851 SDValue Value, 8852 bool IsSigned) { 8853 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8854 I.getType(), true); 8855 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8856 setValue(&I, Value); 8857 } 8858 8859 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8860 /// true and lower it. Otherwise return false, and it will be lowered like a 8861 /// normal call. 8862 /// The caller already checked that \p I calls the appropriate LibFunc with a 8863 /// correct prototype. 8864 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8865 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8866 const Value *Size = I.getArgOperand(2); 8867 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8868 if (CSize && CSize->getZExtValue() == 0) { 8869 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8870 I.getType(), true); 8871 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8872 return true; 8873 } 8874 8875 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8876 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8877 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8878 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8879 if (Res.first.getNode()) { 8880 processIntegerCallValue(I, Res.first, true); 8881 PendingLoads.push_back(Res.second); 8882 return true; 8883 } 8884 8885 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8886 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8887 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8888 return false; 8889 8890 // If the target has a fast compare for the given size, it will return a 8891 // preferred load type for that size. Require that the load VT is legal and 8892 // that the target supports unaligned loads of that type. Otherwise, return 8893 // INVALID. 8894 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8896 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8897 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8898 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8899 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8900 // TODO: Check alignment of src and dest ptrs. 8901 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8902 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8903 if (!TLI.isTypeLegal(LVT) || 8904 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8905 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8906 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8907 } 8908 8909 return LVT; 8910 }; 8911 8912 // This turns into unaligned loads. We only do this if the target natively 8913 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8914 // we'll only produce a small number of byte loads. 8915 MVT LoadVT; 8916 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8917 switch (NumBitsToCompare) { 8918 default: 8919 return false; 8920 case 16: 8921 LoadVT = MVT::i16; 8922 break; 8923 case 32: 8924 LoadVT = MVT::i32; 8925 break; 8926 case 64: 8927 case 128: 8928 case 256: 8929 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8930 break; 8931 } 8932 8933 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8934 return false; 8935 8936 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8937 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8938 8939 // Bitcast to a wide integer type if the loads are vectors. 8940 if (LoadVT.isVector()) { 8941 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8942 LoadL = DAG.getBitcast(CmpVT, LoadL); 8943 LoadR = DAG.getBitcast(CmpVT, LoadR); 8944 } 8945 8946 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8947 processIntegerCallValue(I, Cmp, false); 8948 return true; 8949 } 8950 8951 /// See if we can lower a memchr call into an optimized form. If so, return 8952 /// true and lower it. Otherwise return false, and it will be lowered like a 8953 /// normal call. 8954 /// The caller already checked that \p I calls the appropriate LibFunc with a 8955 /// correct prototype. 8956 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8957 const Value *Src = I.getArgOperand(0); 8958 const Value *Char = I.getArgOperand(1); 8959 const Value *Length = I.getArgOperand(2); 8960 8961 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8962 std::pair<SDValue, SDValue> Res = 8963 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8964 getValue(Src), getValue(Char), getValue(Length), 8965 MachinePointerInfo(Src)); 8966 if (Res.first.getNode()) { 8967 setValue(&I, Res.first); 8968 PendingLoads.push_back(Res.second); 8969 return true; 8970 } 8971 8972 return false; 8973 } 8974 8975 /// See if we can lower a mempcpy call into an optimized form. If so, return 8976 /// true and lower it. Otherwise return false, and it will be lowered like a 8977 /// normal call. 8978 /// The caller already checked that \p I calls the appropriate LibFunc with a 8979 /// correct prototype. 8980 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8981 SDValue Dst = getValue(I.getArgOperand(0)); 8982 SDValue Src = getValue(I.getArgOperand(1)); 8983 SDValue Size = getValue(I.getArgOperand(2)); 8984 8985 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8986 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8987 // DAG::getMemcpy needs Alignment to be defined. 8988 Align Alignment = std::min(DstAlign, SrcAlign); 8989 8990 SDLoc sdl = getCurSDLoc(); 8991 8992 // In the mempcpy context we need to pass in a false value for isTailCall 8993 // because the return pointer needs to be adjusted by the size of 8994 // the copied memory. 8995 SDValue Root = getMemoryRoot(); 8996 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8997 /*isTailCall=*/false, 8998 MachinePointerInfo(I.getArgOperand(0)), 8999 MachinePointerInfo(I.getArgOperand(1)), 9000 I.getAAMetadata()); 9001 assert(MC.getNode() != nullptr && 9002 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9003 DAG.setRoot(MC); 9004 9005 // Check if Size needs to be truncated or extended. 9006 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9007 9008 // Adjust return pointer to point just past the last dst byte. 9009 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9010 Dst, Size); 9011 setValue(&I, DstPlusSize); 9012 return true; 9013 } 9014 9015 /// See if we can lower a strcpy call into an optimized form. If so, return 9016 /// true and lower it, otherwise return false and it will be lowered like a 9017 /// normal call. 9018 /// The caller already checked that \p I calls the appropriate LibFunc with a 9019 /// correct prototype. 9020 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9021 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9022 9023 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9024 std::pair<SDValue, SDValue> Res = 9025 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9026 getValue(Arg0), getValue(Arg1), 9027 MachinePointerInfo(Arg0), 9028 MachinePointerInfo(Arg1), isStpcpy); 9029 if (Res.first.getNode()) { 9030 setValue(&I, Res.first); 9031 DAG.setRoot(Res.second); 9032 return true; 9033 } 9034 9035 return false; 9036 } 9037 9038 /// See if we can lower a strcmp call into an optimized form. If so, return 9039 /// true and lower it, otherwise return false and it will be lowered like a 9040 /// normal call. 9041 /// The caller already checked that \p I calls the appropriate LibFunc with a 9042 /// correct prototype. 9043 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9044 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9045 9046 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9047 std::pair<SDValue, SDValue> Res = 9048 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9049 getValue(Arg0), getValue(Arg1), 9050 MachinePointerInfo(Arg0), 9051 MachinePointerInfo(Arg1)); 9052 if (Res.first.getNode()) { 9053 processIntegerCallValue(I, Res.first, true); 9054 PendingLoads.push_back(Res.second); 9055 return true; 9056 } 9057 9058 return false; 9059 } 9060 9061 /// See if we can lower a strlen call into an optimized form. If so, return 9062 /// true and lower it, otherwise return false and it will be lowered like a 9063 /// normal call. 9064 /// The caller already checked that \p I calls the appropriate LibFunc with a 9065 /// correct prototype. 9066 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9067 const Value *Arg0 = I.getArgOperand(0); 9068 9069 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9070 std::pair<SDValue, SDValue> Res = 9071 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9072 getValue(Arg0), MachinePointerInfo(Arg0)); 9073 if (Res.first.getNode()) { 9074 processIntegerCallValue(I, Res.first, false); 9075 PendingLoads.push_back(Res.second); 9076 return true; 9077 } 9078 9079 return false; 9080 } 9081 9082 /// See if we can lower a strnlen call into an optimized form. If so, return 9083 /// true and lower it, otherwise return false and it will be lowered like a 9084 /// normal call. 9085 /// The caller already checked that \p I calls the appropriate LibFunc with a 9086 /// correct prototype. 9087 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9088 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9089 9090 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9091 std::pair<SDValue, SDValue> Res = 9092 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9093 getValue(Arg0), getValue(Arg1), 9094 MachinePointerInfo(Arg0)); 9095 if (Res.first.getNode()) { 9096 processIntegerCallValue(I, Res.first, false); 9097 PendingLoads.push_back(Res.second); 9098 return true; 9099 } 9100 9101 return false; 9102 } 9103 9104 /// See if we can lower a unary floating-point operation into an SDNode with 9105 /// the specified Opcode. If so, return true and lower it, otherwise return 9106 /// false and it will be lowered like a normal call. 9107 /// The caller already checked that \p I calls the appropriate LibFunc with a 9108 /// correct prototype. 9109 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9110 unsigned Opcode) { 9111 // We already checked this call's prototype; verify it doesn't modify errno. 9112 if (!I.onlyReadsMemory()) 9113 return false; 9114 9115 SDNodeFlags Flags; 9116 Flags.copyFMF(cast<FPMathOperator>(I)); 9117 9118 SDValue Tmp = getValue(I.getArgOperand(0)); 9119 setValue(&I, 9120 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9121 return true; 9122 } 9123 9124 /// See if we can lower a binary floating-point operation into an SDNode with 9125 /// the specified Opcode. If so, return true and lower it. Otherwise return 9126 /// false, and it will be lowered like a normal call. 9127 /// The caller already checked that \p I calls the appropriate LibFunc with a 9128 /// correct prototype. 9129 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9130 unsigned Opcode) { 9131 // We already checked this call's prototype; verify it doesn't modify errno. 9132 if (!I.onlyReadsMemory()) 9133 return false; 9134 9135 SDNodeFlags Flags; 9136 Flags.copyFMF(cast<FPMathOperator>(I)); 9137 9138 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9139 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9140 EVT VT = Tmp0.getValueType(); 9141 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9142 return true; 9143 } 9144 9145 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9146 // Handle inline assembly differently. 9147 if (I.isInlineAsm()) { 9148 visitInlineAsm(I); 9149 return; 9150 } 9151 9152 diagnoseDontCall(I); 9153 9154 if (Function *F = I.getCalledFunction()) { 9155 if (F->isDeclaration()) { 9156 // Is this an LLVM intrinsic or a target-specific intrinsic? 9157 unsigned IID = F->getIntrinsicID(); 9158 if (!IID) 9159 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9160 IID = II->getIntrinsicID(F); 9161 9162 if (IID) { 9163 visitIntrinsicCall(I, IID); 9164 return; 9165 } 9166 } 9167 9168 // Check for well-known libc/libm calls. If the function is internal, it 9169 // can't be a library call. Don't do the check if marked as nobuiltin for 9170 // some reason or the call site requires strict floating point semantics. 9171 LibFunc Func; 9172 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9173 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9174 LibInfo->hasOptimizedCodeGen(Func)) { 9175 switch (Func) { 9176 default: break; 9177 case LibFunc_bcmp: 9178 if (visitMemCmpBCmpCall(I)) 9179 return; 9180 break; 9181 case LibFunc_copysign: 9182 case LibFunc_copysignf: 9183 case LibFunc_copysignl: 9184 // We already checked this call's prototype; verify it doesn't modify 9185 // errno. 9186 if (I.onlyReadsMemory()) { 9187 SDValue LHS = getValue(I.getArgOperand(0)); 9188 SDValue RHS = getValue(I.getArgOperand(1)); 9189 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9190 LHS.getValueType(), LHS, RHS)); 9191 return; 9192 } 9193 break; 9194 case LibFunc_fabs: 9195 case LibFunc_fabsf: 9196 case LibFunc_fabsl: 9197 if (visitUnaryFloatCall(I, ISD::FABS)) 9198 return; 9199 break; 9200 case LibFunc_fmin: 9201 case LibFunc_fminf: 9202 case LibFunc_fminl: 9203 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9204 return; 9205 break; 9206 case LibFunc_fmax: 9207 case LibFunc_fmaxf: 9208 case LibFunc_fmaxl: 9209 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9210 return; 9211 break; 9212 case LibFunc_sin: 9213 case LibFunc_sinf: 9214 case LibFunc_sinl: 9215 if (visitUnaryFloatCall(I, ISD::FSIN)) 9216 return; 9217 break; 9218 case LibFunc_cos: 9219 case LibFunc_cosf: 9220 case LibFunc_cosl: 9221 if (visitUnaryFloatCall(I, ISD::FCOS)) 9222 return; 9223 break; 9224 case LibFunc_tan: 9225 case LibFunc_tanf: 9226 case LibFunc_tanl: 9227 if (visitUnaryFloatCall(I, ISD::FTAN)) 9228 return; 9229 break; 9230 case LibFunc_sqrt: 9231 case LibFunc_sqrtf: 9232 case LibFunc_sqrtl: 9233 case LibFunc_sqrt_finite: 9234 case LibFunc_sqrtf_finite: 9235 case LibFunc_sqrtl_finite: 9236 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9237 return; 9238 break; 9239 case LibFunc_floor: 9240 case LibFunc_floorf: 9241 case LibFunc_floorl: 9242 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9243 return; 9244 break; 9245 case LibFunc_nearbyint: 9246 case LibFunc_nearbyintf: 9247 case LibFunc_nearbyintl: 9248 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9249 return; 9250 break; 9251 case LibFunc_ceil: 9252 case LibFunc_ceilf: 9253 case LibFunc_ceill: 9254 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9255 return; 9256 break; 9257 case LibFunc_rint: 9258 case LibFunc_rintf: 9259 case LibFunc_rintl: 9260 if (visitUnaryFloatCall(I, ISD::FRINT)) 9261 return; 9262 break; 9263 case LibFunc_round: 9264 case LibFunc_roundf: 9265 case LibFunc_roundl: 9266 if (visitUnaryFloatCall(I, ISD::FROUND)) 9267 return; 9268 break; 9269 case LibFunc_trunc: 9270 case LibFunc_truncf: 9271 case LibFunc_truncl: 9272 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9273 return; 9274 break; 9275 case LibFunc_log2: 9276 case LibFunc_log2f: 9277 case LibFunc_log2l: 9278 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9279 return; 9280 break; 9281 case LibFunc_exp2: 9282 case LibFunc_exp2f: 9283 case LibFunc_exp2l: 9284 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9285 return; 9286 break; 9287 case LibFunc_exp10: 9288 case LibFunc_exp10f: 9289 case LibFunc_exp10l: 9290 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9291 return; 9292 break; 9293 case LibFunc_ldexp: 9294 case LibFunc_ldexpf: 9295 case LibFunc_ldexpl: 9296 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9297 return; 9298 break; 9299 case LibFunc_memcmp: 9300 if (visitMemCmpBCmpCall(I)) 9301 return; 9302 break; 9303 case LibFunc_mempcpy: 9304 if (visitMemPCpyCall(I)) 9305 return; 9306 break; 9307 case LibFunc_memchr: 9308 if (visitMemChrCall(I)) 9309 return; 9310 break; 9311 case LibFunc_strcpy: 9312 if (visitStrCpyCall(I, false)) 9313 return; 9314 break; 9315 case LibFunc_stpcpy: 9316 if (visitStrCpyCall(I, true)) 9317 return; 9318 break; 9319 case LibFunc_strcmp: 9320 if (visitStrCmpCall(I)) 9321 return; 9322 break; 9323 case LibFunc_strlen: 9324 if (visitStrLenCall(I)) 9325 return; 9326 break; 9327 case LibFunc_strnlen: 9328 if (visitStrNLenCall(I)) 9329 return; 9330 break; 9331 } 9332 } 9333 } 9334 9335 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9336 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9337 return; 9338 } 9339 9340 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9341 // have to do anything here to lower funclet bundles. 9342 // CFGuardTarget bundles are lowered in LowerCallTo. 9343 assert(!I.hasOperandBundlesOtherThan( 9344 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9345 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9346 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9347 LLVMContext::OB_convergencectrl}) && 9348 "Cannot lower calls with arbitrary operand bundles!"); 9349 9350 SDValue Callee = getValue(I.getCalledOperand()); 9351 9352 if (I.hasDeoptState()) 9353 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9354 else 9355 // Check if we can potentially perform a tail call. More detailed checking 9356 // is be done within LowerCallTo, after more information about the call is 9357 // known. 9358 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9359 } 9360 9361 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9362 const CallBase &CB, const BasicBlock *EHPadBB) { 9363 auto PAB = CB.getOperandBundle("ptrauth"); 9364 const Value *CalleeV = CB.getCalledOperand(); 9365 9366 // Gather the call ptrauth data from the operand bundle: 9367 // [ i32 <key>, i64 <discriminator> ] 9368 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9369 const Value *Discriminator = PAB->Inputs[1]; 9370 9371 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9372 assert(Discriminator->getType()->isIntegerTy(64) && 9373 "Invalid ptrauth discriminator"); 9374 9375 // Functions should never be ptrauth-called directly. 