xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 13b5899c2904ba6b1f5223bf86679d046212da98)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsAMDGPU.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/InstructionCost.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Target/TargetIntrinsicInfo.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include "llvm/TargetParser/Triple.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <cstddef>
106 #include <limits>
107 #include <optional>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       SDValue InChain,
158                                       std::optional<CallingConv::ID> CC);
159 
160 /// getCopyFromParts - Create a value that contains the specified legal parts
161 /// combined into the value they represent.  If the parts combine to a type
162 /// larger than ValueVT then AssertOp can be used to specify whether the extra
163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164 /// (ISD::AssertSext).
165 static SDValue
166 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
167                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
168                  SDValue InChain,
169                  std::optional<CallingConv::ID> CC = std::nullopt,
170                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
171   // Let the target assemble the parts if it wants to
172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
173   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
174                                                    PartVT, ValueVT, CC))
175     return Val;
176 
177   if (ValueVT.isVector())
178     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
179                                   InChain, CC);
180 
181   assert(NumParts > 0 && "No parts to assemble!");
182   SDValue Val = Parts[0];
183 
184   if (NumParts > 1) {
185     // Assemble the value from multiple parts.
186     if (ValueVT.isInteger()) {
187       unsigned PartBits = PartVT.getSizeInBits();
188       unsigned ValueBits = ValueVT.getSizeInBits();
189 
190       // Assemble the power of 2 part.
191       unsigned RoundParts = llvm::bit_floor(NumParts);
192       unsigned RoundBits = PartBits * RoundParts;
193       EVT RoundVT = RoundBits == ValueBits ?
194         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195       SDValue Lo, Hi;
196 
197       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198 
199       if (RoundParts > 2) {
200         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
201                               InChain);
202         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
203                               PartVT, HalfVT, V, InChain);
204       } else {
205         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207       }
208 
209       if (DAG.getDataLayout().isBigEndian())
210         std::swap(Lo, Hi);
211 
212       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213 
214       if (RoundParts < NumParts) {
215         // Assemble the trailing non-power-of-2 part.
216         unsigned OddParts = NumParts - RoundParts;
217         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219                               OddVT, V, InChain, CC);
220 
221         // Combine the round and odd parts.
222         Lo = Val;
223         if (DAG.getDataLayout().isBigEndian())
224           std::swap(Lo, Hi);
225         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                          TLI.getShiftAmountTy(
230                                              TotalVT, DAG.getDataLayout())));
231         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
232         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
233       }
234     } else if (PartVT.isFloatingPoint()) {
235       // FP split into multiple FP parts (for ppcf128)
236       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
237              "Unexpected split");
238       SDValue Lo, Hi;
239       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
240       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
241       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
242         std::swap(Lo, Hi);
243       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
244     } else {
245       // FP split into integer parts (soft fp)
246       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
247              !PartVT.isVector() && "Unexpected split");
248       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
249       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
250                              InChain, CC);
251     }
252   }
253 
254   // There is now one part, held in Val.  Correct it to match ValueVT.
255   // PartEVT is the type of the register class that holds the value.
256   // ValueVT is the type of the inline asm operation.
257   EVT PartEVT = Val.getValueType();
258 
259   if (PartEVT == ValueVT)
260     return Val;
261 
262   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
263       ValueVT.bitsLT(PartEVT)) {
264     // For an FP value in an integer part, we need to truncate to the right
265     // width first.
266     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
267     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
268   }
269 
270   // Handle types that have the same size.
271   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
272     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
273 
274   // Handle types with different sizes.
275   if (PartEVT.isInteger() && ValueVT.isInteger()) {
276     if (ValueVT.bitsLT(PartEVT)) {
277       // For a truncate, see if we have any information to
278       // indicate whether the truncated bits will always be
279       // zero or sign-extension.
280       if (AssertOp)
281         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
282                           DAG.getValueType(ValueVT));
283       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
284     }
285     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
286   }
287 
288   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
289     // FP_ROUND's are always exact here.
290     if (ValueVT.bitsLT(Val.getValueType())) {
291 
292       SDValue NoChange =
293           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
294 
295       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
296               llvm::Attribute::StrictFP)) {
297         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
298                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
299                            NoChange);
300       }
301 
302       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
303     }
304 
305     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
306   }
307 
308   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
309   // then truncating.
310   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
311       ValueVT.bitsLT(PartEVT)) {
312     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
313     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
314   }
315 
316   report_fatal_error("Unknown mismatch in getCopyFromParts!");
317 }
318 
319 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
320                                               const Twine &ErrMsg) {
321   const Instruction *I = dyn_cast_or_null<Instruction>(V);
322   if (!V)
323     return Ctx.emitError(ErrMsg);
324 
325   const char *AsmError = ", possible invalid constraint for vector type";
326   if (const CallInst *CI = dyn_cast<CallInst>(I))
327     if (CI->isInlineAsm())
328       return Ctx.emitError(I, ErrMsg + AsmError);
329 
330   return Ctx.emitError(I, ErrMsg);
331 }
332 
333 /// getCopyFromPartsVector - Create a value that contains the specified legal
334 /// parts combined into the value they represent.  If the parts combine to a
335 /// type larger than ValueVT then AssertOp can be used to specify whether the
336 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
337 /// ValueVT (ISD::AssertSext).
338 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
339                                       const SDValue *Parts, unsigned NumParts,
340                                       MVT PartVT, EVT ValueVT, const Value *V,
341                                       SDValue InChain,
342                                       std::optional<CallingConv::ID> CallConv) {
343   assert(ValueVT.isVector() && "Not a vector value");
344   assert(NumParts > 0 && "No parts to assemble!");
345   const bool IsABIRegCopy = CallConv.has_value();
346 
347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348   SDValue Val = Parts[0];
349 
350   // Handle a multi-element vector.
351   if (NumParts > 1) {
352     EVT IntermediateVT;
353     MVT RegisterVT;
354     unsigned NumIntermediates;
355     unsigned NumRegs;
356 
357     if (IsABIRegCopy) {
358       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
359           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
360           NumIntermediates, RegisterVT);
361     } else {
362       NumRegs =
363           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
364                                      NumIntermediates, RegisterVT);
365     }
366 
367     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
368     NumParts = NumRegs; // Silence a compiler warning.
369     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
370     assert(RegisterVT.getSizeInBits() ==
371            Parts[0].getSimpleValueType().getSizeInBits() &&
372            "Part type sizes don't match!");
373 
374     // Assemble the parts into intermediate operands.
375     SmallVector<SDValue, 8> Ops(NumIntermediates);
376     if (NumIntermediates == NumParts) {
377       // If the register was not expanded, truncate or copy the value,
378       // as appropriate.
379       for (unsigned i = 0; i != NumParts; ++i)
380         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
381                                   V, InChain, CallConv);
382     } else if (NumParts > 0) {
383       // If the intermediate type was expanded, build the intermediate
384       // operands from the parts.
385       assert(NumParts % NumIntermediates == 0 &&
386              "Must expand into a divisible number of parts!");
387       unsigned Factor = NumParts / NumIntermediates;
388       for (unsigned i = 0; i != NumIntermediates; ++i)
389         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
390                                   IntermediateVT, V, InChain, CallConv);
391     }
392 
393     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
394     // intermediate operands.
395     EVT BuiltVectorTy =
396         IntermediateVT.isVector()
397             ? EVT::getVectorVT(
398                   *DAG.getContext(), IntermediateVT.getScalarType(),
399                   IntermediateVT.getVectorElementCount() * NumParts)
400             : EVT::getVectorVT(*DAG.getContext(),
401                                IntermediateVT.getScalarType(),
402                                NumIntermediates);
403     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
404                                                 : ISD::BUILD_VECTOR,
405                       DL, BuiltVectorTy, Ops);
406   }
407 
408   // There is now one part, held in Val.  Correct it to match ValueVT.
409   EVT PartEVT = Val.getValueType();
410 
411   if (PartEVT == ValueVT)
412     return Val;
413 
414   if (PartEVT.isVector()) {
415     // Vector/Vector bitcast.
416     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
417       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
418 
419     // If the parts vector has more elements than the value vector, then we
420     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
421     // Extract the elements we want.
422     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
423       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
424               ValueVT.getVectorElementCount().getKnownMinValue()) &&
425              (PartEVT.getVectorElementCount().isScalable() ==
426               ValueVT.getVectorElementCount().isScalable()) &&
427              "Cannot narrow, it would be a lossy transformation");
428       PartEVT =
429           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
430                            ValueVT.getVectorElementCount());
431       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
432                         DAG.getVectorIdxConstant(0, DL));
433       if (PartEVT == ValueVT)
434         return Val;
435       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
436         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437 
438       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
439       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
440         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441     }
442 
443     // Promoted vector extract
444     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
445   }
446 
447   // Trivial bitcast if the types are the same size and the destination
448   // vector type is legal.
449   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
450       TLI.isTypeLegal(ValueVT))
451     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452 
453   if (ValueVT.getVectorNumElements() != 1) {
454      // Certain ABIs require that vectors are passed as integers. For vectors
455      // are the same size, this is an obvious bitcast.
456      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
457        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458      } else if (ValueVT.bitsLT(PartEVT)) {
459        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
460        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461        // Drop the extra bits.
462        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463        return DAG.getBitcast(ValueVT, Val);
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
474     unsigned ValueSize = ValueSVT.getSizeInBits();
475     if (ValueSize == PartEVT.getSizeInBits()) {
476       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
477     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
478       // It's possible a scalar floating point type gets softened to integer and
479       // then promoted to a larger integer. If PartEVT is the larger integer
480       // we need to truncate it and then bitcast to the FP type.
481       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
482       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
483       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
484       Val = DAG.getBitcast(ValueSVT, Val);
485     } else {
486       Val = ValueVT.isFloatingPoint()
487                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
488                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
489     }
490   }
491 
492   return DAG.getBuildVector(ValueVT, DL, Val);
493 }
494 
495 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
496                                  SDValue Val, SDValue *Parts, unsigned NumParts,
497                                  MVT PartVT, const Value *V,
498                                  std::optional<CallingConv::ID> CallConv);
499 
500 /// getCopyToParts - Create a series of nodes that contain the specified value
501 /// split into legal parts.  If the parts contain more bits than Val, then, for
502 /// integers, ExtendKind can be used to specify how to generate the extra bits.
503 static void
504 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
505                unsigned NumParts, MVT PartVT, const Value *V,
506                std::optional<CallingConv::ID> CallConv = std::nullopt,
507                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
508   // Let the target split the parts if it wants to
509   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
510   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
511                                       CallConv))
512     return;
513   EVT ValueVT = Val.getValueType();
514 
515   // Handle the vector case separately.
516   if (ValueVT.isVector())
517     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518                                 CallConv);
519 
520   unsigned OrigNumParts = NumParts;
521   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
522          "Copying to an illegal type!");
523 
524   if (NumParts == 0)
525     return;
526 
527   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528   EVT PartEVT = PartVT;
529   if (PartEVT == ValueVT) {
530     assert(NumParts == 1 && "No-op copy with multiple parts!");
531     Parts[0] = Val;
532     return;
533   }
534 
535   unsigned PartBits = PartVT.getSizeInBits();
536   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537     // If the parts cover more bits than the value has, promote the value.
538     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539       assert(NumParts == 1 && "Do not know what to promote to!");
540       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541     } else {
542       if (ValueVT.isFloatingPoint()) {
543         // FP values need to be bitcast, then extended if they are being put
544         // into a larger container.
545         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
546         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547       }
548       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549              ValueVT.isInteger() &&
550              "Unknown mismatch!");
551       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553       if (PartVT == MVT::x86mmx)
554         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555     }
556   } else if (PartBits == ValueVT.getSizeInBits()) {
557     // Different types of the same size.
558     assert(NumParts == 1 && PartEVT != ValueVT);
559     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561     // If the parts cover less bits than value has, truncate the value.
562     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563            ValueVT.isInteger() &&
564            "Unknown mismatch!");
565     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567     if (PartVT == MVT::x86mmx)
568       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569   }
570 
571   // The value may have changed - recompute ValueVT.
572   ValueVT = Val.getValueType();
573   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574          "Failed to tile the value with PartVT!");
575 
576   if (NumParts == 1) {
577     if (PartEVT != ValueVT) {
578       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
579                                         "scalar-to-vector conversion failed");
580       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581     }
582 
583     Parts[0] = Val;
584     return;
585   }
586 
587   // Expand the value into multiple parts.
588   if (NumParts & (NumParts - 1)) {
589     // The number of parts is not a power of 2.  Split off and copy the tail.
590     assert(PartVT.isInteger() && ValueVT.isInteger() &&
591            "Do not know what to expand to!");
592     unsigned RoundParts = llvm::bit_floor(NumParts);
593     unsigned RoundBits = RoundParts * PartBits;
594     unsigned OddParts = NumParts - RoundParts;
595     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
597 
598     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599                    CallConv);
600 
601     if (DAG.getDataLayout().isBigEndian())
602       // The odd parts were reversed by getCopyToParts - unreverse them.
603       std::reverse(Parts + RoundParts, Parts + NumParts);
604 
605     NumParts = RoundParts;
606     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608   }
609 
610   // The number of parts is a power of 2.  Repeatedly bisect the value using
611   // EXTRACT_ELEMENT.
612   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
613                          EVT::getIntegerVT(*DAG.getContext(),
614                                            ValueVT.getSizeInBits()),
615                          Val);
616 
617   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618     for (unsigned i = 0; i < NumParts; i += StepSize) {
619       unsigned ThisBits = StepSize * PartBits / 2;
620       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621       SDValue &Part0 = Parts[i];
622       SDValue &Part1 = Parts[i+StepSize/2];
623 
624       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628 
629       if (ThisBits == PartBits && ThisVT != PartVT) {
630         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632       }
633     }
634   }
635 
636   if (DAG.getDataLayout().isBigEndian())
637     std::reverse(Parts, Parts + OrigNumParts);
638 }
639 
640 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
641                                      const SDLoc &DL, EVT PartVT) {
642   if (!PartVT.isVector())
643     return SDValue();
644 
645   EVT ValueVT = Val.getValueType();
646   EVT PartEVT = PartVT.getVectorElementType();
647   EVT ValueEVT = ValueVT.getVectorElementType();
648   ElementCount PartNumElts = PartVT.getVectorElementCount();
649   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
650 
651   // We only support widening vectors with equivalent element types and
652   // fixed/scalable properties. If a target needs to widen a fixed-length type
653   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
654   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
655       PartNumElts.isScalable() != ValueNumElts.isScalable())
656     return SDValue();
657 
658   // Have a try for bf16 because some targets share its ABI with fp16.
659   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
660     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
661            "Cannot widen to illegal type");
662     Val = DAG.getNode(ISD::BITCAST, DL,
663                       ValueVT.changeVectorElementType(MVT::f16), Val);
664   } else if (PartEVT != ValueEVT) {
665     return SDValue();
666   }
667 
668   // Widening a scalable vector to another scalable vector is done by inserting
669   // the vector into a larger undef one.
670   if (PartNumElts.isScalable())
671     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
672                        Val, DAG.getVectorIdxConstant(0, DL));
673 
674   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
675   // undef elements.
676   SmallVector<SDValue, 16> Ops;
677   DAG.ExtractVectorElements(Val, Ops);
678   SDValue EltUndef = DAG.getUNDEF(PartEVT);
679   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
680 
681   // FIXME: Use CONCAT for 2x -> 4x.
682   return DAG.getBuildVector(PartVT, DL, Ops);
683 }
684 
685 /// getCopyToPartsVector - Create a series of nodes that contain the specified
686 /// value split into legal parts.
687 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
688                                  SDValue Val, SDValue *Parts, unsigned NumParts,
689                                  MVT PartVT, const Value *V,
690                                  std::optional<CallingConv::ID> CallConv) {
691   EVT ValueVT = Val.getValueType();
692   assert(ValueVT.isVector() && "Not a vector");
693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
694   const bool IsABIRegCopy = CallConv.has_value();
695 
696   if (NumParts == 1) {
697     EVT PartEVT = PartVT;
698     if (PartEVT == ValueVT) {
699       // Nothing to do.
700     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
701       // Bitconvert vector->vector case.
702       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
703     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
704       Val = Widened;
705     } else if (PartVT.isVector() &&
706                PartEVT.getVectorElementType().bitsGE(
707                    ValueVT.getVectorElementType()) &&
708                PartEVT.getVectorElementCount() ==
709                    ValueVT.getVectorElementCount()) {
710 
711       // Promoted vector extract
712       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
713     } else if (PartEVT.isVector() &&
714                PartEVT.getVectorElementType() !=
715                    ValueVT.getVectorElementType() &&
716                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
717                    TargetLowering::TypeWidenVector) {
718       // Combination of widening and promotion.
719       EVT WidenVT =
720           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
721                            PartVT.getVectorElementCount());
722       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
723       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
724     } else {
725       // Don't extract an integer from a float vector. This can happen if the
726       // FP type gets softened to integer and then promoted. The promotion
727       // prevents it from being picked up by the earlier bitcast case.
728       if (ValueVT.getVectorElementCount().isScalar() &&
729           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
730         // If we reach this condition and PartVT is FP, this means that
731         // ValueVT is also FP and both have a different size, otherwise we
732         // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
733         // would be invalid since that would mean the smaller FP type has to
734         // be extended to the larger one.
735         if (PartVT.isFloatingPoint()) {
736           Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
737           Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
738         } else
739           Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
740                             DAG.getVectorIdxConstant(0, DL));
741       } else {
742         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
743         assert(PartVT.getFixedSizeInBits() > ValueSize &&
744                "lossy conversion of vector to scalar type");
745         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
746         Val = DAG.getBitcast(IntermediateType, Val);
747         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
748       }
749     }
750 
751     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
752     Parts[0] = Val;
753     return;
754   }
755 
756   // Handle a multi-element vector.
757   EVT IntermediateVT;
758   MVT RegisterVT;
759   unsigned NumIntermediates;
760   unsigned NumRegs;
761   if (IsABIRegCopy) {
762     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
763         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
764         RegisterVT);
765   } else {
766     NumRegs =
767         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
768                                    NumIntermediates, RegisterVT);
769   }
770 
771   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
772   NumParts = NumRegs; // Silence a compiler warning.
773   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
774 
775   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
776          "Mixing scalable and fixed vectors when copying in parts");
777 
778   std::optional<ElementCount> DestEltCnt;
779 
780   if (IntermediateVT.isVector())
781     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
782   else
783     DestEltCnt = ElementCount::getFixed(NumIntermediates);
784 
785   EVT BuiltVectorTy = EVT::getVectorVT(
786       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
787 
788   if (ValueVT == BuiltVectorTy) {
789     // Nothing to do.
790   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
791     // Bitconvert vector->vector case.
792     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
793   } else {
794     if (BuiltVectorTy.getVectorElementType().bitsGT(
795             ValueVT.getVectorElementType())) {
796       // Integer promotion.
797       ValueVT = EVT::getVectorVT(*DAG.getContext(),
798                                  BuiltVectorTy.getVectorElementType(),
799                                  ValueVT.getVectorElementCount());
800       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
801     }
802 
803     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
804       Val = Widened;
805     }
806   }
807 
808   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
809 
810   // Split the vector into intermediate operands.
811   SmallVector<SDValue, 8> Ops(NumIntermediates);
812   for (unsigned i = 0; i != NumIntermediates; ++i) {
813     if (IntermediateVT.isVector()) {
814       // This does something sensible for scalable vectors - see the
815       // definition of EXTRACT_SUBVECTOR for further details.
816       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
817       Ops[i] =
818           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
819                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
820     } else {
821       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
822                            DAG.getVectorIdxConstant(i, DL));
823     }
824   }
825 
826   // Split the intermediate operands into legal parts.
827   if (NumParts == NumIntermediates) {
828     // If the register was not expanded, promote or copy the value,
829     // as appropriate.
830     for (unsigned i = 0; i != NumParts; ++i)
831       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
832   } else if (NumParts > 0) {
833     // If the intermediate type was expanded, split each the value into
834     // legal parts.
835     assert(NumIntermediates != 0 && "division by zero");
836     assert(NumParts % NumIntermediates == 0 &&
837            "Must expand into a divisible number of parts!");
838     unsigned Factor = NumParts / NumIntermediates;
839     for (unsigned i = 0; i != NumIntermediates; ++i)
840       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
841                      CallConv);
842   }
843 }
844 
845 RegsForValue::RegsForValue(const SmallVector<Register, 4> &regs, MVT regvt,
846                            EVT valuevt, std::optional<CallingConv::ID> CC)
847     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
848       RegCount(1, regs.size()), CallConv(CC) {}
849 
850 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
851                            const DataLayout &DL, Register Reg, Type *Ty,
852                            std::optional<CallingConv::ID> CC) {
853   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
854 
855   CallConv = CC;
856 
857   for (EVT ValueVT : ValueVTs) {
858     unsigned NumRegs =
859         isABIMangled()
860             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
861             : TLI.getNumRegisters(Context, ValueVT);
862     MVT RegisterVT =
863         isABIMangled()
864             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
865             : TLI.getRegisterType(Context, ValueVT);
866     for (unsigned i = 0; i != NumRegs; ++i)
867       Regs.push_back(Reg + i);
868     RegVTs.push_back(RegisterVT);
869     RegCount.push_back(NumRegs);
870     Reg = Reg.id() + NumRegs;
871   }
872 }
873 
874 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
875                                       FunctionLoweringInfo &FuncInfo,
876                                       const SDLoc &dl, SDValue &Chain,
877                                       SDValue *Glue, const Value *V) const {
878   // A Value with type {} or [0 x %t] needs no registers.
879   if (ValueVTs.empty())
880     return SDValue();
881 
882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
883 
884   // Assemble the legal parts into the final values.
885   SmallVector<SDValue, 4> Values(ValueVTs.size());
886   SmallVector<SDValue, 8> Parts;
887   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
888     // Copy the legal parts from the registers.
889     EVT ValueVT = ValueVTs[Value];
890     unsigned NumRegs = RegCount[Value];
891     MVT RegisterVT = isABIMangled()
892                          ? TLI.getRegisterTypeForCallingConv(
893                                *DAG.getContext(), *CallConv, RegVTs[Value])
894                          : RegVTs[Value];
895 
896     Parts.resize(NumRegs);
897     for (unsigned i = 0; i != NumRegs; ++i) {
898       SDValue P;
899       if (!Glue) {
900         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
901       } else {
902         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
903         *Glue = P.getValue(2);
904       }
905 
906       Chain = P.getValue(1);
907       Parts[i] = P;
908 
909       // If the source register was virtual and if we know something about it,
910       // add an assert node.
911       if (!Register::isVirtualRegister(Regs[Part + i]) ||
912           !RegisterVT.isInteger())
913         continue;
914 
915       const FunctionLoweringInfo::LiveOutInfo *LOI =
916         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
917       if (!LOI)
918         continue;
919 
920       unsigned RegSize = RegisterVT.getScalarSizeInBits();
921       unsigned NumSignBits = LOI->NumSignBits;
922       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
923 
924       if (NumZeroBits == RegSize) {
925         // The current value is a zero.
926         // Explicitly express that as it would be easier for
927         // optimizations to kick in.
928         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
929         continue;
930       }
931 
932       // FIXME: We capture more information than the dag can represent.  For
933       // now, just use the tightest assertzext/assertsext possible.
934       bool isSExt;
935       EVT FromVT(MVT::Other);
936       if (NumZeroBits) {
937         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
938         isSExt = false;
939       } else if (NumSignBits > 1) {
940         FromVT =
941             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
942         isSExt = true;
943       } else {
944         continue;
945       }
946       // Add an assertion node.
947       assert(FromVT != MVT::Other);
948       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
949                              RegisterVT, P, DAG.getValueType(FromVT));
950     }
951 
952     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
953                                      RegisterVT, ValueVT, V, Chain, CallConv);
954     Part += NumRegs;
955     Parts.clear();
956   }
957 
958   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
959 }
960 
961 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
962                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
963                                  const Value *V,
964                                  ISD::NodeType PreferredExtendType) const {
965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
966   ISD::NodeType ExtendKind = PreferredExtendType;
967 
968   // Get the list of the values's legal parts.
969   unsigned NumRegs = Regs.size();
970   SmallVector<SDValue, 8> Parts(NumRegs);
971   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
972     unsigned NumParts = RegCount[Value];
973 
974     MVT RegisterVT = isABIMangled()
975                          ? TLI.getRegisterTypeForCallingConv(
976                                *DAG.getContext(), *CallConv, RegVTs[Value])
977                          : RegVTs[Value];
978 
979     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
980       ExtendKind = ISD::ZERO_EXTEND;
981 
982     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
983                    NumParts, RegisterVT, V, CallConv, ExtendKind);
984     Part += NumParts;
985   }
986 
987   // Copy the parts into the registers.
988   SmallVector<SDValue, 8> Chains(NumRegs);
989   for (unsigned i = 0; i != NumRegs; ++i) {
990     SDValue Part;
991     if (!Glue) {
992       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
993     } else {
994       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
995       *Glue = Part.getValue(1);
996     }
997 
998     Chains[i] = Part.getValue(0);
999   }
1000 
1001   if (NumRegs == 1 || Glue)
1002     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1003     // flagged to it. That is the CopyToReg nodes and the user are considered
1004     // a single scheduling unit. If we create a TokenFactor and return it as
1005     // chain, then the TokenFactor is both a predecessor (operand) of the
1006     // user as well as a successor (the TF operands are flagged to the user).
1007     // c1, f1 = CopyToReg
1008     // c2, f2 = CopyToReg
1009     // c3     = TokenFactor c1, c2
1010     // ...
1011     //        = op c3, ..., f2
1012     Chain = Chains[NumRegs-1];
1013   else
1014     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1015 }
1016 
1017 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1018                                         unsigned MatchingIdx, const SDLoc &dl,
1019                                         SelectionDAG &DAG,
1020                                         std::vector<SDValue> &Ops) const {
1021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1022 
1023   InlineAsm::Flag Flag(Code, Regs.size());
1024   if (HasMatching)
1025     Flag.setMatchingOp(MatchingIdx);
1026   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1027     // Put the register class of the virtual registers in the flag word.  That
1028     // way, later passes can recompute register class constraints for inline
1029     // assembly as well as normal instructions.
1030     // Don't do this for tied operands that can use the regclass information
1031     // from the def.
1032     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1033     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1034     Flag.setRegClass(RC->getID());
1035   }
1036 
1037   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1038   Ops.push_back(Res);
1039 
1040   if (Code == InlineAsm::Kind::Clobber) {
1041     // Clobbers should always have a 1:1 mapping with registers, and may
1042     // reference registers that have illegal (e.g. vector) types. Hence, we
1043     // shouldn't try to apply any sort of splitting logic to them.
1044     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1045            "No 1:1 mapping from clobbers to regs?");
1046     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1047     (void)SP;
1048     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1049       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1050       assert(
1051           (Regs[I] != SP ||
1052            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1053           "If we clobbered the stack pointer, MFI should know about it.");
1054     }
1055     return;
1056   }
1057 
1058   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1059     MVT RegisterVT = RegVTs[Value];
1060     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1061                                            RegisterVT);
1062     for (unsigned i = 0; i != NumRegs; ++i) {
1063       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1064       unsigned TheReg = Regs[Reg++];
1065       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1066     }
1067   }
1068 }
1069 
1070 SmallVector<std::pair<Register, TypeSize>, 4>
1071 RegsForValue::getRegsAndSizes() const {
1072   SmallVector<std::pair<Register, TypeSize>, 4> OutVec;
1073   unsigned I = 0;
1074   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1075     unsigned RegCount = std::get<0>(CountAndVT);
1076     MVT RegisterVT = std::get<1>(CountAndVT);
1077     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1078     for (unsigned E = I + RegCount; I != E; ++I)
1079       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1080   }
1081   return OutVec;
1082 }
1083 
1084 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1085                                AssumptionCache *ac,
1086                                const TargetLibraryInfo *li) {
1087   AA = aa;
1088   AC = ac;
1089   GFI = gfi;
1090   LibInfo = li;
1091   Context = DAG.getContext();
1092   LPadToCallSiteMap.clear();
1093   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1094   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1095       *DAG.getMachineFunction().getFunction().getParent());
1096 }
1097 
1098 void SelectionDAGBuilder::clear() {
1099   NodeMap.clear();
1100   UnusedArgNodeMap.clear();
1101   PendingLoads.clear();
1102   PendingExports.clear();
1103   PendingConstrainedFP.clear();
1104   PendingConstrainedFPStrict.clear();
1105   CurInst = nullptr;
1106   HasTailCall = false;
1107   SDNodeOrder = LowestSDNodeOrder;
1108   StatepointLowering.clear();
1109 }
1110 
1111 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1112   DanglingDebugInfoMap.clear();
1113 }
1114 
1115 // Update DAG root to include dependencies on Pending chains.
