1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <deque> 108 #include <iterator> 109 #include <limits> 110 #include <optional> 111 #include <tuple> 112 113 using namespace llvm; 114 using namespace PatternMatch; 115 using namespace SwitchCG; 116 117 #define DEBUG_TYPE "isel" 118 119 /// LimitFloatPrecision - Generate low-precision inline sequences for 120 /// some float libcalls (6, 8 or 12 bits). 121 static unsigned LimitFloatPrecision; 122 123 static cl::opt<bool> 124 InsertAssertAlign("insert-assert-align", cl::init(true), 125 cl::desc("Insert the experimental `assertalign` node."), 126 cl::ReallyHidden); 127 128 static cl::opt<unsigned, true> 129 LimitFPPrecision("limit-float-precision", 130 cl::desc("Generate low-precision inline sequences " 131 "for some float libcalls"), 132 cl::location(LimitFloatPrecision), cl::Hidden, 133 cl::init(0)); 134 135 static cl::opt<unsigned> SwitchPeelThreshold( 136 "switch-peel-threshold", cl::Hidden, cl::init(66), 137 cl::desc("Set the case probability threshold for peeling the case from a " 138 "switch statement. A value greater than 100 will void this " 139 "optimization")); 140 141 // Limit the width of DAG chains. This is important in general to prevent 142 // DAG-based analysis from blowing up. For example, alias analysis and 143 // load clustering may not complete in reasonable time. It is difficult to 144 // recognize and avoid this situation within each individual analysis, and 145 // future analyses are likely to have the same behavior. Limiting DAG width is 146 // the safe approach and will be especially important with global DAGs. 147 // 148 // MaxParallelChains default is arbitrarily high to avoid affecting 149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 150 // sequence over this should have been converted to llvm.memcpy by the 151 // frontend. It is easy to induce this behavior with .ll code such as: 152 // %buffer = alloca [4096 x i8] 153 // %data = load [4096 x i8]* %argPtr 154 // store [4096 x i8] %data, [4096 x i8]* %buffer 155 static const unsigned MaxParallelChains = 64; 156 157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 SDValue InChain, 161 std::optional<CallingConv::ID> CC); 162 163 /// getCopyFromParts - Create a value that contains the specified legal parts 164 /// combined into the value they represent. If the parts combine to a type 165 /// larger than ValueVT then AssertOp can be used to specify whether the extra 166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 167 /// (ISD::AssertSext). 168 static SDValue 169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 170 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 171 SDValue InChain, 172 std::optional<CallingConv::ID> CC = std::nullopt, 173 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 174 // Let the target assemble the parts if it wants to 175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 176 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 177 PartVT, ValueVT, CC)) 178 return Val; 179 180 if (ValueVT.isVector()) 181 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 182 InChain, CC); 183 184 assert(NumParts > 0 && "No parts to assemble!"); 185 SDValue Val = Parts[0]; 186 187 if (NumParts > 1) { 188 // Assemble the value from multiple parts. 189 if (ValueVT.isInteger()) { 190 unsigned PartBits = PartVT.getSizeInBits(); 191 unsigned ValueBits = ValueVT.getSizeInBits(); 192 193 // Assemble the power of 2 part. 194 unsigned RoundParts = llvm::bit_floor(NumParts); 195 unsigned RoundBits = PartBits * RoundParts; 196 EVT RoundVT = RoundBits == ValueBits ? 197 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 198 SDValue Lo, Hi; 199 200 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 201 202 if (RoundParts > 2) { 203 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 204 InChain); 205 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 206 PartVT, HalfVT, V, InChain); 207 } else { 208 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 209 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 210 } 211 212 if (DAG.getDataLayout().isBigEndian()) 213 std::swap(Lo, Hi); 214 215 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 216 217 if (RoundParts < NumParts) { 218 // Assemble the trailing non-power-of-2 part. 219 unsigned OddParts = NumParts - RoundParts; 220 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 221 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 222 OddVT, V, InChain, CC); 223 224 // Combine the round and odd parts. 225 Lo = Val; 226 if (DAG.getDataLayout().isBigEndian()) 227 std::swap(Lo, Hi); 228 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 229 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 230 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 231 DAG.getConstant(Lo.getValueSizeInBits(), DL, 232 TLI.getShiftAmountTy( 233 TotalVT, DAG.getDataLayout()))); 234 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 235 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 236 } 237 } else if (PartVT.isFloatingPoint()) { 238 // FP split into multiple FP parts (for ppcf128) 239 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 240 "Unexpected split"); 241 SDValue Lo, Hi; 242 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 243 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 244 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 245 std::swap(Lo, Hi); 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 247 } else { 248 // FP split into integer parts (soft fp) 249 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 250 !PartVT.isVector() && "Unexpected split"); 251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 252 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 253 InChain, CC); 254 } 255 } 256 257 // There is now one part, held in Val. Correct it to match ValueVT. 258 // PartEVT is the type of the register class that holds the value. 259 // ValueVT is the type of the inline asm operation. 260 EVT PartEVT = Val.getValueType(); 261 262 if (PartEVT == ValueVT) 263 return Val; 264 265 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 266 ValueVT.bitsLT(PartEVT)) { 267 // For an FP value in an integer part, we need to truncate to the right 268 // width first. 269 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 271 } 272 273 // Handle types that have the same size. 274 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 275 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 276 277 // Handle types with different sizes. 278 if (PartEVT.isInteger() && ValueVT.isInteger()) { 279 if (ValueVT.bitsLT(PartEVT)) { 280 // For a truncate, see if we have any information to 281 // indicate whether the truncated bits will always be 282 // zero or sign-extension. 283 if (AssertOp) 284 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 285 DAG.getValueType(ValueVT)); 286 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 287 } 288 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 289 } 290 291 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 292 // FP_ROUND's are always exact here. 293 if (ValueVT.bitsLT(Val.getValueType())) { 294 295 SDValue NoChange = 296 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 297 298 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 299 llvm::Attribute::StrictFP)) { 300 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 301 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 302 NoChange); 303 } 304 305 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 306 } 307 308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 309 } 310 311 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 312 // then truncating. 313 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 314 ValueVT.bitsLT(PartEVT)) { 315 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 319 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 320 } 321 322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 323 const Twine &ErrMsg) { 324 const Instruction *I = dyn_cast_or_null<Instruction>(V); 325 if (!V) 326 return Ctx.emitError(ErrMsg); 327 328 const char *AsmError = ", possible invalid constraint for vector type"; 329 if (const CallInst *CI = dyn_cast<CallInst>(I)) 330 if (CI->isInlineAsm()) 331 return Ctx.emitError(I, ErrMsg + AsmError); 332 333 return Ctx.emitError(I, ErrMsg); 334 } 335 336 /// getCopyFromPartsVector - Create a value that contains the specified legal 337 /// parts combined into the value they represent. If the parts combine to a 338 /// type larger than ValueVT then AssertOp can be used to specify whether the 339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 340 /// ValueVT (ISD::AssertSext). 341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 342 const SDValue *Parts, unsigned NumParts, 343 MVT PartVT, EVT ValueVT, const Value *V, 344 SDValue InChain, 345 std::optional<CallingConv::ID> CallConv) { 346 assert(ValueVT.isVector() && "Not a vector value"); 347 assert(NumParts > 0 && "No parts to assemble!"); 348 const bool IsABIRegCopy = CallConv.has_value(); 349 350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 351 SDValue Val = Parts[0]; 352 353 // Handle a multi-element vector. 354 if (NumParts > 1) { 355 EVT IntermediateVT; 356 MVT RegisterVT; 357 unsigned NumIntermediates; 358 unsigned NumRegs; 359 360 if (IsABIRegCopy) { 361 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 362 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } else { 365 NumRegs = 366 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 367 NumIntermediates, RegisterVT); 368 } 369 370 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 371 NumParts = NumRegs; // Silence a compiler warning. 372 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 373 assert(RegisterVT.getSizeInBits() == 374 Parts[0].getSimpleValueType().getSizeInBits() && 375 "Part type sizes don't match!"); 376 377 // Assemble the parts into intermediate operands. 378 SmallVector<SDValue, 8> Ops(NumIntermediates); 379 if (NumIntermediates == NumParts) { 380 // If the register was not expanded, truncate or copy the value, 381 // as appropriate. 382 for (unsigned i = 0; i != NumParts; ++i) 383 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 384 V, InChain, CallConv); 385 } else if (NumParts > 0) { 386 // If the intermediate type was expanded, build the intermediate 387 // operands from the parts. 388 assert(NumParts % NumIntermediates == 0 && 389 "Must expand into a divisible number of parts!"); 390 unsigned Factor = NumParts / NumIntermediates; 391 for (unsigned i = 0; i != NumIntermediates; ++i) 392 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 393 IntermediateVT, V, InChain, CallConv); 394 } 395 396 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 397 // intermediate operands. 398 EVT BuiltVectorTy = 399 IntermediateVT.isVector() 400 ? EVT::getVectorVT( 401 *DAG.getContext(), IntermediateVT.getScalarType(), 402 IntermediateVT.getVectorElementCount() * NumParts) 403 : EVT::getVectorVT(*DAG.getContext(), 404 IntermediateVT.getScalarType(), 405 NumIntermediates); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // Vector/Vector bitcast. 419 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // If the parts vector has more elements than the value vector, then we 423 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 424 // Extract the elements we want. 425 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 426 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 427 ValueVT.getVectorElementCount().getKnownMinValue()) && 428 (PartEVT.getVectorElementCount().isScalable() == 429 ValueVT.getVectorElementCount().isScalable()) && 430 "Cannot narrow, it would be a lossy transformation"); 431 PartEVT = 432 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 433 ValueVT.getVectorElementCount()); 434 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 435 DAG.getVectorIdxConstant(0, DL)); 436 if (PartEVT == ValueVT) 437 return Val; 438 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 441 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } 445 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 } 449 450 // Trivial bitcast if the types are the same size and the destination 451 // vector type is legal. 452 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 453 TLI.isTypeLegal(ValueVT)) 454 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 455 456 if (ValueVT.getVectorNumElements() != 1) { 457 // Certain ABIs require that vectors are passed as integers. For vectors 458 // are the same size, this is an obvious bitcast. 459 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 } else if (ValueVT.bitsLT(PartEVT)) { 462 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 463 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 464 // Drop the extra bits. 465 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 466 return DAG.getBitcast(ValueVT, Val); 467 } 468 469 diagnosePossiblyInvalidConstraint( 470 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 471 return DAG.getUNDEF(ValueVT); 472 } 473 474 // Handle cases such as i8 -> <1 x i1> 475 EVT ValueSVT = ValueVT.getVectorElementType(); 476 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 477 unsigned ValueSize = ValueSVT.getSizeInBits(); 478 if (ValueSize == PartEVT.getSizeInBits()) { 479 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 480 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 481 // It's possible a scalar floating point type gets softened to integer and 482 // then promoted to a larger integer. If PartEVT is the larger integer 483 // we need to truncate it and then bitcast to the FP type. 484 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 485 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 486 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 487 Val = DAG.getBitcast(ValueSVT, Val); 488 } else { 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 } 494 495 return DAG.getBuildVector(ValueVT, DL, Val); 496 } 497 498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 499 SDValue Val, SDValue *Parts, unsigned NumParts, 500 MVT PartVT, const Value *V, 501 std::optional<CallingConv::ID> CallConv); 502 503 /// getCopyToParts - Create a series of nodes that contain the specified value 504 /// split into legal parts. If the parts contain more bits than Val, then, for 505 /// integers, ExtendKind can be used to specify how to generate the extra bits. 506 static void 507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 508 unsigned NumParts, MVT PartVT, const Value *V, 509 std::optional<CallingConv::ID> CallConv = std::nullopt, 510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 511 // Let the target split the parts if it wants to 512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 513 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 514 CallConv)) 515 return; 516 EVT ValueVT = Val.getValueType(); 517 518 // Handle the vector case separately. 519 if (ValueVT.isVector()) 520 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 521 CallConv); 522 523 unsigned OrigNumParts = NumParts; 524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 525 "Copying to an illegal type!"); 526 527 if (NumParts == 0) 528 return; 529 530 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 531 EVT PartEVT = PartVT; 532 if (PartEVT == ValueVT) { 533 assert(NumParts == 1 && "No-op copy with multiple parts!"); 534 Parts[0] = Val; 535 return; 536 } 537 538 unsigned PartBits = PartVT.getSizeInBits(); 539 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 540 // If the parts cover more bits than the value has, promote the value. 541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 542 assert(NumParts == 1 && "Do not know what to promote to!"); 543 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 544 } else { 545 if (ValueVT.isFloatingPoint()) { 546 // FP values need to be bitcast, then extended if they are being put 547 // into a larger container. 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 549 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 550 } 551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 552 ValueVT.isInteger() && 553 "Unknown mismatch!"); 554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 555 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 556 if (PartVT == MVT::x86mmx) 557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 558 } 559 } else if (PartBits == ValueVT.getSizeInBits()) { 560 // Different types of the same size. 561 assert(NumParts == 1 && PartEVT != ValueVT); 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 564 // If the parts cover less bits than value has, truncate the value. 565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 566 ValueVT.isInteger() && 567 "Unknown mismatch!"); 568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 569 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 570 if (PartVT == MVT::x86mmx) 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } 573 574 // The value may have changed - recompute ValueVT. 575 ValueVT = Val.getValueType(); 576 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 577 "Failed to tile the value with PartVT!"); 578 579 if (NumParts == 1) { 580 if (PartEVT != ValueVT) { 581 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 582 "scalar-to-vector conversion failed"); 583 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 584 } 585 586 Parts[0] = Val; 587 return; 588 } 589 590 // Expand the value into multiple parts. 591 if (NumParts & (NumParts - 1)) { 592 // The number of parts is not a power of 2. Split off and copy the tail. 593 assert(PartVT.isInteger() && ValueVT.isInteger() && 594 "Do not know what to expand to!"); 595 unsigned RoundParts = llvm::bit_floor(NumParts); 596 unsigned RoundBits = RoundParts * PartBits; 597 unsigned OddParts = NumParts - RoundParts; 598 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 599 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 600 601 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 602 CallConv); 603 604 if (DAG.getDataLayout().isBigEndian()) 605 // The odd parts were reversed by getCopyToParts - unreverse them. 606 std::reverse(Parts + RoundParts, Parts + NumParts); 607 608 NumParts = RoundParts; 609 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 611 } 612 613 // The number of parts is a power of 2. Repeatedly bisect the value using 614 // EXTRACT_ELEMENT. 615 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 616 EVT::getIntegerVT(*DAG.getContext(), 617 ValueVT.getSizeInBits()), 618 Val); 619 620 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 621 for (unsigned i = 0; i < NumParts; i += StepSize) { 622 unsigned ThisBits = StepSize * PartBits / 2; 623 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 624 SDValue &Part0 = Parts[i]; 625 SDValue &Part1 = Parts[i+StepSize/2]; 626 627 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 629 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 630 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 631 632 if (ThisBits == PartBits && ThisVT != PartVT) { 633 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 634 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 635 } 636 } 637 } 638 639 if (DAG.getDataLayout().isBigEndian()) 640 std::reverse(Parts, Parts + OrigNumParts); 641 } 642 643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 644 const SDLoc &DL, EVT PartVT) { 645 if (!PartVT.isVector()) 646 return SDValue(); 647 648 EVT ValueVT = Val.getValueType(); 649 EVT PartEVT = PartVT.getVectorElementType(); 650 EVT ValueEVT = ValueVT.getVectorElementType(); 651 ElementCount PartNumElts = PartVT.getVectorElementCount(); 652 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 653 654 // We only support widening vectors with equivalent element types and 655 // fixed/scalable properties. If a target needs to widen a fixed-length type 656 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 657 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 658 PartNumElts.isScalable() != ValueNumElts.isScalable()) 659 return SDValue(); 660 661 // Have a try for bf16 because some targets share its ABI with fp16. 662 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 663 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 664 "Cannot widen to illegal type"); 665 Val = DAG.getNode(ISD::BITCAST, DL, 666 ValueVT.changeVectorElementType(MVT::f16), Val); 667 } else if (PartEVT != ValueEVT) { 668 return SDValue(); 669 } 670 671 // Widening a scalable vector to another scalable vector is done by inserting 672 // the vector into a larger undef one. 673 if (PartNumElts.isScalable()) 674 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 675 Val, DAG.getVectorIdxConstant(0, DL)); 676 677 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 678 // undef elements. 679 SmallVector<SDValue, 16> Ops; 680 DAG.ExtractVectorElements(Val, Ops); 681 SDValue EltUndef = DAG.getUNDEF(PartEVT); 682 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 683 684 // FIXME: Use CONCAT for 2x -> 4x. 685 return DAG.getBuildVector(PartVT, DL, Ops); 686 } 687 688 /// getCopyToPartsVector - Create a series of nodes that contain the specified 689 /// value split into legal parts. 690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 691 SDValue Val, SDValue *Parts, unsigned NumParts, 692 MVT PartVT, const Value *V, 693 std::optional<CallingConv::ID> CallConv) { 694 EVT ValueVT = Val.getValueType(); 695 assert(ValueVT.isVector() && "Not a vector"); 696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 697 const bool IsABIRegCopy = CallConv.has_value(); 698 699 if (NumParts == 1) { 700 EVT PartEVT = PartVT; 701 if (PartEVT == ValueVT) { 702 // Nothing to do. 703 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 704 // Bitconvert vector->vector case. 705 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 706 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 707 Val = Widened; 708 } else if (PartVT.isVector() && 709 PartEVT.getVectorElementType().bitsGE( 710 ValueVT.getVectorElementType()) && 711 PartEVT.getVectorElementCount() == 712 ValueVT.getVectorElementCount()) { 713 714 // Promoted vector extract 715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 716 } else if (PartEVT.isVector() && 717 PartEVT.getVectorElementType() != 718 ValueVT.getVectorElementType() && 719 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 720 TargetLowering::TypeWidenVector) { 721 // Combination of widening and promotion. 722 EVT WidenVT = 723 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 724 PartVT.getVectorElementCount()); 725 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 726 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 727 } else { 728 // Don't extract an integer from a float vector. This can happen if the 729 // FP type gets softened to integer and then promoted. The promotion 730 // prevents it from being picked up by the earlier bitcast case. 731 if (ValueVT.getVectorElementCount().isScalar() && 732 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 733 // If we reach this condition and PartVT is FP, this means that 734 // ValueVT is also FP and both have a different size, otherwise we 735 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 736 // would be invalid since that would mean the smaller FP type has to 737 // be extended to the larger one. 738 if (PartVT.isFloatingPoint()) { 739 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 740 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 741 } else 742 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 743 DAG.getVectorIdxConstant(0, DL)); 744 } else { 745 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 746 assert(PartVT.getFixedSizeInBits() > ValueSize && 747 "lossy conversion of vector to scalar type"); 748 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 749 Val = DAG.getBitcast(IntermediateType, Val); 750 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 751 } 752 } 753 754 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 755 Parts[0] = Val; 756 return; 757 } 758 759 // Handle a multi-element vector. 760 EVT IntermediateVT; 761 MVT RegisterVT; 762 unsigned NumIntermediates; 763 unsigned NumRegs; 764 if (IsABIRegCopy) { 765 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 766 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 767 RegisterVT); 768 } else { 769 NumRegs = 770 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 771 NumIntermediates, RegisterVT); 772 } 773 774 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 775 NumParts = NumRegs; // Silence a compiler warning. 776 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 777 778 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 779 "Mixing scalable and fixed vectors when copying in parts"); 780 781 std::optional<ElementCount> DestEltCnt; 782 783 if (IntermediateVT.isVector()) 784 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 785 else 786 DestEltCnt = ElementCount::getFixed(NumIntermediates); 787 788 EVT BuiltVectorTy = EVT::getVectorVT( 789 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 790 791 if (ValueVT == BuiltVectorTy) { 792 // Nothing to do. 793 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 794 // Bitconvert vector->vector case. 795 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 796 } else { 797 if (BuiltVectorTy.getVectorElementType().bitsGT( 798 ValueVT.getVectorElementType())) { 799 // Integer promotion. 800 ValueVT = EVT::getVectorVT(*DAG.getContext(), 801 BuiltVectorTy.getVectorElementType(), 802 ValueVT.getVectorElementCount()); 803 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 804 } 805 806 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 807 Val = Widened; 808 } 809 } 810 811 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 812 813 // Split the vector into intermediate operands. 814 SmallVector<SDValue, 8> Ops(NumIntermediates); 815 for (unsigned i = 0; i != NumIntermediates; ++i) { 816 if (IntermediateVT.isVector()) { 817 // This does something sensible for scalable vectors - see the 818 // definition of EXTRACT_SUBVECTOR for further details. 819 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 820 Ops[i] = 821 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 822 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 823 } else { 824 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 825 DAG.getVectorIdxConstant(i, DL)); 826 } 827 } 828 829 // Split the intermediate operands into legal parts. 830 if (NumParts == NumIntermediates) { 831 // If the register was not expanded, promote or copy the value, 832 // as appropriate. 833 for (unsigned i = 0; i != NumParts; ++i) 834 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 835 } else if (NumParts > 0) { 836 // If the intermediate type was expanded, split each the value into 837 // legal parts. 838 assert(NumIntermediates != 0 && "division by zero"); 839 assert(NumParts % NumIntermediates == 0 && 840 "Must expand into a divisible number of parts!"); 841 unsigned Factor = NumParts / NumIntermediates; 842 for (unsigned i = 0; i != NumIntermediates; ++i) 843 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 844 CallConv); 845 } 846 } 847 848 RegsForValue::RegsForValue(const SmallVector<Register, 4> ®s, MVT regvt, 849 EVT valuevt, std::optional<CallingConv::ID> CC) 850 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 851 RegCount(1, regs.size()), CallConv(CC) {} 852 853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 854 const DataLayout &DL, Register Reg, Type *Ty, 855 std::optional<CallingConv::ID> CC) { 856 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 857 858 CallConv = CC; 859 860 for (EVT ValueVT : ValueVTs) { 861 unsigned NumRegs = 862 isABIMangled() 863 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 864 : TLI.getNumRegisters(Context, ValueVT); 865 MVT RegisterVT = 866 isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 868 : TLI.getRegisterType(Context, ValueVT); 869 for (unsigned i = 0; i != NumRegs; ++i) 870 Regs.push_back(Reg + i); 871 RegVTs.push_back(RegisterVT); 872 RegCount.push_back(NumRegs); 873 Reg = Reg.id() + NumRegs; 874 } 875 } 876 877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 878 FunctionLoweringInfo &FuncInfo, 879 const SDLoc &dl, SDValue &Chain, 880 SDValue *Glue, const Value *V) const { 881 // A Value with type {} or [0 x %t] needs no registers. 882 if (ValueVTs.empty()) 883 return SDValue(); 884 885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 886 887 // Assemble the legal parts into the final values. 888 SmallVector<SDValue, 4> Values(ValueVTs.size()); 889 SmallVector<SDValue, 8> Parts; 890 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 891 // Copy the legal parts from the registers. 892 EVT ValueVT = ValueVTs[Value]; 893 unsigned NumRegs = RegCount[Value]; 894 MVT RegisterVT = isABIMangled() 895 ? TLI.getRegisterTypeForCallingConv( 896 *DAG.getContext(), *CallConv, RegVTs[Value]) 897 : RegVTs[Value]; 898 899 Parts.resize(NumRegs); 900 for (unsigned i = 0; i != NumRegs; ++i) { 901 SDValue P; 902 if (!Glue) { 903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 904 } else { 905 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 906 *Glue = P.getValue(2); 907 } 908 909 Chain = P.getValue(1); 910 Parts[i] = P; 911 912 // If the source register was virtual and if we know something about it, 913 // add an assert node. 914 if (!Register::isVirtualRegister(Regs[Part + i]) || 915 !RegisterVT.isInteger()) 916 continue; 917 918 const FunctionLoweringInfo::LiveOutInfo *LOI = 919 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 920 if (!LOI) 921 continue; 922 923 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 924 unsigned NumSignBits = LOI->NumSignBits; 925 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 926 927 if (NumZeroBits == RegSize) { 928 // The current value is a zero. 929 // Explicitly express that as it would be easier for 930 // optimizations to kick in. 931 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 932 continue; 933 } 934 935 // FIXME: We capture more information than the dag can represent. For 936 // now, just use the tightest assertzext/assertsext possible. 937 bool isSExt; 938 EVT FromVT(MVT::Other); 939 if (NumZeroBits) { 940 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 941 isSExt = false; 942 } else if (NumSignBits > 1) { 943 FromVT = 944 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 945 isSExt = true; 946 } else { 947 continue; 948 } 949 // Add an assertion node. 950 assert(FromVT != MVT::Other); 951 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 952 RegisterVT, P, DAG.getValueType(FromVT)); 953 } 954 955 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 956 RegisterVT, ValueVT, V, Chain, CallConv); 957 Part += NumRegs; 958 Parts.clear(); 959 } 960 961 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 962 } 963 964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 965 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 966 const Value *V, 967 ISD::NodeType PreferredExtendType) const { 968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 969 ISD::NodeType ExtendKind = PreferredExtendType; 970 971 // Get the list of the values's legal parts. 972 unsigned NumRegs = Regs.size(); 973 SmallVector<SDValue, 8> Parts(NumRegs); 974 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumParts = RegCount[Value]; 976 977 MVT RegisterVT = isABIMangled() 978 ? TLI.getRegisterTypeForCallingConv( 979 *DAG.getContext(), *CallConv, RegVTs[Value]) 980 : RegVTs[Value]; 981 982 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 983 ExtendKind = ISD::ZERO_EXTEND; 984 985 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 986 NumParts, RegisterVT, V, CallConv, ExtendKind); 987 Part += NumParts; 988 } 989 990 // Copy the parts into the registers. 991 SmallVector<SDValue, 8> Chains(NumRegs); 992 for (unsigned i = 0; i != NumRegs; ++i) { 993 SDValue Part; 994 if (!Glue) { 995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 996 } else { 997 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 998 *Glue = Part.getValue(1); 999 } 1000 1001 Chains[i] = Part.getValue(0); 1002 } 1003 1004 if (NumRegs == 1 || Glue) 1005 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1006 // flagged to it. That is the CopyToReg nodes and the user are considered 1007 // a single scheduling unit. If we create a TokenFactor and return it as 1008 // chain, then the TokenFactor is both a predecessor (operand) of the 1009 // user as well as a successor (the TF operands are flagged to the user). 1010 // c1, f1 = CopyToReg 1011 // c2, f2 = CopyToReg 1012 // c3 = TokenFactor c1, c2 1013 // ... 1014 // = op c3, ..., f2 1015 Chain = Chains[NumRegs-1]; 1016 else 1017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1018 } 1019 1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1021 unsigned MatchingIdx, const SDLoc &dl, 1022 SelectionDAG &DAG, 1023 std::vector<SDValue> &Ops) const { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 InlineAsm::Flag Flag(Code, Regs.size()); 1027 if (HasMatching) 1028 Flag.setMatchingOp(MatchingIdx); 1029 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1030 // Put the register class of the virtual registers in the flag word. That 1031 // way, later passes can recompute register class constraints for inline 1032 // assembly as well as normal instructions. 1033 // Don't do this for tied operands that can use the regclass information 1034 // from the def. 1035 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1036 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1037 Flag.setRegClass(RC->getID()); 1038 } 1039 1040 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1041 Ops.push_back(Res); 1042 1043 if (Code == InlineAsm::Kind::Clobber) { 1044 // Clobbers should always have a 1:1 mapping with registers, and may 1045 // reference registers that have illegal (e.g. vector) types. Hence, we 1046 // shouldn't try to apply any sort of splitting logic to them. 1047 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1048 "No 1:1 mapping from clobbers to regs?"); 1049 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1050 (void)SP; 1051 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1052 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1053 assert( 1054 (Regs[I] != SP || 1055 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1056 "If we clobbered the stack pointer, MFI should know about it."); 1057 } 1058 return; 1059 } 1060 1061 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1062 MVT RegisterVT = RegVTs[Value]; 1063 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1064 RegisterVT); 1065 for (unsigned i = 0; i != NumRegs; ++i) { 1066 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1067 unsigned TheReg = Regs[Reg++]; 1068 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1069 } 1070 } 1071 } 1072 1073 SmallVector<std::pair<Register, TypeSize>, 4> 1074 RegsForValue::getRegsAndSizes() const { 1075 SmallVector<std::pair<Register, TypeSize>, 4> OutVec; 1076 unsigned I = 0; 1077 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1078 unsigned RegCount = std::get<0>(CountAndVT); 1079 MVT RegisterVT = std::get<1>(CountAndVT); 1080 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1081 for (unsigned E = I + RegCount; I != E; ++I) 1082 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1083 } 1084 return OutVec; 1085 } 1086 1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1088 AssumptionCache *ac, 1089 const TargetLibraryInfo *li) { 1090 AA = aa; 1091 AC = ac; 1092 GFI = gfi; 1093 LibInfo = li; 1094 Context = DAG.getContext(); 1095 LPadToCallSiteMap.clear(); 1096 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1097 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1098 *DAG.getMachineFunction().getFunction().getParent()); 1099 } 1100 1101 void SelectionDAGBuilder::clear() { 1102 NodeMap.clear(); 1103 UnusedArgNodeMap.clear(); 1104 PendingLoads.clear(); 1105 PendingExports.clear(); 1106 PendingConstrainedFP.clear(); 1107 PendingConstrainedFPStrict.clear(); 1108 CurInst = nullptr; 1109 HasTailCall = false; 1110 SDNodeOrder = LowestSDNodeOrder; 1111 StatepointLowering.clear(); 1112 } 1113 1114 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1115 DanglingDebugInfoMap.clear(); 1116 } 1117 1118 // Update DAG root to include dependencies on Pending chains. 1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1120 SDValue Root = DAG.getRoot(); 1121 1122 if (Pending.empty()) 1123 return Root; 1124 1125 // Add current root to PendingChains, unless we already indirectly 1126 // depend on it. 1127 if (Root.getOpcode() != ISD::EntryToken) { 1128 unsigned i = 0, e = Pending.size(); 1129 for (; i != e; ++i) { 1130 assert(Pending[i].getNode()->getNumOperands() > 1); 1131 if (Pending[i].getNode()->getOperand(0) == Root) 1132 break; // Don't add the root if we already indirectly depend on it. 1133 } 1134 1135 if (i == e) 1136 Pending.push_back(Root); 1137 } 1138 1139 if (Pending.size() == 1) 1140 Root = Pending[0]; 1141 else 1142 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1143 1144 DAG.setRoot(Root); 1145 Pending.clear(); 1146 return Root; 1147 } 1148 1149 SDValue SelectionDAGBuilder::getMemoryRoot() { 1150 return updateRoot(PendingLoads); 1151 } 1152 1153 SDValue SelectionDAGBuilder::getRoot() { 1154 // Chain up all pending constrained intrinsics together with all 1155 // pending loads, by simply appending them to PendingLoads and 1156 // then calling getMemoryRoot(). 1157 PendingLoads.reserve(PendingLoads.size() + 1158 PendingConstrainedFP.size() + 1159 PendingConstrainedFPStrict.size()); 1160 PendingLoads.append(PendingConstrainedFP.begin(), 1161 PendingConstrainedFP.end()); 1162 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1163 PendingConstrainedFPStrict.end()); 1164 PendingConstrainedFP.clear(); 1165 PendingConstrainedFPStrict.clear(); 1166 return getMemoryRoot(); 1167 } 1168 1169 SDValue SelectionDAGBuilder::getControlRoot() { 1170 // We need to emit pending fpexcept.strict constrained intrinsics, 1171 // so append them to the PendingExports list. 1172 PendingExports.append(PendingConstrainedFPStrict.begin(), 1173 PendingConstrainedFPStrict.end()); 1174 PendingConstrainedFPStrict.clear(); 1175 return updateRoot(PendingExports); 1176 } 1177 1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1179 DILocalVariable *Variable, 1180 DIExpression *Expression, 1181 DebugLoc DL) { 1182 assert(Variable && "Missing variable"); 1183 1184 // Check if address has undef value. 1185 if (!Address || isa<UndefValue>(Address) || 1186 (Address->use_empty() && !isa<Argument>(Address))) { 1187 LLVM_DEBUG( 1188 dbgs() 1189 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1190 return; 1191 } 1192 1193 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1194 1195 SDValue &N = NodeMap[Address]; 1196 if (!N.getNode() && isa<Argument>(Address)) 1197 // Check unused arguments map. 1198 N = UnusedArgNodeMap[Address]; 1199 SDDbgValue *SDV; 1200 if (N.getNode()) { 1201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1202 Address = BCI->getOperand(0); 1203 // Parameters are handled specially. 1204 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1205 if (IsParameter && FINode) { 1206 // Byval parameter. We have a frame index at this point. 1207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1208 /*IsIndirect*/ true, DL, SDNodeOrder); 1209 } else if (isa<Argument>(Address)) { 1210 // Address is an argument, so try to emit its dbg value using 1211 // virtual register info from the FuncInfo.ValueMap. 1212 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1213 FuncArgumentDbgValueKind::Declare, N); 1214 return; 1215 } else { 1216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1217 true, DL, SDNodeOrder); 1218 } 1219 DAG.AddDbgValue(SDV, IsParameter); 1220 } else { 1221 // If Address is an argument then try to emit its dbg value using 1222 // virtual register info from the FuncInfo.ValueMap. 1223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1224 FuncArgumentDbgValueKind::Declare, N)) { 1225 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1226 << " (could not emit func-arg dbg_value)\n"); 1227 } 1228 } 1229 return; 1230 } 1231 1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1233 // Add SDDbgValue nodes for any var locs here. Do so before updating 1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1235 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1236 // Add SDDbgValue nodes for any var locs here. Do so before updating 1237 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1238 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1239 It != End; ++It) { 1240 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1241 dropDanglingDebugInfo(Var, It->Expr); 1242 if (It->Values.isKillLocation(It->Expr)) { 1243 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1244 continue; 1245 } 1246 SmallVector<Value *> Values(It->Values.location_ops()); 1247 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1248 It->Values.hasArgList())) { 1249 SmallVector<Value *, 4> Vals(It->Values.location_ops()); 1250 addDanglingDebugInfo(Vals, 1251 FnVarLocs->getDILocalVariable(It->VariableID), 1252 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1253 } 1254 } 1255 } 1256 1257 // We must skip DbgVariableRecords if they've already been processed above as 1258 // we have just emitted the debug values resulting from assignment tracking 1259 // analysis, making any existing DbgVariableRecords redundant (and probably 1260 // less correct). We still need to process DbgLabelRecords. This does sink 1261 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1262 // be important as it does so deterministcally and ordering between 1263 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1264 // printing). 1265 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1266 // Is there is any debug-info attached to this instruction, in the form of 1267 // DbgRecord non-instruction debug-info records. 1268 for (DbgRecord &DR : I.getDbgRecordRange()) { 1269 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1270 assert(DLR->getLabel() && "Missing label"); 1271 SDDbgLabel *SDV = 1272 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1273 DAG.AddDbgLabel(SDV); 1274 continue; 1275 } 1276 1277 if (SkipDbgVariableRecords) 1278 continue; 1279 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1280 DILocalVariable *Variable = DVR.getVariable(); 1281 DIExpression *Expression = DVR.getExpression(); 1282 dropDanglingDebugInfo(Variable, Expression); 1283 1284 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1285 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1286 continue; 1287 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1288 << "\n"); 1289 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1290 DVR.getDebugLoc()); 1291 continue; 1292 } 1293 1294 // A DbgVariableRecord with no locations is a kill location. 1295 SmallVector<Value *, 4> Values(DVR.location_ops()); 1296 if (Values.empty()) { 1297 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1298 SDNodeOrder); 1299 continue; 1300 } 1301 1302 // A DbgVariableRecord with an undef or absent location is also a kill 1303 // location. 1304 if (llvm::any_of(Values, 1305 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1306 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1307 SDNodeOrder); 1308 continue; 1309 } 1310 1311 bool IsVariadic = DVR.hasArgList(); 1312 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1313 SDNodeOrder, IsVariadic)) { 1314 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1315 DVR.getDebugLoc(), SDNodeOrder); 1316 } 1317 } 1318 } 1319 1320 void SelectionDAGBuilder::visit(const Instruction &I) { 1321 visitDbgInfo(I); 1322 1323 // Set up outgoing PHI node register values before emitting the terminator. 1324 if (I.isTerminator()) { 1325 HandlePHINodesInSuccessorBlocks(I.getParent()); 1326 } 1327 1328 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1329 if (!isa<DbgInfoIntrinsic>(I)) 1330 ++SDNodeOrder; 1331 1332 CurInst = &I; 1333 1334 // Set inserted listener only if required. 1335 bool NodeInserted = false; 1336 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1337 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1338 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1339 if (PCSectionsMD || MMRA) { 1340 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1341 DAG, [&](SDNode *) { NodeInserted = true; }); 1342 } 1343 1344 visit(I.getOpcode(), I); 1345 1346 if (!I.isTerminator() && !HasTailCall && 1347 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1348 CopyToExportRegsIfNeeded(&I); 1349 1350 // Handle metadata. 1351 if (PCSectionsMD || MMRA) { 1352 auto It = NodeMap.find(&I); 1353 if (It != NodeMap.end()) { 1354 if (PCSectionsMD) 1355 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1356 if (MMRA) 1357 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1358 } else if (NodeInserted) { 1359 // This should not happen; if it does, don't let it go unnoticed so we can 1360 // fix it. Relevant visit*() function is probably missing a setValue(). 1361 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1362 << I.getModule()->getName() << "]\n"; 1363 LLVM_DEBUG(I.dump()); 1364 assert(false); 1365 } 1366 } 1367 1368 CurInst = nullptr; 1369 } 1370 1371 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1372 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1373 } 1374 1375 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1376 // Note: this doesn't use InstVisitor, because it has to work with 1377 // ConstantExpr's in addition to instructions. 1378 switch (Opcode) { 1379 default: llvm_unreachable("Unknown instruction type encountered!"); 1380 // Build the switch statement using the Instruction.def file. 1381 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1382 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1383 #include "llvm/IR/Instruction.def" 1384 } 1385 } 1386 1387 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1388 DILocalVariable *Variable, 1389 DebugLoc DL, unsigned Order, 1390 SmallVectorImpl<Value *> &Values, 1391 DIExpression *Expression) { 1392 // For variadic dbg_values we will now insert an undef. 1393 // FIXME: We can potentially recover these! 1394 SmallVector<SDDbgOperand, 2> Locs; 1395 for (const Value *V : Values) { 1396 auto *Undef = UndefValue::get(V->getType()); 1397 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1398 } 1399 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1400 /*IsIndirect=*/false, DL, Order, 1401 /*IsVariadic=*/true); 1402 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1403 return true; 1404 } 1405 1406 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1407 DILocalVariable *Var, 1408 DIExpression *Expr, 1409 bool IsVariadic, DebugLoc DL, 1410 unsigned Order) { 1411 if (IsVariadic) { 1412 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1413 return; 1414 } 1415 // TODO: Dangling debug info will eventually either be resolved or produce 1416 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1417 // between the original dbg.value location and its resolved DBG_VALUE, 1418 // which we should ideally fill with an extra Undef DBG_VALUE. 1419 assert(Values.size() == 1); 1420 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1421 } 1422 1423 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1424 const DIExpression *Expr) { 1425 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1426 DIVariable *DanglingVariable = DDI.getVariable(); 1427 DIExpression *DanglingExpr = DDI.getExpression(); 1428 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1429 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1430 << printDDI(nullptr, DDI) << "\n"); 1431 return true; 1432 } 1433 return false; 1434 }; 1435 1436 for (auto &DDIMI : DanglingDebugInfoMap) { 1437 DanglingDebugInfoVector &DDIV = DDIMI.second; 1438 1439 // If debug info is to be dropped, run it through final checks to see 1440 // whether it can be salvaged. 1441 for (auto &DDI : DDIV) 1442 if (isMatchingDbgValue(DDI)) 1443 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1444 1445 erase_if(DDIV, isMatchingDbgValue); 1446 } 1447 } 1448 1449 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1450 // generate the debug data structures now that we've seen its definition. 1451 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1452 SDValue Val) { 1453 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1454 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1455 return; 1456 1457 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1458 for (auto &DDI : DDIV) { 1459 DebugLoc DL = DDI.getDebugLoc(); 1460 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1461 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1462 DILocalVariable *Variable = DDI.getVariable(); 1463 DIExpression *Expr = DDI.getExpression(); 1464 assert(Variable->isValidLocationForIntrinsic(DL) && 1465 "Expected inlined-at fields to agree"); 1466 SDDbgValue *SDV; 1467 if (Val.getNode()) { 1468 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1469 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1470 // we couldn't resolve it directly when examining the DbgValue intrinsic 1471 // in the first place we should not be more successful here). Unless we 1472 // have some test case that prove this to be correct we should avoid 1473 // calling EmitFuncArgumentDbgValue here. 1474 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1475 FuncArgumentDbgValueKind::Value, Val)) { 1476 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1477 << printDDI(V, DDI) << "\n"); 1478 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1479 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1480 // inserted after the definition of Val when emitting the instructions 1481 // after ISel. An alternative could be to teach 1482 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1483 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1484 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1485 << ValSDNodeOrder << "\n"); 1486 SDV = getDbgValue(Val, Variable, Expr, DL, 1487 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1488 DAG.AddDbgValue(SDV, false); 1489 } else 1490 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1491 << printDDI(V, DDI) 1492 << " in EmitFuncArgumentDbgValue\n"); 1493 } else { 1494 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1495 << "\n"); 1496 auto Undef = UndefValue::get(V->getType()); 1497 auto SDV = 1498 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1499 DAG.AddDbgValue(SDV, false); 1500 } 1501 } 1502 DDIV.clear(); 1503 } 1504 1505 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1506 DanglingDebugInfo &DDI) { 1507 // TODO: For the variadic implementation, instead of only checking the fail 1508 // state of `handleDebugValue`, we need know specifically which values were 1509 // invalid, so that we attempt to salvage only those values when processing 1510 // a DIArgList. 1511 const Value *OrigV = V; 1512 DILocalVariable *Var = DDI.getVariable(); 1513 DIExpression *Expr = DDI.getExpression(); 1514 DebugLoc DL = DDI.getDebugLoc(); 1515 unsigned SDOrder = DDI.getSDNodeOrder(); 1516 1517 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1518 // that DW_OP_stack_value is desired. 1519 bool StackValue = true; 1520 1521 // Can this Value can be encoded without any further work? 1522 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1523 return; 1524 1525 // Attempt to salvage back through as many instructions as possible. Bail if 1526 // a non-instruction is seen, such as a constant expression or global 1527 // variable. FIXME: Further work could recover those too. 1528 while (isa<Instruction>(V)) { 1529 const Instruction &VAsInst = *cast<const Instruction>(V); 1530 // Temporary "0", awaiting real implementation. 1531 SmallVector<uint64_t, 16> Ops; 1532 SmallVector<Value *, 4> AdditionalValues; 1533 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1534 Expr->getNumLocationOperands(), Ops, 1535 AdditionalValues); 1536 // If we cannot salvage any further, and haven't yet found a suitable debug 1537 // expression, bail out. 1538 if (!V) 1539 break; 1540 1541 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1542 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1543 // here for variadic dbg_values, remove that condition. 1544 if (!AdditionalValues.empty()) 1545 break; 1546 1547 // New value and expr now represent this debuginfo. 1548 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1549 1550 // Some kind of simplification occurred: check whether the operand of the 1551 // salvaged debug expression can be encoded in this DAG. 1552 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1553 LLVM_DEBUG( 1554 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1555 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1556 return; 1557 } 1558 } 1559 1560 // This was the final opportunity to salvage this debug information, and it 1561 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1562 // any earlier variable location. 1563 assert(OrigV && "V shouldn't be null"); 1564 auto *Undef = UndefValue::get(OrigV->getType()); 1565 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1566 DAG.AddDbgValue(SDV, false); 1567 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1568 << printDDI(OrigV, DDI) << "\n"); 1569 } 1570 1571 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1572 DIExpression *Expr, 1573 DebugLoc DbgLoc, 1574 unsigned Order) { 1575 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1576 DIExpression *NewExpr = 1577 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1578 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1579 /*IsVariadic*/ false); 1580 } 1581 1582 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1583 DILocalVariable *Var, 1584 DIExpression *Expr, DebugLoc DbgLoc, 1585 unsigned Order, bool IsVariadic) { 1586 if (Values.empty()) 1587 return true; 1588 1589 // Filter EntryValue locations out early. 1590 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1591 return true; 1592 1593 SmallVector<SDDbgOperand> LocationOps; 1594 SmallVector<SDNode *> Dependencies; 1595 for (const Value *V : Values) { 1596 // Constant value. 1597 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1598 isa<ConstantPointerNull>(V)) { 1599 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1600 continue; 1601 } 1602 1603 // Look through IntToPtr constants. 1604 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1605 if (CE->getOpcode() == Instruction::IntToPtr) { 1606 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1607 continue; 1608 } 1609 1610 // If the Value is a frame index, we can create a FrameIndex debug value 1611 // without relying on the DAG at all. 1612 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1613 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1614 if (SI != FuncInfo.StaticAllocaMap.end()) { 1615 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1616 continue; 1617 } 1618 } 1619 1620 // Do not use getValue() in here; we don't want to generate code at 1621 // this point if it hasn't been done yet. 1622 SDValue N = NodeMap[V]; 1623 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1624 N = UnusedArgNodeMap[V]; 1625 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1806 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1807 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1808 getValue(CPA->getAddrDiscriminator()), 1809 getValue(CPA->getDiscriminator())); 1810 } 1811 1812 if (isa<ConstantPointerNull>(C)) { 1813 unsigned AS = V->getType()->getPointerAddressSpace(); 1814 return DAG.getConstant(0, getCurSDLoc(), 1815 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1816 } 1817 1818 if (match(C, m_VScale())) 1819 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1820 1821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1822 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1823 1824 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1825 return DAG.getUNDEF(VT); 1826 1827 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1828 visit(CE->getOpcode(), *CE); 1829 SDValue N1 = NodeMap[V]; 1830 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1831 return N1; 1832 } 1833 1834 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1835 SmallVector<SDValue, 4> Constants; 1836 for (const Use &U : C->operands()) { 1837 SDNode *Val = getValue(U).getNode(); 1838 // If the operand is an empty aggregate, there are no values. 1839 if (!Val) continue; 1840 // Add each leaf value from the operand to the Constants list 1841 // to form a flattened list of all the values. 1842 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1843 Constants.push_back(SDValue(Val, i)); 1844 } 1845 1846 return DAG.getMergeValues(Constants, getCurSDLoc()); 1847 } 1848 1849 if (const ConstantDataSequential *CDS = 1850 dyn_cast<ConstantDataSequential>(C)) { 1851 SmallVector<SDValue, 4> Ops; 1852 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1853 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1854 // Add each leaf value from the operand to the Constants list 1855 // to form a flattened list of all the values. 