9376 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9377 9378 // Otherwise, do an authenticated indirect call. 9379 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9380 getValue(Discriminator)}; 9381 9382 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9383 EHPadBB, &PAI); 9384 } 9385 9386 namespace { 9387 9388 /// AsmOperandInfo - This contains information for each constraint that we are 9389 /// lowering. 9390 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9391 public: 9392 /// CallOperand - If this is the result output operand or a clobber 9393 /// this is null, otherwise it is the incoming operand to the CallInst. 9394 /// This gets modified as the asm is processed. 9395 SDValue CallOperand; 9396 9397 /// AssignedRegs - If this is a register or register class operand, this 9398 /// contains the set of register corresponding to the operand. 9399 RegsForValue AssignedRegs; 9400 9401 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9402 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9403 } 9404 9405 /// Whether or not this operand accesses memory 9406 bool hasMemory(const TargetLowering &TLI) const { 9407 // Indirect operand accesses access memory. 9408 if (isIndirect) 9409 return true; 9410 9411 for (const auto &Code : Codes) 9412 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9413 return true; 9414 9415 return false; 9416 } 9417 }; 9418 9419 9420 } // end anonymous namespace 9421 9422 /// Make sure that the output operand \p OpInfo and its corresponding input 9423 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9424 /// out). 9425 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9426 SDISelAsmOperandInfo &MatchingOpInfo, 9427 SelectionDAG &DAG) { 9428 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9429 return; 9430 9431 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9432 const auto &TLI = DAG.getTargetLoweringInfo(); 9433 9434 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9435 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9436 OpInfo.ConstraintVT); 9437 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9438 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9439 MatchingOpInfo.ConstraintVT); 9440 if ((OpInfo.ConstraintVT.isInteger() != 9441 MatchingOpInfo.ConstraintVT.isInteger()) || 9442 (MatchRC.second != InputRC.second)) { 9443 // FIXME: error out in a more elegant fashion 9444 report_fatal_error("Unsupported asm: input constraint" 9445 " with a matching output constraint of" 9446 " incompatible type!"); 9447 } 9448 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9449 } 9450 9451 /// Get a direct memory input to behave well as an indirect operand. 9452 /// This may introduce stores, hence the need for a \p Chain. 9453 /// \return The (possibly updated) chain. 9454 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9455 SDISelAsmOperandInfo &OpInfo, 9456 SelectionDAG &DAG) { 9457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9458 9459 // If we don't have an indirect input, put it in the constpool if we can, 9460 // otherwise spill it to a stack slot. 9461 // TODO: This isn't quite right. We need to handle these according to 9462 // the addressing mode that the constraint wants. Also, this may take 9463 // an additional register for the computation and we don't want that 9464 // either. 9465 9466 // If the operand is a float, integer, or vector constant, spill to a 9467 // constant pool entry to get its address. 9468 const Value *OpVal = OpInfo.CallOperandVal; 9469 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9470 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9471 OpInfo.CallOperand = DAG.getConstantPool( 9472 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9473 return Chain; 9474 } 9475 9476 // Otherwise, create a stack slot and emit a store to it before the asm. 9477 Type *Ty = OpVal->getType(); 9478 auto &DL = DAG.getDataLayout(); 9479 uint64_t TySize = DL.getTypeAllocSize(Ty); 9480 MachineFunction &MF = DAG.getMachineFunction(); 9481 int SSFI = MF.getFrameInfo().CreateStackObject( 9482 TySize, DL.getPrefTypeAlign(Ty), false); 9483 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9484 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9485 MachinePointerInfo::getFixedStack(MF, SSFI), 9486 TLI.getMemValueType(DL, Ty)); 9487 OpInfo.CallOperand = StackSlot; 9488 9489 return Chain; 9490 } 9491 9492 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9493 /// specified operand. We prefer to assign virtual registers, to allow the 9494 /// register allocator to handle the assignment process. However, if the asm 9495 /// uses features that we can't model on machineinstrs, we have SDISel do the 9496 /// allocation. This produces generally horrible, but correct, code. 9497 /// 9498 /// OpInfo describes the operand 9499 /// RefOpInfo describes the matching operand if any, the operand otherwise 9500 static std::optional<unsigned> 9501 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9502 SDISelAsmOperandInfo &OpInfo, 9503 SDISelAsmOperandInfo &RefOpInfo) { 9504 LLVMContext &Context = *DAG.getContext(); 9505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9506 9507 MachineFunction &MF = DAG.getMachineFunction(); 9508 SmallVector<unsigned, 4> Regs; 9509 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9510 9511 // No work to do for memory/address operands. 9512 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9513 OpInfo.ConstraintType == TargetLowering::C_Address) 9514 return std::nullopt; 9515 9516 // If this is a constraint for a single physreg, or a constraint for a 9517 // register class, find it. 9518 unsigned AssignedReg; 9519 const TargetRegisterClass *RC; 9520 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9521 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9522 // RC is unset only on failure. Return immediately. 9523 if (!RC) 9524 return std::nullopt; 9525 9526 // Get the actual register value type. This is important, because the user 9527 // may have asked for (e.g.) the AX register in i32 type. We need to 9528 // remember that AX is actually i16 to get the right extension. 9529 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9530 9531 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9532 // If this is an FP operand in an integer register (or visa versa), or more 9533 // generally if the operand value disagrees with the register class we plan 9534 // to stick it in, fix the operand type. 9535 // 9536 // If this is an input value, the bitcast to the new type is done now. 9537 // Bitcast for output value is done at the end of visitInlineAsm(). 9538 if ((OpInfo.Type == InlineAsm::isOutput || 9539 OpInfo.Type == InlineAsm::isInput) && 9540 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9541 // Try to convert to the first EVT that the reg class contains. If the 9542 // types are identical size, use a bitcast to convert (e.g. two differing 9543 // vector types). Note: output bitcast is done at the end of 9544 // visitInlineAsm(). 9545 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9546 // Exclude indirect inputs while they are unsupported because the code 9547 // to perform the load is missing and thus OpInfo.CallOperand still 9548 // refers to the input address rather than the pointed-to value. 9549 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9550 OpInfo.CallOperand = 9551 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9552 OpInfo.ConstraintVT = RegVT; 9553 // If the operand is an FP value and we want it in integer registers, 9554 // use the corresponding integer type. This turns an f64 value into 9555 // i64, which can be passed with two i32 values on a 32-bit machine. 9556 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9557 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9558 if (OpInfo.Type == InlineAsm::isInput) 9559 OpInfo.CallOperand = 9560 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9561 OpInfo.ConstraintVT = VT; 9562 } 9563 } 9564 } 9565 9566 // No need to allocate a matching input constraint since the constraint it's 9567 // matching to has already been allocated. 9568 if (OpInfo.isMatchingInputConstraint()) 9569 return std::nullopt; 9570 9571 EVT ValueVT = OpInfo.ConstraintVT; 9572 if (OpInfo.ConstraintVT == MVT::Other) 9573 ValueVT = RegVT; 9574 9575 // Initialize NumRegs. 9576 unsigned NumRegs = 1; 9577 if (OpInfo.ConstraintVT != MVT::Other) 9578 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9579 9580 // If this is a constraint for a specific physical register, like {r17}, 9581 // assign it now. 9582 9583 // If this associated to a specific register, initialize iterator to correct 9584 // place. If virtual, make sure we have enough registers 9585 9586 // Initialize iterator if necessary 9587 TargetRegisterClass::iterator I = RC->begin(); 9588 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9589 9590 // Do not check for single registers. 9591 if (AssignedReg) { 9592 I = std::find(I, RC->end(), AssignedReg); 9593 if (I == RC->end()) { 9594 // RC does not contain the selected register, which indicates a 9595 // mismatch between the register and the required type/bitwidth. 9596 return {AssignedReg}; 9597 } 9598 } 9599 9600 for (; NumRegs; --NumRegs, ++I) { 9601 assert(I != RC->end() && "Ran out of registers to allocate!"); 9602 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9603 Regs.push_back(R); 9604 } 9605 9606 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9607 return std::nullopt; 9608 } 9609 9610 static unsigned 9611 findMatchingInlineAsmOperand(unsigned OperandNo, 9612 const std::vector<SDValue> &AsmNodeOperands) { 9613 // Scan until we find the definition we already emitted of this operand. 9614 unsigned CurOp = InlineAsm::Op_FirstOperand; 9615 for (; OperandNo; --OperandNo) { 9616 // Advance to the next operand. 9617 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9618 const InlineAsm::Flag F(OpFlag); 9619 assert( 9620 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9621 "Skipped past definitions?"); 9622 CurOp += F.getNumOperandRegisters() + 1; 9623 } 9624 return CurOp; 9625 } 9626 9627 namespace { 9628 9629 class ExtraFlags { 9630 unsigned Flags = 0; 9631 9632 public: 9633 explicit ExtraFlags(const CallBase &Call) { 9634 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9635 if (IA->hasSideEffects()) 9636 Flags |= InlineAsm::Extra_HasSideEffects; 9637 if (IA->isAlignStack()) 9638 Flags |= InlineAsm::Extra_IsAlignStack; 9639 if (Call.isConvergent()) 9640 Flags |= InlineAsm::Extra_IsConvergent; 9641 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9642 } 9643 9644 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9645 // Ideally, we would only check against memory constraints. However, the 9646 // meaning of an Other constraint can be target-specific and we can't easily 9647 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9648 // for Other constraints as well. 9649 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9650 OpInfo.ConstraintType == TargetLowering::C_Other) { 9651 if (OpInfo.Type == InlineAsm::isInput) 9652 Flags |= InlineAsm::Extra_MayLoad; 9653 else if (OpInfo.Type == InlineAsm::isOutput) 9654 Flags |= InlineAsm::Extra_MayStore; 9655 else if (OpInfo.Type == InlineAsm::isClobber) 9656 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9657 } 9658 } 9659 9660 unsigned get() const { return Flags; } 9661 }; 9662 9663 } // end anonymous namespace 9664 9665 static bool isFunction(SDValue Op) { 9666 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9667 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9668 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9669 9670 // In normal "call dllimport func" instruction (non-inlineasm) it force 9671 // indirect access by specifing call opcode. And usually specially print 9672 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9673 // not do in this way now. (In fact, this is similar with "Data Access" 9674 // action). So here we ignore dllimport function. 9675 if (Fn && !Fn->hasDLLImportStorageClass()) 9676 return true; 9677 } 9678 } 9679 return false; 9680 } 9681 9682 /// visitInlineAsm - Handle a call to an InlineAsm object. 9683 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9684 const BasicBlock *EHPadBB) { 9685 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9686 9687 /// ConstraintOperands - Information about all of the constraints. 9688 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9689 9690 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9691 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9692 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9693 9694 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9695 // AsmDialect, MayLoad, MayStore). 9696 bool HasSideEffect = IA->hasSideEffects(); 9697 ExtraFlags ExtraInfo(Call); 9698 9699 for (auto &T : TargetConstraints) { 9700 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9701 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9702 9703 if (OpInfo.CallOperandVal) 9704 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9705 9706 if (!HasSideEffect) 9707 HasSideEffect = OpInfo.hasMemory(TLI); 9708 9709 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9710 // FIXME: Could we compute this on OpInfo rather than T? 9711 9712 // Compute the constraint code and ConstraintType to use. 9713 TLI.ComputeConstraintToUse(T, SDValue()); 9714 9715 if (T.ConstraintType == TargetLowering::C_Immediate && 9716 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9717 // We've delayed emitting a diagnostic like the "n" constraint because 9718 // inlining could cause an integer showing up. 9719 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9720 "' expects an integer constant " 9721 "expression"); 9722 9723 ExtraInfo.update(T); 9724 } 9725 9726 // We won't need to flush pending loads if this asm doesn't touch 9727 // memory and is nonvolatile. 9728 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9729 9730 bool EmitEHLabels = isa<InvokeInst>(Call); 9731 if (EmitEHLabels) { 9732 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9733 } 9734 bool IsCallBr = isa<CallBrInst>(Call); 9735 9736 if (IsCallBr || EmitEHLabels) { 9737 // If this is a callbr or invoke we need to flush pending exports since 9738 // inlineasm_br and invoke are terminators. 9739 // We need to do this before nodes are glued to the inlineasm_br node. 9740 Chain = getControlRoot(); 9741 } 9742 9743 MCSymbol *BeginLabel = nullptr; 9744 if (EmitEHLabels) { 9745 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9746 } 9747 9748 int OpNo = -1; 9749 SmallVector<StringRef> AsmStrs; 9750 IA->collectAsmStrs(AsmStrs); 9751 9752 // Second pass over the constraints: compute which constraint option to use. 9753 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9754 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9755 OpNo++; 9756 9757 // If this is an output operand with a matching input operand, look up the 9758 // matching input. If their types mismatch, e.g. one is an integer, the 9759 // other is floating point, or their sizes are different, flag it as an 9760 // error. 9761 if (OpInfo.hasMatchingInput()) { 9762 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9763 patchMatchingInput(OpInfo, Input, DAG); 9764 } 9765 9766 // Compute the constraint code and ConstraintType to use. 9767 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9768 9769 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9770 OpInfo.Type == InlineAsm::isClobber) || 9771 OpInfo.ConstraintType == TargetLowering::C_Address) 9772 continue; 9773 9774 // In Linux PIC model, there are 4 cases about value/label addressing: 9775 // 9776 // 1: Function call or Label jmp inside the module. 9777 // 2: Data access (such as global variable, static variable) inside module. 9778 // 3: Function call or Label jmp outside the module. 9779 // 4: Data access (such as global variable) outside the module. 9780 // 9781 // Due to current llvm inline asm architecture designed to not "recognize" 9782 // the asm code, there are quite troubles for us to treat mem addressing 9783 // differently for same value/adress used in different instuctions. 9784 // For example, in pic model, call a func may in plt way or direclty 9785 // pc-related, but lea/mov a function adress may use got. 9786 // 9787 // Here we try to "recognize" function call for the case 1 and case 3 in 9788 // inline asm. And try to adjust the constraint for them. 9789 // 9790 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9791 // label, so here we don't handle jmp function label now, but we need to 9792 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9793 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9794 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9795 TM.getCodeModel() != CodeModel::Large) { 9796 OpInfo.isIndirect = false; 9797 OpInfo.ConstraintType = TargetLowering::C_Address; 9798 } 9799 9800 // If this is a memory input, and if the operand is not indirect, do what we 9801 // need to provide an address for the memory input. 9802 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9803 !OpInfo.isIndirect) { 9804 assert((OpInfo.isMultipleAlternative || 9805 (OpInfo.Type == InlineAsm::isInput)) && 9806 "Can only indirectify direct input operands!"); 9807 9808 // Memory operands really want the address of the value. 