1116 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1117   SDValue Root = DAG.getRoot();
1118 
1119   if (Pending.empty())
1120     return Root;
1121 
1122   // Add current root to PendingChains, unless we already indirectly
1123   // depend on it.
1124   if (Root.getOpcode() != ISD::EntryToken) {
1125     unsigned i = 0, e = Pending.size();
1126     for (; i != e; ++i) {
1127       assert(Pending[i].getNode()->getNumOperands() > 1);
1128       if (Pending[i].getNode()->getOperand(0) == Root)
1129         break;  // Don't add the root if we already indirectly depend on it.
1130     }
1131 
1132     if (i == e)
1133       Pending.push_back(Root);
1134   }
1135 
1136   if (Pending.size() == 1)
1137     Root = Pending[0];
1138   else
1139     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1140 
1141   DAG.setRoot(Root);
1142   Pending.clear();
1143   return Root;
1144 }
1145 
1146 SDValue SelectionDAGBuilder::getMemoryRoot() {
1147   return updateRoot(PendingLoads);
1148 }
1149 
1150 SDValue SelectionDAGBuilder::getRoot() {
1151   // Chain up all pending constrained intrinsics together with all
1152   // pending loads, by simply appending them to PendingLoads and
1153   // then calling getMemoryRoot().
1154   PendingLoads.reserve(PendingLoads.size() +
1155                        PendingConstrainedFP.size() +
1156                        PendingConstrainedFPStrict.size());
1157   PendingLoads.append(PendingConstrainedFP.begin(),
1158                       PendingConstrainedFP.end());
1159   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1160                       PendingConstrainedFPStrict.end());
1161   PendingConstrainedFP.clear();
1162   PendingConstrainedFPStrict.clear();
1163   return getMemoryRoot();
1164 }
1165 
1166 SDValue SelectionDAGBuilder::getControlRoot() {
1167   // We need to emit pending fpexcept.strict constrained intrinsics,
1168   // so append them to the PendingExports list.
1169   PendingExports.append(PendingConstrainedFPStrict.begin(),
1170                         PendingConstrainedFPStrict.end());
1171   PendingConstrainedFPStrict.clear();
1172   return updateRoot(PendingExports);
1173 }
1174 
1175 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1176                                              DILocalVariable *Variable,
1177                                              DIExpression *Expression,
1178                                              DebugLoc DL) {
1179   assert(Variable && "Missing variable");
1180 
1181   // Check if address has undef value.
1182   if (!Address || isa<UndefValue>(Address) ||
1183       (Address->use_empty() && !isa<Argument>(Address))) {
1184     LLVM_DEBUG(
1185         dbgs()
1186         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1187     return;
1188   }
1189 
1190   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1191 
1192   SDValue &N = NodeMap[Address];
1193   if (!N.getNode() && isa<Argument>(Address))
1194     // Check unused arguments map.
1195     N = UnusedArgNodeMap[Address];
1196   SDDbgValue *SDV;
1197   if (N.getNode()) {
1198     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1199       Address = BCI->getOperand(0);
1200     // Parameters are handled specially.
1201     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1202     if (IsParameter && FINode) {
1203       // Byval parameter. We have a frame index at this point.
1204       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1205                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1206     } else if (isa<Argument>(Address)) {
1207       // Address is an argument, so try to emit its dbg value using
1208       // virtual register info from the FuncInfo.ValueMap.
1209       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1210                                FuncArgumentDbgValueKind::Declare, N);
1211       return;
1212     } else {
1213       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1214                             true, DL, SDNodeOrder);
1215     }
1216     DAG.AddDbgValue(SDV, IsParameter);
1217   } else {
1218     // If Address is an argument then try to emit its dbg value using
1219     // virtual register info from the FuncInfo.ValueMap.
1220     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1221                                   FuncArgumentDbgValueKind::Declare, N)) {
1222       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1223                         << " (could not emit func-arg dbg_value)\n");
1224     }
1225   }
1226   return;
1227 }
1228 
1229 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1230   // Add SDDbgValue nodes for any var locs here. Do so before updating
1231   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1232   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1233     // Add SDDbgValue nodes for any var locs here. Do so before updating
1234     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1235     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1236          It != End; ++It) {
1237       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1238       dropDanglingDebugInfo(Var, It->Expr);
1239       if (It->Values.isKillLocation(It->Expr)) {
1240         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1241         continue;
1242       }
1243       SmallVector<Value *> Values(It->Values.location_ops());
1244       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1245                             It->Values.hasArgList())) {
1246         SmallVector<Value *, 4> Vals(It->Values.location_ops());
1247         addDanglingDebugInfo(Vals,
1248                              FnVarLocs->getDILocalVariable(It->VariableID),
1249                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1250       }
1251     }
1252   }
1253 
1254   // We must skip DbgVariableRecords if they've already been processed above as
1255   // we have just emitted the debug values resulting from assignment tracking
1256   // analysis, making any existing DbgVariableRecords redundant (and probably
1257   // less correct). We still need to process DbgLabelRecords. This does sink
1258   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1259   // be important as it does so deterministcally and ordering between
1260   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1261   // printing).
1262   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1263   // Is there is any debug-info attached to this instruction, in the form of
1264   // DbgRecord non-instruction debug-info records.
1265   for (DbgRecord &DR : I.getDbgRecordRange()) {
1266     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1267       assert(DLR->getLabel() && "Missing label");
1268       SDDbgLabel *SDV =
1269           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1270       DAG.AddDbgLabel(SDV);
1271       continue;
1272     }
1273 
1274     if (SkipDbgVariableRecords)
1275       continue;
1276     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1277     DILocalVariable *Variable = DVR.getVariable();
1278     DIExpression *Expression = DVR.getExpression();
1279     dropDanglingDebugInfo(Variable, Expression);
1280 
1281     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1282       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1283         continue;
1284       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1285                         << "\n");
1286       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1287                          DVR.getDebugLoc());
1288       continue;
1289     }
1290 
1291     // A DbgVariableRecord with no locations is a kill location.
1292     SmallVector<Value *, 4> Values(DVR.location_ops());
1293     if (Values.empty()) {
1294       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1295                            SDNodeOrder);
1296       continue;
1297     }
1298 
1299     // A DbgVariableRecord with an undef or absent location is also a kill
1300     // location.
1301     if (llvm::any_of(Values,
1302                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1303       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1304                            SDNodeOrder);
1305       continue;
1306     }
1307 
1308     bool IsVariadic = DVR.hasArgList();
1309     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1310                           SDNodeOrder, IsVariadic)) {
1311       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1312                            DVR.getDebugLoc(), SDNodeOrder);
1313     }
1314   }
1315 }
1316 
1317 void SelectionDAGBuilder::visit(const Instruction &I) {
1318   visitDbgInfo(I);
1319 
1320   // Set up outgoing PHI node register values before emitting the terminator.
1321   if (I.isTerminator()) {
1322     HandlePHINodesInSuccessorBlocks(I.getParent());
1323   }
1324 
1325   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1326   if (!isa<DbgInfoIntrinsic>(I))
1327     ++SDNodeOrder;
1328 
1329   CurInst = &I;
1330 
1331   // Set inserted listener only if required.
1332   bool NodeInserted = false;
1333   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1334   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1335   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1336   if (PCSectionsMD || MMRA) {
1337     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1338         DAG, [&](SDNode *) { NodeInserted = true; });
1339   }
1340 
1341   visit(I.getOpcode(), I);
1342 
1343   if (!I.isTerminator() && !HasTailCall &&
1344       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1345     CopyToExportRegsIfNeeded(&I);
1346 
1347   // Handle metadata.
1348   if (PCSectionsMD || MMRA) {
1349     auto It = NodeMap.find(&I);
1350     if (It != NodeMap.end()) {
1351       if (PCSectionsMD)
1352         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1353       if (MMRA)
1354         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1355     } else if (NodeInserted) {
1356       // This should not happen; if it does, don't let it go unnoticed so we can
1357       // fix it. Relevant visit*() function is probably missing a setValue().
1358       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1359              << I.getModule()->getName() << "]\n";
1360       LLVM_DEBUG(I.dump());
1361       assert(false);
1362     }
1363   }
1364 
1365   CurInst = nullptr;
1366 }
1367 
1368 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1369   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1370 }
1371 
1372 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1373   // Note: this doesn't use InstVisitor, because it has to work with
1374   // ConstantExpr's in addition to instructions.
1375   switch (Opcode) {
1376   default: llvm_unreachable("Unknown instruction type encountered!");
1377     // Build the switch statement using the Instruction.def file.
1378 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1379     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1380 #include "llvm/IR/Instruction.def"
1381   }
1382 }
1383 
1384 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1385                                             DILocalVariable *Variable,
1386                                             DebugLoc DL, unsigned Order,
1387                                             SmallVectorImpl<Value *> &Values,
1388                                             DIExpression *Expression) {
1389   // For variadic dbg_values we will now insert an undef.
1390   // FIXME: We can potentially recover these!
1391   SmallVector<SDDbgOperand, 2> Locs;
1392   for (const Value *V : Values) {
1393     auto *Undef = UndefValue::get(V->getType());
1394     Locs.push_back(SDDbgOperand::fromConst(Undef));
1395   }
1396   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1397                                         /*IsIndirect=*/false, DL, Order,
1398                                         /*IsVariadic=*/true);
1399   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1400   return true;
1401 }
1402 
1403 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1404                                                DILocalVariable *Var,
1405                                                DIExpression *Expr,
1406                                                bool IsVariadic, DebugLoc DL,
1407                                                unsigned Order) {
1408   if (IsVariadic) {
1409     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1410     return;
1411   }
1412   // TODO: Dangling debug info will eventually either be resolved or produce
1413   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1414   // between the original dbg.value location and its resolved DBG_VALUE,
1415   // which we should ideally fill with an extra Undef DBG_VALUE.
1416   assert(Values.size() == 1);
1417   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1418 }
1419 
1420 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1421                                                 const DIExpression *Expr) {
1422   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1423     DIVariable *DanglingVariable = DDI.getVariable();
1424     DIExpression *DanglingExpr = DDI.getExpression();
1425     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1426       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1427                         << printDDI(nullptr, DDI) << "\n");
1428       return true;
1429     }
1430     return false;
1431   };
1432 
1433   for (auto &DDIMI : DanglingDebugInfoMap) {
1434     DanglingDebugInfoVector &DDIV = DDIMI.second;
1435 
1436     // If debug info is to be dropped, run it through final checks to see
1437     // whether it can be salvaged.
1438     for (auto &DDI : DDIV)
1439       if (isMatchingDbgValue(DDI))
1440         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1441 
1442     erase_if(DDIV, isMatchingDbgValue);
1443   }
1444 }
1445 
1446 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1447 // generate the debug data structures now that we've seen its definition.
1448 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1449                                                    SDValue Val) {
1450   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1451   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1452     return;
1453 
1454   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1455   for (auto &DDI : DDIV) {
1456     DebugLoc DL = DDI.getDebugLoc();
1457     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1458     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1459     DILocalVariable *Variable = DDI.getVariable();
1460     DIExpression *Expr = DDI.getExpression();
1461     assert(Variable->isValidLocationForIntrinsic(DL) &&
1462            "Expected inlined-at fields to agree");
1463     SDDbgValue *SDV;
1464     if (Val.getNode()) {
1465       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1466       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1467       // we couldn't resolve it directly when examining the DbgValue intrinsic
1468       // in the first place we should not be more successful here). Unless we
1469       // have some test case that prove this to be correct we should avoid
1470       // calling EmitFuncArgumentDbgValue here.
1471       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1472                                     FuncArgumentDbgValueKind::Value, Val)) {
1473         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1474                           << printDDI(V, DDI) << "\n");
1475         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1476         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1477         // inserted after the definition of Val when emitting the instructions
1478         // after ISel. An alternative could be to teach
1479         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1480         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1481                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1482                    << ValSDNodeOrder << "\n");
1483         SDV = getDbgValue(Val, Variable, Expr, DL,
1484                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1485         DAG.AddDbgValue(SDV, false);
1486       } else
1487         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1488                           << printDDI(V, DDI)
1489                           << " in EmitFuncArgumentDbgValue\n");
1490     } else {
1491       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1492                         << "\n");
1493       auto Undef = UndefValue::get(V->getType());
1494       auto SDV =
1495           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1496       DAG.AddDbgValue(SDV, false);
1497     }
1498   }
1499   DDIV.clear();
1500 }
1501 
1502 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1503                                                     DanglingDebugInfo &DDI) {
1504   // TODO: For the variadic implementation, instead of only checking the fail
1505   // state of `handleDebugValue`, we need know specifically which values were
1506   // invalid, so that we attempt to salvage only those values when processing
1507   // a DIArgList.
1508   const Value *OrigV = V;
1509   DILocalVariable *Var = DDI.getVariable();
1510   DIExpression *Expr = DDI.getExpression();
1511   DebugLoc DL = DDI.getDebugLoc();
1512   unsigned SDOrder = DDI.getSDNodeOrder();
1513 
1514   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1515   // that DW_OP_stack_value is desired.
1516   bool StackValue = true;
1517 
1518   // Can this Value can be encoded without any further work?
1519   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1520     return;
1521 
1522   // Attempt to salvage back through as many instructions as possible. Bail if
1523   // a non-instruction is seen, such as a constant expression or global
1524   // variable. FIXME: Further work could recover those too.
1525   while (isa<Instruction>(V)) {
1526     const Instruction &VAsInst = *cast<const Instruction>(V);
1527     // Temporary "0", awaiting real implementation.
1528     SmallVector<uint64_t, 16> Ops;
1529     SmallVector<Value *, 4> AdditionalValues;
1530     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1531                              Expr->getNumLocationOperands(), Ops,
1532                              AdditionalValues);
1533     // If we cannot salvage any further, and haven't yet found a suitable debug
1534     // expression, bail out.
1535     if (!V)
1536       break;
1537 
1538     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1539     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1540     // here for variadic dbg_values, remove that condition.
1541     if (!AdditionalValues.empty())
1542       break;
1543 
1544     // New value and expr now represent this debuginfo.
1545     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1546 
1547     // Some kind of simplification occurred: check whether the operand of the
1548     // salvaged debug expression can be encoded in this DAG.
1549     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1550       LLVM_DEBUG(
1551           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1552                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1553       return;
1554     }
1555   }
1556 
1557   // This was the final opportunity to salvage this debug information, and it
1558   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1559   // any earlier variable location.
1560   assert(OrigV && "V shouldn't be null");
1561   auto *Undef = UndefValue::get(OrigV->getType());
1562   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1563   DAG.AddDbgValue(SDV, false);
1564   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1565                     << printDDI(OrigV, DDI) << "\n");
1566 }
1567 
1568 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1569                                                DIExpression *Expr,
1570                                                DebugLoc DbgLoc,
1571                                                unsigned Order) {
1572   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1573   DIExpression *NewExpr =
1574       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1575   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1576                    /*IsVariadic*/ false);
1577 }
1578 
1579 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1580                                            DILocalVariable *Var,
1581                                            DIExpression *Expr, DebugLoc DbgLoc,
1582                                            unsigned Order, bool IsVariadic) {
1583   if (Values.empty())
1584     return true;
1585 
1586   // Filter EntryValue locations out early.
1587   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1588     return true;
1589 
1590   SmallVector<SDDbgOperand> LocationOps;
1591   SmallVector<SDNode *> Dependencies;
1592   for (const Value *V : Values) {
1593     // Constant value.
1594     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1595         isa<ConstantPointerNull>(V)) {
1596       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1597       continue;
1598     }
1599 
1600     // Look through IntToPtr constants.
1601     if (auto *CE = dyn_cast<ConstantExpr>(V))
1602       if (CE->getOpcode() == Instruction::IntToPtr) {
1603         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1604         continue;
1605       }
1606 
1607     // If the Value is a frame index, we can create a FrameIndex debug value
1608     // without relying on the DAG at all.
1609     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1610       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1611       if (SI != FuncInfo.StaticAllocaMap.end()) {
1612         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1613         continue;
1614       }
1615     }
1616 
1617     // Do not use getValue() in here; we don't want to generate code at
1618     // this point if it hasn't been done yet.
1619     SDValue N = NodeMap[V];
1620     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1621       N = UnusedArgNodeMap[V];
1622 
1623     if (N.getNode()) {
1624       // Only emit func arg dbg value for non-variadic dbg.values for now.
1625       if (!IsVariadic &&
1626           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1627                                    FuncArgumentDbgValueKind::Value, N))
1628         return true;
1629       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1630         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1631         // describe stack slot locations.
1632         //
1633         // Consider "int x = 0; int *px = &x;". There are two kinds of
1634         // interesting debug values here after optimization:
1635         //
1636         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1637         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1638         //
1639         // Both describe the direct values of their associated variables.
1640         Dependencies.push_back(N.getNode());
1641         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1642         continue;
1643       }
1644       LocationOps.emplace_back(
1645           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1646       continue;
1647     }
1648 
1649     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1650     // Special rules apply for the first dbg.values of parameter variables in a
1651     // function. Identify them by the fact they reference Argument Values, that
1652     // they're parameters, and they are parameters of the current function. We
1653     // need to let them dangle until they get an SDNode.
1654     bool IsParamOfFunc =
1655         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1656     if (IsParamOfFunc)
1657       return false;
1658 
1659     // The value is not used in this block yet (or it would have an SDNode).
1660     // We still want the value to appear for the user if possible -- if it has
1661     // an associated VReg, we can refer to that instead.
1662     auto VMI = FuncInfo.ValueMap.find(V);
1663     if (VMI != FuncInfo.ValueMap.end()) {
1664       unsigned Reg = VMI->second;
1665       // If this is a PHI node, it may be split up into several MI PHI nodes
1666       // (in FunctionLoweringInfo::set).
1667       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1668                        V->getType(), std::nullopt);
1669       if (RFV.occupiesMultipleRegs()) {
1670         // FIXME: We could potentially support variadic dbg_values here.
1671         if (IsVariadic)
1672           return false;
1673         unsigned Offset = 0;
1674         unsigned BitsToDescribe = 0;
1675         if (auto VarSize = Var->getSizeInBits())
1676           BitsToDescribe = *VarSize;
1677         if (auto Fragment = Expr->getFragmentInfo())
1678           BitsToDescribe = Fragment->SizeInBits;
1679         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1680           // Bail out if all bits are described already.
1681           if (Offset >= BitsToDescribe)
1682             break;
1683           // TODO: handle scalable vectors.
1684           unsigned RegisterSize = RegAndSize.second;
1685           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1686                                       ? BitsToDescribe - Offset
1687                                       : RegisterSize;
1688           auto FragmentExpr = DIExpression::createFragmentExpression(
1689               Expr, Offset, FragmentSize);
1690           if (!FragmentExpr)
1691             continue;
1692           SDDbgValue *SDV = DAG.getVRegDbgValue(
1693               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1694           DAG.AddDbgValue(SDV, false);
1695           Offset += RegisterSize;
1696         }
1697         return true;
1698       }
1699       // We can use simple vreg locations for variadic dbg_values as well.
1700       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1701       continue;
1702     }
1703     // We failed to create a SDDbgOperand for V.
1704     return false;
1705   }
1706 
1707   // We have created a SDDbgOperand for each Value in Values.
1708   assert(!LocationOps.empty());
1709   SDDbgValue *SDV =
1710       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1711                           /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1712   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1713   return true;
1714 }
1715 
1716 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1717   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1718   for (auto &Pair : DanglingDebugInfoMap)
1719     for (auto &DDI : Pair.second)
1720       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1721   clearDanglingDebugInfo();
1722 }
1723 
1724 /// getCopyFromRegs - If there was virtual register allocated for the value V
1725 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1726 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1727   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1728   SDValue Result;
1729 
1730   if (It != FuncInfo.ValueMap.end()) {
1731     Register InReg = It->second;
1732 
1733     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1734                      DAG.getDataLayout(), InReg, Ty,
1735                      std::nullopt); // This is not an ABI copy.
1736     SDValue Chain = DAG.getEntryNode();
1737     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1738                                  V);
1739     resolveDanglingDebugInfo(V, Result);
1740   }
1741 
1742   return Result;
1743 }
1744 
1745 /// getValue - Return an SDValue for the given Value.
1746 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1747   // If we already have an SDValue for this value, use it. It's important
1748   // to do this first, so that we don't create a CopyFromReg if we already
1749   // have a regular SDValue.
1750   SDValue &N = NodeMap[V];
1751   if (N.getNode()) return N;
1752 
1753   // If there's a virtual register allocated and initialized for this
1754   // value, use it.
1755   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1756     return copyFromReg;
1757 
1758   // Otherwise create a new SDValue and remember it.
1759   SDValue Val = getValueImpl(V);
1760   NodeMap[V] = Val;
1761   resolveDanglingDebugInfo(V, Val);
1762   return Val;
1763 }
1764 
1765 /// getNonRegisterValue - Return an SDValue for the given Value, but
1766 /// don't look in FuncInfo.ValueMap for a virtual register.
1767 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1768   // If we already have an SDValue for this value, use it.
1769   SDValue &N = NodeMap[V];
1770   if (N.getNode()) {
1771     if (isIntOrFPConstant(N)) {
1772       // Remove the debug location from the node as the node is about to be used
1773       // in a location which may differ from the original debug location.  This
1774       // is relevant to Constant and ConstantFP nodes because they can appear
1775       // as constant expressions inside PHI nodes.
1776       N->setDebugLoc(DebugLoc());
1777     }
1778     return N;
1779   }
1780 
1781   // Otherwise create a new SDValue and remember it.
1782   SDValue Val = getValueImpl(V);
1783   NodeMap[V] = Val;
1784   resolveDanglingDebugInfo(V, Val);
1785   return Val;
1786 }
1787 
1788 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1789 /// Create an SDValue for the given value.
1790 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1792 
1793   if (const Constant *C = dyn_cast<Constant>(V)) {
1794     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1795 
1796     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1797       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1798 
1799     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1800       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1801 
1802     if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1803       return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1804                          getValue(CPA->getPointer()), getValue(CPA->getKey()),
1805                          getValue(CPA->getAddrDiscriminator()),
1806                          getValue(CPA->getDiscriminator()));
1807     }
1808 
1809     if (isa<ConstantPointerNull>(C)) {
1810       unsigned AS = V->getType()->getPointerAddressSpace();
1811       return DAG.getConstant(0, getCurSDLoc(),
1812                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1813     }
1814 
1815     if (match(C, m_VScale()))
1816       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1817 
1818     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1819       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1820 
1821     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1822       return DAG.getUNDEF(VT);
1823 
1824     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1825       visit(CE->getOpcode(), *CE);
1826       SDValue N1 = NodeMap[V];
1827       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1828       return N1;
1829     }
1830 
1831     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1832       SmallVector<SDValue, 4> Constants;
1833       for (const Use &U : C->operands()) {
1834         SDNode *Val = getValue(U).getNode();
1835         // If the operand is an empty aggregate, there are no values.
1836         if (!Val) continue;
1837         // Add each leaf value from the operand to the Constants list
1838         // to form a flattened list of all the values.
1839         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1840           Constants.push_back(SDValue(Val, i));
1841       }
1842 
1843       return DAG.getMergeValues(Constants, getCurSDLoc());
1844     }
1845 
1846     if (const ConstantDataSequential *CDS =
1847           dyn_cast<ConstantDataSequential>(C)) {
1848       SmallVector<SDValue, 4> Ops;
1849       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1850         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1851         // Add each leaf value from the operand to the Constants list
1852         // to form a flattened list of all the values.
1853         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1854           Ops.push_back(SDValue(Val, i));
1855       }
1856 
1857       if (isa<ArrayType>(CDS->getType()))
1858         return DAG.getMergeValues(Ops, getCurSDLoc());
1859       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1860     }
1861 
1862     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1863       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1864              "Unknown struct or array constant!");
1865 
1866       SmallVector<EVT, 4> ValueVTs;
1867       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1868       unsigned NumElts = ValueVTs.size();
1869       if (NumElts == 0)
1870         return SDValue(); // empty struct
1871       SmallVector<SDValue, 4> Constants(NumElts);
1872       for (unsigned i = 0; i != NumElts; ++i) {
1873         EVT EltVT = ValueVTs[i];
1874         if (isa<UndefValue>(C))
1875           Constants[i] = DAG.getUNDEF(EltVT);
1876         else if (EltVT.isFloatingPoint())
1877           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1878         else
1879           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1880       }
1881 
1882       return DAG.getMergeValues(Constants, getCurSDLoc());
1883     }
1884 
1885     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1886       return DAG.getBlockAddress(BA, VT);
1887 
1888     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1889       return getValue(Equiv->getGlobalValue());
1890 
1891     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1892       return getValue(NC->getGlobalValue());
1893 
1894     if (VT == MVT::aarch64svcount) {
1895       assert(C->isNullValue() && "Can only zero this target type!");
1896       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1897                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1898     }
1899 
1900     VectorType *VecTy = cast<VectorType>(V->getType());
1901 
1902     // Now that we know the number and type of the elements, get that number of
1903     // elements into the Ops array based on what kind of constant it is.
1904     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1905       SmallVector<SDValue, 16> Ops;
1906       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1907       for (unsigned i = 0; i != NumElements; ++i)
1908         Ops.push_back(getValue(CV->getOperand(i)));
1909 
1910       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1911     }
1912 
1913     if (isa<ConstantAggregateZero>(C)) {
1914       EVT EltVT =
1915           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1916 
1917       SDValue Op;
1918       if (EltVT.isFloatingPoint())
1919         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1920       else
1921         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1922 
1923       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1924     }
1925 
1926     llvm_unreachable("Unknown vector constant");
1927   }
1928 
1929   // If this is a static alloca, generate it as the frameindex instead of
1930   // computation.
1931   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1932     DenseMap<const AllocaInst*, int>::iterator SI =
1933       FuncInfo.StaticAllocaMap.find(AI);
1934     if (SI != FuncInfo.StaticAllocaMap.end())
1935       return DAG.getFrameIndex(
1936           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1937   }
1938 
1939   // If this is an instruction which fast-isel has deferred, select it now.
1940   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1941     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1942 
1943     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1944                      Inst->getType(), std::nullopt);
1945     SDValue Chain = DAG.getEntryNode();
1946     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1947   }
1948 
1949   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1950     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1951 
1952   if (const auto *BB = dyn_cast<BasicBlock>(V))
1953     return DAG.getBasicBlock(FuncInfo.getMBB(BB));
1954 
1955   llvm_unreachable("Can't get register for value!");
1956 }
1957 
1958 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1959   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1960   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1961   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1962   bool IsSEH = isAsynchronousEHPersonality(Pers);
1963   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1964   if (!IsSEH)
1965     CatchPadMBB->setIsEHScopeEntry();
1966   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1967   if (IsMSVCCXX || IsCoreCLR)
1968     CatchPadMBB->setIsEHFuncletEntry();
1969 }
1970 
1971 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1972   // Update machine-CFG edge.
1973   MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
1974   FuncInfo.MBB->addSuccessor(TargetMBB);
1975   TargetMBB->setIsEHCatchretTarget(true);
1976   DAG.getMachineFunction().setHasEHCatchret(true);
1977 
1978   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1979   bool IsSEH = isAsynchronousEHPersonality(Pers);
1980   if (IsSEH) {
1981     // If this is not a fall-through branch or optimizations are switched off,
1982     // emit the branch.
1983     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1984         TM.getOptLevel() == CodeGenOptLevel::None)
1985       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1986                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1987     return;
1988   }
1989 
1990   // Figure out the funclet membership for the catchret's successor.
1991   // This will be used by the FuncletLayout pass to determine how to order the
1992   // BB's.
1993   // A 'catchret' returns to the outer scope's color.