1856 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1857 Ops.push_back(SDValue(Val, i)); 1858 } 1859 1860 if (isa<ArrayType>(CDS->getType())) 1861 return DAG.getMergeValues(Ops, getCurSDLoc()); 1862 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1863 } 1864 1865 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1866 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1867 "Unknown struct or array constant!"); 1868 1869 SmallVector<EVT, 4> ValueVTs; 1870 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1871 unsigned NumElts = ValueVTs.size(); 1872 if (NumElts == 0) 1873 return SDValue(); // empty struct 1874 SmallVector<SDValue, 4> Constants(NumElts); 1875 for (unsigned i = 0; i != NumElts; ++i) { 1876 EVT EltVT = ValueVTs[i]; 1877 if (isa<UndefValue>(C)) 1878 Constants[i] = DAG.getUNDEF(EltVT); 1879 else if (EltVT.isFloatingPoint()) 1880 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1881 else 1882 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1883 } 1884 1885 return DAG.getMergeValues(Constants, getCurSDLoc()); 1886 } 1887 1888 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1889 return DAG.getBlockAddress(BA, VT); 1890 1891 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1892 return getValue(Equiv->getGlobalValue()); 1893 1894 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1895 return getValue(NC->getGlobalValue()); 1896 1897 if (VT == MVT::aarch64svcount) { 1898 assert(C->isNullValue() && "Can only zero this target type!"); 1899 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1900 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1901 } 1902 1903 VectorType *VecTy = cast<VectorType>(V->getType()); 1904 1905 // Now that we know the number and type of the elements, get that number of 1906 // elements into the Ops array based on what kind of constant it is. 1907 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1908 SmallVector<SDValue, 16> Ops; 1909 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1910 for (unsigned i = 0; i != NumElements; ++i) 1911 Ops.push_back(getValue(CV->getOperand(i))); 1912 1913 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1914 } 1915 1916 if (isa<ConstantAggregateZero>(C)) { 1917 EVT EltVT = 1918 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1919 1920 SDValue Op; 1921 if (EltVT.isFloatingPoint()) 1922 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1923 else 1924 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1925 1926 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1927 } 1928 1929 llvm_unreachable("Unknown vector constant"); 1930 } 1931 1932 // If this is a static alloca, generate it as the frameindex instead of 1933 // computation. 1934 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1935 DenseMap<const AllocaInst*, int>::iterator SI = 1936 FuncInfo.StaticAllocaMap.find(AI); 1937 if (SI != FuncInfo.StaticAllocaMap.end()) 1938 return DAG.getFrameIndex( 1939 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1940 } 1941 1942 // If this is an instruction which fast-isel has deferred, select it now. 1943 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1944 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1945 1946 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1947 Inst->getType(), std::nullopt); 1948 SDValue Chain = DAG.getEntryNode(); 1949 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1950 } 1951 1952 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1953 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1954 1955 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1956 return DAG.getBasicBlock(FuncInfo.getMBB(BB)); 1957 1958 llvm_unreachable("Can't get register for value!"); 1959 } 1960 1961 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1962 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1963 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1964 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1965 bool IsSEH = isAsynchronousEHPersonality(Pers); 1966 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1967 if (!IsSEH) 1968 CatchPadMBB->setIsEHScopeEntry(); 1969 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1970 if (IsMSVCCXX || IsCoreCLR) 1971 CatchPadMBB->setIsEHFuncletEntry(); 1972 } 1973 1974 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1975 // Update machine-CFG edge. 1976 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor()); 1977 FuncInfo.MBB->addSuccessor(TargetMBB); 1978 TargetMBB->setIsEHCatchretTarget(true); 1979 DAG.getMachineFunction().setHasEHCatchret(true); 1980 1981 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1982 bool IsSEH = isAsynchronousEHPersonality(Pers); 1983 if (IsSEH) { 1984 // If this is not a fall-through branch or optimizations are switched off, 1985 // emit the branch. 1986 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1987 TM.getOptLevel() == CodeGenOptLevel::None) 1988 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1989 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1990 return; 1991 } 1992 1993 // Figure out the funclet membership for the catchret's successor. 1994 // This will be used by the FuncletLayout pass to determine how to order the 1995 // BB's. 1996 // A 'catchret' returns to the outer scope's color. 1997 Value *ParentPad = I.getCatchSwitchParentPad(); 1998 const BasicBlock *SuccessorColor; 1999 if (isa<ConstantTokenNone>(ParentPad)) 2000 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2001 else 2002 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2003 assert(SuccessorColor && "No parent funclet for catchret!"); 2004 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor); 2005 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2006 2007 // Create the terminator node. 2008 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2009 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2010 DAG.getBasicBlock(SuccessorColorMBB)); 2011 DAG.setRoot(Ret); 2012 } 2013 2014 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2015 // Don't emit any special code for the cleanuppad instruction. It just marks 2016 // the start of an EH scope/funclet. 2017 FuncInfo.MBB->setIsEHScopeEntry(); 2018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2019 if (Pers != EHPersonality::Wasm_CXX) { 2020 FuncInfo.MBB->setIsEHFuncletEntry(); 2021 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2022 } 2023 } 2024 2025 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2026 // not match, it is OK to add only the first unwind destination catchpad to the 2027 // successors, because there will be at least one invoke instruction within the 2028 // catch scope that points to the next unwind destination, if one exists, so 2029 // CFGSort cannot mess up with BB sorting order. 2030 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2031 // call within them, and catchpads only consisting of 'catch (...)' have a 2032 // '__cxa_end_catch' call within them, both of which generate invokes in case 2033 // the next unwind destination exists, i.e., the next unwind destination is not 2034 // the caller.) 2035 // 2036 // Having at most one EH pad successor is also simpler and helps later 2037 // transformations. 2038 // 2039 // For example, 2040 // current: 2041 // invoke void @foo to ... unwind label %catch.dispatch 2042 // catch.dispatch: 2043 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2044 // catch.start: 2045 // ... 2046 // ... in this BB or some other child BB dominated by this BB there will be an 2047 // invoke that points to 'next' BB as an unwind destination 2048 // 2049 // next: ; We don't need to add this to 'current' BB's successor 2050 // ... 2051 static void findWasmUnwindDestinations( 2052 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2053 BranchProbability Prob, 2054 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2055 &UnwindDests) { 2056 while (EHPadBB) { 2057 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2058 if (isa<CleanupPadInst>(Pad)) { 2059 // Stop on cleanup pads. 2060 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 break; 2063 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2064 // Add the catchpad handlers to the possible destinations. We don't 2065 // continue to the unwind destination of the catchswitch for wasm. 2066 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2067 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2068 UnwindDests.back().first->setIsEHScopeEntry(); 2069 } 2070 break; 2071 } else { 2072 continue; 2073 } 2074 } 2075 } 2076 2077 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2078 /// many places it could ultimately go. In the IR, we have a single unwind 2079 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2080 /// This function skips over imaginary basic blocks that hold catchswitch 2081 /// instructions, and finds all the "real" machine 2082 /// basic block destinations. As those destinations may not be successors of 2083 /// EHPadBB, here we also calculate the edge probability to those destinations. 2084 /// The passed-in Prob is the edge probability to EHPadBB. 2085 static void findUnwindDestinations( 2086 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2087 BranchProbability Prob, 2088 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2089 &UnwindDests) { 2090 EHPersonality Personality = 2091 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2092 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2093 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2094 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2095 bool IsSEH = isAsynchronousEHPersonality(Personality); 2096 2097 if (IsWasmCXX) { 2098 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2099 assert(UnwindDests.size() <= 1 && 2100 "There should be at most one unwind destination for wasm"); 2101 return; 2102 } 2103 2104 while (EHPadBB) { 2105 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2106 BasicBlock *NewEHPadBB = nullptr; 2107 if (isa<LandingPadInst>(Pad)) { 2108 // Stop on landingpads. They are not funclets. 2109 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2110 break; 2111 } else if (isa<CleanupPadInst>(Pad)) { 2112 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2113 // personalities. 2114 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2115 UnwindDests.back().first->setIsEHScopeEntry(); 2116 UnwindDests.back().first->setIsEHFuncletEntry(); 2117 break; 2118 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2119 // Add the catchpad handlers to the possible destinations. 2120 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2121 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2122 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2123 if (IsMSVCCXX || IsCoreCLR) 2124 UnwindDests.back().first->setIsEHFuncletEntry(); 2125 if (!IsSEH) 2126 UnwindDests.back().first->setIsEHScopeEntry(); 2127 } 2128 NewEHPadBB = CatchSwitch->getUnwindDest(); 2129 } else { 2130 continue; 2131 } 2132 2133 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2134 if (BPI && NewEHPadBB) 2135 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2136 EHPadBB = NewEHPadBB; 2137 } 2138 } 2139 2140 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2141 // Update successor info. 2142 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2143 auto UnwindDest = I.getUnwindDest(); 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability UnwindDestProb = 2146 (BPI && UnwindDest) 2147 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2148 : BranchProbability::getZero(); 2149 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2150 for (auto &UnwindDest : UnwindDests) { 2151 UnwindDest.first->setIsEHPad(); 2152 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2153 } 2154 FuncInfo.MBB->normalizeSuccProbs(); 2155 2156 // Create the terminator node. 2157 SDValue Ret = 2158 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2159 DAG.setRoot(Ret); 2160 } 2161 2162 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2163 report_fatal_error("visitCatchSwitch not yet implemented!"); 2164 } 2165 2166 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 auto &DL = DAG.getDataLayout(); 2169 SDValue Chain = getControlRoot(); 2170 SmallVector<ISD::OutputArg, 8> Outs; 2171 SmallVector<SDValue, 8> OutVals; 2172 2173 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2174 // lower 2175 // 2176 // %val = call <ty> @llvm.experimental.deoptimize() 2177 // ret <ty> %val 2178 // 2179 // differently. 2180 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2181 LowerDeoptimizingReturn(); 2182 return; 2183 } 2184 2185 if (!FuncInfo.CanLowerReturn) { 2186 Register DemoteReg = FuncInfo.DemoteRegister; 2187 const Function *F = I.getParent()->getParent(); 2188 2189 // Emit a store of the return value through the virtual register. 2190 // Leave Outs empty so that LowerReturn won't try to load return 2191 // registers the usual way. 2192 SmallVector<EVT, 1> PtrValueVTs; 2193 ComputeValueVTs(TLI, DL, 2194 PointerType::get(F->getContext(), 2195 DAG.getDataLayout().getAllocaAddrSpace()), 2196 PtrValueVTs); 2197 2198 SDValue RetPtr = 2199 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2200 SDValue RetOp = getValue(I.getOperand(0)); 2201 2202 SmallVector<EVT, 4> ValueVTs, MemVTs; 2203 SmallVector<uint64_t, 4> Offsets; 2204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2205 &Offsets, 0); 2206 unsigned NumValues = ValueVTs.size(); 2207 2208 SmallVector<SDValue, 4> Chains(NumValues); 2209 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2210 for (unsigned i = 0; i != NumValues; ++i) { 2211 // An aggregate return value cannot wrap around the address space, so 2212 // offsets to its parts don't wrap either. 2213 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2214 TypeSize::getFixed(Offsets[i])); 2215 2216 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2217 if (MemVTs[i] != ValueVTs[i]) 2218 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2219 Chains[i] = DAG.getStore( 2220 Chain, getCurSDLoc(), Val, 2221 // FIXME: better loc info would be nice. 2222 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2223 commonAlignment(BaseAlign, Offsets[i])); 2224 } 2225 2226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2227 MVT::Other, Chains); 2228 } else if (I.getNumOperands() != 0) { 2229 SmallVector<EVT, 4> ValueVTs; 2230 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2231 unsigned NumValues = ValueVTs.size(); 2232 if (NumValues) { 2233 SDValue RetOp = getValue(I.getOperand(0)); 2234 2235 const Function *F = I.getParent()->getParent(); 2236 2237 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2238 I.getOperand(0)->getType(), F->getCallingConv(), 2239 /*IsVarArg*/ false, DL); 2240 2241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2242 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2243 ExtendKind = ISD::SIGN_EXTEND; 2244 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2245 ExtendKind = ISD::ZERO_EXTEND; 2246 2247 LLVMContext &Context = F->getContext(); 2248 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2249 2250 for (unsigned j = 0; j != NumValues; ++j) { 2251 EVT VT = ValueVTs[j]; 2252 2253 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2254 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2255 2256 CallingConv::ID CC = F->getCallingConv(); 2257 2258 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2259 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2260 SmallVector<SDValue, 4> Parts(NumParts); 2261 getCopyToParts(DAG, getCurSDLoc(), 2262 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2263 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2264 2265 // 'inreg' on function refers to return value 2266 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2267 if (RetInReg) 2268 Flags.setInReg(); 2269 2270 if (I.getOperand(0)->getType()->isPointerTy()) { 2271 Flags.setPointer(); 2272 Flags.setPointerAddrSpace( 2273 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2274 } 2275 2276 if (NeedsRegBlock) { 2277 Flags.setInConsecutiveRegs(); 2278 if (j == NumValues - 1) 2279 Flags.setInConsecutiveRegsLast(); 2280 } 2281 2282 // Propagate extension type if any 2283 if (ExtendKind == ISD::SIGN_EXTEND) 2284 Flags.setSExt(); 2285 else if (ExtendKind == ISD::ZERO_EXTEND) 2286 Flags.setZExt(); 2287 else if (F->getAttributes().hasRetAttr(Attribute::NoExt)) 2288 Flags.setNoExt(); 2289 2290 for (unsigned i = 0; i < NumParts; ++i) { 2291 Outs.push_back(ISD::OutputArg(Flags, 2292 Parts[i].getValueType().getSimpleVT(), 2293 VT, /*isfixed=*/true, 0, 0)); 2294 OutVals.push_back(Parts[i]); 2295 } 2296 } 2297 } 2298 } 2299 2300 // Push in swifterror virtual register as the last element of Outs. This makes 2301 // sure swifterror virtual register will be returned in the swifterror 2302 // physical register. 2303 const Function *F = I.getParent()->getParent(); 2304 if (TLI.supportSwiftError() && 2305 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2306 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2307 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2308 Flags.setSwiftError(); 2309 Outs.push_back(ISD::OutputArg( 2310 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2311 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2312 // Create SDNode for the swifterror virtual register. 2313 OutVals.push_back( 2314 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2315 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2316 EVT(TLI.getPointerTy(DL)))); 2317 } 2318 2319 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2320 CallingConv::ID CallConv = 2321 DAG.getMachineFunction().getFunction().getCallingConv(); 2322 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2323 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2324 2325 // Verify that the target's LowerReturn behaved as expected. 2326 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2327 "LowerReturn didn't return a valid chain!"); 2328 2329 // Update the DAG with the new chain value resulting from return lowering. 2330 DAG.setRoot(Chain); 2331 } 2332 2333 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2334 /// created for it, emit nodes to copy the value into the virtual 2335 /// registers. 2336 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2337 // Skip empty types 2338 if (V->getType()->isEmptyTy()) 2339 return; 2340 2341 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2342 if (VMI != FuncInfo.ValueMap.end()) { 2343 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2344 "Unused value assigned virtual registers!"); 2345 CopyValueToVirtualRegister(V, VMI->second); 2346 } 2347 } 2348 2349 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2350 /// the current basic block, add it to ValueMap now so that we'll get a 2351 /// CopyTo/FromReg. 2352 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2353 // No need to export constants. 2354 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2355 2356 // Already exported? 2357 if (FuncInfo.isExportedInst(V)) return; 2358 2359 Register Reg = FuncInfo.InitializeRegForValue(V); 2360 CopyValueToVirtualRegister(V, Reg); 2361 } 2362 2363 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2364 const BasicBlock *FromBB) { 2365 // The operands of the setcc have to be in this block. We don't know 2366 // how to export them from some other block. 2367 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2368 // Can export from current BB. 2369 if (VI->getParent() == FromBB) 2370 return true; 2371 2372 // Is already exported, noop. 2373 return FuncInfo.isExportedInst(V); 2374 } 2375 2376 // If this is an argument, we can export it if the BB is the entry block or 2377 // if it is already exported. 2378 if (isa<Argument>(V)) { 2379 if (FromBB->isEntryBlock()) 2380 return true; 2381 2382 // Otherwise, can only export this if it is already exported. 2383 return FuncInfo.isExportedInst(V); 2384 } 2385 2386 // Otherwise, constants can always be exported. 2387 return true; 2388 } 2389 2390 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2391 BranchProbability 2392 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2393 const MachineBasicBlock *Dst) const { 2394 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2395 const BasicBlock *SrcBB = Src->getBasicBlock(); 2396 const BasicBlock *DstBB = Dst->getBasicBlock(); 2397 if (!BPI) { 2398 // If BPI is not available, set the default probability as 1 / N, where N is 2399 // the number of successors. 2400 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2401 return BranchProbability(1, SuccSize); 2402 } 2403 return BPI->getEdgeProbability(SrcBB, DstBB); 2404 } 2405 2406 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2407 MachineBasicBlock *Dst, 2408 BranchProbability Prob) { 2409 if (!FuncInfo.BPI) 2410 Src->addSuccessorWithoutProb(Dst); 2411 else { 2412 if (Prob.isUnknown()) 2413 Prob = getEdgeProbability(Src, Dst); 2414 Src->addSuccessor(Dst, Prob); 2415 } 2416 } 2417 2418 static bool InBlock(const Value *V, const BasicBlock *BB) { 2419 if (const Instruction *I = dyn_cast<Instruction>(V)) 2420 return I->getParent() == BB; 2421 return true; 2422 } 2423 2424 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2425 /// This function emits a branch and is used at the leaves of an OR or an 2426 /// AND operator tree. 2427 void 2428 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2429 MachineBasicBlock *TBB, 2430 MachineBasicBlock *FBB, 2431 MachineBasicBlock *CurBB, 2432 MachineBasicBlock *SwitchBB, 2433 BranchProbability TProb, 2434 BranchProbability FProb, 2435 bool InvertCond) { 2436 const BasicBlock *BB = CurBB->getBasicBlock(); 2437 2438 // If the leaf of the tree is a comparison, merge the condition into 2439 // the caseblock. 2440 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2441 // The operands of the cmp have to be in this block. We don't know 2442 // how to export them from some other block. If this is the first block 2443 // of the sequence, no exporting is needed. 2444 if (CurBB == SwitchBB || 2445 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2446 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2447 ISD::CondCode Condition; 2448 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2449 ICmpInst::Predicate Pred = 2450 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2451 Condition = getICmpCondCode(Pred); 2452 } else { 2453 const FCmpInst *FC = cast<FCmpInst>(Cond); 2454 FCmpInst::Predicate Pred = 2455 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2456 Condition = getFCmpCondCode(Pred); 2457 if (TM.Options.NoNaNsFPMath) 2458 Condition = getFCmpCodeWithoutNaN(Condition); 2459 } 2460 2461 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2462 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2463 SL->SwitchCases.push_back(CB); 2464 return; 2465 } 2466 } 2467 2468 // Create a CaseBlock record representing this branch. 2469 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2470 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2471 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2472 SL->SwitchCases.push_back(CB); 2473 } 2474 2475 // Collect dependencies on V recursively. This is used for the cost analysis in 2476 // `shouldKeepJumpConditionsTogether`. 2477 static bool collectInstructionDeps( 2478 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2479 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2480 unsigned Depth = 0) { 2481 // Return false if we have an incomplete count. 2482 if (Depth >= SelectionDAG::MaxRecursionDepth) 2483 return false; 2484 2485 auto *I = dyn_cast<Instruction>(V); 2486 if (I == nullptr) 2487 return true; 2488 2489 if (Necessary != nullptr) { 2490 // This instruction is necessary for the other side of the condition so 2491 // don't count it. 2492 if (Necessary->contains(I)) 2493 return true; 2494 } 2495 2496 // Already added this dep. 2497 if (!Deps->try_emplace(I, false).second) 2498 return true; 2499 2500 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2501 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2502 Depth + 1)) 2503 return false; 2504 return true; 2505 } 2506 2507 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2508 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2509 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2510 TargetLoweringBase::CondMergingParams Params) const { 2511 if (I.getNumSuccessors() != 2) 2512 return false; 2513 2514 if (!I.isConditional()) 2515 return false; 2516 2517 if (Params.BaseCost < 0) 2518 return false; 2519 2520 // Baseline cost. 2521 InstructionCost CostThresh = Params.BaseCost; 2522 2523 BranchProbabilityInfo *BPI = nullptr; 2524 if (Params.LikelyBias || Params.UnlikelyBias) 2525 BPI = FuncInfo.BPI; 2526 if (BPI != nullptr) { 2527 // See if we are either likely to get an early out or compute both lhs/rhs 2528 // of the condition. 2529 BasicBlock *IfFalse = I.getSuccessor(0); 2530 BasicBlock *IfTrue = I.getSuccessor(1); 2531 2532 std::optional<bool> Likely; 2533 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2534 Likely = true; 2535 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2536 Likely = false; 2537 2538 if (Likely) { 2539 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2540 // Its likely we will have to compute both lhs and rhs of condition 2541 CostThresh += Params.LikelyBias; 2542 else { 2543 if (Params.UnlikelyBias < 0) 2544 return false; 2545 // Its likely we will get an early out. 2546 CostThresh -= Params.UnlikelyBias; 2547 } 2548 } 2549 } 2550 2551 if (CostThresh <= 0) 2552 return false; 2553 2554 // Collect "all" instructions that lhs condition is dependent on. 2555 // Use map for stable iteration (to avoid non-determanism of iteration of 2556 // SmallPtrSet). The `bool` value is just a dummy. 2557 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2558 collectInstructionDeps(&LhsDeps, Lhs); 2559 // Collect "all" instructions that rhs condition is dependent on AND are 2560 // dependencies of lhs. This gives us an estimate on which instructions we 2561 // stand to save by splitting the condition. 2562 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2563 return false; 2564 // Add the compare instruction itself unless its a dependency on the LHS. 2565 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2566 if (!LhsDeps.contains(RhsI)) 2567 RhsDeps.try_emplace(RhsI, false); 2568 2569 const auto &TLI = DAG.getTargetLoweringInfo(); 2570 const auto &TTI = 2571 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2572 2573 InstructionCost CostOfIncluding = 0; 2574 // See if this instruction will need to computed independently of whether RHS 2575 // is. 2576 Value *BrCond = I.getCondition(); 2577 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2578 for (const auto *U : Ins->users()) { 2579 // If user is independent of RHS calculation we don't need to count it. 2580 if (auto *UIns = dyn_cast<Instruction>(U)) 2581 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2582 return false; 2583 } 2584 return true; 2585 }; 2586 2587 // Prune instructions from RHS Deps that are dependencies of unrelated 2588 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2589 // arbitrary and just meant to cap the how much time we spend in the pruning 2590 // loop. Its highly unlikely to come into affect. 2591 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2592 // Stop after a certain point. No incorrectness from including too many 2593 // instructions. 2594 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2595 const Instruction *ToDrop = nullptr; 2596 for (const auto &InsPair : RhsDeps) { 2597 if (!ShouldCountInsn(InsPair.first)) { 2598 ToDrop = InsPair.first; 2599 break; 2600 } 2601 } 2602 if (ToDrop == nullptr) 2603 break; 2604 RhsDeps.erase(ToDrop); 2605 } 2606 2607 for (const auto &InsPair : RhsDeps) { 2608 // Finally accumulate latency that we can only attribute to computing the 2609 // RHS condition. Use latency because we are essentially trying to calculate 2610 // the cost of the dependency chain. 2611 // Possible TODO: We could try to estimate ILP and make this more precise. 2612 CostOfIncluding += 2613 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2614 2615 if (CostOfIncluding > CostThresh) 2616 return false; 2617 } 2618 return true; 2619 } 2620 2621 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2622 MachineBasicBlock *TBB, 2623 MachineBasicBlock *FBB, 2624 MachineBasicBlock *CurBB, 2625 MachineBasicBlock *SwitchBB, 2626 Instruction::BinaryOps Opc, 2627 BranchProbability TProb, 2628 BranchProbability FProb, 2629 bool InvertCond) { 2630 // Skip over not part of the tree and remember to invert op and operands at 2631 // next level. 2632 Value *NotCond; 2633 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2634 InBlock(NotCond, CurBB->getBasicBlock())) { 2635 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2636 !InvertCond); 2637 return; 2638 } 2639 2640 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2641 const Value *BOpOp0, *BOpOp1; 2642 // Compute the effective opcode for Cond, taking into account whether it needs 2643 // to be inverted, e.g. 2644 // and (not (or A, B)), C 2645 // gets lowered as 2646 // and (and (not A, not B), C) 2647 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2648 if (BOp) { 2649 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2650 ? Instruction::And 2651 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2652 ? Instruction::Or 2653 : (Instruction::BinaryOps)0); 2654 if (InvertCond) { 2655 if (BOpc == Instruction::And) 2656 BOpc = Instruction::Or; 2657 else if (BOpc == Instruction::Or) 2658 BOpc = Instruction::And; 2659 } 2660 } 2661 2662 // If this node is not part of the or/and tree, emit it as a branch. 2663 // Note that all nodes in the tree should have same opcode. 2664 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2665 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2666 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2667 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2668 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2669 TProb, FProb, InvertCond); 2670 return; 2671 } 2672 2673 // Create TmpBB after CurBB. 2674 MachineFunction::iterator BBI(CurBB); 2675 MachineFunction &MF = DAG.getMachineFunction(); 2676 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2677 CurBB->getParent()->insert(++BBI, TmpBB); 2678 2679 if (Opc == Instruction::Or) { 2680 // Codegen X | Y as: 2681 // BB1: 2682 // jmp_if_X TBB 2683 // jmp TmpBB 2684 // TmpBB: 2685 // jmp_if_Y TBB 2686 // jmp FBB 2687 // 2688 2689 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2690 // The requirement is that 2691 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2692 // = TrueProb for original BB. 2693 // Assuming the original probabilities are A and B, one choice is to set 2694 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2695 // A/(1+B) and 2B/(1+B). This choice assumes that 2696 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2697 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2698 // TmpBB, but the math is more complicated. 2699 2700 auto NewTrueProb = TProb / 2; 2701 auto NewFalseProb = TProb / 2 + FProb; 2702 // Emit the LHS condition. 2703 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2704 NewFalseProb, InvertCond); 2705 2706 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2707 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2708 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2709 // Emit the RHS condition into TmpBB. 2710 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2711 Probs[1], InvertCond); 2712 } else { 2713 assert(Opc == Instruction::And && "Unknown merge op!"); 2714 // Codegen X & Y as: 2715 // BB1: 2716 // jmp_if_X TmpBB 2717 // jmp FBB 2718 // TmpBB: 2719 // jmp_if_Y TBB 2720 // jmp FBB 2721 // 2722 // This requires creation of TmpBB after CurBB. 2723 2724 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2725 // The requirement is that 2726 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2727 // = FalseProb for original BB. 2728 // Assuming the original probabilities are A and B, one choice is to set 2729 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2730 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2731 // TrueProb for BB1 * FalseProb for TmpBB. 2732 2733 auto NewTrueProb = TProb + FProb / 2; 2734 auto NewFalseProb = FProb / 2; 2735 // Emit the LHS condition. 2736 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2737 NewFalseProb, InvertCond); 2738 2739 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2740 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2741 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2742 // Emit the RHS condition into TmpBB. 2743 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2744 Probs[1], InvertCond); 2745 } 2746 } 2747 2748 /// If the set of cases should be emitted as a series of branches, return true. 2749 /// If we should emit this as a bunch of and/or'd together conditions, return 2750 /// false. 2751 bool 2752 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2753 if (Cases.size() != 2) return true; 2754 2755 // If this is two comparisons of the same values or'd or and'd together, they 2756 // will get folded into a single comparison, so don't emit two blocks. 2757 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2758 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2759 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2760 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2761 return false; 2762 } 2763 2764 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2765 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2766 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2767 Cases[0].CC == Cases[1].CC && 2768 isa<Constant>(Cases[0].CmpRHS) && 2769 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2770 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2771 return false; 2772 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2773 return false; 2774 } 2775 2776 return true; 2777 } 2778 2779 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2780 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2781 2782 // Update machine-CFG edges. 2783 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0)); 2784 2785 if (I.isUnconditional()) { 2786 // Update machine-CFG edges. 2787 BrMBB->addSuccessor(Succ0MBB); 2788 2789 // If this is not a fall-through branch or optimizations are switched off, 2790 // emit the branch. 2791 if (Succ0MBB != NextBlock(BrMBB) || 2792 TM.getOptLevel() == CodeGenOptLevel::None) { 2793 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2794 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2795 setValue(&I, Br); 2796 DAG.setRoot(Br); 2797 } 2798 2799 return; 2800 } 2801 2802 // If this condition is one of the special cases we handle, do special stuff 2803 // now. 2804 const Value *CondVal = I.getCondition(); 2805 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1)); 2806 2807 // If this is a series of conditions that are or'd or and'd together, emit 2808 // this as a sequence of branches instead of setcc's with and/or operations. 2809 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2810 // unpredictable branches, and vector extracts because those jumps are likely 2811 // expensive for any target), this should improve performance. 2812 // For example, instead of something like: 2813 // cmp A, B 2814 // C = seteq 2815 // cmp D, E 2816 // F = setle 2817 // or C, F 2818 // jnz foo 2819 // Emit: 2820 // cmp A, B 2821 // je foo 2822 // cmp D, E 2823 // jle foo 2824 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable); 2825 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2826 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2827 BOp->hasOneUse() && !IsUnpredictable) { 2828 Value *Vec; 2829 const Value *BOp0, *BOp1; 2830 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2831 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2832 Opcode = Instruction::And; 2833 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2834 Opcode = Instruction::Or; 2835 2836 if (Opcode && 2837 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2838 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2839 !shouldKeepJumpConditionsTogether( 2840 FuncInfo, I, Opcode, BOp0, BOp1, 2841 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2842 Opcode, BOp0, BOp1))) { 2843 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2844 getEdgeProbability(BrMBB, Succ0MBB), 2845 getEdgeProbability(BrMBB, Succ1MBB), 2846 /*InvertCond=*/false); 2847 // If the compares in later blocks need to use values not currently 2848 // exported from this block, export them now. This block should always 2849 // be the first entry. 2850 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2851 2852 // Allow some cases to be rejected. 2853 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2854 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2855 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2856 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2857 } 2858 2859 // Emit the branch for this block. 2860 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2861 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2862 return; 2863 } 2864 2865 // Okay, we decided not to do this, remove any inserted MBB's and clear 2866 // SwitchCases. 2867 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2868 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2869 2870 SL->SwitchCases.clear(); 2871 } 2872 } 2873 2874 // Create a CaseBlock record representing this branch. 2875 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2876 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(), 2877 BranchProbability::getUnknown(), BranchProbability::getUnknown(), 2878 IsUnpredictable); 2879 2880 // Use visitSwitchCase to actually insert the fast branch sequence for this 2881 // cond branch. 2882 visitSwitchCase(CB, BrMBB); 2883 } 2884 2885 /// visitSwitchCase - Emits the necessary code to represent a single node in 2886 /// the binary search tree resulting from lowering a switch instruction. 2887 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2888 MachineBasicBlock *SwitchBB) { 2889 SDValue Cond; 2890 SDValue CondLHS = getValue(CB.CmpLHS); 2891 SDLoc dl = CB.DL; 2892 2893 if (CB.CC == ISD::SETTRUE) { 2894 // Branch or fall through to TrueBB. 2895 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2896 SwitchBB->normalizeSuccProbs(); 2897 if (CB.TrueBB != NextBlock(SwitchBB)) { 2898 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2899 DAG.getBasicBlock(CB.TrueBB))); 2900 } 2901 return; 2902 } 2903 2904 auto &TLI = DAG.getTargetLoweringInfo(); 2905 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2906 2907 // Build the setcc now. 2908 if (!CB.CmpMHS) { 2909 // Fold "(X == true)" to X and "(X == false)" to !X to 2910 // handle common cases produced by branch lowering. 2911 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2912 CB.CC == ISD::SETEQ) 2913 Cond = CondLHS; 2914 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2915 CB.CC == ISD::SETEQ) { 2916 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2917 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2918 } else { 2919 SDValue CondRHS = getValue(CB.CmpRHS); 2920 2921 // If a pointer's DAG type is larger than its memory type then the DAG 2922 // values are zero-extended. This breaks signed comparisons so truncate 2923 // back to the underlying type before doing the compare. 2924 if (CondLHS.getValueType() != MemVT) { 2925 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2926 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2927 } 2928 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2929 } 2930 } else { 2931 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2932 2933 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2934 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2935 2936 SDValue CmpOp = getValue(CB.CmpMHS); 2937 EVT VT = CmpOp.getValueType(); 2938 2939 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2940 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2941 ISD::SETLE); 2942 } else { 2943 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2944 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2945 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2946 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2947 } 2948 } 2949 2950 // Update successor info 2951 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2952 // TrueBB and FalseBB are always different unless the incoming IR is 2953 // degenerate. This only happens when running llc on weird IR. 2954 if (CB.TrueBB != CB.FalseBB) 2955 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2956 SwitchBB->normalizeSuccProbs(); 2957 2958 // If the lhs block is the next block, invert the condition so that we can 2959 // fall through to the lhs instead of the rhs block. 2960 if (CB.TrueBB == NextBlock(SwitchBB)) { 2961 std::swap(CB.TrueBB, CB.FalseBB); 2962 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2963 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2964 } 2965 2966 SDNodeFlags Flags; 2967 Flags.setUnpredictable(CB.IsUnpredictable); 2968 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), 2969 Cond, DAG.getBasicBlock(CB.TrueBB), Flags); 2970 2971 setValue(CurInst, BrCond); 2972 2973 // Insert the false branch. Do this even if it's a fall through branch, 2974 // this makes it easier to do DAG optimizations which require inverting 2975 // the branch condition. 2976 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2977 DAG.getBasicBlock(CB.FalseBB)); 2978 2979 DAG.setRoot(BrCond); 2980 } 2981 2982 /// visitJumpTable - Emit JumpTable node in the current MBB 2983 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2984 // Emit the code for the jump table 2985 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2986 assert(JT.Reg && "Should lower JT Header first!"); 2987 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout()); 2988 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2989 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2990 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2991 Index.getValue(1), Table, Index); 2992 DAG.setRoot(BrJumpTable); 2993 } 2994 2995 /// visitJumpTableHeader - This function emits necessary code to produce index 2996 /// in the JumpTable from switch case. 2997 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2998 JumpTableHeader &JTH, 2999 MachineBasicBlock *SwitchBB) { 3000 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 3001 const SDLoc &dl = *JT.SL; 3002 3003 // Subtract the lowest switch case value from the value being switched on. 3004 SDValue SwitchOp = getValue(JTH.SValue); 3005 EVT VT = SwitchOp.getValueType(); 3006 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3007 DAG.getConstant(JTH.First, dl, VT)); 3008 3009 // The SDNode we just created, which holds the value being switched on minus 3010 // the smallest case value, needs to be copied to a virtual register so it 3011 // can be used as an index into the jump table in a subsequent basic block. 3012 // This value may be smaller or larger than the target's pointer type, and 3013 // therefore require extension or truncating. 3014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3015 SwitchOp = 3016 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout())); 3017 3018 Register JumpTableReg = 3019 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout())); 3020 SDValue CopyTo = 3021 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp); 3022 JT.Reg = JumpTableReg; 3023 3024 if (!JTH.FallthroughUnreachable) { 3025 // Emit the range check for the jump table, and branch to the default block 3026 // for the switch statement if the value being switched on exceeds the 3027 // largest case in the switch. 3028 SDValue CMP = DAG.getSetCC( 3029 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3030 Sub.getValueType()), 3031 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3032 3033 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3034 MVT::Other, CopyTo, CMP, 3035 DAG.getBasicBlock(JT.Default)); 3036 3037 // Avoid emitting unnecessary branches to the next block. 3038 if (JT.MBB != NextBlock(SwitchBB)) 3039 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3040 DAG.getBasicBlock(JT.MBB)); 3041 3042 DAG.setRoot(BrCond); 3043 } else { 3044 // Avoid emitting unnecessary branches to the next block. 3045 if (JT.MBB != NextBlock(SwitchBB)) 3046 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3047 DAG.getBasicBlock(JT.MBB))); 3048 else 3049 DAG.setRoot(CopyTo); 3050 } 3051 } 3052 3053 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3054 /// variable if there exists one. 3055 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3056 SDValue &Chain) { 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3059 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3060 MachineFunction &MF = DAG.getMachineFunction(); 3061 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3062 MachineSDNode *Node = 3063 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3064 if (Global) { 3065 MachinePointerInfo MPInfo(Global); 3066 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3067 MachineMemOperand::MODereferenceable; 3068 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3069 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3070 DAG.getEVTAlign(PtrTy)); 3071 DAG.setNodeMemRefs(Node, {MemRef}); 3072 } 3073 if (PtrTy != PtrMemTy) 3074 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3075 return SDValue(Node, 0); 3076 } 3077 3078 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3079 /// tail spliced into a stack protector check success bb. 3080 /// 3081 /// For a high level explanation of how this fits into the stack protector 3082 /// generation see the comment on the declaration of class 3083 /// StackProtectorDescriptor. 3084 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3085 MachineBasicBlock *ParentBB) { 3086 3087 // First create the loads to the guard/stack slot for the comparison. 3088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3089 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3090 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3091 3092 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3093 int FI = MFI.getStackProtectorIndex(); 3094 3095 SDValue Guard; 3096 SDLoc dl = getCurSDLoc(); 3097 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3098 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3099 Align Align = 3100 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3101 3102 // Generate code to load the content of the guard slot. 3103 SDValue GuardVal = DAG.getLoad( 3104 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3105 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3106 MachineMemOperand::MOVolatile); 3107 3108 if (TLI.useStackGuardXorFP()) 3109 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3110 3111 // Retrieve guard check function, nullptr if instrumentation is inlined. 3112 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3113 // The target provides a guard check function to validate the guard value. 3114 // Generate a call to that function with the content of the guard slot as 3115 // argument. 3116 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3117 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3118 3119 TargetLowering::ArgListTy Args; 3120 TargetLowering::ArgListEntry Entry; 3121 Entry.Node = GuardVal; 3122 Entry.Ty = FnTy->getParamType(0); 3123 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3124 Entry.IsInReg = true; 3125 Args.push_back(Entry); 3126 3127 TargetLowering::CallLoweringInfo CLI(DAG); 3128 CLI.setDebugLoc(getCurSDLoc()) 3129 .setChain(DAG.getEntryNode()) 3130 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3131 getValue(GuardCheckFn), std::move(Args)); 3132 3133 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3134 DAG.setRoot(Result.second); 3135 return; 3136 } 3137 3138 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3139 // Otherwise, emit a volatile load to retrieve the stack guard value. 3140 SDValue Chain = DAG.getEntryNode(); 3141 if (TLI.useLoadStackGuardNode()) { 3142 Guard = getLoadStackGuard(DAG, dl, Chain); 3143 } else { 3144 const Value *IRGuard = TLI.getSDagStackGuard(M); 3145 SDValue GuardPtr = getValue(IRGuard); 3146 3147 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3148 MachinePointerInfo(IRGuard, 0), Align, 3149 MachineMemOperand::MOVolatile); 3150 } 3151 3152 // Perform the comparison via a getsetcc. 3153 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3154 *DAG.getContext(), 3155 Guard.getValueType()), 3156 Guard, GuardVal, ISD::SETNE); 3157 3158 // If the guard/stackslot do not equal, branch to failure MBB. 3159 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3160 MVT::Other, GuardVal.getOperand(0), 3161 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3162 // Otherwise branch to success MBB. 3163 SDValue Br = DAG.getNode(ISD::BR, dl, 3164 MVT::Other, BrCond, 3165 DAG.getBasicBlock(SPD.getSuccessMBB())); 3166 3167 DAG.setRoot(Br); 3168 } 3169 3170 /// Codegen the failure basic block for a stack protector check. 3171 /// 3172 /// A failure stack protector machine basic block consists simply of a call to 3173 /// __stack_chk_fail(). 3174 /// 3175 /// For a high level explanation of how this fits into the stack protector 3176 /// generation see the comment on the declaration of class 3177 /// StackProtectorDescriptor. 3178 void 3179 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3181 TargetLowering::MakeLibCallOptions CallOptions; 3182 CallOptions.setDiscardResult(true); 3183 SDValue Chain = 3184 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3185 std::nullopt, CallOptions, getCurSDLoc()) 3186 .second; 3187 // On PS4/PS5, the "return address" must still be within the calling 3188 // function, even if it's at the very end, so emit an explicit TRAP here. 3189 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3190 if (TM.getTargetTriple().isPS()) 3191 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3192 // WebAssembly needs an unreachable instruction after a non-returning call, 3193 // because the function return type can be different from __stack_chk_fail's 3194 // return type (void). 3195 if (TM.getTargetTriple().isWasm()) 3196 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3197 3198 DAG.setRoot(Chain); 3199 } 3200 3201 /// visitBitTestHeader - This function emits necessary code to produce value 3202 /// suitable for "bit tests" 3203 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3204 MachineBasicBlock *SwitchBB) { 3205 SDLoc dl = getCurSDLoc(); 3206 3207 // Subtract the minimum value. 3208 SDValue SwitchOp = getValue(B.SValue); 3209 EVT VT = SwitchOp.getValueType(); 3210 SDValue RangeSub = 3211 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3212 3213 // Determine the type of the test operands. 3214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3215 bool UsePtrType = false; 3216 if (!TLI.isTypeLegal(VT)) { 3217 UsePtrType = true; 3218 } else { 3219 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3220 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3221 // Switch table case range are encoded into series of masks. 3222 // Just use pointer type, it's guaranteed to fit. 3223 UsePtrType = true; 3224 break; 3225 } 3226 } 3227 SDValue Sub = RangeSub; 3228 if (UsePtrType) { 3229 VT = TLI.getPointerTy(DAG.getDataLayout()); 3230 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3231 } 3232 3233 B.RegVT = VT.getSimpleVT(); 3234 B.Reg = FuncInfo.CreateReg(B.RegVT); 3235 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3236 3237 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3238 3239 if (!B.FallthroughUnreachable) 3240 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3241 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3242 SwitchBB->normalizeSuccProbs(); 3243 3244 SDValue Root = CopyTo; 3245 if (!B.FallthroughUnreachable) { 3246 // Conditional branch to the default block. 3247 SDValue RangeCmp = DAG.getSetCC(dl, 3248 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3249 RangeSub.getValueType()), 3250 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3251 ISD::SETUGT); 3252 3253 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3254 DAG.getBasicBlock(B.Default)); 3255 } 3256 3257 // Avoid emitting unnecessary branches to the next block. 3258 if (MBB != NextBlock(SwitchBB)) 3259 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3260 3261 DAG.setRoot(Root); 3262 } 3263 3264 /// visitBitTestCase - this function produces one "bit test" 3265 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3266 MachineBasicBlock *NextMBB, 3267 BranchProbability BranchProbToNext, 3268 Register Reg, BitTestCase &B, 3269 MachineBasicBlock *SwitchBB) { 3270 SDLoc dl = getCurSDLoc(); 3271 MVT VT = BB.RegVT; 3272 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3273 SDValue Cmp; 3274 unsigned PopCount = llvm::popcount(B.Mask); 3275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3276 if (PopCount == 1) { 3277 // Testing for a single bit; just compare the shift count with what it 3278 // would need to be to shift a 1 bit in that position. 3279 Cmp = DAG.getSetCC( 3280 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3281 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3282 ISD::SETEQ); 3283 } else if (PopCount == BB.Range) { 3284 // There is only one zero bit in the range, test for it directly. 3285 Cmp = DAG.getSetCC( 3286 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3287 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3288 } else { 3289 // Make desired shift 3290 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3291 DAG.getConstant(1, dl, VT), ShiftOp); 3292 3293 // Emit bit tests and jumps 3294 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3295 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3296 Cmp = DAG.getSetCC( 3297 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3298 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3299 } 3300 3301 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3302 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3303 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3304 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3305 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3306 // one as they are relative probabilities (and thus work more like weights), 3307 // and hence we need to normalize them to let the sum of them become one. 3308 SwitchBB->normalizeSuccProbs(); 3309 3310 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3311 MVT::Other, getControlRoot(), 3312 Cmp, DAG.getBasicBlock(B.TargetBB)); 3313 3314 // Avoid emitting unnecessary branches to the next block. 3315 if (NextMBB != NextBlock(SwitchBB)) 3316 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3317 DAG.getBasicBlock(NextMBB)); 3318 3319 DAG.setRoot(BrAnd); 3320 } 3321 3322 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3323 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3324 3325 // Retrieve successors. Look through artificial IR level blocks like 3326 // catchswitch for successors. 3327 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0)); 3328 const BasicBlock *EHPadBB = I.getSuccessor(1); 3329 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB); 3330 3331 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3332 // have to do anything here to lower funclet bundles. 3333 assert(!I.hasOperandBundlesOtherThan( 3334 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3335 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3336 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3337 LLVMContext::OB_clang_arc_attachedcall}) && 3338 "Cannot lower invokes with arbitrary operand bundles yet!"); 3339 3340 const Value *Callee(I.getCalledOperand()); 3341 const Function *Fn = dyn_cast<Function>(Callee); 3342 if (isa<InlineAsm>(Callee)) 3343 visitInlineAsm(I, EHPadBB); 3344 else if (Fn && Fn->isIntrinsic()) { 3345 switch (Fn->getIntrinsicID()) { 3346 default: 3347 llvm_unreachable("Cannot invoke this intrinsic"); 3348 case Intrinsic::donothing: 3349 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3350 case Intrinsic::seh_try_begin: 3351 case Intrinsic::seh_scope_begin: 3352 case Intrinsic::seh_try_end: 3353 case Intrinsic::seh_scope_end: 3354 if (EHPadMBB) 3355 // a block referenced by EH table 3356 // so dtor-funclet not removed by opts 3357 EHPadMBB->setMachineBlockAddressTaken(); 3358 break; 3359 case Intrinsic::experimental_patchpoint_void: 3360 case Intrinsic::experimental_patchpoint: 3361 visitPatchpoint(I, EHPadBB); 3362 break; 3363 case Intrinsic::experimental_gc_statepoint: 3364 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3365 break; 3366 case Intrinsic::wasm_rethrow: { 3367 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3368 // special because it can be invoked, so we manually lower it to a DAG 3369 // node here. 3370 SmallVector<SDValue, 8> Ops; 3371 Ops.push_back(getControlRoot()); // inchain for the terminator node 3372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3373 Ops.push_back( 3374 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3375 TLI.getPointerTy(DAG.getDataLayout()))); 3376 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3377 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3378 break; 3379 } 3380 } 3381 } else if (I.hasDeoptState()) { 3382 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3383 // Eventually we will support lowering the @llvm.experimental.deoptimize 3384 // intrinsic, and right now there are no plans to support other intrinsics 3385 // with deopt state. 3386 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3387 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3388 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3389 } else { 3390 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3391 } 3392 3393 // If the value of the invoke is used outside of its defining block, make it 3394 // available as a virtual register. 3395 // We already took care of the exported value for the statepoint instruction 3396 // during call to the LowerStatepoint. 