9809 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9810 9811 // There is no longer a Value* corresponding to this operand. 9812 OpInfo.CallOperandVal = nullptr; 9813 9814 // It is now an indirect operand. 9815 OpInfo.isIndirect = true; 9816 } 9817 9818 } 9819 9820 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9821 std::vector<SDValue> AsmNodeOperands; 9822 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9823 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9824 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9825 9826 // If we have a !srcloc metadata node associated with it, we want to attach 9827 // this to the ultimately generated inline asm machineinstr. To do this, we 9828 // pass in the third operand as this (potentially null) inline asm MDNode. 9829 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9830 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9831 9832 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9833 // bits as operand 3. 9834 AsmNodeOperands.push_back(DAG.getTargetConstant( 9835 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9836 9837 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9838 // this, assign virtual and physical registers for inputs and otput. 9839 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9840 // Assign Registers. 9841 SDISelAsmOperandInfo &RefOpInfo = 9842 OpInfo.isMatchingInputConstraint() 9843 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9844 : OpInfo; 9845 const auto RegError = 9846 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9847 if (RegError) { 9848 const MachineFunction &MF = DAG.getMachineFunction(); 9849 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9850 const char *RegName = TRI.getName(*RegError); 9851 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9852 "' allocated for constraint '" + 9853 Twine(OpInfo.ConstraintCode) + 9854 "' does not match required type"); 9855 return; 9856 } 9857 9858 auto DetectWriteToReservedRegister = [&]() { 9859 const MachineFunction &MF = DAG.getMachineFunction(); 9860 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9861 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9862 if (Register::isPhysicalRegister(Reg) && 9863 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9864 const char *RegName = TRI.getName(Reg); 9865 emitInlineAsmError(Call, "write to reserved register '" + 9866 Twine(RegName) + "'"); 9867 return true; 9868 } 9869 } 9870 return false; 9871 }; 9872 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9873 (OpInfo.Type == InlineAsm::isInput && 9874 !OpInfo.isMatchingInputConstraint())) && 9875 "Only address as input operand is allowed."); 9876 9877 switch (OpInfo.Type) { 9878 case InlineAsm::isOutput: 9879 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9880 const InlineAsm::ConstraintCode ConstraintID = 9881 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9882 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9883 "Failed to convert memory constraint code to constraint id."); 9884 9885 // Add information to the INLINEASM node to know about this output. 9886 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9887 OpFlags.setMemConstraint(ConstraintID); 9888 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9889 MVT::i32)); 9890 AsmNodeOperands.push_back(OpInfo.CallOperand); 9891 } else { 9892 // Otherwise, this outputs to a register (directly for C_Register / 9893 // C_RegisterClass, and a target-defined fashion for 9894 // C_Immediate/C_Other). Find a register that we can use. 9895 if (OpInfo.AssignedRegs.Regs.empty()) { 9896 emitInlineAsmError( 9897 Call, "couldn't allocate output register for constraint '" + 9898 Twine(OpInfo.ConstraintCode) + "'"); 9899 return; 9900 } 9901 9902 if (DetectWriteToReservedRegister()) 9903 return; 9904 9905 // Add information to the INLINEASM node to know that this register is 9906 // set. 9907 OpInfo.AssignedRegs.AddInlineAsmOperands( 9908 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9909 : InlineAsm::Kind::RegDef, 9910 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9911 } 9912 break; 9913 9914 case InlineAsm::isInput: 9915 case InlineAsm::isLabel: { 9916 SDValue InOperandVal = OpInfo.CallOperand; 9917 9918 if (OpInfo.isMatchingInputConstraint()) { 9919 // If this is required to match an output register we have already set, 9920 // just use its register. 9921 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9922 AsmNodeOperands); 9923 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9924 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9925 if (OpInfo.isIndirect) { 9926 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9927 emitInlineAsmError(Call, "inline asm not supported yet: " 9928 "don't know how to handle tied " 9929 "indirect register inputs"); 9930 return; 9931 } 9932 9933 SmallVector<unsigned, 4> Regs; 9934 MachineFunction &MF = DAG.getMachineFunction(); 9935 MachineRegisterInfo &MRI = MF.getRegInfo(); 9936 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9937 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9938 Register TiedReg = R->getReg(); 9939 MVT RegVT = R->getSimpleValueType(0); 9940 const TargetRegisterClass *RC = 9941 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9942 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9943 : TRI.getMinimalPhysRegClass(TiedReg); 9944 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9945 Regs.push_back(MRI.createVirtualRegister(RC)); 9946 9947 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9948 9949 SDLoc dl = getCurSDLoc(); 9950 // Use the produced MatchedRegs object to 9951 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9952 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9953 OpInfo.getMatchedOperand(), dl, DAG, 9954 AsmNodeOperands); 9955 break; 9956 } 9957 9958 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9959 assert(Flag.getNumOperandRegisters() == 1 && 9960 "Unexpected number of operands"); 9961 // Add information to the INLINEASM node to know about this input. 9962 // See InlineAsm.h isUseOperandTiedToDef. 9963 Flag.clearMemConstraint(); 9964 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9965 AsmNodeOperands.push_back(DAG.getTargetConstant( 9966 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9967 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9968 break; 9969 } 9970 9971 // Treat indirect 'X' constraint as memory. 9972 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9973 OpInfo.isIndirect) 9974 OpInfo.ConstraintType = TargetLowering::C_Memory; 9975 9976 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9977 OpInfo.ConstraintType == TargetLowering::C_Other) { 9978 std::vector<SDValue> Ops; 9979 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9980 Ops, DAG); 9981 if (Ops.empty()) { 9982 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9983 if (isa<ConstantSDNode>(InOperandVal)) { 9984 emitInlineAsmError(Call, "value out of range for constraint '" + 9985 Twine(OpInfo.ConstraintCode) + "'"); 9986 return; 9987 } 9988 9989 emitInlineAsmError(Call, 9990 "invalid operand for inline asm constraint '" + 9991 Twine(OpInfo.ConstraintCode) + "'"); 9992 return; 9993 } 9994 9995 // Add information to the INLINEASM node to know about this input. 9996 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9997 AsmNodeOperands.push_back(DAG.getTargetConstant( 9998 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9999 llvm::append_range(AsmNodeOperands, Ops); 10000 break; 10001 } 10002 10003 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10004 assert((OpInfo.isIndirect || 10005 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10006 "Operand must be indirect to be a mem!"); 10007 assert(InOperandVal.getValueType() == 10008 TLI.getPointerTy(DAG.getDataLayout()) && 10009 "Memory operands expect pointer values"); 10010 10011 const InlineAsm::ConstraintCode ConstraintID = 10012 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10013 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10014 "Failed to convert memory constraint code to constraint id."); 10015 10016 // Add information to the INLINEASM node to know about this input. 10017 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10018 ResOpType.setMemConstraint(ConstraintID); 10019 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10020 getCurSDLoc(), 10021 MVT::i32)); 10022 AsmNodeOperands.push_back(InOperandVal); 10023 break; 10024 } 10025 10026 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10027 const InlineAsm::ConstraintCode ConstraintID = 10028 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10029 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10030 "Failed to convert memory constraint code to constraint id."); 10031 10032 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10033 10034 SDValue AsmOp = InOperandVal; 10035 if (isFunction(InOperandVal)) { 10036 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10037 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10038 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10039 InOperandVal.getValueType(), 10040 GA->getOffset()); 10041 } 10042 10043 // Add information to the INLINEASM node to know about this input. 10044 ResOpType.setMemConstraint(ConstraintID); 10045 10046 AsmNodeOperands.push_back( 10047 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10048 10049 AsmNodeOperands.push_back(AsmOp); 10050 break; 10051 } 10052 10053 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10054 OpInfo.ConstraintType != TargetLowering::C_Register) { 10055 emitInlineAsmError(Call, "unknown asm constraint '" + 10056 Twine(OpInfo.ConstraintCode) + "'"); 10057 return; 10058 } 10059 10060 // TODO: Support this. 10061 if (OpInfo.isIndirect) { 10062 emitInlineAsmError( 10063 Call, "Don't know how to handle indirect register inputs yet " 10064 "for constraint '" + 10065 Twine(OpInfo.ConstraintCode) + "'"); 10066 return; 10067 } 10068 10069 // Copy the input into the appropriate registers. 10070 if (OpInfo.AssignedRegs.Regs.empty()) { 10071 emitInlineAsmError(Call, 10072 "couldn't allocate input reg for constraint '" + 10073 Twine(OpInfo.ConstraintCode) + "'"); 10074 return; 10075 } 10076 10077 if (DetectWriteToReservedRegister()) 10078 return; 10079 10080 SDLoc dl = getCurSDLoc(); 10081 10082 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10083 &Call); 10084 10085 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10086 0, dl, DAG, AsmNodeOperands); 10087 break; 10088 } 10089 case InlineAsm::isClobber: 10090 // Add the clobbered value to the operand list, so that the register 10091 // allocator is aware that the physreg got clobbered. 10092 if (!OpInfo.AssignedRegs.Regs.empty()) 10093 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10094 false, 0, getCurSDLoc(), DAG, 10095 AsmNodeOperands); 10096 break; 10097 } 10098 } 10099 10100 // Finish up input operands. Set the input chain and add the flag last. 10101 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10102 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10103 10104 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10105 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10106 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10107 Glue = Chain.getValue(1); 10108 10109 // Do additional work to generate outputs. 10110 10111 SmallVector<EVT, 1> ResultVTs; 10112 SmallVector<SDValue, 1> ResultValues; 10113 SmallVector<SDValue, 8> OutChains; 10114 10115 llvm::Type *CallResultType = Call.getType(); 10116 ArrayRef<Type *> ResultTypes; 10117 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10118 ResultTypes = StructResult->elements(); 10119 else if (!CallResultType->isVoidTy()) 10120 ResultTypes = ArrayRef(CallResultType); 10121 10122 auto CurResultType = ResultTypes.begin(); 10123 auto handleRegAssign = [&](SDValue V) { 10124 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10125 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10126 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10127 ++CurResultType; 10128 // If the type of the inline asm call site return value is different but has 10129 // same size as the type of the asm output bitcast it. One example of this 10130 // is for vectors with different width / number of elements. This can 10131 // happen for register classes that can contain multiple different value 10132 // types. The preg or vreg allocated may not have the same VT as was 10133 // expected. 10134 // 10135 // This can also happen for a return value that disagrees with the register 10136 // class it is put in, eg. a double in a general-purpose register on a 10137 // 32-bit machine. 10138 if (ResultVT != V.getValueType() && 10139 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10140 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10141 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10142 V.getValueType().isInteger()) { 10143 // If a result value was tied to an input value, the computed result 10144 // may have a wider width than the expected result. Extract the 10145 // relevant portion. 10146 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10147 } 10148 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10149 ResultVTs.push_back(ResultVT); 10150 ResultValues.push_back(V); 10151 }; 10152 10153 // Deal with output operands. 10154 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10155 if (OpInfo.Type == InlineAsm::isOutput) { 10156 SDValue Val; 10157 // Skip trivial output operands. 10158 if (OpInfo.AssignedRegs.Regs.empty()) 10159 continue; 10160 10161 switch (OpInfo.ConstraintType) { 10162 case TargetLowering::C_Register: 10163 case TargetLowering::C_RegisterClass: 10164 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10165 Chain, &Glue, &Call); 10166 break; 10167 case TargetLowering::C_Immediate: 10168 case TargetLowering::C_Other: 10169 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10170 OpInfo, DAG); 10171 break; 10172 case TargetLowering::C_Memory: 10173 break; // Already handled. 10174 case TargetLowering::C_Address: 10175 break; // Silence warning. 10176 case TargetLowering::C_Unknown: 10177 assert(false && "Unexpected unknown constraint"); 10178 } 10179 10180 // Indirect output manifest as stores. Record output chains. 10181 if (OpInfo.isIndirect) { 10182 const Value *Ptr = OpInfo.CallOperandVal; 10183 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10184 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10185 MachinePointerInfo(Ptr)); 10186 OutChains.push_back(Store); 10187 } else { 10188 // generate CopyFromRegs to associated registers. 10189 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10190 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10191 for (const SDValue &V : Val->op_values()) 10192 handleRegAssign(V); 10193 } else 10194 handleRegAssign(Val); 10195 } 10196 } 10197 } 10198 10199 // Set results. 10200 if (!ResultValues.empty()) { 10201 assert(CurResultType == ResultTypes.end() && 10202 "Mismatch in number of ResultTypes"); 10203 assert(ResultValues.size() == ResultTypes.size() && 10204 "Mismatch in number of output operands in asm result"); 10205 10206 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10207 DAG.getVTList(ResultVTs), ResultValues); 10208 setValue(&Call, V); 10209 } 10210 10211 // Collect store chains. 10212 if (!OutChains.empty()) 10213 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10214 10215 if (EmitEHLabels) { 10216 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10217 } 10218 10219 // Only Update Root if inline assembly has a memory effect. 10220 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10221 EmitEHLabels) 10222 DAG.setRoot(Chain); 10223 } 10224 10225 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10226 const Twine &Message) { 10227 LLVMContext &Ctx = *DAG.getContext(); 10228 Ctx.emitError(&Call, Message); 10229 10230 // Make sure we leave the DAG in a valid state 10231 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10232 SmallVector<EVT, 1> ValueVTs; 10233 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10234 10235 if (ValueVTs.empty()) 10236 return; 10237 10238 SmallVector<SDValue, 1> Ops; 10239 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 10240 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 10241 10242 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10243 } 10244 10245 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10246 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10247 MVT::Other, getRoot(), 10248 getValue(I.getArgOperand(0)), 10249 DAG.getSrcValue(I.getArgOperand(0)))); 10250 } 10251 10252 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10254 const DataLayout &DL = DAG.getDataLayout(); 10255 SDValue V = DAG.getVAArg( 10256 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10257 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10258 DL.getABITypeAlign(I.getType()).value()); 10259 DAG.setRoot(V.getValue(1)); 10260 10261 if (I.getType()->isPointerTy()) 10262 V = DAG.getPtrExtOrTrunc( 10263 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10264 setValue(&I, V); 10265 } 10266 10267 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10268 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10269 MVT::Other, getRoot(), 10270 getValue(I.getArgOperand(0)), 10271 DAG.getSrcValue(I.getArgOperand(0)))); 10272 } 10273 10274 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10275 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10276 MVT::Other, getRoot(), 10277 getValue(I.getArgOperand(0)), 10278 getValue(I.getArgOperand(1)), 10279 DAG.getSrcValue(I.getArgOperand(0)), 10280 DAG.getSrcValue(I.getArgOperand(1)))); 10281 } 10282 10283 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10284 const Instruction &I, 10285 SDValue Op) { 10286 std::optional<ConstantRange> CR = getRange(I); 10287 10288 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10289 return Op; 10290 10291 APInt Lo = CR->getUnsignedMin(); 10292 if (!Lo.isMinValue()) 10293 return Op; 10294 10295 APInt Hi = CR->getUnsignedMax(); 10296 unsigned Bits = std::max(Hi.getActiveBits(), 10297 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10298 10299 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10300 10301 SDLoc SL = getCurSDLoc(); 10302 10303 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10304 DAG.getValueType(SmallVT)); 10305 unsigned NumVals = Op.getNode()->getNumValues(); 10306 if (NumVals == 1) 10307 return ZExt; 10308 10309 SmallVector<SDValue, 4> Ops; 10310 10311 Ops.push_back(ZExt); 10312 for (unsigned I = 1; I != NumVals; ++I) 10313 Ops.push_back(Op.getValue(I)); 10314 10315 return DAG.getMergeValues(Ops, SL); 10316 } 10317 10318 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10319 /// the call being lowered. 