1994   Value *ParentPad = I.getCatchSwitchParentPad();
1995   const BasicBlock *SuccessorColor;
1996   if (isa<ConstantTokenNone>(ParentPad))
1997     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1998   else
1999     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2000   assert(SuccessorColor && "No parent funclet for catchret!");
2001   MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2002   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2003 
2004   // Create the terminator node.
2005   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2006                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
2007                             DAG.getBasicBlock(SuccessorColorMBB));
2008   DAG.setRoot(Ret);
2009 }
2010 
2011 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2012   // Don't emit any special code for the cleanuppad instruction. It just marks
2013   // the start of an EH scope/funclet.
2014   FuncInfo.MBB->setIsEHScopeEntry();
2015   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2016   if (Pers != EHPersonality::Wasm_CXX) {
2017     FuncInfo.MBB->setIsEHFuncletEntry();
2018     FuncInfo.MBB->setIsCleanupFuncletEntry();
2019   }
2020 }
2021 
2022 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2023 // not match, it is OK to add only the first unwind destination catchpad to the
2024 // successors, because there will be at least one invoke instruction within the
2025 // catch scope that points to the next unwind destination, if one exists, so
2026 // CFGSort cannot mess up with BB sorting order.
2027 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2028 // call within them, and catchpads only consisting of 'catch (...)' have a
2029 // '__cxa_end_catch' call within them, both of which generate invokes in case
2030 // the next unwind destination exists, i.e., the next unwind destination is not
2031 // the caller.)
2032 //
2033 // Having at most one EH pad successor is also simpler and helps later
2034 // transformations.
2035 //
2036 // For example,
2037 // current:
2038 //   invoke void @foo to ... unwind label %catch.dispatch
2039 // catch.dispatch:
2040 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2041 // catch.start:
2042 //   ...
2043 //   ... in this BB or some other child BB dominated by this BB there will be an
2044 //   invoke that points to 'next' BB as an unwind destination
2045 //
2046 // next: ; We don't need to add this to 'current' BB's successor
2047 //   ...
2048 static void findWasmUnwindDestinations(
2049     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2050     BranchProbability Prob,
2051     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2052         &UnwindDests) {
2053   while (EHPadBB) {
2054     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2055     if (isa<CleanupPadInst>(Pad)) {
2056       // Stop on cleanup pads.
2057       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2058       UnwindDests.back().first->setIsEHScopeEntry();
2059       break;
2060     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2061       // Add the catchpad handlers to the possible destinations. We don't
2062       // continue to the unwind destination of the catchswitch for wasm.
2063       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2064         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2065         UnwindDests.back().first->setIsEHScopeEntry();
2066       }
2067       break;
2068     } else {
2069       continue;
2070     }
2071   }
2072 }
2073 
2074 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2075 /// many places it could ultimately go. In the IR, we have a single unwind
2076 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2077 /// This function skips over imaginary basic blocks that hold catchswitch
2078 /// instructions, and finds all the "real" machine
2079 /// basic block destinations. As those destinations may not be successors of
2080 /// EHPadBB, here we also calculate the edge probability to those destinations.
2081 /// The passed-in Prob is the edge probability to EHPadBB.
2082 static void findUnwindDestinations(
2083     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2084     BranchProbability Prob,
2085     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2086         &UnwindDests) {
2087   EHPersonality Personality =
2088     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2089   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2090   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2091   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2092   bool IsSEH = isAsynchronousEHPersonality(Personality);
2093 
2094   if (IsWasmCXX) {
2095     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2096     assert(UnwindDests.size() <= 1 &&
2097            "There should be at most one unwind destination for wasm");
2098     return;
2099   }
2100 
2101   while (EHPadBB) {
2102     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2103     BasicBlock *NewEHPadBB = nullptr;
2104     if (isa<LandingPadInst>(Pad)) {
2105       // Stop on landingpads. They are not funclets.
2106       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2107       break;
2108     } else if (isa<CleanupPadInst>(Pad)) {
2109       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2110       // personalities.
2111       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2112       UnwindDests.back().first->setIsEHScopeEntry();
2113       UnwindDests.back().first->setIsEHFuncletEntry();
2114       break;
2115     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2116       // Add the catchpad handlers to the possible destinations.
2117       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2118         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2119         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2120         if (IsMSVCCXX || IsCoreCLR)
2121           UnwindDests.back().first->setIsEHFuncletEntry();
2122         if (!IsSEH)
2123           UnwindDests.back().first->setIsEHScopeEntry();
2124       }
2125       NewEHPadBB = CatchSwitch->getUnwindDest();
2126     } else {
2127       continue;
2128     }
2129 
2130     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2131     if (BPI && NewEHPadBB)
2132       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2133     EHPadBB = NewEHPadBB;
2134   }
2135 }
2136 
2137 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2138   // Update successor info.
2139   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2140   auto UnwindDest = I.getUnwindDest();
2141   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2142   BranchProbability UnwindDestProb =
2143       (BPI && UnwindDest)
2144           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2145           : BranchProbability::getZero();
2146   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2147   for (auto &UnwindDest : UnwindDests) {
2148     UnwindDest.first->setIsEHPad();
2149     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2150   }
2151   FuncInfo.MBB->normalizeSuccProbs();
2152 
2153   // Create the terminator node.
2154   SDValue Ret =
2155       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2156   DAG.setRoot(Ret);
2157 }
2158 
2159 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2160   report_fatal_error("visitCatchSwitch not yet implemented!");
2161 }
2162 
2163 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2165   auto &DL = DAG.getDataLayout();
2166   SDValue Chain = getControlRoot();
2167   SmallVector<ISD::OutputArg, 8> Outs;
2168   SmallVector<SDValue, 8> OutVals;
2169 
2170   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2171   // lower
2172   //
2173   //   %val = call <ty> @llvm.experimental.deoptimize()
2174   //   ret <ty> %val
2175   //
2176   // differently.
2177   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2178     LowerDeoptimizingReturn();
2179     return;
2180   }
2181 
2182   if (!FuncInfo.CanLowerReturn) {
2183     Register DemoteReg = FuncInfo.DemoteRegister;
2184     const Function *F = I.getParent()->getParent();
2185 
2186     // Emit a store of the return value through the virtual register.
2187     // Leave Outs empty so that LowerReturn won't try to load return
2188     // registers the usual way.
2189     SmallVector<EVT, 1> PtrValueVTs;
2190     ComputeValueVTs(TLI, DL,
2191                     PointerType::get(F->getContext(),
2192                                      DAG.getDataLayout().getAllocaAddrSpace()),
2193                     PtrValueVTs);
2194 
2195     SDValue RetPtr =
2196         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2197     SDValue RetOp = getValue(I.getOperand(0));
2198 
2199     SmallVector<EVT, 4> ValueVTs, MemVTs;
2200     SmallVector<uint64_t, 4> Offsets;
2201     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2202                     &Offsets, 0);
2203     unsigned NumValues = ValueVTs.size();
2204 
2205     SmallVector<SDValue, 4> Chains(NumValues);
2206     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2207     for (unsigned i = 0; i != NumValues; ++i) {
2208       // An aggregate return value cannot wrap around the address space, so
2209       // offsets to its parts don't wrap either.
2210       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2211                                            TypeSize::getFixed(Offsets[i]));
2212 
2213       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2214       if (MemVTs[i] != ValueVTs[i])
2215         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2216       Chains[i] = DAG.getStore(
2217           Chain, getCurSDLoc(), Val,
2218           // FIXME: better loc info would be nice.
2219           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2220           commonAlignment(BaseAlign, Offsets[i]));
2221     }
2222 
2223     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2224                         MVT::Other, Chains);
2225   } else if (I.getNumOperands() != 0) {
2226     SmallVector<EVT, 4> ValueVTs;
2227     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2228     unsigned NumValues = ValueVTs.size();
2229     if (NumValues) {
2230       SDValue RetOp = getValue(I.getOperand(0));
2231 
2232       const Function *F = I.getParent()->getParent();
2233 
2234       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2235           I.getOperand(0)->getType(), F->getCallingConv(),
2236           /*IsVarArg*/ false, DL);
2237 
2238       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2239       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2240         ExtendKind = ISD::SIGN_EXTEND;
2241       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2242         ExtendKind = ISD::ZERO_EXTEND;
2243 
2244       LLVMContext &Context = F->getContext();
2245       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2246 
2247       for (unsigned j = 0; j != NumValues; ++j) {
2248         EVT VT = ValueVTs[j];
2249 
2250         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2251           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2252 
2253         CallingConv::ID CC = F->getCallingConv();
2254 
2255         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2256         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2257         SmallVector<SDValue, 4> Parts(NumParts);
2258         getCopyToParts(DAG, getCurSDLoc(),
2259                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2260                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2261 
2262         // 'inreg' on function refers to return value
2263         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2264         if (RetInReg)
2265           Flags.setInReg();
2266 
2267         if (I.getOperand(0)->getType()->isPointerTy()) {
2268           Flags.setPointer();
2269           Flags.setPointerAddrSpace(
2270               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2271         }
2272 
2273         if (NeedsRegBlock) {
2274           Flags.setInConsecutiveRegs();
2275           if (j == NumValues - 1)
2276             Flags.setInConsecutiveRegsLast();
2277         }
2278 
2279         // Propagate extension type if any
2280         if (ExtendKind == ISD::SIGN_EXTEND)
2281           Flags.setSExt();
2282         else if (ExtendKind == ISD::ZERO_EXTEND)
2283           Flags.setZExt();
2284         else if (F->getAttributes().hasRetAttr(Attribute::NoExt))
2285           Flags.setNoExt();
2286 
2287         for (unsigned i = 0; i < NumParts; ++i) {
2288           Outs.push_back(ISD::OutputArg(Flags,
2289                                         Parts[i].getValueType().getSimpleVT(),
2290                                         VT, /*isfixed=*/true, 0, 0));
2291           OutVals.push_back(Parts[i]);
2292         }
2293       }
2294     }
2295   }
2296 
2297   // Push in swifterror virtual register as the last element of Outs. This makes
2298   // sure swifterror virtual register will be returned in the swifterror
2299   // physical register.
2300   const Function *F = I.getParent()->getParent();
2301   if (TLI.supportSwiftError() &&
2302       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2303     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2304     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2305     Flags.setSwiftError();
2306     Outs.push_back(ISD::OutputArg(
2307         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2308         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2309     // Create SDNode for the swifterror virtual register.
2310     OutVals.push_back(
2311         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2312                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2313                         EVT(TLI.getPointerTy(DL))));
2314   }
2315 
2316   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2317   CallingConv::ID CallConv =
2318     DAG.getMachineFunction().getFunction().getCallingConv();
2319   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2320       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2321 
2322   // Verify that the target's LowerReturn behaved as expected.
2323   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2324          "LowerReturn didn't return a valid chain!");
2325 
2326   // Update the DAG with the new chain value resulting from return lowering.
2327   DAG.setRoot(Chain);
2328 }
2329 
2330 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2331 /// created for it, emit nodes to copy the value into the virtual
2332 /// registers.
2333 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2334   // Skip empty types
2335   if (V->getType()->isEmptyTy())
2336     return;
2337 
2338   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2339   if (VMI != FuncInfo.ValueMap.end()) {
2340     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2341            "Unused value assigned virtual registers!");
2342     CopyValueToVirtualRegister(V, VMI->second);
2343   }
2344 }
2345 
2346 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2347 /// the current basic block, add it to ValueMap now so that we'll get a
2348 /// CopyTo/FromReg.
2349 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2350   // No need to export constants.
2351   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2352 
2353   // Already exported?
2354   if (FuncInfo.isExportedInst(V)) return;
2355 
2356   Register Reg = FuncInfo.InitializeRegForValue(V);
2357   CopyValueToVirtualRegister(V, Reg);
2358 }
2359 
2360 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2361                                                      const BasicBlock *FromBB) {
2362   // The operands of the setcc have to be in this block.  We don't know
2363   // how to export them from some other block.
2364   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2365     // Can export from current BB.
2366     if (VI->getParent() == FromBB)
2367       return true;
2368 
2369     // Is already exported, noop.
2370     return FuncInfo.isExportedInst(V);
2371   }
2372 
2373   // If this is an argument, we can export it if the BB is the entry block or
2374   // if it is already exported.
2375   if (isa<Argument>(V)) {
2376     if (FromBB->isEntryBlock())
2377       return true;
2378 
2379     // Otherwise, can only export this if it is already exported.
2380     return FuncInfo.isExportedInst(V);
2381   }
2382 
2383   // Otherwise, constants can always be exported.
2384   return true;
2385 }
2386 
2387 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2388 BranchProbability
2389 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2390                                         const MachineBasicBlock *Dst) const {
2391   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2392   const BasicBlock *SrcBB = Src->getBasicBlock();
2393   const BasicBlock *DstBB = Dst->getBasicBlock();
2394   if (!BPI) {
2395     // If BPI is not available, set the default probability as 1 / N, where N is
2396     // the number of successors.
2397     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2398     return BranchProbability(1, SuccSize);
2399   }
2400   return BPI->getEdgeProbability(SrcBB, DstBB);
2401 }
2402 
2403 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2404                                                MachineBasicBlock *Dst,
2405                                                BranchProbability Prob) {
2406   if (!FuncInfo.BPI)
2407     Src->addSuccessorWithoutProb(Dst);
2408   else {
2409     if (Prob.isUnknown())
2410       Prob = getEdgeProbability(Src, Dst);
2411     Src->addSuccessor(Dst, Prob);
2412   }
2413 }
2414 
2415 static bool InBlock(const Value *V, const BasicBlock *BB) {
2416   if (const Instruction *I = dyn_cast<Instruction>(V))
2417     return I->getParent() == BB;
2418   return true;
2419 }
2420 
2421 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2422 /// This function emits a branch and is used at the leaves of an OR or an
2423 /// AND operator tree.
2424 void
2425 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2426                                                   MachineBasicBlock *TBB,
2427                                                   MachineBasicBlock *FBB,
2428                                                   MachineBasicBlock *CurBB,
2429                                                   MachineBasicBlock *SwitchBB,
2430                                                   BranchProbability TProb,
2431                                                   BranchProbability FProb,
2432                                                   bool InvertCond) {
2433   const BasicBlock *BB = CurBB->getBasicBlock();
2434 
2435   // If the leaf of the tree is a comparison, merge the condition into
2436   // the caseblock.
2437   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2438     // The operands of the cmp have to be in this block.  We don't know
2439     // how to export them from some other block.  If this is the first block
2440     // of the sequence, no exporting is needed.
2441     if (CurBB == SwitchBB ||
2442         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2443          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2444       ISD::CondCode Condition;
2445       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2446         ICmpInst::Predicate Pred =
2447             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2448         Condition = getICmpCondCode(Pred);
2449       } else {
2450         const FCmpInst *FC = cast<FCmpInst>(Cond);
2451         FCmpInst::Predicate Pred =
2452             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2453         Condition = getFCmpCondCode(Pred);
2454         if (TM.Options.NoNaNsFPMath)
2455           Condition = getFCmpCodeWithoutNaN(Condition);
2456       }
2457 
2458       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2459                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2460       SL->SwitchCases.push_back(CB);
2461       return;
2462     }
2463   }
2464 
2465   // Create a CaseBlock record representing this branch.
2466   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2467   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2468                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2469   SL->SwitchCases.push_back(CB);
2470 }
2471 
2472 // Collect dependencies on V recursively. This is used for the cost analysis in
2473 // `shouldKeepJumpConditionsTogether`.
2474 static bool collectInstructionDeps(
2475     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2476     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2477     unsigned Depth = 0) {
2478   // Return false if we have an incomplete count.
2479   if (Depth >= SelectionDAG::MaxRecursionDepth)
2480     return false;
2481 
2482   auto *I = dyn_cast<Instruction>(V);
2483   if (I == nullptr)
2484     return true;
2485 
2486   if (Necessary != nullptr) {
2487     // This instruction is necessary for the other side of the condition so
2488     // don't count it.
2489     if (Necessary->contains(I))
2490       return true;
2491   }
2492 
2493   // Already added this dep.
2494   if (!Deps->try_emplace(I, false).second)
2495     return true;
2496 
2497   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2498     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2499                                 Depth + 1))
2500       return false;
2501   return true;
2502 }
2503 
2504 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2505     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2506     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2507     TargetLoweringBase::CondMergingParams Params) const {
2508   if (I.getNumSuccessors() != 2)
2509     return false;
2510 
2511   if (!I.isConditional())
2512     return false;
2513 
2514   if (Params.BaseCost < 0)
2515     return false;
2516 
2517   // Baseline cost.
2518   InstructionCost CostThresh = Params.BaseCost;
2519 
2520   BranchProbabilityInfo *BPI = nullptr;
2521   if (Params.LikelyBias || Params.UnlikelyBias)
2522     BPI = FuncInfo.BPI;
2523   if (BPI != nullptr) {
2524     // See if we are either likely to get an early out or compute both lhs/rhs
2525     // of the condition.
2526     BasicBlock *IfFalse = I.getSuccessor(0);
2527     BasicBlock *IfTrue = I.getSuccessor(1);
2528 
2529     std::optional<bool> Likely;
2530     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2531       Likely = true;
2532     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2533       Likely = false;
2534 
2535     if (Likely) {
2536       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2537         // Its likely we will have to compute both lhs and rhs of condition
2538         CostThresh += Params.LikelyBias;
2539       else {
2540         if (Params.UnlikelyBias < 0)
2541           return false;
2542         // Its likely we will get an early out.
2543         CostThresh -= Params.UnlikelyBias;
2544       }
2545     }
2546   }
2547 
2548   if (CostThresh <= 0)
2549     return false;
2550 
2551   // Collect "all" instructions that lhs condition is dependent on.
2552   // Use map for stable iteration (to avoid non-determanism of iteration of
2553   // SmallPtrSet). The `bool` value is just a dummy.
2554   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2555   collectInstructionDeps(&LhsDeps, Lhs);
2556   // Collect "all" instructions that rhs condition is dependent on AND are
2557   // dependencies of lhs. This gives us an estimate on which instructions we
2558   // stand to save by splitting the condition.
2559   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2560     return false;
2561   // Add the compare instruction itself unless its a dependency on the LHS.
2562   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2563     if (!LhsDeps.contains(RhsI))
2564       RhsDeps.try_emplace(RhsI, false);
2565 
2566   const auto &TLI = DAG.getTargetLoweringInfo();
2567   const auto &TTI =
2568       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2569 
2570   InstructionCost CostOfIncluding = 0;
2571   // See if this instruction will need to computed independently of whether RHS
2572   // is.
2573   Value *BrCond = I.getCondition();
2574   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2575     for (const auto *U : Ins->users()) {
2576       // If user is independent of RHS calculation we don't need to count it.
2577       if (auto *UIns = dyn_cast<Instruction>(U))
2578         if (UIns != BrCond && !RhsDeps.contains(UIns))
2579           return false;
2580     }
2581     return true;
2582   };
2583 
2584   // Prune instructions from RHS Deps that are dependencies of unrelated
2585   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2586   // arbitrary and just meant to cap the how much time we spend in the pruning
2587   // loop. Its highly unlikely to come into affect.
2588   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2589   // Stop after a certain point. No incorrectness from including too many
2590   // instructions.
2591   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2592     const Instruction *ToDrop = nullptr;
2593     for (const auto &InsPair : RhsDeps) {
2594       if (!ShouldCountInsn(InsPair.first)) {
2595         ToDrop = InsPair.first;
2596         break;
2597       }
2598     }
2599     if (ToDrop == nullptr)
2600       break;
2601     RhsDeps.erase(ToDrop);
2602   }
2603 
2604   for (const auto &InsPair : RhsDeps) {
2605     // Finally accumulate latency that we can only attribute to computing the
2606     // RHS condition. Use latency because we are essentially trying to calculate
2607     // the cost of the dependency chain.
2608     // Possible TODO: We could try to estimate ILP and make this more precise.
2609     CostOfIncluding +=
2610         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2611 
2612     if (CostOfIncluding > CostThresh)
2613       return false;
2614   }
2615   return true;
2616 }
2617 
2618 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2619                                                MachineBasicBlock *TBB,
2620                                                MachineBasicBlock *FBB,
2621                                                MachineBasicBlock *CurBB,
2622                                                MachineBasicBlock *SwitchBB,
2623                                                Instruction::BinaryOps Opc,
2624                                                BranchProbability TProb,
2625                                                BranchProbability FProb,
2626                                                bool InvertCond) {
2627   // Skip over not part of the tree and remember to invert op and operands at
2628   // next level.
2629   Value *NotCond;
2630   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2631       InBlock(NotCond, CurBB->getBasicBlock())) {
2632     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2633                          !InvertCond);
2634     return;
2635   }
2636 
2637   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2638   const Value *BOpOp0, *BOpOp1;
2639   // Compute the effective opcode for Cond, taking into account whether it needs
2640   // to be inverted, e.g.
2641   //   and (not (or A, B)), C
2642   // gets lowered as
2643   //   and (and (not A, not B), C)
2644   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2645   if (BOp) {
2646     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2647                ? Instruction::And
2648                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2649                       ? Instruction::Or
2650                       : (Instruction::BinaryOps)0);
2651     if (InvertCond) {
2652       if (BOpc == Instruction::And)
2653         BOpc = Instruction::Or;
2654       else if (BOpc == Instruction::Or)
2655         BOpc = Instruction::And;
2656     }
2657   }
2658 
2659   // If this node is not part of the or/and tree, emit it as a branch.
2660   // Note that all nodes in the tree should have same opcode.
2661   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2662   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2663       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2664       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2665     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2666                                  TProb, FProb, InvertCond);
2667     return;
2668   }
2669 
2670   //  Create TmpBB after CurBB.
2671   MachineFunction::iterator BBI(CurBB);
2672   MachineFunction &MF = DAG.getMachineFunction();
2673   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2674   CurBB->getParent()->insert(++BBI, TmpBB);
2675 
2676   if (Opc == Instruction::Or) {
2677     // Codegen X | Y as:
2678     // BB1:
2679     //   jmp_if_X TBB
2680     //   jmp TmpBB
2681     // TmpBB:
2682     //   jmp_if_Y TBB
2683     //   jmp FBB
2684     //
2685 
2686     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2687     // The requirement is that
2688     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2689     //     = TrueProb for original BB.
2690     // Assuming the original probabilities are A and B, one choice is to set
2691     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2692     // A/(1+B) and 2B/(1+B). This choice assumes that
2693     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2694     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2695     // TmpBB, but the math is more complicated.
2696 
2697     auto NewTrueProb = TProb / 2;
2698     auto NewFalseProb = TProb / 2 + FProb;
2699     // Emit the LHS condition.
2700     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2701                          NewFalseProb, InvertCond);
2702 
2703     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2704     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2705     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2706     // Emit the RHS condition into TmpBB.
2707     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2708                          Probs[1], InvertCond);
2709   } else {
2710     assert(Opc == Instruction::And && "Unknown merge op!");
2711     // Codegen X & Y as:
2712     // BB1:
2713     //   jmp_if_X TmpBB
2714     //   jmp FBB
2715     // TmpBB:
2716     //   jmp_if_Y TBB
2717     //   jmp FBB
2718     //
2719     //  This requires creation of TmpBB after CurBB.
2720 
2721     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2722     // The requirement is that
2723     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2724     //     = FalseProb for original BB.
2725     // Assuming the original probabilities are A and B, one choice is to set
2726     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2727     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2728     // TrueProb for BB1 * FalseProb for TmpBB.
2729 
2730     auto NewTrueProb = TProb + FProb / 2;
2731     auto NewFalseProb = FProb / 2;
2732     // Emit the LHS condition.
2733     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2734                          NewFalseProb, InvertCond);
2735 
2736     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2737     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2738     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2739     // Emit the RHS condition into TmpBB.
2740     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2741                          Probs[1], InvertCond);
2742   }
2743 }
2744 
2745 /// If the set of cases should be emitted as a series of branches, return true.
2746 /// If we should emit this as a bunch of and/or'd together conditions, return
2747 /// false.
2748 bool
2749 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2750   if (Cases.size() != 2) return true;
2751 
2752   // If this is two comparisons of the same values or'd or and'd together, they
2753   // will get folded into a single comparison, so don't emit two blocks.
2754   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2755        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2756       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2757        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2758     return false;
2759   }
2760 
2761   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2762   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2763   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2764       Cases[0].CC == Cases[1].CC &&
2765       isa<Constant>(Cases[0].CmpRHS) &&
2766       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2767     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2768       return false;
2769     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2770       return false;
2771   }
2772 
2773   return true;
2774 }
2775 
2776 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2777   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2778 
2779   // Update machine-CFG edges.
2780   MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2781 
2782   if (I.isUnconditional()) {
2783     // Update machine-CFG edges.
2784     BrMBB->addSuccessor(Succ0MBB);
2785 
2786     // If this is not a fall-through branch or optimizations are switched off,
2787     // emit the branch.
2788     if (Succ0MBB != NextBlock(BrMBB) ||
2789         TM.getOptLevel() == CodeGenOptLevel::None) {
2790       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2791                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2792       setValue(&I, Br);
2793       DAG.setRoot(Br);
2794     }
2795 
2796     return;
2797   }
2798 
2799   // If this condition is one of the special cases we handle, do special stuff
2800   // now.
2801   const Value *CondVal = I.getCondition();
2802   MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2803 
2804   // If this is a series of conditions that are or'd or and'd together, emit
2805   // this as a sequence of branches instead of setcc's with and/or operations.
2806   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2807   // unpredictable branches, and vector extracts because those jumps are likely
2808   // expensive for any target), this should improve performance.
2809   // For example, instead of something like:
2810   //     cmp A, B
2811   //     C = seteq
2812   //     cmp D, E
2813   //     F = setle
2814   //     or C, F
2815   //     jnz foo
2816   // Emit:
2817   //     cmp A, B
2818   //     je foo
2819   //     cmp D, E
2820   //     jle foo
2821   bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable);
2822   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2823   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2824       BOp->hasOneUse() && !IsUnpredictable) {
2825     Value *Vec;
2826     const Value *BOp0, *BOp1;
2827     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2828     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2829       Opcode = Instruction::And;
2830     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2831       Opcode = Instruction::Or;
2832 
2833     if (Opcode &&
2834         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2835           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2836         !shouldKeepJumpConditionsTogether(
2837             FuncInfo, I, Opcode, BOp0, BOp1,
2838             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2839                 Opcode, BOp0, BOp1))) {
2840       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2841                            getEdgeProbability(BrMBB, Succ0MBB),
2842                            getEdgeProbability(BrMBB, Succ1MBB),
2843                            /*InvertCond=*/false);
2844       // If the compares in later blocks need to use values not currently
2845       // exported from this block, export them now.  This block should always
2846       // be the first entry.
2847       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2848 
2849       // Allow some cases to be rejected.
2850       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2851         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2852           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2853           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2854         }
2855 
2856         // Emit the branch for this block.
2857         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2858         SL->SwitchCases.erase(SL->SwitchCases.begin());
2859         return;
2860       }
2861 
2862       // Okay, we decided not to do this, remove any inserted MBB's and clear
2863       // SwitchCases.
2864       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2865         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2866 
2867       SL->SwitchCases.clear();
2868     }
2869   }
2870 
2871   // Create a CaseBlock record representing this branch.
2872   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2873                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(),
2874                BranchProbability::getUnknown(), BranchProbability::getUnknown(),
2875                IsUnpredictable);
2876 
2877   // Use visitSwitchCase to actually insert the fast branch sequence for this
2878   // cond branch.
2879   visitSwitchCase(CB, BrMBB);
2880 }
2881 
2882 /// visitSwitchCase - Emits the necessary code to represent a single node in
2883 /// the binary search tree resulting from lowering a switch instruction.
2884 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2885                                           MachineBasicBlock *SwitchBB) {
2886   SDValue Cond;
2887   SDValue CondLHS = getValue(CB.CmpLHS);
2888   SDLoc dl = CB.DL;
2889 
2890   if (CB.CC == ISD::SETTRUE) {
2891     // Branch or fall through to TrueBB.
2892     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2893     SwitchBB->normalizeSuccProbs();
2894     if (CB.TrueBB != NextBlock(SwitchBB)) {
2895       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2896                               DAG.getBasicBlock(CB.TrueBB)));
2897     }
2898     return;
2899   }
2900 
2901   auto &TLI = DAG.getTargetLoweringInfo();
2902   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2903 
2904   // Build the setcc now.
2905   if (!CB.CmpMHS) {
2906     // Fold "(X == true)" to X and "(X == false)" to !X to
2907     // handle common cases produced by branch lowering.