3397 if (!isa<GCStatepointInst>(I)) { 3398 CopyToExportRegsIfNeeded(&I); 3399 } 3400 3401 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3402 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3403 BranchProbability EHPadBBProb = 3404 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3405 : BranchProbability::getZero(); 3406 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3407 3408 // Update successor info. 3409 addSuccessorWithProb(InvokeMBB, Return); 3410 for (auto &UnwindDest : UnwindDests) { 3411 UnwindDest.first->setIsEHPad(); 3412 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3413 } 3414 InvokeMBB->normalizeSuccProbs(); 3415 3416 // Drop into normal successor. 3417 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3418 DAG.getBasicBlock(Return))); 3419 } 3420 3421 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3422 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3423 3424 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3425 // have to do anything here to lower funclet bundles. 3426 assert(!I.hasOperandBundlesOtherThan( 3427 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3428 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3429 3430 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3431 visitInlineAsm(I); 3432 CopyToExportRegsIfNeeded(&I); 3433 3434 // Retrieve successors. 3435 SmallPtrSet<BasicBlock *, 8> Dests; 3436 Dests.insert(I.getDefaultDest()); 3437 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest()); 3438 3439 // Update successor info. 3440 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3441 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3442 BasicBlock *Dest = I.getIndirectDest(i); 3443 MachineBasicBlock *Target = FuncInfo.getMBB(Dest); 3444 Target->setIsInlineAsmBrIndirectTarget(); 3445 Target->setMachineBlockAddressTaken(); 3446 Target->setLabelMustBeEmitted(); 3447 // Don't add duplicate machine successors. 3448 if (Dests.insert(Dest).second) 3449 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3450 } 3451 CallBrMBB->normalizeSuccProbs(); 3452 3453 // Drop into default successor. 3454 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3455 MVT::Other, getControlRoot(), 3456 DAG.getBasicBlock(Return))); 3457 } 3458 3459 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3460 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3461 } 3462 3463 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3464 assert(FuncInfo.MBB->isEHPad() && 3465 "Call to landingpad not in landing pad!"); 3466 3467 // If there aren't registers to copy the values into (e.g., during SjLj 3468 // exceptions), then don't bother to create these DAG nodes. 3469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3470 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3471 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3472 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3473 return; 3474 3475 // If landingpad's return type is token type, we don't create DAG nodes 3476 // for its exception pointer and selector value. The extraction of exception 3477 // pointer or selector value from token type landingpads is not currently 3478 // supported. 3479 if (LP.getType()->isTokenTy()) 3480 return; 3481 3482 SmallVector<EVT, 2> ValueVTs; 3483 SDLoc dl = getCurSDLoc(); 3484 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3485 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3486 3487 // Get the two live-in registers as SDValues. The physregs have already been 3488 // copied into virtual registers. 3489 SDValue Ops[2]; 3490 if (FuncInfo.ExceptionPointerVirtReg) { 3491 Ops[0] = DAG.getZExtOrTrunc( 3492 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3493 FuncInfo.ExceptionPointerVirtReg, 3494 TLI.getPointerTy(DAG.getDataLayout())), 3495 dl, ValueVTs[0]); 3496 } else { 3497 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3498 } 3499 Ops[1] = DAG.getZExtOrTrunc( 3500 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3501 FuncInfo.ExceptionSelectorVirtReg, 3502 TLI.getPointerTy(DAG.getDataLayout())), 3503 dl, ValueVTs[1]); 3504 3505 // Merge into one. 3506 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3507 DAG.getVTList(ValueVTs), Ops); 3508 setValue(&LP, Res); 3509 } 3510 3511 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3512 MachineBasicBlock *Last) { 3513 // Update JTCases. 3514 for (JumpTableBlock &JTB : SL->JTCases) 3515 if (JTB.first.HeaderBB == First) 3516 JTB.first.HeaderBB = Last; 3517 3518 // Update BitTestCases. 3519 for (BitTestBlock &BTB : SL->BitTestCases) 3520 if (BTB.Parent == First) 3521 BTB.Parent = Last; 3522 } 3523 3524 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3525 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3526 3527 // Update machine-CFG edges with unique successors. 3528 SmallSet<BasicBlock*, 32> Done; 3529 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3530 BasicBlock *BB = I.getSuccessor(i); 3531 bool Inserted = Done.insert(BB).second; 3532 if (!Inserted) 3533 continue; 3534 3535 MachineBasicBlock *Succ = FuncInfo.getMBB(BB); 3536 addSuccessorWithProb(IndirectBrMBB, Succ); 3537 } 3538 IndirectBrMBB->normalizeSuccProbs(); 3539 3540 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3541 MVT::Other, getControlRoot(), 3542 getValue(I.getAddress()))); 3543 } 3544 3545 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3546 if (!DAG.getTarget().Options.TrapUnreachable) 3547 return; 3548 3549 // We may be able to ignore unreachable behind a noreturn call. 3550 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3551 Call && Call->doesNotReturn()) { 3552 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3553 return; 3554 // Do not emit an additional trap instruction. 3555 if (Call->isNonContinuableTrap()) 3556 return; 3557 } 3558 3559 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3560 } 3561 3562 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3563 SDNodeFlags Flags; 3564 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3565 Flags.copyFMF(*FPOp); 3566 3567 SDValue Op = getValue(I.getOperand(0)); 3568 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3569 Op, Flags); 3570 setValue(&I, UnNodeValue); 3571 } 3572 3573 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3574 SDNodeFlags Flags; 3575 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3576 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3577 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3578 } 3579 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3580 Flags.setExact(ExactOp->isExact()); 3581 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3582 Flags.setDisjoint(DisjointOp->isDisjoint()); 3583 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3584 Flags.copyFMF(*FPOp); 3585 3586 SDValue Op1 = getValue(I.getOperand(0)); 3587 SDValue Op2 = getValue(I.getOperand(1)); 3588 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3589 Op1, Op2, Flags); 3590 setValue(&I, BinNodeValue); 3591 } 3592 3593 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3594 SDValue Op1 = getValue(I.getOperand(0)); 3595 SDValue Op2 = getValue(I.getOperand(1)); 3596 3597 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3598 Op1.getValueType(), DAG.getDataLayout()); 3599 3600 // Coerce the shift amount to the right type if we can. This exposes the 3601 // truncate or zext to optimization early. 3602 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3603 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3604 "Unexpected shift type"); 3605 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3606 } 3607 3608 bool nuw = false; 3609 bool nsw = false; 3610 bool exact = false; 3611 3612 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3613 3614 if (const OverflowingBinaryOperator *OFBinOp = 3615 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3616 nuw = OFBinOp->hasNoUnsignedWrap(); 3617 nsw = OFBinOp->hasNoSignedWrap(); 3618 } 3619 if (const PossiblyExactOperator *ExactOp = 3620 dyn_cast<const PossiblyExactOperator>(&I)) 3621 exact = ExactOp->isExact(); 3622 } 3623 SDNodeFlags Flags; 3624 Flags.setExact(exact); 3625 Flags.setNoSignedWrap(nsw); 3626 Flags.setNoUnsignedWrap(nuw); 3627 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3628 Flags); 3629 setValue(&I, Res); 3630 } 3631 3632 void SelectionDAGBuilder::visitSDiv(const User &I) { 3633 SDValue Op1 = getValue(I.getOperand(0)); 3634 SDValue Op2 = getValue(I.getOperand(1)); 3635 3636 SDNodeFlags Flags; 3637 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3638 cast<PossiblyExactOperator>(&I)->isExact()); 3639 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3640 Op2, Flags)); 3641 } 3642 3643 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3644 ICmpInst::Predicate predicate = I.getPredicate(); 3645 SDValue Op1 = getValue(I.getOperand(0)); 3646 SDValue Op2 = getValue(I.getOperand(1)); 3647 ISD::CondCode Opcode = getICmpCondCode(predicate); 3648 3649 auto &TLI = DAG.getTargetLoweringInfo(); 3650 EVT MemVT = 3651 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3652 3653 // If a pointer's DAG type is larger than its memory type then the DAG values 3654 // are zero-extended. This breaks signed comparisons so truncate back to the 3655 // underlying type before doing the compare. 3656 if (Op1.getValueType() != MemVT) { 3657 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3658 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3659 } 3660 3661 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3662 I.getType()); 3663 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3664 } 3665 3666 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3667 FCmpInst::Predicate predicate = I.getPredicate(); 3668 SDValue Op1 = getValue(I.getOperand(0)); 3669 SDValue Op2 = getValue(I.getOperand(1)); 3670 3671 ISD::CondCode Condition = getFCmpCondCode(predicate); 3672 auto *FPMO = cast<FPMathOperator>(&I); 3673 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3674 Condition = getFCmpCodeWithoutNaN(Condition); 3675 3676 SDNodeFlags Flags; 3677 Flags.copyFMF(*FPMO); 3678 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3679 3680 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3681 I.getType()); 3682 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3683 } 3684 3685 // Check if the condition of the select has one use or two users that are both 3686 // selects with the same condition. 3687 static bool hasOnlySelectUsers(const Value *Cond) { 3688 return llvm::all_of(Cond->users(), [](const Value *V) { 3689 return isa<SelectInst>(V); 3690 }); 3691 } 3692 3693 void SelectionDAGBuilder::visitSelect(const User &I) { 3694 SmallVector<EVT, 4> ValueVTs; 3695 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3696 ValueVTs); 3697 unsigned NumValues = ValueVTs.size(); 3698 if (NumValues == 0) return; 3699 3700 SmallVector<SDValue, 4> Values(NumValues); 3701 SDValue Cond = getValue(I.getOperand(0)); 3702 SDValue LHSVal = getValue(I.getOperand(1)); 3703 SDValue RHSVal = getValue(I.getOperand(2)); 3704 SmallVector<SDValue, 1> BaseOps(1, Cond); 3705 ISD::NodeType OpCode = 3706 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3707 3708 bool IsUnaryAbs = false; 3709 bool Negate = false; 3710 3711 SDNodeFlags Flags; 3712 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3713 Flags.copyFMF(*FPOp); 3714 3715 Flags.setUnpredictable( 3716 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3717 3718 // Min/max matching is only viable if all output VTs are the same. 3719 if (all_equal(ValueVTs)) { 3720 EVT VT = ValueVTs[0]; 3721 LLVMContext &Ctx = *DAG.getContext(); 3722 auto &TLI = DAG.getTargetLoweringInfo(); 3723 3724 // We care about the legality of the operation after it has been type 3725 // legalized. 3726 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3727 VT = TLI.getTypeToTransformTo(Ctx, VT); 3728 3729 // If the vselect is legal, assume we want to leave this as a vector setcc + 3730 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3731 // min/max is legal on the scalar type. 3732 bool UseScalarMinMax = VT.isVector() && 3733 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3734 3735 // ValueTracking's select pattern matching does not account for -0.0, 3736 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3737 // -0.0 is less than +0.0. 3738 const Value *LHS, *RHS; 3739 auto SPR = matchSelectPattern(&I, LHS, RHS); 3740 ISD::NodeType Opc = ISD::DELETED_NODE; 3741 switch (SPR.Flavor) { 3742 case SPF_UMAX: Opc = ISD::UMAX; break; 3743 case SPF_UMIN: Opc = ISD::UMIN; break; 3744 case SPF_SMAX: Opc = ISD::SMAX; break; 3745 case SPF_SMIN: Opc = ISD::SMIN; break; 3746 case SPF_FMINNUM: 3747 switch (SPR.NaNBehavior) { 3748 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3749 case SPNB_RETURNS_NAN: break; 3750 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3751 case SPNB_RETURNS_ANY: 3752 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3753 (UseScalarMinMax && 3754 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3755 Opc = ISD::FMINNUM; 3756 break; 3757 } 3758 break; 3759 case SPF_FMAXNUM: 3760 switch (SPR.NaNBehavior) { 3761 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3762 case SPNB_RETURNS_NAN: break; 3763 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3764 case SPNB_RETURNS_ANY: 3765 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3766 (UseScalarMinMax && 3767 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3768 Opc = ISD::FMAXNUM; 3769 break; 3770 } 3771 break; 3772 case SPF_NABS: 3773 Negate = true; 3774 [[fallthrough]]; 3775 case SPF_ABS: 3776 IsUnaryAbs = true; 3777 Opc = ISD::ABS; 3778 break; 3779 default: break; 3780 } 3781 3782 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3783 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3784 (UseScalarMinMax && 3785 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3786 // If the underlying comparison instruction is used by any other 3787 // instruction, the consumed instructions won't be destroyed, so it is 3788 // not profitable to convert to a min/max. 3789 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3790 OpCode = Opc; 3791 LHSVal = getValue(LHS); 3792 RHSVal = getValue(RHS); 3793 BaseOps.clear(); 3794 } 3795 3796 if (IsUnaryAbs) { 3797 OpCode = Opc; 3798 LHSVal = getValue(LHS); 3799 BaseOps.clear(); 3800 } 3801 } 3802 3803 if (IsUnaryAbs) { 3804 for (unsigned i = 0; i != NumValues; ++i) { 3805 SDLoc dl = getCurSDLoc(); 3806 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3807 Values[i] = 3808 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3809 if (Negate) 3810 Values[i] = DAG.getNegative(Values[i], dl, VT); 3811 } 3812 } else { 3813 for (unsigned i = 0; i != NumValues; ++i) { 3814 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3815 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3816 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3817 Values[i] = DAG.getNode( 3818 OpCode, getCurSDLoc(), 3819 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3820 } 3821 } 3822 3823 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3824 DAG.getVTList(ValueVTs), Values)); 3825 } 3826 3827 void SelectionDAGBuilder::visitTrunc(const User &I) { 3828 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3829 SDValue N = getValue(I.getOperand(0)); 3830 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3831 I.getType()); 3832 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3833 } 3834 3835 void SelectionDAGBuilder::visitZExt(const User &I) { 3836 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3837 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3838 SDValue N = getValue(I.getOperand(0)); 3839 auto &TLI = DAG.getTargetLoweringInfo(); 3840 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3841 3842 SDNodeFlags Flags; 3843 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3844 Flags.setNonNeg(PNI->hasNonNeg()); 3845 3846 // Eagerly use nonneg information to canonicalize towards sign_extend if 3847 // that is the target's preference. 3848 // TODO: Let the target do this later. 3849 if (Flags.hasNonNeg() && 3850 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3851 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3852 return; 3853 } 3854 3855 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3856 } 3857 3858 void SelectionDAGBuilder::visitSExt(const User &I) { 3859 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3860 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3861 SDValue N = getValue(I.getOperand(0)); 3862 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3863 I.getType()); 3864 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3865 } 3866 3867 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3868 // FPTrunc is never a no-op cast, no need to check 3869 SDValue N = getValue(I.getOperand(0)); 3870 SDLoc dl = getCurSDLoc(); 3871 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3872 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3873 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3874 DAG.getTargetConstant( 3875 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3876 } 3877 3878 void SelectionDAGBuilder::visitFPExt(const User &I) { 3879 // FPExt is never a no-op cast, no need to check 3880 SDValue N = getValue(I.getOperand(0)); 3881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3882 I.getType()); 3883 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3884 } 3885 3886 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3887 // FPToUI is never a no-op cast, no need to check 3888 SDValue N = getValue(I.getOperand(0)); 3889 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3890 I.getType()); 3891 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3892 } 3893 3894 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3895 // FPToSI is never a no-op cast, no need to check 3896 SDValue N = getValue(I.getOperand(0)); 3897 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3898 I.getType()); 3899 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3900 } 3901 3902 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3903 // UIToFP is never a no-op cast, no need to check 3904 SDValue N = getValue(I.getOperand(0)); 3905 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3906 I.getType()); 3907 SDNodeFlags Flags; 3908 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3909 Flags.setNonNeg(PNI->hasNonNeg()); 3910 3911 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3912 } 3913 3914 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3915 // SIToFP is never a no-op cast, no need to check 3916 SDValue N = getValue(I.getOperand(0)); 3917 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3918 I.getType()); 3919 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3920 } 3921 3922 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3923 // What to do depends on the size of the integer and the size of the pointer. 3924 // We can either truncate, zero extend, or no-op, accordingly. 3925 SDValue N = getValue(I.getOperand(0)); 3926 auto &TLI = DAG.getTargetLoweringInfo(); 3927 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3928 I.getType()); 3929 EVT PtrMemVT = 3930 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3931 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3932 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3933 setValue(&I, N); 3934 } 3935 3936 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3937 // What to do depends on the size of the integer and the size of the pointer. 3938 // We can either truncate, zero extend, or no-op, accordingly. 3939 SDValue N = getValue(I.getOperand(0)); 3940 auto &TLI = DAG.getTargetLoweringInfo(); 3941 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3942 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3943 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3944 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3945 setValue(&I, N); 3946 } 3947 3948 void SelectionDAGBuilder::visitBitCast(const User &I) { 3949 SDValue N = getValue(I.getOperand(0)); 3950 SDLoc dl = getCurSDLoc(); 3951 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3952 I.getType()); 3953 3954 // BitCast assures us that source and destination are the same size so this is 3955 // either a BITCAST or a no-op. 3956 if (DestVT != N.getValueType()) 3957 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3958 DestVT, N)); // convert types. 3959 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3960 // might fold any kind of constant expression to an integer constant and that 3961 // is not what we are looking for. Only recognize a bitcast of a genuine 3962 // constant integer as an opaque constant. 3963 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3964 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3965 /*isOpaque*/true)); 3966 else 3967 setValue(&I, N); // noop cast. 3968 } 3969 3970 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3972 const Value *SV = I.getOperand(0); 3973 SDValue N = getValue(SV); 3974 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3975 3976 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3977 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3978 3979 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3980 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3981 3982 setValue(&I, N); 3983 } 3984 3985 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3986 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3987 SDValue InVec = getValue(I.getOperand(0)); 3988 SDValue InVal = getValue(I.getOperand(1)); 3989 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3990 TLI.getVectorIdxTy(DAG.getDataLayout())); 3991 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3992 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3993 InVec, InVal, InIdx)); 3994 } 3995 3996 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3998 SDValue InVec = getValue(I.getOperand(0)); 3999 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 4000 TLI.getVectorIdxTy(DAG.getDataLayout())); 4001 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 4002 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4003 InVec, InIdx)); 4004 } 4005 4006 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4007 SDValue Src1 = getValue(I.getOperand(0)); 4008 SDValue Src2 = getValue(I.getOperand(1)); 4009 ArrayRef<int> Mask; 4010 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4011 Mask = SVI->getShuffleMask(); 4012 else 4013 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4014 SDLoc DL = getCurSDLoc(); 4015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4016 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4017 EVT SrcVT = Src1.getValueType(); 4018 4019 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4020 VT.isScalableVector()) { 4021 // Canonical splat form of first element of first input vector. 4022 SDValue FirstElt = 4023 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4024 DAG.getVectorIdxConstant(0, DL)); 4025 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4026 return; 4027 } 4028 4029 // For now, we only handle splats for scalable vectors. 4030 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4031 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4032 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4033 4034 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4035 unsigned MaskNumElts = Mask.size(); 4036 4037 if (SrcNumElts == MaskNumElts) { 4038 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4039 return; 4040 } 4041 4042 // Normalize the shuffle vector since mask and vector length don't match. 4043 if (SrcNumElts < MaskNumElts) { 4044 // Mask is longer than the source vectors. We can use concatenate vector to 4045 // make the mask and vectors lengths match. 4046 4047 if (MaskNumElts % SrcNumElts == 0) { 4048 // Mask length is a multiple of the source vector length. 4049 // Check if the shuffle is some kind of concatenation of the input 4050 // vectors. 4051 unsigned NumConcat = MaskNumElts / SrcNumElts; 4052 bool IsConcat = true; 4053 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4054 for (unsigned i = 0; i != MaskNumElts; ++i) { 4055 int Idx = Mask[i]; 4056 if (Idx < 0) 4057 continue; 4058 // Ensure the indices in each SrcVT sized piece are sequential and that 4059 // the same source is used for the whole piece. 4060 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4061 (ConcatSrcs[i / SrcNumElts] >= 0 && 4062 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4063 IsConcat = false; 4064 break; 4065 } 4066 // Remember which source this index came from. 4067 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4068 } 4069 4070 // The shuffle is concatenating multiple vectors together. Just emit 4071 // a CONCAT_VECTORS operation. 4072 if (IsConcat) { 4073 SmallVector<SDValue, 8> ConcatOps; 4074 for (auto Src : ConcatSrcs) { 4075 if (Src < 0) 4076 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4077 else if (Src == 0) 4078 ConcatOps.push_back(Src1); 4079 else 4080 ConcatOps.push_back(Src2); 4081 } 4082 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4083 return; 4084 } 4085 } 4086 4087 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4088 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4089 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4090 PaddedMaskNumElts); 4091 4092 // Pad both vectors with undefs to make them the same length as the mask. 4093 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4094 4095 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4096 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4097 MOps1[0] = Src1; 4098 MOps2[0] = Src2; 4099 4100 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4101 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4102 4103 // Readjust mask for new input vector length. 4104 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4105 for (unsigned i = 0; i != MaskNumElts; ++i) { 4106 int Idx = Mask[i]; 4107 if (Idx >= (int)SrcNumElts) 4108 Idx -= SrcNumElts - PaddedMaskNumElts; 4109 MappedOps[i] = Idx; 4110 } 4111 4112 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4113 4114 // If the concatenated vector was padded, extract a subvector with the 4115 // correct number of elements. 4116 if (MaskNumElts != PaddedMaskNumElts) 4117 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4118 DAG.getVectorIdxConstant(0, DL)); 4119 4120 setValue(&I, Result); 4121 return; 4122 } 4123 4124 if (SrcNumElts > MaskNumElts) { 4125 // Analyze the access pattern of the vector to see if we can extract 4126 // two subvectors and do the shuffle. 4127 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4128 bool CanExtract = true; 4129 for (int Idx : Mask) { 4130 unsigned Input = 0; 4131 if (Idx < 0) 4132 continue; 4133 4134 if (Idx >= (int)SrcNumElts) { 4135 Input = 1; 4136 Idx -= SrcNumElts; 4137 } 4138 4139 // If all the indices come from the same MaskNumElts sized portion of 4140 // the sources we can use extract. Also make sure the extract wouldn't 4141 // extract past the end of the source. 4142 int NewStartIdx = alignDown(Idx, MaskNumElts); 4143 if (NewStartIdx + MaskNumElts > SrcNumElts || 4144 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4145 CanExtract = false; 4146 // Make sure we always update StartIdx as we use it to track if all 4147 // elements are undef. 4148 StartIdx[Input] = NewStartIdx; 4149 } 4150 4151 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4152 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4153 return; 4154 } 4155 if (CanExtract) { 4156 // Extract appropriate subvector and generate a vector shuffle 4157 for (unsigned Input = 0; Input < 2; ++Input) { 4158 SDValue &Src = Input == 0 ? Src1 : Src2; 4159 if (StartIdx[Input] < 0) 4160 Src = DAG.getUNDEF(VT); 4161 else { 4162 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4163 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4164 } 4165 } 4166 4167 // Calculate new mask. 4168 SmallVector<int, 8> MappedOps(Mask); 4169 for (int &Idx : MappedOps) { 4170 if (Idx >= (int)SrcNumElts) 4171 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4172 else if (Idx >= 0) 4173 Idx -= StartIdx[0]; 4174 } 4175 4176 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4177 return; 4178 } 4179 } 4180 4181 // We can't use either concat vectors or extract subvectors so fall back to 4182 // replacing the shuffle with extract and build vector. 4183 // to insert and build vector. 4184 EVT EltVT = VT.getVectorElementType(); 4185 SmallVector<SDValue,8> Ops; 4186 for (int Idx : Mask) { 4187 SDValue Res; 4188 4189 if (Idx < 0) { 4190 Res = DAG.getUNDEF(EltVT); 4191 } else { 4192 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4193 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4194 4195 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4196 DAG.getVectorIdxConstant(Idx, DL)); 4197 } 4198 4199 Ops.push_back(Res); 4200 } 4201 4202 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4203 } 4204 4205 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4206 ArrayRef<unsigned> Indices = I.getIndices(); 4207 const Value *Op0 = I.getOperand(0); 4208 const Value *Op1 = I.getOperand(1); 4209 Type *AggTy = I.getType(); 4210 Type *ValTy = Op1->getType(); 4211 bool IntoUndef = isa<UndefValue>(Op0); 4212 bool FromUndef = isa<UndefValue>(Op1); 4213 4214 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4215 4216 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4217 SmallVector<EVT, 4> AggValueVTs; 4218 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4219 SmallVector<EVT, 4> ValValueVTs; 4220 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4221 4222 unsigned NumAggValues = AggValueVTs.size(); 4223 unsigned NumValValues = ValValueVTs.size(); 4224 SmallVector<SDValue, 4> Values(NumAggValues); 4225 4226 // Ignore an insertvalue that produces an empty object 4227 if (!NumAggValues) { 4228 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4229 return; 4230 } 4231 4232 SDValue Agg = getValue(Op0); 4233 unsigned i = 0; 4234 // Copy the beginning value(s) from the original aggregate. 4235 for (; i != LinearIndex; ++i) 4236 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4237 SDValue(Agg.getNode(), Agg.getResNo() + i); 4238 // Copy values from the inserted value(s). 4239 if (NumValValues) { 4240 SDValue Val = getValue(Op1); 4241 for (; i != LinearIndex + NumValValues; ++i) 4242 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4243 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4244 } 4245 // Copy remaining value(s) from the original aggregate. 4246 for (; i != NumAggValues; ++i) 4247 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4248 SDValue(Agg.getNode(), Agg.getResNo() + i); 4249 4250 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4251 DAG.getVTList(AggValueVTs), Values)); 4252 } 4253 4254 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4255 ArrayRef<unsigned> Indices = I.getIndices(); 4256 const Value *Op0 = I.getOperand(0); 4257 Type *AggTy = Op0->getType(); 4258 Type *ValTy = I.getType(); 4259 bool OutOfUndef = isa<UndefValue>(Op0); 4260 4261 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4262 4263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4264 SmallVector<EVT, 4> ValValueVTs; 4265 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4266 4267 unsigned NumValValues = ValValueVTs.size(); 4268 4269 // Ignore a extractvalue that produces an empty object 4270 if (!NumValValues) { 4271 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4272 return; 4273 } 4274 4275 SmallVector<SDValue, 4> Values(NumValValues); 4276 4277 SDValue Agg = getValue(Op0); 4278 // Copy out the selected value(s). 4279 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4280 Values[i - LinearIndex] = 4281 OutOfUndef ? 4282 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4283 SDValue(Agg.getNode(), Agg.getResNo() + i); 4284 4285 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4286 DAG.getVTList(ValValueVTs), Values)); 4287 } 4288 4289 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4290 Value *Op0 = I.getOperand(0); 4291 // Note that the pointer operand may be a vector of pointers. Take the scalar 4292 // element which holds a pointer. 4293 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4294 SDValue N = getValue(Op0); 4295 SDLoc dl = getCurSDLoc(); 4296 auto &TLI = DAG.getTargetLoweringInfo(); 4297 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags(); 4298 4299 // Normalize Vector GEP - all scalar operands should be converted to the 4300 // splat vector. 4301 bool IsVectorGEP = I.getType()->isVectorTy(); 4302 ElementCount VectorElementCount = 4303 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4304 : ElementCount::getFixed(0); 4305 4306 if (IsVectorGEP && !N.getValueType().isVector()) { 4307 LLVMContext &Context = *DAG.getContext(); 4308 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4309 N = DAG.getSplat(VT, dl, N); 4310 } 4311 4312 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4313 GTI != E; ++GTI) { 4314 const Value *Idx = GTI.getOperand(); 4315 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4316 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4317 if (Field) { 4318 // N = N + Offset 4319 uint64_t Offset = 4320 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4321 4322 // In an inbounds GEP with an offset that is nonnegative even when 4323 // interpreted as signed, assume there is no unsigned overflow. 4324 SDNodeFlags Flags; 4325 if (NW.hasNoUnsignedWrap() || 4326 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap())) 4327 Flags.setNoUnsignedWrap(true); 4328 4329 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4330 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4331 } 4332 } else { 4333 // IdxSize is the width of the arithmetic according to IR semantics. 4334 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4335 // (and fix up the result later). 4336 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4337 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4338 TypeSize ElementSize = 4339 GTI.getSequentialElementStride(DAG.getDataLayout()); 4340 // We intentionally mask away the high bits here; ElementSize may not 4341 // fit in IdxTy. 4342 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4343 bool ElementScalable = ElementSize.isScalable(); 4344 4345 // If this is a scalar constant or a splat vector of constants, 4346 // handle it quickly. 4347 const auto *C = dyn_cast<Constant>(Idx); 4348 if (C && isa<VectorType>(C->getType())) 4349 C = C->getSplatValue(); 4350 4351 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4352 if (CI && CI->isZero()) 4353 continue; 4354 if (CI && !ElementScalable) { 4355 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4356 LLVMContext &Context = *DAG.getContext(); 4357 SDValue OffsVal; 4358 if (IsVectorGEP) 4359 OffsVal = DAG.getConstant( 4360 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4361 else 4362 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4363 4364 // In an inbounds GEP with an offset that is nonnegative even when 4365 // interpreted as signed, assume there is no unsigned overflow. 4366 SDNodeFlags Flags; 4367 if (NW.hasNoUnsignedWrap() || 4368 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap())) 4369 Flags.setNoUnsignedWrap(true); 4370 4371 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4372 4373 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4374 continue; 4375 } 4376 4377 // N = N + Idx * ElementMul; 4378 SDValue IdxN = getValue(Idx); 4379 4380 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4381 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4382 VectorElementCount); 4383 IdxN = DAG.getSplat(VT, dl, IdxN); 4384 } 4385 4386 // If the index is smaller or larger than intptr_t, truncate or extend 4387 // it. 4388 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4389 4390 if (ElementScalable) { 4391 EVT VScaleTy = N.getValueType().getScalarType(); 4392 SDValue VScale = DAG.getNode( 4393 ISD::VSCALE, dl, VScaleTy, 4394 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4395 if (IsVectorGEP) 4396 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4397 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4398 } else { 4399 // If this is a multiply by a power of two, turn it into a shl 4400 // immediately. This is a very common case. 4401 if (ElementMul != 1) { 4402 if (ElementMul.isPowerOf2()) { 4403 unsigned Amt = ElementMul.logBase2(); 4404 IdxN = DAG.getNode(ISD::SHL, dl, 4405 N.getValueType(), IdxN, 4406 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4407 } else { 4408 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4409 IdxN.getValueType()); 4410 IdxN = DAG.getNode(ISD::MUL, dl, 4411 N.getValueType(), IdxN, Scale); 4412 } 4413 } 4414 } 4415 4416 N = DAG.getNode(ISD::ADD, dl, 4417 N.getValueType(), N, IdxN); 4418 } 4419 } 4420 4421 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4422 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4423 if (IsVectorGEP) { 4424 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4425 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4426 } 4427 4428 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4429 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4430 4431 setValue(&I, N); 4432 } 4433 4434 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4435 // If this is a fixed sized alloca in the entry block of the function, 4436 // allocate it statically on the stack. 4437 if (FuncInfo.StaticAllocaMap.count(&I)) 4438 return; // getValue will auto-populate this. 4439 4440 SDLoc dl = getCurSDLoc(); 4441 Type *Ty = I.getAllocatedType(); 4442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4443 auto &DL = DAG.getDataLayout(); 4444 TypeSize TySize = DL.getTypeAllocSize(Ty); 4445 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4446 4447 SDValue AllocSize = getValue(I.getArraySize()); 4448 4449 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4450 if (AllocSize.getValueType() != IntPtr) 4451 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4452 4453 if (TySize.isScalable()) 4454 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4455 DAG.getVScale(dl, IntPtr, 4456 APInt(IntPtr.getScalarSizeInBits(), 4457 TySize.getKnownMinValue()))); 4458 else { 4459 SDValue TySizeValue = 4460 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4461 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4462 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4463 } 4464 4465 // Handle alignment. If the requested alignment is less than or equal to 4466 // the stack alignment, ignore it. If the size is greater than or equal to 4467 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4468 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4469 if (*Alignment <= StackAlign) 4470 Alignment = std::nullopt; 4471 4472 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4473 // Round the size of the allocation up to the stack alignment size 4474 // by add SA-1 to the size. This doesn't overflow because we're computing 4475 // an address inside an alloca. 4476 SDNodeFlags Flags; 4477 Flags.setNoUnsignedWrap(true); 4478 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4479 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4480 4481 // Mask out the low bits for alignment purposes. 4482 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4483 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr)); 4484 4485 SDValue Ops[] = { 4486 getRoot(), AllocSize, 4487 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4488 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4489 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4490 setValue(&I, DSA); 4491 DAG.setRoot(DSA.getValue(1)); 4492 4493 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4494 } 4495 4496 static const MDNode *getRangeMetadata(const Instruction &I) { 4497 // If !noundef is not present, then !range violation results in a poison 4498 // value rather than immediate undefined behavior. In theory, transferring 4499 // these annotations to SDAG is fine, but in practice there are key SDAG 4500 // transforms that are known not to be poison-safe, such as folding logical 4501 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4502 // also present. 4503 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4504 return nullptr; 4505 return I.getMetadata(LLVMContext::MD_range); 4506 } 4507 4508 static std::optional<ConstantRange> getRange(const Instruction &I) { 4509 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4510 // see comment in getRangeMetadata about this check 4511 if (CB->hasRetAttr(Attribute::NoUndef)) 4512 return CB->getRange(); 4513 } 4514 if (const MDNode *Range = getRangeMetadata(I)) 4515 return getConstantRangeFromMetadata(*Range); 4516 return std::nullopt; 4517 } 4518 4519 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4520 if (I.isAtomic()) 4521 return visitAtomicLoad(I); 4522 4523 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4524 const Value *SV = I.getOperand(0); 4525 if (TLI.supportSwiftError()) { 4526 // Swifterror values can come from either a function parameter with 4527 // swifterror attribute or an alloca with swifterror attribute. 4528 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4529 if (Arg->hasSwiftErrorAttr()) 4530 return visitLoadFromSwiftError(I); 4531 } 4532 4533 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4534 if (Alloca->isSwiftError()) 4535 return visitLoadFromSwiftError(I); 4536 } 4537 } 4538 4539 SDValue Ptr = getValue(SV); 4540 4541 Type *Ty = I.getType(); 4542 SmallVector<EVT, 4> ValueVTs, MemVTs; 4543 SmallVector<TypeSize, 4> Offsets; 4544 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4545 unsigned NumValues = ValueVTs.size(); 4546 if (NumValues == 0) 4547 return; 4548 4549 Align Alignment = I.getAlign(); 4550 AAMDNodes AAInfo = I.getAAMetadata(); 4551 const MDNode *Ranges = getRangeMetadata(I); 4552 bool isVolatile = I.isVolatile(); 4553 MachineMemOperand::Flags MMOFlags = 4554 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4555 4556 SDValue Root; 4557 bool ConstantMemory = false; 4558 if (isVolatile) 4559 // Serialize volatile loads with other side effects. 4560 Root = getRoot(); 4561 else if (NumValues > MaxParallelChains) 4562 Root = getMemoryRoot(); 4563 else if (AA && 4564 AA->pointsToConstantMemory(MemoryLocation( 4565 SV, 4566 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4567 AAInfo))) { 4568 // Do not serialize (non-volatile) loads of constant memory with anything. 4569 Root = DAG.getEntryNode(); 4570 ConstantMemory = true; 4571 MMOFlags |= MachineMemOperand::MOInvariant; 4572 } else { 4573 // Do not serialize non-volatile loads against each other. 4574 Root = DAG.getRoot(); 4575 } 4576 4577 SDLoc dl = getCurSDLoc(); 4578 4579 if (isVolatile) 4580 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4581 4582 SmallVector<SDValue, 4> Values(NumValues); 4583 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4584 4585 unsigned ChainI = 0; 4586 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4587 // Serializing loads here may result in excessive register pressure, and 4588 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4589 // could recover a bit by hoisting nodes upward in the chain by recognizing 4590 // they are side-effect free or do not alias. The optimizer should really 4591 // avoid this case by converting large object/array copies to llvm.memcpy 4592 // (MaxParallelChains should always remain as failsafe). 4593 if (ChainI == MaxParallelChains) { 4594 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4595 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4596 ArrayRef(Chains.data(), ChainI)); 4597 Root = Chain; 4598 ChainI = 0; 4599 } 4600 4601 // TODO: MachinePointerInfo only supports a fixed length offset. 4602 MachinePointerInfo PtrInfo = 4603 !Offsets[i].isScalable() || Offsets[i].isZero() 4604 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4605 : MachinePointerInfo(); 4606 4607 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4608 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4609 MMOFlags, AAInfo, Ranges); 4610 Chains[ChainI] = L.getValue(1); 4611 4612 if (MemVTs[i] != ValueVTs[i]) 4613 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4614 4615 Values[i] = L; 4616 } 4617 4618 if (!ConstantMemory) { 4619 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4620 ArrayRef(Chains.data(), ChainI)); 4621 if (isVolatile) 4622 DAG.setRoot(Chain); 4623 else 4624 PendingLoads.push_back(Chain); 4625 } 4626 4627 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4628 DAG.getVTList(ValueVTs), Values)); 4629 } 4630 4631 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4632 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4633 "call visitStoreToSwiftError when backend supports swifterror"); 4634 4635 SmallVector<EVT, 4> ValueVTs; 4636 SmallVector<uint64_t, 4> Offsets; 4637 const Value *SrcV = I.getOperand(0); 4638 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4639 SrcV->getType(), ValueVTs, &Offsets, 0); 4640 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4641 "expect a single EVT for swifterror"); 4642 4643 SDValue Src = getValue(SrcV); 4644 // Create a virtual register, then update the virtual register. 4645 Register VReg = 4646 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4647 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4648 // Chain can be getRoot or getControlRoot. 4649 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4650 SDValue(Src.getNode(), Src.getResNo())); 4651 DAG.setRoot(CopyNode); 4652 } 4653 4654 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4655 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4656 "call visitLoadFromSwiftError when backend supports swifterror"); 4657 4658 assert(!I.isVolatile() && 4659 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4660 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4661 "Support volatile, non temporal, invariant for load_from_swift_error"); 4662 4663 const Value *SV = I.getOperand(0); 4664 Type *Ty = I.getType(); 4665 assert( 4666 (!AA || 4667 !AA->pointsToConstantMemory(MemoryLocation( 4668 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4669 I.getAAMetadata()))) && 4670 "load_from_swift_error should not be constant memory"); 4671 4672 SmallVector<EVT, 4> ValueVTs; 4673 SmallVector<uint64_t, 4> Offsets; 4674 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4675 ValueVTs, &Offsets, 0); 4676 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4677 "expect a single EVT for swifterror"); 4678 4679 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4680 SDValue L = DAG.getCopyFromReg( 4681 getRoot(), getCurSDLoc(), 4682 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4683 4684 setValue(&I, L); 4685 } 4686 4687 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4688 if (I.isAtomic()) 4689 return visitAtomicStore(I); 4690 4691 const Value *SrcV = I.getOperand(0); 4692 const Value *PtrV = I.getOperand(1); 4693 4694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4695 if (TLI.supportSwiftError()) { 4696 // Swifterror values can come from either a function parameter with 4697 // swifterror attribute or an alloca with swifterror attribute. 4698 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4699 if (Arg->hasSwiftErrorAttr()) 4700 return visitStoreToSwiftError(I); 4701 } 4702 4703 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4704 if (Alloca->isSwiftError()) 4705 return visitStoreToSwiftError(I); 4706 } 4707 } 4708 4709 SmallVector<EVT, 4> ValueVTs, MemVTs; 4710 SmallVector<TypeSize, 4> Offsets; 4711 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4712 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4713 unsigned NumValues = ValueVTs.size(); 4714 if (NumValues == 0) 4715 return; 4716 4717 // Get the lowered operands. Note that we do this after 4718 // checking if NumResults is zero, because with zero results 4719 // the operands won't have values in the map. 4720 SDValue Src = getValue(SrcV); 4721 SDValue Ptr = getValue(PtrV); 4722 4723 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4724 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4725 SDLoc dl = getCurSDLoc(); 4726 Align Alignment = I.getAlign(); 4727 AAMDNodes AAInfo = I.getAAMetadata(); 4728 4729 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4730 4731 unsigned ChainI = 0; 4732 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4733 // See visitLoad comments. 4734 if (ChainI == MaxParallelChains) { 4735 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4736 ArrayRef(Chains.data(), ChainI)); 4737 Root = Chain; 4738 ChainI = 0; 4739 } 4740 4741 // TODO: MachinePointerInfo only supports a fixed length offset. 4742 MachinePointerInfo PtrInfo = 4743 !Offsets[i].isScalable() || Offsets[i].isZero() 4744 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4745 : MachinePointerInfo(); 4746 4747 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4748 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4749 if (MemVTs[i] != ValueVTs[i]) 4750 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4751 SDValue St = 4752 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4753 Chains[ChainI] = St; 4754 } 4755 4756 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4757 ArrayRef(Chains.data(), ChainI)); 4758 setValue(&I, StoreNode); 4759 DAG.setRoot(StoreNode); 4760 } 4761 4762 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4763 bool IsCompressing) { 4764 SDLoc sdl = getCurSDLoc(); 4765 4766 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4767 Align &Alignment) { 4768 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4769 Src0 = I.getArgOperand(0); 4770 Ptr = I.getArgOperand(1); 4771 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4772 Mask = I.getArgOperand(3); 4773 }; 4774 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4775 Align &Alignment) { 4776 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4777 Src0 = I.getArgOperand(0); 4778 Ptr = I.getArgOperand(1); 4779 Mask = I.getArgOperand(2); 4780 Alignment = I.getParamAlign(1).valueOrOne(); 4781 }; 4782 4783 Value *PtrOperand, *MaskOperand, *Src0Operand; 4784 Align Alignment; 4785 if (IsCompressing) 4786 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4787 else 4788 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4789 4790 SDValue Ptr = getValue(PtrOperand); 4791 SDValue Src0 = getValue(Src0Operand); 4792 SDValue Mask = getValue(MaskOperand); 4793 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4794 4795 EVT VT = Src0.getValueType(); 4796 4797 auto MMOFlags = MachineMemOperand::MOStore; 4798 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4799 MMOFlags |= MachineMemOperand::MONonTemporal; 4800 4801 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4802 MachinePointerInfo(PtrOperand), MMOFlags, 4803 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4804 4805 const auto &TLI = DAG.getTargetLoweringInfo(); 4806 const auto &TTI = 4807 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4808 SDValue StoreNode = 4809 !IsCompressing && 4810 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType()) 4811 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4812 Mask) 4813 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4814 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4815 IsCompressing); 4816 DAG.setRoot(StoreNode); 4817 setValue(&I, StoreNode); 4818 } 4819 4820 // Get a uniform base for the Gather/Scatter intrinsic. 4821 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4822 // We try to represent it as a base pointer + vector of indices. 4823 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4824 // The first operand of the GEP may be a single pointer or a vector of pointers 4825 // Example: 4826 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4827 // or 4828 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4829 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4830 // 4831 // When the first GEP operand is a single pointer - it is the uniform base we 4832 // are looking for. If first operand of the GEP is a splat vector - we 4833 // extract the splat value and use it as a uniform base. 4834 // In all other cases the function returns 'false'. 4835 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4836 ISD::MemIndexType &IndexType, SDValue &Scale, 4837 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4838 uint64_t ElemSize) { 4839 SelectionDAG& DAG = SDB->DAG; 4840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4841 const DataLayout &DL = DAG.getDataLayout(); 4842 4843 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4844 4845 // Handle splat constant pointer. 4846 if (auto *C = dyn_cast<Constant>(Ptr)) { 4847 C = C->getSplatValue(); 4848 if (!C) 4849 return false; 4850 4851 Base = SDB->getValue(C); 4852 4853 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4854 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4855 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4856 IndexType = ISD::SIGNED_SCALED; 4857 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4858 return true; 4859 } 4860 4861 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4862 if (!GEP || GEP->getParent() != CurBB) 4863 return false; 4864 4865 if (GEP->getNumOperands() != 2) 4866 return false; 4867 4868 const Value *BasePtr = GEP->getPointerOperand(); 4869 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4870 4871 // Make sure the base is scalar and the index is a vector. 4872 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4873 return false; 4874 4875 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4876 if (ScaleVal.isScalable()) 4877 return false; 4878 4879 // Target may not support the required addressing mode. 4880 if (ScaleVal != 1 && 4881 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4882 return false; 4883 4884 Base = SDB->getValue(BasePtr); 4885 Index = SDB->getValue(IndexVal); 4886 IndexType = ISD::SIGNED_SCALED; 4887 4888 Scale = 4889 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4890 return true; 4891 } 4892 4893 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4894 SDLoc sdl = getCurSDLoc(); 4895 4896 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4897 const Value *Ptr = I.getArgOperand(1); 4898 SDValue Src0 = getValue(I.getArgOperand(0)); 4899 SDValue Mask = getValue(I.getArgOperand(3)); 4900 EVT VT = Src0.getValueType(); 4901 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4902 ->getMaybeAlignValue() 4903 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4905 4906 SDValue Base; 4907 SDValue Index; 4908 ISD::MemIndexType IndexType; 4909 SDValue Scale; 4910 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4911 I.getParent(), VT.getScalarStoreSize()); 4912 4913 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4914 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4915 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4916 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4917 if (!UniformBase) { 4918 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4919 Index = getValue(Ptr); 4920 IndexType = ISD::SIGNED_SCALED; 4921 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4922 } 4923 4924 EVT IdxVT = Index.getValueType(); 4925 EVT EltTy = IdxVT.getVectorElementType(); 4926 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4927 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4928 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4929 } 4930 4931 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4932 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4933 Ops, MMO, IndexType, false); 4934 DAG.setRoot(Scatter); 4935 setValue(&I, Scatter); 4936 } 4937 4938 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4939 SDLoc sdl = getCurSDLoc(); 4940 4941 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4942 Align &Alignment) { 4943 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4944 Ptr = I.getArgOperand(0); 4945 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4946 Mask = I.getArgOperand(2); 4947 Src0 = I.getArgOperand(3); 4948 }; 4949 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4950 Align &Alignment) { 4951 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4952 Ptr = I.getArgOperand(0); 4953 Alignment = I.getParamAlign(0).valueOrOne(); 4954 Mask = I.getArgOperand(1); 4955 Src0 = I.getArgOperand(2); 4956 }; 4957 4958 Value *PtrOperand, *MaskOperand, *Src0Operand; 4959 Align Alignment; 4960 if (IsExpanding) 4961 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4962 else 4963 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4964 4965 SDValue Ptr = getValue(PtrOperand); 4966 SDValue Src0 = getValue(Src0Operand); 4967 SDValue Mask = getValue(MaskOperand); 4968 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4969 4970 EVT VT = Src0.getValueType(); 4971 AAMDNodes AAInfo = I.getAAMetadata(); 4972 const MDNode *Ranges = getRangeMetadata(I); 4973 4974 // Do not serialize masked loads of constant memory with anything. 4975 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4976 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4977 4978 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4979 4980 auto MMOFlags = MachineMemOperand::MOLoad; 4981 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4982 MMOFlags |= MachineMemOperand::MONonTemporal; 4983 4984 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4985 MachinePointerInfo(PtrOperand), MMOFlags, 4986 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4987 4988 const auto &TLI = DAG.getTargetLoweringInfo(); 4989 const auto &TTI = 4990 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4991 // The Load/Res may point to different values and both of them are output 4992 // variables. 