10320 /// 10321 /// This is a helper for lowering intrinsics that follow a target calling 10322 /// convention or require stack pointer adjustment. Only a subset of the 10323 /// intrinsic's operands need to participate in the calling convention. 10324 void SelectionDAGBuilder::populateCallLoweringInfo( 10325 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10326 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10327 AttributeSet RetAttrs, bool IsPatchPoint) { 10328 TargetLowering::ArgListTy Args; 10329 Args.reserve(NumArgs); 10330 10331 // Populate the argument list. 10332 // Attributes for args start at offset 1, after the return attribute. 10333 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10334 ArgI != ArgE; ++ArgI) { 10335 const Value *V = Call->getOperand(ArgI); 10336 10337 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10338 10339 TargetLowering::ArgListEntry Entry; 10340 Entry.Node = getValue(V); 10341 Entry.Ty = V->getType(); 10342 Entry.setAttributes(Call, ArgI); 10343 Args.push_back(Entry); 10344 } 10345 10346 CLI.setDebugLoc(getCurSDLoc()) 10347 .setChain(getRoot()) 10348 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10349 RetAttrs) 10350 .setDiscardResult(Call->use_empty()) 10351 .setIsPatchPoint(IsPatchPoint) 10352 .setIsPreallocated( 10353 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10354 } 10355 10356 /// Add a stack map intrinsic call's live variable operands to a stackmap 10357 /// or patchpoint target node's operand list. 10358 /// 10359 /// Constants are converted to TargetConstants purely as an optimization to 10360 /// avoid constant materialization and register allocation. 10361 /// 10362 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10363 /// generate addess computation nodes, and so FinalizeISel can convert the 10364 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10365 /// address materialization and register allocation, but may also be required 10366 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10367 /// alloca in the entry block, then the runtime may assume that the alloca's 10368 /// StackMap location can be read immediately after compilation and that the 10369 /// location is valid at any point during execution (this is similar to the 10370 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10371 /// only available in a register, then the runtime would need to trap when 10372 /// execution reaches the StackMap in order to read the alloca's location. 10373 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10374 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10375 SelectionDAGBuilder &Builder) { 10376 SelectionDAG &DAG = Builder.DAG; 10377 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10378 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10379 10380 // Things on the stack are pointer-typed, meaning that they are already 10381 // legal and can be emitted directly to target nodes. 10382 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10383 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10384 } else { 10385 // Otherwise emit a target independent node to be legalised. 10386 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10387 } 10388 } 10389 } 10390 10391 /// Lower llvm.experimental.stackmap. 10392 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10393 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10394 // [live variables...]) 10395 10396 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10397 10398 SDValue Chain, InGlue, Callee; 10399 SmallVector<SDValue, 32> Ops; 10400 10401 SDLoc DL = getCurSDLoc(); 10402 Callee = getValue(CI.getCalledOperand()); 10403 10404 // The stackmap intrinsic only records the live variables (the arguments 10405 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10406 // intrinsic, this won't be lowered to a function call. This means we don't 10407 // have to worry about calling conventions and target specific lowering code. 10408 // Instead we perform the call lowering right here. 10409 // 10410 // chain, flag = CALLSEQ_START(chain, 0, 0) 10411 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10412 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10413 // 10414 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10415 InGlue = Chain.getValue(1); 10416 10417 // Add the STACKMAP operands, starting with DAG house-keeping. 10418 Ops.push_back(Chain); 10419 Ops.push_back(InGlue); 10420 10421 // Add the <id>, <numShadowBytes> operands. 10422 // 10423 // These do not require legalisation, and can be emitted directly to target 10424 // constant nodes. 10425 SDValue ID = getValue(CI.getArgOperand(0)); 10426 assert(ID.getValueType() == MVT::i64); 10427 SDValue IDConst = 10428 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10429 Ops.push_back(IDConst); 10430 10431 SDValue Shad = getValue(CI.getArgOperand(1)); 10432 assert(Shad.getValueType() == MVT::i32); 10433 SDValue ShadConst = 10434 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10435 Ops.push_back(ShadConst); 10436 10437 // Add the live variables. 10438 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10439 10440 // Create the STACKMAP node. 10441 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10442 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10443 InGlue = Chain.getValue(1); 10444 10445 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10446 10447 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10448 10449 // Set the root to the target-lowered call chain. 10450 DAG.setRoot(Chain); 10451 10452 // Inform the Frame Information that we have a stackmap in this function. 10453 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10454 } 10455 10456 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10457 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10458 const BasicBlock *EHPadBB) { 10459 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10460 // i32 <numBytes>, 10461 // i8* <target>, 10462 // i32 <numArgs>, 10463 // [Args...], 10464 // [live variables...]) 10465 10466 CallingConv::ID CC = CB.getCallingConv(); 10467 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10468 bool HasDef = !CB.getType()->isVoidTy(); 10469 SDLoc dl = getCurSDLoc(); 10470 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10471 10472 // Handle immediate and symbolic callees. 10473 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10474 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10475 /*isTarget=*/true); 10476 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10477 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10478 SDLoc(SymbolicCallee), 10479 SymbolicCallee->getValueType(0)); 10480 10481 // Get the real number of arguments participating in the call <numArgs> 10482 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10483 unsigned NumArgs = NArgVal->getAsZExtVal(); 10484 10485 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10486 // Intrinsics include all meta-operands up to but not including CC. 10487 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10488 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10489 "Not enough arguments provided to the patchpoint intrinsic"); 10490 10491 // For AnyRegCC the arguments are lowered later on manually. 10492 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10493 Type *ReturnTy = 10494 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10495 10496 TargetLowering::CallLoweringInfo CLI(DAG); 10497 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10498 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10499 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10500 10501 SDNode *CallEnd = Result.second.getNode(); 10502 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10503 CallEnd = CallEnd->getOperand(0).getNode(); 10504 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10505 CallEnd = CallEnd->getOperand(0).getNode(); 10506 10507 /// Get a call instruction from the call sequence chain. 10508 /// Tail calls are not allowed. 10509 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10510 "Expected a callseq node."); 10511 SDNode *Call = CallEnd->getOperand(0).getNode(); 10512 bool HasGlue = Call->getGluedNode(); 10513 10514 // Replace the target specific call node with the patchable intrinsic. 10515 SmallVector<SDValue, 8> Ops; 10516 10517 // Push the chain. 10518 Ops.push_back(*(Call->op_begin())); 10519 10520 // Optionally, push the glue (if any). 10521 if (HasGlue) 10522 Ops.push_back(*(Call->op_end() - 1)); 10523 10524 // Push the register mask info. 10525 if (HasGlue) 10526 Ops.push_back(*(Call->op_end() - 2)); 10527 else 10528 Ops.push_back(*(Call->op_end() - 1)); 10529 10530 // Add the <id> and <numBytes> constants. 10531 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10532 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10533 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10534 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10535 10536 // Add the callee. 10537 Ops.push_back(Callee); 10538 10539 // Adjust <numArgs> to account for any arguments that have been passed on the 10540 // stack instead. 10541 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10542 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10543 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10544 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10545 10546 // Add the calling convention 10547 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10548 10549 // Add the arguments we omitted previously. The register allocator should 10550 // place these in any free register. 10551 if (IsAnyRegCC) 10552 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10553 Ops.push_back(getValue(CB.getArgOperand(i))); 10554 10555 // Push the arguments from the call instruction. 10556 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10557 Ops.append(Call->op_begin() + 2, e); 10558 10559 // Push live variables for the stack map. 10560 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10561 10562 SDVTList NodeTys; 10563 if (IsAnyRegCC && HasDef) { 10564 // Create the return types based on the intrinsic definition 10565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10566 SmallVector<EVT, 3> ValueVTs; 10567 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10568 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10569 10570 // There is always a chain and a glue type at the end 10571 ValueVTs.push_back(MVT::Other); 10572 ValueVTs.push_back(MVT::Glue); 10573 NodeTys = DAG.getVTList(ValueVTs); 10574 } else 10575 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10576 10577 // Replace the target specific call node with a PATCHPOINT node. 10578 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10579 10580 // Update the NodeMap. 10581 if (HasDef) { 10582 if (IsAnyRegCC) 10583 setValue(&CB, SDValue(PPV.getNode(), 0)); 10584 else 10585 setValue(&CB, Result.first); 10586 } 10587 10588 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10589 // call sequence. Furthermore the location of the chain and glue can change 10590 // when the AnyReg calling convention is used and the intrinsic returns a 10591 // value. 10592 if (IsAnyRegCC && HasDef) { 10593 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10594 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10595 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10596 } else 10597 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10598 DAG.DeleteNode(Call); 10599 10600 // Inform the Frame Information that we have a patchpoint in this function. 10601 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10602 } 10603 10604 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10605 unsigned Intrinsic) { 10606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10607 SDValue Op1 = getValue(I.getArgOperand(0)); 10608 SDValue Op2; 10609 if (I.arg_size() > 1) 10610 Op2 = getValue(I.getArgOperand(1)); 10611 SDLoc dl = getCurSDLoc(); 10612 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10613 SDValue Res; 10614 SDNodeFlags SDFlags; 10615 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10616 SDFlags.copyFMF(*FPMO); 10617 10618 switch (Intrinsic) { 10619 case Intrinsic::vector_reduce_fadd: 10620 if (SDFlags.hasAllowReassociation()) 10621 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10622 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10623 SDFlags); 10624 else 10625 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10626 break; 10627 case Intrinsic::vector_reduce_fmul: 10628 if (SDFlags.hasAllowReassociation()) 10629 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10630 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10631 SDFlags); 10632 else 10633 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10634 break; 10635 case Intrinsic::vector_reduce_add: 10636 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10637 break; 10638 case Intrinsic::vector_reduce_mul: 10639 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10640 break; 10641 case Intrinsic::vector_reduce_and: 10642 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10643 break; 10644 case Intrinsic::vector_reduce_or: 10645 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10646 break; 10647 case Intrinsic::vector_reduce_xor: 10648 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10649 break; 10650 case Intrinsic::vector_reduce_smax: 10651 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10652 break; 10653 case Intrinsic::vector_reduce_smin: 10654 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10655 break; 10656 case Intrinsic::vector_reduce_umax: 10657 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10658 break; 10659 case Intrinsic::vector_reduce_umin: 10660 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10661 break; 10662 case Intrinsic::vector_reduce_fmax: 10663 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10664 break; 10665 case Intrinsic::vector_reduce_fmin: 10666 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10667 break; 10668 case Intrinsic::vector_reduce_fmaximum: 10669 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10670 break; 10671 case Intrinsic::vector_reduce_fminimum: 10672 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10673 break; 10674 default: 10675 llvm_unreachable("Unhandled vector reduce intrinsic"); 10676 } 10677 setValue(&I, Res); 10678 } 10679 10680 /// Returns an AttributeList representing the attributes applied to the return 10681 /// value of the given call. 10682 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10683 SmallVector<Attribute::AttrKind, 2> Attrs; 10684 if (CLI.RetSExt) 10685 Attrs.push_back(Attribute::SExt); 10686 if (CLI.RetZExt) 10687 Attrs.push_back(Attribute::ZExt); 10688 if (CLI.IsInReg) 10689 Attrs.push_back(Attribute::InReg); 10690 10691 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10692 Attrs); 10693 } 10694 10695 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10696 /// implementation, which just calls LowerCall. 10697 /// FIXME: When all targets are 10698 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10699 std::pair<SDValue, SDValue> 10700 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10701 // Handle the incoming return values from the call. 10702 CLI.Ins.clear(); 10703 Type *OrigRetTy = CLI.RetTy; 10704 SmallVector<EVT, 4> RetTys; 10705 SmallVector<TypeSize, 4> Offsets; 10706 auto &DL = CLI.DAG.getDataLayout(); 10707 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10708 10709 if (CLI.IsPostTypeLegalization) { 10710 // If we are lowering a libcall after legalization, split the return type. 10711 SmallVector<EVT, 4> OldRetTys; 10712 SmallVector<TypeSize, 4> OldOffsets; 10713 RetTys.swap(OldRetTys); 10714 Offsets.swap(OldOffsets); 10715 10716 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10717 EVT RetVT = OldRetTys[i]; 10718 uint64_t Offset = OldOffsets[i]; 10719 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10720 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10721 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10722 RetTys.append(NumRegs, RegisterVT); 10723 for (unsigned j = 0; j != NumRegs; ++j) 10724 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10725 } 10726 } 10727 10728 SmallVector<ISD::OutputArg, 4> Outs; 10729 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10730 10731 bool CanLowerReturn = 10732 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10733 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10734 10735 SDValue DemoteStackSlot; 10736 int DemoteStackIdx = -100; 10737 if (!CanLowerReturn) { 10738 // FIXME: equivalent assert? 