2908     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2909         CB.CC == ISD::SETEQ)
2910       Cond = CondLHS;
2911     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2912              CB.CC == ISD::SETEQ) {
2913       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2914       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2915     } else {
2916       SDValue CondRHS = getValue(CB.CmpRHS);
2917 
2918       // If a pointer's DAG type is larger than its memory type then the DAG
2919       // values are zero-extended. This breaks signed comparisons so truncate
2920       // back to the underlying type before doing the compare.
2921       if (CondLHS.getValueType() != MemVT) {
2922         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2923         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2924       }
2925       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2926     }
2927   } else {
2928     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2929 
2930     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2931     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2932 
2933     SDValue CmpOp = getValue(CB.CmpMHS);
2934     EVT VT = CmpOp.getValueType();
2935 
2936     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2937       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2938                           ISD::SETLE);
2939     } else {
2940       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2941                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2942       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2943                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2944     }
2945   }
2946 
2947   // Update successor info
2948   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2949   // TrueBB and FalseBB are always different unless the incoming IR is
2950   // degenerate. This only happens when running llc on weird IR.
2951   if (CB.TrueBB != CB.FalseBB)
2952     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2953   SwitchBB->normalizeSuccProbs();
2954 
2955   // If the lhs block is the next block, invert the condition so that we can
2956   // fall through to the lhs instead of the rhs block.
2957   if (CB.TrueBB == NextBlock(SwitchBB)) {
2958     std::swap(CB.TrueBB, CB.FalseBB);
2959     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2960     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2961   }
2962 
2963   SDNodeFlags Flags;
2964   Flags.setUnpredictable(CB.IsUnpredictable);
2965   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
2966                                Cond, DAG.getBasicBlock(CB.TrueBB), Flags);
2967 
2968   setValue(CurInst, BrCond);
2969 
2970   // Insert the false branch. Do this even if it's a fall through branch,
2971   // this makes it easier to do DAG optimizations which require inverting
2972   // the branch condition.
2973   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2974                        DAG.getBasicBlock(CB.FalseBB));
2975 
2976   DAG.setRoot(BrCond);
2977 }
2978 
2979 /// visitJumpTable - Emit JumpTable node in the current MBB
2980 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2981   // Emit the code for the jump table
2982   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2983   assert(JT.Reg && "Should lower JT Header first!");
2984   EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
2985   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2986   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2987   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2988                                     Index.getValue(1), Table, Index);
2989   DAG.setRoot(BrJumpTable);
2990 }
2991 
2992 /// visitJumpTableHeader - This function emits necessary code to produce index
2993 /// in the JumpTable from switch case.
2994 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2995                                                JumpTableHeader &JTH,
2996                                                MachineBasicBlock *SwitchBB) {
2997   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2998   const SDLoc &dl = *JT.SL;
2999 
3000   // Subtract the lowest switch case value from the value being switched on.
3001   SDValue SwitchOp = getValue(JTH.SValue);
3002   EVT VT = SwitchOp.getValueType();
3003   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3004                             DAG.getConstant(JTH.First, dl, VT));
3005 
3006   // The SDNode we just created, which holds the value being switched on minus
3007   // the smallest case value, needs to be copied to a virtual register so it
3008   // can be used as an index into the jump table in a subsequent basic block.
3009   // This value may be smaller or larger than the target's pointer type, and
3010   // therefore require extension or truncating.
3011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3012   SwitchOp =
3013       DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3014 
3015   Register JumpTableReg =
3016       FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3017   SDValue CopyTo =
3018       DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3019   JT.Reg = JumpTableReg;
3020 
3021   if (!JTH.FallthroughUnreachable) {
3022     // Emit the range check for the jump table, and branch to the default block
3023     // for the switch statement if the value being switched on exceeds the
3024     // largest case in the switch.
3025     SDValue CMP = DAG.getSetCC(
3026         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3027                                    Sub.getValueType()),
3028         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3029 
3030     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3031                                  MVT::Other, CopyTo, CMP,
3032                                  DAG.getBasicBlock(JT.Default));
3033 
3034     // Avoid emitting unnecessary branches to the next block.
3035     if (JT.MBB != NextBlock(SwitchBB))
3036       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3037                            DAG.getBasicBlock(JT.MBB));
3038 
3039     DAG.setRoot(BrCond);
3040   } else {
3041     // Avoid emitting unnecessary branches to the next block.
3042     if (JT.MBB != NextBlock(SwitchBB))
3043       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3044                               DAG.getBasicBlock(JT.MBB)));
3045     else
3046       DAG.setRoot(CopyTo);
3047   }
3048 }
3049 
3050 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3051 /// variable if there exists one.
3052 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3053                                  SDValue &Chain) {
3054   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3055   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3056   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3057   MachineFunction &MF = DAG.getMachineFunction();
3058   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3059   MachineSDNode *Node =
3060       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3061   if (Global) {
3062     MachinePointerInfo MPInfo(Global);
3063     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3064                  MachineMemOperand::MODereferenceable;
3065     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3066         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3067         DAG.getEVTAlign(PtrTy));
3068     DAG.setNodeMemRefs(Node, {MemRef});
3069   }
3070   if (PtrTy != PtrMemTy)
3071     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3072   return SDValue(Node, 0);
3073 }
3074 
3075 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3076 /// tail spliced into a stack protector check success bb.
3077 ///
3078 /// For a high level explanation of how this fits into the stack protector
3079 /// generation see the comment on the declaration of class
3080 /// StackProtectorDescriptor.
3081 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3082                                                   MachineBasicBlock *ParentBB) {
3083 
3084   // First create the loads to the guard/stack slot for the comparison.
3085   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3086   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3087   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3088 
3089   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3090   int FI = MFI.getStackProtectorIndex();
3091 
3092   SDValue Guard;
3093   SDLoc dl = getCurSDLoc();
3094   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3095   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3096   Align Align =
3097       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3098 
3099   // Generate code to load the content of the guard slot.
3100   SDValue GuardVal = DAG.getLoad(
3101       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3102       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3103       MachineMemOperand::MOVolatile);
3104 
3105   if (TLI.useStackGuardXorFP())
3106     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3107 
3108   // Retrieve guard check function, nullptr if instrumentation is inlined.
3109   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3110     // The target provides a guard check function to validate the guard value.
3111     // Generate a call to that function with the content of the guard slot as
3112     // argument.
3113     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3114     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3115 
3116     TargetLowering::ArgListTy Args;
3117     TargetLowering::ArgListEntry Entry;
3118     Entry.Node = GuardVal;
3119     Entry.Ty = FnTy->getParamType(0);
3120     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3121       Entry.IsInReg = true;
3122     Args.push_back(Entry);
3123 
3124     TargetLowering::CallLoweringInfo CLI(DAG);
3125     CLI.setDebugLoc(getCurSDLoc())
3126         .setChain(DAG.getEntryNode())
3127         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3128                    getValue(GuardCheckFn), std::move(Args));
3129 
3130     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3131     DAG.setRoot(Result.second);
3132     return;
3133   }
3134 
3135   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3136   // Otherwise, emit a volatile load to retrieve the stack guard value.
3137   SDValue Chain = DAG.getEntryNode();
3138   if (TLI.useLoadStackGuardNode(M)) {
3139     Guard = getLoadStackGuard(DAG, dl, Chain);
3140   } else {
3141     const Value *IRGuard = TLI.getSDagStackGuard(M);
3142     SDValue GuardPtr = getValue(IRGuard);
3143 
3144     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3145                         MachinePointerInfo(IRGuard, 0), Align,
3146                         MachineMemOperand::MOVolatile);
3147   }
3148 
3149   // Perform the comparison via a getsetcc.
3150   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3151                                                         *DAG.getContext(),
3152                                                         Guard.getValueType()),
3153                              Guard, GuardVal, ISD::SETNE);
3154 
3155   // If the guard/stackslot do not equal, branch to failure MBB.
3156   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3157                                MVT::Other, GuardVal.getOperand(0),
3158                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3159   // Otherwise branch to success MBB.
3160   SDValue Br = DAG.getNode(ISD::BR, dl,
3161                            MVT::Other, BrCond,
3162                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3163 
3164   DAG.setRoot(Br);
3165 }
3166 
3167 /// Codegen the failure basic block for a stack protector check.
3168 ///
3169 /// A failure stack protector machine basic block consists simply of a call to
3170 /// __stack_chk_fail().
3171 ///
3172 /// For a high level explanation of how this fits into the stack protector
3173 /// generation see the comment on the declaration of class
3174 /// StackProtectorDescriptor.
3175 void
3176 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3177   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3178   TargetLowering::MakeLibCallOptions CallOptions;
3179   CallOptions.setDiscardResult(true);
3180   SDValue Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
3181                                   MVT::isVoid, {}, CallOptions, getCurSDLoc())
3182                       .second;
3183 
3184   // Emit a trap instruction if we are required to do so.
3185   const TargetOptions &TargetOpts = DAG.getTarget().Options;
3186   if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn)
3187     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3188 
3189   DAG.setRoot(Chain);
3190 }
3191 
3192 /// visitBitTestHeader - This function emits necessary code to produce value
3193 /// suitable for "bit tests"
3194 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3195                                              MachineBasicBlock *SwitchBB) {
3196   SDLoc dl = getCurSDLoc();
3197 
3198   // Subtract the minimum value.
3199   SDValue SwitchOp = getValue(B.SValue);
3200   EVT VT = SwitchOp.getValueType();
3201   SDValue RangeSub =
3202       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3203 
3204   // Determine the type of the test operands.
3205   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3206   bool UsePtrType = false;
3207   if (!TLI.isTypeLegal(VT)) {
3208     UsePtrType = true;
3209   } else {
3210     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3211       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3212         // Switch table case range are encoded into series of masks.
3213         // Just use pointer type, it's guaranteed to fit.
3214         UsePtrType = true;
3215         break;
3216       }
3217   }
3218   SDValue Sub = RangeSub;
3219   if (UsePtrType) {
3220     VT = TLI.getPointerTy(DAG.getDataLayout());
3221     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3222   }
3223 
3224   B.RegVT = VT.getSimpleVT();
3225   B.Reg = FuncInfo.CreateReg(B.RegVT);
3226   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3227 
3228   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3229 
3230   if (!B.FallthroughUnreachable)
3231     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3232   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3233   SwitchBB->normalizeSuccProbs();
3234 
3235   SDValue Root = CopyTo;
3236   if (!B.FallthroughUnreachable) {
3237     // Conditional branch to the default block.
3238     SDValue RangeCmp = DAG.getSetCC(dl,
3239         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3240                                RangeSub.getValueType()),
3241         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3242         ISD::SETUGT);
3243 
3244     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3245                        DAG.getBasicBlock(B.Default));
3246   }
3247 
3248   // Avoid emitting unnecessary branches to the next block.
3249   if (MBB != NextBlock(SwitchBB))
3250     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3251 
3252   DAG.setRoot(Root);
3253 }
3254 
3255 /// visitBitTestCase - this function produces one "bit test"
3256 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3257                                            MachineBasicBlock *NextMBB,
3258                                            BranchProbability BranchProbToNext,
3259                                            Register Reg, BitTestCase &B,
3260                                            MachineBasicBlock *SwitchBB) {
3261   SDLoc dl = getCurSDLoc();
3262   MVT VT = BB.RegVT;
3263   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3264   SDValue Cmp;
3265   unsigned PopCount = llvm::popcount(B.Mask);
3266   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3267   if (PopCount == 1) {
3268     // Testing for a single bit; just compare the shift count with what it
3269     // would need to be to shift a 1 bit in that position.
3270     Cmp = DAG.getSetCC(
3271         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3272         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3273         ISD::SETEQ);
3274   } else if (PopCount == BB.Range) {
3275     // There is only one zero bit in the range, test for it directly.
3276     Cmp = DAG.getSetCC(
3277         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3278         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3279   } else {
3280     // Make desired shift
3281     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3282                                     DAG.getConstant(1, dl, VT), ShiftOp);
3283 
3284     // Emit bit tests and jumps
3285     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3286                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3287     Cmp = DAG.getSetCC(
3288         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3289         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3290   }
3291 
3292   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3293   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3294   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3295   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3296   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3297   // one as they are relative probabilities (and thus work more like weights),
3298   // and hence we need to normalize them to let the sum of them become one.
3299   SwitchBB->normalizeSuccProbs();
3300 
3301   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3302                               MVT::Other, getControlRoot(),
3303                               Cmp, DAG.getBasicBlock(B.TargetBB));
3304 
3305   // Avoid emitting unnecessary branches to the next block.
3306   if (NextMBB != NextBlock(SwitchBB))
3307     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3308                         DAG.getBasicBlock(NextMBB));
3309 
3310   DAG.setRoot(BrAnd);
3311 }
3312 
3313 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3314   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3315 
3316   // Retrieve successors. Look through artificial IR level blocks like
3317   // catchswitch for successors.
3318   MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3319   const BasicBlock *EHPadBB = I.getSuccessor(1);
3320   MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3321 
3322   // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3323   // have to do anything here to lower funclet bundles.
3324   assert(!I.hasOperandBundlesOtherThan(
3325              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3326               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3327               LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3328               LLVMContext::OB_clang_arc_attachedcall}) &&
3329          "Cannot lower invokes with arbitrary operand bundles yet!");
3330 
3331   const Value *Callee(I.getCalledOperand());
3332   const Function *Fn = dyn_cast<Function>(Callee);
3333   if (isa<InlineAsm>(Callee))
3334     visitInlineAsm(I, EHPadBB);
3335   else if (Fn && Fn->isIntrinsic()) {
3336     switch (Fn->getIntrinsicID()) {
3337     default:
3338       llvm_unreachable("Cannot invoke this intrinsic");
3339     case Intrinsic::donothing:
3340       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3341     case Intrinsic::seh_try_begin:
3342     case Intrinsic::seh_scope_begin:
3343     case Intrinsic::seh_try_end:
3344     case Intrinsic::seh_scope_end:
3345       if (EHPadMBB)
3346           // a block referenced by EH table
3347           // so dtor-funclet not removed by opts
3348           EHPadMBB->setMachineBlockAddressTaken();
3349       break;
3350     case Intrinsic::experimental_patchpoint_void:
3351     case Intrinsic::experimental_patchpoint:
3352       visitPatchpoint(I, EHPadBB);
3353       break;
3354     case Intrinsic::experimental_gc_statepoint:
3355       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3356       break;
3357     case Intrinsic::wasm_rethrow: {
3358       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3359       // special because it can be invoked, so we manually lower it to a DAG
3360       // node here.
3361       SmallVector<SDValue, 8> Ops;
3362       Ops.push_back(getControlRoot()); // inchain for the terminator node
3363       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3364       Ops.push_back(
3365           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3366                                 TLI.getPointerTy(DAG.getDataLayout())));
3367       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3368       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3369       break;
3370     }
3371     }
3372   } else if (I.hasDeoptState()) {
3373     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3374     // Eventually we will support lowering the @llvm.experimental.deoptimize
3375     // intrinsic, and right now there are no plans to support other intrinsics
3376     // with deopt state.
3377     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3378   } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3379     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3380   } else {
3381     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3382   }
3383 
3384   // If the value of the invoke is used outside of its defining block, make it
3385   // available as a virtual register.
3386   // We already took care of the exported value for the statepoint instruction
3387   // during call to the LowerStatepoint.
3388   if (!isa<GCStatepointInst>(I)) {
3389     CopyToExportRegsIfNeeded(&I);
3390   }
3391 
3392   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3393   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3394   BranchProbability EHPadBBProb =
3395       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3396           : BranchProbability::getZero();
3397   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3398 
3399   // Update successor info.
3400   addSuccessorWithProb(InvokeMBB, Return);
3401   for (auto &UnwindDest : UnwindDests) {
3402     UnwindDest.first->setIsEHPad();
3403     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3404   }
3405   InvokeMBB->normalizeSuccProbs();
3406 
3407   // Drop into normal successor.
3408   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3409                           DAG.getBasicBlock(Return)));
3410 }
3411 
3412 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3413   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3414 
3415   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3416   // have to do anything here to lower funclet bundles.
3417   assert(!I.hasOperandBundlesOtherThan(
3418              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3419          "Cannot lower callbrs with arbitrary operand bundles yet!");
3420 
3421   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3422   visitInlineAsm(I);
3423   CopyToExportRegsIfNeeded(&I);
3424 
3425   // Retrieve successors.
3426   SmallPtrSet<BasicBlock *, 8> Dests;
3427   Dests.insert(I.getDefaultDest());
3428   MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3429 
3430   // Update successor info.
3431   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3432   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3433     BasicBlock *Dest = I.getIndirectDest(i);
3434     MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3435     Target->setIsInlineAsmBrIndirectTarget();
3436     Target->setMachineBlockAddressTaken();
3437     Target->setLabelMustBeEmitted();
3438     // Don't add duplicate machine successors.
3439     if (Dests.insert(Dest).second)
3440       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3441   }
3442   CallBrMBB->normalizeSuccProbs();
3443 
3444   // Drop into default successor.
3445   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3446                           MVT::Other, getControlRoot(),
3447                           DAG.getBasicBlock(Return)));
3448 }
3449 
3450 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3451   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3452 }
3453 
3454 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3455   assert(FuncInfo.MBB->isEHPad() &&
3456          "Call to landingpad not in landing pad!");
3457 
3458   // If there aren't registers to copy the values into (e.g., during SjLj
3459   // exceptions), then don't bother to create these DAG nodes.
3460   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3461   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3462   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3463       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3464     return;
3465 
3466   // If landingpad's return type is token type, we don't create DAG nodes
3467   // for its exception pointer and selector value. The extraction of exception
3468   // pointer or selector value from token type landingpads is not currently
3469   // supported.
3470   if (LP.getType()->isTokenTy())
3471     return;
3472 
3473   SmallVector<EVT, 2> ValueVTs;
3474   SDLoc dl = getCurSDLoc();
3475   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3476   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3477 
3478   // Get the two live-in registers as SDValues. The physregs have already been
3479   // copied into virtual registers.
3480   SDValue Ops[2];
3481   if (FuncInfo.ExceptionPointerVirtReg) {
3482     Ops[0] = DAG.getZExtOrTrunc(
3483         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3484                            FuncInfo.ExceptionPointerVirtReg,
3485                            TLI.getPointerTy(DAG.getDataLayout())),
3486         dl, ValueVTs[0]);
3487   } else {
3488     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3489   }
3490   Ops[1] = DAG.getZExtOrTrunc(
3491       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3492                          FuncInfo.ExceptionSelectorVirtReg,
3493                          TLI.getPointerTy(DAG.getDataLayout())),
3494       dl, ValueVTs[1]);
3495 
3496   // Merge into one.
3497   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3498                             DAG.getVTList(ValueVTs), Ops);
3499   setValue(&LP, Res);
3500 }
3501 
3502 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3503                                            MachineBasicBlock *Last) {
3504   // Update JTCases.
3505   for (JumpTableBlock &JTB : SL->JTCases)
3506     if (JTB.first.HeaderBB == First)
3507       JTB.first.HeaderBB = Last;
3508 
3509   // Update BitTestCases.
3510   for (BitTestBlock &BTB : SL->BitTestCases)
3511     if (BTB.Parent == First)
3512       BTB.Parent = Last;
3513 }
3514 
3515 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3516   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3517 
3518   // Update machine-CFG edges with unique successors.
3519   SmallSet<BasicBlock*, 32> Done;
3520   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3521     BasicBlock *BB = I.getSuccessor(i);
3522     bool Inserted = Done.insert(BB).second;
3523     if (!Inserted)
3524         continue;
3525 
3526     MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3527     addSuccessorWithProb(IndirectBrMBB, Succ);
3528   }
3529   IndirectBrMBB->normalizeSuccProbs();
3530 
3531   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3532                           MVT::Other, getControlRoot(),
3533                           getValue(I.getAddress())));
3534 }
3535 
3536 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3537   if (!DAG.getTarget().Options.TrapUnreachable)
3538     return;
3539 
3540   // We may be able to ignore unreachable behind a noreturn call.
3541   if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode());
3542       Call && Call->doesNotReturn()) {
3543     if (DAG.getTarget().Options.NoTrapAfterNoreturn)
3544       return;
3545     // Do not emit an additional trap instruction.
3546     if (Call->isNonContinuableTrap())
3547       return;
3548   }
3549 
3550   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3551 }
3552 
3553 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3554   SDNodeFlags Flags;
3555   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3556     Flags.copyFMF(*FPOp);
3557 
3558   SDValue Op = getValue(I.getOperand(0));
3559   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3560                                     Op, Flags);
3561   setValue(&I, UnNodeValue);
3562 }
3563 
3564 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3565   SDNodeFlags Flags;
3566   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3567     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3568     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3569   }
3570   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3571     Flags.setExact(ExactOp->isExact());
3572   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3573     Flags.setDisjoint(DisjointOp->isDisjoint());
3574   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3575     Flags.copyFMF(*FPOp);
3576 
3577   SDValue Op1 = getValue(I.getOperand(0));
3578   SDValue Op2 = getValue(I.getOperand(1));
3579   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3580                                      Op1, Op2, Flags);
3581   setValue(&I, BinNodeValue);
3582 }
3583 
3584 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3585   SDValue Op1 = getValue(I.getOperand(0));
3586   SDValue Op2 = getValue(I.getOperand(1));
3587 
3588   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3589       Op1.getValueType(), DAG.getDataLayout());
3590 
3591   // Coerce the shift amount to the right type if we can. This exposes the
3592   // truncate or zext to optimization early.
3593   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3594     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3595            "Unexpected shift type");
3596     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3597   }
3598 
3599   bool nuw = false;
3600   bool nsw = false;
3601   bool exact = false;
3602 
3603   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3604 
3605     if (const OverflowingBinaryOperator *OFBinOp =
3606             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3607       nuw = OFBinOp->hasNoUnsignedWrap();
3608       nsw = OFBinOp->hasNoSignedWrap();
3609     }
3610     if (const PossiblyExactOperator *ExactOp =
3611             dyn_cast<const PossiblyExactOperator>(&I))
3612       exact = ExactOp->isExact();
3613   }
3614   SDNodeFlags Flags;
3615   Flags.setExact(exact);
3616   Flags.setNoSignedWrap(nsw);
3617   Flags.setNoUnsignedWrap(nuw);
3618   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3619                             Flags);
3620   setValue(&I, Res);
3621 }
3622 
3623 void SelectionDAGBuilder::visitSDiv(const User &I) {
3624   SDValue Op1 = getValue(I.getOperand(0));
3625   SDValue Op2 = getValue(I.getOperand(1));
3626 
3627   SDNodeFlags Flags;
3628   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3629                  cast<PossiblyExactOperator>(&I)->isExact());
3630   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3631                            Op2, Flags));
3632 }
3633 
3634 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3635   ICmpInst::Predicate predicate = I.getPredicate();
3636   SDValue Op1 = getValue(I.getOperand(0));
3637   SDValue Op2 = getValue(I.getOperand(1));
3638   ISD::CondCode Opcode = getICmpCondCode(predicate);
3639 
3640   auto &TLI = DAG.getTargetLoweringInfo();
3641   EVT MemVT =
3642       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3643 
3644   // If a pointer's DAG type is larger than its memory type then the DAG values
3645   // are zero-extended. This breaks signed comparisons so truncate back to the
3646   // underlying type before doing the compare.
3647   if (Op1.getValueType() != MemVT) {
3648     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3649     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3650   }
3651 
3652   SDNodeFlags Flags;
3653   Flags.setSameSign(I.hasSameSign());
3654   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3655 
3656   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3657                                                         I.getType());
3658   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3659 }
3660 
3661 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3662   FCmpInst::Predicate predicate = I.getPredicate();
3663   SDValue Op1 = getValue(I.getOperand(0));
3664   SDValue Op2 = getValue(I.getOperand(1));
3665 
3666   ISD::CondCode Condition = getFCmpCondCode(predicate);
3667   auto *FPMO = cast<FPMathOperator>(&I);
3668   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3669     Condition = getFCmpCodeWithoutNaN(Condition);
3670 
3671   SDNodeFlags Flags;
3672   Flags.copyFMF(*FPMO);
3673   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3674 
3675   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3676                                                         I.getType());
3677   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3678 }
3679 
3680 // Check if the condition of the select has one use or two users that are both
3681 // selects with the same condition.
3682 static bool hasOnlySelectUsers(const Value *Cond) {
3683   return llvm::all_of(Cond->users(), [](const Value *V) {
3684     return isa<SelectInst>(V);
3685   });
3686 }
3687 
3688 void SelectionDAGBuilder::visitSelect(const User &I) {
3689   SmallVector<EVT, 4> ValueVTs;
3690   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3691                   ValueVTs);
3692   unsigned NumValues = ValueVTs.size();
3693   if (NumValues == 0) return;
3694 
3695   SmallVector<SDValue, 4> Values(NumValues);
3696   SDValue Cond     = getValue(I.getOperand(0));
3697   SDValue LHSVal   = getValue(I.getOperand(1));
3698   SDValue RHSVal   = getValue(I.getOperand(2));
3699   SmallVector<SDValue, 1> BaseOps(1, Cond);
3700   ISD::NodeType OpCode =
3701       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3702 
3703   bool IsUnaryAbs = false;
3704   bool Negate = false;
3705 
3706   SDNodeFlags Flags;
3707   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3708     Flags.copyFMF(*FPOp);
3709 
3710   Flags.setUnpredictable(
3711       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3712 
3713   // Min/max matching is only viable if all output VTs are the same.
3714   if (all_equal(ValueVTs)) {
3715     EVT VT = ValueVTs[0];
3716     LLVMContext &Ctx = *DAG.getContext();
3717     auto &TLI = DAG.getTargetLoweringInfo();
3718 
3719     // We care about the legality of the operation after it has been type
3720     // legalized.
3721     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3722       VT = TLI.getTypeToTransformTo(Ctx, VT);
3723 
3724     // If the vselect is legal, assume we want to leave this as a vector setcc +
3725     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3726     // min/max is legal on the scalar type.
3727     bool UseScalarMinMax = VT.isVector() &&
3728       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3729 
3730     // ValueTracking's select pattern matching does not account for -0.0,
3731     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3732     // -0.0 is less than +0.0.
3733     const Value *LHS, *RHS;
3734     auto SPR = matchSelectPattern(&I, LHS, RHS);
3735     ISD::NodeType Opc = ISD::DELETED_NODE;
3736     switch (SPR.Flavor) {
3737     case SPF_UMAX:    Opc = ISD::UMAX; break;
3738     case SPF_UMIN:    Opc = ISD::UMIN; break;
3739     case SPF_SMAX:    Opc = ISD::SMAX; break;
3740     case SPF_SMIN:    Opc = ISD::SMIN; break;
3741     case SPF_FMINNUM:
3742       switch (SPR.NaNBehavior) {
3743       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3744       case SPNB_RETURNS_NAN: break;
3745       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3746       case SPNB_RETURNS_ANY:
3747         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3748             (UseScalarMinMax &&
3749              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3750           Opc = ISD::FMINNUM;
3751         break;
3752       }
3753       break;
3754     case SPF_FMAXNUM:
3755       switch (SPR.NaNBehavior) {
3756       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3757       case SPNB_RETURNS_NAN: break;
3758       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3759       case SPNB_RETURNS_ANY:
3760         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3761             (UseScalarMinMax &&
3762              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3763           Opc = ISD::FMAXNUM;
3764         break;
3765       }
3766       break;
3767     case SPF_NABS:
3768       Negate = true;
3769       [[fallthrough]];
3770     case SPF_ABS:
3771       IsUnaryAbs = true;
3772       Opc = ISD::ABS;
3773       break;
3774     default: break;
3775     }
3776 
3777     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3778         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3779          (UseScalarMinMax &&
3780           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3781         // If the underlying comparison instruction is used by any other
3782         // instruction, the consumed instructions won't be destroyed, so it is
3783         // not profitable to convert to a min/max.