4993 SDValue Load; 4994 SDValue Res; 4995 if (!IsExpanding && 4996 TTI.hasConditionalLoadStoreForType(Src0Operand->getType())) 4997 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 4998 else 4999 Res = Load = 5000 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 5001 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 5002 if (AddToChain) 5003 PendingLoads.push_back(Load.getValue(1)); 5004 setValue(&I, Res); 5005 } 5006 5007 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 5008 SDLoc sdl = getCurSDLoc(); 5009 5010 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5011 const Value *Ptr = I.getArgOperand(0); 5012 SDValue Src0 = getValue(I.getArgOperand(3)); 5013 SDValue Mask = getValue(I.getArgOperand(2)); 5014 5015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5016 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5017 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5018 ->getMaybeAlignValue() 5019 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5020 5021 const MDNode *Ranges = getRangeMetadata(I); 5022 5023 SDValue Root = DAG.getRoot(); 5024 SDValue Base; 5025 SDValue Index; 5026 ISD::MemIndexType IndexType; 5027 SDValue Scale; 5028 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5029 I.getParent(), VT.getScalarStoreSize()); 5030 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5031 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5032 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5033 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5034 Ranges); 5035 5036 if (!UniformBase) { 5037 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5038 Index = getValue(Ptr); 5039 IndexType = ISD::SIGNED_SCALED; 5040 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5041 } 5042 5043 EVT IdxVT = Index.getValueType(); 5044 EVT EltTy = IdxVT.getVectorElementType(); 5045 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5046 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5047 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5048 } 5049 5050 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5051 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5052 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5053 5054 PendingLoads.push_back(Gather.getValue(1)); 5055 setValue(&I, Gather); 5056 } 5057 5058 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5059 SDLoc dl = getCurSDLoc(); 5060 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5061 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5062 SyncScope::ID SSID = I.getSyncScopeID(); 5063 5064 SDValue InChain = getRoot(); 5065 5066 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5067 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5068 5069 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5070 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5071 5072 MachineFunction &MF = DAG.getMachineFunction(); 5073 MachineMemOperand *MMO = MF.getMachineMemOperand( 5074 MachinePointerInfo(I.getPointerOperand()), Flags, 5075 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5076 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5077 5078 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5079 dl, MemVT, VTs, InChain, 5080 getValue(I.getPointerOperand()), 5081 getValue(I.getCompareOperand()), 5082 getValue(I.getNewValOperand()), MMO); 5083 5084 SDValue OutChain = L.getValue(2); 5085 5086 setValue(&I, L); 5087 DAG.setRoot(OutChain); 5088 } 5089 5090 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5091 SDLoc dl = getCurSDLoc(); 5092 ISD::NodeType NT; 5093 switch (I.getOperation()) { 5094 default: llvm_unreachable("Unknown atomicrmw operation"); 5095 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5096 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5097 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5098 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5099 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5100 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5101 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5102 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5103 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5104 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5105 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5106 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5107 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5108 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5109 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5110 case AtomicRMWInst::UIncWrap: 5111 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5112 break; 5113 case AtomicRMWInst::UDecWrap: 5114 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5115 break; 5116 case AtomicRMWInst::USubCond: 5117 NT = ISD::ATOMIC_LOAD_USUB_COND; 5118 break; 5119 case AtomicRMWInst::USubSat: 5120 NT = ISD::ATOMIC_LOAD_USUB_SAT; 5121 break; 5122 } 5123 AtomicOrdering Ordering = I.getOrdering(); 5124 SyncScope::ID SSID = I.getSyncScopeID(); 5125 5126 SDValue InChain = getRoot(); 5127 5128 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5129 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5130 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5131 5132 MachineFunction &MF = DAG.getMachineFunction(); 5133 MachineMemOperand *MMO = MF.getMachineMemOperand( 5134 MachinePointerInfo(I.getPointerOperand()), Flags, 5135 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5136 AAMDNodes(), nullptr, SSID, Ordering); 5137 5138 SDValue L = 5139 DAG.getAtomic(NT, dl, MemVT, InChain, 5140 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5141 MMO); 5142 5143 SDValue OutChain = L.getValue(1); 5144 5145 setValue(&I, L); 5146 DAG.setRoot(OutChain); 5147 } 5148 5149 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5150 SDLoc dl = getCurSDLoc(); 5151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5152 SDValue Ops[3]; 5153 Ops[0] = getRoot(); 5154 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5155 TLI.getFenceOperandTy(DAG.getDataLayout())); 5156 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5157 TLI.getFenceOperandTy(DAG.getDataLayout())); 5158 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5159 setValue(&I, N); 5160 DAG.setRoot(N); 5161 } 5162 5163 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5164 SDLoc dl = getCurSDLoc(); 5165 AtomicOrdering Order = I.getOrdering(); 5166 SyncScope::ID SSID = I.getSyncScopeID(); 5167 5168 SDValue InChain = getRoot(); 5169 5170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5171 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5172 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5173 5174 if (!TLI.supportsUnalignedAtomics() && 5175 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5176 report_fatal_error("Cannot generate unaligned atomic load"); 5177 5178 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5179 5180 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5181 MachinePointerInfo(I.getPointerOperand()), Flags, 5182 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5183 nullptr, SSID, Order); 5184 5185 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5186 5187 SDValue Ptr = getValue(I.getPointerOperand()); 5188 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5189 Ptr, MMO); 5190 5191 SDValue OutChain = L.getValue(1); 5192 if (MemVT != VT) 5193 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5194 5195 setValue(&I, L); 5196 DAG.setRoot(OutChain); 5197 } 5198 5199 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5200 SDLoc dl = getCurSDLoc(); 5201 5202 AtomicOrdering Ordering = I.getOrdering(); 5203 SyncScope::ID SSID = I.getSyncScopeID(); 5204 5205 SDValue InChain = getRoot(); 5206 5207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5208 EVT MemVT = 5209 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5210 5211 if (!TLI.supportsUnalignedAtomics() && 5212 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5213 report_fatal_error("Cannot generate unaligned atomic store"); 5214 5215 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5216 5217 MachineFunction &MF = DAG.getMachineFunction(); 5218 MachineMemOperand *MMO = MF.getMachineMemOperand( 5219 MachinePointerInfo(I.getPointerOperand()), Flags, 5220 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5221 nullptr, SSID, Ordering); 5222 5223 SDValue Val = getValue(I.getValueOperand()); 5224 if (Val.getValueType() != MemVT) 5225 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5226 SDValue Ptr = getValue(I.getPointerOperand()); 5227 5228 SDValue OutChain = 5229 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5230 5231 setValue(&I, OutChain); 5232 DAG.setRoot(OutChain); 5233 } 5234 5235 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5236 /// node. 5237 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5238 unsigned Intrinsic) { 5239 // Ignore the callsite's attributes. A specific call site may be marked with 5240 // readnone, but the lowering code will expect the chain based on the 5241 // definition. 5242 const Function *F = I.getCalledFunction(); 5243 bool HasChain = !F->doesNotAccessMemory(); 5244 bool OnlyLoad = 5245 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow(); 5246 5247 // Build the operand list. 5248 SmallVector<SDValue, 8> Ops; 5249 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5250 if (OnlyLoad) { 5251 // We don't need to serialize loads against other loads. 5252 Ops.push_back(DAG.getRoot()); 5253 } else { 5254 Ops.push_back(getRoot()); 5255 } 5256 } 5257 5258 // Info is set by getTgtMemIntrinsic 5259 TargetLowering::IntrinsicInfo Info; 5260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5261 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5262 DAG.getMachineFunction(), 5263 Intrinsic); 5264 5265 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5266 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5267 Info.opc == ISD::INTRINSIC_W_CHAIN) 5268 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5269 TLI.getPointerTy(DAG.getDataLayout()))); 5270 5271 // Add all operands of the call to the operand list. 5272 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5273 const Value *Arg = I.getArgOperand(i); 5274 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5275 Ops.push_back(getValue(Arg)); 5276 continue; 5277 } 5278 5279 // Use TargetConstant instead of a regular constant for immarg. 5280 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5281 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5282 assert(CI->getBitWidth() <= 64 && 5283 "large intrinsic immediates not handled"); 5284 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5285 } else { 5286 Ops.push_back( 5287 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5288 } 5289 } 5290 5291 SmallVector<EVT, 4> ValueVTs; 5292 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5293 5294 if (HasChain) 5295 ValueVTs.push_back(MVT::Other); 5296 5297 SDVTList VTs = DAG.getVTList(ValueVTs); 5298 5299 // Propagate fast-math-flags from IR to node(s). 5300 SDNodeFlags Flags; 5301 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5302 Flags.copyFMF(*FPMO); 5303 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5304 5305 // Create the node. 5306 SDValue Result; 5307 5308 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5309 auto *Token = Bundle->Inputs[0].get(); 5310 SDValue ConvControlToken = getValue(Token); 5311 assert(Ops.back().getValueType() != MVT::Glue && 5312 "Did not expected another glue node here."); 5313 ConvControlToken = 5314 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5315 Ops.push_back(ConvControlToken); 5316 } 5317 5318 // In some cases, custom collection of operands from CallInst I may be needed. 5319 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5320 if (IsTgtIntrinsic) { 5321 // This is target intrinsic that touches memory 5322 // 5323 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5324 // didn't yield anything useful. 5325 MachinePointerInfo MPI; 5326 if (Info.ptrVal) 5327 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5328 else if (Info.fallbackAddressSpace) 5329 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5330 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5331 Info.memVT, MPI, Info.align, Info.flags, 5332 Info.size, I.getAAMetadata()); 5333 } else if (!HasChain) { 5334 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5335 } else if (!I.getType()->isVoidTy()) { 5336 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5337 } else { 5338 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5339 } 5340 5341 if (HasChain) { 5342 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5343 if (OnlyLoad) 5344 PendingLoads.push_back(Chain); 5345 else 5346 DAG.setRoot(Chain); 5347 } 5348 5349 if (!I.getType()->isVoidTy()) { 5350 if (!isa<VectorType>(I.getType())) 5351 Result = lowerRangeToAssertZExt(DAG, I, Result); 5352 5353 MaybeAlign Alignment = I.getRetAlign(); 5354 5355 // Insert `assertalign` node if there's an alignment. 5356 if (InsertAssertAlign && Alignment) { 5357 Result = 5358 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5359 } 5360 } 5361 5362 setValue(&I, Result); 5363 } 5364 5365 /// GetSignificand - Get the significand and build it into a floating-point 5366 /// number with exponent of 1: 5367 /// 5368 /// Op = (Op & 0x007fffff) | 0x3f800000; 5369 /// 5370 /// where Op is the hexadecimal representation of floating point value. 5371 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5372 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5373 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5374 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5375 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5376 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5377 } 5378 5379 /// GetExponent - Get the exponent: 5380 /// 5381 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5382 /// 5383 /// where Op is the hexadecimal representation of floating point value. 5384 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5385 const TargetLowering &TLI, const SDLoc &dl) { 5386 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5387 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5388 SDValue t1 = DAG.getNode( 5389 ISD::SRL, dl, MVT::i32, t0, 5390 DAG.getConstant(23, dl, 5391 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5392 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5393 DAG.getConstant(127, dl, MVT::i32)); 5394 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5395 } 5396 5397 /// getF32Constant - Get 32-bit floating point constant. 5398 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5399 const SDLoc &dl) { 5400 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5401 MVT::f32); 5402 } 5403 5404 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5405 SelectionDAG &DAG) { 5406 // TODO: What fast-math-flags should be set on the floating-point nodes? 5407 5408 // IntegerPartOfX = ((int32_t)(t0); 5409 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5410 5411 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5412 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5413 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5414 5415 // IntegerPartOfX <<= 23; 5416 IntegerPartOfX = 5417 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5418 DAG.getConstant(23, dl, 5419 DAG.getTargetLoweringInfo().getShiftAmountTy( 5420 MVT::i32, DAG.getDataLayout()))); 5421 5422 SDValue TwoToFractionalPartOfX; 5423 if (LimitFloatPrecision <= 6) { 5424 // For floating-point precision of 6: 5425 // 5426 // TwoToFractionalPartOfX = 5427 // 0.997535578f + 5428 // (0.735607626f + 0.252464424f * x) * x; 5429 // 5430 // error 0.0144103317, which is 6 bits 5431 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5432 getF32Constant(DAG, 0x3e814304, dl)); 5433 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5434 getF32Constant(DAG, 0x3f3c50c8, dl)); 5435 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5436 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5437 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5438 } else if (LimitFloatPrecision <= 12) { 5439 // For floating-point precision of 12: 5440 // 5441 // TwoToFractionalPartOfX = 5442 // 0.999892986f + 5443 // (0.696457318f + 5444 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5445 // 5446 // error 0.000107046256, which is 13 to 14 bits 5447 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5448 getF32Constant(DAG, 0x3da235e3, dl)); 5449 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5450 getF32Constant(DAG, 0x3e65b8f3, dl)); 5451 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5452 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5453 getF32Constant(DAG, 0x3f324b07, dl)); 5454 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5455 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5456 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5457 } else { // LimitFloatPrecision <= 18 5458 // For floating-point precision of 18: 5459 // 5460 // TwoToFractionalPartOfX = 5461 // 0.999999982f + 5462 // (0.693148872f + 5463 // (0.240227044f + 5464 // (0.554906021e-1f + 5465 // (0.961591928e-2f + 5466 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5467 // error 2.47208000*10^(-7), which is better than 18 bits 5468 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5469 getF32Constant(DAG, 0x3924b03e, dl)); 5470 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5471 getF32Constant(DAG, 0x3ab24b87, dl)); 5472 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5473 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5474 getF32Constant(DAG, 0x3c1d8c17, dl)); 5475 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5476 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5477 getF32Constant(DAG, 0x3d634a1d, dl)); 5478 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5479 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5480 getF32Constant(DAG, 0x3e75fe14, dl)); 5481 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5482 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5483 getF32Constant(DAG, 0x3f317234, dl)); 5484 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5485 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5486 getF32Constant(DAG, 0x3f800000, dl)); 5487 } 5488 5489 // Add the exponent into the result in integer domain. 5490 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5491 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5492 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5493 } 5494 5495 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5496 /// limited-precision mode. 5497 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5498 const TargetLowering &TLI, SDNodeFlags Flags) { 5499 if (Op.getValueType() == MVT::f32 && 5500 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5501 5502 // Put the exponent in the right bit position for later addition to the 5503 // final result: 5504 // 5505 // t0 = Op * log2(e) 5506 5507 // TODO: What fast-math-flags should be set here? 5508 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5509 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5510 return getLimitedPrecisionExp2(t0, dl, DAG); 5511 } 5512 5513 // No special expansion. 5514 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5515 } 5516 5517 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5518 /// limited-precision mode. 5519 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5520 const TargetLowering &TLI, SDNodeFlags Flags) { 5521 // TODO: What fast-math-flags should be set on the floating-point nodes? 5522 5523 if (Op.getValueType() == MVT::f32 && 5524 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5525 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5526 5527 // Scale the exponent by log(2). 5528 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5529 SDValue LogOfExponent = 5530 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5531 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5532 5533 // Get the significand and build it into a floating-point number with 5534 // exponent of 1. 5535 SDValue X = GetSignificand(DAG, Op1, dl); 5536 5537 SDValue LogOfMantissa; 5538 if (LimitFloatPrecision <= 6) { 5539 // For floating-point precision of 6: 5540 // 5541 // LogofMantissa = 5542 // -1.1609546f + 5543 // (1.4034025f - 0.23903021f * x) * x; 5544 // 5545 // error 0.0034276066, which is better than 8 bits 5546 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5547 getF32Constant(DAG, 0xbe74c456, dl)); 5548 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5549 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5550 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5551 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5552 getF32Constant(DAG, 0x3f949a29, dl)); 5553 } else if (LimitFloatPrecision <= 12) { 5554 // For floating-point precision of 12: 5555 // 5556 // LogOfMantissa = 5557 // -1.7417939f + 5558 // (2.8212026f + 5559 // (-1.4699568f + 5560 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5561 // 5562 // error 0.000061011436, which is 14 bits 5563 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5564 getF32Constant(DAG, 0xbd67b6d6, dl)); 5565 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5566 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5567 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5568 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5569 getF32Constant(DAG, 0x3fbc278b, dl)); 5570 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5571 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5572 getF32Constant(DAG, 0x40348e95, dl)); 5573 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5574 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5575 getF32Constant(DAG, 0x3fdef31a, dl)); 5576 } else { // LimitFloatPrecision <= 18 5577 // For floating-point precision of 18: 5578 // 5579 // LogOfMantissa = 5580 // -2.1072184f + 5581 // (4.2372794f + 5582 // (-3.7029485f + 5583 // (2.2781945f + 5584 // (-0.87823314f + 5585 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5586 // 5587 // error 0.0000023660568, which is better than 18 bits 5588 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5589 getF32Constant(DAG, 0xbc91e5ac, dl)); 5590 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5591 getF32Constant(DAG, 0x3e4350aa, dl)); 5592 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5593 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5594 getF32Constant(DAG, 0x3f60d3e3, dl)); 5595 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5596 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5597 getF32Constant(DAG, 0x4011cdf0, dl)); 5598 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5599 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5600 getF32Constant(DAG, 0x406cfd1c, dl)); 5601 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5602 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5603 getF32Constant(DAG, 0x408797cb, dl)); 5604 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5605 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5606 getF32Constant(DAG, 0x4006dcab, dl)); 5607 } 5608 5609 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5610 } 5611 5612 // No special expansion. 5613 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5614 } 5615 5616 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5617 /// limited-precision mode. 5618 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5619 const TargetLowering &TLI, SDNodeFlags Flags) { 5620 // TODO: What fast-math-flags should be set on the floating-point nodes? 5621 5622 if (Op.getValueType() == MVT::f32 && 5623 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5624 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5625 5626 // Get the exponent. 5627 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5628 5629 // Get the significand and build it into a floating-point number with 5630 // exponent of 1. 5631 SDValue X = GetSignificand(DAG, Op1, dl); 5632 5633 // Different possible minimax approximations of significand in 5634 // floating-point for various degrees of accuracy over [1,2]. 5635 SDValue Log2ofMantissa; 5636 if (LimitFloatPrecision <= 6) { 5637 // For floating-point precision of 6: 5638 // 5639 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5640 // 5641 // error 0.0049451742, which is more than 7 bits 5642 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5643 getF32Constant(DAG, 0xbeb08fe0, dl)); 5644 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5645 getF32Constant(DAG, 0x40019463, dl)); 5646 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5647 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5648 getF32Constant(DAG, 0x3fd6633d, dl)); 5649 } else if (LimitFloatPrecision <= 12) { 5650 // For floating-point precision of 12: 5651 // 5652 // Log2ofMantissa = 5653 // -2.51285454f + 5654 // (4.07009056f + 5655 // (-2.12067489f + 5656 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5657 // 5658 // error 0.0000876136000, which is better than 13 bits 5659 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5660 getF32Constant(DAG, 0xbda7262e, dl)); 5661 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5662 getF32Constant(DAG, 0x3f25280b, dl)); 5663 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5664 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5665 getF32Constant(DAG, 0x4007b923, dl)); 5666 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5667 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5668 getF32Constant(DAG, 0x40823e2f, dl)); 5669 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5670 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5671 getF32Constant(DAG, 0x4020d29c, dl)); 5672 } else { // LimitFloatPrecision <= 18 5673 // For floating-point precision of 18: 5674 // 5675 // Log2ofMantissa = 5676 // -3.0400495f + 5677 // (6.1129976f + 5678 // (-5.3420409f + 5679 // (3.2865683f + 5680 // (-1.2669343f + 5681 // (0.27515199f - 5682 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5683 // 5684 // error 0.0000018516, which is better than 18 bits 5685 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5686 getF32Constant(DAG, 0xbcd2769e, dl)); 5687 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5688 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5689 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5690 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5691 getF32Constant(DAG, 0x3fa22ae7, dl)); 5692 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5693 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5694 getF32Constant(DAG, 0x40525723, dl)); 5695 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5696 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5697 getF32Constant(DAG, 0x40aaf200, dl)); 5698 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5699 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5700 getF32Constant(DAG, 0x40c39dad, dl)); 5701 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5702 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5703 getF32Constant(DAG, 0x4042902c, dl)); 5704 } 5705 5706 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5707 } 5708 5709 // No special expansion. 5710 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5711 } 5712 5713 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5714 /// limited-precision mode. 5715 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5716 const TargetLowering &TLI, SDNodeFlags Flags) { 5717 // TODO: What fast-math-flags should be set on the floating-point nodes? 5718 5719 if (Op.getValueType() == MVT::f32 && 5720 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5721 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5722 5723 // Scale the exponent by log10(2) [0.30102999f]. 5724 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5725 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5726 getF32Constant(DAG, 0x3e9a209a, dl)); 5727 5728 // Get the significand and build it into a floating-point number with 5729 // exponent of 1. 5730 SDValue X = GetSignificand(DAG, Op1, dl); 5731 5732 SDValue Log10ofMantissa; 5733 if (LimitFloatPrecision <= 6) { 5734 // For floating-point precision of 6: 5735 // 5736 // Log10ofMantissa = 5737 // -0.50419619f + 5738 // (0.60948995f - 0.10380950f * x) * x; 5739 // 5740 // error 0.0014886165, which is 6 bits 5741 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5742 getF32Constant(DAG, 0xbdd49a13, dl)); 5743 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5744 getF32Constant(DAG, 0x3f1c0789, dl)); 5745 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5746 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5747 getF32Constant(DAG, 0x3f011300, dl)); 5748 } else if (LimitFloatPrecision <= 12) { 5749 // For floating-point precision of 12: 5750 // 5751 // Log10ofMantissa = 5752 // -0.64831180f + 5753 // (0.91751397f + 5754 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5755 // 5756 // error 0.00019228036, which is better than 12 bits 5757 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5758 getF32Constant(DAG, 0x3d431f31, dl)); 5759 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5760 getF32Constant(DAG, 0x3ea21fb2, dl)); 5761 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5762 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5763 getF32Constant(DAG, 0x3f6ae232, dl)); 5764 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5765 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5766 getF32Constant(DAG, 0x3f25f7c3, dl)); 5767 } else { // LimitFloatPrecision <= 18 5768 // For floating-point precision of 18: 5769 // 5770 // Log10ofMantissa = 5771 // -0.84299375f + 5772 // (1.5327582f + 5773 // (-1.0688956f + 5774 // (0.49102474f + 5775 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5776 // 5777 // error 0.0000037995730, which is better than 18 bits 5778 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5779 getF32Constant(DAG, 0x3c5d51ce, dl)); 5780 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5781 getF32Constant(DAG, 0x3e00685a, dl)); 5782 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5783 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5784 getF32Constant(DAG, 0x3efb6798, dl)); 5785 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5786 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5787 getF32Constant(DAG, 0x3f88d192, dl)); 5788 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5789 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5790 getF32Constant(DAG, 0x3fc4316c, dl)); 5791 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5792 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5793 getF32Constant(DAG, 0x3f57ce70, dl)); 5794 } 5795 5796 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5797 } 5798 5799 // No special expansion. 5800 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5801 } 5802 5803 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5804 /// limited-precision mode. 5805 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5806 const TargetLowering &TLI, SDNodeFlags Flags) { 5807 if (Op.getValueType() == MVT::f32 && 5808 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5809 return getLimitedPrecisionExp2(Op, dl, DAG); 5810 5811 // No special expansion. 5812 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5813 } 5814 5815 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5816 /// limited-precision mode with x == 10.0f. 5817 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5818 SelectionDAG &DAG, const TargetLowering &TLI, 5819 SDNodeFlags Flags) { 5820 bool IsExp10 = false; 5821 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5822 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5823 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5824 APFloat Ten(10.0f); 5825 IsExp10 = LHSC->isExactlyValue(Ten); 5826 } 5827 } 5828 5829 // TODO: What fast-math-flags should be set on the FMUL node? 5830 if (IsExp10) { 5831 // Put the exponent in the right bit position for later addition to the 5832 // final result: 5833 // 5834 // #define LOG2OF10 3.3219281f 5835 // t0 = Op * LOG2OF10; 5836 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5837 getF32Constant(DAG, 0x40549a78, dl)); 5838 return getLimitedPrecisionExp2(t0, dl, DAG); 5839 } 5840 5841 // No special expansion. 5842 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5843 } 5844 5845 /// ExpandPowI - Expand a llvm.powi intrinsic. 5846 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5847 SelectionDAG &DAG) { 5848 // If RHS is a constant, we can expand this out to a multiplication tree if 5849 // it's beneficial on the target, otherwise we end up lowering to a call to 5850 // __powidf2 (for example). 5851 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5852 unsigned Val = RHSC->getSExtValue(); 5853 5854 // powi(x, 0) -> 1.0 5855 if (Val == 0) 5856 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5857 5858 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5859 Val, DAG.shouldOptForSize())) { 5860 // Get the exponent as a positive value. 5861 if ((int)Val < 0) 5862 Val = -Val; 5863 // We use the simple binary decomposition method to generate the multiply 5864 // sequence. There are more optimal ways to do this (for example, 5865 // powi(x,15) generates one more multiply than it should), but this has 5866 // the benefit of being both really simple and much better than a libcall. 5867 SDValue Res; // Logically starts equal to 1.0 5868 SDValue CurSquare = LHS; 5869 // TODO: Intrinsics should have fast-math-flags that propagate to these 5870 // nodes. 5871 while (Val) { 5872 if (Val & 1) { 5873 if (Res.getNode()) 5874 Res = 5875 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5876 else 5877 Res = CurSquare; // 1.0*CurSquare. 5878 } 5879 5880 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5881 CurSquare, CurSquare); 5882 Val >>= 1; 5883 } 5884 5885 // If the original was negative, invert the result, producing 1/(x*x*x). 5886 if (RHSC->getSExtValue() < 0) 5887 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5888 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5889 return Res; 5890 } 5891 } 5892 5893 // Otherwise, expand to a libcall. 5894 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5895 } 5896 5897 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5898 SDValue LHS, SDValue RHS, SDValue Scale, 5899 SelectionDAG &DAG, const TargetLowering &TLI) { 5900 EVT VT = LHS.getValueType(); 5901 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5902 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5903 LLVMContext &Ctx = *DAG.getContext(); 5904 5905 // If the type is legal but the operation isn't, this node might survive all 5906 // the way to operation legalization. If we end up there and we do not have 5907 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5908 // node. 5909 5910 // Coax the legalizer into expanding the node during type legalization instead 5911 // by bumping the size by one bit. This will force it to Promote, enabling the 5912 // early expansion and avoiding the need to expand later. 5913 5914 // We don't have to do this if Scale is 0; that can always be expanded, unless 5915 // it's a saturating signed operation. Those can experience true integer 5916 // division overflow, a case which we must avoid. 5917 5918 // FIXME: We wouldn't have to do this (or any of the early 5919 // expansion/promotion) if it was possible to expand a libcall of an 5920 // illegal type during operation legalization. But it's not, so things 5921 // get a bit hacky. 5922 unsigned ScaleInt = Scale->getAsZExtVal(); 5923 if ((ScaleInt > 0 || (Saturating && Signed)) && 5924 (TLI.isTypeLegal(VT) || 5925 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5926 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5927 Opcode, VT, ScaleInt); 5928 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5929 EVT PromVT; 5930 if (VT.isScalarInteger()) 5931 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5932 else if (VT.isVector()) { 5933 PromVT = VT.getVectorElementType(); 5934 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5935 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5936 } else 5937 llvm_unreachable("Wrong VT for DIVFIX?"); 5938 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5939 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5940 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5941 // For saturating operations, we need to shift up the LHS to get the 5942 // proper saturation width, and then shift down again afterwards. 5943 if (Saturating) 5944 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5945 DAG.getConstant(1, DL, ShiftTy)); 5946 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5947 if (Saturating) 5948 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5949 DAG.getConstant(1, DL, ShiftTy)); 5950 return DAG.getZExtOrTrunc(Res, DL, VT); 5951 } 5952 } 5953 5954 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5955 } 5956 5957 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5958 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5959 static void 5960 getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs, 5961 const SDValue &N) { 5962 switch (N.getOpcode()) { 5963 case ISD::CopyFromReg: { 5964 SDValue Op = N.getOperand(1); 5965 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5966 Op.getValueType().getSizeInBits()); 5967 return; 5968 } 5969 case ISD::BITCAST: 5970 case ISD::AssertZext: 5971 case ISD::AssertSext: 5972 case ISD::TRUNCATE: 5973 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5974 return; 5975 case ISD::BUILD_PAIR: 5976 case ISD::BUILD_VECTOR: 5977 case ISD::CONCAT_VECTORS: 5978 for (SDValue Op : N->op_values()) 5979 getUnderlyingArgRegs(Regs, Op); 5980 return; 5981 default: 5982 return; 5983 } 5984 } 5985 5986 /// If the DbgValueInst is a dbg_value of a function argument, create the 5987 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5988 /// instruction selection, they will be inserted to the entry BB. 5989 /// We don't currently support this for variadic dbg_values, as they shouldn't 5990 /// appear for function arguments or in the prologue. 5991 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5992 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5993 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5994 const Argument *Arg = dyn_cast<Argument>(V); 5995 if (!Arg) 5996 return false; 5997 5998 MachineFunction &MF = DAG.getMachineFunction(); 5999 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6000 6001 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 6002 // we've been asked to pursue. 6003 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 6004 bool Indirect) { 6005 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 6006 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 6007 // pointing at the VReg, which will be patched up later. 6008 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 6009 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 6010 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 6011 /* isKill */ false, /* isDead */ false, 6012 /* isUndef */ false, /* isEarlyClobber */ false, 6013 /* SubReg */ 0, /* isDebug */ true)}); 6014 6015 auto *NewDIExpr = FragExpr; 6016 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6017 // the DIExpression. 6018 if (Indirect) 6019 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6020 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6021 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6022 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6023 } else { 6024 // Create a completely standard DBG_VALUE. 6025 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6026 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6027 } 6028 }; 6029 6030 if (Kind == FuncArgumentDbgValueKind::Value) { 6031 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6032 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6033 // the entry block. 6034 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6035 if (!IsInEntryBlock) 6036 return false; 6037 6038 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6039 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6040 // variable that also is a param. 6041 // 6042 // Although, if we are at the top of the entry block already, we can still 6043 // emit using ArgDbgValue. This might catch some situations when the 6044 // dbg.value refers to an argument that isn't used in the entry block, so 6045 // any CopyToReg node would be optimized out and the only way to express 6046 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6047 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6048 // we should only emit as ArgDbgValue if the Variable is an argument to the 6049 // current function, and the dbg.value intrinsic is found in the entry 6050 // block. 6051 bool VariableIsFunctionInputArg = Variable->isParameter() && 6052 !DL->getInlinedAt(); 6053 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6054 if (!IsInPrologue && !VariableIsFunctionInputArg) 6055 return false; 6056 6057 // Here we assume that a function argument on IR level only can be used to 6058 // describe one input parameter on source level. If we for example have 6059 // source code like this 6060 // 6061 // struct A { long x, y; }; 6062 // void foo(struct A a, long b) { 6063 // ... 6064 // b = a.x; 6065 // ... 6066 // } 6067 // 6068 // and IR like this 6069 // 6070 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6071 // entry: 6072 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6073 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6074 // call void @llvm.dbg.value(metadata i32 %b, "b", 6075 // ... 6076 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6077 // ... 6078 // 6079 // then the last dbg.value is describing a parameter "b" using a value that 6080 // is an argument. But since we already has used %a1 to describe a parameter 6081 // we should not handle that last dbg.value here (that would result in an 6082 // incorrect hoisting of the DBG_VALUE to the function entry). 6083 // Notice that we allow one dbg.value per IR level argument, to accommodate 6084 // for the situation with fragments above. 6085 // If there is no node for the value being handled, we return true to skip 6086 // the normal generation of debug info, as it would kill existing debug 6087 // info for the parameter in case of duplicates. 6088 if (VariableIsFunctionInputArg) { 6089 unsigned ArgNo = Arg->getArgNo(); 6090 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6091 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6092 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6093 return !NodeMap[V].getNode(); 6094 FuncInfo.DescribedArgs.set(ArgNo); 6095 } 6096 } 6097 6098 bool IsIndirect = false; 6099 std::optional<MachineOperand> Op; 6100 // Some arguments' frame index is recorded during argument lowering. 6101 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6102 if (FI != std::numeric_limits<int>::max()) 6103 Op = MachineOperand::CreateFI(FI); 6104 6105 SmallVector<std::pair<Register, TypeSize>, 8> ArgRegsAndSizes; 6106 if (!Op && N.getNode()) { 6107 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6108 Register Reg; 6109 if (ArgRegsAndSizes.size() == 1) 6110 Reg = ArgRegsAndSizes.front().first; 6111 6112 if (Reg && Reg.isVirtual()) { 6113 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6114 Register PR = RegInfo.getLiveInPhysReg(Reg); 6115 if (PR) 6116 Reg = PR; 6117 } 6118 if (Reg) { 6119 Op = MachineOperand::CreateReg(Reg, false); 6120 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6121 } 6122 } 6123 6124 if (!Op && N.getNode()) { 6125 // Check if frame index is available. 6126 SDValue LCandidate = peekThroughBitcasts(N); 6127 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6128 if (FrameIndexSDNode *FINode = 6129 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6130 Op = MachineOperand::CreateFI(FINode->getIndex()); 6131 } 6132 6133 if (!Op) { 6134 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6135 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>> 6136 SplitRegs) { 6137 unsigned Offset = 0; 6138 for (const auto &RegAndSize : SplitRegs) { 6139 // If the expression is already a fragment, the current register 6140 // offset+size might extend beyond the fragment. In this case, only 6141 // the register bits that are inside the fragment are relevant. 6142 int RegFragmentSizeInBits = RegAndSize.second; 6143 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6144 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6145 // The register is entirely outside the expression fragment, 6146 // so is irrelevant for debug info. 6147 if (Offset >= ExprFragmentSizeInBits) 6148 break; 6149 // The register is partially outside the expression fragment, only 6150 // the low bits within the fragment are relevant for debug info. 6151 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6152 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6153 } 6154 } 6155 6156 auto FragmentExpr = DIExpression::createFragmentExpression( 6157 Expr, Offset, RegFragmentSizeInBits); 6158 Offset += RegAndSize.second; 6159 // If a valid fragment expression cannot be created, the variable's 6160 // correct value cannot be determined and so it is set as Undef. 6161 if (!FragmentExpr) { 6162 SDDbgValue *SDV = DAG.getConstantDbgValue( 6163 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6164 DAG.AddDbgValue(SDV, false); 6165 continue; 6166 } 6167 MachineInstr *NewMI = 6168 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6169 Kind != FuncArgumentDbgValueKind::Value); 6170 FuncInfo.ArgDbgValues.push_back(NewMI); 6171 } 6172 }; 6173 6174 // Check if ValueMap has reg number. 6175 DenseMap<const Value *, Register>::const_iterator 6176 VMI = FuncInfo.ValueMap.find(V); 6177 if (VMI != FuncInfo.ValueMap.end()) { 6178 const auto &TLI = DAG.getTargetLoweringInfo(); 6179 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6180 V->getType(), std::nullopt); 6181 if (RFV.occupiesMultipleRegs()) { 6182 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6183 return true; 6184 } 6185 6186 Op = MachineOperand::CreateReg(VMI->second, false); 6187 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6188 } else if (ArgRegsAndSizes.size() > 1) { 6189 // This was split due to the calling convention, and no virtual register 6190 // mapping exists for the value. 6191 splitMultiRegDbgValue(ArgRegsAndSizes); 6192 return true; 6193 } 6194 } 6195 6196 if (!Op) 6197 return false; 6198 6199 assert(Variable->isValidLocationForIntrinsic(DL) && 6200 "Expected inlined-at fields to agree"); 6201 MachineInstr *NewMI = nullptr; 6202 6203 if (Op->isReg()) 6204 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6205 else 6206 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6207 Variable, Expr); 6208 6209 // Otherwise, use ArgDbgValues. 6210 FuncInfo.ArgDbgValues.push_back(NewMI); 6211 return true; 6212 } 6213 6214 /// Return the appropriate SDDbgValue based on N. 6215 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6216 DILocalVariable *Variable, 6217 DIExpression *Expr, 6218 const DebugLoc &dl, 6219 unsigned DbgSDNodeOrder) { 6220 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6221 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6222 // stack slot locations. 6223 // 6224 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6225 // debug values here after optimization: 6226 // 6227 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6228 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6229 // 6230 // Both describe the direct values of their associated variables. 6231 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6232 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6233 } 6234 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6235 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6236 } 6237 6238 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6239 switch (Intrinsic) { 6240 case Intrinsic::smul_fix: 6241 return ISD::SMULFIX; 6242 case Intrinsic::umul_fix: 6243 return ISD::UMULFIX; 6244 case Intrinsic::smul_fix_sat: 6245 return ISD::SMULFIXSAT; 6246 case Intrinsic::umul_fix_sat: 6247 return ISD::UMULFIXSAT; 6248 case Intrinsic::sdiv_fix: 6249 return ISD::SDIVFIX; 6250 case Intrinsic::udiv_fix: 6251 return ISD::UDIVFIX; 6252 case Intrinsic::sdiv_fix_sat: 6253 return ISD::SDIVFIXSAT; 6254 case Intrinsic::udiv_fix_sat: 6255 return ISD::UDIVFIXSAT; 6256 default: 6257 llvm_unreachable("Unhandled fixed point intrinsic"); 6258 } 6259 } 6260 6261 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6262 const char *FunctionName) { 6263 assert(FunctionName && "FunctionName must not be nullptr"); 6264 SDValue Callee = DAG.getExternalSymbol( 6265 FunctionName, 6266 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6267 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6268 } 6269 6270 /// Given a @llvm.call.preallocated.setup, return the corresponding 6271 /// preallocated call. 6272 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6273 assert(cast<CallBase>(PreallocatedSetup) 6274 ->getCalledFunction() 6275 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6276 "expected call_preallocated_setup Value"); 6277 for (const auto *U : PreallocatedSetup->users()) { 6278 auto *UseCall = cast<CallBase>(U); 6279 const Function *Fn = UseCall->getCalledFunction(); 6280 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6281 return UseCall; 6282 } 6283 } 6284 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6285 } 6286 6287 /// If DI is a debug value with an EntryValue expression, lower it using the 6288 /// corresponding physical register of the associated Argument value 6289 /// (guaranteed to exist by the verifier). 6290 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6291 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6292 DIExpression *Expr, DebugLoc DbgLoc) { 6293 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6294 return false; 6295 6296 // These properties are guaranteed by the verifier. 6297 const Argument *Arg = cast<Argument>(Values[0]); 6298 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6299 6300 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6301 if (ArgIt == FuncInfo.ValueMap.end()) { 6302 LLVM_DEBUG( 6303 dbgs() << "Dropping dbg.value: expression is entry_value but " 6304 "couldn't find an associated register for the Argument\n"); 6305 return true; 6306 } 6307 Register ArgVReg = ArgIt->getSecond(); 6308 6309 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6310 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6311 SDDbgValue *SDV = DAG.getVRegDbgValue( 6312 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6313 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6314 return true; 6315 } 6316 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6317 "couldn't find a physical register\n"); 6318 return true; 6319 } 6320 6321 /// Lower the call to the specified intrinsic function. 6322 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6323 unsigned Intrinsic) { 6324 SDLoc sdl = getCurSDLoc(); 6325 switch (Intrinsic) { 6326 case Intrinsic::experimental_convergence_anchor: 6327 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6328 break; 6329 case Intrinsic::experimental_convergence_entry: 6330 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6331 break; 6332 case Intrinsic::experimental_convergence_loop: { 6333 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6334 auto *Token = Bundle->Inputs[0].get(); 6335 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6336 getValue(Token))); 6337 break; 6338 } 6339 } 6340 } 6341 6342 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6343 unsigned IntrinsicID) { 6344 // For now, we're only lowering an 'add' histogram. 6345 // We can add others later, e.g. saturating adds, min/max. 6346 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6347 "Tried to lower unsupported histogram type"); 6348 SDLoc sdl = getCurSDLoc(); 6349 Value *Ptr = I.getOperand(0); 6350 SDValue Inc = getValue(I.getOperand(1)); 6351 SDValue Mask = getValue(I.getOperand(2)); 6352 6353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6354 DataLayout TargetDL = DAG.getDataLayout(); 6355 EVT VT = Inc.getValueType(); 6356 Align Alignment = DAG.getEVTAlign(VT); 6357 6358 const MDNode *Ranges = getRangeMetadata(I); 6359 6360 SDValue Root = DAG.getRoot(); 6361 SDValue Base; 6362 SDValue Index; 6363 ISD::MemIndexType IndexType; 6364 SDValue Scale; 6365 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6366 I.getParent(), VT.getScalarStoreSize()); 6367 6368 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6369 6370 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6371 MachinePointerInfo(AS), 6372 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6373 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6374 6375 if (!UniformBase) { 6376 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6377 Index = getValue(Ptr); 6378 IndexType = ISD::SIGNED_SCALED; 6379 Scale = 6380 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6381 } 6382 6383 EVT IdxVT = Index.getValueType(); 6384 EVT EltTy = IdxVT.getVectorElementType(); 6385 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6386 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6387 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6388 } 6389 6390 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6391 6392 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6393 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6394 Ops, MMO, IndexType); 6395 6396 setValue(&I, Histogram); 6397 DAG.setRoot(Histogram); 6398 } 6399 6400 /// Lower the call to the specified intrinsic function. 6401 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6402 unsigned Intrinsic) { 6403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6404 SDLoc sdl = getCurSDLoc(); 6405 DebugLoc dl = getCurDebugLoc(); 6406 SDValue Res; 6407 6408 SDNodeFlags Flags; 6409 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6410 Flags.copyFMF(*FPOp); 6411 6412 switch (Intrinsic) { 6413 default: 6414 // By default, turn this into a target intrinsic node. 6415 visitTargetIntrinsic(I, Intrinsic); 6416 return; 6417 case Intrinsic::vscale: { 6418 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6419 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6420 return; 6421 } 6422 case Intrinsic::vastart: visitVAStart(I); return; 6423 case Intrinsic::vaend: visitVAEnd(I); return; 6424 case Intrinsic::vacopy: visitVACopy(I); return; 6425 case Intrinsic::returnaddress: 6426 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6427 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6428 getValue(I.getArgOperand(0)))); 6429 return; 6430 case Intrinsic::addressofreturnaddress: 6431 setValue(&I, 6432 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6433 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6434 return; 6435 case Intrinsic::sponentry: 6436 setValue(&I, 6437 DAG.getNode(ISD::SPONENTRY, sdl, 6438 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6439 return; 6440 case Intrinsic::frameaddress: 6441 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6442 TLI.getFrameIndexTy(DAG.getDataLayout()), 6443 getValue(I.getArgOperand(0)))); 6444 return; 6445 case Intrinsic::read_volatile_register: 6446 case Intrinsic::read_register: { 6447 Value *Reg = I.getArgOperand(0); 6448 SDValue Chain = getRoot(); 6449 SDValue RegName = 6450 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6451 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6452 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6453 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6454 setValue(&I, Res); 6455 DAG.setRoot(Res.getValue(1)); 6456 return; 6457 } 6458 case Intrinsic::write_register: { 6459 Value *Reg = I.getArgOperand(0); 6460 Value *RegValue = I.getArgOperand(1); 6461 SDValue Chain = getRoot(); 6462 SDValue RegName = 6463 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6464 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6465 RegName, getValue(RegValue))); 6466 return; 6467 } 6468 case Intrinsic::memcpy: { 6469 const auto &MCI = cast<MemCpyInst>(I); 6470 SDValue Op1 = getValue(I.getArgOperand(0)); 6471 SDValue Op2 = getValue(I.getArgOperand(1)); 6472 SDValue Op3 = getValue(I.getArgOperand(2)); 6473 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6474 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6475 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6476 Align Alignment = std::min(DstAlign, SrcAlign); 6477 bool isVol = MCI.isVolatile(); 6478 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6479 // node. 6480 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6481 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6482 /* AlwaysInline */ false, &I, std::nullopt, 6483 MachinePointerInfo(I.getArgOperand(0)), 6484 MachinePointerInfo(I.getArgOperand(1)), 6485 I.getAAMetadata(), AA); 6486 updateDAGForMaybeTailCall(MC); 6487 return; 6488 } 6489 case Intrinsic::memcpy_inline: { 6490 const auto &MCI = cast<MemCpyInlineInst>(I); 6491 SDValue Dst = getValue(I.getArgOperand(0)); 6492 SDValue Src = getValue(I.getArgOperand(1)); 6493 SDValue Size = getValue(I.getArgOperand(2)); 6494 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6495 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6496 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6497 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6498 Align Alignment = std::min(DstAlign, SrcAlign); 6499 bool isVol = MCI.isVolatile(); 6500 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6501 // node. 6502 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6503 /* AlwaysInline */ true, &I, std::nullopt, 6504 MachinePointerInfo(I.getArgOperand(0)), 6505 MachinePointerInfo(I.getArgOperand(1)), 6506 I.getAAMetadata(), AA); 6507 updateDAGForMaybeTailCall(MC); 6508 return; 6509 } 6510 case Intrinsic::memset: { 6511 const auto &MSI = cast<MemSetInst>(I); 6512 SDValue Op1 = getValue(I.getArgOperand(0)); 6513 SDValue Op2 = getValue(I.getArgOperand(1)); 6514 SDValue Op3 = getValue(I.getArgOperand(2)); 6515 // @llvm.memset defines 0 and 1 to both mean no alignment. 