10739 // assert(!CS.hasInAllocaArgument() && 10740 // "sret demotion is incompatible with inalloca"); 10741 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10742 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10743 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10744 DemoteStackIdx = 10745 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10746 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10747 DL.getAllocaAddrSpace()); 10748 10749 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10750 ArgListEntry Entry; 10751 Entry.Node = DemoteStackSlot; 10752 Entry.Ty = StackSlotPtrType; 10753 Entry.IsSExt = false; 10754 Entry.IsZExt = false; 10755 Entry.IsInReg = false; 10756 Entry.IsSRet = true; 10757 Entry.IsNest = false; 10758 Entry.IsByVal = false; 10759 Entry.IsByRef = false; 10760 Entry.IsReturned = false; 10761 Entry.IsSwiftSelf = false; 10762 Entry.IsSwiftAsync = false; 10763 Entry.IsSwiftError = false; 10764 Entry.IsCFGuardTarget = false; 10765 Entry.Alignment = Alignment; 10766 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10767 CLI.NumFixedArgs += 1; 10768 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10769 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10770 10771 // sret demotion isn't compatible with tail-calls, since the sret argument 10772 // points into the callers stack frame. 10773 CLI.IsTailCall = false; 10774 } else { 10775 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10776 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10777 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10778 ISD::ArgFlagsTy Flags; 10779 if (NeedsRegBlock) { 10780 Flags.setInConsecutiveRegs(); 10781 if (I == RetTys.size() - 1) 10782 Flags.setInConsecutiveRegsLast(); 10783 } 10784 EVT VT = RetTys[I]; 10785 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10786 CLI.CallConv, VT); 10787 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10788 CLI.CallConv, VT); 10789 for (unsigned i = 0; i != NumRegs; ++i) { 10790 ISD::InputArg MyFlags; 10791 MyFlags.Flags = Flags; 10792 MyFlags.VT = RegisterVT; 10793 MyFlags.ArgVT = VT; 10794 MyFlags.Used = CLI.IsReturnValueUsed; 10795 if (CLI.RetTy->isPointerTy()) { 10796 MyFlags.Flags.setPointer(); 10797 MyFlags.Flags.setPointerAddrSpace( 10798 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10799 } 10800 if (CLI.RetSExt) 10801 MyFlags.Flags.setSExt(); 10802 if (CLI.RetZExt) 10803 MyFlags.Flags.setZExt(); 10804 if (CLI.IsInReg) 10805 MyFlags.Flags.setInReg(); 10806 CLI.Ins.push_back(MyFlags); 10807 } 10808 } 10809 } 10810 10811 // We push in swifterror return as the last element of CLI.Ins. 10812 ArgListTy &Args = CLI.getArgs(); 10813 if (supportSwiftError()) { 10814 for (const ArgListEntry &Arg : Args) { 10815 if (Arg.IsSwiftError) { 10816 ISD::InputArg MyFlags; 10817 MyFlags.VT = getPointerTy(DL); 10818 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10819 MyFlags.Flags.setSwiftError(); 10820 CLI.Ins.push_back(MyFlags); 10821 } 10822 } 10823 } 10824 10825 // Handle all of the outgoing arguments. 10826 CLI.Outs.clear(); 10827 CLI.OutVals.clear(); 10828 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10829 SmallVector<EVT, 4> ValueVTs; 10830 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10831 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10832 Type *FinalType = Args[i].Ty; 10833 if (Args[i].IsByVal) 10834 FinalType = Args[i].IndirectType; 10835 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10836 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10837 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10838 ++Value) { 10839 EVT VT = ValueVTs[Value]; 10840 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10841 SDValue Op = SDValue(Args[i].Node.getNode(), 10842 Args[i].Node.getResNo() + Value); 10843 ISD::ArgFlagsTy Flags; 10844 10845 // Certain targets (such as MIPS), may have a different ABI alignment 10846 // for a type depending on the context. Give the target a chance to 10847 // specify the alignment it wants. 10848 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10849 Flags.setOrigAlign(OriginalAlignment); 10850 10851 if (Args[i].Ty->isPointerTy()) { 10852 Flags.setPointer(); 10853 Flags.setPointerAddrSpace( 10854 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10855 } 10856 if (Args[i].IsZExt) 10857 Flags.setZExt(); 10858 if (Args[i].IsSExt) 10859 Flags.setSExt(); 10860 if (Args[i].IsInReg) { 10861 // If we are using vectorcall calling convention, a structure that is 10862 // passed InReg - is surely an HVA 10863 if (CLI.CallConv == CallingConv::X86_VectorCall && 10864 isa<StructType>(FinalType)) { 10865 // The first value of a structure is marked 10866 if (0 == Value) 10867 Flags.setHvaStart(); 10868 Flags.setHva(); 10869 } 10870 // Set InReg Flag 10871 Flags.setInReg(); 10872 } 10873 if (Args[i].IsSRet) 10874 Flags.setSRet(); 10875 if (Args[i].IsSwiftSelf) 10876 Flags.setSwiftSelf(); 10877 if (Args[i].IsSwiftAsync) 10878 Flags.setSwiftAsync(); 10879 if (Args[i].IsSwiftError) 10880 Flags.setSwiftError(); 10881 if (Args[i].IsCFGuardTarget) 10882 Flags.setCFGuardTarget(); 10883 if (Args[i].IsByVal) 10884 Flags.setByVal(); 10885 if (Args[i].IsByRef) 10886 Flags.setByRef(); 10887 if (Args[i].IsPreallocated) { 10888 Flags.setPreallocated(); 10889 // Set the byval flag for CCAssignFn callbacks that don't know about 10890 // preallocated. This way we can know how many bytes we should've 10891 // allocated and how many bytes a callee cleanup function will pop. If 10892 // we port preallocated to more targets, we'll have to add custom 10893 // preallocated handling in the various CC lowering callbacks. 10894 Flags.setByVal(); 10895 } 10896 if (Args[i].IsInAlloca) { 10897 Flags.setInAlloca(); 10898 // Set the byval flag for CCAssignFn callbacks that don't know about 10899 // inalloca. This way we can know how many bytes we should've allocated 10900 // and how many bytes a callee cleanup function will pop. If we port 10901 // inalloca to more targets, we'll have to add custom inalloca handling 10902 // in the various CC lowering callbacks. 10903 Flags.setByVal(); 10904 } 10905 Align MemAlign; 10906 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10907 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10908 Flags.setByValSize(FrameSize); 10909 10910 // info is not there but there are cases it cannot get right. 10911 if (auto MA = Args[i].Alignment) 10912 MemAlign = *MA; 10913 else 10914 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10915 } else if (auto MA = Args[i].Alignment) { 10916 MemAlign = *MA; 10917 } else { 10918 MemAlign = OriginalAlignment; 10919 } 10920 Flags.setMemAlign(MemAlign); 10921 if (Args[i].IsNest) 10922 Flags.setNest(); 10923 if (NeedsRegBlock) 10924 Flags.setInConsecutiveRegs(); 10925 10926 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10927 CLI.CallConv, VT); 10928 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10929 CLI.CallConv, VT); 10930 SmallVector<SDValue, 4> Parts(NumParts); 10931 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10932 10933 if (Args[i].IsSExt) 10934 ExtendKind = ISD::SIGN_EXTEND; 10935 else if (Args[i].IsZExt) 10936 ExtendKind = ISD::ZERO_EXTEND; 10937 10938 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10939 // for now. 10940 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10941 CanLowerReturn) { 10942 assert((CLI.RetTy == Args[i].Ty || 10943 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10944 CLI.RetTy->getPointerAddressSpace() == 10945 Args[i].Ty->getPointerAddressSpace())) && 10946 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10947 // Before passing 'returned' to the target lowering code, ensure that 10948 // either the register MVT and the actual EVT are the same size or that 10949 // the return value and argument are extended in the same way; in these 10950 // cases it's safe to pass the argument register value unchanged as the 10951 // return register value (although it's at the target's option whether 10952 // to do so) 10953 // TODO: allow code generation to take advantage of partially preserved 10954 // registers rather than clobbering the entire register when the 10955 // parameter extension method is not compatible with the return 10956 // extension method 10957 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10958 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10959 CLI.RetZExt == Args[i].IsZExt)) 10960 Flags.setReturned(); 10961 } 10962 10963 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10964 CLI.CallConv, ExtendKind); 10965 10966 for (unsigned j = 0; j != NumParts; ++j) { 10967 // if it isn't first piece, alignment must be 1 10968 // For scalable vectors the scalable part is currently handled 10969 // by individual targets, so we just use the known minimum size here. 10970 ISD::OutputArg MyFlags( 10971 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10972 i < CLI.NumFixedArgs, i, 10973 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10974 if (NumParts > 1 && j == 0) 10975 MyFlags.Flags.setSplit(); 10976 else if (j != 0) { 10977 MyFlags.Flags.setOrigAlign(Align(1)); 10978 if (j == NumParts - 1) 10979 MyFlags.Flags.setSplitEnd(); 10980 } 10981 10982 CLI.Outs.push_back(MyFlags); 10983 CLI.OutVals.push_back(Parts[j]); 10984 } 10985 10986 if (NeedsRegBlock && Value == NumValues - 1) 10987 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10988 } 10989 } 10990 10991 SmallVector<SDValue, 4> InVals; 10992 CLI.Chain = LowerCall(CLI, InVals); 10993 10994 // Update CLI.InVals to use outside of this function. 10995 CLI.InVals = InVals; 10996 10997 // Verify that the target's LowerCall behaved as expected. 10998 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10999 "LowerCall didn't return a valid chain!"); 11000 assert((!CLI.IsTailCall || InVals.empty()) && 11001 "LowerCall emitted a return value for a tail call!"); 11002 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11003 "LowerCall didn't emit the correct number of values!"); 11004 11005 // For a tail call, the return value is merely live-out and there aren't 11006 // any nodes in the DAG representing it. Return a special value to 11007 // indicate that a tail call has been emitted and no more Instructions 11008 // should be processed in the current block. 11009 if (CLI.IsTailCall) { 11010 CLI.DAG.setRoot(CLI.Chain); 11011 return std::make_pair(SDValue(), SDValue()); 11012 } 11013 11014 #ifndef NDEBUG 11015 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11016 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11017 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11018 "LowerCall emitted a value with the wrong type!"); 11019 } 11020 #endif 11021 11022 SmallVector<SDValue, 4> ReturnValues; 11023 if (!CanLowerReturn) { 11024 // The instruction result is the result of loading from the 11025 // hidden sret parameter. 11026 SmallVector<EVT, 1> PVTs; 11027 Type *PtrRetTy = 11028 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11029 11030 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11031 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11032 EVT PtrVT = PVTs[0]; 11033 11034 unsigned NumValues = RetTys.size(); 11035 ReturnValues.resize(NumValues); 11036 SmallVector<SDValue, 4> Chains(NumValues); 11037 11038 // An aggregate return value cannot wrap around the address space, so 11039 // offsets to its parts don't wrap either. 11040 SDNodeFlags Flags; 11041 Flags.setNoUnsignedWrap(true); 11042 11043 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11044 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11045 for (unsigned i = 0; i < NumValues; ++i) { 11046 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11047 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11048 PtrVT), Flags); 11049 SDValue L = CLI.DAG.getLoad( 11050 RetTys[i], CLI.DL, CLI.Chain, Add, 11051 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11052 DemoteStackIdx, Offsets[i]), 11053 HiddenSRetAlign); 11054 ReturnValues[i] = L; 11055 Chains[i] = L.getValue(1); 11056 } 11057 11058 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11059 } else { 11060 // Collect the legal value parts into potentially illegal values 11061 // that correspond to the original function's return values. 11062 std::optional<ISD::NodeType> AssertOp; 11063 if (CLI.RetSExt) 11064 AssertOp = ISD::AssertSext; 11065 else if (CLI.RetZExt) 11066 AssertOp = ISD::AssertZext; 11067 unsigned CurReg = 0; 11068 for (EVT VT : RetTys) { 11069 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11070 CLI.CallConv, VT); 11071 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11072 CLI.CallConv, VT); 11073 11074 ReturnValues.push_back(getCopyFromParts( 11075 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11076 CLI.Chain, CLI.CallConv, AssertOp)); 11077 CurReg += NumRegs; 11078 } 11079 11080 // For a function returning void, there is no return value. We can't create 11081 // such a node, so we just return a null return value in that case. In 11082 // that case, nothing will actually look at the value. 11083 if (ReturnValues.empty()) 11084 return std::make_pair(SDValue(), CLI.Chain); 11085 } 11086 11087 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11088 CLI.DAG.getVTList(RetTys), ReturnValues); 11089 return std::make_pair(Res, CLI.Chain); 11090 } 11091 11092 /// Places new result values for the node in Results (their number 11093 /// and types must exactly match those of the original return values of 11094 /// the node), or leaves Results empty, which indicates that the node is not 11095 /// to be custom lowered after all. 11096 void TargetLowering::LowerOperationWrapper(SDNode *N, 11097 SmallVectorImpl<SDValue> &Results, 11098 SelectionDAG &DAG) const { 11099 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11100 11101 if (!Res.getNode()) 11102 return; 11103 11104 // If the original node has one result, take the return value from 11105 // LowerOperation as is. It might not be result number 0. 11106 if (N->getNumValues() == 1) { 11107 Results.push_back(Res); 11108 return; 11109 } 11110 11111 // If the original node has multiple results, then the return node should 11112 // have the same number of results. 11113 assert((N->getNumValues() == Res->getNumValues()) && 11114 "Lowering returned the wrong number of results!"); 11115 11116 // Places new result values base on N result number. 11117 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11118 Results.push_back(Res.getValue(I)); 11119 } 11120 11121 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11122 llvm_unreachable("LowerOperation not implemented for this target!"); 11123 } 11124 11125 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11126 unsigned Reg, 11127 ISD::NodeType ExtendType) { 11128 SDValue Op = getNonRegisterValue(V); 11129 assert((Op.getOpcode() != ISD::CopyFromReg || 11130 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11131 "Copy from a reg to the same reg!"); 11132 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11133 11134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11135 // If this is an InlineAsm we have to match the registers required, not the 11136 // notional registers required by the type. 11137 11138 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11139 std::nullopt); // This is not an ABI copy. 11140 SDValue Chain = DAG.getEntryNode(); 11141 11142 if (ExtendType == ISD::ANY_EXTEND) { 11143 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11144 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11145 ExtendType = PreferredExtendIt->second; 11146 } 11147 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11148 PendingExports.push_back(Chain); 11149 } 11150 11151 #include "llvm/CodeGen/SelectionDAGISel.h" 11152 11153 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11154 /// entry block, return true. This includes arguments used by switches, since 11155 /// the switch may expand into multiple basic blocks. 11156 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11157 // With FastISel active, we may be splitting blocks, so force creation 11158 // of virtual registers for all non-dead arguments. 11159 if (FastISel) 11160 return A->use_empty(); 11161 11162 const BasicBlock &Entry = A->getParent()->front(); 11163 for (const User *U : A->users()) 11164 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11165 return false; // Use not in entry block. 11166 11167 return true; 11168 } 11169 11170 using ArgCopyElisionMapTy = 11171 DenseMap<const Argument *, 11172 std::pair<const AllocaInst *, const StoreInst *>>; 11173 11174 /// Scan the entry block of the function in FuncInfo for arguments that look 11175 /// like copies into a local alloca. Record any copied arguments in 11176 /// ArgCopyElisionCandidates. 11177 static void 11178 findArgumentCopyElisionCandidates(const DataLayout &DL, 11179 FunctionLoweringInfo *FuncInfo, 11180 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11181 // Record the state of every static alloca used in the entry block. Argument 11182 // allocas are all used in the entry block, so we need approximately as many 11183 // entries as we have arguments. 