3784         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3785       OpCode = Opc;
3786       LHSVal = getValue(LHS);
3787       RHSVal = getValue(RHS);
3788       BaseOps.clear();
3789     }
3790 
3791     if (IsUnaryAbs) {
3792       OpCode = Opc;
3793       LHSVal = getValue(LHS);
3794       BaseOps.clear();
3795     }
3796   }
3797 
3798   if (IsUnaryAbs) {
3799     for (unsigned i = 0; i != NumValues; ++i) {
3800       SDLoc dl = getCurSDLoc();
3801       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3802       Values[i] =
3803           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3804       if (Negate)
3805         Values[i] = DAG.getNegative(Values[i], dl, VT);
3806     }
3807   } else {
3808     for (unsigned i = 0; i != NumValues; ++i) {
3809       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3810       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3811       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3812       Values[i] = DAG.getNode(
3813           OpCode, getCurSDLoc(),
3814           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3815     }
3816   }
3817 
3818   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3819                            DAG.getVTList(ValueVTs), Values));
3820 }
3821 
3822 void SelectionDAGBuilder::visitTrunc(const User &I) {
3823   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3824   SDValue N = getValue(I.getOperand(0));
3825   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3826                                                         I.getType());
3827   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3828 }
3829 
3830 void SelectionDAGBuilder::visitZExt(const User &I) {
3831   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3832   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3833   SDValue N = getValue(I.getOperand(0));
3834   auto &TLI = DAG.getTargetLoweringInfo();
3835   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3836 
3837   SDNodeFlags Flags;
3838   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3839     Flags.setNonNeg(PNI->hasNonNeg());
3840 
3841   // Eagerly use nonneg information to canonicalize towards sign_extend if
3842   // that is the target's preference.
3843   // TODO: Let the target do this later.
3844   if (Flags.hasNonNeg() &&
3845       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3846     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3847     return;
3848   }
3849 
3850   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3851 }
3852 
3853 void SelectionDAGBuilder::visitSExt(const User &I) {
3854   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3855   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3856   SDValue N = getValue(I.getOperand(0));
3857   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3858                                                         I.getType());
3859   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3860 }
3861 
3862 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3863   // FPTrunc is never a no-op cast, no need to check
3864   SDValue N = getValue(I.getOperand(0));
3865   SDLoc dl = getCurSDLoc();
3866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3867   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3868   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3869                            DAG.getTargetConstant(
3870                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3871 }
3872 
3873 void SelectionDAGBuilder::visitFPExt(const User &I) {
3874   // FPExt is never a no-op cast, no need to check
3875   SDValue N = getValue(I.getOperand(0));
3876   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3877                                                         I.getType());
3878   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3879 }
3880 
3881 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3882   // FPToUI is never a no-op cast, no need to check
3883   SDValue N = getValue(I.getOperand(0));
3884   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3885                                                         I.getType());
3886   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3887 }
3888 
3889 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3890   // FPToSI is never a no-op cast, no need to check
3891   SDValue N = getValue(I.getOperand(0));
3892   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3893                                                         I.getType());
3894   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3895 }
3896 
3897 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3898   // UIToFP is never a no-op cast, no need to check
3899   SDValue N = getValue(I.getOperand(0));
3900   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3901                                                         I.getType());
3902   SDNodeFlags Flags;
3903   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3904     Flags.setNonNeg(PNI->hasNonNeg());
3905 
3906   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3907 }
3908 
3909 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3910   // SIToFP is never a no-op cast, no need to check
3911   SDValue N = getValue(I.getOperand(0));
3912   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3913                                                         I.getType());
3914   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3915 }
3916 
3917 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3918   // What to do depends on the size of the integer and the size of the pointer.
3919   // We can either truncate, zero extend, or no-op, accordingly.
3920   SDValue N = getValue(I.getOperand(0));
3921   auto &TLI = DAG.getTargetLoweringInfo();
3922   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3923                                                         I.getType());
3924   EVT PtrMemVT =
3925       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3926   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3927   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3928   setValue(&I, N);
3929 }
3930 
3931 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3932   // What to do depends on the size of the integer and the size of the pointer.
3933   // We can either truncate, zero extend, or no-op, accordingly.
3934   SDValue N = getValue(I.getOperand(0));
3935   auto &TLI = DAG.getTargetLoweringInfo();
3936   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3937   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3938   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3939   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3940   setValue(&I, N);
3941 }
3942 
3943 void SelectionDAGBuilder::visitBitCast(const User &I) {
3944   SDValue N = getValue(I.getOperand(0));
3945   SDLoc dl = getCurSDLoc();
3946   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3947                                                         I.getType());
3948 
3949   // BitCast assures us that source and destination are the same size so this is
3950   // either a BITCAST or a no-op.
3951   if (DestVT != N.getValueType())
3952     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3953                              DestVT, N)); // convert types.
3954   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3955   // might fold any kind of constant expression to an integer constant and that
3956   // is not what we are looking for. Only recognize a bitcast of a genuine
3957   // constant integer as an opaque constant.
3958   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3959     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3960                                  /*isOpaque*/true));
3961   else
3962     setValue(&I, N);            // noop cast.
3963 }
3964 
3965 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3966   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3967   const Value *SV = I.getOperand(0);
3968   SDValue N = getValue(SV);
3969   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3970 
3971   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3972   unsigned DestAS = I.getType()->getPointerAddressSpace();
3973 
3974   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3975     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3976 
3977   setValue(&I, N);
3978 }
3979 
3980 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3982   SDValue InVec = getValue(I.getOperand(0));
3983   SDValue InVal = getValue(I.getOperand(1));
3984   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3985                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3986   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3987                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3988                            InVec, InVal, InIdx));
3989 }
3990 
3991 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3992   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3993   SDValue InVec = getValue(I.getOperand(0));
3994   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3995                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3996   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3997                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3998                            InVec, InIdx));
3999 }
4000 
4001 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4002   SDValue Src1 = getValue(I.getOperand(0));
4003   SDValue Src2 = getValue(I.getOperand(1));
4004   ArrayRef<int> Mask;
4005   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4006     Mask = SVI->getShuffleMask();
4007   else
4008     Mask = cast<ConstantExpr>(I).getShuffleMask();
4009   SDLoc DL = getCurSDLoc();
4010   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4011   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4012   EVT SrcVT = Src1.getValueType();
4013 
4014   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4015       VT.isScalableVector()) {
4016     // Canonical splat form of first element of first input vector.
4017     SDValue FirstElt =
4018         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4019                     DAG.getVectorIdxConstant(0, DL));
4020     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4021     return;
4022   }
4023 
4024   // For now, we only handle splats for scalable vectors.
4025   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4026   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4027   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4028 
4029   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4030   unsigned MaskNumElts = Mask.size();
4031 
4032   if (SrcNumElts == MaskNumElts) {
4033     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4034     return;
4035   }
4036 
4037   // Normalize the shuffle vector since mask and vector length don't match.
4038   if (SrcNumElts < MaskNumElts) {
4039     // Mask is longer than the source vectors. We can use concatenate vector to
4040     // make the mask and vectors lengths match.
4041 
4042     if (MaskNumElts % SrcNumElts == 0) {
4043       // Mask length is a multiple of the source vector length.
4044       // Check if the shuffle is some kind of concatenation of the input
4045       // vectors.
4046       unsigned NumConcat = MaskNumElts / SrcNumElts;
4047       bool IsConcat = true;
4048       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4049       for (unsigned i = 0; i != MaskNumElts; ++i) {
4050         int Idx = Mask[i];
4051         if (Idx < 0)
4052           continue;
4053         // Ensure the indices in each SrcVT sized piece are sequential and that
4054         // the same source is used for the whole piece.
4055         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4056             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4057              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4058           IsConcat = false;
4059           break;
4060         }
4061         // Remember which source this index came from.
4062         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4063       }
4064 
4065       // The shuffle is concatenating multiple vectors together. Just emit
4066       // a CONCAT_VECTORS operation.
4067       if (IsConcat) {
4068         SmallVector<SDValue, 8> ConcatOps;
4069         for (auto Src : ConcatSrcs) {
4070           if (Src < 0)
4071             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4072           else if (Src == 0)
4073             ConcatOps.push_back(Src1);
4074           else
4075             ConcatOps.push_back(Src2);
4076         }
4077         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4078         return;
4079       }
4080     }
4081 
4082     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4083     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4084     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4085                                     PaddedMaskNumElts);
4086 
4087     // Pad both vectors with undefs to make them the same length as the mask.
4088     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4089 
4090     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4091     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4092     MOps1[0] = Src1;
4093     MOps2[0] = Src2;
4094 
4095     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4096     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4097 
4098     // Readjust mask for new input vector length.
4099     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4100     for (unsigned i = 0; i != MaskNumElts; ++i) {
4101       int Idx = Mask[i];
4102       if (Idx >= (int)SrcNumElts)
4103         Idx -= SrcNumElts - PaddedMaskNumElts;
4104       MappedOps[i] = Idx;
4105     }
4106 
4107     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4108 
4109     // If the concatenated vector was padded, extract a subvector with the
4110     // correct number of elements.
4111     if (MaskNumElts != PaddedMaskNumElts)
4112       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4113                            DAG.getVectorIdxConstant(0, DL));
4114 
4115     setValue(&I, Result);
4116     return;
4117   }
4118 
4119   assert(SrcNumElts > MaskNumElts);
4120 
4121   // Analyze the access pattern of the vector to see if we can extract
4122   // two subvectors and do the shuffle.
4123   int StartIdx[2] = {-1, -1}; // StartIdx to extract from
4124   bool CanExtract = true;
4125   for (int Idx : Mask) {
4126     unsigned Input = 0;
4127     if (Idx < 0)
4128       continue;
4129 
4130     if (Idx >= (int)SrcNumElts) {
4131       Input = 1;
4132       Idx -= SrcNumElts;
4133     }
4134 
4135     // If all the indices come from the same MaskNumElts sized portion of
4136     // the sources we can use extract. Also make sure the extract wouldn't
4137     // extract past the end of the source.
4138     int NewStartIdx = alignDown(Idx, MaskNumElts);
4139     if (NewStartIdx + MaskNumElts > SrcNumElts ||
4140         (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4141       CanExtract = false;
4142     // Make sure we always update StartIdx as we use it to track if all
4143     // elements are undef.
4144     StartIdx[Input] = NewStartIdx;
4145   }
4146 
4147   if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4148     setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4149     return;
4150   }
4151   if (CanExtract) {
4152     // Extract appropriate subvector and generate a vector shuffle
4153     for (unsigned Input = 0; Input < 2; ++Input) {
4154       SDValue &Src = Input == 0 ? Src1 : Src2;
4155       if (StartIdx[Input] < 0)
4156         Src = DAG.getUNDEF(VT);
4157       else {
4158         Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4159                           DAG.getVectorIdxConstant(StartIdx[Input], DL));
4160       }
4161     }
4162 
4163     // Calculate new mask.
4164     SmallVector<int, 8> MappedOps(Mask);
4165     for (int &Idx : MappedOps) {
4166       if (Idx >= (int)SrcNumElts)
4167         Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4168       else if (Idx >= 0)
4169         Idx -= StartIdx[0];
4170     }
4171 
4172     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4173     return;
4174   }
4175 
4176   // We can't use either concat vectors or extract subvectors so fall back to
4177   // replacing the shuffle with extract and build vector.
4178   // to insert and build vector.
4179   EVT EltVT = VT.getVectorElementType();
4180   SmallVector<SDValue,8> Ops;
4181   for (int Idx : Mask) {
4182     SDValue Res;
4183 
4184     if (Idx < 0) {
4185       Res = DAG.getUNDEF(EltVT);
4186     } else {
4187       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4188       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4189 
4190       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4191                         DAG.getVectorIdxConstant(Idx, DL));
4192     }
4193 
4194     Ops.push_back(Res);
4195   }
4196 
4197   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4198 }
4199 
4200 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4201   ArrayRef<unsigned> Indices = I.getIndices();
4202   const Value *Op0 = I.getOperand(0);
4203   const Value *Op1 = I.getOperand(1);
4204   Type *AggTy = I.getType();
4205   Type *ValTy = Op1->getType();
4206   bool IntoUndef = isa<UndefValue>(Op0);
4207   bool FromUndef = isa<UndefValue>(Op1);
4208 
4209   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4210 
4211   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4212   SmallVector<EVT, 4> AggValueVTs;
4213   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4214   SmallVector<EVT, 4> ValValueVTs;
4215   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4216 
4217   unsigned NumAggValues = AggValueVTs.size();
4218   unsigned NumValValues = ValValueVTs.size();
4219   SmallVector<SDValue, 4> Values(NumAggValues);
4220 
4221   // Ignore an insertvalue that produces an empty object
4222   if (!NumAggValues) {
4223     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4224     return;
4225   }
4226 
4227   SDValue Agg = getValue(Op0);
4228   unsigned i = 0;
4229   // Copy the beginning value(s) from the original aggregate.
4230   for (; i != LinearIndex; ++i)
4231     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4232                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4233   // Copy values from the inserted value(s).
4234   if (NumValValues) {
4235     SDValue Val = getValue(Op1);
4236     for (; i != LinearIndex + NumValValues; ++i)
4237       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4238                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4239   }
4240   // Copy remaining value(s) from the original aggregate.
4241   for (; i != NumAggValues; ++i)
4242     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4243                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4244 
4245   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4246                            DAG.getVTList(AggValueVTs), Values));
4247 }
4248 
4249 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4250   ArrayRef<unsigned> Indices = I.getIndices();
4251   const Value *Op0 = I.getOperand(0);
4252   Type *AggTy = Op0->getType();
4253   Type *ValTy = I.getType();
4254   bool OutOfUndef = isa<UndefValue>(Op0);
4255 
4256   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4257 
4258   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4259   SmallVector<EVT, 4> ValValueVTs;
4260   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4261 
4262   unsigned NumValValues = ValValueVTs.size();
4263 
4264   // Ignore a extractvalue that produces an empty object
4265   if (!NumValValues) {
4266     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4267     return;
4268   }
4269 
4270   SmallVector<SDValue, 4> Values(NumValValues);
4271 
4272   SDValue Agg = getValue(Op0);
4273   // Copy out the selected value(s).
4274   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4275     Values[i - LinearIndex] =
4276       OutOfUndef ?
4277         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4278         SDValue(Agg.getNode(), Agg.getResNo() + i);
4279 
4280   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4281                            DAG.getVTList(ValValueVTs), Values));
4282 }
4283 
4284 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4285   Value *Op0 = I.getOperand(0);
4286   // Note that the pointer operand may be a vector of pointers. Take the scalar
4287   // element which holds a pointer.
4288   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4289   SDValue N = getValue(Op0);
4290   SDLoc dl = getCurSDLoc();
4291   auto &TLI = DAG.getTargetLoweringInfo();
4292   GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4293 
4294   // Normalize Vector GEP - all scalar operands should be converted to the
4295   // splat vector.
4296   bool IsVectorGEP = I.getType()->isVectorTy();
4297   ElementCount VectorElementCount =
4298       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4299                   : ElementCount::getFixed(0);
4300 
4301   if (IsVectorGEP && !N.getValueType().isVector()) {
4302     LLVMContext &Context = *DAG.getContext();
4303     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4304     N = DAG.getSplat(VT, dl, N);
4305   }
4306 
4307   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4308        GTI != E; ++GTI) {
4309     const Value *Idx = GTI.getOperand();
4310     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4311       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4312       if (Field) {
4313         // N = N + Offset
4314         uint64_t Offset =
4315             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4316 
4317         // In an inbounds GEP with an offset that is nonnegative even when
4318         // interpreted as signed, assume there is no unsigned overflow.
4319         SDNodeFlags Flags;
4320         if (NW.hasNoUnsignedWrap() ||
4321             (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4322           Flags |= SDNodeFlags::NoUnsignedWrap;
4323 
4324         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4325                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4326       }
4327     } else {
4328       // IdxSize is the width of the arithmetic according to IR semantics.
4329       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4330       // (and fix up the result later).
4331       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4332       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4333       TypeSize ElementSize =
4334           GTI.getSequentialElementStride(DAG.getDataLayout());
4335       // We intentionally mask away the high bits here; ElementSize may not
4336       // fit in IdxTy.
4337       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(),
4338                        /*isSigned=*/false, /*implicitTrunc=*/true);
4339       bool ElementScalable = ElementSize.isScalable();
4340 
4341       // If this is a scalar constant or a splat vector of constants,
4342       // handle it quickly.
4343       const auto *C = dyn_cast<Constant>(Idx);
4344       if (C && isa<VectorType>(C->getType()))
4345         C = C->getSplatValue();
4346 
4347       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4348       if (CI && CI->isZero())
4349         continue;
4350       if (CI && !ElementScalable) {
4351         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4352         LLVMContext &Context = *DAG.getContext();
4353         SDValue OffsVal;
4354         if (IsVectorGEP)
4355           OffsVal = DAG.getConstant(
4356               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4357         else
4358           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4359 
4360         // In an inbounds GEP with an offset that is nonnegative even when
4361         // interpreted as signed, assume there is no unsigned overflow.
4362         SDNodeFlags Flags;
4363         if (NW.hasNoUnsignedWrap() ||
4364             (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4365           Flags.setNoUnsignedWrap(true);
4366 
4367         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4368 
4369         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4370         continue;
4371       }
4372 
4373       // N = N + Idx * ElementMul;
4374       SDValue IdxN = getValue(Idx);
4375 
4376       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4377         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4378                                   VectorElementCount);
4379         IdxN = DAG.getSplat(VT, dl, IdxN);
4380       }
4381 
4382       // If the index is smaller or larger than intptr_t, truncate or extend
4383       // it.
4384       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4385 
4386       SDNodeFlags ScaleFlags;
4387       // The multiplication of an index by the type size does not wrap the
4388       // pointer index type in a signed sense (mul nsw).
4389       ScaleFlags.setNoSignedWrap(NW.hasNoUnsignedSignedWrap());
4390 
4391       // The multiplication of an index by the type size does not wrap the
4392       // pointer index type in an unsigned sense (mul nuw).
4393       ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4394 
4395       if (ElementScalable) {
4396         EVT VScaleTy = N.getValueType().getScalarType();
4397         SDValue VScale = DAG.getNode(
4398             ISD::VSCALE, dl, VScaleTy,
4399             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4400         if (IsVectorGEP)
4401           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4402         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale,
4403                            ScaleFlags);
4404       } else {
4405         // If this is a multiply by a power of two, turn it into a shl
4406         // immediately.  This is a very common case.
4407         if (ElementMul != 1) {
4408           if (ElementMul.isPowerOf2()) {
4409             unsigned Amt = ElementMul.logBase2();
4410             IdxN = DAG.getNode(ISD::SHL, dl, N.getValueType(), IdxN,
4411                                DAG.getConstant(Amt, dl, IdxN.getValueType()),
4412                                ScaleFlags);
4413           } else {
4414             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4415                                             IdxN.getValueType());
4416             IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale,
4417                                ScaleFlags);
4418           }
4419         }
4420       }
4421 
4422       // The successive addition of the current address, truncated to the
4423       // pointer index type and interpreted as an unsigned number, and each
4424       // offset, also interpreted as an unsigned number, does not wrap the
4425       // pointer index type (add nuw).
4426       SDNodeFlags AddFlags;
4427       AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4428 
4429       N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, IdxN, AddFlags);
4430     }
4431   }
4432 
4433   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4434   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4435   if (IsVectorGEP) {
4436     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4437     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4438   }
4439 
4440   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4441     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4442 
4443   setValue(&I, N);
4444 }
4445 
4446 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4447   // If this is a fixed sized alloca in the entry block of the function,
4448   // allocate it statically on the stack.
4449   if (FuncInfo.StaticAllocaMap.count(&I))
4450     return;   // getValue will auto-populate this.
4451 
4452   SDLoc dl = getCurSDLoc();
4453   Type *Ty = I.getAllocatedType();
4454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4455   auto &DL = DAG.getDataLayout();
4456   TypeSize TySize = DL.getTypeAllocSize(Ty);
4457   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4458 
4459   SDValue AllocSize = getValue(I.getArraySize());
4460 
4461   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4462   if (AllocSize.getValueType() != IntPtr)
4463     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4464 
4465   if (TySize.isScalable())
4466     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4467                             DAG.getVScale(dl, IntPtr,
4468                                           APInt(IntPtr.getScalarSizeInBits(),
4469                                                 TySize.getKnownMinValue())));
4470   else {
4471     SDValue TySizeValue =
4472         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4473     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4474                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4475   }
4476 
4477   // Handle alignment.  If the requested alignment is less than or equal to
4478   // the stack alignment, ignore it.  If the size is greater than or equal to
4479   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4480   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4481   if (*Alignment <= StackAlign)
4482     Alignment = std::nullopt;
4483 
4484   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4485   // Round the size of the allocation up to the stack alignment size
4486   // by add SA-1 to the size. This doesn't overflow because we're computing
4487   // an address inside an alloca.
4488   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4489                           DAG.getConstant(StackAlignMask, dl, IntPtr),
4490                           SDNodeFlags::NoUnsignedWrap);
4491 
4492   // Mask out the low bits for alignment purposes.
4493   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4494                           DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4495 
4496   SDValue Ops[] = {
4497       getRoot(), AllocSize,
4498       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4499   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4500   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4501   setValue(&I, DSA);
4502   DAG.setRoot(DSA.getValue(1));
4503 
4504   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4505 }
4506 
4507 static const MDNode *getRangeMetadata(const Instruction &I) {
4508   // If !noundef is not present, then !range violation results in a poison
4509   // value rather than immediate undefined behavior. In theory, transferring
4510   // these annotations to SDAG is fine, but in practice there are key SDAG
4511   // transforms that are known not to be poison-safe, such as folding logical
4512   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4513   // also present.
4514   if (!I.hasMetadata(LLVMContext::MD_noundef))
4515     return nullptr;
4516   return I.getMetadata(LLVMContext::MD_range);
4517 }
4518 
4519 static std::optional<ConstantRange> getRange(const Instruction &I) {
4520   if (const auto *CB = dyn_cast<CallBase>(&I)) {
4521     // see comment in getRangeMetadata about this check
4522     if (CB->hasRetAttr(Attribute::NoUndef))
4523       return CB->getRange();
4524   }
4525   if (const MDNode *Range = getRangeMetadata(I))
4526     return getConstantRangeFromMetadata(*Range);
4527   return std::nullopt;
4528 }
4529 
4530 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4531   if (I.isAtomic())
4532     return visitAtomicLoad(I);
4533 
4534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4535   const Value *SV = I.getOperand(0);
4536   if (TLI.supportSwiftError()) {
4537     // Swifterror values can come from either a function parameter with
4538     // swifterror attribute or an alloca with swifterror attribute.
4539     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4540       if (Arg->hasSwiftErrorAttr())
4541         return visitLoadFromSwiftError(I);
4542     }
4543 
4544     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4545       if (Alloca->isSwiftError())
4546         return visitLoadFromSwiftError(I);
4547     }
4548   }
4549 
4550   SDValue Ptr = getValue(SV);
4551 
4552   Type *Ty = I.getType();
4553   SmallVector<EVT, 4> ValueVTs, MemVTs;
4554   SmallVector<TypeSize, 4> Offsets;
4555   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4556   unsigned NumValues = ValueVTs.size();
4557   if (NumValues == 0)
4558     return;
4559 
4560   Align Alignment = I.getAlign();
4561   AAMDNodes AAInfo = I.getAAMetadata();
4562   const MDNode *Ranges = getRangeMetadata(I);
4563   bool isVolatile = I.isVolatile();
4564   MachineMemOperand::Flags MMOFlags =
4565       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4566 
4567   SDValue Root;
4568   bool ConstantMemory = false;
4569   if (isVolatile)
4570     // Serialize volatile loads with other side effects.
4571     Root = getRoot();
4572   else if (NumValues > MaxParallelChains)
4573     Root = getMemoryRoot();
4574   else if (AA &&
4575            AA->pointsToConstantMemory(MemoryLocation(
4576                SV,
4577                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4578                AAInfo))) {
4579     // Do not serialize (non-volatile) loads of constant memory with anything.
4580     Root = DAG.getEntryNode();
4581     ConstantMemory = true;
4582     MMOFlags |= MachineMemOperand::MOInvariant;
4583   } else {
4584     // Do not serialize non-volatile loads against each other.
4585     Root = DAG.getRoot();
4586   }
4587 
4588   SDLoc dl = getCurSDLoc();
4589 
4590   if (isVolatile)
4591     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4592 
4593   SmallVector<SDValue, 4> Values(NumValues);
4594   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4595 
4596   unsigned ChainI = 0;
4597   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4598     // Serializing loads here may result in excessive register pressure, and
4599     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4600     // could recover a bit by hoisting nodes upward in the chain by recognizing
4601     // they are side-effect free or do not alias. The optimizer should really
4602     // avoid this case by converting large object/array copies to llvm.memcpy
4603     // (MaxParallelChains should always remain as failsafe).
4604     if (ChainI == MaxParallelChains) {
4605       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4606       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4607                                   ArrayRef(Chains.data(), ChainI));
4608       Root = Chain;
4609       ChainI = 0;
4610     }
4611 
4612     // TODO: MachinePointerInfo only supports a fixed length offset.
4613     MachinePointerInfo PtrInfo =
4614         !Offsets[i].isScalable() || Offsets[i].isZero()
4615             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4616             : MachinePointerInfo();
4617 
4618     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4619     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4620                             MMOFlags, AAInfo, Ranges);
4621     Chains[ChainI] = L.getValue(1);
4622 
4623     if (MemVTs[i] != ValueVTs[i])
4624       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4625 
4626     Values[i] = L;
4627   }
4628 
4629   if (!ConstantMemory) {
4630     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4631                                 ArrayRef(Chains.data(), ChainI));
4632     if (isVolatile)
4633       DAG.setRoot(Chain);
4634     else
4635       PendingLoads.push_back(Chain);
4636   }
4637 
4638   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4639                            DAG.getVTList(ValueVTs), Values));
4640 }
4641 
4642 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4643   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4644          "call visitStoreToSwiftError when backend supports swifterror");
4645 
4646   SmallVector<EVT, 4> ValueVTs;
4647   SmallVector<uint64_t, 4> Offsets;
4648   const Value *SrcV = I.getOperand(0);
4649   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4650                   SrcV->getType(), ValueVTs, &Offsets, 0);
4651   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4652          "expect a single EVT for swifterror");
4653 
4654   SDValue Src = getValue(SrcV);
4655   // Create a virtual register, then update the virtual register.
4656   Register VReg =
4657       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4658   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4659   // Chain can be getRoot or getControlRoot.
4660   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4661                                       SDValue(Src.getNode(), Src.getResNo()));
4662   DAG.setRoot(CopyNode);
4663 }
4664 
4665 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4666   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4667          "call visitLoadFromSwiftError when backend supports swifterror");
4668 
4669   assert(!I.isVolatile() &&
4670          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4671          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4672          "Support volatile, non temporal, invariant for load_from_swift_error");
4673 
4674   const Value *SV = I.getOperand(0);
4675   Type *Ty = I.getType();
4676   assert(
4677       (!AA ||
4678        !AA->pointsToConstantMemory(MemoryLocation(
4679            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4680            I.getAAMetadata()))) &&
4681       "load_from_swift_error should not be constant memory");
4682 
4683   SmallVector<EVT, 4> ValueVTs;
4684   SmallVector<uint64_t, 4> Offsets;
4685   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4686                   ValueVTs, &Offsets, 0);
4687   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4688          "expect a single EVT for swifterror");
4689 
4690   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4691   SDValue L = DAG.getCopyFromReg(
4692       getRoot(), getCurSDLoc(),
4693       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4694 
4695   setValue(&I, L);
4696 }
4697 
4698 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4699   if (I.isAtomic())
4700     return visitAtomicStore(I);
4701 
4702   const Value *SrcV = I.getOperand(0);
4703   const Value *PtrV = I.getOperand(1);
4704 
4705   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4706   if (TLI.supportSwiftError()) {
4707     // Swifterror values can come from either a function parameter with
4708     // swifterror attribute or an alloca with swifterror attribute.
4709     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4710       if (Arg->hasSwiftErrorAttr())
4711         return visitStoreToSwiftError(I);
4712     }
4713 
4714     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4715       if (Alloca->isSwiftError())
4716         return visitStoreToSwiftError(I);
4717     }
4718   }
4719 
4720   SmallVector<EVT, 4> ValueVTs, MemVTs;
4721   SmallVector<TypeSize, 4> Offsets;
4722   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4723                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4724   unsigned NumValues = ValueVTs.size();
4725   if (NumValues == 0)
4726     return;
4727 
4728   // Get the lowered operands. Note that we do this after
4729   // checking if NumResults is zero, because with zero results
4730   // the operands won't have values in the map.