6516 Align Alignment = MSI.getDestAlign().valueOrOne(); 6517 bool isVol = MSI.isVolatile(); 6518 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6519 SDValue MS = DAG.getMemset( 6520 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6521 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6522 updateDAGForMaybeTailCall(MS); 6523 return; 6524 } 6525 case Intrinsic::memset_inline: { 6526 const auto &MSII = cast<MemSetInlineInst>(I); 6527 SDValue Dst = getValue(I.getArgOperand(0)); 6528 SDValue Value = getValue(I.getArgOperand(1)); 6529 SDValue Size = getValue(I.getArgOperand(2)); 6530 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6531 // @llvm.memset defines 0 and 1 to both mean no alignment. 6532 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6533 bool isVol = MSII.isVolatile(); 6534 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6535 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6536 /* AlwaysInline */ true, &I, 6537 MachinePointerInfo(I.getArgOperand(0)), 6538 I.getAAMetadata()); 6539 updateDAGForMaybeTailCall(MC); 6540 return; 6541 } 6542 case Intrinsic::memmove: { 6543 const auto &MMI = cast<MemMoveInst>(I); 6544 SDValue Op1 = getValue(I.getArgOperand(0)); 6545 SDValue Op2 = getValue(I.getArgOperand(1)); 6546 SDValue Op3 = getValue(I.getArgOperand(2)); 6547 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6548 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6549 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6550 Align Alignment = std::min(DstAlign, SrcAlign); 6551 bool isVol = MMI.isVolatile(); 6552 // FIXME: Support passing different dest/src alignments to the memmove DAG 6553 // node. 6554 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6555 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I, 6556 /* OverrideTailCall */ std::nullopt, 6557 MachinePointerInfo(I.getArgOperand(0)), 6558 MachinePointerInfo(I.getArgOperand(1)), 6559 I.getAAMetadata(), AA); 6560 updateDAGForMaybeTailCall(MM); 6561 return; 6562 } 6563 case Intrinsic::memcpy_element_unordered_atomic: { 6564 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6565 SDValue Dst = getValue(MI.getRawDest()); 6566 SDValue Src = getValue(MI.getRawSource()); 6567 SDValue Length = getValue(MI.getLength()); 6568 6569 Type *LengthTy = MI.getLength()->getType(); 6570 unsigned ElemSz = MI.getElementSizeInBytes(); 6571 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6572 SDValue MC = 6573 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6574 isTC, MachinePointerInfo(MI.getRawDest()), 6575 MachinePointerInfo(MI.getRawSource())); 6576 updateDAGForMaybeTailCall(MC); 6577 return; 6578 } 6579 case Intrinsic::memmove_element_unordered_atomic: { 6580 auto &MI = cast<AtomicMemMoveInst>(I); 6581 SDValue Dst = getValue(MI.getRawDest()); 6582 SDValue Src = getValue(MI.getRawSource()); 6583 SDValue Length = getValue(MI.getLength()); 6584 6585 Type *LengthTy = MI.getLength()->getType(); 6586 unsigned ElemSz = MI.getElementSizeInBytes(); 6587 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6588 SDValue MC = 6589 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6590 isTC, MachinePointerInfo(MI.getRawDest()), 6591 MachinePointerInfo(MI.getRawSource())); 6592 updateDAGForMaybeTailCall(MC); 6593 return; 6594 } 6595 case Intrinsic::memset_element_unordered_atomic: { 6596 auto &MI = cast<AtomicMemSetInst>(I); 6597 SDValue Dst = getValue(MI.getRawDest()); 6598 SDValue Val = getValue(MI.getValue()); 6599 SDValue Length = getValue(MI.getLength()); 6600 6601 Type *LengthTy = MI.getLength()->getType(); 6602 unsigned ElemSz = MI.getElementSizeInBytes(); 6603 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6604 SDValue MC = 6605 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6606 isTC, MachinePointerInfo(MI.getRawDest())); 6607 updateDAGForMaybeTailCall(MC); 6608 return; 6609 } 6610 case Intrinsic::call_preallocated_setup: { 6611 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6612 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6613 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6614 getRoot(), SrcValue); 6615 setValue(&I, Res); 6616 DAG.setRoot(Res); 6617 return; 6618 } 6619 case Intrinsic::call_preallocated_arg: { 6620 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6621 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6622 SDValue Ops[3]; 6623 Ops[0] = getRoot(); 6624 Ops[1] = SrcValue; 6625 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6626 MVT::i32); // arg index 6627 SDValue Res = DAG.getNode( 6628 ISD::PREALLOCATED_ARG, sdl, 6629 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6630 setValue(&I, Res); 6631 DAG.setRoot(Res.getValue(1)); 6632 return; 6633 } 6634 case Intrinsic::dbg_declare: { 6635 const auto &DI = cast<DbgDeclareInst>(I); 6636 // Debug intrinsics are handled separately in assignment tracking mode. 6637 // Some intrinsics are handled right after Argument lowering. 6638 if (AssignmentTrackingEnabled || 6639 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6640 return; 6641 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6642 DILocalVariable *Variable = DI.getVariable(); 6643 DIExpression *Expression = DI.getExpression(); 6644 dropDanglingDebugInfo(Variable, Expression); 6645 // Assume dbg.declare can not currently use DIArgList, i.e. 6646 // it is non-variadic. 6647 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6648 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6649 DI.getDebugLoc()); 6650 return; 6651 } 6652 case Intrinsic::dbg_label: { 6653 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6654 DILabel *Label = DI.getLabel(); 6655 assert(Label && "Missing label"); 6656 6657 SDDbgLabel *SDV; 6658 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6659 DAG.AddDbgLabel(SDV); 6660 return; 6661 } 6662 case Intrinsic::dbg_assign: { 6663 // Debug intrinsics are handled separately in assignment tracking mode. 6664 if (AssignmentTrackingEnabled) 6665 return; 6666 // If assignment tracking hasn't been enabled then fall through and treat 6667 // the dbg.assign as a dbg.value. 6668 [[fallthrough]]; 6669 } 6670 case Intrinsic::dbg_value: { 6671 // Debug intrinsics are handled separately in assignment tracking mode. 6672 if (AssignmentTrackingEnabled) 6673 return; 6674 const DbgValueInst &DI = cast<DbgValueInst>(I); 6675 assert(DI.getVariable() && "Missing variable"); 6676 6677 DILocalVariable *Variable = DI.getVariable(); 6678 DIExpression *Expression = DI.getExpression(); 6679 dropDanglingDebugInfo(Variable, Expression); 6680 6681 if (DI.isKillLocation()) { 6682 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6683 return; 6684 } 6685 6686 SmallVector<Value *, 4> Values(DI.getValues()); 6687 if (Values.empty()) 6688 return; 6689 6690 bool IsVariadic = DI.hasArgList(); 6691 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6692 SDNodeOrder, IsVariadic)) 6693 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6694 DI.getDebugLoc(), SDNodeOrder); 6695 return; 6696 } 6697 6698 case Intrinsic::eh_typeid_for: { 6699 // Find the type id for the given typeinfo. 6700 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6701 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6702 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6703 setValue(&I, Res); 6704 return; 6705 } 6706 6707 case Intrinsic::eh_return_i32: 6708 case Intrinsic::eh_return_i64: 6709 DAG.getMachineFunction().setCallsEHReturn(true); 6710 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6711 MVT::Other, 6712 getControlRoot(), 6713 getValue(I.getArgOperand(0)), 6714 getValue(I.getArgOperand(1)))); 6715 return; 6716 case Intrinsic::eh_unwind_init: 6717 DAG.getMachineFunction().setCallsUnwindInit(true); 6718 return; 6719 case Intrinsic::eh_dwarf_cfa: 6720 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6721 TLI.getPointerTy(DAG.getDataLayout()), 6722 getValue(I.getArgOperand(0)))); 6723 return; 6724 case Intrinsic::eh_sjlj_callsite: { 6725 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6726 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6727 6728 FuncInfo.setCurrentCallSite(CI->getZExtValue()); 6729 return; 6730 } 6731 case Intrinsic::eh_sjlj_functioncontext: { 6732 // Get and store the index of the function context. 6733 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6734 AllocaInst *FnCtx = 6735 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6736 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6737 MFI.setFunctionContextIndex(FI); 6738 return; 6739 } 6740 case Intrinsic::eh_sjlj_setjmp: { 6741 SDValue Ops[2]; 6742 Ops[0] = getRoot(); 6743 Ops[1] = getValue(I.getArgOperand(0)); 6744 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6745 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6746 setValue(&I, Op.getValue(0)); 6747 DAG.setRoot(Op.getValue(1)); 6748 return; 6749 } 6750 case Intrinsic::eh_sjlj_longjmp: 6751 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6752 getRoot(), getValue(I.getArgOperand(0)))); 6753 return; 6754 case Intrinsic::eh_sjlj_setup_dispatch: 6755 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6756 getRoot())); 6757 return; 6758 case Intrinsic::masked_gather: 6759 visitMaskedGather(I); 6760 return; 6761 case Intrinsic::masked_load: 6762 visitMaskedLoad(I); 6763 return; 6764 case Intrinsic::masked_scatter: 6765 visitMaskedScatter(I); 6766 return; 6767 case Intrinsic::masked_store: 6768 visitMaskedStore(I); 6769 return; 6770 case Intrinsic::masked_expandload: 6771 visitMaskedLoad(I, true /* IsExpanding */); 6772 return; 6773 case Intrinsic::masked_compressstore: 6774 visitMaskedStore(I, true /* IsCompressing */); 6775 return; 6776 case Intrinsic::powi: 6777 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6778 getValue(I.getArgOperand(1)), DAG)); 6779 return; 6780 case Intrinsic::log: 6781 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6782 return; 6783 case Intrinsic::log2: 6784 setValue(&I, 6785 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6786 return; 6787 case Intrinsic::log10: 6788 setValue(&I, 6789 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6790 return; 6791 case Intrinsic::exp: 6792 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6793 return; 6794 case Intrinsic::exp2: 6795 setValue(&I, 6796 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6797 return; 6798 case Intrinsic::pow: 6799 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6800 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6801 return; 6802 case Intrinsic::sqrt: 6803 case Intrinsic::fabs: 6804 case Intrinsic::sin: 6805 case Intrinsic::cos: 6806 case Intrinsic::tan: 6807 case Intrinsic::asin: 6808 case Intrinsic::acos: 6809 case Intrinsic::atan: 6810 case Intrinsic::sinh: 6811 case Intrinsic::cosh: 6812 case Intrinsic::tanh: 6813 case Intrinsic::exp10: 6814 case Intrinsic::floor: 6815 case Intrinsic::ceil: 6816 case Intrinsic::trunc: 6817 case Intrinsic::rint: 6818 case Intrinsic::nearbyint: 6819 case Intrinsic::round: 6820 case Intrinsic::roundeven: 6821 case Intrinsic::canonicalize: { 6822 unsigned Opcode; 6823 // clang-format off 6824 switch (Intrinsic) { 6825 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6826 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6827 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6828 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6829 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6830 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6831 case Intrinsic::asin: Opcode = ISD::FASIN; break; 6832 case Intrinsic::acos: Opcode = ISD::FACOS; break; 6833 case Intrinsic::atan: Opcode = ISD::FATAN; break; 6834 case Intrinsic::sinh: Opcode = ISD::FSINH; break; 6835 case Intrinsic::cosh: Opcode = ISD::FCOSH; break; 6836 case Intrinsic::tanh: Opcode = ISD::FTANH; break; 6837 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6838 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6839 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6840 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6841 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6842 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6843 case Intrinsic::round: Opcode = ISD::FROUND; break; 6844 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6845 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6846 } 6847 // clang-format on 6848 6849 setValue(&I, DAG.getNode(Opcode, sdl, 6850 getValue(I.getArgOperand(0)).getValueType(), 6851 getValue(I.getArgOperand(0)), Flags)); 6852 return; 6853 } 6854 case Intrinsic::lround: 6855 case Intrinsic::llround: 6856 case Intrinsic::lrint: 6857 case Intrinsic::llrint: { 6858 unsigned Opcode; 6859 // clang-format off 6860 switch (Intrinsic) { 6861 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6862 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6863 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6864 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6865 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6866 } 6867 // clang-format on 6868 6869 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6870 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6871 getValue(I.getArgOperand(0)))); 6872 return; 6873 } 6874 case Intrinsic::minnum: 6875 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6876 getValue(I.getArgOperand(0)).getValueType(), 6877 getValue(I.getArgOperand(0)), 6878 getValue(I.getArgOperand(1)), Flags)); 6879 return; 6880 case Intrinsic::maxnum: 6881 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6882 getValue(I.getArgOperand(0)).getValueType(), 6883 getValue(I.getArgOperand(0)), 6884 getValue(I.getArgOperand(1)), Flags)); 6885 return; 6886 case Intrinsic::minimum: 6887 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6888 getValue(I.getArgOperand(0)).getValueType(), 6889 getValue(I.getArgOperand(0)), 6890 getValue(I.getArgOperand(1)), Flags)); 6891 return; 6892 case Intrinsic::maximum: 6893 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6894 getValue(I.getArgOperand(0)).getValueType(), 6895 getValue(I.getArgOperand(0)), 6896 getValue(I.getArgOperand(1)), Flags)); 6897 return; 6898 case Intrinsic::minimumnum: 6899 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl, 6900 getValue(I.getArgOperand(0)).getValueType(), 6901 getValue(I.getArgOperand(0)), 6902 getValue(I.getArgOperand(1)), Flags)); 6903 return; 6904 case Intrinsic::maximumnum: 6905 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl, 6906 getValue(I.getArgOperand(0)).getValueType(), 6907 getValue(I.getArgOperand(0)), 6908 getValue(I.getArgOperand(1)), Flags)); 6909 return; 6910 case Intrinsic::copysign: 6911 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6912 getValue(I.getArgOperand(0)).getValueType(), 6913 getValue(I.getArgOperand(0)), 6914 getValue(I.getArgOperand(1)), Flags)); 6915 return; 6916 case Intrinsic::ldexp: 6917 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6918 getValue(I.getArgOperand(0)).getValueType(), 6919 getValue(I.getArgOperand(0)), 6920 getValue(I.getArgOperand(1)), Flags)); 6921 return; 6922 case Intrinsic::frexp: { 6923 SmallVector<EVT, 2> ValueVTs; 6924 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6925 SDVTList VTs = DAG.getVTList(ValueVTs); 6926 setValue(&I, 6927 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6928 return; 6929 } 6930 case Intrinsic::arithmetic_fence: { 6931 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6932 getValue(I.getArgOperand(0)).getValueType(), 6933 getValue(I.getArgOperand(0)), Flags)); 6934 return; 6935 } 6936 case Intrinsic::fma: 6937 setValue(&I, DAG.getNode( 6938 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6939 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6940 getValue(I.getArgOperand(2)), Flags)); 6941 return; 6942 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6943 case Intrinsic::INTRINSIC: 6944 #include "llvm/IR/ConstrainedOps.def" 6945 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6946 return; 6947 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6948 #include "llvm/IR/VPIntrinsics.def" 6949 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6950 return; 6951 case Intrinsic::fptrunc_round: { 6952 // Get the last argument, the metadata and convert it to an integer in the 6953 // call 6954 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6955 std::optional<RoundingMode> RoundMode = 6956 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6957 6958 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6959 6960 // Propagate fast-math-flags from IR to node(s). 6961 SDNodeFlags Flags; 6962 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6963 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6964 6965 SDValue Result; 6966 Result = DAG.getNode( 6967 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6968 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32)); 6969 setValue(&I, Result); 6970 6971 return; 6972 } 6973 case Intrinsic::fmuladd: { 6974 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6975 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6976 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6977 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6978 getValue(I.getArgOperand(0)).getValueType(), 6979 getValue(I.getArgOperand(0)), 6980 getValue(I.getArgOperand(1)), 6981 getValue(I.getArgOperand(2)), Flags)); 6982 } else { 6983 // TODO: Intrinsic calls should have fast-math-flags. 6984 SDValue Mul = DAG.getNode( 6985 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6986 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6987 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6988 getValue(I.getArgOperand(0)).getValueType(), 6989 Mul, getValue(I.getArgOperand(2)), Flags); 6990 setValue(&I, Add); 6991 } 6992 return; 6993 } 6994 case Intrinsic::convert_to_fp16: 6995 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6996 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6997 getValue(I.getArgOperand(0)), 6998 DAG.getTargetConstant(0, sdl, 6999 MVT::i32)))); 7000 return; 7001 case Intrinsic::convert_from_fp16: 7002 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 7003 TLI.getValueType(DAG.getDataLayout(), I.getType()), 7004 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 7005 getValue(I.getArgOperand(0))))); 7006 return; 7007 case Intrinsic::fptosi_sat: { 7008 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7009 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 7010 getValue(I.getArgOperand(0)), 7011 DAG.getValueType(VT.getScalarType()))); 7012 return; 7013 } 7014 case Intrinsic::fptoui_sat: { 7015 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7016 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 7017 getValue(I.getArgOperand(0)), 7018 DAG.getValueType(VT.getScalarType()))); 7019 return; 7020 } 7021 case Intrinsic::set_rounding: 7022 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 7023 {getRoot(), getValue(I.getArgOperand(0))}); 7024 setValue(&I, Res); 7025 DAG.setRoot(Res.getValue(0)); 7026 return; 7027 case Intrinsic::is_fpclass: { 7028 const DataLayout DLayout = DAG.getDataLayout(); 7029 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 7030 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 7031 FPClassTest Test = static_cast<FPClassTest>( 7032 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 7033 MachineFunction &MF = DAG.getMachineFunction(); 7034 const Function &F = MF.getFunction(); 7035 SDValue Op = getValue(I.getArgOperand(0)); 7036 SDNodeFlags Flags; 7037 Flags.setNoFPExcept( 7038 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7039 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7040 // expansion can use illegal types. Making expansion early allows 7041 // legalizing these types prior to selection. 7042 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) && 7043 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) { 7044 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7045 setValue(&I, Result); 7046 return; 7047 } 7048 7049 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7050 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7051 setValue(&I, V); 7052 return; 7053 } 7054 case Intrinsic::get_fpenv: { 7055 const DataLayout DLayout = DAG.getDataLayout(); 7056 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7057 Align TempAlign = DAG.getEVTAlign(EnvVT); 7058 SDValue Chain = getRoot(); 7059 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7060 // and temporary storage in stack. 7061 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7062 Res = DAG.getNode( 7063 ISD::GET_FPENV, sdl, 7064 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7065 MVT::Other), 7066 Chain); 7067 } else { 7068 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7069 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7070 auto MPI = 7071 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7072 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7073 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7074 TempAlign); 7075 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7076 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7077 } 7078 setValue(&I, Res); 7079 DAG.setRoot(Res.getValue(1)); 7080 return; 7081 } 7082 case Intrinsic::set_fpenv: { 7083 const DataLayout DLayout = DAG.getDataLayout(); 7084 SDValue Env = getValue(I.getArgOperand(0)); 7085 EVT EnvVT = Env.getValueType(); 7086 Align TempAlign = DAG.getEVTAlign(EnvVT); 7087 SDValue Chain = getRoot(); 7088 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7089 // environment from memory. 7090 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7091 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7092 } else { 7093 // Allocate space in stack, copy environment bits into it and use this 7094 // memory in SET_FPENV_MEM. 7095 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7096 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7097 auto MPI = 7098 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7099 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7100 MachineMemOperand::MOStore); 7101 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7102 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7103 TempAlign); 7104 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7105 } 7106 DAG.setRoot(Chain); 7107 return; 7108 } 7109 case Intrinsic::reset_fpenv: 7110 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7111 return; 7112 case Intrinsic::get_fpmode: 7113 Res = DAG.getNode( 7114 ISD::GET_FPMODE, sdl, 7115 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7116 MVT::Other), 7117 DAG.getRoot()); 7118 setValue(&I, Res); 7119 DAG.setRoot(Res.getValue(1)); 7120 return; 7121 case Intrinsic::set_fpmode: 7122 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7123 getValue(I.getArgOperand(0))); 7124 DAG.setRoot(Res); 7125 return; 7126 case Intrinsic::reset_fpmode: { 7127 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7128 DAG.setRoot(Res); 7129 return; 7130 } 7131 case Intrinsic::pcmarker: { 7132 SDValue Tmp = getValue(I.getArgOperand(0)); 7133 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7134 return; 7135 } 7136 case Intrinsic::readcyclecounter: { 7137 SDValue Op = getRoot(); 7138 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7139 DAG.getVTList(MVT::i64, MVT::Other), Op); 7140 setValue(&I, Res); 7141 DAG.setRoot(Res.getValue(1)); 7142 return; 7143 } 7144 case Intrinsic::readsteadycounter: { 7145 SDValue Op = getRoot(); 7146 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7147 DAG.getVTList(MVT::i64, MVT::Other), Op); 7148 setValue(&I, Res); 7149 DAG.setRoot(Res.getValue(1)); 7150 return; 7151 } 7152 case Intrinsic::bitreverse: 7153 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7154 getValue(I.getArgOperand(0)).getValueType(), 7155 getValue(I.getArgOperand(0)))); 7156 return; 7157 case Intrinsic::bswap: 7158 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7159 getValue(I.getArgOperand(0)).getValueType(), 7160 getValue(I.getArgOperand(0)))); 7161 return; 7162 case Intrinsic::cttz: { 7163 SDValue Arg = getValue(I.getArgOperand(0)); 7164 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7165 EVT Ty = Arg.getValueType(); 7166 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7167 sdl, Ty, Arg)); 7168 return; 7169 } 7170 case Intrinsic::ctlz: { 7171 SDValue Arg = getValue(I.getArgOperand(0)); 7172 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7173 EVT Ty = Arg.getValueType(); 7174 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7175 sdl, Ty, Arg)); 7176 return; 7177 } 7178 case Intrinsic::ctpop: { 7179 SDValue Arg = getValue(I.getArgOperand(0)); 7180 EVT Ty = Arg.getValueType(); 7181 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7182 return; 7183 } 7184 case Intrinsic::fshl: 7185 case Intrinsic::fshr: { 7186 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7187 SDValue X = getValue(I.getArgOperand(0)); 7188 SDValue Y = getValue(I.getArgOperand(1)); 7189 SDValue Z = getValue(I.getArgOperand(2)); 7190 EVT VT = X.getValueType(); 7191 7192 if (X == Y) { 7193 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7194 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7195 } else { 7196 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7197 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7198 } 7199 return; 7200 } 7201 case Intrinsic::sadd_sat: { 7202 SDValue Op1 = getValue(I.getArgOperand(0)); 7203 SDValue Op2 = getValue(I.getArgOperand(1)); 7204 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7205 return; 7206 } 7207 case Intrinsic::uadd_sat: { 7208 SDValue Op1 = getValue(I.getArgOperand(0)); 7209 SDValue Op2 = getValue(I.getArgOperand(1)); 7210 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7211 return; 7212 } 7213 case Intrinsic::ssub_sat: { 7214 SDValue Op1 = getValue(I.getArgOperand(0)); 7215 SDValue Op2 = getValue(I.getArgOperand(1)); 7216 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7217 return; 7218 } 7219 case Intrinsic::usub_sat: { 7220 SDValue Op1 = getValue(I.getArgOperand(0)); 7221 SDValue Op2 = getValue(I.getArgOperand(1)); 7222 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7223 return; 7224 } 7225 case Intrinsic::sshl_sat: { 7226 SDValue Op1 = getValue(I.getArgOperand(0)); 7227 SDValue Op2 = getValue(I.getArgOperand(1)); 7228 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7229 return; 7230 } 7231 case Intrinsic::ushl_sat: { 7232 SDValue Op1 = getValue(I.getArgOperand(0)); 7233 SDValue Op2 = getValue(I.getArgOperand(1)); 7234 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7235 return; 7236 } 7237 case Intrinsic::smul_fix: 7238 case Intrinsic::umul_fix: 7239 case Intrinsic::smul_fix_sat: 7240 case Intrinsic::umul_fix_sat: { 7241 SDValue Op1 = getValue(I.getArgOperand(0)); 7242 SDValue Op2 = getValue(I.getArgOperand(1)); 7243 SDValue Op3 = getValue(I.getArgOperand(2)); 7244 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7245 Op1.getValueType(), Op1, Op2, Op3)); 7246 return; 7247 } 7248 case Intrinsic::sdiv_fix: 7249 case Intrinsic::udiv_fix: 7250 case Intrinsic::sdiv_fix_sat: 7251 case Intrinsic::udiv_fix_sat: { 7252 SDValue Op1 = getValue(I.getArgOperand(0)); 7253 SDValue Op2 = getValue(I.getArgOperand(1)); 7254 SDValue Op3 = getValue(I.getArgOperand(2)); 7255 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7256 Op1, Op2, Op3, DAG, TLI)); 7257 return; 7258 } 7259 case Intrinsic::smax: { 7260 SDValue Op1 = getValue(I.getArgOperand(0)); 7261 SDValue Op2 = getValue(I.getArgOperand(1)); 7262 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7263 return; 7264 } 7265 case Intrinsic::smin: { 7266 SDValue Op1 = getValue(I.getArgOperand(0)); 7267 SDValue Op2 = getValue(I.getArgOperand(1)); 7268 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7269 return; 7270 } 7271 case Intrinsic::umax: { 7272 SDValue Op1 = getValue(I.getArgOperand(0)); 7273 SDValue Op2 = getValue(I.getArgOperand(1)); 7274 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7275 return; 7276 } 7277 case Intrinsic::umin: { 7278 SDValue Op1 = getValue(I.getArgOperand(0)); 7279 SDValue Op2 = getValue(I.getArgOperand(1)); 7280 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7281 return; 7282 } 7283 case Intrinsic::abs: { 7284 // TODO: Preserve "int min is poison" arg in SDAG? 7285 SDValue Op1 = getValue(I.getArgOperand(0)); 7286 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7287 return; 7288 } 7289 case Intrinsic::scmp: { 7290 SDValue Op1 = getValue(I.getArgOperand(0)); 7291 SDValue Op2 = getValue(I.getArgOperand(1)); 7292 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7293 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7294 break; 7295 } 7296 case Intrinsic::ucmp: { 7297 SDValue Op1 = getValue(I.getArgOperand(0)); 7298 SDValue Op2 = getValue(I.getArgOperand(1)); 7299 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7300 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7301 break; 7302 } 7303 case Intrinsic::stacksave: { 7304 SDValue Op = getRoot(); 7305 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7306 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7307 setValue(&I, Res); 7308 DAG.setRoot(Res.getValue(1)); 7309 return; 7310 } 7311 case Intrinsic::stackrestore: 7312 Res = getValue(I.getArgOperand(0)); 7313 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7314 return; 7315 case Intrinsic::get_dynamic_area_offset: { 7316 SDValue Op = getRoot(); 7317 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7318 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7319 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7320 // target. 7321 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7322 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7323 " intrinsic!"); 7324 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7325 Op); 7326 DAG.setRoot(Op); 7327 setValue(&I, Res); 7328 return; 7329 } 7330 case Intrinsic::stackguard: { 7331 MachineFunction &MF = DAG.getMachineFunction(); 7332 const Module &M = *MF.getFunction().getParent(); 7333 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7334 SDValue Chain = getRoot(); 7335 if (TLI.useLoadStackGuardNode()) { 7336 Res = getLoadStackGuard(DAG, sdl, Chain); 7337 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7338 } else { 7339 const Value *Global = TLI.getSDagStackGuard(M); 7340 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7341 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7342 MachinePointerInfo(Global, 0), Align, 7343 MachineMemOperand::MOVolatile); 7344 } 7345 if (TLI.useStackGuardXorFP()) 7346 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7347 DAG.setRoot(Chain); 7348 setValue(&I, Res); 7349 return; 7350 } 7351 case Intrinsic::stackprotector: { 7352 // Emit code into the DAG to store the stack guard onto the stack. 7353 MachineFunction &MF = DAG.getMachineFunction(); 7354 MachineFrameInfo &MFI = MF.getFrameInfo(); 7355 SDValue Src, Chain = getRoot(); 7356 7357 if (TLI.useLoadStackGuardNode()) 7358 Src = getLoadStackGuard(DAG, sdl, Chain); 7359 else 7360 Src = getValue(I.getArgOperand(0)); // The guard's value. 7361 7362 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7363 7364 int FI = FuncInfo.StaticAllocaMap[Slot]; 7365 MFI.setStackProtectorIndex(FI); 7366 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7367 7368 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7369 7370 // Store the stack protector onto the stack. 7371 Res = DAG.getStore( 7372 Chain, sdl, Src, FIN, 7373 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7374 MaybeAlign(), MachineMemOperand::MOVolatile); 7375 setValue(&I, Res); 7376 DAG.setRoot(Res); 7377 return; 7378 } 7379 case Intrinsic::objectsize: 7380 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7381 7382 case Intrinsic::is_constant: 7383 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7384 7385 case Intrinsic::annotation: 7386 case Intrinsic::ptr_annotation: 7387 case Intrinsic::launder_invariant_group: 7388 case Intrinsic::strip_invariant_group: 7389 // Drop the intrinsic, but forward the value 7390 setValue(&I, getValue(I.getOperand(0))); 7391 return; 7392 7393 case Intrinsic::assume: 7394 case Intrinsic::experimental_noalias_scope_decl: 7395 case Intrinsic::var_annotation: 7396 case Intrinsic::sideeffect: 7397 // Discard annotate attributes, noalias scope declarations, assumptions, and 7398 // artificial side-effects. 7399 return; 7400 7401 case Intrinsic::codeview_annotation: { 7402 // Emit a label associated with this metadata. 7403 MachineFunction &MF = DAG.getMachineFunction(); 7404 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true); 7405 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7406 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7407 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7408 DAG.setRoot(Res); 7409 return; 7410 } 7411 7412 case Intrinsic::init_trampoline: { 7413 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7414 7415 SDValue Ops[6]; 7416 Ops[0] = getRoot(); 7417 Ops[1] = getValue(I.getArgOperand(0)); 7418 Ops[2] = getValue(I.getArgOperand(1)); 7419 Ops[3] = getValue(I.getArgOperand(2)); 7420 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7421 Ops[5] = DAG.getSrcValue(F); 7422 7423 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7424 7425 DAG.setRoot(Res); 7426 return; 7427 } 7428 case Intrinsic::adjust_trampoline: 7429 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7430 TLI.getPointerTy(DAG.getDataLayout()), 7431 getValue(I.getArgOperand(0)))); 7432 return; 7433 case Intrinsic::gcroot: { 7434 assert(DAG.getMachineFunction().getFunction().hasGC() && 7435 "only valid in functions with gc specified, enforced by Verifier"); 7436 assert(GFI && "implied by previous"); 7437 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7438 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7439 7440 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7441 GFI->addStackRoot(FI->getIndex(), TypeMap); 7442 return; 7443 } 7444 case Intrinsic::gcread: 7445 case Intrinsic::gcwrite: 7446 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7447 case Intrinsic::get_rounding: 7448 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7449 setValue(&I, Res); 7450 DAG.setRoot(Res.getValue(1)); 7451 return; 7452 7453 case Intrinsic::expect: 7454 // Just replace __builtin_expect(exp, c) with EXP. 7455 setValue(&I, getValue(I.getArgOperand(0))); 7456 return; 7457 7458 case Intrinsic::ubsantrap: 7459 case Intrinsic::debugtrap: 7460 case Intrinsic::trap: { 7461 StringRef TrapFuncName = 7462 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7463 if (TrapFuncName.empty()) { 7464 switch (Intrinsic) { 7465 case Intrinsic::trap: 7466 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7467 break; 7468 case Intrinsic::debugtrap: 7469 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7470 break; 7471 case Intrinsic::ubsantrap: 7472 DAG.setRoot(DAG.getNode( 7473 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7474 DAG.getTargetConstant( 7475 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7476 MVT::i32))); 7477 break; 7478 default: llvm_unreachable("unknown trap intrinsic"); 7479 } 7480 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(), 7481 I.hasFnAttr(Attribute::NoMerge)); 7482 return; 7483 } 7484 TargetLowering::ArgListTy Args; 7485 if (Intrinsic == Intrinsic::ubsantrap) { 7486 Args.push_back(TargetLoweringBase::ArgListEntry()); 7487 Args[0].Val = I.getArgOperand(0); 7488 Args[0].Node = getValue(Args[0].Val); 7489 Args[0].Ty = Args[0].Val->getType(); 7490 } 7491 7492 TargetLowering::CallLoweringInfo CLI(DAG); 7493 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7494 CallingConv::C, I.getType(), 7495 DAG.getExternalSymbol(TrapFuncName.data(), 7496 TLI.getPointerTy(DAG.getDataLayout())), 7497 std::move(Args)); 7498 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge); 7499 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7500 DAG.setRoot(Result.second); 7501 return; 7502 } 7503 7504 case Intrinsic::allow_runtime_check: 7505 case Intrinsic::allow_ubsan_check: 7506 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7507 return; 7508 7509 case Intrinsic::uadd_with_overflow: 7510 case Intrinsic::sadd_with_overflow: 7511 case Intrinsic::usub_with_overflow: 7512 case Intrinsic::ssub_with_overflow: 7513 case Intrinsic::umul_with_overflow: 7514 case Intrinsic::smul_with_overflow: { 7515 ISD::NodeType Op; 7516 switch (Intrinsic) { 7517 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7518 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7519 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7520 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7521 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7522 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7523 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7524 } 7525 SDValue Op1 = getValue(I.getArgOperand(0)); 7526 SDValue Op2 = getValue(I.getArgOperand(1)); 7527 7528 EVT ResultVT = Op1.getValueType(); 7529 EVT OverflowVT = MVT::i1; 7530 if (ResultVT.isVector()) 7531 OverflowVT = EVT::getVectorVT( 7532 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7533 7534 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7535 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7536 return; 7537 } 7538 case Intrinsic::prefetch: { 7539 SDValue Ops[5]; 7540 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7541 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7542 Ops[0] = DAG.getRoot(); 7543 Ops[1] = getValue(I.getArgOperand(0)); 7544 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7545 MVT::i32); 7546 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7547 MVT::i32); 7548 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7549 MVT::i32); 7550 SDValue Result = DAG.getMemIntrinsicNode( 7551 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7552 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7553 /* align */ std::nullopt, Flags); 7554 7555 // Chain the prefetch in parallel with any pending loads, to stay out of 7556 // the way of later optimizations. 7557 PendingLoads.push_back(Result); 7558 Result = getRoot(); 7559 DAG.setRoot(Result); 7560 return; 7561 } 7562 case Intrinsic::lifetime_start: 7563 case Intrinsic::lifetime_end: { 7564 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7565 // Stack coloring is not enabled in O0, discard region information. 7566 if (TM.getOptLevel() == CodeGenOptLevel::None) 7567 return; 7568 7569 const int64_t ObjectSize = 7570 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7571 Value *const ObjectPtr = I.getArgOperand(1); 7572 SmallVector<const Value *, 4> Allocas; 7573 getUnderlyingObjects(ObjectPtr, Allocas); 7574 7575 for (const Value *Alloca : Allocas) { 7576 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7577 7578 // Could not find an Alloca. 7579 if (!LifetimeObject) 7580 continue; 7581 7582 // First check that the Alloca is static, otherwise it won't have a 7583 // valid frame index. 7584 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7585 if (SI == FuncInfo.StaticAllocaMap.end()) 7586 return; 7587 7588 const int FrameIndex = SI->second; 7589 int64_t Offset; 7590 if (GetPointerBaseWithConstantOffset( 7591 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7592 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7593 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7594 Offset); 7595 DAG.setRoot(Res); 7596 } 7597 return; 7598 } 7599 case Intrinsic::pseudoprobe: { 7600 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7601 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7602 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7603 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7604 DAG.setRoot(Res); 7605 return; 7606 } 7607 case Intrinsic::invariant_start: 7608 // Discard region information. 7609 setValue(&I, 7610 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7611 return; 7612 case Intrinsic::invariant_end: 7613 // Discard region information. 7614 return; 7615 case Intrinsic::clear_cache: { 7616 SDValue InputChain = DAG.getRoot(); 7617 SDValue StartVal = getValue(I.getArgOperand(0)); 7618 SDValue EndVal = getValue(I.getArgOperand(1)); 7619 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7620 {InputChain, StartVal, EndVal}); 7621 setValue(&I, Res); 7622 DAG.setRoot(Res); 7623 return; 7624 } 7625 case Intrinsic::donothing: 7626 case Intrinsic::seh_try_begin: 7627 case Intrinsic::seh_scope_begin: 7628 case Intrinsic::seh_try_end: 7629 case Intrinsic::seh_scope_end: 7630 // ignore 7631 return; 7632 case Intrinsic::experimental_stackmap: 7633 visitStackmap(I); 7634 return; 7635 case Intrinsic::experimental_patchpoint_void: 7636 case Intrinsic::experimental_patchpoint: 7637 visitPatchpoint(I); 7638 return; 7639 case Intrinsic::experimental_gc_statepoint: 7640 LowerStatepoint(cast<GCStatepointInst>(I)); 7641 return; 7642 case Intrinsic::experimental_gc_result: 7643 visitGCResult(cast<GCResultInst>(I)); 7644 return; 7645 case Intrinsic::experimental_gc_relocate: 7646 visitGCRelocate(cast<GCRelocateInst>(I)); 7647 return; 7648 case Intrinsic::instrprof_cover: 7649 llvm_unreachable("instrprof failed to lower a cover"); 7650 case Intrinsic::instrprof_increment: 7651 llvm_unreachable("instrprof failed to lower an increment"); 7652 case Intrinsic::instrprof_timestamp: 7653 llvm_unreachable("instrprof failed to lower a timestamp"); 7654 case Intrinsic::instrprof_value_profile: 7655 llvm_unreachable("instrprof failed to lower a value profiling call"); 7656 case Intrinsic::instrprof_mcdc_parameters: 7657 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7658 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7659 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7660 case Intrinsic::localescape: { 7661 MachineFunction &MF = DAG.getMachineFunction(); 7662 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7663 7664 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7665 // is the same on all targets. 7666 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7667 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7668 if (isa<ConstantPointerNull>(Arg)) 7669 continue; // Skip null pointers. They represent a hole in index space. 7670 AllocaInst *Slot = cast<AllocaInst>(Arg); 7671 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7672 "can only escape static allocas"); 7673 int FI = FuncInfo.StaticAllocaMap[Slot]; 7674 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7675 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7676 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7677 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7678 .addSym(FrameAllocSym) 7679 .addFrameIndex(FI); 7680 } 7681 7682 return; 7683 } 7684 7685 case Intrinsic::localrecover: { 7686 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7687 MachineFunction &MF = DAG.getMachineFunction(); 7688 7689 // Get the symbol that defines the frame offset. 7690 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7691 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7692 unsigned IdxVal = 7693 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7694 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7695 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7696 7697 Value *FP = I.getArgOperand(1); 7698 SDValue FPVal = getValue(FP); 7699 EVT PtrVT = FPVal.getValueType(); 7700 7701 // Create a MCSymbol for the label to avoid any target lowering 7702 // that would make this PC relative. 7703 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7704 SDValue OffsetVal = 7705 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7706 7707 // Add the offset to the FP. 7708 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7709 setValue(&I, Add); 7710 7711 return; 7712 } 7713 7714 case Intrinsic::fake_use: { 7715 Value *V = I.getArgOperand(0); 7716 SDValue Ops[2]; 7717 // For Values not declared or previously used in this basic block, the 7718 // NodeMap will not have an entry, and `getValue` will assert if V has no 7719 // valid register value. 7720 auto FakeUseValue = [&]() -> SDValue { 7721 SDValue &N = NodeMap[V]; 7722 if (N.getNode()) 7723 return N; 7724 7725 // If there's a virtual register allocated and initialized for this 7726 // value, use it. 7727 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 7728 return copyFromReg; 7729 // FIXME: Do we want to preserve constants? It seems pointless. 7730 if (isa<Constant>(V)) 7731 return getValue(V); 7732 return SDValue(); 7733 }(); 7734 if (!FakeUseValue || FakeUseValue.isUndef()) 7735 return; 7736 Ops[0] = getRoot(); 7737 Ops[1] = FakeUseValue; 7738 // Also, do not translate a fake use with an undef operand, or any other 7739 // empty SDValues. 7740 if (!Ops[1] || Ops[1].isUndef()) 7741 return; 7742 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops)); 7743 return; 7744 } 7745 7746 case Intrinsic::eh_exceptionpointer: 7747 case Intrinsic::eh_exceptioncode: { 7748 // Get the exception pointer vreg, copy from it, and resize it to fit. 7749 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7750 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7751 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7752 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7753 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7754 if (Intrinsic == Intrinsic::eh_exceptioncode) 7755 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7756 setValue(&I, N); 7757 return; 7758 } 7759 case Intrinsic::xray_customevent: { 7760 // Here we want to make sure that the intrinsic behaves as if it has a 7761 // specific calling convention. 7762 const auto &Triple = DAG.getTarget().getTargetTriple(); 7763 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7764 return; 7765 7766 SmallVector<SDValue, 8> Ops; 7767 7768 // We want to say that we always want the arguments in registers. 7769 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7770 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7771 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7772 SDValue Chain = getRoot(); 7773 Ops.push_back(LogEntryVal); 7774 Ops.push_back(StrSizeVal); 7775 Ops.push_back(Chain); 7776 7777 // We need to enforce the calling convention for the callsite, so that 7778 // argument ordering is enforced correctly, and that register allocation can 7779 // see that some registers may be assumed clobbered and have to preserve 7780 // them across calls to the intrinsic. 7781 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7782 sdl, NodeTys, Ops); 7783 SDValue patchableNode = SDValue(MN, 0); 7784 DAG.setRoot(patchableNode); 7785 setValue(&I, patchableNode); 7786 return; 7787 } 7788 case Intrinsic::xray_typedevent: { 7789 // Here we want to make sure that the intrinsic behaves as if it has a 7790 // specific calling convention. 7791 const auto &Triple = DAG.getTarget().getTargetTriple(); 7792 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7793 return; 7794 7795 SmallVector<SDValue, 8> Ops; 7796 7797 // We want to say that we always want the arguments in registers. 7798 // It's unclear to me how manipulating the selection DAG here forces callers 7799 // to provide arguments in registers instead of on the stack. 7800 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7801 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7802 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7803 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7804 SDValue Chain = getRoot(); 7805 Ops.push_back(LogTypeId); 7806 Ops.push_back(LogEntryVal); 7807 Ops.push_back(StrSizeVal); 7808 Ops.push_back(Chain); 7809 7810 // We need to enforce the calling convention for the callsite, so that 7811 // argument ordering is enforced correctly, and that register allocation can 7812 // see that some registers may be assumed clobbered and have to preserve 7813 // them across calls to the intrinsic. 7814 MachineSDNode *MN = DAG.getMachineNode( 7815 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7816 SDValue patchableNode = SDValue(MN, 0); 7817 DAG.setRoot(patchableNode); 7818 setValue(&I, patchableNode); 7819 return; 7820 } 7821 case Intrinsic::experimental_deoptimize: 7822 LowerDeoptimizeCall(&I); 7823 return; 7824 case Intrinsic::stepvector: 7825 visitStepVector(I); 7826 return; 7827 case Intrinsic::vector_reduce_fadd: 7828 case Intrinsic::vector_reduce_fmul: 7829 case Intrinsic::vector_reduce_add: 7830 case Intrinsic::vector_reduce_mul: 7831 case Intrinsic::vector_reduce_and: 7832 case Intrinsic::vector_reduce_or: 7833 case Intrinsic::vector_reduce_xor: 7834 case Intrinsic::vector_reduce_smax: 7835 case Intrinsic::vector_reduce_smin: 7836 case Intrinsic::vector_reduce_umax: 7837 case Intrinsic::vector_reduce_umin: 7838 case Intrinsic::vector_reduce_fmax: 7839 case Intrinsic::vector_reduce_fmin: 7840 case Intrinsic::vector_reduce_fmaximum: 7841 case Intrinsic::vector_reduce_fminimum: 7842 visitVectorReduce(I, Intrinsic); 7843 return; 7844 7845 case Intrinsic::icall_branch_funnel: { 7846 SmallVector<SDValue, 16> Ops; 7847 Ops.push_back(getValue(I.getArgOperand(0))); 7848 7849 int64_t Offset; 7850 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7851 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7852 if (!Base) 7853 report_fatal_error( 7854 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7855 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7856 7857 struct BranchFunnelTarget { 7858 int64_t Offset; 7859 SDValue Target; 7860 }; 7861 SmallVector<BranchFunnelTarget, 8> Targets; 7862 7863 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7864 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7865 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7866 if (ElemBase != Base) 7867 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7868 "to the same GlobalValue"); 7869 7870 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7871 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7872 if (!GA) 7873 report_fatal_error( 7874 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7875 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7876 GA->getGlobal(), sdl, Val.getValueType(), 7877 GA->getOffset())}); 7878 } 7879 llvm::sort(Targets, 7880 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7881 return T1.Offset < T2.Offset; 7882 }); 7883 7884 for (auto &T : Targets) { 7885 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7886 Ops.push_back(T.Target); 7887 } 7888 7889 Ops.push_back(DAG.getRoot()); // Chain 7890 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7891 MVT::Other, Ops), 7892 0); 7893 DAG.setRoot(N); 7894 setValue(&I, N); 7895 HasTailCall = true; 7896 return; 7897 } 7898 7899 case Intrinsic::wasm_landingpad_index: 7900 // Information this intrinsic contained has been transferred to 7901 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7902 // delete it now. 7903 return; 7904 7905 case Intrinsic::aarch64_settag: 7906 case Intrinsic::aarch64_settag_zero: { 7907 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7908 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7909 SDValue Val = TSI.EmitTargetCodeForSetTag( 7910 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7911 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7912 ZeroMemory); 7913 DAG.setRoot(Val); 7914 setValue(&I, Val); 7915 return; 7916 } 7917 case Intrinsic::amdgcn_cs_chain: { 7918 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7919 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7920 "Non-zero flags not supported yet"); 7921 7922 // At this point we don't care if it's amdgpu_cs_chain or 7923 // amdgpu_cs_chain_preserve. 7924 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7925 7926 Type *RetTy = I.getType(); 7927 assert(RetTy->isVoidTy() && "Should not return"); 7928 7929 SDValue Callee = getValue(I.getOperand(0)); 7930 7931 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7932 // We'll also tack the value of the EXEC mask at the end. 7933 TargetLowering::ArgListTy Args; 7934 Args.reserve(3); 7935 7936 for (unsigned Idx : {2, 3, 1}) { 7937 TargetLowering::ArgListEntry Arg; 7938 Arg.Node = getValue(I.getOperand(Idx)); 7939 Arg.Ty = I.getOperand(Idx)->getType(); 7940 Arg.setAttributes(&I, Idx); 7941 Args.push_back(Arg); 7942 } 7943 7944 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7945 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7946 Args[2].IsInReg = true; // EXEC should be inreg 7947 7948 TargetLowering::CallLoweringInfo CLI(DAG); 7949 CLI.setDebugLoc(getCurSDLoc()) 7950 .setChain(getRoot()) 7951 .setCallee(CC, RetTy, Callee, std::move(Args)) 7952 .setNoReturn(true) 7953 .setTailCall(true) 7954 .setConvergent(I.isConvergent()); 7955 CLI.CB = &I; 7956 std::pair<SDValue, SDValue> Result = 7957 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7958 (void)Result; 7959 assert(!Result.first.getNode() && !Result.second.getNode() && 7960 "Should've lowered as tail call"); 7961 7962 HasTailCall = true; 7963 return; 7964 } 7965 case Intrinsic::ptrmask: { 7966 SDValue Ptr = getValue(I.getOperand(0)); 7967 SDValue Mask = getValue(I.getOperand(1)); 7968 7969 // On arm64_32, pointers are 32 bits when stored in memory, but 7970 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7971 // match the index type, but the pointer is 64 bits, so the the mask must be 7972 // zero-extended up to 64 bits to match the pointer. 7973 EVT PtrVT = 7974 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7975 EVT MemVT = 7976 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7977 assert(PtrVT == Ptr.getValueType()); 7978 assert(MemVT == Mask.getValueType()); 7979 if (MemVT != PtrVT) 7980 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7981 7982 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7983 return; 7984 } 7985 case Intrinsic::threadlocal_address: { 7986 setValue(&I, getValue(I.getOperand(0))); 7987 return; 7988 } 7989 case Intrinsic::get_active_lane_mask: { 7990 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7991 SDValue Index = getValue(I.getOperand(0)); 7992 EVT ElementVT = Index.getValueType(); 7993 7994 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7995 visitTargetIntrinsic(I, Intrinsic); 7996 return; 7997 } 7998 7999 SDValue TripCount = getValue(I.getOperand(1)); 8000 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 8001 CCVT.getVectorElementCount()); 8002 8003 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 8004 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 8005 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 8006 SDValue VectorInduction = DAG.getNode( 8007 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 8008 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 8009 VectorTripCount, ISD::CondCode::SETULT); 8010 setValue(&I, SetCC); 8011 return; 8012 } 8013 case Intrinsic::experimental_get_vector_length: { 8014 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 8015 "Expected positive VF"); 8016 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 8017 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 8018 8019 SDValue Count = getValue(I.getOperand(0)); 8020 EVT CountVT = Count.getValueType(); 8021 8022 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 8023 visitTargetIntrinsic(I, Intrinsic); 8024 return; 8025 } 8026 8027 // Expand to a umin between the trip count and the maximum elements the type 8028 // can hold. 8029 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8030 8031 // Extend the trip count to at least the result VT. 8032 if (CountVT.bitsLT(VT)) { 8033 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 8034 CountVT = VT; 8035 } 8036 8037 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 8038 ElementCount::get(VF, IsScalable)); 8039 8040 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 8041 // Clip to the result type if needed. 8042 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 8043 8044 setValue(&I, Trunc); 8045 return; 8046 } 8047 case Intrinsic::experimental_vector_partial_reduce_add: { 8048 8049 if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) { 8050 visitTargetIntrinsic(I, Intrinsic); 8051 return; 8052 } 8053 8054 setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()), 8055 getValue(I.getOperand(0)), 8056 getValue(I.getOperand(1)))); 8057 return; 8058 } 8059 case Intrinsic::experimental_cttz_elts: { 8060 auto DL = getCurSDLoc(); 8061 SDValue Op = getValue(I.getOperand(0)); 8062 EVT OpVT = Op.getValueType(); 8063 8064 if (!TLI.shouldExpandCttzElements(OpVT)) { 8065 visitTargetIntrinsic(I, Intrinsic); 8066 return; 8067 } 8068 8069 if (OpVT.getScalarType() != MVT::i1) { 8070 // Compare the input vector elements to zero & use to count trailing zeros 8071 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 8072 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 8073 OpVT.getVectorElementCount()); 8074 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 8075 } 8076 8077 // If the zero-is-poison flag is set, we can assume the upper limit 8078 // of the result is VF-1. 8079 bool ZeroIsPoison = 8080 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8081 ConstantRange VScaleRange(1, true); // Dummy value. 