11184 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11185 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11186 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11187 StaticAllocas.reserve(NumArgs * 2); 11188 11189 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11190 if (!V) 11191 return nullptr; 11192 V = V->stripPointerCasts(); 11193 const auto *AI = dyn_cast<AllocaInst>(V); 11194 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11195 return nullptr; 11196 auto Iter = StaticAllocas.insert({AI, Unknown}); 11197 return &Iter.first->second; 11198 }; 11199 11200 // Look for stores of arguments to static allocas. Look through bitcasts and 11201 // GEPs to handle type coercions, as long as the alloca is fully initialized 11202 // by the store. Any non-store use of an alloca escapes it and any subsequent 11203 // unanalyzed store might write it. 11204 // FIXME: Handle structs initialized with multiple stores. 11205 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11206 // Look for stores, and handle non-store uses conservatively. 11207 const auto *SI = dyn_cast<StoreInst>(&I); 11208 if (!SI) { 11209 // We will look through cast uses, so ignore them completely. 11210 if (I.isCast()) 11211 continue; 11212 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11213 // to allocas. 11214 if (I.isDebugOrPseudoInst()) 11215 continue; 11216 // This is an unknown instruction. Assume it escapes or writes to all 11217 // static alloca operands. 11218 for (const Use &U : I.operands()) { 11219 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11220 *Info = StaticAllocaInfo::Clobbered; 11221 } 11222 continue; 11223 } 11224 11225 // If the stored value is a static alloca, mark it as escaped. 11226 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11227 *Info = StaticAllocaInfo::Clobbered; 11228 11229 // Check if the destination is a static alloca. 11230 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11231 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11232 if (!Info) 11233 continue; 11234 const AllocaInst *AI = cast<AllocaInst>(Dst); 11235 11236 // Skip allocas that have been initialized or clobbered. 11237 if (*Info != StaticAllocaInfo::Unknown) 11238 continue; 11239 11240 // Check if the stored value is an argument, and that this store fully 11241 // initializes the alloca. 11242 // If the argument type has padding bits we can't directly forward a pointer 11243 // as the upper bits may contain garbage. 11244 // Don't elide copies from the same argument twice. 11245 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11246 const auto *Arg = dyn_cast<Argument>(Val); 11247 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11248 Arg->getType()->isEmptyTy() || 11249 DL.getTypeStoreSize(Arg->getType()) != 11250 DL.getTypeAllocSize(AI->getAllocatedType()) || 11251 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11252 ArgCopyElisionCandidates.count(Arg)) { 11253 *Info = StaticAllocaInfo::Clobbered; 11254 continue; 11255 } 11256 11257 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11258 << '\n'); 11259 11260 // Mark this alloca and store for argument copy elision. 11261 *Info = StaticAllocaInfo::Elidable; 11262 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11263 11264 // Stop scanning if we've seen all arguments. This will happen early in -O0 11265 // builds, which is useful, because -O0 builds have large entry blocks and 11266 // many allocas. 11267 if (ArgCopyElisionCandidates.size() == NumArgs) 11268 break; 11269 } 11270 } 11271 11272 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11273 /// ArgVal is a load from a suitable fixed stack object. 11274 static void tryToElideArgumentCopy( 11275 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11276 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11277 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11278 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11279 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11280 // Check if this is a load from a fixed stack object. 11281 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11282 if (!LNode) 11283 return; 11284 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11285 if (!FINode) 11286 return; 11287 11288 // Check that the fixed stack object is the right size and alignment. 11289 // Look at the alignment that the user wrote on the alloca instead of looking 11290 // at the stack object. 11291 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11292 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11293 const AllocaInst *AI = ArgCopyIter->second.first; 11294 int FixedIndex = FINode->getIndex(); 11295 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11296 int OldIndex = AllocaIndex; 11297 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11298 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11299 LLVM_DEBUG( 11300 dbgs() << " argument copy elision failed due to bad fixed stack " 11301 "object size\n"); 11302 return; 11303 } 11304 Align RequiredAlignment = AI->getAlign(); 11305 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11306 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11307 "greater than stack argument alignment (" 11308 << DebugStr(RequiredAlignment) << " vs " 11309 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11310 return; 11311 } 11312 11313 // Perform the elision. Delete the old stack object and replace its only use 11314 // in the variable info map. Mark the stack object as mutable and aliased. 11315 LLVM_DEBUG({ 11316 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11317 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11318 << '\n'; 11319 }); 11320 MFI.RemoveStackObject(OldIndex); 11321 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11322 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11323 AllocaIndex = FixedIndex; 11324 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11325 for (SDValue ArgVal : ArgVals) 11326 Chains.push_back(ArgVal.getValue(1)); 11327 11328 // Avoid emitting code for the store implementing the copy. 11329 const StoreInst *SI = ArgCopyIter->second.second; 11330 ElidedArgCopyInstrs.insert(SI); 11331 11332 // Check for uses of the argument again so that we can avoid exporting ArgVal 11333 // if it is't used by anything other than the store. 11334 for (const Value *U : Arg.users()) { 11335 if (U != SI) { 11336 ArgHasUses = true; 11337 break; 11338 } 11339 } 11340 } 11341 11342 void SelectionDAGISel::LowerArguments(const Function &F) { 11343 SelectionDAG &DAG = SDB->DAG; 11344 SDLoc dl = SDB->getCurSDLoc(); 11345 const DataLayout &DL = DAG.getDataLayout(); 11346 SmallVector<ISD::InputArg, 16> Ins; 11347 11348 // In Naked functions we aren't going to save any registers. 11349 if (F.hasFnAttribute(Attribute::Naked)) 11350 return; 11351 11352 if (!FuncInfo->CanLowerReturn) { 11353 // Put in an sret pointer parameter before all the other parameters. 11354 SmallVector<EVT, 1> ValueVTs; 11355 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11356 PointerType::get(F.getContext(), 11357 DAG.getDataLayout().getAllocaAddrSpace()), 11358 ValueVTs); 11359 11360 // NOTE: Assuming that a pointer will never break down to more than one VT 11361 // or one register. 11362 ISD::ArgFlagsTy Flags; 11363 Flags.setSRet(); 11364 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11365 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11366 ISD::InputArg::NoArgIndex, 0); 11367 Ins.push_back(RetArg); 11368 } 11369 11370 // Look for stores of arguments to static allocas. Mark such arguments with a 11371 // flag to ask the target to give us the memory location of that argument if 11372 // available. 11373 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11374 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11375 ArgCopyElisionCandidates); 11376 11377 // Set up the incoming argument description vector. 11378 for (const Argument &Arg : F.args()) { 11379 unsigned ArgNo = Arg.getArgNo(); 11380 SmallVector<EVT, 4> ValueVTs; 11381 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11382 bool isArgValueUsed = !Arg.use_empty(); 11383 unsigned PartBase = 0; 11384 Type *FinalType = Arg.getType(); 11385 if (Arg.hasAttribute(Attribute::ByVal)) 11386 FinalType = Arg.getParamByValType(); 11387 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11388 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11389 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11390 Value != NumValues; ++Value) { 11391 EVT VT = ValueVTs[Value]; 11392 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11393 ISD::ArgFlagsTy Flags; 11394 11395 11396 if (Arg.getType()->isPointerTy()) { 11397 Flags.setPointer(); 11398 Flags.setPointerAddrSpace( 11399 cast<PointerType>(Arg.getType())->getAddressSpace()); 11400 } 11401 if (Arg.hasAttribute(Attribute::ZExt)) 11402 Flags.setZExt(); 11403 if (Arg.hasAttribute(Attribute::SExt)) 11404 Flags.setSExt(); 11405 if (Arg.hasAttribute(Attribute::InReg)) { 11406 // If we are using vectorcall calling convention, a structure that is 11407 // passed InReg - is surely an HVA 11408 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11409 isa<StructType>(Arg.getType())) { 11410 // The first value of a structure is marked 11411 if (0 == Value) 11412 Flags.setHvaStart(); 11413 Flags.setHva(); 11414 } 11415 // Set InReg Flag 11416 Flags.setInReg(); 11417 } 11418 if (Arg.hasAttribute(Attribute::StructRet)) 11419 Flags.setSRet(); 11420 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11421 Flags.setSwiftSelf(); 11422 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11423 Flags.setSwiftAsync(); 11424 if (Arg.hasAttribute(Attribute::SwiftError)) 11425 Flags.setSwiftError(); 11426 if (Arg.hasAttribute(Attribute::ByVal)) 11427 Flags.setByVal(); 11428 if (Arg.hasAttribute(Attribute::ByRef)) 11429 Flags.setByRef(); 11430 if (Arg.hasAttribute(Attribute::InAlloca)) { 11431 Flags.setInAlloca(); 11432 // Set the byval flag for CCAssignFn callbacks that don't know about 11433 // inalloca. This way we can know how many bytes we should've allocated 11434 // and how many bytes a callee cleanup function will pop. If we port 11435 // inalloca to more targets, we'll have to add custom inalloca handling 11436 // in the various CC lowering callbacks. 11437 Flags.setByVal(); 11438 } 11439 if (Arg.hasAttribute(Attribute::Preallocated)) { 11440 Flags.setPreallocated(); 11441 // Set the byval flag for CCAssignFn callbacks that don't know about 11442 // preallocated. This way we can know how many bytes we should've 11443 // allocated and how many bytes a callee cleanup function will pop. If 11444 // we port preallocated to more targets, we'll have to add custom 11445 // preallocated handling in the various CC lowering callbacks. 11446 Flags.setByVal(); 11447 } 11448 11449 // Certain targets (such as MIPS), may have a different ABI alignment 11450 // for a type depending on the context. Give the target a chance to 11451 // specify the alignment it wants. 11452 const Align OriginalAlignment( 11453 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11454 Flags.setOrigAlign(OriginalAlignment); 11455 11456 Align MemAlign; 11457 Type *ArgMemTy = nullptr; 11458 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11459 Flags.isByRef()) { 11460 if (!ArgMemTy) 11461 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11462 11463 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11464 11465 // For in-memory arguments, size and alignment should be passed from FE. 11466 // BE will guess if this info is not there but there are cases it cannot 11467 // get right. 11468 if (auto ParamAlign = Arg.getParamStackAlign()) 11469 MemAlign = *ParamAlign; 11470 else if ((ParamAlign = Arg.getParamAlign())) 11471 MemAlign = *ParamAlign; 11472 else 11473 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11474 if (Flags.isByRef()) 11475 Flags.setByRefSize(MemSize); 11476 else 11477 Flags.setByValSize(MemSize); 11478 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11479 MemAlign = *ParamAlign; 11480 } else { 11481 MemAlign = OriginalAlignment; 11482 } 11483 Flags.setMemAlign(MemAlign); 11484 11485 if (Arg.hasAttribute(Attribute::Nest)) 11486 Flags.setNest(); 11487 if (NeedsRegBlock) 11488 Flags.setInConsecutiveRegs(); 11489 if (ArgCopyElisionCandidates.count(&Arg)) 11490 Flags.setCopyElisionCandidate(); 11491 if (Arg.hasAttribute(Attribute::Returned)) 11492 Flags.setReturned(); 11493 11494 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11495 *CurDAG->getContext(), F.getCallingConv(), VT); 11496 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11497 *CurDAG->getContext(), F.getCallingConv(), VT); 11498 for (unsigned i = 0; i != NumRegs; ++i) { 11499 // For scalable vectors, use the minimum size; individual targets 11500 // are responsible for handling scalable vector arguments and 11501 // return values. 11502 ISD::InputArg MyFlags( 11503 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11504 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11505 if (NumRegs > 1 && i == 0) 11506 MyFlags.Flags.setSplit(); 11507 // if it isn't first piece, alignment must be 1 11508 else if (i > 0) { 11509 MyFlags.Flags.setOrigAlign(Align(1)); 11510 if (i == NumRegs - 1) 11511 MyFlags.Flags.setSplitEnd(); 11512 } 11513 Ins.push_back(MyFlags); 11514 } 11515 if (NeedsRegBlock && Value == NumValues - 1) 11516 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11517 PartBase += VT.getStoreSize().getKnownMinValue(); 11518 } 11519 } 11520 11521 // Call the target to set up the argument values. 11522 SmallVector<SDValue, 8> InVals; 11523 SDValue NewRoot = TLI->LowerFormalArguments( 11524 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11525 11526 // Verify that the target's LowerFormalArguments behaved as expected. 11527 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11528 "LowerFormalArguments didn't return a valid chain!"); 11529 assert(InVals.size() == Ins.size() && 11530 "LowerFormalArguments didn't emit the correct number of values!"); 11531 LLVM_DEBUG({ 11532 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11533 assert(InVals[i].getNode() && 11534 "LowerFormalArguments emitted a null value!"); 11535 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11536 "LowerFormalArguments emitted a value with the wrong type!"); 11537 } 11538 }); 11539 11540 // Update the DAG with the new chain value resulting from argument lowering. 11541 DAG.setRoot(NewRoot); 11542 11543 // Set up the argument values. 11544 unsigned i = 0; 11545 if (!FuncInfo->CanLowerReturn) { 11546 // Create a virtual register for the sret pointer, and put in a copy 11547 // from the sret argument into it. 11548 SmallVector<EVT, 1> ValueVTs; 11549 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11550 PointerType::get(F.getContext(), 11551 DAG.getDataLayout().getAllocaAddrSpace()), 11552 ValueVTs); 11553 MVT VT = ValueVTs[0].getSimpleVT(); 11554 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11555 std::optional<ISD::NodeType> AssertOp; 11556 SDValue ArgValue = 11557 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11558 F.getCallingConv(), AssertOp); 11559 11560 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11561 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11562 Register SRetReg = 11563 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11564 FuncInfo->DemoteRegister = SRetReg; 11565 NewRoot = 11566 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11567 DAG.setRoot(NewRoot); 11568 11569 // i indexes lowered arguments. Bump it past the hidden sret argument. 11570 ++i; 11571 } 11572 11573 SmallVector<SDValue, 4> Chains; 11574 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11575 for (const Argument &Arg : F.args()) { 11576 SmallVector<SDValue, 4> ArgValues; 11577 SmallVector<EVT, 4> ValueVTs; 11578 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11579 unsigned NumValues = ValueVTs.size(); 11580 if (NumValues == 0) 11581 continue; 11582 11583 bool ArgHasUses = !Arg.use_empty(); 11584 11585 // Elide the copying store if the target loaded this argument from a 11586 // suitable fixed stack object. 11587 if (Ins[i].Flags.isCopyElisionCandidate()) { 11588 unsigned NumParts = 0; 11589 for (EVT VT : ValueVTs) 11590 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11591 F.getCallingConv(), VT); 11592 11593 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11594 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11595 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11596 } 11597 11598 // If this argument is unused then remember its value. It is used to generate 11599 // debugging information. 11600 bool isSwiftErrorArg = 11601 TLI->supportSwiftError() && 11602 Arg.hasAttribute(Attribute::SwiftError); 11603 if (!ArgHasUses && !isSwiftErrorArg) { 11604 SDB->setUnusedArgValue(&Arg, InVals[i]); 11605 11606 // Also remember any frame index for use in FastISel. 11607 if (FrameIndexSDNode *FI = 11608 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11609 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11610 } 11611 11612 for (unsigned Val = 0; Val != NumValues; ++Val) { 11613 EVT VT = ValueVTs[Val]; 11614 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11615 F.getCallingConv(), VT); 11616 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11617 *CurDAG->getContext(), F.getCallingConv(), VT); 11618 11619 // Even an apparent 'unused' swifterror argument needs to be returned. So 11620 // we do generate a copy for it that can be used on return from the 11621 // function. 