4731   SDValue Src = getValue(SrcV);
4732   SDValue Ptr = getValue(PtrV);
4733 
4734   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4735   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4736   SDLoc dl = getCurSDLoc();
4737   Align Alignment = I.getAlign();
4738   AAMDNodes AAInfo = I.getAAMetadata();
4739 
4740   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4741 
4742   unsigned ChainI = 0;
4743   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4744     // See visitLoad comments.
4745     if (ChainI == MaxParallelChains) {
4746       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4747                                   ArrayRef(Chains.data(), ChainI));
4748       Root = Chain;
4749       ChainI = 0;
4750     }
4751 
4752     // TODO: MachinePointerInfo only supports a fixed length offset.
4753     MachinePointerInfo PtrInfo =
4754         !Offsets[i].isScalable() || Offsets[i].isZero()
4755             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4756             : MachinePointerInfo();
4757 
4758     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4759     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4760     if (MemVTs[i] != ValueVTs[i])
4761       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4762     SDValue St =
4763         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4764     Chains[ChainI] = St;
4765   }
4766 
4767   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4768                                   ArrayRef(Chains.data(), ChainI));
4769   setValue(&I, StoreNode);
4770   DAG.setRoot(StoreNode);
4771 }
4772 
4773 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4774                                            bool IsCompressing) {
4775   SDLoc sdl = getCurSDLoc();
4776 
4777   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4778                                Align &Alignment) {
4779     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4780     Src0 = I.getArgOperand(0);
4781     Ptr = I.getArgOperand(1);
4782     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4783     Mask = I.getArgOperand(3);
4784   };
4785   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4786                                     Align &Alignment) {
4787     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4788     Src0 = I.getArgOperand(0);
4789     Ptr = I.getArgOperand(1);
4790     Mask = I.getArgOperand(2);
4791     Alignment = I.getParamAlign(1).valueOrOne();
4792   };
4793 
4794   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4795   Align Alignment;
4796   if (IsCompressing)
4797     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4798   else
4799     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4800 
4801   SDValue Ptr = getValue(PtrOperand);
4802   SDValue Src0 = getValue(Src0Operand);
4803   SDValue Mask = getValue(MaskOperand);
4804   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4805 
4806   EVT VT = Src0.getValueType();
4807 
4808   auto MMOFlags = MachineMemOperand::MOStore;
4809   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4810     MMOFlags |= MachineMemOperand::MONonTemporal;
4811 
4812   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4813       MachinePointerInfo(PtrOperand), MMOFlags,
4814       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4815 
4816   const auto &TLI = DAG.getTargetLoweringInfo();
4817   const auto &TTI =
4818       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4819   SDValue StoreNode =
4820       !IsCompressing &&
4821               TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType())
4822           ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4823                                  Mask)
4824           : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4825                                VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4826                                IsCompressing);
4827   DAG.setRoot(StoreNode);
4828   setValue(&I, StoreNode);
4829 }
4830 
4831 // Get a uniform base for the Gather/Scatter intrinsic.
4832 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4833 // We try to represent it as a base pointer + vector of indices.
4834 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4835 // The first operand of the GEP may be a single pointer or a vector of pointers
4836 // Example:
4837 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4838 //  or
4839 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4840 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4841 //
4842 // When the first GEP operand is a single pointer - it is the uniform base we
4843 // are looking for. If first operand of the GEP is a splat vector - we
4844 // extract the splat value and use it as a uniform base.
4845 // In all other cases the function returns 'false'.
4846 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4847                            ISD::MemIndexType &IndexType, SDValue &Scale,
4848                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4849                            uint64_t ElemSize) {
4850   SelectionDAG& DAG = SDB->DAG;
4851   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4852   const DataLayout &DL = DAG.getDataLayout();
4853 
4854   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4855 
4856   // Handle splat constant pointer.
4857   if (auto *C = dyn_cast<Constant>(Ptr)) {
4858     C = C->getSplatValue();
4859     if (!C)
4860       return false;
4861 
4862     Base = SDB->getValue(C);
4863 
4864     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4865     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4866     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4867     IndexType = ISD::SIGNED_SCALED;
4868     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4869     return true;
4870   }
4871 
4872   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4873   if (!GEP || GEP->getParent() != CurBB)
4874     return false;
4875 
4876   if (GEP->getNumOperands() != 2)
4877     return false;
4878 
4879   const Value *BasePtr = GEP->getPointerOperand();
4880   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4881 
4882   // Make sure the base is scalar and the index is a vector.
4883   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4884     return false;
4885 
4886   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4887   if (ScaleVal.isScalable())
4888     return false;
4889 
4890   // Target may not support the required addressing mode.
4891   if (ScaleVal != 1 &&
4892       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4893     return false;
4894 
4895   Base = SDB->getValue(BasePtr);
4896   Index = SDB->getValue(IndexVal);
4897   IndexType = ISD::SIGNED_SCALED;
4898 
4899   Scale =
4900       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4901   return true;
4902 }
4903 
4904 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4905   SDLoc sdl = getCurSDLoc();
4906 
4907   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4908   const Value *Ptr = I.getArgOperand(1);
4909   SDValue Src0 = getValue(I.getArgOperand(0));
4910   SDValue Mask = getValue(I.getArgOperand(3));
4911   EVT VT = Src0.getValueType();
4912   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4913                         ->getMaybeAlignValue()
4914                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4916 
4917   SDValue Base;
4918   SDValue Index;
4919   ISD::MemIndexType IndexType;
4920   SDValue Scale;
4921   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4922                                     I.getParent(), VT.getScalarStoreSize());
4923 
4924   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4925   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4926       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4927       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4928   if (!UniformBase) {
4929     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4930     Index = getValue(Ptr);
4931     IndexType = ISD::SIGNED_SCALED;
4932     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4933   }
4934 
4935   EVT IdxVT = Index.getValueType();
4936   EVT EltTy = IdxVT.getVectorElementType();
4937   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4938     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4939     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4940   }
4941 
4942   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4943   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4944                                          Ops, MMO, IndexType, false);
4945   DAG.setRoot(Scatter);
4946   setValue(&I, Scatter);
4947 }
4948 
4949 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4950   SDLoc sdl = getCurSDLoc();
4951 
4952   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4953                               Align &Alignment) {
4954     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4955     Ptr = I.getArgOperand(0);
4956     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4957     Mask = I.getArgOperand(2);
4958     Src0 = I.getArgOperand(3);
4959   };
4960   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4961                                  Align &Alignment) {
4962     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4963     Ptr = I.getArgOperand(0);
4964     Alignment = I.getParamAlign(0).valueOrOne();
4965     Mask = I.getArgOperand(1);
4966     Src0 = I.getArgOperand(2);
4967   };
4968 
4969   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4970   Align Alignment;
4971   if (IsExpanding)
4972     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4973   else
4974     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4975 
4976   SDValue Ptr = getValue(PtrOperand);
4977   SDValue Src0 = getValue(Src0Operand);
4978   SDValue Mask = getValue(MaskOperand);
4979   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4980 
4981   EVT VT = Src0.getValueType();
4982   AAMDNodes AAInfo = I.getAAMetadata();
4983   const MDNode *Ranges = getRangeMetadata(I);
4984 
4985   // Do not serialize masked loads of constant memory with anything.
4986   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4987   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4988 
4989   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4990 
4991   auto MMOFlags = MachineMemOperand::MOLoad;
4992   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4993     MMOFlags |= MachineMemOperand::MONonTemporal;
4994 
4995   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4996       MachinePointerInfo(PtrOperand), MMOFlags,
4997       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4998 
4999   const auto &TLI = DAG.getTargetLoweringInfo();
5000   const auto &TTI =
5001       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
5002   // The Load/Res may point to different values and both of them are output
5003   // variables.
5004   SDValue Load;
5005   SDValue Res;
5006   if (!IsExpanding &&
5007       TTI.hasConditionalLoadStoreForType(Src0Operand->getType()))
5008     Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
5009   else
5010     Res = Load =
5011         DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
5012                           ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
5013   if (AddToChain)
5014     PendingLoads.push_back(Load.getValue(1));
5015   setValue(&I, Res);
5016 }
5017 
5018 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5019   SDLoc sdl = getCurSDLoc();
5020 
5021   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
5022   const Value *Ptr = I.getArgOperand(0);
5023   SDValue Src0 = getValue(I.getArgOperand(3));
5024   SDValue Mask = getValue(I.getArgOperand(2));
5025 
5026   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5027   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5028   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
5029                         ->getMaybeAlignValue()
5030                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
5031 
5032   const MDNode *Ranges = getRangeMetadata(I);
5033 
5034   SDValue Root = DAG.getRoot();
5035   SDValue Base;
5036   SDValue Index;
5037   ISD::MemIndexType IndexType;
5038   SDValue Scale;
5039   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
5040                                     I.getParent(), VT.getScalarStoreSize());
5041   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5042   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5043       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5044       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5045       Ranges);
5046 
5047   if (!UniformBase) {
5048     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5049     Index = getValue(Ptr);
5050     IndexType = ISD::SIGNED_SCALED;
5051     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5052   }
5053 
5054   EVT IdxVT = Index.getValueType();
5055   EVT EltTy = IdxVT.getVectorElementType();
5056   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5057     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5058     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5059   }
5060 
5061   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5062   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5063                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5064 
5065   PendingLoads.push_back(Gather.getValue(1));
5066   setValue(&I, Gather);
5067 }
5068 
5069 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5070   SDLoc dl = getCurSDLoc();
5071   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5072   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5073   SyncScope::ID SSID = I.getSyncScopeID();
5074 
5075   SDValue InChain = getRoot();
5076 
5077   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5078   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5079 
5080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5081   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5082 
5083   MachineFunction &MF = DAG.getMachineFunction();
5084   MachineMemOperand *MMO = MF.getMachineMemOperand(
5085       MachinePointerInfo(I.getPointerOperand()), Flags,
5086       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5087       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5088 
5089   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5090                                    dl, MemVT, VTs, InChain,
5091                                    getValue(I.getPointerOperand()),
5092                                    getValue(I.getCompareOperand()),
5093                                    getValue(I.getNewValOperand()), MMO);
5094 
5095   SDValue OutChain = L.getValue(2);
5096 
5097   setValue(&I, L);
5098   DAG.setRoot(OutChain);
5099 }
5100 
5101 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5102   SDLoc dl = getCurSDLoc();
5103   ISD::NodeType NT;
5104   switch (I.getOperation()) {
5105   default: llvm_unreachable("Unknown atomicrmw operation");
5106   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5107   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5108   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5109   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5110   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5111   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5112   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5113   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5114   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5115   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5116   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5117   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5118   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5119   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5120   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5121   case AtomicRMWInst::UIncWrap:
5122     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5123     break;
5124   case AtomicRMWInst::UDecWrap:
5125     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5126     break;
5127   case AtomicRMWInst::USubCond:
5128     NT = ISD::ATOMIC_LOAD_USUB_COND;
5129     break;
5130   case AtomicRMWInst::USubSat:
5131     NT = ISD::ATOMIC_LOAD_USUB_SAT;
5132     break;
5133   }
5134   AtomicOrdering Ordering = I.getOrdering();
5135   SyncScope::ID SSID = I.getSyncScopeID();
5136 
5137   SDValue InChain = getRoot();
5138 
5139   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5140   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5141   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5142 
5143   MachineFunction &MF = DAG.getMachineFunction();
5144   MachineMemOperand *MMO = MF.getMachineMemOperand(
5145       MachinePointerInfo(I.getPointerOperand()), Flags,
5146       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5147       AAMDNodes(), nullptr, SSID, Ordering);
5148 
5149   SDValue L =
5150     DAG.getAtomic(NT, dl, MemVT, InChain,
5151                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5152                   MMO);
5153 
5154   SDValue OutChain = L.getValue(1);
5155 
5156   setValue(&I, L);
5157   DAG.setRoot(OutChain);
5158 }
5159 
5160 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5161   SDLoc dl = getCurSDLoc();
5162   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5163   SDValue Ops[3];
5164   Ops[0] = getRoot();
5165   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5166                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5167   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5168                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5169   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5170   setValue(&I, N);
5171   DAG.setRoot(N);
5172 }
5173 
5174 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5175   SDLoc dl = getCurSDLoc();
5176   AtomicOrdering Order = I.getOrdering();
5177   SyncScope::ID SSID = I.getSyncScopeID();
5178 
5179   SDValue InChain = getRoot();
5180 
5181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5182   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5183   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5184 
5185   if (!TLI.supportsUnalignedAtomics() &&
5186       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5187     report_fatal_error("Cannot generate unaligned atomic load");
5188 
5189   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5190 
5191   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5192       MachinePointerInfo(I.getPointerOperand()), Flags,
5193       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5194       nullptr, SSID, Order);
5195 
5196   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5197 
5198   SDValue Ptr = getValue(I.getPointerOperand());
5199   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5200                             Ptr, MMO);
5201 
5202   SDValue OutChain = L.getValue(1);
5203   if (MemVT != VT)
5204     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5205 
5206   setValue(&I, L);
5207   DAG.setRoot(OutChain);
5208 }
5209 
5210 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5211   SDLoc dl = getCurSDLoc();
5212 
5213   AtomicOrdering Ordering = I.getOrdering();
5214   SyncScope::ID SSID = I.getSyncScopeID();
5215 
5216   SDValue InChain = getRoot();
5217 
5218   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5219   EVT MemVT =
5220       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5221 
5222   if (!TLI.supportsUnalignedAtomics() &&
5223       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5224     report_fatal_error("Cannot generate unaligned atomic store");
5225 
5226   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5227 
5228   MachineFunction &MF = DAG.getMachineFunction();
5229   MachineMemOperand *MMO = MF.getMachineMemOperand(
5230       MachinePointerInfo(I.getPointerOperand()), Flags,
5231       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5232       nullptr, SSID, Ordering);
5233 
5234   SDValue Val = getValue(I.getValueOperand());
5235   if (Val.getValueType() != MemVT)
5236     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5237   SDValue Ptr = getValue(I.getPointerOperand());
5238 
5239   SDValue OutChain =
5240       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5241 
5242   setValue(&I, OutChain);
5243   DAG.setRoot(OutChain);
5244 }
5245 
5246 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5247 /// node.
5248 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5249                                                unsigned Intrinsic) {
5250   // Ignore the callsite's attributes. A specific call site may be marked with
5251   // readnone, but the lowering code will expect the chain based on the
5252   // definition.
5253   const Function *F = I.getCalledFunction();
5254   bool HasChain = !F->doesNotAccessMemory();
5255   bool OnlyLoad =
5256       HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5257 
5258   // Build the operand list.
5259   SmallVector<SDValue, 8> Ops;
5260   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5261     if (OnlyLoad) {
5262       // We don't need to serialize loads against other loads.
5263       Ops.push_back(DAG.getRoot());
5264     } else {
5265       Ops.push_back(getRoot());
5266     }
5267   }
5268 
5269   // Info is set by getTgtMemIntrinsic
5270   TargetLowering::IntrinsicInfo Info;
5271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5272   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5273                                                DAG.getMachineFunction(),
5274                                                Intrinsic);
5275 
5276   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5277   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5278       Info.opc == ISD::INTRINSIC_W_CHAIN)
5279     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5280                                         TLI.getPointerTy(DAG.getDataLayout())));
5281 
5282   // Add all operands of the call to the operand list.
5283   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5284     const Value *Arg = I.getArgOperand(i);
5285     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5286       Ops.push_back(getValue(Arg));
5287       continue;
5288     }
5289 
5290     // Use TargetConstant instead of a regular constant for immarg.
5291     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5292     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5293       assert(CI->getBitWidth() <= 64 &&
5294              "large intrinsic immediates not handled");
5295       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5296     } else {
5297       Ops.push_back(
5298           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5299     }
5300   }
5301 
5302   SmallVector<EVT, 4> ValueVTs;
5303   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5304 
5305   if (HasChain)
5306     ValueVTs.push_back(MVT::Other);
5307 
5308   SDVTList VTs = DAG.getVTList(ValueVTs);
5309 
5310   // Propagate fast-math-flags from IR to node(s).
5311   SDNodeFlags Flags;
5312   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5313     Flags.copyFMF(*FPMO);
5314   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5315 
5316   // Create the node.
5317   SDValue Result;
5318 
5319   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5320     auto *Token = Bundle->Inputs[0].get();
5321     SDValue ConvControlToken = getValue(Token);
5322     assert(Ops.back().getValueType() != MVT::Glue &&
5323            "Did not expected another glue node here.");
5324     ConvControlToken =
5325         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5326     Ops.push_back(ConvControlToken);
5327   }
5328 
5329   // In some cases, custom collection of operands from CallInst I may be needed.
5330   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5331   if (IsTgtIntrinsic) {
5332     // This is target intrinsic that touches memory
5333     //
5334     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5335     //       didn't yield anything useful.
5336     MachinePointerInfo MPI;
5337     if (Info.ptrVal)
5338       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5339     else if (Info.fallbackAddressSpace)
5340       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5341     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5342                                      Info.memVT, MPI, Info.align, Info.flags,
5343                                      Info.size, I.getAAMetadata());
5344   } else if (!HasChain) {
5345     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5346   } else if (!I.getType()->isVoidTy()) {
5347     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5348   } else {
5349     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5350   }
5351 
5352   if (HasChain) {
5353     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5354     if (OnlyLoad)
5355       PendingLoads.push_back(Chain);
5356     else
5357       DAG.setRoot(Chain);
5358   }
5359 
5360   if (!I.getType()->isVoidTy()) {
5361     if (!isa<VectorType>(I.getType()))
5362       Result = lowerRangeToAssertZExt(DAG, I, Result);
5363 
5364     MaybeAlign Alignment = I.getRetAlign();
5365 
5366     // Insert `assertalign` node if there's an alignment.
5367     if (InsertAssertAlign && Alignment) {
5368       Result =
5369           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5370     }
5371   }
5372 
5373   setValue(&I, Result);
5374 }
5375 
5376 /// GetSignificand - Get the significand and build it into a floating-point
5377 /// number with exponent of 1:
5378 ///
5379 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5380 ///
5381 /// where Op is the hexadecimal representation of floating point value.
5382 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5383   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5384                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5385   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5386                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5387   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5388 }
5389 
5390 /// GetExponent - Get the exponent:
5391 ///
5392 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5393 ///
5394 /// where Op is the hexadecimal representation of floating point value.
5395 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5396                            const TargetLowering &TLI, const SDLoc &dl) {
5397   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5398                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5399   SDValue t1 = DAG.getNode(
5400       ISD::SRL, dl, MVT::i32, t0,
5401       DAG.getConstant(23, dl,
5402                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5403   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5404                            DAG.getConstant(127, dl, MVT::i32));
5405   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5406 }
5407 
5408 /// getF32Constant - Get 32-bit floating point constant.
5409 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5410                               const SDLoc &dl) {
5411   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5412                            MVT::f32);
5413 }
5414 
5415 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5416                                        SelectionDAG &DAG) {
5417   // TODO: What fast-math-flags should be set on the floating-point nodes?
5418 
5419   //   IntegerPartOfX = ((int32_t)(t0);
5420   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5421 
5422   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5423   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5424   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5425 
5426   //   IntegerPartOfX <<= 23;
5427   IntegerPartOfX =
5428       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5429                   DAG.getConstant(23, dl,
5430                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5431                                       MVT::i32, DAG.getDataLayout())));
5432 
5433   SDValue TwoToFractionalPartOfX;
5434   if (LimitFloatPrecision <= 6) {
5435     // For floating-point precision of 6:
5436     //
5437     //   TwoToFractionalPartOfX =
5438     //     0.997535578f +
5439     //       (0.735607626f + 0.252464424f * x) * x;
5440     //
5441     // error 0.0144103317, which is 6 bits
5442     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5443                              getF32Constant(DAG, 0x3e814304, dl));
5444     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5445                              getF32Constant(DAG, 0x3f3c50c8, dl));
5446     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5447     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5448                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5449   } else if (LimitFloatPrecision <= 12) {
5450     // For floating-point precision of 12:
5451     //
5452     //   TwoToFractionalPartOfX =
5453     //     0.999892986f +
5454     //       (0.696457318f +
5455     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5456     //
5457     // error 0.000107046256, which is 13 to 14 bits
5458     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5459                              getF32Constant(DAG, 0x3da235e3, dl));
5460     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5461                              getF32Constant(DAG, 0x3e65b8f3, dl));
5462     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5463     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5464                              getF32Constant(DAG, 0x3f324b07, dl));
5465     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5466     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5467                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5468   } else { // LimitFloatPrecision <= 18
5469     // For floating-point precision of 18:
5470     //
5471     //   TwoToFractionalPartOfX =
5472     //     0.999999982f +
5473     //       (0.693148872f +
5474     //         (0.240227044f +
5475     //           (0.554906021e-1f +
5476     //             (0.961591928e-2f +
5477     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5478     // error 2.47208000*10^(-7), which is better than 18 bits
5479     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5480                              getF32Constant(DAG, 0x3924b03e, dl));
5481     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5482                              getF32Constant(DAG, 0x3ab24b87, dl));
5483     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5484     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5485                              getF32Constant(DAG, 0x3c1d8c17, dl));
5486     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5487     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5488                              getF32Constant(DAG, 0x3d634a1d, dl));
5489     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5490     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5491                              getF32Constant(DAG, 0x3e75fe14, dl));
5492     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5493     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5494                               getF32Constant(DAG, 0x3f317234, dl));
5495     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5496     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5497                                          getF32Constant(DAG, 0x3f800000, dl));
5498   }
5499 
5500   // Add the exponent into the result in integer domain.
5501   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5502   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5503                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5504 }
5505 
5506 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5507 /// limited-precision mode.
5508 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5509                          const TargetLowering &TLI, SDNodeFlags Flags) {
5510   if (Op.getValueType() == MVT::f32 &&
5511       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5512 
5513     // Put the exponent in the right bit position for later addition to the
5514     // final result:
5515     //
5516     // t0 = Op * log2(e)
5517 
5518     // TODO: What fast-math-flags should be set here?
5519     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5520                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5521     return getLimitedPrecisionExp2(t0, dl, DAG);
5522   }
5523 
5524   // No special expansion.
5525   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5526 }
5527 
5528 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5529 /// limited-precision mode.
5530 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5531                          const TargetLowering &TLI, SDNodeFlags Flags) {
5532   // TODO: What fast-math-flags should be set on the floating-point nodes?
5533 
5534   if (Op.getValueType() == MVT::f32 &&
5535       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5536     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5537 
5538     // Scale the exponent by log(2).
5539     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5540     SDValue LogOfExponent =
5541         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5542                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5543 
5544     // Get the significand and build it into a floating-point number with
5545     // exponent of 1.
5546     SDValue X = GetSignificand(DAG, Op1, dl);
5547 
5548     SDValue LogOfMantissa;
5549     if (LimitFloatPrecision <= 6) {
5550       // For floating-point precision of 6:
5551       //
5552       //   LogofMantissa =
5553       //     -1.1609546f +
5554       //       (1.4034025f - 0.23903021f * x) * x;
5555       //
5556       // error 0.0034276066, which is better than 8 bits
5557       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5558                                getF32Constant(DAG, 0xbe74c456, dl));
5559       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5560                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5561       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5562       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5563                                   getF32Constant(DAG, 0x3f949a29, dl));
5564     } else if (LimitFloatPrecision <= 12) {
5565       // For floating-point precision of 12:
5566       //
5567       //   LogOfMantissa =
5568       //     -1.7417939f +
5569       //       (2.8212026f +
5570       //         (-1.4699568f +
5571       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5572       //
5573       // error 0.000061011436, which is 14 bits
5574       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5575                                getF32Constant(DAG, 0xbd67b6d6, dl));
5576       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5577                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5578       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5579       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5580                                getF32Constant(DAG, 0x3fbc278b, dl));
5581       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5582       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5583                                getF32Constant(DAG, 0x40348e95, dl));
5584       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5585       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5586                                   getF32Constant(DAG, 0x3fdef31a, dl));
5587     } else { // LimitFloatPrecision <= 18
5588       // For floating-point precision of 18:
5589       //
5590       //   LogOfMantissa =
5591       //     -2.1072184f +
5592       //       (4.2372794f +
5593       //         (-3.7029485f +
5594       //           (2.2781945f +
5595       //             (-0.87823314f +
5596       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5597       //
5598       // error 0.0000023660568, which is better than 18 bits
5599       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5600                                getF32Constant(DAG, 0xbc91e5ac, dl));
5601       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5602                                getF32Constant(DAG, 0x3e4350aa, dl));
5603       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5604       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5605                                getF32Constant(DAG, 0x3f60d3e3, dl));
5606       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5607       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5608                                getF32Constant(DAG, 0x4011cdf0, dl));
5609       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5610       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5611                                getF32Constant(DAG, 0x406cfd1c, dl));
5612       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5613       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5614                                getF32Constant(DAG, 0x408797cb, dl));
5615       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5616       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5617                                   getF32Constant(DAG, 0x4006dcab, dl));
5618     }
5619 
5620     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5621   }
5622 
5623   // No special expansion.
5624   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5625 }
5626 
5627 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5628 /// limited-precision mode.
5629 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5630                           const TargetLowering &TLI, SDNodeFlags Flags) {
5631   // TODO: What fast-math-flags should be set on the floating-point nodes?
5632 
5633   if (Op.getValueType() == MVT::f32 &&
5634       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5635     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5636 
5637     // Get the exponent.
5638     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5639 
5640     // Get the significand and build it into a floating-point number with
5641     // exponent of 1.
5642     SDValue X = GetSignificand(DAG, Op1, dl);
5643 
5644     // Different possible minimax approximations of significand in
5645     // floating-point for various degrees of accuracy over [1,2].
5646     SDValue Log2ofMantissa;
5647     if (LimitFloatPrecision <= 6) {
5648       // For floating-point precision of 6:
5649       //
5650       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5651       //
5652       // error 0.0049451742, which is more than 7 bits
5653       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5654                                getF32Constant(DAG, 0xbeb08fe0, dl));
5655       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5656                                getF32Constant(DAG, 0x40019463, dl));
5657       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5658       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5659                                    getF32Constant(DAG, 0x3fd6633d, dl));
5660     } else if (LimitFloatPrecision <= 12) {
5661       // For floating-point precision of 12:
5662       //
5663       //   Log2ofMantissa =
5664       //     -2.51285454f +
5665       //       (4.07009056f +
5666       //         (-2.12067489f +
5667       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5668       //
5669       // error 0.0000876136000, which is better than 13 bits
5670       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5671                                getF32Constant(DAG, 0xbda7262e, dl));
5672       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5673                                getF32Constant(DAG, 0x3f25280b, dl));
5674       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5675       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5676                                getF32Constant(DAG, 0x4007b923, dl));
5677       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5678       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5679                                getF32Constant(DAG, 0x40823e2f, dl));
5680       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5681       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5682                                    getF32Constant(DAG, 0x4020d29c, dl));
5683     } else { // LimitFloatPrecision <= 18
5684       // For floating-point precision of 18:
5685       //
5686       //   Log2ofMantissa =
5687       //     -3.0400495f +
5688       //       (6.1129976f +
5689       //         (-5.3420409f +
5690       //           (3.2865683f +
5691       //             (-1.2669343f +
5692       //               (0.27515199f -
5693       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5694       //
5695       // error 0.0000018516, which is better than 18 bits
5696       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5697                                getF32Constant(DAG, 0xbcd2769e, dl));
5698       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5699                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5700       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5701       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5702                                getF32Constant(DAG, 0x3fa22ae7, dl));
5703       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5704       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5705                                getF32Constant(DAG, 0x40525723, dl));
5706       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5707       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5708                                getF32Constant(DAG, 0x40aaf200, dl));
5709       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5710       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5711                                getF32Constant(DAG, 0x40c39dad, dl));
5712       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5713       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5714                                    getF32Constant(DAG, 0x4042902c, dl));
5715     }
5716 
5717     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5718   }
5719 
5720   // No special expansion.
5721   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5722 }
5723 
5724 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5725 /// limited-precision mode.
5726 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5727                            const TargetLowering &TLI, SDNodeFlags Flags) {
5728   // TODO: What fast-math-flags should be set on the floating-point nodes?