8082 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8083 VScaleRange = getVScaleRange(I.getCaller(), 64); 8084 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8085 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8086 8087 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8088 8089 // Create the new vector type & get the vector length 8090 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8091 OpVT.getVectorElementCount()); 8092 8093 SDValue VL = 8094 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8095 8096 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8097 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8098 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8099 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8100 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8101 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8102 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8103 8104 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8105 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8106 8107 setValue(&I, Ret); 8108 return; 8109 } 8110 case Intrinsic::vector_insert: { 8111 SDValue Vec = getValue(I.getOperand(0)); 8112 SDValue SubVec = getValue(I.getOperand(1)); 8113 SDValue Index = getValue(I.getOperand(2)); 8114 8115 // The intrinsic's index type is i64, but the SDNode requires an index type 8116 // suitable for the target. Convert the index as required. 8117 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8118 if (Index.getValueType() != VectorIdxTy) 8119 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8120 8121 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8122 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8123 Index)); 8124 return; 8125 } 8126 case Intrinsic::vector_extract: { 8127 SDValue Vec = getValue(I.getOperand(0)); 8128 SDValue Index = getValue(I.getOperand(1)); 8129 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8130 8131 // The intrinsic's index type is i64, but the SDNode requires an index type 8132 // suitable for the target. Convert the index as required. 8133 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8134 if (Index.getValueType() != VectorIdxTy) 8135 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8136 8137 setValue(&I, 8138 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8139 return; 8140 } 8141 case Intrinsic::vector_reverse: 8142 visitVectorReverse(I); 8143 return; 8144 case Intrinsic::vector_splice: 8145 visitVectorSplice(I); 8146 return; 8147 case Intrinsic::callbr_landingpad: 8148 visitCallBrLandingPad(I); 8149 return; 8150 case Intrinsic::vector_interleave2: 8151 visitVectorInterleave(I); 8152 return; 8153 case Intrinsic::vector_deinterleave2: 8154 visitVectorDeinterleave(I); 8155 return; 8156 case Intrinsic::experimental_vector_compress: 8157 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl, 8158 getValue(I.getArgOperand(0)).getValueType(), 8159 getValue(I.getArgOperand(0)), 8160 getValue(I.getArgOperand(1)), 8161 getValue(I.getArgOperand(2)), Flags)); 8162 return; 8163 case Intrinsic::experimental_convergence_anchor: 8164 case Intrinsic::experimental_convergence_entry: 8165 case Intrinsic::experimental_convergence_loop: 8166 visitConvergenceControl(I, Intrinsic); 8167 return; 8168 case Intrinsic::experimental_vector_histogram_add: { 8169 visitVectorHistogram(I, Intrinsic); 8170 return; 8171 } 8172 } 8173 } 8174 8175 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8176 const ConstrainedFPIntrinsic &FPI) { 8177 SDLoc sdl = getCurSDLoc(); 8178 8179 // We do not need to serialize constrained FP intrinsics against 8180 // each other or against (nonvolatile) loads, so they can be 8181 // chained like loads. 8182 SDValue Chain = DAG.getRoot(); 8183 SmallVector<SDValue, 4> Opers; 8184 Opers.push_back(Chain); 8185 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8186 Opers.push_back(getValue(FPI.getArgOperand(I))); 8187 8188 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8189 assert(Result.getNode()->getNumValues() == 2); 8190 8191 // Push node to the appropriate list so that future instructions can be 8192 // chained up correctly. 8193 SDValue OutChain = Result.getValue(1); 8194 switch (EB) { 8195 case fp::ExceptionBehavior::ebIgnore: 8196 // The only reason why ebIgnore nodes still need to be chained is that 8197 // they might depend on the current rounding mode, and therefore must 8198 // not be moved across instruction that may change that mode. 8199 [[fallthrough]]; 8200 case fp::ExceptionBehavior::ebMayTrap: 8201 // These must not be moved across calls or instructions that may change 8202 // floating-point exception masks. 8203 PendingConstrainedFP.push_back(OutChain); 8204 break; 8205 case fp::ExceptionBehavior::ebStrict: 8206 // These must not be moved across calls or instructions that may change 8207 // floating-point exception masks or read floating-point exception flags. 8208 // In addition, they cannot be optimized out even if unused. 8209 PendingConstrainedFPStrict.push_back(OutChain); 8210 break; 8211 } 8212 }; 8213 8214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8215 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8216 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8217 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8218 8219 SDNodeFlags Flags; 8220 if (EB == fp::ExceptionBehavior::ebIgnore) 8221 Flags.setNoFPExcept(true); 8222 8223 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8224 Flags.copyFMF(*FPOp); 8225 8226 unsigned Opcode; 8227 switch (FPI.getIntrinsicID()) { 8228 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8229 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8230 case Intrinsic::INTRINSIC: \ 8231 Opcode = ISD::STRICT_##DAGN; \ 8232 break; 8233 #include "llvm/IR/ConstrainedOps.def" 8234 case Intrinsic::experimental_constrained_fmuladd: { 8235 Opcode = ISD::STRICT_FMA; 8236 // Break fmuladd into fmul and fadd. 8237 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8238 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8239 Opers.pop_back(); 8240 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8241 pushOutChain(Mul, EB); 8242 Opcode = ISD::STRICT_FADD; 8243 Opers.clear(); 8244 Opers.push_back(Mul.getValue(1)); 8245 Opers.push_back(Mul.getValue(0)); 8246 Opers.push_back(getValue(FPI.getArgOperand(2))); 8247 } 8248 break; 8249 } 8250 } 8251 8252 // A few strict DAG nodes carry additional operands that are not 8253 // set up by the default code above. 8254 switch (Opcode) { 8255 default: break; 8256 case ISD::STRICT_FP_ROUND: 8257 Opers.push_back( 8258 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8259 break; 8260 case ISD::STRICT_FSETCC: 8261 case ISD::STRICT_FSETCCS: { 8262 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8263 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8264 if (TM.Options.NoNaNsFPMath) 8265 Condition = getFCmpCodeWithoutNaN(Condition); 8266 Opers.push_back(DAG.getCondCode(Condition)); 8267 break; 8268 } 8269 } 8270 8271 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8272 pushOutChain(Result, EB); 8273 8274 SDValue FPResult = Result.getValue(0); 8275 setValue(&FPI, FPResult); 8276 } 8277 8278 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8279 std::optional<unsigned> ResOPC; 8280 switch (VPIntrin.getIntrinsicID()) { 8281 case Intrinsic::vp_ctlz: { 8282 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8283 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8284 break; 8285 } 8286 case Intrinsic::vp_cttz: { 8287 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8288 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8289 break; 8290 } 8291 case Intrinsic::vp_cttz_elts: { 8292 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8293 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8294 break; 8295 } 8296 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8297 case Intrinsic::VPID: \ 8298 ResOPC = ISD::VPSD; \ 8299 break; 8300 #include "llvm/IR/VPIntrinsics.def" 8301 } 8302 8303 if (!ResOPC) 8304 llvm_unreachable( 8305 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8306 8307 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8308 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8309 if (VPIntrin.getFastMathFlags().allowReassoc()) 8310 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8311 : ISD::VP_REDUCE_FMUL; 8312 } 8313 8314 return *ResOPC; 8315 } 8316 8317 void SelectionDAGBuilder::visitVPLoad( 8318 const VPIntrinsic &VPIntrin, EVT VT, 8319 const SmallVectorImpl<SDValue> &OpValues) { 8320 SDLoc DL = getCurSDLoc(); 8321 Value *PtrOperand = VPIntrin.getArgOperand(0); 8322 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8323 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8324 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8325 SDValue LD; 8326 // Do not serialize variable-length loads of constant memory with 8327 // anything. 8328 if (!Alignment) 8329 Alignment = DAG.getEVTAlign(VT); 8330 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8331 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8332 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8333 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8334 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8335 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8336 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8337 MMO, false /*IsExpanding */); 8338 if (AddToChain) 8339 PendingLoads.push_back(LD.getValue(1)); 8340 setValue(&VPIntrin, LD); 8341 } 8342 8343 void SelectionDAGBuilder::visitVPGather( 8344 const VPIntrinsic &VPIntrin, EVT VT, 8345 const SmallVectorImpl<SDValue> &OpValues) { 8346 SDLoc DL = getCurSDLoc(); 8347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8348 Value *PtrOperand = VPIntrin.getArgOperand(0); 8349 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8350 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8351 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8352 SDValue LD; 8353 if (!Alignment) 8354 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8355 unsigned AS = 8356 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8357 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8358 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8359 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8360 SDValue Base, Index, Scale; 8361 ISD::MemIndexType IndexType; 8362 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8363 this, VPIntrin.getParent(), 8364 VT.getScalarStoreSize()); 8365 if (!UniformBase) { 8366 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8367 Index = getValue(PtrOperand); 8368 IndexType = ISD::SIGNED_SCALED; 8369 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8370 } 8371 EVT IdxVT = Index.getValueType(); 8372 EVT EltTy = IdxVT.getVectorElementType(); 8373 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8374 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8375 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8376 } 8377 LD = DAG.getGatherVP( 8378 DAG.getVTList(VT, MVT::Other), VT, DL, 8379 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8380 IndexType); 8381 PendingLoads.push_back(LD.getValue(1)); 8382 setValue(&VPIntrin, LD); 8383 } 8384 8385 void SelectionDAGBuilder::visitVPStore( 8386 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8387 SDLoc DL = getCurSDLoc(); 8388 Value *PtrOperand = VPIntrin.getArgOperand(1); 8389 EVT VT = OpValues[0].getValueType(); 8390 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8391 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8392 SDValue ST; 8393 if (!Alignment) 8394 Alignment = DAG.getEVTAlign(VT); 8395 SDValue Ptr = OpValues[1]; 8396 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8397 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8398 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8399 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8400 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8401 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8402 /* IsTruncating */ false, /*IsCompressing*/ false); 8403 DAG.setRoot(ST); 8404 setValue(&VPIntrin, ST); 8405 } 8406 8407 void SelectionDAGBuilder::visitVPScatter( 8408 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8409 SDLoc DL = getCurSDLoc(); 8410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8411 Value *PtrOperand = VPIntrin.getArgOperand(1); 8412 EVT VT = OpValues[0].getValueType(); 8413 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8414 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8415 SDValue ST; 8416 if (!Alignment) 8417 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8418 unsigned AS = 8419 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8420 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8421 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8422 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8423 SDValue Base, Index, Scale; 8424 ISD::MemIndexType IndexType; 8425 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8426 this, VPIntrin.getParent(), 8427 VT.getScalarStoreSize()); 8428 if (!UniformBase) { 8429 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8430 Index = getValue(PtrOperand); 8431 IndexType = ISD::SIGNED_SCALED; 8432 Scale = 8433 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8434 } 8435 EVT IdxVT = Index.getValueType(); 8436 EVT EltTy = IdxVT.getVectorElementType(); 8437 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8438 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8439 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8440 } 8441 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8442 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8443 OpValues[2], OpValues[3]}, 8444 MMO, IndexType); 8445 DAG.setRoot(ST); 8446 setValue(&VPIntrin, ST); 8447 } 8448 8449 void SelectionDAGBuilder::visitVPStridedLoad( 8450 const VPIntrinsic &VPIntrin, EVT VT, 8451 const SmallVectorImpl<SDValue> &OpValues) { 8452 SDLoc DL = getCurSDLoc(); 8453 Value *PtrOperand = VPIntrin.getArgOperand(0); 8454 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8455 if (!Alignment) 8456 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8457 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8458 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8459 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8460 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8461 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8462 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8463 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8464 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8465 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8466 8467 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8468 OpValues[2], OpValues[3], MMO, 8469 false /*IsExpanding*/); 8470 8471 if (AddToChain) 8472 PendingLoads.push_back(LD.getValue(1)); 8473 setValue(&VPIntrin, LD); 8474 } 8475 8476 void SelectionDAGBuilder::visitVPStridedStore( 8477 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8478 SDLoc DL = getCurSDLoc(); 8479 Value *PtrOperand = VPIntrin.getArgOperand(1); 8480 EVT VT = OpValues[0].getValueType(); 8481 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8482 if (!Alignment) 8483 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8484 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8485 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8486 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8487 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8488 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8489 8490 SDValue ST = DAG.getStridedStoreVP( 8491 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8492 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8493 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8494 /*IsCompressing*/ false); 8495 8496 DAG.setRoot(ST); 8497 setValue(&VPIntrin, ST); 8498 } 8499 8500 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8502 SDLoc DL = getCurSDLoc(); 8503 8504 ISD::CondCode Condition; 8505 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8506 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8507 if (IsFP) { 8508 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8509 // flags, but calls that don't return floating-point types can't be 8510 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8511 Condition = getFCmpCondCode(CondCode); 8512 if (TM.Options.NoNaNsFPMath) 8513 Condition = getFCmpCodeWithoutNaN(Condition); 8514 } else { 8515 Condition = getICmpCondCode(CondCode); 8516 } 8517 8518 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8519 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8520 // #2 is the condition code 8521 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8522 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8523 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8524 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8525 "Unexpected target EVL type"); 8526 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8527 8528 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8529 VPIntrin.getType()); 8530 setValue(&VPIntrin, 8531 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8532 } 8533 8534 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8535 const VPIntrinsic &VPIntrin) { 8536 SDLoc DL = getCurSDLoc(); 8537 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8538 8539 auto IID = VPIntrin.getIntrinsicID(); 8540 8541 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8542 return visitVPCmp(*CmpI); 8543 8544 SmallVector<EVT, 4> ValueVTs; 8545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8546 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8547 SDVTList VTs = DAG.getVTList(ValueVTs); 8548 8549 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8550 8551 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8552 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8553 "Unexpected target EVL type"); 8554 8555 // Request operands. 8556 SmallVector<SDValue, 7> OpValues; 8557 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8558 auto Op = getValue(VPIntrin.getArgOperand(I)); 8559 if (I == EVLParamPos) 8560 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8561 OpValues.push_back(Op); 8562 } 8563 8564 switch (Opcode) { 8565 default: { 8566 SDNodeFlags SDFlags; 8567 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8568 SDFlags.copyFMF(*FPMO); 8569 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8570 setValue(&VPIntrin, Result); 8571 break; 8572 } 8573 case ISD::VP_LOAD: 8574 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8575 break; 8576 case ISD::VP_GATHER: 8577 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8578 break; 8579 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8580 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8581 break; 8582 case ISD::VP_STORE: 8583 visitVPStore(VPIntrin, OpValues); 8584 break; 8585 case ISD::VP_SCATTER: 8586 visitVPScatter(VPIntrin, OpValues); 8587 break; 8588 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8589 visitVPStridedStore(VPIntrin, OpValues); 8590 break; 8591 case ISD::VP_FMULADD: { 8592 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8593 SDNodeFlags SDFlags; 8594 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8595 SDFlags.copyFMF(*FPMO); 8596 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8597 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8598 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8599 } else { 8600 SDValue Mul = DAG.getNode( 8601 ISD::VP_FMUL, DL, VTs, 8602 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8603 SDValue Add = 8604 DAG.getNode(ISD::VP_FADD, DL, VTs, 8605 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8606 setValue(&VPIntrin, Add); 8607 } 8608 break; 8609 } 8610 case ISD::VP_IS_FPCLASS: { 8611 const DataLayout DLayout = DAG.getDataLayout(); 8612 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8613 auto Constant = OpValues[1]->getAsZExtVal(); 8614 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8615 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8616 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8617 setValue(&VPIntrin, V); 8618 return; 8619 } 8620 case ISD::VP_INTTOPTR: { 8621 SDValue N = OpValues[0]; 8622 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8623 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8624 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8625 OpValues[2]); 8626 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8627 OpValues[2]); 8628 setValue(&VPIntrin, N); 8629 break; 8630 } 8631 case ISD::VP_PTRTOINT: { 8632 SDValue N = OpValues[0]; 8633 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8634 VPIntrin.getType()); 8635 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8636 VPIntrin.getOperand(0)->getType()); 8637 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8638 OpValues[2]); 8639 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8640 OpValues[2]); 8641 setValue(&VPIntrin, N); 8642 break; 8643 } 8644 case ISD::VP_ABS: 8645 case ISD::VP_CTLZ: 8646 case ISD::VP_CTLZ_ZERO_UNDEF: 8647 case ISD::VP_CTTZ: 8648 case ISD::VP_CTTZ_ZERO_UNDEF: 8649 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8650 case ISD::VP_CTTZ_ELTS: { 8651 SDValue Result = 8652 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8653 setValue(&VPIntrin, Result); 8654 break; 8655 } 8656 } 8657 } 8658 8659 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8660 const BasicBlock *EHPadBB, 8661 MCSymbol *&BeginLabel) { 8662 MachineFunction &MF = DAG.getMachineFunction(); 8663 8664 // Insert a label before the invoke call to mark the try range. This can be 8665 // used to detect deletion of the invoke via the MachineModuleInfo. 8666 BeginLabel = MF.getContext().createTempSymbol(); 8667 8668 // For SjLj, keep track of which landing pads go with which invokes 8669 // so as to maintain the ordering of pads in the LSDA. 8670 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite(); 8671 if (CallSiteIndex) { 8672 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8673 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex); 8674 8675 // Now that the call site is handled, stop tracking it. 8676 FuncInfo.setCurrentCallSite(0); 8677 } 8678 8679 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8680 } 8681 8682 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8683 const BasicBlock *EHPadBB, 8684 MCSymbol *BeginLabel) { 8685 assert(BeginLabel && "BeginLabel should've been set"); 8686 8687 MachineFunction &MF = DAG.getMachineFunction(); 8688 8689 // Insert a label at the end of the invoke call to mark the try range. This 8690 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8691 MCSymbol *EndLabel = MF.getContext().createTempSymbol(); 8692 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8693 8694 // Inform MachineModuleInfo of range. 8695 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8696 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8697 // actually use outlined funclets and their LSDA info style. 8698 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8699 assert(II && "II should've been set"); 8700 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8701 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8702 } else if (!isScopedEHPersonality(Pers)) { 8703 assert(EHPadBB); 8704 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel); 8705 } 8706 8707 return Chain; 8708 } 8709 8710 std::pair<SDValue, SDValue> 8711 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8712 const BasicBlock *EHPadBB) { 8713 MCSymbol *BeginLabel = nullptr; 8714 8715 if (EHPadBB) { 8716 // Both PendingLoads and PendingExports must be flushed here; 8717 // this call might not return. 8718 (void)getRoot(); 8719 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8720 CLI.setChain(getRoot()); 8721 } 8722 8723 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8724 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8725 8726 assert((CLI.IsTailCall || Result.second.getNode()) && 8727 "Non-null chain expected with non-tail call!"); 8728 assert((Result.second.getNode() || !Result.first.getNode()) && 8729 "Null value expected with tail call!"); 8730 8731 if (!Result.second.getNode()) { 8732 // As a special case, a null chain means that a tail call has been emitted 8733 // and the DAG root is already updated. 8734 HasTailCall = true; 8735 8736 // Since there's no actual continuation from this block, nothing can be 8737 // relying on us setting vregs for them. 8738 PendingExports.clear(); 8739 } else { 8740 DAG.setRoot(Result.second); 8741 } 8742 8743 if (EHPadBB) { 8744 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8745 BeginLabel)); 8746 Result.second = getRoot(); 8747 } 8748 8749 return Result; 8750 } 8751 8752 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8753 bool isTailCall, bool isMustTailCall, 8754 const BasicBlock *EHPadBB, 8755 const TargetLowering::PtrAuthInfo *PAI) { 8756 auto &DL = DAG.getDataLayout(); 8757 FunctionType *FTy = CB.getFunctionType(); 8758 Type *RetTy = CB.getType(); 8759 8760 TargetLowering::ArgListTy Args; 8761 Args.reserve(CB.arg_size()); 8762 8763 const Value *SwiftErrorVal = nullptr; 8764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8765 8766 if (isTailCall) { 8767 // Avoid emitting tail calls in functions with the disable-tail-calls 8768 // attribute. 8769 auto *Caller = CB.getParent()->getParent(); 8770 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8771 "true" && !isMustTailCall) 8772 isTailCall = false; 8773 8774 // We can't tail call inside a function with a swifterror argument. Lowering 8775 // does not support this yet. It would have to move into the swifterror 8776 // register before the call. 8777 if (TLI.supportSwiftError() && 8778 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8779 isTailCall = false; 8780 } 8781 8782 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8783 TargetLowering::ArgListEntry Entry; 8784 const Value *V = *I; 8785 8786 // Skip empty types 8787 if (V->getType()->isEmptyTy()) 8788 continue; 8789 8790 SDValue ArgNode = getValue(V); 8791 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8792 8793 Entry.setAttributes(&CB, I - CB.arg_begin()); 8794 8795 // Use swifterror virtual register as input to the call. 8796 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8797 SwiftErrorVal = V; 8798 // We find the virtual register for the actual swifterror argument. 8799 // Instead of using the Value, we use the virtual register instead. 8800 Entry.Node = 8801 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8802 EVT(TLI.getPointerTy(DL))); 8803 } 8804 8805 Args.push_back(Entry); 8806 8807 // If we have an explicit sret argument that is an Instruction, (i.e., it 8808 // might point to function-local memory), we can't meaningfully tail-call. 8809 if (Entry.IsSRet && isa<Instruction>(V)) 8810 isTailCall = false; 8811 } 8812 8813 // If call site has a cfguardtarget operand bundle, create and add an 8814 // additional ArgListEntry. 8815 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8816 TargetLowering::ArgListEntry Entry; 8817 Value *V = Bundle->Inputs[0]; 8818 SDValue ArgNode = getValue(V); 8819 Entry.Node = ArgNode; 8820 Entry.Ty = V->getType(); 8821 Entry.IsCFGuardTarget = true; 8822 Args.push_back(Entry); 8823 } 8824 8825 // Check if target-independent constraints permit a tail call here. 8826 // Target-dependent constraints are checked within TLI->LowerCallTo. 8827 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8828 isTailCall = false; 8829 8830 // Disable tail calls if there is an swifterror argument. Targets have not 8831 // been updated to support tail calls. 8832 if (TLI.supportSwiftError() && SwiftErrorVal) 8833 isTailCall = false; 8834 8835 ConstantInt *CFIType = nullptr; 8836 if (CB.isIndirectCall()) { 8837 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8838 if (!TLI.supportKCFIBundles()) 8839 report_fatal_error( 8840 "Target doesn't support calls with kcfi operand bundles."); 8841 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8842 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8843 } 8844 } 8845 8846 SDValue ConvControlToken; 8847 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8848 auto *Token = Bundle->Inputs[0].get(); 8849 ConvControlToken = getValue(Token); 8850 } 8851 8852 TargetLowering::CallLoweringInfo CLI(DAG); 8853 CLI.setDebugLoc(getCurSDLoc()) 8854 .setChain(getRoot()) 8855 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8856 .setTailCall(isTailCall) 8857 .setConvergent(CB.isConvergent()) 8858 .setIsPreallocated( 8859 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8860 .setCFIType(CFIType) 8861 .setConvergenceControlToken(ConvControlToken); 8862 8863 // Set the pointer authentication info if we have it. 8864 if (PAI) { 8865 if (!TLI.supportPtrAuthBundles()) 8866 report_fatal_error( 8867 "This target doesn't support calls with ptrauth operand bundles."); 8868 CLI.setPtrAuth(*PAI); 8869 } 8870 8871 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8872 8873 if (Result.first.getNode()) { 8874 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8875 setValue(&CB, Result.first); 8876 } 8877 8878 // The last element of CLI.InVals has the SDValue for swifterror return. 8879 // Here we copy it to a virtual register and update SwiftErrorMap for 8880 // book-keeping. 8881 if (SwiftErrorVal && TLI.supportSwiftError()) { 8882 // Get the last element of InVals. 8883 SDValue Src = CLI.InVals.back(); 8884 Register VReg = 8885 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8886 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8887 DAG.setRoot(CopyNode); 8888 } 8889 } 8890 8891 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8892 SelectionDAGBuilder &Builder) { 8893 // Check to see if this load can be trivially constant folded, e.g. if the 8894 // input is from a string literal. 8895 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8896 // Cast pointer to the type we really want to load. 8897 Type *LoadTy = 8898 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8899 if (LoadVT.isVector()) 8900 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8901 8902 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8903 PointerType::getUnqual(LoadTy)); 8904 8905 if (const Constant *LoadCst = 8906 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8907 LoadTy, Builder.DAG.getDataLayout())) 8908 return Builder.getValue(LoadCst); 8909 } 8910 8911 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8912 // still constant memory, the input chain can be the entry node. 8913 SDValue Root; 8914 bool ConstantMemory = false; 8915 8916 // Do not serialize (non-volatile) loads of constant memory with anything. 8917 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8918 Root = Builder.DAG.getEntryNode(); 8919 ConstantMemory = true; 8920 } else { 8921 // Do not serialize non-volatile loads against each other. 8922 Root = Builder.DAG.getRoot(); 8923 } 8924 8925 SDValue Ptr = Builder.getValue(PtrVal); 8926 SDValue LoadVal = 8927 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8928 MachinePointerInfo(PtrVal), Align(1)); 8929 8930 if (!ConstantMemory) 8931 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8932 return LoadVal; 8933 } 8934 8935 /// Record the value for an instruction that produces an integer result, 8936 /// converting the type where necessary. 8937 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8938 SDValue Value, 8939 bool IsSigned) { 8940 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8941 I.getType(), true); 8942 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8943 setValue(&I, Value); 8944 } 8945 8946 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8947 /// true and lower it. Otherwise return false, and it will be lowered like a 8948 /// normal call. 8949 /// The caller already checked that \p I calls the appropriate LibFunc with a 8950 /// correct prototype. 8951 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8952 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8953 const Value *Size = I.getArgOperand(2); 8954 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8955 if (CSize && CSize->getZExtValue() == 0) { 8956 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8957 I.getType(), true); 8958 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8959 return true; 8960 } 8961 8962 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8963 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8964 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8965 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8966 if (Res.first.getNode()) { 8967 processIntegerCallValue(I, Res.first, true); 8968 PendingLoads.push_back(Res.second); 8969 return true; 8970 } 8971 8972 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8973 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8974 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8975 return false; 8976 8977 // If the target has a fast compare for the given size, it will return a 8978 // preferred load type for that size. Require that the load VT is legal and 8979 // that the target supports unaligned loads of that type. Otherwise, return 8980 // INVALID. 8981 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8983 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8984 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8985 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8986 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8987 // TODO: Check alignment of src and dest ptrs. 8988 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8989 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8990 if (!TLI.isTypeLegal(LVT) || 8991 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8992 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8993 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8994 } 8995 8996 return LVT; 8997 }; 8998 8999 // This turns into unaligned loads. We only do this if the target natively 9000 // supports the MVT we'll be loading or if it is small enough (<= 4) that 9001 // we'll only produce a small number of byte loads. 9002 MVT LoadVT; 9003 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 9004 switch (NumBitsToCompare) { 9005 default: 9006 return false; 9007 case 16: 9008 LoadVT = MVT::i16; 9009 break; 9010 case 32: 9011 LoadVT = MVT::i32; 9012 break; 9013 case 64: 9014 case 128: 9015 case 256: 9016 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 9017 break; 9018 } 9019 9020 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 9021 return false; 9022 9023 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 9024 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 9025 9026 // Bitcast to a wide integer type if the loads are vectors. 9027 if (LoadVT.isVector()) { 9028 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 9029 LoadL = DAG.getBitcast(CmpVT, LoadL); 9030 LoadR = DAG.getBitcast(CmpVT, LoadR); 9031 } 9032 9033 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 9034 processIntegerCallValue(I, Cmp, false); 9035 return true; 9036 } 9037 9038 /// See if we can lower a memchr call into an optimized form. If so, return 9039 /// true and lower it. Otherwise return false, and it will be lowered like a 9040 /// normal call. 9041 /// The caller already checked that \p I calls the appropriate LibFunc with a 9042 /// correct prototype. 9043 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 9044 const Value *Src = I.getArgOperand(0); 9045 const Value *Char = I.getArgOperand(1); 9046 const Value *Length = I.getArgOperand(2); 9047 9048 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9049 std::pair<SDValue, SDValue> Res = 9050 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 9051 getValue(Src), getValue(Char), getValue(Length), 9052 MachinePointerInfo(Src)); 9053 if (Res.first.getNode()) { 9054 setValue(&I, Res.first); 9055 PendingLoads.push_back(Res.second); 9056 return true; 9057 } 9058 9059 return false; 9060 } 9061 9062 /// See if we can lower a mempcpy call into an optimized form. If so, return 9063 /// true and lower it. Otherwise return false, and it will be lowered like a 9064 /// normal call. 9065 /// The caller already checked that \p I calls the appropriate LibFunc with a 9066 /// correct prototype. 9067 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 9068 SDValue Dst = getValue(I.getArgOperand(0)); 9069 SDValue Src = getValue(I.getArgOperand(1)); 9070 SDValue Size = getValue(I.getArgOperand(2)); 9071 9072 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 9073 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 9074 // DAG::getMemcpy needs Alignment to be defined. 9075 Align Alignment = std::min(DstAlign, SrcAlign); 9076 9077 SDLoc sdl = getCurSDLoc(); 9078 9079 // In the mempcpy context we need to pass in a false value for isTailCall 9080 // because the return pointer needs to be adjusted by the size of 9081 // the copied memory. 9082 SDValue Root = getMemoryRoot(); 9083 SDValue MC = DAG.getMemcpy( 9084 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr, 9085 std::nullopt, MachinePointerInfo(I.getArgOperand(0)), 9086 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); 9087 assert(MC.getNode() != nullptr && 9088 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9089 DAG.setRoot(MC); 9090 9091 // Check if Size needs to be truncated or extended. 9092 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9093 9094 // Adjust return pointer to point just past the last dst byte. 9095 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9096 Dst, Size); 9097 setValue(&I, DstPlusSize); 9098 return true; 9099 } 9100 9101 /// See if we can lower a strcpy call into an optimized form. If so, return 9102 /// true and lower it, otherwise return false and it will be lowered like a 9103 /// normal call. 9104 /// The caller already checked that \p I calls the appropriate LibFunc with a 9105 /// correct prototype. 9106 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9107 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9108 9109 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9110 std::pair<SDValue, SDValue> Res = 9111 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9112 getValue(Arg0), getValue(Arg1), 9113 MachinePointerInfo(Arg0), 9114 MachinePointerInfo(Arg1), isStpcpy); 9115 if (Res.first.getNode()) { 9116 setValue(&I, Res.first); 9117 DAG.setRoot(Res.second); 9118 return true; 9119 } 9120 9121 return false; 9122 } 9123 9124 /// See if we can lower a strcmp call into an optimized form. If so, return 9125 /// true and lower it, otherwise return false and it will be lowered like a 9126 /// normal call. 9127 /// The caller already checked that \p I calls the appropriate LibFunc with a 9128 /// correct prototype. 9129 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9130 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9131 9132 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9133 std::pair<SDValue, SDValue> Res = 9134 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9135 getValue(Arg0), getValue(Arg1), 9136 MachinePointerInfo(Arg0), 9137 MachinePointerInfo(Arg1)); 9138 if (Res.first.getNode()) { 9139 processIntegerCallValue(I, Res.first, true); 9140 PendingLoads.push_back(Res.second); 9141 return true; 9142 } 9143 9144 return false; 9145 } 9146 9147 /// See if we can lower a strlen call into an optimized form. If so, return 9148 /// true and lower it, otherwise return false and it will be lowered like a 9149 /// normal call. 9150 /// The caller already checked that \p I calls the appropriate LibFunc with a 9151 /// correct prototype. 9152 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9153 const Value *Arg0 = I.getArgOperand(0); 9154 9155 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9156 std::pair<SDValue, SDValue> Res = 9157 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9158 getValue(Arg0), MachinePointerInfo(Arg0)); 9159 if (Res.first.getNode()) { 9160 processIntegerCallValue(I, Res.first, false); 9161 PendingLoads.push_back(Res.second); 9162 return true; 9163 } 9164 9165 return false; 9166 } 9167 9168 /// See if we can lower a strnlen call into an optimized form. If so, return 9169 /// true and lower it, otherwise return false and it will be lowered like a 9170 /// normal call. 9171 /// The caller already checked that \p I calls the appropriate LibFunc with a 9172 /// correct prototype. 9173 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9174 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9175 9176 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9177 std::pair<SDValue, SDValue> Res = 9178 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9179 getValue(Arg0), getValue(Arg1), 9180 MachinePointerInfo(Arg0)); 9181 if (Res.first.getNode()) { 9182 processIntegerCallValue(I, Res.first, false); 9183 PendingLoads.push_back(Res.second); 9184 return true; 9185 } 9186 9187 return false; 9188 } 9189 9190 /// See if we can lower a unary floating-point operation into an SDNode with 9191 /// the specified Opcode. If so, return true and lower it, otherwise return 9192 /// false and it will be lowered like a normal call. 9193 /// The caller already checked that \p I calls the appropriate LibFunc with a 9194 /// correct prototype. 9195 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9196 unsigned Opcode) { 9197 // We already checked this call's prototype; verify it doesn't modify errno. 9198 if (!I.onlyReadsMemory()) 9199 return false; 9200 9201 SDNodeFlags Flags; 9202 Flags.copyFMF(cast<FPMathOperator>(I)); 9203 9204 SDValue Tmp = getValue(I.getArgOperand(0)); 9205 setValue(&I, 9206 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9207 return true; 9208 } 9209 9210 /// See if we can lower a binary floating-point operation into an SDNode with 9211 /// the specified Opcode. If so, return true and lower it. Otherwise return 9212 /// false, and it will be lowered like a normal call. 9213 /// The caller already checked that \p I calls the appropriate LibFunc with a 9214 /// correct prototype. 9215 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9216 unsigned Opcode) { 9217 // We already checked this call's prototype; verify it doesn't modify errno. 9218 if (!I.onlyReadsMemory()) 9219 return false; 9220 9221 SDNodeFlags Flags; 9222 Flags.copyFMF(cast<FPMathOperator>(I)); 9223 9224 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9225 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9226 EVT VT = Tmp0.getValueType(); 9227 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9228 return true; 9229 } 9230 9231 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9232 // Handle inline assembly differently. 9233 if (I.isInlineAsm()) { 9234 visitInlineAsm(I); 9235 return; 9236 } 9237 9238 diagnoseDontCall(I); 9239 9240 if (Function *F = I.getCalledFunction()) { 9241 if (F->isDeclaration()) { 9242 // Is this an LLVM intrinsic or a target-specific intrinsic? 9243 unsigned IID = F->getIntrinsicID(); 9244 if (!IID) 9245 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9246 IID = II->getIntrinsicID(F); 9247 9248 if (IID) { 9249 visitIntrinsicCall(I, IID); 9250 return; 9251 } 9252 } 9253 9254 // Check for well-known libc/libm calls. If the function is internal, it 9255 // can't be a library call. Don't do the check if marked as nobuiltin for 9256 // some reason or the call site requires strict floating point semantics. 9257 LibFunc Func; 9258 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9259 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9260 LibInfo->hasOptimizedCodeGen(Func)) { 9261 switch (Func) { 9262 default: break; 9263 case LibFunc_bcmp: 9264 if (visitMemCmpBCmpCall(I)) 9265 return; 9266 break; 9267 case LibFunc_copysign: 9268 case LibFunc_copysignf: 9269 case LibFunc_copysignl: 9270 // We already checked this call's prototype; verify it doesn't modify 9271 // errno. 9272 if (I.onlyReadsMemory()) { 9273 SDValue LHS = getValue(I.getArgOperand(0)); 9274 SDValue RHS = getValue(I.getArgOperand(1)); 9275 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9276 LHS.getValueType(), LHS, RHS)); 9277 return; 9278 } 9279 break; 9280 case LibFunc_fabs: 9281 case LibFunc_fabsf: 9282 case LibFunc_fabsl: 9283 if (visitUnaryFloatCall(I, ISD::FABS)) 9284 return; 9285 break; 9286 case LibFunc_fmin: 9287 case LibFunc_fminf: 9288 case LibFunc_fminl: 9289 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9290 return; 9291 break; 9292 case LibFunc_fmax: 9293 case LibFunc_fmaxf: 9294 case LibFunc_fmaxl: 9295 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9296 return; 9297 break; 9298 case LibFunc_fminimum_num: 9299 case LibFunc_fminimum_numf: 9300 case LibFunc_fminimum_numl: 9301 if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM)) 9302 return; 9303 break; 9304 case LibFunc_fmaximum_num: 9305 case LibFunc_fmaximum_numf: 9306 case LibFunc_fmaximum_numl: 9307 if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM)) 9308 return; 9309 break; 9310 case LibFunc_sin: 9311 case LibFunc_sinf: 9312 case LibFunc_sinl: 9313 if (visitUnaryFloatCall(I, ISD::FSIN)) 9314 return; 9315 break; 9316 case LibFunc_cos: 9317 case LibFunc_cosf: 9318 case LibFunc_cosl: 9319 if (visitUnaryFloatCall(I, ISD::FCOS)) 9320 return; 9321 break; 9322 case LibFunc_tan: 9323 case LibFunc_tanf: 9324 case LibFunc_tanl: 9325 if (visitUnaryFloatCall(I, ISD::FTAN)) 9326 return; 9327 break; 9328 case LibFunc_asin: 9329 case LibFunc_asinf: 9330 case LibFunc_asinl: 9331 if (visitUnaryFloatCall(I, ISD::FASIN)) 9332 return; 9333 break; 9334 case LibFunc_acos: 9335 case LibFunc_acosf: 9336 case LibFunc_acosl: 9337 if (visitUnaryFloatCall(I, ISD::FACOS)) 9338 return; 9339 break; 9340 case LibFunc_atan: 9341 case LibFunc_atanf: 9342 case LibFunc_atanl: 9343 if (visitUnaryFloatCall(I, ISD::FATAN)) 9344 return; 9345 break; 9346 case LibFunc_sinh: 9347 case LibFunc_sinhf: 9348 case LibFunc_sinhl: 9349 if (visitUnaryFloatCall(I, ISD::FSINH)) 9350 return; 9351 break; 9352 case LibFunc_cosh: 9353 case LibFunc_coshf: 9354 case LibFunc_coshl: 9355 if (visitUnaryFloatCall(I, ISD::FCOSH)) 9356 return; 9357 break; 9358 case LibFunc_tanh: 9359 case LibFunc_tanhf: 9360 case LibFunc_tanhl: 9361 if (visitUnaryFloatCall(I, ISD::FTANH)) 9362 return; 9363 break; 9364 case LibFunc_sqrt: 9365 case LibFunc_sqrtf: 9366 case LibFunc_sqrtl: 9367 case LibFunc_sqrt_finite: 9368 case LibFunc_sqrtf_finite: 9369 case LibFunc_sqrtl_finite: 9370 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9371 return; 9372 break; 9373 case LibFunc_floor: 9374 case LibFunc_floorf: 9375 case LibFunc_floorl: 9376 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9377 return; 9378 break; 9379 case LibFunc_nearbyint: 9380 case LibFunc_nearbyintf: 9381 case LibFunc_nearbyintl: 9382 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9383 return; 9384 break; 9385 case LibFunc_ceil: 9386 case LibFunc_ceilf: 9387 case LibFunc_ceill: 9388 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9389 return; 9390 break; 9391 case LibFunc_rint: 9392 case LibFunc_rintf: 9393 case LibFunc_rintl: 9394 if (visitUnaryFloatCall(I, ISD::FRINT)) 9395 return; 9396 break; 9397 case LibFunc_round: 9398 case LibFunc_roundf: 9399 case LibFunc_roundl: 9400 if (visitUnaryFloatCall(I, ISD::FROUND)) 9401 return; 9402 break; 9403 case LibFunc_trunc: 9404 case LibFunc_truncf: 9405 case LibFunc_truncl: 9406 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9407 return; 9408 break; 9409 case LibFunc_log2: 9410 case LibFunc_log2f: 9411 case LibFunc_log2l: 9412 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9413 return; 9414 break; 9415 case LibFunc_exp2: 9416 case LibFunc_exp2f: 9417 case LibFunc_exp2l: 9418 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9419 return; 9420 break; 9421 case LibFunc_exp10: 9422 case LibFunc_exp10f: 9423 case LibFunc_exp10l: 9424 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9425 return; 9426 break; 9427 case LibFunc_ldexp: 9428 case LibFunc_ldexpf: 9429 case LibFunc_ldexpl: 9430 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9431 return; 9432 break; 9433 case LibFunc_memcmp: 9434 if (visitMemCmpBCmpCall(I)) 9435 return; 9436 break; 9437 case LibFunc_mempcpy: 9438 if (visitMemPCpyCall(I)) 9439 return; 9440 break; 9441 case LibFunc_memchr: 9442 if (visitMemChrCall(I)) 9443 return; 9444 break; 9445 case LibFunc_strcpy: 9446 if (visitStrCpyCall(I, false)) 9447 return; 9448 break; 9449 case LibFunc_stpcpy: 9450 if (visitStrCpyCall(I, true)) 9451 return; 9452 break; 9453 case LibFunc_strcmp: 9454 if (visitStrCmpCall(I)) 9455 return; 9456 break; 9457 case LibFunc_strlen: 9458 if (visitStrLenCall(I)) 9459 return; 9460 break; 9461 case LibFunc_strnlen: 9462 if (visitStrNLenCall(I)) 9463 return; 9464 break; 9465 } 9466 } 9467 } 9468 9469 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9470 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9471 return; 9472 } 9473 9474 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9475 // have to do anything here to lower funclet bundles. 9476 // CFGuardTarget bundles are lowered in LowerCallTo. 9477 assert(!I.hasOperandBundlesOtherThan( 9478 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9479 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9480 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9481 LLVMContext::OB_convergencectrl}) && 9482 "Cannot lower calls with arbitrary operand bundles!"); 9483 9484 SDValue Callee = getValue(I.getCalledOperand()); 9485 9486 if (I.hasDeoptState()) 9487 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9488 else 9489 // Check if we can potentially perform a tail call. More detailed checking 9490 // is be done within LowerCallTo, after more information about the call is 9491 // known. 9492 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9493 } 9494 9495 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9496 const CallBase &CB, const BasicBlock *EHPadBB) { 9497 auto PAB = CB.getOperandBundle("ptrauth"); 9498 const Value *CalleeV = CB.getCalledOperand(); 9499 9500 // Gather the call ptrauth data from the operand bundle: 9501 // [ i32 <key>, i64 <discriminator> ] 9502 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9503 const Value *Discriminator = PAB->Inputs[1]; 9504 9505 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9506 assert(Discriminator->getType()->isIntegerTy(64) && 9507 "Invalid ptrauth discriminator"); 9508 9509 // Look through ptrauth constants to find the raw callee. 9510 // Do a direct unauthenticated call if we found it and everything matches. 9511 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV)) 9512 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator, 9513 DAG.getDataLayout())) 9514 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(), 9515 CB.isMustTailCall(), EHPadBB); 9516 9517 // Functions should never be ptrauth-called directly. 9518 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9519 9520 // Otherwise, do an authenticated indirect call. 9521 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9522 getValue(Discriminator)}; 9523 9524 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9525 EHPadBB, &PAI); 9526 } 9527 9528 namespace { 9529 9530 /// AsmOperandInfo - This contains information for each constraint that we are 9531 /// lowering. 9532 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9533 public: 9534 /// CallOperand - If this is the result output operand or a clobber 9535 /// this is null, otherwise it is the incoming operand to the CallInst. 9536 /// This gets modified as the asm is processed. 9537 SDValue CallOperand; 9538 9539 /// AssignedRegs - If this is a register or register class operand, this 9540 /// contains the set of register corresponding to the operand. 9541 RegsForValue AssignedRegs; 9542 9543 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9544 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9545 } 9546 9547 /// Whether or not this operand accesses memory 9548 bool hasMemory(const TargetLowering &TLI) const { 9549 // Indirect operand accesses access memory. 9550 if (isIndirect) 9551 return true; 9552 9553 for (const auto &Code : Codes) 9554 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9555 return true; 9556 9557 return false; 9558 } 9559 }; 9560 9561 9562 } // end anonymous namespace 9563 9564 /// Make sure that the output operand \p OpInfo and its corresponding input 9565 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9566 /// out). 9567 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9568 SDISelAsmOperandInfo &MatchingOpInfo, 9569 SelectionDAG &DAG) { 9570 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9571 return; 9572 9573 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9574 const auto &TLI = DAG.getTargetLoweringInfo(); 9575 9576 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9577 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9578 OpInfo.ConstraintVT); 9579 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9580 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9581 MatchingOpInfo.ConstraintVT); 9582 const bool OutOpIsIntOrFP = 9583 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint(); 9584 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() || 9585 MatchingOpInfo.ConstraintVT.isFloatingPoint(); 9586 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) { 9587 // FIXME: error out in a more elegant fashion 9588 report_fatal_error("Unsupported asm: input constraint" 9589 " with a matching output constraint of" 9590 " incompatible type!"); 9591 } 9592 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9593 } 9594 9595 /// Get a direct memory input to behave well as an indirect operand. 9596 /// This may introduce stores, hence the need for a \p Chain. 9597 /// \return The (possibly updated) chain. 9598 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9599 SDISelAsmOperandInfo &OpInfo, 9600 SelectionDAG &DAG) { 9601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9602 9603 // If we don't have an indirect input, put it in the constpool if we can, 9604 // otherwise spill it to a stack slot. 9605 // TODO: This isn't quite right. We need to handle these according to 9606 // the addressing mode that the constraint wants. Also, this may take 9607 // an additional register for the computation and we don't want that 9608 // either. 9609 9610 // If the operand is a float, integer, or vector constant, spill to a 9611 // constant pool entry to get its address. 9612 const Value *OpVal = OpInfo.CallOperandVal; 9613 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9614 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9615 OpInfo.CallOperand = DAG.getConstantPool( 9616 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9617 return Chain; 9618 } 9619 9620 // Otherwise, create a stack slot and emit a store to it before the asm. 9621 Type *Ty = OpVal->getType(); 9622 auto &DL = DAG.getDataLayout(); 9623 TypeSize TySize = DL.getTypeAllocSize(Ty); 9624 MachineFunction &MF = DAG.getMachineFunction(); 9625 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 9626 int StackID = 0; 9627 if (TySize.isScalable()) 9628 StackID = TFI->getStackIDForScalableVectors(); 9629 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(), 9630 DL.getPrefTypeAlign(Ty), false, 9631 nullptr, StackID); 9632 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9633 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9634 MachinePointerInfo::getFixedStack(MF, SSFI), 9635 TLI.getMemValueType(DL, Ty)); 9636 OpInfo.CallOperand = StackSlot; 9637 9638 return Chain; 9639 } 9640 9641 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9642 /// specified operand. We prefer to assign virtual registers, to allow the 9643 /// register allocator to handle the assignment process. However, if the asm 9644 /// uses features that we can't model on machineinstrs, we have SDISel do the 9645 /// allocation. This produces generally horrible, but correct, code. 9646 /// 9647 /// OpInfo describes the operand 9648 /// RefOpInfo describes the matching operand if any, the operand otherwise 9649 static std::optional<unsigned> 9650 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9651 SDISelAsmOperandInfo &OpInfo, 9652 SDISelAsmOperandInfo &RefOpInfo) { 9653 LLVMContext &Context = *DAG.getContext(); 9654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9655 9656 MachineFunction &MF = DAG.getMachineFunction(); 9657 SmallVector<Register, 4> Regs; 9658 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9659 9660 // No work to do for memory/address operands. 9661 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9662 OpInfo.ConstraintType == TargetLowering::C_Address) 9663 return std::nullopt; 9664 9665 // If this is a constraint for a single physreg, or a constraint for a 9666 // register class, find it. 9667 unsigned AssignedReg; 9668 const TargetRegisterClass *RC; 9669 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9670 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9671 // RC is unset only on failure. Return immediately. 9672 if (!RC) 9673 return std::nullopt; 9674 9675 // Get the actual register value type. This is important, because the user 9676 // may have asked for (e.g.) the AX register in i32 type. We need to 9677 // remember that AX is actually i16 to get the right extension. 9678 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9679 9680 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9681 // If this is an FP operand in an integer register (or visa versa), or more 9682 // generally if the operand value disagrees with the register class we plan 9683 // to stick it in, fix the operand type. 9684 // 9685 // If this is an input value, the bitcast to the new type is done now. 9686 // Bitcast for output value is done at the end of visitInlineAsm(). 