11622 if (ArgHasUses || isSwiftErrorArg) { 11623 std::optional<ISD::NodeType> AssertOp; 11624 if (Arg.hasAttribute(Attribute::SExt)) 11625 AssertOp = ISD::AssertSext; 11626 else if (Arg.hasAttribute(Attribute::ZExt)) 11627 AssertOp = ISD::AssertZext; 11628 11629 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11630 PartVT, VT, nullptr, NewRoot, 11631 F.getCallingConv(), AssertOp)); 11632 } 11633 11634 i += NumParts; 11635 } 11636 11637 // We don't need to do anything else for unused arguments. 11638 if (ArgValues.empty()) 11639 continue; 11640 11641 // Note down frame index. 11642 if (FrameIndexSDNode *FI = 11643 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11644 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11645 11646 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11647 SDB->getCurSDLoc()); 11648 11649 SDB->setValue(&Arg, Res); 11650 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11651 // We want to associate the argument with the frame index, among 11652 // involved operands, that correspond to the lowest address. The 11653 // getCopyFromParts function, called earlier, is swapping the order of 11654 // the operands to BUILD_PAIR depending on endianness. The result of 11655 // that swapping is that the least significant bits of the argument will 11656 // be in the first operand of the BUILD_PAIR node, and the most 11657 // significant bits will be in the second operand. 11658 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11659 if (LoadSDNode *LNode = 11660 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11661 if (FrameIndexSDNode *FI = 11662 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11663 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11664 } 11665 11666 // Analyses past this point are naive and don't expect an assertion. 11667 if (Res.getOpcode() == ISD::AssertZext) 11668 Res = Res.getOperand(0); 11669 11670 // Update the SwiftErrorVRegDefMap. 11671 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11672 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11673 if (Register::isVirtualRegister(Reg)) 11674 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11675 Reg); 11676 } 11677 11678 // If this argument is live outside of the entry block, insert a copy from 11679 // wherever we got it to the vreg that other BB's will reference it as. 11680 if (Res.getOpcode() == ISD::CopyFromReg) { 11681 // If we can, though, try to skip creating an unnecessary vreg. 11682 // FIXME: This isn't very clean... it would be nice to make this more 11683 // general. 11684 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11685 if (Register::isVirtualRegister(Reg)) { 11686 FuncInfo->ValueMap[&Arg] = Reg; 11687 continue; 11688 } 11689 } 11690 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11691 FuncInfo->InitializeRegForValue(&Arg); 11692 SDB->CopyToExportRegsIfNeeded(&Arg); 11693 } 11694 } 11695 11696 if (!Chains.empty()) { 11697 Chains.push_back(NewRoot); 11698 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11699 } 11700 11701 DAG.setRoot(NewRoot); 11702 11703 assert(i == InVals.size() && "Argument register count mismatch!"); 11704 11705 // If any argument copy elisions occurred and we have debug info, update the 11706 // stale frame indices used in the dbg.declare variable info table. 11707 if (!ArgCopyElisionFrameIndexMap.empty()) { 11708 for (MachineFunction::VariableDbgInfo &VI : 11709 MF->getInStackSlotVariableDbgInfo()) { 11710 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11711 if (I != ArgCopyElisionFrameIndexMap.end()) 11712 VI.updateStackSlot(I->second); 11713 } 11714 } 11715 11716 // Finally, if the target has anything special to do, allow it to do so. 11717 emitFunctionEntryCode(); 11718 } 11719 11720 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11721 /// ensure constants are generated when needed. Remember the virtual registers 11722 /// that need to be added to the Machine PHI nodes as input. We cannot just 11723 /// directly add them, because expansion might result in multiple MBB's for one 11724 /// BB. As such, the start of the BB might correspond to a different MBB than 11725 /// the end. 11726 void 11727 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11728 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11729 11730 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11731 11732 // Check PHI nodes in successors that expect a value to be available from this 11733 // block. 11734 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11735 if (!isa<PHINode>(SuccBB->begin())) continue; 11736 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11737 11738 // If this terminator has multiple identical successors (common for 11739 // switches), only handle each succ once. 11740 if (!SuccsHandled.insert(SuccMBB).second) 11741 continue; 11742 11743 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11744 11745 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11746 // nodes and Machine PHI nodes, but the incoming operands have not been 11747 // emitted yet. 11748 for (const PHINode &PN : SuccBB->phis()) { 11749 // Ignore dead phi's. 11750 if (PN.use_empty()) 11751 continue; 11752 11753 // Skip empty types 11754 if (PN.getType()->isEmptyTy()) 11755 continue; 11756 11757 unsigned Reg; 11758 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11759 11760 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11761 unsigned &RegOut = ConstantsOut[C]; 11762 if (RegOut == 0) { 11763 RegOut = FuncInfo.CreateRegs(C); 11764 // We need to zero/sign extend ConstantInt phi operands to match 11765 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11766 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11767 if (auto *CI = dyn_cast<ConstantInt>(C)) 11768 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11769 : ISD::ZERO_EXTEND; 11770 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11771 } 11772 Reg = RegOut; 11773 } else { 11774 DenseMap<const Value *, Register>::iterator I = 11775 FuncInfo.ValueMap.find(PHIOp); 11776 if (I != FuncInfo.ValueMap.end()) 11777 Reg = I->second; 11778 else { 11779 assert(isa<AllocaInst>(PHIOp) && 11780 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11781 "Didn't codegen value into a register!??"); 11782 Reg = FuncInfo.CreateRegs(PHIOp); 11783 CopyValueToVirtualRegister(PHIOp, Reg); 11784 } 11785 } 11786 11787 // Remember that this register needs to added to the machine PHI node as 11788 // the input for this MBB. 11789 SmallVector<EVT, 4> ValueVTs; 11790 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11791 for (EVT VT : ValueVTs) { 11792 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11793 for (unsigned i = 0; i != NumRegisters; ++i) 11794 FuncInfo.PHINodesToUpdate.push_back( 11795 std::make_pair(&*MBBI++, Reg + i)); 11796 Reg += NumRegisters; 11797 } 11798 } 11799 } 11800 11801 ConstantsOut.clear(); 11802 } 11803 11804 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11805 MachineFunction::iterator I(MBB); 11806 if (++I == FuncInfo.MF->end()) 11807 return nullptr; 11808 return &*I; 11809 } 11810 11811 /// During lowering new call nodes can be created (such as memset, etc.). 11812 /// Those will become new roots of the current DAG, but complications arise 11813 /// when they are tail calls. In such cases, the call lowering will update 11814 /// the root, but the builder still needs to know that a tail call has been 11815 /// lowered in order to avoid generating an additional return. 11816 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11817 // If the node is null, we do have a tail call. 11818 if (MaybeTC.getNode() != nullptr) 11819 DAG.setRoot(MaybeTC); 11820 else 11821 HasTailCall = true; 11822 } 11823 11824 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11825 MachineBasicBlock *SwitchMBB, 11826 MachineBasicBlock *DefaultMBB) { 11827 MachineFunction *CurMF = FuncInfo.MF; 11828 MachineBasicBlock *NextMBB = nullptr; 11829 MachineFunction::iterator BBI(W.MBB); 11830 if (++BBI != FuncInfo.MF->end()) 11831 NextMBB = &*BBI; 11832 11833 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11834 11835 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11836 11837 if (Size == 2 && W.MBB == SwitchMBB) { 11838 // If any two of the cases has the same destination, and if one value 11839 // is the same as the other, but has one bit unset that the other has set, 11840 // use bit manipulation to do two compares at once. For example: 11841 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11842 // TODO: This could be extended to merge any 2 cases in switches with 3 11843 // cases. 11844 // TODO: Handle cases where W.CaseBB != SwitchBB. 11845 CaseCluster &Small = *W.FirstCluster; 11846 CaseCluster &Big = *W.LastCluster; 11847 11848 if (Small.Low == Small.High && Big.Low == Big.High && 11849 Small.MBB == Big.MBB) { 11850 const APInt &SmallValue = Small.Low->getValue(); 11851 const APInt &BigValue = Big.Low->getValue(); 11852 11853 // Check that there is only one bit different. 11854 APInt CommonBit = BigValue ^ SmallValue; 11855 if (CommonBit.isPowerOf2()) { 11856 SDValue CondLHS = getValue(Cond); 11857 EVT VT = CondLHS.getValueType(); 11858 SDLoc DL = getCurSDLoc(); 11859 11860 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11861 DAG.getConstant(CommonBit, DL, VT)); 11862 SDValue Cond = DAG.getSetCC( 11863 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11864 ISD::SETEQ); 11865 11866 // Update successor info. 11867 // Both Small and Big will jump to Small.BB, so we sum up the 11868 // probabilities. 11869 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11870 if (BPI) 11871 addSuccessorWithProb( 11872 SwitchMBB, DefaultMBB, 11873 // The default destination is the first successor in IR. 11874 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11875 else 11876 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11877 11878 // Insert the true branch. 11879 SDValue BrCond = 11880 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11881 DAG.getBasicBlock(Small.MBB)); 11882 // Insert the false branch. 11883 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11884 DAG.getBasicBlock(DefaultMBB)); 11885 11886 DAG.setRoot(BrCond); 11887 return; 11888 } 11889 } 11890 } 11891 11892 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11893 // Here, we order cases by probability so the most likely case will be 11894 // checked first. However, two clusters can have the same probability in 11895 // which case their relative ordering is non-deterministic. So we use Low 11896 // as a tie-breaker as clusters are guaranteed to never overlap. 11897 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11898 [](const CaseCluster &a, const CaseCluster &b) { 11899 return a.Prob != b.Prob ? 11900 a.Prob > b.Prob : 11901 a.Low->getValue().slt(b.Low->getValue()); 11902 }); 11903 11904 // Rearrange the case blocks so that the last one falls through if possible 11905 // without changing the order of probabilities. 11906 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11907 --I; 11908 if (I->Prob > W.LastCluster->Prob) 11909 break; 11910 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11911 std::swap(*I, *W.LastCluster); 11912 break; 11913 } 11914 } 11915 } 11916 11917 // Compute total probability. 11918 BranchProbability DefaultProb = W.DefaultProb; 11919 BranchProbability UnhandledProbs = DefaultProb; 11920 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11921 UnhandledProbs += I->Prob; 11922 11923 MachineBasicBlock *CurMBB = W.MBB; 11924 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11925 bool FallthroughUnreachable = false; 11926 MachineBasicBlock *Fallthrough; 11927 if (I == W.LastCluster) { 11928 // For the last cluster, fall through to the default destination. 11929 Fallthrough = DefaultMBB; 11930 FallthroughUnreachable = isa<UnreachableInst>( 11931 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11932 } else { 11933 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11934 CurMF->insert(BBI, Fallthrough); 11935 // Put Cond in a virtual register to make it available from the new blocks. 11936 ExportFromCurrentBlock(Cond); 11937 } 11938 UnhandledProbs -= I->Prob; 11939 11940 switch (I->Kind) { 11941 case CC_JumpTable: { 11942 // FIXME: Optimize away range check based on pivot comparisons. 11943 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11944 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11945 11946 // The jump block hasn't been inserted yet; insert it here. 11947 MachineBasicBlock *JumpMBB = JT->MBB; 11948 CurMF->insert(BBI, JumpMBB); 11949 11950 auto JumpProb = I->Prob; 11951 auto FallthroughProb = UnhandledProbs; 11952 11953 // If the default statement is a target of the jump table, we evenly 11954 // distribute the default probability to successors of CurMBB. Also 11955 // update the probability on the edge from JumpMBB to Fallthrough. 11956 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11957 SE = JumpMBB->succ_end(); 11958 SI != SE; ++SI) { 11959 if (*SI == DefaultMBB) { 11960 JumpProb += DefaultProb / 2; 11961 FallthroughProb -= DefaultProb / 2; 11962 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11963 JumpMBB->normalizeSuccProbs(); 11964 break; 11965 } 11966 } 11967 11968 // If the default clause is unreachable, propagate that knowledge into 11969 // JTH->FallthroughUnreachable which will use it to suppress the range 11970 // check. 11971 // 11972 // However, don't do this if we're doing branch target enforcement, 11973 // because a table branch _without_ a range check can be a tempting JOP 11974 // gadget - out-of-bounds inputs that are impossible in correct 11975 // execution become possible again if an attacker can influence the 11976 // control flow. So if an attacker doesn't already have a BTI bypass 11977 // available, we don't want them to be able to get one out of this 11978 // table branch. 11979 if (FallthroughUnreachable) { 11980 Function &CurFunc = CurMF->getFunction(); 11981 bool HasBranchTargetEnforcement = false; 11982 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11983 HasBranchTargetEnforcement = 11984 CurFunc.getFnAttribute("branch-target-enforcement") 11985 .getValueAsBool(); 11986 } else { 11987 HasBranchTargetEnforcement = 11988 CurMF->getMMI().getModule()->getModuleFlag( 11989 "branch-target-enforcement"); 11990 } 11991 if (!HasBranchTargetEnforcement) 11992 JTH->FallthroughUnreachable = true; 11993 } 11994 11995 if (!JTH->FallthroughUnreachable) 11996 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11997 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11998 CurMBB->normalizeSuccProbs(); 11999 12000 // The jump table header will be inserted in our current block, do the 12001 // range check, and fall through to our fallthrough block. 12002 JTH->HeaderBB = CurMBB; 12003 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12004 12005 // If we're in the right place, emit the jump table header right now. 12006 if (CurMBB == SwitchMBB) { 12007 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12008 JTH->Emitted = true; 12009 } 12010 break; 12011 } 12012 case CC_BitTests: { 12013 // FIXME: Optimize away range check based on pivot comparisons. 12014 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12015 12016 // The bit test blocks haven't been inserted yet; insert them here. 12017 for (BitTestCase &BTC : BTB->Cases) 12018 CurMF->insert(BBI, BTC.ThisBB); 12019 12020 // Fill in fields of the BitTestBlock. 12021 BTB->Parent = CurMBB; 12022 BTB->Default = Fallthrough; 12023 12024 BTB->DefaultProb = UnhandledProbs; 12025 // If the cases in bit test don't form a contiguous range, we evenly 12026 // distribute the probability on the edge to Fallthrough to two 12027 // successors of CurMBB. 12028 if (!BTB->ContiguousRange) { 12029 BTB->Prob += DefaultProb / 2; 12030 BTB->DefaultProb -= DefaultProb / 2; 12031 } 12032 12033 if (FallthroughUnreachable) 12034 BTB->FallthroughUnreachable = true; 12035 12036 // If we're in the right place, emit the bit test header right now. 12037 if (CurMBB == SwitchMBB) { 12038 visitBitTestHeader(*BTB, SwitchMBB); 12039 BTB->Emitted = true; 12040 } 12041 break; 12042 } 12043 case CC_Range: { 12044 const Value *RHS, *LHS, *MHS; 12045 ISD::CondCode CC; 12046 if (I->Low == I->High) { 12047 // Check Cond == I->Low. 12048 CC = ISD::SETEQ; 12049 LHS = Cond; 12050 RHS=I->Low; 12051 MHS = nullptr; 12052 } else { 12053 // Check I->Low <= Cond <= I->High. 12054 CC = ISD::SETLE; 12055 LHS = I->Low; 12056 MHS = Cond; 12057 RHS = I->High; 12058 } 12059 12060 // If Fallthrough is unreachable, fold away the comparison. 12061 if (FallthroughUnreachable) 12062 CC = ISD::SETTRUE; 12063 12064 // The false probability is the sum of all unhandled cases. 12065 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12066 getCurSDLoc(), I->Prob, UnhandledProbs); 12067 12068 if (CurMBB == SwitchMBB) 12069 visitSwitchCase(CB, SwitchMBB); 12070 else 12071 SL->SwitchCases.push_back(CB); 12072 12073 break; 12074 } 12075 } 12076 CurMBB = Fallthrough; 12077 } 12078 } 12079 12080 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12081 const SwitchWorkListItem &W, 12082 Value *Cond, 12083 MachineBasicBlock *SwitchMBB) { 12084 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12085 "Clusters not sorted?"); 12086 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12087 12088 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12089 SL->computeSplitWorkItemInfo(W); 12090 12091 // Use the first element on the right as pivot since we will make less-than 12092 // comparisons against it. 12093 CaseClusterIt PivotCluster = FirstRight; 12094 assert(PivotCluster > W.FirstCluster); 12095 assert(PivotCluster <= W.LastCluster); 12096 12097 CaseClusterIt FirstLeft = W.FirstCluster; 12098 CaseClusterIt LastRight = W.LastCluster; 12099 12100 const ConstantInt *Pivot = PivotCluster->Low; 12101 12102 // New blocks will be inserted immediately after the current one. 12103 MachineFunction::iterator BBI(W.MBB); 12104 ++BBI; 12105 12106 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12107 // we can branch to its destination directly if it's squeezed exactly in 12108 // between the known lower bound and Pivot - 1. 