5729 
5730   if (Op.getValueType() == MVT::f32 &&
5731       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5732     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5733 
5734     // Scale the exponent by log10(2) [0.30102999f].
5735     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5736     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5737                                         getF32Constant(DAG, 0x3e9a209a, dl));
5738 
5739     // Get the significand and build it into a floating-point number with
5740     // exponent of 1.
5741     SDValue X = GetSignificand(DAG, Op1, dl);
5742 
5743     SDValue Log10ofMantissa;
5744     if (LimitFloatPrecision <= 6) {
5745       // For floating-point precision of 6:
5746       //
5747       //   Log10ofMantissa =
5748       //     -0.50419619f +
5749       //       (0.60948995f - 0.10380950f * x) * x;
5750       //
5751       // error 0.0014886165, which is 6 bits
5752       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5753                                getF32Constant(DAG, 0xbdd49a13, dl));
5754       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5755                                getF32Constant(DAG, 0x3f1c0789, dl));
5756       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5757       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5758                                     getF32Constant(DAG, 0x3f011300, dl));
5759     } else if (LimitFloatPrecision <= 12) {
5760       // For floating-point precision of 12:
5761       //
5762       //   Log10ofMantissa =
5763       //     -0.64831180f +
5764       //       (0.91751397f +
5765       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5766       //
5767       // error 0.00019228036, which is better than 12 bits
5768       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5769                                getF32Constant(DAG, 0x3d431f31, dl));
5770       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5771                                getF32Constant(DAG, 0x3ea21fb2, dl));
5772       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5773       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5774                                getF32Constant(DAG, 0x3f6ae232, dl));
5775       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5776       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5777                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5778     } else { // LimitFloatPrecision <= 18
5779       // For floating-point precision of 18:
5780       //
5781       //   Log10ofMantissa =
5782       //     -0.84299375f +
5783       //       (1.5327582f +
5784       //         (-1.0688956f +
5785       //           (0.49102474f +
5786       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5787       //
5788       // error 0.0000037995730, which is better than 18 bits
5789       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5790                                getF32Constant(DAG, 0x3c5d51ce, dl));
5791       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5792                                getF32Constant(DAG, 0x3e00685a, dl));
5793       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5794       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5795                                getF32Constant(DAG, 0x3efb6798, dl));
5796       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5797       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5798                                getF32Constant(DAG, 0x3f88d192, dl));
5799       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5800       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5801                                getF32Constant(DAG, 0x3fc4316c, dl));
5802       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5803       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5804                                     getF32Constant(DAG, 0x3f57ce70, dl));
5805     }
5806 
5807     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5808   }
5809 
5810   // No special expansion.
5811   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5812 }
5813 
5814 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5815 /// limited-precision mode.
5816 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5817                           const TargetLowering &TLI, SDNodeFlags Flags) {
5818   if (Op.getValueType() == MVT::f32 &&
5819       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5820     return getLimitedPrecisionExp2(Op, dl, DAG);
5821 
5822   // No special expansion.
5823   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5824 }
5825 
5826 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5827 /// limited-precision mode with x == 10.0f.
5828 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5829                          SelectionDAG &DAG, const TargetLowering &TLI,
5830                          SDNodeFlags Flags) {
5831   bool IsExp10 = false;
5832   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5833       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5834     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5835       APFloat Ten(10.0f);
5836       IsExp10 = LHSC->isExactlyValue(Ten);
5837     }
5838   }
5839 
5840   // TODO: What fast-math-flags should be set on the FMUL node?
5841   if (IsExp10) {
5842     // Put the exponent in the right bit position for later addition to the
5843     // final result:
5844     //
5845     //   #define LOG2OF10 3.3219281f
5846     //   t0 = Op * LOG2OF10;
5847     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5848                              getF32Constant(DAG, 0x40549a78, dl));
5849     return getLimitedPrecisionExp2(t0, dl, DAG);
5850   }
5851 
5852   // No special expansion.
5853   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5854 }
5855 
5856 /// ExpandPowI - Expand a llvm.powi intrinsic.
5857 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5858                           SelectionDAG &DAG) {
5859   // If RHS is a constant, we can expand this out to a multiplication tree if
5860   // it's beneficial on the target, otherwise we end up lowering to a call to
5861   // __powidf2 (for example).
5862   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5863     unsigned Val = RHSC->getSExtValue();
5864 
5865     // powi(x, 0) -> 1.0
5866     if (Val == 0)
5867       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5868 
5869     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5870             Val, DAG.shouldOptForSize())) {
5871       // Get the exponent as a positive value.
5872       if ((int)Val < 0)
5873         Val = -Val;
5874       // We use the simple binary decomposition method to generate the multiply
5875       // sequence.  There are more optimal ways to do this (for example,
5876       // powi(x,15) generates one more multiply than it should), but this has
5877       // the benefit of being both really simple and much better than a libcall.
5878       SDValue Res; // Logically starts equal to 1.0
5879       SDValue CurSquare = LHS;
5880       // TODO: Intrinsics should have fast-math-flags that propagate to these
5881       // nodes.
5882       while (Val) {
5883         if (Val & 1) {
5884           if (Res.getNode())
5885             Res =
5886                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5887           else
5888             Res = CurSquare; // 1.0*CurSquare.
5889         }
5890 
5891         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5892                                 CurSquare, CurSquare);
5893         Val >>= 1;
5894       }
5895 
5896       // If the original was negative, invert the result, producing 1/(x*x*x).
5897       if (RHSC->getSExtValue() < 0)
5898         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5899                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5900       return Res;
5901     }
5902   }
5903 
5904   // Otherwise, expand to a libcall.
5905   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5906 }
5907 
5908 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5909                             SDValue LHS, SDValue RHS, SDValue Scale,
5910                             SelectionDAG &DAG, const TargetLowering &TLI) {
5911   EVT VT = LHS.getValueType();
5912   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5913   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5914   LLVMContext &Ctx = *DAG.getContext();
5915 
5916   // If the type is legal but the operation isn't, this node might survive all
5917   // the way to operation legalization. If we end up there and we do not have
5918   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5919   // node.
5920 
5921   // Coax the legalizer into expanding the node during type legalization instead
5922   // by bumping the size by one bit. This will force it to Promote, enabling the
5923   // early expansion and avoiding the need to expand later.
5924 
5925   // We don't have to do this if Scale is 0; that can always be expanded, unless
5926   // it's a saturating signed operation. Those can experience true integer
5927   // division overflow, a case which we must avoid.
5928 
5929   // FIXME: We wouldn't have to do this (or any of the early
5930   // expansion/promotion) if it was possible to expand a libcall of an
5931   // illegal type during operation legalization. But it's not, so things
5932   // get a bit hacky.
5933   unsigned ScaleInt = Scale->getAsZExtVal();
5934   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5935       (TLI.isTypeLegal(VT) ||
5936        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5937     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5938         Opcode, VT, ScaleInt);
5939     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5940       EVT PromVT;
5941       if (VT.isScalarInteger())
5942         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5943       else if (VT.isVector()) {
5944         PromVT = VT.getVectorElementType();
5945         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5946         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5947       } else
5948         llvm_unreachable("Wrong VT for DIVFIX?");
5949       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5950       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5951       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5952       // For saturating operations, we need to shift up the LHS to get the
5953       // proper saturation width, and then shift down again afterwards.
5954       if (Saturating)
5955         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5956                           DAG.getConstant(1, DL, ShiftTy));
5957       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5958       if (Saturating)
5959         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5960                           DAG.getConstant(1, DL, ShiftTy));
5961       return DAG.getZExtOrTrunc(Res, DL, VT);
5962     }
5963   }
5964 
5965   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5966 }
5967 
5968 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5969 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5970 static void
5971 getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs,
5972                      const SDValue &N) {
5973   switch (N.getOpcode()) {
5974   case ISD::CopyFromReg: {
5975     SDValue Op = N.getOperand(1);
5976     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5977                       Op.getValueType().getSizeInBits());
5978     return;
5979   }
5980   case ISD::BITCAST:
5981   case ISD::AssertZext:
5982   case ISD::AssertSext:
5983   case ISD::TRUNCATE:
5984     getUnderlyingArgRegs(Regs, N.getOperand(0));
5985     return;
5986   case ISD::BUILD_PAIR:
5987   case ISD::BUILD_VECTOR:
5988   case ISD::CONCAT_VECTORS:
5989     for (SDValue Op : N->op_values())
5990       getUnderlyingArgRegs(Regs, Op);
5991     return;
5992   default:
5993     return;
5994   }
5995 }
5996 
5997 /// If the DbgValueInst is a dbg_value of a function argument, create the
5998 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5999 /// instruction selection, they will be inserted to the entry BB.
6000 /// We don't currently support this for variadic dbg_values, as they shouldn't
6001 /// appear for function arguments or in the prologue.
6002 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6003     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
6004     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
6005   const Argument *Arg = dyn_cast<Argument>(V);
6006   if (!Arg)
6007     return false;
6008 
6009   MachineFunction &MF = DAG.getMachineFunction();
6010   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6011 
6012   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
6013   // we've been asked to pursue.
6014   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
6015                               bool Indirect) {
6016     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
6017       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
6018       // pointing at the VReg, which will be patched up later.
6019       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
6020       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
6021           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
6022           /* isKill */ false, /* isDead */ false,
6023           /* isUndef */ false, /* isEarlyClobber */ false,
6024           /* SubReg */ 0, /* isDebug */ true)});
6025 
6026       auto *NewDIExpr = FragExpr;
6027       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6028       // the DIExpression.
6029       if (Indirect)
6030         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6031       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
6032       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6033       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6034     } else {
6035       // Create a completely standard DBG_VALUE.
6036       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6037       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6038     }
6039   };
6040 
6041   if (Kind == FuncArgumentDbgValueKind::Value) {
6042     // ArgDbgValues are hoisted to the beginning of the entry block. So we
6043     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6044     // the entry block.
6045     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6046     if (!IsInEntryBlock)
6047       return false;
6048 
6049     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
6050     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6051     // variable that also is a param.
6052     //
6053     // Although, if we are at the top of the entry block already, we can still
6054     // emit using ArgDbgValue. This might catch some situations when the
6055     // dbg.value refers to an argument that isn't used in the entry block, so
6056     // any CopyToReg node would be optimized out and the only way to express
6057     // this DBG_VALUE is by using the physical reg (or FI) as done in this
6058     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
6059     // we should only emit as ArgDbgValue if the Variable is an argument to the
6060     // current function, and the dbg.value intrinsic is found in the entry
6061     // block.
6062     bool VariableIsFunctionInputArg = Variable->isParameter() &&
6063         !DL->getInlinedAt();
6064     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6065     if (!IsInPrologue && !VariableIsFunctionInputArg)
6066       return false;
6067 
6068     // Here we assume that a function argument on IR level only can be used to
6069     // describe one input parameter on source level. If we for example have
6070     // source code like this
6071     //
6072     //    struct A { long x, y; };
6073     //    void foo(struct A a, long b) {
6074     //      ...
6075     //      b = a.x;
6076     //      ...
6077     //    }
6078     //
6079     // and IR like this
6080     //
6081     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6082     //  entry:
6083     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6084     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6085     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6086     //    ...
6087     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6088     //    ...
6089     //
6090     // then the last dbg.value is describing a parameter "b" using a value that
6091     // is an argument. But since we already has used %a1 to describe a parameter
6092     // we should not handle that last dbg.value here (that would result in an
6093     // incorrect hoisting of the DBG_VALUE to the function entry).
6094     // Notice that we allow one dbg.value per IR level argument, to accommodate
6095     // for the situation with fragments above.
6096     // If there is no node for the value being handled, we return true to skip
6097     // the normal generation of debug info, as it would kill existing debug
6098     // info for the parameter in case of duplicates.
6099     if (VariableIsFunctionInputArg) {
6100       unsigned ArgNo = Arg->getArgNo();
6101       if (ArgNo >= FuncInfo.DescribedArgs.size())
6102         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6103       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6104         return !NodeMap[V].getNode();
6105       FuncInfo.DescribedArgs.set(ArgNo);
6106     }
6107   }
6108 
6109   bool IsIndirect = false;
6110   std::optional<MachineOperand> Op;
6111   // Some arguments' frame index is recorded during argument lowering.
6112   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6113   if (FI != std::numeric_limits<int>::max())
6114     Op = MachineOperand::CreateFI(FI);
6115 
6116   SmallVector<std::pair<Register, TypeSize>, 8> ArgRegsAndSizes;
6117   if (!Op && N.getNode()) {
6118     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6119     Register Reg;
6120     if (ArgRegsAndSizes.size() == 1)
6121       Reg = ArgRegsAndSizes.front().first;
6122 
6123     if (Reg && Reg.isVirtual()) {
6124       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6125       Register PR = RegInfo.getLiveInPhysReg(Reg);
6126       if (PR)
6127         Reg = PR;
6128     }
6129     if (Reg) {
6130       Op = MachineOperand::CreateReg(Reg, false);
6131       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6132     }
6133   }
6134 
6135   if (!Op && N.getNode()) {
6136     // Check if frame index is available.
6137     SDValue LCandidate = peekThroughBitcasts(N);
6138     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6139       if (FrameIndexSDNode *FINode =
6140           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6141         Op = MachineOperand::CreateFI(FINode->getIndex());
6142   }
6143 
6144   if (!Op) {
6145     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6146     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>>
6147                                          SplitRegs) {
6148       unsigned Offset = 0;
6149       for (const auto &RegAndSize : SplitRegs) {
6150         // If the expression is already a fragment, the current register
6151         // offset+size might extend beyond the fragment. In this case, only
6152         // the register bits that are inside the fragment are relevant.
6153         int RegFragmentSizeInBits = RegAndSize.second;
6154         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6155           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6156           // The register is entirely outside the expression fragment,
6157           // so is irrelevant for debug info.
6158           if (Offset >= ExprFragmentSizeInBits)
6159             break;
6160           // The register is partially outside the expression fragment, only
6161           // the low bits within the fragment are relevant for debug info.
6162           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6163             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6164           }
6165         }
6166 
6167         auto FragmentExpr = DIExpression::createFragmentExpression(
6168             Expr, Offset, RegFragmentSizeInBits);
6169         Offset += RegAndSize.second;
6170         // If a valid fragment expression cannot be created, the variable's
6171         // correct value cannot be determined and so it is set as Undef.
6172         if (!FragmentExpr) {
6173           SDDbgValue *SDV = DAG.getConstantDbgValue(
6174               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6175           DAG.AddDbgValue(SDV, false);
6176           continue;
6177         }
6178         MachineInstr *NewMI =
6179             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6180                              Kind != FuncArgumentDbgValueKind::Value);
6181         FuncInfo.ArgDbgValues.push_back(NewMI);
6182       }
6183     };
6184 
6185     // Check if ValueMap has reg number.
6186     DenseMap<const Value *, Register>::const_iterator
6187       VMI = FuncInfo.ValueMap.find(V);
6188     if (VMI != FuncInfo.ValueMap.end()) {
6189       const auto &TLI = DAG.getTargetLoweringInfo();
6190       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6191                        V->getType(), std::nullopt);
6192       if (RFV.occupiesMultipleRegs()) {
6193         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6194         return true;
6195       }
6196 
6197       Op = MachineOperand::CreateReg(VMI->second, false);
6198       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6199     } else if (ArgRegsAndSizes.size() > 1) {
6200       // This was split due to the calling convention, and no virtual register
6201       // mapping exists for the value.
6202       splitMultiRegDbgValue(ArgRegsAndSizes);
6203       return true;
6204     }
6205   }
6206 
6207   if (!Op)
6208     return false;
6209 
6210   assert(Variable->isValidLocationForIntrinsic(DL) &&
6211          "Expected inlined-at fields to agree");
6212   MachineInstr *NewMI = nullptr;
6213 
6214   if (Op->isReg())
6215     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6216   else
6217     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6218                     Variable, Expr);
6219 
6220   // Otherwise, use ArgDbgValues.
6221   FuncInfo.ArgDbgValues.push_back(NewMI);
6222   return true;
6223 }
6224 
6225 /// Return the appropriate SDDbgValue based on N.
6226 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6227                                              DILocalVariable *Variable,
6228                                              DIExpression *Expr,
6229                                              const DebugLoc &dl,
6230                                              unsigned DbgSDNodeOrder) {
6231   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6232     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6233     // stack slot locations.
6234     //
6235     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6236     // debug values here after optimization:
6237     //
6238     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6239     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6240     //
6241     // Both describe the direct values of their associated variables.
6242     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6243                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6244   }
6245   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6246                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6247 }
6248 
6249 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6250   switch (Intrinsic) {
6251   case Intrinsic::smul_fix:
6252     return ISD::SMULFIX;
6253   case Intrinsic::umul_fix:
6254     return ISD::UMULFIX;
6255   case Intrinsic::smul_fix_sat:
6256     return ISD::SMULFIXSAT;
6257   case Intrinsic::umul_fix_sat:
6258     return ISD::UMULFIXSAT;
6259   case Intrinsic::sdiv_fix:
6260     return ISD::SDIVFIX;
6261   case Intrinsic::udiv_fix:
6262     return ISD::UDIVFIX;
6263   case Intrinsic::sdiv_fix_sat:
6264     return ISD::SDIVFIXSAT;
6265   case Intrinsic::udiv_fix_sat:
6266     return ISD::UDIVFIXSAT;
6267   default:
6268     llvm_unreachable("Unhandled fixed point intrinsic");
6269   }
6270 }
6271 
6272 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6273                                            const char *FunctionName) {
6274   assert(FunctionName && "FunctionName must not be nullptr");
6275   SDValue Callee = DAG.getExternalSymbol(
6276       FunctionName,
6277       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6278   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6279 }
6280 
6281 /// Given a @llvm.call.preallocated.setup, return the corresponding
6282 /// preallocated call.
6283 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6284   assert(cast<CallBase>(PreallocatedSetup)
6285                  ->getCalledFunction()
6286                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6287          "expected call_preallocated_setup Value");
6288   for (const auto *U : PreallocatedSetup->users()) {
6289     auto *UseCall = cast<CallBase>(U);
6290     const Function *Fn = UseCall->getCalledFunction();
6291     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6292       return UseCall;
6293     }
6294   }
6295   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6296 }
6297 
6298 /// If DI is a debug value with an EntryValue expression, lower it using the
6299 /// corresponding physical register of the associated Argument value
6300 /// (guaranteed to exist by the verifier).
6301 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6302     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6303     DIExpression *Expr, DebugLoc DbgLoc) {
6304   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6305     return false;
6306 
6307   // These properties are guaranteed by the verifier.
6308   const Argument *Arg = cast<Argument>(Values[0]);
6309   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6310 
6311   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6312   if (ArgIt == FuncInfo.ValueMap.end()) {
6313     LLVM_DEBUG(
6314         dbgs() << "Dropping dbg.value: expression is entry_value but "
6315                   "couldn't find an associated register for the Argument\n");
6316     return true;
6317   }
6318   Register ArgVReg = ArgIt->getSecond();
6319 
6320   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6321     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6322       SDDbgValue *SDV = DAG.getVRegDbgValue(
6323           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6324       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6325       return true;
6326     }
6327   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6328                        "couldn't find a physical register\n");
6329   return true;
6330 }
6331 
6332 /// Lower the call to the specified intrinsic function.
6333 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6334                                                   unsigned Intrinsic) {
6335   SDLoc sdl = getCurSDLoc();
6336   switch (Intrinsic) {
6337   case Intrinsic::experimental_convergence_anchor:
6338     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6339     break;
6340   case Intrinsic::experimental_convergence_entry:
6341     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6342     break;
6343   case Intrinsic::experimental_convergence_loop: {
6344     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6345     auto *Token = Bundle->Inputs[0].get();
6346     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6347                              getValue(Token)));
6348     break;
6349   }
6350   }
6351 }
6352 
6353 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6354                                                unsigned IntrinsicID) {
6355   // For now, we're only lowering an 'add' histogram.
6356   // We can add others later, e.g. saturating adds, min/max.
6357   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6358          "Tried to lower unsupported histogram type");
6359   SDLoc sdl = getCurSDLoc();
6360   Value *Ptr = I.getOperand(0);
6361   SDValue Inc = getValue(I.getOperand(1));
6362   SDValue Mask = getValue(I.getOperand(2));
6363 
6364   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6365   DataLayout TargetDL = DAG.getDataLayout();
6366   EVT VT = Inc.getValueType();
6367   Align Alignment = DAG.getEVTAlign(VT);
6368 
6369   const MDNode *Ranges = getRangeMetadata(I);
6370 
6371   SDValue Root = DAG.getRoot();
6372   SDValue Base;
6373   SDValue Index;
6374   ISD::MemIndexType IndexType;
6375   SDValue Scale;
6376   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6377                                     I.getParent(), VT.getScalarStoreSize());
6378 
6379   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6380 
6381   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6382       MachinePointerInfo(AS),
6383       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6384       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6385 
6386   if (!UniformBase) {
6387     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6388     Index = getValue(Ptr);
6389     IndexType = ISD::SIGNED_SCALED;
6390     Scale =
6391         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6392   }
6393 
6394   EVT IdxVT = Index.getValueType();
6395   EVT EltTy = IdxVT.getVectorElementType();
6396   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6397     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6398     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6399   }
6400 
6401   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6402 
6403   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6404   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6405                                              Ops, MMO, IndexType);
6406 
6407   setValue(&I, Histogram);
6408   DAG.setRoot(Histogram);
6409 }
6410 
6411 /// Lower the call to the specified intrinsic function.
6412 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6413                                              unsigned Intrinsic) {
6414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6415   SDLoc sdl = getCurSDLoc();
6416   DebugLoc dl = getCurDebugLoc();
6417   SDValue Res;
6418 
6419   SDNodeFlags Flags;
6420   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6421     Flags.copyFMF(*FPOp);
6422 
6423   switch (Intrinsic) {
6424   default:
6425     // By default, turn this into a target intrinsic node.
6426     visitTargetIntrinsic(I, Intrinsic);
6427     return;
6428   case Intrinsic::vscale: {
6429     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6430     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6431     return;
6432   }
6433   case Intrinsic::vastart:  visitVAStart(I); return;
6434   case Intrinsic::vaend:    visitVAEnd(I); return;
6435   case Intrinsic::vacopy:   visitVACopy(I); return;
6436   case Intrinsic::returnaddress:
6437     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6438                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6439                              getValue(I.getArgOperand(0))));
6440     return;
6441   case Intrinsic::addressofreturnaddress:
6442     setValue(&I,
6443              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6444                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6445     return;
6446   case Intrinsic::sponentry:
6447     setValue(&I,
6448              DAG.getNode(ISD::SPONENTRY, sdl,
6449                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6450     return;
6451   case Intrinsic::frameaddress:
6452     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6453                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6454                              getValue(I.getArgOperand(0))));
6455     return;
6456   case Intrinsic::read_volatile_register:
6457   case Intrinsic::read_register: {
6458     Value *Reg = I.getArgOperand(0);
6459     SDValue Chain = getRoot();
6460     SDValue RegName =
6461         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6462     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6463     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6464       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6465     setValue(&I, Res);
6466     DAG.setRoot(Res.getValue(1));
6467     return;
6468   }
6469   case Intrinsic::write_register: {
6470     Value *Reg = I.getArgOperand(0);
6471     Value *RegValue = I.getArgOperand(1);
6472     SDValue Chain = getRoot();
6473     SDValue RegName =
6474         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6475     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6476                             RegName, getValue(RegValue)));
6477     return;
6478   }
6479   case Intrinsic::memcpy: {
6480     const auto &MCI = cast<MemCpyInst>(I);
6481     SDValue Op1 = getValue(I.getArgOperand(0));
6482     SDValue Op2 = getValue(I.getArgOperand(1));
6483     SDValue Op3 = getValue(I.getArgOperand(2));
6484     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6485     Align DstAlign = MCI.getDestAlign().valueOrOne();
6486     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6487     Align Alignment = std::min(DstAlign, SrcAlign);
6488     bool isVol = MCI.isVolatile();
6489     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6490     // node.
6491     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6492     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6493                                /* AlwaysInline */ false, &I, std::nullopt,
6494                                MachinePointerInfo(I.getArgOperand(0)),
6495                                MachinePointerInfo(I.getArgOperand(1)),
6496                                I.getAAMetadata(), AA);
6497     updateDAGForMaybeTailCall(MC);
6498     return;
6499   }
6500   case Intrinsic::memcpy_inline: {
6501     const auto &MCI = cast<MemCpyInlineInst>(I);
6502     SDValue Dst = getValue(I.getArgOperand(0));
6503     SDValue Src = getValue(I.getArgOperand(1));
6504     SDValue Size = getValue(I.getArgOperand(2));
6505     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6506     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6507     Align DstAlign = MCI.getDestAlign().valueOrOne();
6508     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6509     Align Alignment = std::min(DstAlign, SrcAlign);
6510     bool isVol = MCI.isVolatile();
6511     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6512     // node.
6513     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6514                                /* AlwaysInline */ true, &I, std::nullopt,
6515                                MachinePointerInfo(I.getArgOperand(0)),
6516                                MachinePointerInfo(I.getArgOperand(1)),
6517                                I.getAAMetadata(), AA);
6518     updateDAGForMaybeTailCall(MC);
6519     return;
6520   }
6521   case Intrinsic::memset: {
6522     const auto &MSI = cast<MemSetInst>(I);
6523     SDValue Op1 = getValue(I.getArgOperand(0));
6524     SDValue Op2 = getValue(I.getArgOperand(1));
6525     SDValue Op3 = getValue(I.getArgOperand(2));
6526     // @llvm.memset defines 0 and 1 to both mean no alignment.
6527     Align Alignment = MSI.getDestAlign().valueOrOne();
6528     bool isVol = MSI.isVolatile();
6529     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6530     SDValue MS = DAG.getMemset(
6531         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6532         &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6533     updateDAGForMaybeTailCall(MS);
6534     return;
6535   }
6536   case Intrinsic::memset_inline: {
6537     const auto &MSII = cast<MemSetInlineInst>(I);
6538     SDValue Dst = getValue(I.getArgOperand(0));
6539     SDValue Value = getValue(I.getArgOperand(1));
6540     SDValue Size = getValue(I.getArgOperand(2));
6541     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6542     // @llvm.memset defines 0 and 1 to both mean no alignment.
6543     Align DstAlign = MSII.getDestAlign().valueOrOne();
6544     bool isVol = MSII.isVolatile();
6545     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6546     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6547                                /* AlwaysInline */ true, &I,
6548                                MachinePointerInfo(I.getArgOperand(0)),
6549                                I.getAAMetadata());
6550     updateDAGForMaybeTailCall(MC);
6551     return;
6552   }
6553   case Intrinsic::memmove: {
6554     const auto &MMI = cast<MemMoveInst>(I);
6555     SDValue Op1 = getValue(I.getArgOperand(0));
6556     SDValue Op2 = getValue(I.getArgOperand(1));
6557     SDValue Op3 = getValue(I.getArgOperand(2));
6558     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6559     Align DstAlign = MMI.getDestAlign().valueOrOne();
6560     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6561     Align Alignment = std::min(DstAlign, SrcAlign);
6562     bool isVol = MMI.isVolatile();
6563     // FIXME: Support passing different dest/src alignments to the memmove DAG
6564     // node.