9687 if ((OpInfo.Type == InlineAsm::isOutput || 9688 OpInfo.Type == InlineAsm::isInput) && 9689 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9690 // Try to convert to the first EVT that the reg class contains. If the 9691 // types are identical size, use a bitcast to convert (e.g. two differing 9692 // vector types). Note: output bitcast is done at the end of 9693 // visitInlineAsm(). 9694 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9695 // Exclude indirect inputs while they are unsupported because the code 9696 // to perform the load is missing and thus OpInfo.CallOperand still 9697 // refers to the input address rather than the pointed-to value. 9698 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9699 OpInfo.CallOperand = 9700 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9701 OpInfo.ConstraintVT = RegVT; 9702 // If the operand is an FP value and we want it in integer registers, 9703 // use the corresponding integer type. This turns an f64 value into 9704 // i64, which can be passed with two i32 values on a 32-bit machine. 9705 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9706 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9707 if (OpInfo.Type == InlineAsm::isInput) 9708 OpInfo.CallOperand = 9709 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9710 OpInfo.ConstraintVT = VT; 9711 } 9712 } 9713 } 9714 9715 // No need to allocate a matching input constraint since the constraint it's 9716 // matching to has already been allocated. 9717 if (OpInfo.isMatchingInputConstraint()) 9718 return std::nullopt; 9719 9720 EVT ValueVT = OpInfo.ConstraintVT; 9721 if (OpInfo.ConstraintVT == MVT::Other) 9722 ValueVT = RegVT; 9723 9724 // Initialize NumRegs. 9725 unsigned NumRegs = 1; 9726 if (OpInfo.ConstraintVT != MVT::Other) 9727 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9728 9729 // If this is a constraint for a specific physical register, like {r17}, 9730 // assign it now. 9731 9732 // If this associated to a specific register, initialize iterator to correct 9733 // place. If virtual, make sure we have enough registers 9734 9735 // Initialize iterator if necessary 9736 TargetRegisterClass::iterator I = RC->begin(); 9737 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9738 9739 // Do not check for single registers. 9740 if (AssignedReg) { 9741 I = std::find(I, RC->end(), AssignedReg); 9742 if (I == RC->end()) { 9743 // RC does not contain the selected register, which indicates a 9744 // mismatch between the register and the required type/bitwidth. 9745 return {AssignedReg}; 9746 } 9747 } 9748 9749 for (; NumRegs; --NumRegs, ++I) { 9750 assert(I != RC->end() && "Ran out of registers to allocate!"); 9751 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9752 Regs.push_back(R); 9753 } 9754 9755 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9756 return std::nullopt; 9757 } 9758 9759 static unsigned 9760 findMatchingInlineAsmOperand(unsigned OperandNo, 9761 const std::vector<SDValue> &AsmNodeOperands) { 9762 // Scan until we find the definition we already emitted of this operand. 9763 unsigned CurOp = InlineAsm::Op_FirstOperand; 9764 for (; OperandNo; --OperandNo) { 9765 // Advance to the next operand. 9766 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9767 const InlineAsm::Flag F(OpFlag); 9768 assert( 9769 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9770 "Skipped past definitions?"); 9771 CurOp += F.getNumOperandRegisters() + 1; 9772 } 9773 return CurOp; 9774 } 9775 9776 namespace { 9777 9778 class ExtraFlags { 9779 unsigned Flags = 0; 9780 9781 public: 9782 explicit ExtraFlags(const CallBase &Call) { 9783 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9784 if (IA->hasSideEffects()) 9785 Flags |= InlineAsm::Extra_HasSideEffects; 9786 if (IA->isAlignStack()) 9787 Flags |= InlineAsm::Extra_IsAlignStack; 9788 if (Call.isConvergent()) 9789 Flags |= InlineAsm::Extra_IsConvergent; 9790 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9791 } 9792 9793 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9794 // Ideally, we would only check against memory constraints. However, the 9795 // meaning of an Other constraint can be target-specific and we can't easily 9796 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9797 // for Other constraints as well. 9798 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9799 OpInfo.ConstraintType == TargetLowering::C_Other) { 9800 if (OpInfo.Type == InlineAsm::isInput) 9801 Flags |= InlineAsm::Extra_MayLoad; 9802 else if (OpInfo.Type == InlineAsm::isOutput) 9803 Flags |= InlineAsm::Extra_MayStore; 9804 else if (OpInfo.Type == InlineAsm::isClobber) 9805 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9806 } 9807 } 9808 9809 unsigned get() const { return Flags; } 9810 }; 9811 9812 } // end anonymous namespace 9813 9814 static bool isFunction(SDValue Op) { 9815 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9816 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9817 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9818 9819 // In normal "call dllimport func" instruction (non-inlineasm) it force 9820 // indirect access by specifing call opcode. And usually specially print 9821 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9822 // not do in this way now. (In fact, this is similar with "Data Access" 9823 // action). So here we ignore dllimport function. 9824 if (Fn && !Fn->hasDLLImportStorageClass()) 9825 return true; 9826 } 9827 } 9828 return false; 9829 } 9830 9831 /// visitInlineAsm - Handle a call to an InlineAsm object. 9832 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9833 const BasicBlock *EHPadBB) { 9834 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9835 9836 /// ConstraintOperands - Information about all of the constraints. 9837 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9838 9839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9840 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9841 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9842 9843 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9844 // AsmDialect, MayLoad, MayStore). 9845 bool HasSideEffect = IA->hasSideEffects(); 9846 ExtraFlags ExtraInfo(Call); 9847 9848 for (auto &T : TargetConstraints) { 9849 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9850 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9851 9852 if (OpInfo.CallOperandVal) 9853 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9854 9855 if (!HasSideEffect) 9856 HasSideEffect = OpInfo.hasMemory(TLI); 9857 9858 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9859 // FIXME: Could we compute this on OpInfo rather than T? 9860 9861 // Compute the constraint code and ConstraintType to use. 9862 TLI.ComputeConstraintToUse(T, SDValue()); 9863 9864 if (T.ConstraintType == TargetLowering::C_Immediate && 9865 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9866 // We've delayed emitting a diagnostic like the "n" constraint because 9867 // inlining could cause an integer showing up. 9868 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9869 "' expects an integer constant " 9870 "expression"); 9871 9872 ExtraInfo.update(T); 9873 } 9874 9875 // We won't need to flush pending loads if this asm doesn't touch 9876 // memory and is nonvolatile. 9877 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9878 9879 bool EmitEHLabels = isa<InvokeInst>(Call); 9880 if (EmitEHLabels) { 9881 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9882 } 9883 bool IsCallBr = isa<CallBrInst>(Call); 9884 9885 if (IsCallBr || EmitEHLabels) { 9886 // If this is a callbr or invoke we need to flush pending exports since 9887 // inlineasm_br and invoke are terminators. 9888 // We need to do this before nodes are glued to the inlineasm_br node. 9889 Chain = getControlRoot(); 9890 } 9891 9892 MCSymbol *BeginLabel = nullptr; 9893 if (EmitEHLabels) { 9894 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9895 } 9896 9897 int OpNo = -1; 9898 SmallVector<StringRef> AsmStrs; 9899 IA->collectAsmStrs(AsmStrs); 9900 9901 // Second pass over the constraints: compute which constraint option to use. 9902 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9903 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9904 OpNo++; 9905 9906 // If this is an output operand with a matching input operand, look up the 9907 // matching input. If their types mismatch, e.g. one is an integer, the 9908 // other is floating point, or their sizes are different, flag it as an 9909 // error. 9910 if (OpInfo.hasMatchingInput()) { 9911 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9912 patchMatchingInput(OpInfo, Input, DAG); 9913 } 9914 9915 // Compute the constraint code and ConstraintType to use. 9916 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9917 9918 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9919 OpInfo.Type == InlineAsm::isClobber) || 9920 OpInfo.ConstraintType == TargetLowering::C_Address) 9921 continue; 9922 9923 // In Linux PIC model, there are 4 cases about value/label addressing: 9924 // 9925 // 1: Function call or Label jmp inside the module. 9926 // 2: Data access (such as global variable, static variable) inside module. 9927 // 3: Function call or Label jmp outside the module. 9928 // 4: Data access (such as global variable) outside the module. 9929 // 9930 // Due to current llvm inline asm architecture designed to not "recognize" 9931 // the asm code, there are quite troubles for us to treat mem addressing 9932 // differently for same value/adress used in different instuctions. 9933 // For example, in pic model, call a func may in plt way or direclty 9934 // pc-related, but lea/mov a function adress may use got. 9935 // 9936 // Here we try to "recognize" function call for the case 1 and case 3 in 9937 // inline asm. And try to adjust the constraint for them. 9938 // 9939 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9940 // label, so here we don't handle jmp function label now, but we need to 9941 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9942 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9943 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9944 TM.getCodeModel() != CodeModel::Large) { 9945 OpInfo.isIndirect = false; 9946 OpInfo.ConstraintType = TargetLowering::C_Address; 9947 } 9948 9949 // If this is a memory input, and if the operand is not indirect, do what we 9950 // need to provide an address for the memory input. 9951 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9952 !OpInfo.isIndirect) { 9953 assert((OpInfo.isMultipleAlternative || 9954 (OpInfo.Type == InlineAsm::isInput)) && 9955 "Can only indirectify direct input operands!"); 9956 9957 // Memory operands really want the address of the value. 9958 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9959 9960 // There is no longer a Value* corresponding to this operand. 9961 OpInfo.CallOperandVal = nullptr; 9962 9963 // It is now an indirect operand. 9964 OpInfo.isIndirect = true; 9965 } 9966 9967 } 9968 9969 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9970 std::vector<SDValue> AsmNodeOperands; 9971 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9972 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9973 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9974 9975 // If we have a !srcloc metadata node associated with it, we want to attach 9976 // this to the ultimately generated inline asm machineinstr. To do this, we 9977 // pass in the third operand as this (potentially null) inline asm MDNode. 9978 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9979 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9980 9981 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9982 // bits as operand 3. 9983 AsmNodeOperands.push_back(DAG.getTargetConstant( 9984 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9985 9986 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9987 // this, assign virtual and physical registers for inputs and otput. 9988 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9989 // Assign Registers. 9990 SDISelAsmOperandInfo &RefOpInfo = 9991 OpInfo.isMatchingInputConstraint() 9992 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9993 : OpInfo; 9994 const auto RegError = 9995 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9996 if (RegError) { 9997 const MachineFunction &MF = DAG.getMachineFunction(); 9998 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9999 const char *RegName = TRI.getName(*RegError); 10000 emitInlineAsmError(Call, "register '" + Twine(RegName) + 10001 "' allocated for constraint '" + 10002 Twine(OpInfo.ConstraintCode) + 10003 "' does not match required type"); 10004 return; 10005 } 10006 10007 auto DetectWriteToReservedRegister = [&]() { 10008 const MachineFunction &MF = DAG.getMachineFunction(); 10009 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10010 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 10011 if (Register::isPhysicalRegister(Reg) && 10012 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 10013 const char *RegName = TRI.getName(Reg); 10014 emitInlineAsmError(Call, "write to reserved register '" + 10015 Twine(RegName) + "'"); 10016 return true; 10017 } 10018 } 10019 return false; 10020 }; 10021 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 10022 (OpInfo.Type == InlineAsm::isInput && 10023 !OpInfo.isMatchingInputConstraint())) && 10024 "Only address as input operand is allowed."); 10025 10026 switch (OpInfo.Type) { 10027 case InlineAsm::isOutput: 10028 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10029 const InlineAsm::ConstraintCode ConstraintID = 10030 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10031 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10032 "Failed to convert memory constraint code to constraint id."); 10033 10034 // Add information to the INLINEASM node to know about this output. 10035 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 10036 OpFlags.setMemConstraint(ConstraintID); 10037 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 10038 MVT::i32)); 10039 AsmNodeOperands.push_back(OpInfo.CallOperand); 10040 } else { 10041 // Otherwise, this outputs to a register (directly for C_Register / 10042 // C_RegisterClass, and a target-defined fashion for 10043 // C_Immediate/C_Other). Find a register that we can use. 10044 if (OpInfo.AssignedRegs.Regs.empty()) { 10045 emitInlineAsmError( 10046 Call, "couldn't allocate output register for constraint '" + 10047 Twine(OpInfo.ConstraintCode) + "'"); 10048 return; 10049 } 10050 10051 if (DetectWriteToReservedRegister()) 10052 return; 10053 10054 // Add information to the INLINEASM node to know that this register is 10055 // set. 10056 OpInfo.AssignedRegs.AddInlineAsmOperands( 10057 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 10058 : InlineAsm::Kind::RegDef, 10059 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 10060 } 10061 break; 10062 10063 case InlineAsm::isInput: 10064 case InlineAsm::isLabel: { 10065 SDValue InOperandVal = OpInfo.CallOperand; 10066 10067 if (OpInfo.isMatchingInputConstraint()) { 10068 // If this is required to match an output register we have already set, 10069 // just use its register. 10070 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 10071 AsmNodeOperands); 10072 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 10073 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 10074 if (OpInfo.isIndirect) { 10075 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 10076 emitInlineAsmError(Call, "inline asm not supported yet: " 10077 "don't know how to handle tied " 10078 "indirect register inputs"); 10079 return; 10080 } 10081 10082 SmallVector<Register, 4> Regs; 10083 MachineFunction &MF = DAG.getMachineFunction(); 10084 MachineRegisterInfo &MRI = MF.getRegInfo(); 10085 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10086 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 10087 Register TiedReg = R->getReg(); 10088 MVT RegVT = R->getSimpleValueType(0); 10089 const TargetRegisterClass *RC = 10090 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 10091 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 10092 : TRI.getMinimalPhysRegClass(TiedReg); 10093 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 10094 Regs.push_back(MRI.createVirtualRegister(RC)); 10095 10096 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 10097 10098 SDLoc dl = getCurSDLoc(); 10099 // Use the produced MatchedRegs object to 10100 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 10101 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 10102 OpInfo.getMatchedOperand(), dl, DAG, 10103 AsmNodeOperands); 10104 break; 10105 } 10106 10107 assert(Flag.isMemKind() && "Unknown matching constraint!"); 10108 assert(Flag.getNumOperandRegisters() == 1 && 10109 "Unexpected number of operands"); 10110 // Add information to the INLINEASM node to know about this input. 10111 // See InlineAsm.h isUseOperandTiedToDef. 10112 Flag.clearMemConstraint(); 10113 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 10114 AsmNodeOperands.push_back(DAG.getTargetConstant( 10115 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10116 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 10117 break; 10118 } 10119 10120 // Treat indirect 'X' constraint as memory. 10121 if (OpInfo.ConstraintType == TargetLowering::C_Other && 10122 OpInfo.isIndirect) 10123 OpInfo.ConstraintType = TargetLowering::C_Memory; 10124 10125 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 10126 OpInfo.ConstraintType == TargetLowering::C_Other) { 10127 std::vector<SDValue> Ops; 10128 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 10129 Ops, DAG); 10130 if (Ops.empty()) { 10131 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 10132 if (isa<ConstantSDNode>(InOperandVal)) { 10133 emitInlineAsmError(Call, "value out of range for constraint '" + 10134 Twine(OpInfo.ConstraintCode) + "'"); 10135 return; 10136 } 10137 10138 emitInlineAsmError(Call, 10139 "invalid operand for inline asm constraint '" + 10140 Twine(OpInfo.ConstraintCode) + "'"); 10141 return; 10142 } 10143 10144 // Add information to the INLINEASM node to know about this input. 10145 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 10146 AsmNodeOperands.push_back(DAG.getTargetConstant( 10147 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10148 llvm::append_range(AsmNodeOperands, Ops); 10149 break; 10150 } 10151 10152 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10153 assert((OpInfo.isIndirect || 10154 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10155 "Operand must be indirect to be a mem!"); 10156 assert(InOperandVal.getValueType() == 10157 TLI.getPointerTy(DAG.getDataLayout()) && 10158 "Memory operands expect pointer values"); 10159 10160 const InlineAsm::ConstraintCode ConstraintID = 10161 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10162 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10163 "Failed to convert memory constraint code to constraint id."); 10164 10165 // Add information to the INLINEASM node to know about this input. 10166 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10167 ResOpType.setMemConstraint(ConstraintID); 10168 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10169 getCurSDLoc(), 10170 MVT::i32)); 10171 AsmNodeOperands.push_back(InOperandVal); 10172 break; 10173 } 10174 10175 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10176 const InlineAsm::ConstraintCode ConstraintID = 10177 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10178 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10179 "Failed to convert memory constraint code to constraint id."); 10180 10181 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10182 10183 SDValue AsmOp = InOperandVal; 10184 if (isFunction(InOperandVal)) { 10185 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10186 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10187 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10188 InOperandVal.getValueType(), 10189 GA->getOffset()); 10190 } 10191 10192 // Add information to the INLINEASM node to know about this input. 10193 ResOpType.setMemConstraint(ConstraintID); 10194 10195 AsmNodeOperands.push_back( 10196 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10197 10198 AsmNodeOperands.push_back(AsmOp); 10199 break; 10200 } 10201 10202 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10203 OpInfo.ConstraintType != TargetLowering::C_Register) { 10204 emitInlineAsmError(Call, "unknown asm constraint '" + 10205 Twine(OpInfo.ConstraintCode) + "'"); 10206 return; 10207 } 10208 10209 // TODO: Support this. 10210 if (OpInfo.isIndirect) { 10211 emitInlineAsmError( 10212 Call, "Don't know how to handle indirect register inputs yet " 10213 "for constraint '" + 10214 Twine(OpInfo.ConstraintCode) + "'"); 10215 return; 10216 } 10217 10218 // Copy the input into the appropriate registers. 10219 if (OpInfo.AssignedRegs.Regs.empty()) { 10220 emitInlineAsmError(Call, 10221 "couldn't allocate input reg for constraint '" + 10222 Twine(OpInfo.ConstraintCode) + "'"); 10223 return; 10224 } 10225 10226 if (DetectWriteToReservedRegister()) 10227 return; 10228 10229 SDLoc dl = getCurSDLoc(); 10230 10231 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10232 &Call); 10233 10234 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10235 0, dl, DAG, AsmNodeOperands); 10236 break; 10237 } 10238 case InlineAsm::isClobber: 10239 // Add the clobbered value to the operand list, so that the register 10240 // allocator is aware that the physreg got clobbered. 10241 if (!OpInfo.AssignedRegs.Regs.empty()) 10242 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10243 false, 0, getCurSDLoc(), DAG, 10244 AsmNodeOperands); 10245 break; 10246 } 10247 } 10248 10249 // Finish up input operands. Set the input chain and add the flag last. 10250 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10251 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10252 10253 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10254 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10255 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10256 Glue = Chain.getValue(1); 10257 10258 // Do additional work to generate outputs. 10259 10260 SmallVector<EVT, 1> ResultVTs; 10261 SmallVector<SDValue, 1> ResultValues; 10262 SmallVector<SDValue, 8> OutChains; 10263 10264 llvm::Type *CallResultType = Call.getType(); 10265 ArrayRef<Type *> ResultTypes; 10266 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10267 ResultTypes = StructResult->elements(); 10268 else if (!CallResultType->isVoidTy()) 10269 ResultTypes = ArrayRef(CallResultType); 10270 10271 auto CurResultType = ResultTypes.begin(); 10272 auto handleRegAssign = [&](SDValue V) { 10273 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10274 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10275 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10276 ++CurResultType; 10277 // If the type of the inline asm call site return value is different but has 10278 // same size as the type of the asm output bitcast it. One example of this 10279 // is for vectors with different width / number of elements. This can 10280 // happen for register classes that can contain multiple different value 10281 // types. The preg or vreg allocated may not have the same VT as was 10282 // expected. 10283 // 10284 // This can also happen for a return value that disagrees with the register 10285 // class it is put in, eg. a double in a general-purpose register on a 10286 // 32-bit machine. 10287 if (ResultVT != V.getValueType() && 10288 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10289 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10290 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10291 V.getValueType().isInteger()) { 10292 // If a result value was tied to an input value, the computed result 10293 // may have a wider width than the expected result. Extract the 10294 // relevant portion. 10295 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10296 } 10297 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10298 ResultVTs.push_back(ResultVT); 10299 ResultValues.push_back(V); 10300 }; 10301 10302 // Deal with output operands. 10303 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10304 if (OpInfo.Type == InlineAsm::isOutput) { 10305 SDValue Val; 10306 // Skip trivial output operands. 10307 if (OpInfo.AssignedRegs.Regs.empty()) 10308 continue; 10309 10310 switch (OpInfo.ConstraintType) { 10311 case TargetLowering::C_Register: 10312 case TargetLowering::C_RegisterClass: 10313 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10314 Chain, &Glue, &Call); 10315 break; 10316 case TargetLowering::C_Immediate: 10317 case TargetLowering::C_Other: 10318 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10319 OpInfo, DAG); 10320 break; 10321 case TargetLowering::C_Memory: 10322 break; // Already handled. 10323 case TargetLowering::C_Address: 10324 break; // Silence warning. 10325 case TargetLowering::C_Unknown: 10326 assert(false && "Unexpected unknown constraint"); 10327 } 10328 10329 // Indirect output manifest as stores. Record output chains. 10330 if (OpInfo.isIndirect) { 10331 const Value *Ptr = OpInfo.CallOperandVal; 10332 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10333 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10334 MachinePointerInfo(Ptr)); 10335 OutChains.push_back(Store); 10336 } else { 10337 // generate CopyFromRegs to associated registers. 10338 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10339 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10340 for (const SDValue &V : Val->op_values()) 10341 handleRegAssign(V); 10342 } else 10343 handleRegAssign(Val); 10344 } 10345 } 10346 } 10347 10348 // Set results. 10349 if (!ResultValues.empty()) { 10350 assert(CurResultType == ResultTypes.end() && 10351 "Mismatch in number of ResultTypes"); 10352 assert(ResultValues.size() == ResultTypes.size() && 10353 "Mismatch in number of output operands in asm result"); 10354 10355 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10356 DAG.getVTList(ResultVTs), ResultValues); 10357 setValue(&Call, V); 10358 } 10359 10360 // Collect store chains. 10361 if (!OutChains.empty()) 10362 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10363 10364 if (EmitEHLabels) { 10365 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10366 } 10367 10368 // Only Update Root if inline assembly has a memory effect. 10369 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10370 EmitEHLabels) 10371 DAG.setRoot(Chain); 10372 } 10373 10374 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10375 const Twine &Message) { 10376 LLVMContext &Ctx = *DAG.getContext(); 10377 Ctx.emitError(&Call, Message); 10378 10379 // Make sure we leave the DAG in a valid state 10380 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10381 SmallVector<EVT, 1> ValueVTs; 10382 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10383 10384 if (ValueVTs.empty()) 10385 return; 10386 10387 SmallVector<SDValue, 1> Ops; 10388 for (const EVT &VT : ValueVTs) 10389 Ops.push_back(DAG.getUNDEF(VT)); 10390 10391 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10392 } 10393 10394 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10395 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10396 MVT::Other, getRoot(), 10397 getValue(I.getArgOperand(0)), 10398 DAG.getSrcValue(I.getArgOperand(0)))); 10399 } 10400 10401 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10403 const DataLayout &DL = DAG.getDataLayout(); 10404 SDValue V = DAG.getVAArg( 10405 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10406 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10407 DL.getABITypeAlign(I.getType()).value()); 10408 DAG.setRoot(V.getValue(1)); 10409 10410 if (I.getType()->isPointerTy()) 10411 V = DAG.getPtrExtOrTrunc( 10412 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10413 setValue(&I, V); 10414 } 10415 10416 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10417 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10418 MVT::Other, getRoot(), 10419 getValue(I.getArgOperand(0)), 10420 DAG.getSrcValue(I.getArgOperand(0)))); 10421 } 10422 10423 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10424 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10425 MVT::Other, getRoot(), 10426 getValue(I.getArgOperand(0)), 10427 getValue(I.getArgOperand(1)), 10428 DAG.getSrcValue(I.getArgOperand(0)), 10429 DAG.getSrcValue(I.getArgOperand(1)))); 10430 } 10431 10432 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10433 const Instruction &I, 10434 SDValue Op) { 10435 std::optional<ConstantRange> CR = getRange(I); 10436 10437 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10438 return Op; 10439 10440 APInt Lo = CR->getUnsignedMin(); 10441 if (!Lo.isMinValue()) 10442 return Op; 10443 10444 APInt Hi = CR->getUnsignedMax(); 10445 unsigned Bits = std::max(Hi.getActiveBits(), 10446 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10447 10448 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10449 10450 SDLoc SL = getCurSDLoc(); 10451 10452 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10453 DAG.getValueType(SmallVT)); 10454 unsigned NumVals = Op.getNode()->getNumValues(); 10455 if (NumVals == 1) 10456 return ZExt; 10457 10458 SmallVector<SDValue, 4> Ops; 10459 10460 Ops.push_back(ZExt); 10461 for (unsigned I = 1; I != NumVals; ++I) 10462 Ops.push_back(Op.getValue(I)); 10463 10464 return DAG.getMergeValues(Ops, SL); 10465 } 10466 10467 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10468 /// the call being lowered. 10469 /// 10470 /// This is a helper for lowering intrinsics that follow a target calling 10471 /// convention or require stack pointer adjustment. Only a subset of the 10472 /// intrinsic's operands need to participate in the calling convention. 10473 void SelectionDAGBuilder::populateCallLoweringInfo( 10474 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10475 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10476 AttributeSet RetAttrs, bool IsPatchPoint) { 10477 TargetLowering::ArgListTy Args; 10478 Args.reserve(NumArgs); 10479 10480 // Populate the argument list. 10481 // Attributes for args start at offset 1, after the return attribute. 10482 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10483 ArgI != ArgE; ++ArgI) { 10484 const Value *V = Call->getOperand(ArgI); 10485 10486 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10487 10488 TargetLowering::ArgListEntry Entry; 10489 Entry.Node = getValue(V); 10490 Entry.Ty = V->getType(); 10491 Entry.setAttributes(Call, ArgI); 10492 Args.push_back(Entry); 10493 } 10494 10495 CLI.setDebugLoc(getCurSDLoc()) 10496 .setChain(getRoot()) 10497 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10498 RetAttrs) 10499 .setDiscardResult(Call->use_empty()) 10500 .setIsPatchPoint(IsPatchPoint) 10501 .setIsPreallocated( 10502 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10503 } 10504 10505 /// Add a stack map intrinsic call's live variable operands to a stackmap 10506 /// or patchpoint target node's operand list. 10507 /// 10508 /// Constants are converted to TargetConstants purely as an optimization to 10509 /// avoid constant materialization and register allocation. 10510 /// 10511 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10512 /// generate addess computation nodes, and so FinalizeISel can convert the 10513 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10514 /// address materialization and register allocation, but may also be required 10515 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10516 /// alloca in the entry block, then the runtime may assume that the alloca's 10517 /// StackMap location can be read immediately after compilation and that the 10518 /// location is valid at any point during execution (this is similar to the 10519 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10520 /// only available in a register, then the runtime would need to trap when 10521 /// execution reaches the StackMap in order to read the alloca's location. 10522 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10523 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10524 SelectionDAGBuilder &Builder) { 10525 SelectionDAG &DAG = Builder.DAG; 10526 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10527 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10528 10529 // Things on the stack are pointer-typed, meaning that they are already 10530 // legal and can be emitted directly to target nodes. 10531 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10532 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10533 } else { 10534 // Otherwise emit a target independent node to be legalised. 10535 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10536 } 10537 } 10538 } 10539 10540 /// Lower llvm.experimental.stackmap. 10541 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10542 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10543 // [live variables...]) 10544 10545 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10546 10547 SDValue Chain, InGlue, Callee; 10548 SmallVector<SDValue, 32> Ops; 10549 10550 SDLoc DL = getCurSDLoc(); 10551 Callee = getValue(CI.getCalledOperand()); 10552 10553 // The stackmap intrinsic only records the live variables (the arguments 10554 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10555 // intrinsic, this won't be lowered to a function call. This means we don't 10556 // have to worry about calling conventions and target specific lowering code. 10557 // Instead we perform the call lowering right here. 10558 // 10559 // chain, flag = CALLSEQ_START(chain, 0, 0) 10560 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10561 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10562 // 10563 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10564 InGlue = Chain.getValue(1); 10565 10566 // Add the STACKMAP operands, starting with DAG house-keeping. 10567 Ops.push_back(Chain); 10568 Ops.push_back(InGlue); 10569 10570 // Add the <id>, <numShadowBytes> operands. 10571 // 10572 // These do not require legalisation, and can be emitted directly to target 10573 // constant nodes. 10574 SDValue ID = getValue(CI.getArgOperand(0)); 10575 assert(ID.getValueType() == MVT::i64); 10576 SDValue IDConst = 10577 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10578 Ops.push_back(IDConst); 10579 10580 SDValue Shad = getValue(CI.getArgOperand(1)); 10581 assert(Shad.getValueType() == MVT::i32); 10582 SDValue ShadConst = 10583 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10584 Ops.push_back(ShadConst); 10585 10586 // Add the live variables. 10587 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10588 10589 // Create the STACKMAP node. 10590 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10591 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10592 InGlue = Chain.getValue(1); 10593 10594 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10595 10596 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10597 10598 // Set the root to the target-lowered call chain. 10599 DAG.setRoot(Chain); 10600 10601 // Inform the Frame Information that we have a stackmap in this function. 10602 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10603 } 10604 10605 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10606 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10607 const BasicBlock *EHPadBB) { 10608 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10609 // i32 <numBytes>, 10610 // i8* <target>, 10611 // i32 <numArgs>, 10612 // [Args...], 10613 // [live variables...]) 10614 10615 CallingConv::ID CC = CB.getCallingConv(); 10616 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10617 bool HasDef = !CB.getType()->isVoidTy(); 10618 SDLoc dl = getCurSDLoc(); 10619 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10620 10621 // Handle immediate and symbolic callees. 10622 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10623 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10624 /*isTarget=*/true); 10625 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10626 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10627 SDLoc(SymbolicCallee), 10628 SymbolicCallee->getValueType(0)); 10629 10630 // Get the real number of arguments participating in the call <numArgs> 10631 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10632 unsigned NumArgs = NArgVal->getAsZExtVal(); 10633 10634 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10635 // Intrinsics include all meta-operands up to but not including CC. 10636 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10637 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10638 "Not enough arguments provided to the patchpoint intrinsic"); 10639 10640 // For AnyRegCC the arguments are lowered later on manually. 10641 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10642 Type *ReturnTy = 10643 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10644 10645 TargetLowering::CallLoweringInfo CLI(DAG); 10646 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10647 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10648 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10649 10650 SDNode *CallEnd = Result.second.getNode(); 10651 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10652 CallEnd = CallEnd->getOperand(0).getNode(); 10653 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10654 CallEnd = CallEnd->getOperand(0).getNode(); 10655 10656 /// Get a call instruction from the call sequence chain. 10657 /// Tail calls are not allowed. 10658 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10659 "Expected a callseq node."); 10660 SDNode *Call = CallEnd->getOperand(0).getNode(); 10661 bool HasGlue = Call->getGluedNode(); 10662 10663 // Replace the target specific call node with the patchable intrinsic. 10664 SmallVector<SDValue, 8> Ops; 10665 10666 // Push the chain. 10667 Ops.push_back(*(Call->op_begin())); 10668 10669 // Optionally, push the glue (if any). 10670 if (HasGlue) 10671 Ops.push_back(*(Call->op_end() - 1)); 10672 10673 // Push the register mask info. 10674 if (HasGlue) 10675 Ops.push_back(*(Call->op_end() - 2)); 10676 else 10677 Ops.push_back(*(Call->op_end() - 1)); 10678 10679 // Add the <id> and <numBytes> constants. 10680 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10681 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10682 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10683 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10684 10685 // Add the callee. 10686 Ops.push_back(Callee); 10687 10688 // Adjust <numArgs> to account for any arguments that have been passed on the 10689 // stack instead. 10690 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10691 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10692 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10693 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10694 10695 // Add the calling convention 10696 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10697 10698 // Add the arguments we omitted previously. The register allocator should 10699 // place these in any free register. 10700 if (IsAnyRegCC) 10701 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10702 Ops.push_back(getValue(CB.getArgOperand(i))); 10703 10704 // Push the arguments from the call instruction. 10705 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10706 Ops.append(Call->op_begin() + 2, e); 10707 10708 // Push live variables for the stack map. 10709 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10710 10711 SDVTList NodeTys; 10712 if (IsAnyRegCC && HasDef) { 10713 // Create the return types based on the intrinsic definition 10714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10715 SmallVector<EVT, 3> ValueVTs; 10716 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10717 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10718 10719 // There is always a chain and a glue type at the end 10720 ValueVTs.push_back(MVT::Other); 10721 ValueVTs.push_back(MVT::Glue); 10722 NodeTys = DAG.getVTList(ValueVTs); 10723 } else 10724 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10725 10726 // Replace the target specific call node with a PATCHPOINT node. 10727 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10728 10729 // Update the NodeMap. 10730 if (HasDef) { 10731 if (IsAnyRegCC) 10732 setValue(&CB, SDValue(PPV.getNode(), 0)); 10733 else 10734 setValue(&CB, Result.first); 10735 } 10736 10737 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10738 // call sequence. Furthermore the location of the chain and glue can change 10739 // when the AnyReg calling convention is used and the intrinsic returns a 10740 // value. 10741 if (IsAnyRegCC && HasDef) { 10742 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10743 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10744 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10745 } else 10746 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10747 DAG.DeleteNode(Call); 10748 10749 // Inform the Frame Information that we have a patchpoint in this function. 10750 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10751 } 10752 10753 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10754 unsigned Intrinsic) { 10755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10756 SDValue Op1 = getValue(I.getArgOperand(0)); 10757 SDValue Op2; 10758 if (I.arg_size() > 1) 10759 Op2 = getValue(I.getArgOperand(1)); 10760 SDLoc dl = getCurSDLoc(); 10761 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10762 SDValue Res; 10763 SDNodeFlags SDFlags; 10764 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10765 SDFlags.copyFMF(*FPMO); 10766 10767 switch (Intrinsic) { 10768 case Intrinsic::vector_reduce_fadd: 10769 if (SDFlags.hasAllowReassociation()) 10770 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10771 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10772 SDFlags); 10773 else 10774 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10775 break; 10776 case Intrinsic::vector_reduce_fmul: 10777 if (SDFlags.hasAllowReassociation()) 10778 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10779 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10780 SDFlags); 10781 else 10782 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10783 break; 10784 case Intrinsic::vector_reduce_add: 10785 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10786 break; 10787 case Intrinsic::vector_reduce_mul: 10788 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10789 break; 10790 case Intrinsic::vector_reduce_and: 10791 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10792 break; 10793 case Intrinsic::vector_reduce_or: 10794 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10795 break; 10796 case Intrinsic::vector_reduce_xor: 10797 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10798 break; 10799 case Intrinsic::vector_reduce_smax: 10800 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10801 break; 10802 case Intrinsic::vector_reduce_smin: 10803 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10804 break; 10805 case Intrinsic::vector_reduce_umax: 10806 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10807 break; 10808 case Intrinsic::vector_reduce_umin: 10809 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10810 break; 10811 case Intrinsic::vector_reduce_fmax: 10812 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10813 break; 10814 case Intrinsic::vector_reduce_fmin: 10815 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10816 break; 10817 case Intrinsic::vector_reduce_fmaximum: 10818 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10819 break; 10820 case Intrinsic::vector_reduce_fminimum: 10821 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10822 break; 10823 default: 10824 llvm_unreachable("Unhandled vector reduce intrinsic"); 10825 } 10826 setValue(&I, Res); 10827 } 10828 10829 /// Returns an AttributeList representing the attributes applied to the return 10830 /// value of the given call. 10831 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10832 SmallVector<Attribute::AttrKind, 2> Attrs; 10833 if (CLI.RetSExt) 10834 Attrs.push_back(Attribute::SExt); 10835 if (CLI.RetZExt) 10836 Attrs.push_back(Attribute::ZExt); 10837 if (CLI.IsInReg) 10838 Attrs.push_back(Attribute::InReg); 10839 10840 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10841 Attrs); 10842 } 10843 10844 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10845 /// implementation, which just calls LowerCall. 10846 /// FIXME: When all targets are 10847 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10848 std::pair<SDValue, SDValue> 10849 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10850 // Handle the incoming return values from the call. 10851 CLI.Ins.clear(); 10852 Type *OrigRetTy = CLI.RetTy; 10853 SmallVector<EVT, 4> RetTys; 10854 SmallVector<TypeSize, 4> Offsets; 10855 auto &DL = CLI.DAG.getDataLayout(); 10856 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10857 10858 if (CLI.IsPostTypeLegalization) { 10859 // If we are lowering a libcall after legalization, split the return type. 10860 SmallVector<EVT, 4> OldRetTys; 10861 SmallVector<TypeSize, 4> OldOffsets; 10862 RetTys.swap(OldRetTys); 10863 Offsets.swap(OldOffsets); 10864 10865 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10866 EVT RetVT = OldRetTys[i]; 10867 uint64_t Offset = OldOffsets[i]; 10868 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10869 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10870 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10871 RetTys.append(NumRegs, RegisterVT); 10872 for (unsigned j = 0; j != NumRegs; ++j) 10873 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10874 } 10875 } 10876 10877 SmallVector<ISD::OutputArg, 4> Outs; 10878 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10879 10880 bool CanLowerReturn = 10881 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10882 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10883 10884 SDValue DemoteStackSlot; 10885 int DemoteStackIdx = -100; 10886 if (!CanLowerReturn) { 10887 // FIXME: equivalent assert? 10888 // assert(!CS.hasInAllocaArgument() && 10889 // "sret demotion is incompatible with inalloca"); 10890 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10891 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10892 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10893 DemoteStackIdx = 10894 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10895 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10896 DL.getAllocaAddrSpace()); 10897 10898 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10899 ArgListEntry Entry; 10900 Entry.Node = DemoteStackSlot; 10901 Entry.Ty = StackSlotPtrType; 10902 Entry.IsSExt = false; 10903 Entry.IsZExt = false; 10904 Entry.IsInReg = false; 10905 Entry.IsSRet = true; 10906 Entry.IsNest = false; 10907 Entry.IsByVal = false; 10908 Entry.IsByRef = false; 10909 Entry.IsReturned = false; 10910 Entry.IsSwiftSelf = false; 10911 Entry.IsSwiftAsync = false; 10912 Entry.IsSwiftError = false; 10913 Entry.IsCFGuardTarget = false; 10914 Entry.Alignment = Alignment; 10915 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10916 CLI.NumFixedArgs += 1; 10917 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10918 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10919 10920 // sret demotion isn't compatible with tail-calls, since the sret argument 10921 // points into the callers stack frame. 10922 CLI.IsTailCall = false; 10923 } else { 10924 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10925 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10926 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10927 ISD::ArgFlagsTy Flags; 10928 if (NeedsRegBlock) { 10929 Flags.setInConsecutiveRegs(); 10930 if (I == RetTys.size() - 1) 10931 Flags.setInConsecutiveRegsLast(); 10932 } 10933 EVT VT = RetTys[I]; 10934 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10935 CLI.CallConv, VT); 10936 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10937 CLI.CallConv, VT); 10938 for (unsigned i = 0; i != NumRegs; ++i) { 10939 ISD::InputArg MyFlags; 10940 MyFlags.Flags = Flags; 10941 MyFlags.VT = RegisterVT; 10942 MyFlags.ArgVT = VT; 10943 MyFlags.Used = CLI.IsReturnValueUsed; 10944 if (CLI.RetTy->isPointerTy()) { 10945 MyFlags.Flags.setPointer(); 10946 MyFlags.Flags.setPointerAddrSpace( 10947 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10948 } 10949 if (CLI.RetSExt) 10950 MyFlags.Flags.setSExt(); 10951 if (CLI.RetZExt) 10952 MyFlags.Flags.setZExt(); 10953 if (CLI.IsInReg) 10954 MyFlags.Flags.setInReg(); 10955 CLI.Ins.push_back(MyFlags); 10956 } 10957 } 10958 } 10959 10960 // We push in swifterror return as the last element of CLI.Ins. 10961 ArgListTy &Args = CLI.getArgs(); 10962 if (supportSwiftError()) { 10963 for (const ArgListEntry &Arg : Args) { 10964 if (Arg.IsSwiftError) { 10965 ISD::InputArg MyFlags; 10966 MyFlags.VT = getPointerTy(DL); 10967 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10968 MyFlags.Flags.setSwiftError(); 10969 CLI.Ins.push_back(MyFlags); 10970 } 10971 } 10972 } 10973 10974 // Handle all of the outgoing arguments. 10975 CLI.Outs.clear(); 10976 CLI.OutVals.clear(); 10977 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10978 SmallVector<EVT, 4> ValueVTs; 10979 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10980 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10981 Type *FinalType = Args[i].Ty; 10982 if (Args[i].IsByVal) 10983 FinalType = Args[i].IndirectType; 10984 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10985 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10986 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10987 ++Value) { 10988 EVT VT = ValueVTs[Value]; 10989 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10990 SDValue Op = SDValue(Args[i].Node.getNode(), 10991 Args[i].Node.getResNo() + Value); 10992 ISD::ArgFlagsTy Flags; 10993 10994 // Certain targets (such as MIPS), may have a different ABI alignment 10995 // for a type depending on the context. Give the target a chance to 10996 // specify the alignment it wants. 10997 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10998 Flags.setOrigAlign(OriginalAlignment); 10999 11000 if (Args[i].Ty->isPointerTy()) { 11001 Flags.setPointer(); 11002 Flags.setPointerAddrSpace( 11003 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 11004 } 11005 if (Args[i].IsZExt) 11006 Flags.setZExt(); 11007 if (Args[i].IsSExt) 11008 Flags.setSExt(); 11009 if (Args[i].IsNoExt) 11010 Flags.setNoExt(); 11011 if (Args[i].IsInReg) { 11012 // If we are using vectorcall calling convention, a structure that is 11013 // passed InReg - is surely an HVA 11014 if (CLI.CallConv == CallingConv::X86_VectorCall && 11015 isa<StructType>(FinalType)) { 11016 // The first value of a structure is marked 11017 if (0 == Value) 11018 Flags.setHvaStart(); 11019 Flags.setHva(); 11020 } 11021 // Set InReg Flag 11022 Flags.setInReg(); 11023 } 11024 if (Args[i].IsSRet) 11025 Flags.setSRet(); 11026 if (Args[i].IsSwiftSelf) 11027 Flags.setSwiftSelf(); 11028 if (Args[i].IsSwiftAsync) 11029 Flags.setSwiftAsync(); 11030 if (Args[i].IsSwiftError) 11031 Flags.setSwiftError(); 11032 if (Args[i].IsCFGuardTarget) 11033 Flags.setCFGuardTarget(); 11034 if (Args[i].IsByVal) 11035 Flags.setByVal(); 11036 if (Args[i].IsByRef) 11037 Flags.setByRef(); 11038 if (Args[i].IsPreallocated) { 11039 Flags.setPreallocated(); 11040 // Set the byval flag for CCAssignFn callbacks that don't know about 11041 // preallocated. This way we can know how many bytes we should've 11042 // allocated and how many bytes a callee cleanup function will pop. If 11043 // we port preallocated to more targets, we'll have to add custom 11044 // preallocated handling in the various CC lowering callbacks. 11045 Flags.setByVal(); 11046 } 11047 if (Args[i].IsInAlloca) { 11048 Flags.setInAlloca(); 11049 // Set the byval flag for CCAssignFn callbacks that don't know about 11050 // inalloca. This way we can know how many bytes we should've allocated 11051 // and how many bytes a callee cleanup function will pop. If we port 11052 // inalloca to more targets, we'll have to add custom inalloca handling 11053 // in the various CC lowering callbacks. 11054 Flags.setByVal(); 11055 } 11056 Align MemAlign; 11057 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 11058 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 11059 Flags.setByValSize(FrameSize); 11060 11061 // info is not there but there are cases it cannot get right. 11062 if (auto MA = Args[i].Alignment) 11063 MemAlign = *MA; 11064 else 11065 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 11066 } else if (auto MA = Args[i].Alignment) { 11067 MemAlign = *MA; 11068 } else { 11069 MemAlign = OriginalAlignment; 11070 } 11071 Flags.setMemAlign(MemAlign); 11072 if (Args[i].IsNest) 11073 Flags.setNest(); 11074 if (NeedsRegBlock) 11075 Flags.setInConsecutiveRegs(); 11076 11077 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11078 CLI.CallConv, VT); 11079 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11080 CLI.CallConv, VT); 11081 SmallVector<SDValue, 4> Parts(NumParts); 11082 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 11083 11084 if (Args[i].IsSExt) 11085 ExtendKind = ISD::SIGN_EXTEND; 11086 else if (Args[i].IsZExt) 11087 ExtendKind = ISD::ZERO_EXTEND; 11088 11089 // Conservatively only handle 'returned' on non-vectors that can be lowered, 11090 // for now. 11091 if (Args[i].IsReturned && !Op.getValueType().isVector() && 11092 CanLowerReturn) { 11093 assert((CLI.RetTy == Args[i].Ty || 11094 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 11095 CLI.RetTy->getPointerAddressSpace() == 11096 Args[i].Ty->getPointerAddressSpace())) && 11097 RetTys.size() == NumValues && "unexpected use of 'returned'"); 11098 // Before passing 'returned' to the target lowering code, ensure that 11099 // either the register MVT and the actual EVT are the same size or that 11100 // the return value and argument are extended in the same way; in these 11101 // cases it's safe to pass the argument register value unchanged as the 11102 // return register value (although it's at the target's option whether 11103 // to do so) 11104 // TODO: allow code generation to take advantage of partially preserved 11105 // registers rather than clobbering the entire register when the 11106 // parameter extension method is not compatible with the return 11107 // extension method 11108 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 11109 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 11110 CLI.RetZExt == Args[i].IsZExt)) 11111 Flags.setReturned(); 11112 } 11113 11114 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 11115 CLI.CallConv, ExtendKind); 11116 11117 for (unsigned j = 0; j != NumParts; ++j) { 11118 // if it isn't first piece, alignment must be 1 11119 // For scalable vectors the scalable part is currently handled 11120 // by individual targets, so we just use the known minimum size here. 11121 ISD::OutputArg MyFlags( 11122 Flags, Parts[j].getValueType().getSimpleVT(), VT, 11123 i < CLI.NumFixedArgs, i, 11124 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 11125 if (NumParts > 1 && j == 0) 11126 MyFlags.Flags.setSplit(); 11127 else if (j != 0) { 11128 MyFlags.Flags.setOrigAlign(Align(1)); 11129 if (j == NumParts - 1) 11130 MyFlags.Flags.setSplitEnd(); 11131 } 11132 11133 CLI.Outs.push_back(MyFlags); 11134 CLI.OutVals.push_back(Parts[j]); 11135 } 11136 11137 if (NeedsRegBlock && Value == NumValues - 1) 11138 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 11139 } 11140 } 11141 11142 SmallVector<SDValue, 4> InVals; 11143 CLI.Chain = LowerCall(CLI, InVals); 11144 11145 // Update CLI.InVals to use outside of this function. 11146 CLI.InVals = InVals; 11147 11148 // Verify that the target's LowerCall behaved as expected. 11149 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11150 "LowerCall didn't return a valid chain!"); 11151 assert((!CLI.IsTailCall || InVals.empty()) && 11152 "LowerCall emitted a return value for a tail call!"); 11153 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11154 "LowerCall didn't emit the correct number of values!"); 11155 11156 // For a tail call, the return value is merely live-out and there aren't 11157 // any nodes in the DAG representing it. Return a special value to 11158 // indicate that a tail call has been emitted and no more Instructions 11159 // should be processed in the current block. 11160 if (CLI.IsTailCall) { 11161 CLI.DAG.setRoot(CLI.Chain); 11162 return std::make_pair(SDValue(), SDValue()); 11163 } 11164 11165 #ifndef NDEBUG 11166 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11167 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11168 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11169 "LowerCall emitted a value with the wrong type!"); 11170 } 11171 #endif 11172 11173 SmallVector<SDValue, 4> ReturnValues; 11174 if (!CanLowerReturn) { 11175 // The instruction result is the result of loading from the 11176 // hidden sret parameter. 11177 SmallVector<EVT, 1> PVTs; 11178 Type *PtrRetTy = 11179 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11180 11181 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11182 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11183 EVT PtrVT = PVTs[0]; 11184 11185 unsigned NumValues = RetTys.size(); 11186 ReturnValues.resize(NumValues); 11187 SmallVector<SDValue, 4> Chains(NumValues); 11188 11189 // An aggregate return value cannot wrap around the address space, so 11190 // offsets to its parts don't wrap either. 