12109 MachineBasicBlock *LeftMBB; 12110 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12111 FirstLeft->Low == W.GE && 12112 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12113 LeftMBB = FirstLeft->MBB; 12114 } else { 12115 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12116 FuncInfo.MF->insert(BBI, LeftMBB); 12117 WorkList.push_back( 12118 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12119 // Put Cond in a virtual register to make it available from the new blocks. 12120 ExportFromCurrentBlock(Cond); 12121 } 12122 12123 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12124 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12125 // directly if RHS.High equals the current upper bound. 12126 MachineBasicBlock *RightMBB; 12127 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12128 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12129 RightMBB = FirstRight->MBB; 12130 } else { 12131 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12132 FuncInfo.MF->insert(BBI, RightMBB); 12133 WorkList.push_back( 12134 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12135 // Put Cond in a virtual register to make it available from the new blocks. 12136 ExportFromCurrentBlock(Cond); 12137 } 12138 12139 // Create the CaseBlock record that will be used to lower the branch. 12140 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12141 getCurSDLoc(), LeftProb, RightProb); 12142 12143 if (W.MBB == SwitchMBB) 12144 visitSwitchCase(CB, SwitchMBB); 12145 else 12146 SL->SwitchCases.push_back(CB); 12147 } 12148 12149 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12150 // from the swith statement. 12151 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12152 BranchProbability PeeledCaseProb) { 12153 if (PeeledCaseProb == BranchProbability::getOne()) 12154 return BranchProbability::getZero(); 12155 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12156 12157 uint32_t Numerator = CaseProb.getNumerator(); 12158 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12159 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12160 } 12161 12162 // Try to peel the top probability case if it exceeds the threshold. 12163 // Return current MachineBasicBlock for the switch statement if the peeling 12164 // does not occur. 12165 // If the peeling is performed, return the newly created MachineBasicBlock 12166 // for the peeled switch statement. Also update Clusters to remove the peeled 12167 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12168 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12169 const SwitchInst &SI, CaseClusterVector &Clusters, 12170 BranchProbability &PeeledCaseProb) { 12171 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12172 // Don't perform if there is only one cluster or optimizing for size. 12173 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12174 TM.getOptLevel() == CodeGenOptLevel::None || 12175 SwitchMBB->getParent()->getFunction().hasMinSize()) 12176 return SwitchMBB; 12177 12178 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12179 unsigned PeeledCaseIndex = 0; 12180 bool SwitchPeeled = false; 12181 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12182 CaseCluster &CC = Clusters[Index]; 12183 if (CC.Prob < TopCaseProb) 12184 continue; 12185 TopCaseProb = CC.Prob; 12186 PeeledCaseIndex = Index; 12187 SwitchPeeled = true; 12188 } 12189 if (!SwitchPeeled) 12190 return SwitchMBB; 12191 12192 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12193 << TopCaseProb << "\n"); 12194 12195 // Record the MBB for the peeled switch statement. 12196 MachineFunction::iterator BBI(SwitchMBB); 12197 ++BBI; 12198 MachineBasicBlock *PeeledSwitchMBB = 12199 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12200 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12201 12202 ExportFromCurrentBlock(SI.getCondition()); 12203 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12204 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12205 nullptr, nullptr, TopCaseProb.getCompl()}; 12206 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12207 12208 Clusters.erase(PeeledCaseIt); 12209 for (CaseCluster &CC : Clusters) { 12210 LLVM_DEBUG( 12211 dbgs() << "Scale the probablity for one cluster, before scaling: " 12212 << CC.Prob << "\n"); 12213 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12214 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12215 } 12216 PeeledCaseProb = TopCaseProb; 12217 return PeeledSwitchMBB; 12218 } 12219 12220 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12221 // Extract cases from the switch. 12222 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12223 CaseClusterVector Clusters; 12224 Clusters.reserve(SI.getNumCases()); 12225 for (auto I : SI.cases()) { 12226 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12227 const ConstantInt *CaseVal = I.getCaseValue(); 12228 BranchProbability Prob = 12229 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12230 : BranchProbability(1, SI.getNumCases() + 1); 12231 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12232 } 12233 12234 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12235 12236 // Cluster adjacent cases with the same destination. We do this at all 12237 // optimization levels because it's cheap to do and will make codegen faster 12238 // if there are many clusters. 12239 sortAndRangeify(Clusters); 12240 12241 // The branch probablity of the peeled case. 12242 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12243 MachineBasicBlock *PeeledSwitchMBB = 12244 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12245 12246 // If there is only the default destination, jump there directly. 12247 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12248 if (Clusters.empty()) { 12249 assert(PeeledSwitchMBB == SwitchMBB); 12250 SwitchMBB->addSuccessor(DefaultMBB); 12251 if (DefaultMBB != NextBlock(SwitchMBB)) { 12252 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12253 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12254 } 12255 return; 12256 } 12257 12258 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12259 DAG.getBFI()); 12260 SL->findBitTestClusters(Clusters, &SI); 12261 12262 LLVM_DEBUG({ 12263 dbgs() << "Case clusters: "; 12264 for (const CaseCluster &C : Clusters) { 12265 if (C.Kind == CC_JumpTable) 12266 dbgs() << "JT:"; 12267 if (C.Kind == CC_BitTests) 12268 dbgs() << "BT:"; 12269 12270 C.Low->getValue().print(dbgs(), true); 12271 if (C.Low != C.High) { 12272 dbgs() << '-'; 12273 C.High->getValue().print(dbgs(), true); 12274 } 12275 dbgs() << ' '; 12276 } 12277 dbgs() << '\n'; 12278 }); 12279 12280 assert(!Clusters.empty()); 12281 SwitchWorkList WorkList; 12282 CaseClusterIt First = Clusters.begin(); 12283 CaseClusterIt Last = Clusters.end() - 1; 12284 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12285 // Scale the branchprobability for DefaultMBB if the peel occurs and 12286 // DefaultMBB is not replaced. 12287 if (PeeledCaseProb != BranchProbability::getZero() && 12288 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12289 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12290 WorkList.push_back( 12291 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12292 12293 while (!WorkList.empty()) { 12294 SwitchWorkListItem W = WorkList.pop_back_val(); 12295 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12296 12297 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12298 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12299 // For optimized builds, lower large range as a balanced binary tree. 12300 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12301 continue; 12302 } 12303 12304 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12305 } 12306 } 12307 12308 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12309 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12310 auto DL = getCurSDLoc(); 12311 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12312 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12313 } 12314 12315 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12317 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12318 12319 SDLoc DL = getCurSDLoc(); 12320 SDValue V = getValue(I.getOperand(0)); 12321 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12322 12323 if (VT.isScalableVector()) { 12324 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12325 return; 12326 } 12327 12328 // Use VECTOR_SHUFFLE for the fixed-length vector 12329 // to maintain existing behavior. 12330 SmallVector<int, 8> Mask; 12331 unsigned NumElts = VT.getVectorMinNumElements(); 12332 for (unsigned i = 0; i != NumElts; ++i) 12333 Mask.push_back(NumElts - 1 - i); 12334 12335 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12336 } 12337 12338 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12339 auto DL = getCurSDLoc(); 12340 SDValue InVec = getValue(I.getOperand(0)); 12341 EVT OutVT = 12342 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12343 12344 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12345 12346 // ISD Node needs the input vectors split into two equal parts 12347 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12348 DAG.getVectorIdxConstant(0, DL)); 12349 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12350 DAG.getVectorIdxConstant(OutNumElts, DL)); 12351 12352 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12353 // legalisation and combines. 12354 if (OutVT.isFixedLengthVector()) { 12355 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12356 createStrideMask(0, 2, OutNumElts)); 12357 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12358 createStrideMask(1, 2, OutNumElts)); 12359 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12360 setValue(&I, Res); 12361 return; 12362 } 12363 12364 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12365 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12366 setValue(&I, Res); 12367 } 12368 12369 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12370 auto DL = getCurSDLoc(); 12371 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12372 SDValue InVec0 = getValue(I.getOperand(0)); 12373 SDValue InVec1 = getValue(I.getOperand(1)); 12374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12375 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12376 12377 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12378 // legalisation and combines. 12379 if (OutVT.isFixedLengthVector()) { 12380 unsigned NumElts = InVT.getVectorMinNumElements(); 12381 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12382 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12383 createInterleaveMask(NumElts, 2))); 12384 return; 12385 } 12386 12387 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12388 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12389 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12390 Res.getValue(1)); 12391 setValue(&I, Res); 12392 } 12393 12394 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12395 SmallVector<EVT, 4> ValueVTs; 12396 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12397 ValueVTs); 12398 unsigned NumValues = ValueVTs.size(); 12399 if (NumValues == 0) return; 12400 12401 SmallVector<SDValue, 4> Values(NumValues); 12402 SDValue Op = getValue(I.getOperand(0)); 12403 12404 for (unsigned i = 0; i != NumValues; ++i) 12405 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12406 SDValue(Op.getNode(), Op.getResNo() + i)); 12407 12408 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12409 DAG.getVTList(ValueVTs), Values)); 12410 } 12411 12412 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12414 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12415 12416 SDLoc DL = getCurSDLoc(); 12417 SDValue V1 = getValue(I.getOperand(0)); 12418 SDValue V2 = getValue(I.getOperand(1)); 12419 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12420 12421 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12422 if (VT.isScalableVector()) { 12423 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12424 DAG.getVectorIdxConstant(Imm, DL))); 12425 return; 12426 } 12427 12428 unsigned NumElts = VT.getVectorNumElements(); 12429 12430 uint64_t Idx = (NumElts + Imm) % NumElts; 12431 12432 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12433 SmallVector<int, 8> Mask; 12434 for (unsigned i = 0; i < NumElts; ++i) 12435 Mask.push_back(Idx + i); 12436 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12437 } 12438 12439 // Consider the following MIR after SelectionDAG, which produces output in 12440 // phyregs in the first case or virtregs in the second case. 12441 // 12442 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12443 // %5:gr32 = COPY $ebx 12444 // %6:gr32 = COPY $edx 12445 // %1:gr32 = COPY %6:gr32 12446 // %0:gr32 = COPY %5:gr32 12447 // 12448 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12449 // %1:gr32 = COPY %6:gr32 12450 // %0:gr32 = COPY %5:gr32 12451 // 12452 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12453 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12454 // 12455 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12456 // to a single virtreg (such as %0). The remaining outputs monotonically 12457 // increase in virtreg number from there. If a callbr has no outputs, then it 12458 // should not have a corresponding callbr landingpad; in fact, the callbr 12459 // landingpad would not even be able to refer to such a callbr. 12460 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12461 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12462 // There is definitely at least one copy. 12463 assert(MI->getOpcode() == TargetOpcode::COPY && 12464 "start of copy chain MUST be COPY"); 12465 Reg = MI->getOperand(1).getReg(); 12466 MI = MRI.def_begin(Reg)->getParent(); 12467 // There may be an optional second copy. 12468 if (MI->getOpcode() == TargetOpcode::COPY) { 12469 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12470 Reg = MI->getOperand(1).getReg(); 12471 assert(Reg.isPhysical() && "expected COPY of physical register"); 12472 MI = MRI.def_begin(Reg)->getParent(); 12473 } 12474 // The start of the chain must be an INLINEASM_BR. 12475 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12476 "end of copy chain MUST be INLINEASM_BR"); 12477 return Reg; 12478 } 12479 12480 // We must do this walk rather than the simpler 12481 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12482 // otherwise we will end up with copies of virtregs only valid along direct 12483 // edges. 12484 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12485 SmallVector<EVT, 8> ResultVTs; 12486 SmallVector<SDValue, 8> ResultValues; 12487 const auto *CBR = 12488 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12489 12490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12491 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12492 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12493 12494 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12495 SDValue Chain = DAG.getRoot(); 12496 12497 // Re-parse the asm constraints string. 12498 TargetLowering::AsmOperandInfoVector TargetConstraints = 12499 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12500 for (auto &T : TargetConstraints) { 12501 SDISelAsmOperandInfo OpInfo(T); 12502 if (OpInfo.Type != InlineAsm::isOutput) 12503 continue; 12504 12505 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12506 // individual constraint. 12507 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12508 12509 switch (OpInfo.ConstraintType) { 12510 case TargetLowering::C_Register: 12511 case TargetLowering::C_RegisterClass: { 12512 // Fill in OpInfo.AssignedRegs.Regs. 12513 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12514 12515 // getRegistersForValue may produce 1 to many registers based on whether 12516 // the OpInfo.ConstraintVT is legal on the target or not. 12517 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12518 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12519 if (Register::isPhysicalRegister(OriginalDef)) 12520 FuncInfo.MBB->addLiveIn(OriginalDef); 12521 // Update the assigned registers to use the original defs. 12522 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12523 } 12524 12525 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12526 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12527 ResultValues.push_back(V); 12528 ResultVTs.push_back(OpInfo.ConstraintVT); 12529 break; 12530 } 12531 case TargetLowering::C_Other: { 12532 SDValue Flag; 12533 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12534 OpInfo, DAG); 12535 ++InitialDef; 12536 ResultValues.push_back(V); 12537 ResultVTs.push_back(OpInfo.ConstraintVT); 12538 break; 12539 } 12540 default: 12541 break; 12542 } 12543 } 12544 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12545 DAG.getVTList(ResultVTs), ResultValues); 12546 setValue(&I, V); 12547 } 12548