11191 SDNodeFlags Flags; 11192 Flags.setNoUnsignedWrap(true); 11193 11194 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11195 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11196 for (unsigned i = 0; i < NumValues; ++i) { 11197 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11198 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11199 PtrVT), Flags); 11200 SDValue L = CLI.DAG.getLoad( 11201 RetTys[i], CLI.DL, CLI.Chain, Add, 11202 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11203 DemoteStackIdx, Offsets[i]), 11204 HiddenSRetAlign); 11205 ReturnValues[i] = L; 11206 Chains[i] = L.getValue(1); 11207 } 11208 11209 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11210 } else { 11211 // Collect the legal value parts into potentially illegal values 11212 // that correspond to the original function's return values. 11213 std::optional<ISD::NodeType> AssertOp; 11214 if (CLI.RetSExt) 11215 AssertOp = ISD::AssertSext; 11216 else if (CLI.RetZExt) 11217 AssertOp = ISD::AssertZext; 11218 unsigned CurReg = 0; 11219 for (EVT VT : RetTys) { 11220 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11221 CLI.CallConv, VT); 11222 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11223 CLI.CallConv, VT); 11224 11225 ReturnValues.push_back(getCopyFromParts( 11226 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11227 CLI.Chain, CLI.CallConv, AssertOp)); 11228 CurReg += NumRegs; 11229 } 11230 11231 // For a function returning void, there is no return value. We can't create 11232 // such a node, so we just return a null return value in that case. In 11233 // that case, nothing will actually look at the value. 11234 if (ReturnValues.empty()) 11235 return std::make_pair(SDValue(), CLI.Chain); 11236 } 11237 11238 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11239 CLI.DAG.getVTList(RetTys), ReturnValues); 11240 return std::make_pair(Res, CLI.Chain); 11241 } 11242 11243 /// Places new result values for the node in Results (their number 11244 /// and types must exactly match those of the original return values of 11245 /// the node), or leaves Results empty, which indicates that the node is not 11246 /// to be custom lowered after all. 11247 void TargetLowering::LowerOperationWrapper(SDNode *N, 11248 SmallVectorImpl<SDValue> &Results, 11249 SelectionDAG &DAG) const { 11250 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11251 11252 if (!Res.getNode()) 11253 return; 11254 11255 // If the original node has one result, take the return value from 11256 // LowerOperation as is. It might not be result number 0. 11257 if (N->getNumValues() == 1) { 11258 Results.push_back(Res); 11259 return; 11260 } 11261 11262 // If the original node has multiple results, then the return node should 11263 // have the same number of results. 11264 assert((N->getNumValues() == Res->getNumValues()) && 11265 "Lowering returned the wrong number of results!"); 11266 11267 // Places new result values base on N result number. 11268 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11269 Results.push_back(Res.getValue(I)); 11270 } 11271 11272 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11273 llvm_unreachable("LowerOperation not implemented for this target!"); 11274 } 11275 11276 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11277 unsigned Reg, 11278 ISD::NodeType ExtendType) { 11279 SDValue Op = getNonRegisterValue(V); 11280 assert((Op.getOpcode() != ISD::CopyFromReg || 11281 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11282 "Copy from a reg to the same reg!"); 11283 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11284 11285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11286 // If this is an InlineAsm we have to match the registers required, not the 11287 // notional registers required by the type. 11288 11289 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11290 std::nullopt); // This is not an ABI copy. 11291 SDValue Chain = DAG.getEntryNode(); 11292 11293 if (ExtendType == ISD::ANY_EXTEND) { 11294 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11295 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11296 ExtendType = PreferredExtendIt->second; 11297 } 11298 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11299 PendingExports.push_back(Chain); 11300 } 11301 11302 #include "llvm/CodeGen/SelectionDAGISel.h" 11303 11304 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11305 /// entry block, return true. This includes arguments used by switches, since 11306 /// the switch may expand into multiple basic blocks. 11307 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11308 // With FastISel active, we may be splitting blocks, so force creation 11309 // of virtual registers for all non-dead arguments. 11310 if (FastISel) 11311 return A->use_empty(); 11312 11313 const BasicBlock &Entry = A->getParent()->front(); 11314 for (const User *U : A->users()) 11315 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11316 return false; // Use not in entry block. 11317 11318 return true; 11319 } 11320 11321 using ArgCopyElisionMapTy = 11322 DenseMap<const Argument *, 11323 std::pair<const AllocaInst *, const StoreInst *>>; 11324 11325 /// Scan the entry block of the function in FuncInfo for arguments that look 11326 /// like copies into a local alloca. Record any copied arguments in 11327 /// ArgCopyElisionCandidates. 11328 static void 11329 findArgumentCopyElisionCandidates(const DataLayout &DL, 11330 FunctionLoweringInfo *FuncInfo, 11331 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11332 // Record the state of every static alloca used in the entry block. Argument 11333 // allocas are all used in the entry block, so we need approximately as many 11334 // entries as we have arguments. 11335 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11336 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11337 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11338 StaticAllocas.reserve(NumArgs * 2); 11339 11340 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11341 if (!V) 11342 return nullptr; 11343 V = V->stripPointerCasts(); 11344 const auto *AI = dyn_cast<AllocaInst>(V); 11345 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11346 return nullptr; 11347 auto Iter = StaticAllocas.insert({AI, Unknown}); 11348 return &Iter.first->second; 11349 }; 11350 11351 // Look for stores of arguments to static allocas. Look through bitcasts and 11352 // GEPs to handle type coercions, as long as the alloca is fully initialized 11353 // by the store. Any non-store use of an alloca escapes it and any subsequent 11354 // unanalyzed store might write it. 11355 // FIXME: Handle structs initialized with multiple stores. 11356 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11357 // Look for stores, and handle non-store uses conservatively. 11358 const auto *SI = dyn_cast<StoreInst>(&I); 11359 if (!SI) { 11360 // We will look through cast uses, so ignore them completely. 11361 if (I.isCast()) 11362 continue; 11363 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11364 // to allocas. 11365 if (I.isDebugOrPseudoInst()) 11366 continue; 11367 // This is an unknown instruction. Assume it escapes or writes to all 11368 // static alloca operands. 11369 for (const Use &U : I.operands()) { 11370 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11371 *Info = StaticAllocaInfo::Clobbered; 11372 } 11373 continue; 11374 } 11375 11376 // If the stored value is a static alloca, mark it as escaped. 11377 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11378 *Info = StaticAllocaInfo::Clobbered; 11379 11380 // Check if the destination is a static alloca. 11381 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11382 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11383 if (!Info) 11384 continue; 11385 const AllocaInst *AI = cast<AllocaInst>(Dst); 11386 11387 // Skip allocas that have been initialized or clobbered. 11388 if (*Info != StaticAllocaInfo::Unknown) 11389 continue; 11390 11391 // Check if the stored value is an argument, and that this store fully 11392 // initializes the alloca. 11393 // If the argument type has padding bits we can't directly forward a pointer 11394 // as the upper bits may contain garbage. 11395 // Don't elide copies from the same argument twice. 11396 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11397 const auto *Arg = dyn_cast<Argument>(Val); 11398 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11399 Arg->getType()->isEmptyTy() || 11400 DL.getTypeStoreSize(Arg->getType()) != 11401 DL.getTypeAllocSize(AI->getAllocatedType()) || 11402 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11403 ArgCopyElisionCandidates.count(Arg)) { 11404 *Info = StaticAllocaInfo::Clobbered; 11405 continue; 11406 } 11407 11408 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11409 << '\n'); 11410 11411 // Mark this alloca and store for argument copy elision. 11412 *Info = StaticAllocaInfo::Elidable; 11413 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11414 11415 // Stop scanning if we've seen all arguments. This will happen early in -O0 11416 // builds, which is useful, because -O0 builds have large entry blocks and 11417 // many allocas. 11418 if (ArgCopyElisionCandidates.size() == NumArgs) 11419 break; 11420 } 11421 } 11422 11423 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11424 /// ArgVal is a load from a suitable fixed stack object. 11425 static void tryToElideArgumentCopy( 11426 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11427 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11428 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11429 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11430 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11431 // Check if this is a load from a fixed stack object. 11432 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11433 if (!LNode) 11434 return; 11435 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11436 if (!FINode) 11437 return; 11438 11439 // Check that the fixed stack object is the right size and alignment. 11440 // Look at the alignment that the user wrote on the alloca instead of looking 11441 // at the stack object. 11442 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11443 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11444 const AllocaInst *AI = ArgCopyIter->second.first; 11445 int FixedIndex = FINode->getIndex(); 11446 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11447 int OldIndex = AllocaIndex; 11448 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11449 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11450 LLVM_DEBUG( 11451 dbgs() << " argument copy elision failed due to bad fixed stack " 11452 "object size\n"); 11453 return; 11454 } 11455 Align RequiredAlignment = AI->getAlign(); 11456 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11457 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11458 "greater than stack argument alignment (" 11459 << DebugStr(RequiredAlignment) << " vs " 11460 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11461 return; 11462 } 11463 11464 // Perform the elision. Delete the old stack object and replace its only use 11465 // in the variable info map. Mark the stack object as mutable and aliased. 11466 LLVM_DEBUG({ 11467 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11468 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11469 << '\n'; 11470 }); 11471 MFI.RemoveStackObject(OldIndex); 11472 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11473 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11474 AllocaIndex = FixedIndex; 11475 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11476 for (SDValue ArgVal : ArgVals) 11477 Chains.push_back(ArgVal.getValue(1)); 11478 11479 // Avoid emitting code for the store implementing the copy. 11480 const StoreInst *SI = ArgCopyIter->second.second; 11481 ElidedArgCopyInstrs.insert(SI); 11482 11483 // Check for uses of the argument again so that we can avoid exporting ArgVal 11484 // if it is't used by anything other than the store. 11485 for (const Value *U : Arg.users()) { 11486 if (U != SI) { 11487 ArgHasUses = true; 11488 break; 11489 } 11490 } 11491 } 11492 11493 void SelectionDAGISel::LowerArguments(const Function &F) { 11494 SelectionDAG &DAG = SDB->DAG; 11495 SDLoc dl = SDB->getCurSDLoc(); 11496 const DataLayout &DL = DAG.getDataLayout(); 11497 SmallVector<ISD::InputArg, 16> Ins; 11498 11499 // In Naked functions we aren't going to save any registers. 11500 if (F.hasFnAttribute(Attribute::Naked)) 11501 return; 11502 11503 if (!FuncInfo->CanLowerReturn) { 11504 // Put in an sret pointer parameter before all the other parameters. 11505 SmallVector<EVT, 1> ValueVTs; 11506 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11507 PointerType::get(F.getContext(), 11508 DAG.getDataLayout().getAllocaAddrSpace()), 11509 ValueVTs); 11510 11511 // NOTE: Assuming that a pointer will never break down to more than one VT 11512 // or one register. 11513 ISD::ArgFlagsTy Flags; 11514 Flags.setSRet(); 11515 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11516 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11517 ISD::InputArg::NoArgIndex, 0); 11518 Ins.push_back(RetArg); 11519 } 11520 11521 // Look for stores of arguments to static allocas. Mark such arguments with a 11522 // flag to ask the target to give us the memory location of that argument if 11523 // available. 11524 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11525 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11526 ArgCopyElisionCandidates); 11527 11528 // Set up the incoming argument description vector. 11529 for (const Argument &Arg : F.args()) { 11530 unsigned ArgNo = Arg.getArgNo(); 11531 SmallVector<EVT, 4> ValueVTs; 11532 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11533 bool isArgValueUsed = !Arg.use_empty(); 11534 unsigned PartBase = 0; 11535 Type *FinalType = Arg.getType(); 11536 if (Arg.hasAttribute(Attribute::ByVal)) 11537 FinalType = Arg.getParamByValType(); 11538 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11539 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11540 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11541 Value != NumValues; ++Value) { 11542 EVT VT = ValueVTs[Value]; 11543 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11544 ISD::ArgFlagsTy Flags; 11545 11546 11547 if (Arg.getType()->isPointerTy()) { 11548 Flags.setPointer(); 11549 Flags.setPointerAddrSpace( 11550 cast<PointerType>(Arg.getType())->getAddressSpace()); 11551 } 11552 if (Arg.hasAttribute(Attribute::ZExt)) 11553 Flags.setZExt(); 11554 if (Arg.hasAttribute(Attribute::SExt)) 11555 Flags.setSExt(); 11556 if (Arg.hasAttribute(Attribute::InReg)) { 11557 // If we are using vectorcall calling convention, a structure that is 11558 // passed InReg - is surely an HVA 11559 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11560 isa<StructType>(Arg.getType())) { 11561 // The first value of a structure is marked 11562 if (0 == Value) 11563 Flags.setHvaStart(); 11564 Flags.setHva(); 11565 } 11566 // Set InReg Flag 11567 Flags.setInReg(); 11568 } 11569 if (Arg.hasAttribute(Attribute::StructRet)) 11570 Flags.setSRet(); 11571 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11572 Flags.setSwiftSelf(); 11573 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11574 Flags.setSwiftAsync(); 11575 if (Arg.hasAttribute(Attribute::SwiftError)) 11576 Flags.setSwiftError(); 11577 if (Arg.hasAttribute(Attribute::ByVal)) 11578 Flags.setByVal(); 11579 if (Arg.hasAttribute(Attribute::ByRef)) 11580 Flags.setByRef(); 11581 if (Arg.hasAttribute(Attribute::InAlloca)) { 11582 Flags.setInAlloca(); 11583 // Set the byval flag for CCAssignFn callbacks that don't know about 11584 // inalloca. This way we can know how many bytes we should've allocated 11585 // and how many bytes a callee cleanup function will pop. If we port 11586 // inalloca to more targets, we'll have to add custom inalloca handling 11587 // in the various CC lowering callbacks. 11588 Flags.setByVal(); 11589 } 11590 if (Arg.hasAttribute(Attribute::Preallocated)) { 11591 Flags.setPreallocated(); 11592 // Set the byval flag for CCAssignFn callbacks that don't know about 11593 // preallocated. This way we can know how many bytes we should've 11594 // allocated and how many bytes a callee cleanup function will pop. If 11595 // we port preallocated to more targets, we'll have to add custom 11596 // preallocated handling in the various CC lowering callbacks. 11597 Flags.setByVal(); 11598 } 11599 11600 // Certain targets (such as MIPS), may have a different ABI alignment 11601 // for a type depending on the context. Give the target a chance to 11602 // specify the alignment it wants. 11603 const Align OriginalAlignment( 11604 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11605 Flags.setOrigAlign(OriginalAlignment); 11606 11607 Align MemAlign; 11608 Type *ArgMemTy = nullptr; 11609 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11610 Flags.isByRef()) { 11611 if (!ArgMemTy) 11612 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11613 11614 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11615 11616 // For in-memory arguments, size and alignment should be passed from FE. 11617 // BE will guess if this info is not there but there are cases it cannot 11618 // get right. 11619 if (auto ParamAlign = Arg.getParamStackAlign()) 11620 MemAlign = *ParamAlign; 11621 else if ((ParamAlign = Arg.getParamAlign())) 11622 MemAlign = *ParamAlign; 11623 else 11624 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11625 if (Flags.isByRef()) 11626 Flags.setByRefSize(MemSize); 11627 else 11628 Flags.setByValSize(MemSize); 11629 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11630 MemAlign = *ParamAlign; 11631 } else { 11632 MemAlign = OriginalAlignment; 11633 } 11634 Flags.setMemAlign(MemAlign); 11635 11636 if (Arg.hasAttribute(Attribute::Nest)) 11637 Flags.setNest(); 11638 if (NeedsRegBlock) 11639 Flags.setInConsecutiveRegs(); 11640 if (ArgCopyElisionCandidates.count(&Arg)) 11641 Flags.setCopyElisionCandidate(); 11642 if (Arg.hasAttribute(Attribute::Returned)) 11643 Flags.setReturned(); 11644 11645 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11646 *CurDAG->getContext(), F.getCallingConv(), VT); 11647 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11648 *CurDAG->getContext(), F.getCallingConv(), VT); 11649 for (unsigned i = 0; i != NumRegs; ++i) { 11650 // For scalable vectors, use the minimum size; individual targets 11651 // are responsible for handling scalable vector arguments and 11652 // return values. 11653 ISD::InputArg MyFlags( 11654 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11655 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11656 if (NumRegs > 1 && i == 0) 11657 MyFlags.Flags.setSplit(); 11658 // if it isn't first piece, alignment must be 1 11659 else if (i > 0) { 11660 MyFlags.Flags.setOrigAlign(Align(1)); 11661 if (i == NumRegs - 1) 11662 MyFlags.Flags.setSplitEnd(); 11663 } 11664 Ins.push_back(MyFlags); 11665 } 11666 if (NeedsRegBlock && Value == NumValues - 1) 11667 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11668 PartBase += VT.getStoreSize().getKnownMinValue(); 11669 } 11670 } 11671 11672 // Call the target to set up the argument values. 11673 SmallVector<SDValue, 8> InVals; 11674 SDValue NewRoot = TLI->LowerFormalArguments( 11675 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11676 11677 // Verify that the target's LowerFormalArguments behaved as expected. 11678 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11679 "LowerFormalArguments didn't return a valid chain!"); 11680 assert(InVals.size() == Ins.size() && 11681 "LowerFormalArguments didn't emit the correct number of values!"); 11682 LLVM_DEBUG({ 11683 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11684 assert(InVals[i].getNode() && 11685 "LowerFormalArguments emitted a null value!"); 11686 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11687 "LowerFormalArguments emitted a value with the wrong type!"); 11688 } 11689 }); 11690 11691 // Update the DAG with the new chain value resulting from argument lowering. 11692 DAG.setRoot(NewRoot); 11693 11694 // Set up the argument values. 11695 unsigned i = 0; 11696 if (!FuncInfo->CanLowerReturn) { 11697 // Create a virtual register for the sret pointer, and put in a copy 11698 // from the sret argument into it. 11699 SmallVector<EVT, 1> ValueVTs; 11700 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11701 PointerType::get(F.getContext(), 11702 DAG.getDataLayout().getAllocaAddrSpace()), 11703 ValueVTs); 11704 MVT VT = ValueVTs[0].getSimpleVT(); 11705 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11706 std::optional<ISD::NodeType> AssertOp; 11707 SDValue ArgValue = 11708 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11709 F.getCallingConv(), AssertOp); 11710 11711 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11712 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11713 Register SRetReg = 11714 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11715 FuncInfo->DemoteRegister = SRetReg; 11716 NewRoot = 11717 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11718 DAG.setRoot(NewRoot); 11719 11720 // i indexes lowered arguments. Bump it past the hidden sret argument. 11721 ++i; 11722 } 11723 11724 SmallVector<SDValue, 4> Chains; 11725 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11726 for (const Argument &Arg : F.args()) { 11727 SmallVector<SDValue, 4> ArgValues; 11728 SmallVector<EVT, 4> ValueVTs; 11729 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11730 unsigned NumValues = ValueVTs.size(); 11731 if (NumValues == 0) 11732 continue; 11733 11734 bool ArgHasUses = !Arg.use_empty(); 11735 11736 // Elide the copying store if the target loaded this argument from a 11737 // suitable fixed stack object. 11738 if (Ins[i].Flags.isCopyElisionCandidate()) { 11739 unsigned NumParts = 0; 11740 for (EVT VT : ValueVTs) 11741 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11742 F.getCallingConv(), VT); 11743 11744 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11745 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11746 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11747 } 11748 11749 // If this argument is unused then remember its value. It is used to generate 11750 // debugging information. 11751 bool isSwiftErrorArg = 11752 TLI->supportSwiftError() && 11753 Arg.hasAttribute(Attribute::SwiftError); 11754 if (!ArgHasUses && !isSwiftErrorArg) { 11755 SDB->setUnusedArgValue(&Arg, InVals[i]); 11756 11757 // Also remember any frame index for use in FastISel. 11758 if (FrameIndexSDNode *FI = 11759 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11760 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11761 } 11762 11763 for (unsigned Val = 0; Val != NumValues; ++Val) { 11764 EVT VT = ValueVTs[Val]; 11765 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11766 F.getCallingConv(), VT); 11767 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11768 *CurDAG->getContext(), F.getCallingConv(), VT); 11769 11770 // Even an apparent 'unused' swifterror argument needs to be returned. So 11771 // we do generate a copy for it that can be used on return from the 11772 // function. 11773 if (ArgHasUses || isSwiftErrorArg) { 11774 std::optional<ISD::NodeType> AssertOp; 11775 if (Arg.hasAttribute(Attribute::SExt)) 11776 AssertOp = ISD::AssertSext; 11777 else if (Arg.hasAttribute(Attribute::ZExt)) 11778 AssertOp = ISD::AssertZext; 11779 11780 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11781 PartVT, VT, nullptr, NewRoot, 11782 F.getCallingConv(), AssertOp)); 11783 } 11784 11785 i += NumParts; 11786 } 11787 11788 // We don't need to do anything else for unused arguments. 11789 if (ArgValues.empty()) 11790 continue; 11791 11792 // Note down frame index. 11793 if (FrameIndexSDNode *FI = 11794 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11795 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11796 11797 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11798 SDB->getCurSDLoc()); 11799 11800 SDB->setValue(&Arg, Res); 11801 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11802 // We want to associate the argument with the frame index, among 11803 // involved operands, that correspond to the lowest address. The 11804 // getCopyFromParts function, called earlier, is swapping the order of 11805 // the operands to BUILD_PAIR depending on endianness. The result of 11806 // that swapping is that the least significant bits of the argument will 11807 // be in the first operand of the BUILD_PAIR node, and the most 11808 // significant bits will be in the second operand. 11809 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11810 if (LoadSDNode *LNode = 11811 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11812 if (FrameIndexSDNode *FI = 11813 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11814 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11815 } 11816 11817 // Analyses past this point are naive and don't expect an assertion. 11818 if (Res.getOpcode() == ISD::AssertZext) 11819 Res = Res.getOperand(0); 11820 11821 // Update the SwiftErrorVRegDefMap. 11822 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11823 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11824 if (Reg.isVirtual()) 11825 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11826 Reg); 11827 } 11828 11829 // If this argument is live outside of the entry block, insert a copy from 11830 // wherever we got it to the vreg that other BB's will reference it as. 11831 if (Res.getOpcode() == ISD::CopyFromReg) { 11832 // If we can, though, try to skip creating an unnecessary vreg. 11833 // FIXME: This isn't very clean... it would be nice to make this more 11834 // general. 11835 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11836 if (Reg.isVirtual()) { 11837 FuncInfo->ValueMap[&Arg] = Reg; 11838 continue; 11839 } 11840 } 11841 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11842 FuncInfo->InitializeRegForValue(&Arg); 11843 SDB->CopyToExportRegsIfNeeded(&Arg); 11844 } 11845 } 11846 11847 if (!Chains.empty()) { 11848 Chains.push_back(NewRoot); 11849 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11850 } 11851 11852 DAG.setRoot(NewRoot); 11853 11854 assert(i == InVals.size() && "Argument register count mismatch!"); 11855 11856 // If any argument copy elisions occurred and we have debug info, update the 11857 // stale frame indices used in the dbg.declare variable info table. 11858 if (!ArgCopyElisionFrameIndexMap.empty()) { 11859 for (MachineFunction::VariableDbgInfo &VI : 11860 MF->getInStackSlotVariableDbgInfo()) { 11861 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11862 if (I != ArgCopyElisionFrameIndexMap.end()) 11863 VI.updateStackSlot(I->second); 11864 } 11865 } 11866 11867 // Finally, if the target has anything special to do, allow it to do so. 11868 emitFunctionEntryCode(); 11869 } 11870 11871 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11872 /// ensure constants are generated when needed. Remember the virtual registers 11873 /// that need to be added to the Machine PHI nodes as input. We cannot just 11874 /// directly add them, because expansion might result in multiple MBB's for one 11875 /// BB. As such, the start of the BB might correspond to a different MBB than 11876 /// the end. 11877 void 11878 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11880 11881 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11882 11883 // Check PHI nodes in successors that expect a value to be available from this 11884 // block. 11885 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11886 if (!isa<PHINode>(SuccBB->begin())) continue; 11887 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB); 11888 11889 // If this terminator has multiple identical successors (common for 11890 // switches), only handle each succ once. 11891 if (!SuccsHandled.insert(SuccMBB).second) 11892 continue; 11893 11894 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11895 11896 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11897 // nodes and Machine PHI nodes, but the incoming operands have not been 11898 // emitted yet. 11899 for (const PHINode &PN : SuccBB->phis()) { 11900 // Ignore dead phi's. 11901 if (PN.use_empty()) 11902 continue; 11903 11904 // Skip empty types 11905 if (PN.getType()->isEmptyTy()) 11906 continue; 11907 11908 unsigned Reg; 11909 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11910 11911 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11912 unsigned &RegOut = ConstantsOut[C]; 11913 if (RegOut == 0) { 11914 RegOut = FuncInfo.CreateRegs(C); 11915 // We need to zero/sign extend ConstantInt phi operands to match 11916 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11917 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11918 if (auto *CI = dyn_cast<ConstantInt>(C)) 11919 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11920 : ISD::ZERO_EXTEND; 11921 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11922 } 11923 Reg = RegOut; 11924 } else { 11925 DenseMap<const Value *, Register>::iterator I = 11926 FuncInfo.ValueMap.find(PHIOp); 11927 if (I != FuncInfo.ValueMap.end()) 11928 Reg = I->second; 11929 else { 11930 assert(isa<AllocaInst>(PHIOp) && 11931 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11932 "Didn't codegen value into a register!??"); 11933 Reg = FuncInfo.CreateRegs(PHIOp); 11934 CopyValueToVirtualRegister(PHIOp, Reg); 11935 } 11936 } 11937 11938 // Remember that this register needs to added to the machine PHI node as 11939 // the input for this MBB. 11940 SmallVector<EVT, 4> ValueVTs; 11941 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11942 for (EVT VT : ValueVTs) { 11943 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11944 for (unsigned i = 0; i != NumRegisters; ++i) 11945 FuncInfo.PHINodesToUpdate.push_back( 11946 std::make_pair(&*MBBI++, Reg + i)); 11947 Reg += NumRegisters; 11948 } 11949 } 11950 } 11951 11952 ConstantsOut.clear(); 11953 } 11954 11955 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11956 MachineFunction::iterator I(MBB); 11957 if (++I == FuncInfo.MF->end()) 11958 return nullptr; 11959 return &*I; 11960 } 11961 11962 /// During lowering new call nodes can be created (such as memset, etc.). 11963 /// Those will become new roots of the current DAG, but complications arise 11964 /// when they are tail calls. In such cases, the call lowering will update 11965 /// the root, but the builder still needs to know that a tail call has been 11966 /// lowered in order to avoid generating an additional return. 11967 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11968 // If the node is null, we do have a tail call. 11969 if (MaybeTC.getNode() != nullptr) 11970 DAG.setRoot(MaybeTC); 11971 else 11972 HasTailCall = true; 11973 } 11974 11975 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11976 MachineBasicBlock *SwitchMBB, 11977 MachineBasicBlock *DefaultMBB) { 11978 MachineFunction *CurMF = FuncInfo.MF; 11979 MachineBasicBlock *NextMBB = nullptr; 11980 MachineFunction::iterator BBI(W.MBB); 11981 if (++BBI != FuncInfo.MF->end()) 11982 NextMBB = &*BBI; 11983 11984 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11985 11986 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11987 11988 if (Size == 2 && W.MBB == SwitchMBB) { 11989 // If any two of the cases has the same destination, and if one value 11990 // is the same as the other, but has one bit unset that the other has set, 11991 // use bit manipulation to do two compares at once. For example: 11992 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11993 // TODO: This could be extended to merge any 2 cases in switches with 3 11994 // cases. 11995 // TODO: Handle cases where W.CaseBB != SwitchBB. 11996 CaseCluster &Small = *W.FirstCluster; 11997 CaseCluster &Big = *W.LastCluster; 11998 11999 if (Small.Low == Small.High && Big.Low == Big.High && 12000 Small.MBB == Big.MBB) { 12001 const APInt &SmallValue = Small.Low->getValue(); 12002 const APInt &BigValue = Big.Low->getValue(); 12003 12004 // Check that there is only one bit different. 12005 APInt CommonBit = BigValue ^ SmallValue; 12006 if (CommonBit.isPowerOf2()) { 12007 SDValue CondLHS = getValue(Cond); 12008 EVT VT = CondLHS.getValueType(); 12009 SDLoc DL = getCurSDLoc(); 12010 12011 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 12012 DAG.getConstant(CommonBit, DL, VT)); 12013 SDValue Cond = DAG.getSetCC( 12014 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 12015 ISD::SETEQ); 12016 12017 // Update successor info. 12018 // Both Small and Big will jump to Small.BB, so we sum up the 12019 // probabilities. 12020 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 12021 if (BPI) 12022 addSuccessorWithProb( 12023 SwitchMBB, DefaultMBB, 12024 // The default destination is the first successor in IR. 12025 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 12026 else 12027 addSuccessorWithProb(SwitchMBB, DefaultMBB); 12028 12029 // Insert the true branch. 12030 SDValue BrCond = 12031 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 12032 DAG.getBasicBlock(Small.MBB)); 12033 // Insert the false branch. 12034 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 12035 DAG.getBasicBlock(DefaultMBB)); 12036 12037 DAG.setRoot(BrCond); 12038 return; 12039 } 12040 } 12041 } 12042 12043 if (TM.getOptLevel() != CodeGenOptLevel::None) { 12044 // Here, we order cases by probability so the most likely case will be 12045 // checked first. However, two clusters can have the same probability in 12046 // which case their relative ordering is non-deterministic. So we use Low 12047 // as a tie-breaker as clusters are guaranteed to never overlap. 12048 llvm::sort(W.FirstCluster, W.LastCluster + 1, 12049 [](const CaseCluster &a, const CaseCluster &b) { 12050 return a.Prob != b.Prob ? 12051 a.Prob > b.Prob : 12052 a.Low->getValue().slt(b.Low->getValue()); 12053 }); 12054 12055 // Rearrange the case blocks so that the last one falls through if possible 12056 // without changing the order of probabilities. 12057 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 12058 --I; 12059 if (I->Prob > W.LastCluster->Prob) 12060 break; 12061 if (I->Kind == CC_Range && I->MBB == NextMBB) { 12062 std::swap(*I, *W.LastCluster); 12063 break; 12064 } 12065 } 12066 } 12067 12068 // Compute total probability. 12069 BranchProbability DefaultProb = W.DefaultProb; 12070 BranchProbability UnhandledProbs = DefaultProb; 12071 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 12072 UnhandledProbs += I->Prob; 12073 12074 MachineBasicBlock *CurMBB = W.MBB; 12075 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 12076 bool FallthroughUnreachable = false; 12077 MachineBasicBlock *Fallthrough; 12078 if (I == W.LastCluster) { 12079 // For the last cluster, fall through to the default destination. 12080 Fallthrough = DefaultMBB; 12081 FallthroughUnreachable = isa<UnreachableInst>( 12082 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 12083 } else { 12084 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 12085 CurMF->insert(BBI, Fallthrough); 12086 // Put Cond in a virtual register to make it available from the new blocks. 12087 ExportFromCurrentBlock(Cond); 12088 } 12089 UnhandledProbs -= I->Prob; 12090 12091 switch (I->Kind) { 12092 case CC_JumpTable: { 12093 // FIXME: Optimize away range check based on pivot comparisons. 12094 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 12095 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 12096 12097 // The jump block hasn't been inserted yet; insert it here. 12098 MachineBasicBlock *JumpMBB = JT->MBB; 12099 CurMF->insert(BBI, JumpMBB); 12100 12101 auto JumpProb = I->Prob; 12102 auto FallthroughProb = UnhandledProbs; 12103 12104 // If the default statement is a target of the jump table, we evenly 12105 // distribute the default probability to successors of CurMBB. Also 12106 // update the probability on the edge from JumpMBB to Fallthrough. 12107 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 12108 SE = JumpMBB->succ_end(); 12109 SI != SE; ++SI) { 12110 if (*SI == DefaultMBB) { 12111 JumpProb += DefaultProb / 2; 12112 FallthroughProb -= DefaultProb / 2; 12113 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 12114 JumpMBB->normalizeSuccProbs(); 12115 break; 12116 } 12117 } 12118 12119 // If the default clause is unreachable, propagate that knowledge into 12120 // JTH->FallthroughUnreachable which will use it to suppress the range 12121 // check. 12122 // 12123 // However, don't do this if we're doing branch target enforcement, 12124 // because a table branch _without_ a range check can be a tempting JOP 12125 // gadget - out-of-bounds inputs that are impossible in correct 12126 // execution become possible again if an attacker can influence the 12127 // control flow. So if an attacker doesn't already have a BTI bypass 12128 // available, we don't want them to be able to get one out of this 12129 // table branch. 12130 if (FallthroughUnreachable) { 12131 Function &CurFunc = CurMF->getFunction(); 12132 if (!CurFunc.hasFnAttribute("branch-target-enforcement")) 12133 JTH->FallthroughUnreachable = true; 12134 } 12135 12136 if (!JTH->FallthroughUnreachable) 12137 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 12138 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12139 CurMBB->normalizeSuccProbs(); 12140 12141 // The jump table header will be inserted in our current block, do the 12142 // range check, and fall through to our fallthrough block. 12143 JTH->HeaderBB = CurMBB; 12144 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12145 12146 // If we're in the right place, emit the jump table header right now. 12147 if (CurMBB == SwitchMBB) { 12148 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12149 JTH->Emitted = true; 12150 } 12151 break; 12152 } 12153 case CC_BitTests: { 12154 // FIXME: Optimize away range check based on pivot comparisons. 12155 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12156 12157 // The bit test blocks haven't been inserted yet; insert them here. 12158 for (BitTestCase &BTC : BTB->Cases) 12159 CurMF->insert(BBI, BTC.ThisBB); 12160 12161 // Fill in fields of the BitTestBlock. 12162 BTB->Parent = CurMBB; 12163 BTB->Default = Fallthrough; 12164 12165 BTB->DefaultProb = UnhandledProbs; 12166 // If the cases in bit test don't form a contiguous range, we evenly 12167 // distribute the probability on the edge to Fallthrough to two 12168 // successors of CurMBB. 12169 if (!BTB->ContiguousRange) { 12170 BTB->Prob += DefaultProb / 2; 12171 BTB->DefaultProb -= DefaultProb / 2; 12172 } 12173 12174 if (FallthroughUnreachable) 12175 BTB->FallthroughUnreachable = true; 12176 12177 // If we're in the right place, emit the bit test header right now. 12178 if (CurMBB == SwitchMBB) { 12179 visitBitTestHeader(*BTB, SwitchMBB); 12180 BTB->Emitted = true; 12181 } 12182 break; 12183 } 12184 case CC_Range: { 12185 const Value *RHS, *LHS, *MHS; 12186 ISD::CondCode CC; 12187 if (I->Low == I->High) { 12188 // Check Cond == I->Low. 12189 CC = ISD::SETEQ; 12190 LHS = Cond; 12191 RHS=I->Low; 12192 MHS = nullptr; 12193 } else { 12194 // Check I->Low <= Cond <= I->High. 12195 CC = ISD::SETLE; 12196 LHS = I->Low; 12197 MHS = Cond; 12198 RHS = I->High; 12199 } 12200 12201 // If Fallthrough is unreachable, fold away the comparison. 12202 if (FallthroughUnreachable) 12203 CC = ISD::SETTRUE; 12204 12205 // The false probability is the sum of all unhandled cases. 12206 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12207 getCurSDLoc(), I->Prob, UnhandledProbs); 12208 12209 if (CurMBB == SwitchMBB) 12210 visitSwitchCase(CB, SwitchMBB); 12211 else 12212 SL->SwitchCases.push_back(CB); 12213 12214 break; 12215 } 12216 } 12217 CurMBB = Fallthrough; 12218 } 12219 } 12220 12221 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12222 const SwitchWorkListItem &W, 12223 Value *Cond, 12224 MachineBasicBlock *SwitchMBB) { 12225 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12226 "Clusters not sorted?"); 12227 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12228 12229 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12230 SL->computeSplitWorkItemInfo(W); 12231 12232 // Use the first element on the right as pivot since we will make less-than 12233 // comparisons against it. 12234 CaseClusterIt PivotCluster = FirstRight; 12235 assert(PivotCluster > W.FirstCluster); 12236 assert(PivotCluster <= W.LastCluster); 12237 12238 CaseClusterIt FirstLeft = W.FirstCluster; 12239 CaseClusterIt LastRight = W.LastCluster; 12240 12241 const ConstantInt *Pivot = PivotCluster->Low; 12242 12243 // New blocks will be inserted immediately after the current one. 12244 MachineFunction::iterator BBI(W.MBB); 12245 ++BBI; 12246 12247 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12248 // we can branch to its destination directly if it's squeezed exactly in 12249 // between the known lower bound and Pivot - 1. 12250 MachineBasicBlock *LeftMBB; 12251 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12252 FirstLeft->Low == W.GE && 12253 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12254 LeftMBB = FirstLeft->MBB; 12255 } else { 12256 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12257 FuncInfo.MF->insert(BBI, LeftMBB); 12258 WorkList.push_back( 12259 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12260 // Put Cond in a virtual register to make it available from the new blocks. 12261 ExportFromCurrentBlock(Cond); 12262 } 12263 12264 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12265 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12266 // directly if RHS.High equals the current upper bound. 12267 MachineBasicBlock *RightMBB; 12268 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12269 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12270 RightMBB = FirstRight->MBB; 12271 } else { 12272 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12273 FuncInfo.MF->insert(BBI, RightMBB); 12274 WorkList.push_back( 12275 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12276 // Put Cond in a virtual register to make it available from the new blocks. 12277 ExportFromCurrentBlock(Cond); 12278 } 12279 12280 // Create the CaseBlock record that will be used to lower the branch. 12281 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12282 getCurSDLoc(), LeftProb, RightProb); 12283 12284 if (W.MBB == SwitchMBB) 12285 visitSwitchCase(CB, SwitchMBB); 12286 else 12287 SL->SwitchCases.push_back(CB); 12288 } 12289 12290 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12291 // from the swith statement. 12292 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12293 BranchProbability PeeledCaseProb) { 12294 if (PeeledCaseProb == BranchProbability::getOne()) 12295 return BranchProbability::getZero(); 12296 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12297 12298 uint32_t Numerator = CaseProb.getNumerator(); 12299 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12300 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12301 } 12302 12303 // Try to peel the top probability case if it exceeds the threshold. 12304 // Return current MachineBasicBlock for the switch statement if the peeling 12305 // does not occur. 12306 // If the peeling is performed, return the newly created MachineBasicBlock 12307 // for the peeled switch statement. Also update Clusters to remove the peeled 12308 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12309 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12310 const SwitchInst &SI, CaseClusterVector &Clusters, 12311 BranchProbability &PeeledCaseProb) { 12312 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12313 // Don't perform if there is only one cluster or optimizing for size. 12314 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12315 TM.getOptLevel() == CodeGenOptLevel::None || 12316 SwitchMBB->getParent()->getFunction().hasMinSize()) 12317 return SwitchMBB; 12318 12319 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12320 unsigned PeeledCaseIndex = 0; 12321 bool SwitchPeeled = false; 12322 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12323 CaseCluster &CC = Clusters[Index]; 12324 if (CC.Prob < TopCaseProb) 12325 continue; 12326 TopCaseProb = CC.Prob; 12327 PeeledCaseIndex = Index; 12328 SwitchPeeled = true; 12329 } 12330 if (!SwitchPeeled) 12331 return SwitchMBB; 12332 12333 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12334 << TopCaseProb << "\n"); 12335 12336 // Record the MBB for the peeled switch statement. 12337 MachineFunction::iterator BBI(SwitchMBB); 12338 ++BBI; 12339 MachineBasicBlock *PeeledSwitchMBB = 12340 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12341 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12342 12343 ExportFromCurrentBlock(SI.getCondition()); 12344 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12345 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12346 nullptr, nullptr, TopCaseProb.getCompl()}; 12347 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12348 12349 Clusters.erase(PeeledCaseIt); 12350 for (CaseCluster &CC : Clusters) { 12351 LLVM_DEBUG( 12352 dbgs() << "Scale the probablity for one cluster, before scaling: " 12353 << CC.Prob << "\n"); 12354 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12355 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12356 } 12357 PeeledCaseProb = TopCaseProb; 12358 return PeeledSwitchMBB; 12359 } 12360 12361 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12362 // Extract cases from the switch. 12363 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12364 CaseClusterVector Clusters; 12365 Clusters.reserve(SI.getNumCases()); 12366 for (auto I : SI.cases()) { 12367 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor()); 12368 const ConstantInt *CaseVal = I.getCaseValue(); 12369 BranchProbability Prob = 12370 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12371 : BranchProbability(1, SI.getNumCases() + 1); 12372 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12373 } 12374 12375 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest()); 12376 12377 // Cluster adjacent cases with the same destination. We do this at all 12378 // optimization levels because it's cheap to do and will make codegen faster 12379 // if there are many clusters. 12380 sortAndRangeify(Clusters); 12381 12382 // The branch probablity of the peeled case. 12383 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12384 MachineBasicBlock *PeeledSwitchMBB = 12385 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12386 12387 // If there is only the default destination, jump there directly. 12388 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12389 if (Clusters.empty()) { 12390 assert(PeeledSwitchMBB == SwitchMBB); 12391 SwitchMBB->addSuccessor(DefaultMBB); 12392 if (DefaultMBB != NextBlock(SwitchMBB)) { 12393 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12394 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12395 } 12396 return; 12397 } 12398 12399 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12400 DAG.getBFI()); 12401 SL->findBitTestClusters(Clusters, &SI); 12402 12403 LLVM_DEBUG({ 12404 dbgs() << "Case clusters: "; 12405 for (const CaseCluster &C : Clusters) { 12406 if (C.Kind == CC_JumpTable) 12407 dbgs() << "JT:"; 12408 if (C.Kind == CC_BitTests) 12409 dbgs() << "BT:"; 12410 12411 C.Low->getValue().print(dbgs(), true); 12412 if (C.Low != C.High) { 12413 dbgs() << '-'; 12414 C.High->getValue().print(dbgs(), true); 12415 } 12416 dbgs() << ' '; 12417 } 12418 dbgs() << '\n'; 12419 }); 12420 12421 assert(!Clusters.empty()); 12422 SwitchWorkList WorkList; 12423 CaseClusterIt First = Clusters.begin(); 12424 CaseClusterIt Last = Clusters.end() - 1; 12425 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12426 // Scale the branchprobability for DefaultMBB if the peel occurs and 12427 // DefaultMBB is not replaced. 12428 if (PeeledCaseProb != BranchProbability::getZero() && 12429 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest())) 12430 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12431 WorkList.push_back( 12432 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12433 12434 while (!WorkList.empty()) { 12435 SwitchWorkListItem W = WorkList.pop_back_val(); 12436 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12437 12438 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12439 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12440 // For optimized builds, lower large range as a balanced binary tree. 12441 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12442 continue; 12443 } 12444 12445 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12446 } 12447 } 12448 12449 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12451 auto DL = getCurSDLoc(); 12452 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12453 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12454 } 12455 12456 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12458 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12459 12460 SDLoc DL = getCurSDLoc(); 12461 SDValue V = getValue(I.getOperand(0)); 12462 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12463 12464 if (VT.isScalableVector()) { 12465 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12466 return; 12467 } 12468 12469 // Use VECTOR_SHUFFLE for the fixed-length vector 12470 // to maintain existing behavior. 12471 SmallVector<int, 8> Mask; 12472 unsigned NumElts = VT.getVectorMinNumElements(); 12473 for (unsigned i = 0; i != NumElts; ++i) 12474 Mask.push_back(NumElts - 1 - i); 12475 12476 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12477 } 12478 12479 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12480 auto DL = getCurSDLoc(); 12481 SDValue InVec = getValue(I.getOperand(0)); 12482 EVT OutVT = 12483 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12484 12485 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12486 12487 // ISD Node needs the input vectors split into two equal parts 12488 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12489 DAG.getVectorIdxConstant(0, DL)); 12490 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12491 DAG.getVectorIdxConstant(OutNumElts, DL)); 12492 12493 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12494 // legalisation and combines. 12495 if (OutVT.isFixedLengthVector()) { 12496 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12497 createStrideMask(0, 2, OutNumElts)); 12498 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12499 createStrideMask(1, 2, OutNumElts)); 12500 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12501 setValue(&I, Res); 12502 return; 12503 } 12504 12505 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12506 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12507 setValue(&I, Res); 12508 } 12509 12510 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12511 auto DL = getCurSDLoc(); 12512 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12513 SDValue InVec0 = getValue(I.getOperand(0)); 12514 SDValue InVec1 = getValue(I.getOperand(1)); 12515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12516 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12517 12518 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12519 // legalisation and combines. 12520 if (OutVT.isFixedLengthVector()) { 12521 unsigned NumElts = InVT.getVectorMinNumElements(); 12522 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12523 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12524 createInterleaveMask(NumElts, 2))); 12525 return; 12526 } 12527 12528 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12529 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12530 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12531 Res.getValue(1)); 12532 setValue(&I, Res); 12533 } 12534 12535 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12536 SmallVector<EVT, 4> ValueVTs; 12537 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12538 ValueVTs); 12539 unsigned NumValues = ValueVTs.size(); 12540 if (NumValues == 0) return; 12541 12542 SmallVector<SDValue, 4> Values(NumValues); 12543 SDValue Op = getValue(I.getOperand(0)); 12544 12545 for (unsigned i = 0; i != NumValues; ++i) 12546 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12547 SDValue(Op.getNode(), Op.getResNo() + i)); 12548 12549 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12550 DAG.getVTList(ValueVTs), Values)); 12551 } 12552 12553 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12555 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12556 12557 SDLoc DL = getCurSDLoc(); 12558 SDValue V1 = getValue(I.getOperand(0)); 12559 SDValue V2 = getValue(I.getOperand(1)); 12560 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12561 12562 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12563 if (VT.isScalableVector()) { 12564 setValue( 12565 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12566 DAG.getSignedConstant( 12567 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 12568 return; 12569 } 12570 12571 unsigned NumElts = VT.getVectorNumElements(); 12572 12573 uint64_t Idx = (NumElts + Imm) % NumElts; 12574 12575 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12576 SmallVector<int, 8> Mask; 12577 for (unsigned i = 0; i < NumElts; ++i) 12578 Mask.push_back(Idx + i); 12579 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12580 } 12581 12582 // Consider the following MIR after SelectionDAG, which produces output in 12583 // phyregs in the first case or virtregs in the second case. 12584 // 12585 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12586 // %5:gr32 = COPY $ebx 12587 // %6:gr32 = COPY $edx 12588 // %1:gr32 = COPY %6:gr32 12589 // %0:gr32 = COPY %5:gr32 12590 // 12591 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12592 // %1:gr32 = COPY %6:gr32 12593 // %0:gr32 = COPY %5:gr32 12594 // 12595 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12596 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12597 // 12598 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12599 // to a single virtreg (such as %0). The remaining outputs monotonically 12600 // increase in virtreg number from there. If a callbr has no outputs, then it 12601 // should not have a corresponding callbr landingpad; in fact, the callbr 12602 // landingpad would not even be able to refer to such a callbr. 12603 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12604 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12605 // There is definitely at least one copy. 12606 assert(MI->getOpcode() == TargetOpcode::COPY && 12607 "start of copy chain MUST be COPY"); 12608 Reg = MI->getOperand(1).getReg(); 12609 MI = MRI.def_begin(Reg)->getParent(); 12610 // There may be an optional second copy. 12611 if (MI->getOpcode() == TargetOpcode::COPY) { 12612 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12613 Reg = MI->getOperand(1).getReg(); 12614 assert(Reg.isPhysical() && "expected COPY of physical register"); 12615 MI = MRI.def_begin(Reg)->getParent(); 12616 } 12617 // The start of the chain must be an INLINEASM_BR. 12618 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12619 "end of copy chain MUST be INLINEASM_BR"); 12620 return Reg; 12621 } 12622 12623 // We must do this walk rather than the simpler 12624 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12625 // otherwise we will end up with copies of virtregs only valid along direct 12626 // edges. 12627 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12628 SmallVector<EVT, 8> ResultVTs; 12629 SmallVector<SDValue, 8> ResultValues; 12630 const auto *CBR = 12631 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12632 12633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12634 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12635 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12636 12637 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12638 SDValue Chain = DAG.getRoot(); 12639 12640 // Re-parse the asm constraints string. 12641 TargetLowering::AsmOperandInfoVector TargetConstraints = 12642 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12643 for (auto &T : TargetConstraints) { 12644 SDISelAsmOperandInfo OpInfo(T); 12645 if (OpInfo.Type != InlineAsm::isOutput) 12646 continue; 12647 12648 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12649 // individual constraint. 12650 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12651 12652 switch (OpInfo.ConstraintType) { 12653 case TargetLowering::C_Register: 12654 case TargetLowering::C_RegisterClass: { 12655 // Fill in OpInfo.AssignedRegs.Regs. 12656 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12657 12658 // getRegistersForValue may produce 1 to many registers based on whether 12659 // the OpInfo.ConstraintVT is legal on the target or not. 12660 for (Register &Reg : OpInfo.AssignedRegs.Regs) { 12661 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12662 if (Register::isPhysicalRegister(OriginalDef)) 12663 FuncInfo.MBB->addLiveIn(OriginalDef); 12664 // Update the assigned registers to use the original defs. 12665 Reg = OriginalDef; 12666 } 12667 12668 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12669 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12670 ResultValues.push_back(V); 12671 ResultVTs.push_back(OpInfo.ConstraintVT); 12672 break; 12673 } 12674 case TargetLowering::C_Other: { 12675 SDValue Flag; 12676 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12677 OpInfo, DAG); 12678 ++InitialDef; 12679 ResultValues.push_back(V); 12680 ResultVTs.push_back(OpInfo.ConstraintVT); 12681 break; 12682 } 12683 default: 12684 break; 12685 } 12686 } 12687 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12688 DAG.getVTList(ResultVTs), ResultValues); 12689 setValue(&I, V); 12690 } 12691