6565     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6566     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6567                                 /* OverrideTailCall */ std::nullopt,
6568                                 MachinePointerInfo(I.getArgOperand(0)),
6569                                 MachinePointerInfo(I.getArgOperand(1)),
6570                                 I.getAAMetadata(), AA);
6571     updateDAGForMaybeTailCall(MM);
6572     return;
6573   }
6574   case Intrinsic::memcpy_element_unordered_atomic: {
6575     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6576     SDValue Dst = getValue(MI.getRawDest());
6577     SDValue Src = getValue(MI.getRawSource());
6578     SDValue Length = getValue(MI.getLength());
6579 
6580     Type *LengthTy = MI.getLength()->getType();
6581     unsigned ElemSz = MI.getElementSizeInBytes();
6582     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6583     SDValue MC =
6584         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6585                             isTC, MachinePointerInfo(MI.getRawDest()),
6586                             MachinePointerInfo(MI.getRawSource()));
6587     updateDAGForMaybeTailCall(MC);
6588     return;
6589   }
6590   case Intrinsic::memmove_element_unordered_atomic: {
6591     auto &MI = cast<AtomicMemMoveInst>(I);
6592     SDValue Dst = getValue(MI.getRawDest());
6593     SDValue Src = getValue(MI.getRawSource());
6594     SDValue Length = getValue(MI.getLength());
6595 
6596     Type *LengthTy = MI.getLength()->getType();
6597     unsigned ElemSz = MI.getElementSizeInBytes();
6598     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6599     SDValue MC =
6600         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6601                              isTC, MachinePointerInfo(MI.getRawDest()),
6602                              MachinePointerInfo(MI.getRawSource()));
6603     updateDAGForMaybeTailCall(MC);
6604     return;
6605   }
6606   case Intrinsic::memset_element_unordered_atomic: {
6607     auto &MI = cast<AtomicMemSetInst>(I);
6608     SDValue Dst = getValue(MI.getRawDest());
6609     SDValue Val = getValue(MI.getValue());
6610     SDValue Length = getValue(MI.getLength());
6611 
6612     Type *LengthTy = MI.getLength()->getType();
6613     unsigned ElemSz = MI.getElementSizeInBytes();
6614     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6615     SDValue MC =
6616         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6617                             isTC, MachinePointerInfo(MI.getRawDest()));
6618     updateDAGForMaybeTailCall(MC);
6619     return;
6620   }
6621   case Intrinsic::call_preallocated_setup: {
6622     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6623     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6624     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6625                               getRoot(), SrcValue);
6626     setValue(&I, Res);
6627     DAG.setRoot(Res);
6628     return;
6629   }
6630   case Intrinsic::call_preallocated_arg: {
6631     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6632     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6633     SDValue Ops[3];
6634     Ops[0] = getRoot();
6635     Ops[1] = SrcValue;
6636     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6637                                    MVT::i32); // arg index
6638     SDValue Res = DAG.getNode(
6639         ISD::PREALLOCATED_ARG, sdl,
6640         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6641     setValue(&I, Res);
6642     DAG.setRoot(Res.getValue(1));
6643     return;
6644   }
6645   case Intrinsic::dbg_declare: {
6646     const auto &DI = cast<DbgDeclareInst>(I);
6647     // Debug intrinsics are handled separately in assignment tracking mode.
6648     // Some intrinsics are handled right after Argument lowering.
6649     if (AssignmentTrackingEnabled ||
6650         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6651       return;
6652     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6653     DILocalVariable *Variable = DI.getVariable();
6654     DIExpression *Expression = DI.getExpression();
6655     dropDanglingDebugInfo(Variable, Expression);
6656     // Assume dbg.declare can not currently use DIArgList, i.e.
6657     // it is non-variadic.
6658     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6659     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6660                        DI.getDebugLoc());
6661     return;
6662   }
6663   case Intrinsic::dbg_label: {
6664     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6665     DILabel *Label = DI.getLabel();
6666     assert(Label && "Missing label");
6667 
6668     SDDbgLabel *SDV;
6669     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6670     DAG.AddDbgLabel(SDV);
6671     return;
6672   }
6673   case Intrinsic::dbg_assign: {
6674     // Debug intrinsics are handled separately in assignment tracking mode.
6675     if (AssignmentTrackingEnabled)
6676       return;
6677     // If assignment tracking hasn't been enabled then fall through and treat
6678     // the dbg.assign as a dbg.value.
6679     [[fallthrough]];
6680   }
6681   case Intrinsic::dbg_value: {
6682     // Debug intrinsics are handled separately in assignment tracking mode.
6683     if (AssignmentTrackingEnabled)
6684       return;
6685     const DbgValueInst &DI = cast<DbgValueInst>(I);
6686     assert(DI.getVariable() && "Missing variable");
6687 
6688     DILocalVariable *Variable = DI.getVariable();
6689     DIExpression *Expression = DI.getExpression();
6690     dropDanglingDebugInfo(Variable, Expression);
6691 
6692     if (DI.isKillLocation()) {
6693       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6694       return;
6695     }
6696 
6697     SmallVector<Value *, 4> Values(DI.getValues());
6698     if (Values.empty())
6699       return;
6700 
6701     bool IsVariadic = DI.hasArgList();
6702     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6703                           SDNodeOrder, IsVariadic))
6704       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6705                            DI.getDebugLoc(), SDNodeOrder);
6706     return;
6707   }
6708 
6709   case Intrinsic::eh_typeid_for: {
6710     // Find the type id for the given typeinfo.
6711     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6712     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6713     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6714     setValue(&I, Res);
6715     return;
6716   }
6717 
6718   case Intrinsic::eh_return_i32:
6719   case Intrinsic::eh_return_i64:
6720     DAG.getMachineFunction().setCallsEHReturn(true);
6721     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6722                             MVT::Other,
6723                             getControlRoot(),
6724                             getValue(I.getArgOperand(0)),
6725                             getValue(I.getArgOperand(1))));
6726     return;
6727   case Intrinsic::eh_unwind_init:
6728     DAG.getMachineFunction().setCallsUnwindInit(true);
6729     return;
6730   case Intrinsic::eh_dwarf_cfa:
6731     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6732                              TLI.getPointerTy(DAG.getDataLayout()),
6733                              getValue(I.getArgOperand(0))));
6734     return;
6735   case Intrinsic::eh_sjlj_callsite: {
6736     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6737     assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6738 
6739     FuncInfo.setCurrentCallSite(CI->getZExtValue());
6740     return;
6741   }
6742   case Intrinsic::eh_sjlj_functioncontext: {
6743     // Get and store the index of the function context.
6744     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6745     AllocaInst *FnCtx =
6746       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6747     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6748     MFI.setFunctionContextIndex(FI);
6749     return;
6750   }
6751   case Intrinsic::eh_sjlj_setjmp: {
6752     SDValue Ops[2];
6753     Ops[0] = getRoot();
6754     Ops[1] = getValue(I.getArgOperand(0));
6755     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6756                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6757     setValue(&I, Op.getValue(0));
6758     DAG.setRoot(Op.getValue(1));
6759     return;
6760   }
6761   case Intrinsic::eh_sjlj_longjmp:
6762     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6763                             getRoot(), getValue(I.getArgOperand(0))));
6764     return;
6765   case Intrinsic::eh_sjlj_setup_dispatch:
6766     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6767                             getRoot()));
6768     return;
6769   case Intrinsic::masked_gather:
6770     visitMaskedGather(I);
6771     return;
6772   case Intrinsic::masked_load:
6773     visitMaskedLoad(I);
6774     return;
6775   case Intrinsic::masked_scatter:
6776     visitMaskedScatter(I);
6777     return;
6778   case Intrinsic::masked_store:
6779     visitMaskedStore(I);
6780     return;
6781   case Intrinsic::masked_expandload:
6782     visitMaskedLoad(I, true /* IsExpanding */);
6783     return;
6784   case Intrinsic::masked_compressstore:
6785     visitMaskedStore(I, true /* IsCompressing */);
6786     return;
6787   case Intrinsic::powi:
6788     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6789                             getValue(I.getArgOperand(1)), DAG));
6790     return;
6791   case Intrinsic::log:
6792     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6793     return;
6794   case Intrinsic::log2:
6795     setValue(&I,
6796              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6797     return;
6798   case Intrinsic::log10:
6799     setValue(&I,
6800              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6801     return;
6802   case Intrinsic::exp:
6803     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6804     return;
6805   case Intrinsic::exp2:
6806     setValue(&I,
6807              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6808     return;
6809   case Intrinsic::pow:
6810     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6811                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6812     return;
6813   case Intrinsic::sqrt:
6814   case Intrinsic::fabs:
6815   case Intrinsic::sin:
6816   case Intrinsic::cos:
6817   case Intrinsic::tan:
6818   case Intrinsic::asin:
6819   case Intrinsic::acos:
6820   case Intrinsic::atan:
6821   case Intrinsic::sinh:
6822   case Intrinsic::cosh:
6823   case Intrinsic::tanh:
6824   case Intrinsic::exp10:
6825   case Intrinsic::floor:
6826   case Intrinsic::ceil:
6827   case Intrinsic::trunc:
6828   case Intrinsic::rint:
6829   case Intrinsic::nearbyint:
6830   case Intrinsic::round:
6831   case Intrinsic::roundeven:
6832   case Intrinsic::canonicalize: {
6833     unsigned Opcode;
6834     // clang-format off
6835     switch (Intrinsic) {
6836     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6837     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6838     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6839     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6840     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6841     case Intrinsic::tan:          Opcode = ISD::FTAN;          break;
6842     case Intrinsic::asin:         Opcode = ISD::FASIN;         break;
6843     case Intrinsic::acos:         Opcode = ISD::FACOS;         break;
6844     case Intrinsic::atan:         Opcode = ISD::FATAN;         break;
6845     case Intrinsic::sinh:         Opcode = ISD::FSINH;         break;
6846     case Intrinsic::cosh:         Opcode = ISD::FCOSH;         break;
6847     case Intrinsic::tanh:         Opcode = ISD::FTANH;         break;
6848     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6849     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6850     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6851     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6852     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6853     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6854     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6855     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6856     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6857     }
6858     // clang-format on
6859 
6860     setValue(&I, DAG.getNode(Opcode, sdl,
6861                              getValue(I.getArgOperand(0)).getValueType(),
6862                              getValue(I.getArgOperand(0)), Flags));
6863     return;
6864   }
6865   case Intrinsic::atan2:
6866     setValue(&I, DAG.getNode(ISD::FATAN2, sdl,
6867                              getValue(I.getArgOperand(0)).getValueType(),
6868                              getValue(I.getArgOperand(0)),
6869                              getValue(I.getArgOperand(1)), Flags));
6870     return;
6871   case Intrinsic::lround:
6872   case Intrinsic::llround:
6873   case Intrinsic::lrint:
6874   case Intrinsic::llrint: {
6875     unsigned Opcode;
6876     // clang-format off
6877     switch (Intrinsic) {
6878     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6879     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6880     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6881     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6882     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6883     }
6884     // clang-format on
6885 
6886     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6887     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6888                              getValue(I.getArgOperand(0))));
6889     return;
6890   }
6891   case Intrinsic::minnum:
6892     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6893                              getValue(I.getArgOperand(0)).getValueType(),
6894                              getValue(I.getArgOperand(0)),
6895                              getValue(I.getArgOperand(1)), Flags));
6896     return;
6897   case Intrinsic::maxnum:
6898     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6899                              getValue(I.getArgOperand(0)).getValueType(),
6900                              getValue(I.getArgOperand(0)),
6901                              getValue(I.getArgOperand(1)), Flags));
6902     return;
6903   case Intrinsic::minimum:
6904     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6905                              getValue(I.getArgOperand(0)).getValueType(),
6906                              getValue(I.getArgOperand(0)),
6907                              getValue(I.getArgOperand(1)), Flags));
6908     return;
6909   case Intrinsic::maximum:
6910     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6911                              getValue(I.getArgOperand(0)).getValueType(),
6912                              getValue(I.getArgOperand(0)),
6913                              getValue(I.getArgOperand(1)), Flags));
6914     return;
6915   case Intrinsic::minimumnum:
6916     setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6917                              getValue(I.getArgOperand(0)).getValueType(),
6918                              getValue(I.getArgOperand(0)),
6919                              getValue(I.getArgOperand(1)), Flags));
6920     return;
6921   case Intrinsic::maximumnum:
6922     setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
6923                              getValue(I.getArgOperand(0)).getValueType(),
6924                              getValue(I.getArgOperand(0)),
6925                              getValue(I.getArgOperand(1)), Flags));
6926     return;
6927   case Intrinsic::copysign:
6928     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6929                              getValue(I.getArgOperand(0)).getValueType(),
6930                              getValue(I.getArgOperand(0)),
6931                              getValue(I.getArgOperand(1)), Flags));
6932     return;
6933   case Intrinsic::ldexp:
6934     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6935                              getValue(I.getArgOperand(0)).getValueType(),
6936                              getValue(I.getArgOperand(0)),
6937                              getValue(I.getArgOperand(1)), Flags));
6938     return;
6939   case Intrinsic::sincos:
6940   case Intrinsic::frexp: {
6941     unsigned Opcode;
6942     switch (Intrinsic) {
6943     default:
6944       llvm_unreachable("unexpected intrinsic");
6945     case Intrinsic::sincos:
6946       Opcode = ISD::FSINCOS;
6947       break;
6948     case Intrinsic::frexp:
6949       Opcode = ISD::FFREXP;
6950       break;
6951     }
6952     SmallVector<EVT, 2> ValueVTs;
6953     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6954     SDVTList VTs = DAG.getVTList(ValueVTs);
6955     setValue(
6956         &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags));
6957     return;
6958   }
6959   case Intrinsic::arithmetic_fence: {
6960     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6961                              getValue(I.getArgOperand(0)).getValueType(),
6962                              getValue(I.getArgOperand(0)), Flags));
6963     return;
6964   }
6965   case Intrinsic::fma:
6966     setValue(&I, DAG.getNode(
6967                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6968                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6969                      getValue(I.getArgOperand(2)), Flags));
6970     return;
6971 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6972   case Intrinsic::INTRINSIC:
6973 #include "llvm/IR/ConstrainedOps.def"
6974     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6975     return;
6976 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6977 #include "llvm/IR/VPIntrinsics.def"
6978     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6979     return;
6980   case Intrinsic::fptrunc_round: {
6981     // Get the last argument, the metadata and convert it to an integer in the
6982     // call
6983     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6984     std::optional<RoundingMode> RoundMode =
6985         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6986 
6987     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6988 
6989     // Propagate fast-math-flags from IR to node(s).
6990     SDNodeFlags Flags;
6991     Flags.copyFMF(*cast<FPMathOperator>(&I));
6992     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6993 
6994     SDValue Result;
6995     Result = DAG.getNode(
6996         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6997         DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32));
6998     setValue(&I, Result);
6999 
7000     return;
7001   }
7002   case Intrinsic::fmuladd: {
7003     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7004     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7005         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7006       setValue(&I, DAG.getNode(ISD::FMA, sdl,
7007                                getValue(I.getArgOperand(0)).getValueType(),
7008                                getValue(I.getArgOperand(0)),
7009                                getValue(I.getArgOperand(1)),
7010                                getValue(I.getArgOperand(2)), Flags));
7011     } else {
7012       // TODO: Intrinsic calls should have fast-math-flags.
7013       SDValue Mul = DAG.getNode(
7014           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
7015           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
7016       SDValue Add = DAG.getNode(ISD::FADD, sdl,
7017                                 getValue(I.getArgOperand(0)).getValueType(),
7018                                 Mul, getValue(I.getArgOperand(2)), Flags);
7019       setValue(&I, Add);
7020     }
7021     return;
7022   }
7023   case Intrinsic::convert_to_fp16:
7024     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
7025                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
7026                                          getValue(I.getArgOperand(0)),
7027                                          DAG.getTargetConstant(0, sdl,
7028                                                                MVT::i32))));
7029     return;
7030   case Intrinsic::convert_from_fp16:
7031     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
7032                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
7033                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7034                                          getValue(I.getArgOperand(0)))));
7035     return;
7036   case Intrinsic::fptosi_sat: {
7037     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7038     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
7039                              getValue(I.getArgOperand(0)),
7040                              DAG.getValueType(VT.getScalarType())));
7041     return;
7042   }
7043   case Intrinsic::fptoui_sat: {
7044     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7045     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7046                              getValue(I.getArgOperand(0)),
7047                              DAG.getValueType(VT.getScalarType())));
7048     return;
7049   }
7050   case Intrinsic::set_rounding:
7051     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7052                       {getRoot(), getValue(I.getArgOperand(0))});
7053     setValue(&I, Res);
7054     DAG.setRoot(Res.getValue(0));
7055     return;
7056   case Intrinsic::is_fpclass: {
7057     const DataLayout DLayout = DAG.getDataLayout();
7058     EVT DestVT = TLI.getValueType(DLayout, I.getType());
7059     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7060     FPClassTest Test = static_cast<FPClassTest>(
7061         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7062     MachineFunction &MF = DAG.getMachineFunction();
7063     const Function &F = MF.getFunction();
7064     SDValue Op = getValue(I.getArgOperand(0));
7065     SDNodeFlags Flags;
7066     Flags.setNoFPExcept(
7067         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7068     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7069     // expansion can use illegal types. Making expansion early allows
7070     // legalizing these types prior to selection.
7071     if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) &&
7072         !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) {
7073       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7074       setValue(&I, Result);
7075       return;
7076     }
7077 
7078     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7079     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7080     setValue(&I, V);
7081     return;
7082   }
7083   case Intrinsic::get_fpenv: {
7084     const DataLayout DLayout = DAG.getDataLayout();
7085     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7086     Align TempAlign = DAG.getEVTAlign(EnvVT);
7087     SDValue Chain = getRoot();
7088     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7089     // and temporary storage in stack.
7090     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7091       Res = DAG.getNode(
7092           ISD::GET_FPENV, sdl,
7093           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7094                         MVT::Other),
7095           Chain);
7096     } else {
7097       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7098       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7099       auto MPI =
7100           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7101       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7102           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
7103           TempAlign);
7104       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7105       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7106     }
7107     setValue(&I, Res);
7108     DAG.setRoot(Res.getValue(1));
7109     return;
7110   }
7111   case Intrinsic::set_fpenv: {
7112     const DataLayout DLayout = DAG.getDataLayout();
7113     SDValue Env = getValue(I.getArgOperand(0));
7114     EVT EnvVT = Env.getValueType();
7115     Align TempAlign = DAG.getEVTAlign(EnvVT);
7116     SDValue Chain = getRoot();
7117     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7118     // environment from memory.
7119     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7120       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7121     } else {
7122       // Allocate space in stack, copy environment bits into it and use this
7123       // memory in SET_FPENV_MEM.
7124       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7125       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7126       auto MPI =
7127           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7128       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7129                            MachineMemOperand::MOStore);
7130       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7131           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7132           TempAlign);
7133       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7134     }
7135     DAG.setRoot(Chain);
7136     return;
7137   }
7138   case Intrinsic::reset_fpenv:
7139     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7140     return;
7141   case Intrinsic::get_fpmode:
7142     Res = DAG.getNode(
7143         ISD::GET_FPMODE, sdl,
7144         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7145                       MVT::Other),
7146         DAG.getRoot());
7147     setValue(&I, Res);
7148     DAG.setRoot(Res.getValue(1));
7149     return;
7150   case Intrinsic::set_fpmode:
7151     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7152                       getValue(I.getArgOperand(0)));
7153     DAG.setRoot(Res);
7154     return;
7155   case Intrinsic::reset_fpmode: {
7156     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7157     DAG.setRoot(Res);
7158     return;
7159   }
7160   case Intrinsic::pcmarker: {
7161     SDValue Tmp = getValue(I.getArgOperand(0));
7162     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7163     return;
7164   }
7165   case Intrinsic::readcyclecounter: {
7166     SDValue Op = getRoot();
7167     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7168                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7169     setValue(&I, Res);
7170     DAG.setRoot(Res.getValue(1));
7171     return;
7172   }
7173   case Intrinsic::readsteadycounter: {
7174     SDValue Op = getRoot();
7175     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7176                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7177     setValue(&I, Res);
7178     DAG.setRoot(Res.getValue(1));
7179     return;
7180   }
7181   case Intrinsic::bitreverse:
7182     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7183                              getValue(I.getArgOperand(0)).getValueType(),
7184                              getValue(I.getArgOperand(0))));
7185     return;
7186   case Intrinsic::bswap:
7187     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7188                              getValue(I.getArgOperand(0)).getValueType(),
7189                              getValue(I.getArgOperand(0))));
7190     return;
7191   case Intrinsic::cttz: {
7192     SDValue Arg = getValue(I.getArgOperand(0));
7193     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7194     EVT Ty = Arg.getValueType();
7195     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7196                              sdl, Ty, Arg));
7197     return;
7198   }
7199   case Intrinsic::ctlz: {
7200     SDValue Arg = getValue(I.getArgOperand(0));
7201     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7202     EVT Ty = Arg.getValueType();
7203     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7204                              sdl, Ty, Arg));
7205     return;
7206   }
7207   case Intrinsic::ctpop: {
7208     SDValue Arg = getValue(I.getArgOperand(0));
7209     EVT Ty = Arg.getValueType();
7210     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7211     return;
7212   }
7213   case Intrinsic::fshl:
7214   case Intrinsic::fshr: {
7215     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7216     SDValue X = getValue(I.getArgOperand(0));
7217     SDValue Y = getValue(I.getArgOperand(1));
7218     SDValue Z = getValue(I.getArgOperand(2));
7219     EVT VT = X.getValueType();
7220 
7221     if (X == Y) {
7222       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7223       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7224     } else {
7225       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7226       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7227     }
7228     return;
7229   }
7230   case Intrinsic::sadd_sat: {
7231     SDValue Op1 = getValue(I.getArgOperand(0));
7232     SDValue Op2 = getValue(I.getArgOperand(1));
7233     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7234     return;
7235   }
7236   case Intrinsic::uadd_sat: {
7237     SDValue Op1 = getValue(I.getArgOperand(0));
7238     SDValue Op2 = getValue(I.getArgOperand(1));
7239     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7240     return;
7241   }
7242   case Intrinsic::ssub_sat: {
7243     SDValue Op1 = getValue(I.getArgOperand(0));
7244     SDValue Op2 = getValue(I.getArgOperand(1));
7245     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7246     return;
7247   }
7248   case Intrinsic::usub_sat: {
7249     SDValue Op1 = getValue(I.getArgOperand(0));
7250     SDValue Op2 = getValue(I.getArgOperand(1));
7251     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7252     return;
7253   }
7254   case Intrinsic::sshl_sat: {
7255     SDValue Op1 = getValue(I.getArgOperand(0));
7256     SDValue Op2 = getValue(I.getArgOperand(1));
7257     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7258     return;
7259   }
7260   case Intrinsic::ushl_sat: {
7261     SDValue Op1 = getValue(I.getArgOperand(0));
7262     SDValue Op2 = getValue(I.getArgOperand(1));
7263     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7264     return;
7265   }
7266   case Intrinsic::smul_fix:
7267   case Intrinsic::umul_fix:
7268   case Intrinsic::smul_fix_sat:
7269   case Intrinsic::umul_fix_sat: {
7270     SDValue Op1 = getValue(I.getArgOperand(0));
7271     SDValue Op2 = getValue(I.getArgOperand(1));
7272     SDValue Op3 = getValue(I.getArgOperand(2));
7273     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7274                              Op1.getValueType(), Op1, Op2, Op3));
7275     return;
7276   }
7277   case Intrinsic::sdiv_fix:
7278   case Intrinsic::udiv_fix:
7279   case Intrinsic::sdiv_fix_sat:
7280   case Intrinsic::udiv_fix_sat: {
7281     SDValue Op1 = getValue(I.getArgOperand(0));
7282     SDValue Op2 = getValue(I.getArgOperand(1));
7283     SDValue Op3 = getValue(I.getArgOperand(2));
7284     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7285                               Op1, Op2, Op3, DAG, TLI));
7286     return;
7287   }
7288   case Intrinsic::smax: {
7289     SDValue Op1 = getValue(I.getArgOperand(0));
7290     SDValue Op2 = getValue(I.getArgOperand(1));
7291     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7292     return;
7293   }
7294   case Intrinsic::smin: {
7295     SDValue Op1 = getValue(I.getArgOperand(0));
7296     SDValue Op2 = getValue(I.getArgOperand(1));
7297     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7298     return;
7299   }
7300   case Intrinsic::umax: {
7301     SDValue Op1 = getValue(I.getArgOperand(0));
7302     SDValue Op2 = getValue(I.getArgOperand(1));
7303     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7304     return;
7305   }
7306   case Intrinsic::umin: {
7307     SDValue Op1 = getValue(I.getArgOperand(0));
7308     SDValue Op2 = getValue(I.getArgOperand(1));
7309     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7310     return;
7311   }
7312   case Intrinsic::abs: {
7313     // TODO: Preserve "int min is poison" arg in SDAG?
7314     SDValue Op1 = getValue(I.getArgOperand(0));
7315     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7316     return;
7317   }
7318   case Intrinsic::scmp: {
7319     SDValue Op1 = getValue(I.getArgOperand(0));
7320     SDValue Op2 = getValue(I.getArgOperand(1));
7321     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7322     setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7323     break;
7324   }
7325   case Intrinsic::ucmp: {
7326     SDValue Op1 = getValue(I.getArgOperand(0));
7327     SDValue Op2 = getValue(I.getArgOperand(1));
7328     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7329     setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7330     break;
7331   }
7332   case Intrinsic::stacksave: {
7333     SDValue Op = getRoot();
7334     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7335     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7336     setValue(&I, Res);
7337     DAG.setRoot(Res.getValue(1));
7338     return;
7339   }
7340   case Intrinsic::stackrestore:
7341     Res = getValue(I.getArgOperand(0));
7342     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7343     return;
7344   case Intrinsic::get_dynamic_area_offset: {
7345     SDValue Op = getRoot();
7346     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7347     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7348     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7349     // target.
7350     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7351       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7352                          " intrinsic!");
7353     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7354                       Op);
7355     DAG.setRoot(Op);
7356     setValue(&I, Res);
7357     return;
7358   }
7359   case Intrinsic::stackguard: {
7360     MachineFunction &MF = DAG.getMachineFunction();
7361     const Module &M = *MF.getFunction().getParent();
7362     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7363     SDValue Chain = getRoot();
7364     if (TLI.useLoadStackGuardNode(M)) {
7365       Res = getLoadStackGuard(DAG, sdl, Chain);
7366       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7367     } else {
7368       const Value *Global = TLI.getSDagStackGuard(M);
7369       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7370       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7371                         MachinePointerInfo(Global, 0), Align,
7372                         MachineMemOperand::MOVolatile);
7373     }
7374     if (TLI.useStackGuardXorFP())
7375       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7376     DAG.setRoot(Chain);
7377     setValue(&I, Res);
7378     return;
7379   }
7380   case Intrinsic::stackprotector: {
7381     // Emit code into the DAG to store the stack guard onto the stack.
7382     MachineFunction &MF = DAG.getMachineFunction();
7383     MachineFrameInfo &MFI = MF.getFrameInfo();
7384     const Module &M = *MF.getFunction().getParent();
7385     SDValue Src, Chain = getRoot();
7386 
7387     if (TLI.useLoadStackGuardNode(M))
7388       Src = getLoadStackGuard(DAG, sdl, Chain);
7389     else
7390       Src = getValue(I.getArgOperand(0));   // The guard's value.
7391 
7392     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7393 
7394     int FI = FuncInfo.StaticAllocaMap[Slot];
7395     MFI.setStackProtectorIndex(FI);
7396     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7397 
7398     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7399 
7400     // Store the stack protector onto the stack.
7401     Res = DAG.getStore(
7402         Chain, sdl, Src, FIN,
7403         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7404         MaybeAlign(), MachineMemOperand::MOVolatile);
7405     setValue(&I, Res);
7406     DAG.setRoot(Res);
7407     return;
7408   }
7409   case Intrinsic::objectsize:
7410     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7411 
7412   case Intrinsic::is_constant:
7413     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7414 
7415   case Intrinsic::annotation:
7416   case Intrinsic::ptr_annotation:
7417   case Intrinsic::launder_invariant_group:
7418   case Intrinsic::strip_invariant_group:
7419     // Drop the intrinsic, but forward the value
7420     setValue(&I, getValue(I.getOperand(0)));
7421     return;
7422 
7423   case Intrinsic::assume:
7424   case Intrinsic::experimental_noalias_scope_decl:
7425   case Intrinsic::var_annotation:
7426   case Intrinsic::sideeffect:
7427     // Discard annotate attributes, noalias scope declarations, assumptions, and
7428     // artificial side-effects.
7429     return;
7430 
7431   case Intrinsic::codeview_annotation: {
7432     // Emit a label associated with this metadata.
7433     MachineFunction &MF = DAG.getMachineFunction();
7434     MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7435     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7436     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7437     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7438     DAG.setRoot(Res);
7439     return;
7440   }
7441 
7442   case Intrinsic::init_trampoline: {
7443     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7444 
7445     SDValue Ops[6];
7446     Ops[0] = getRoot();
7447     Ops[1] = getValue(I.getArgOperand(0));
7448     Ops[2] = getValue(I.getArgOperand(1));
7449     Ops[3] = getValue(I.getArgOperand(2));
7450     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7451     Ops[5] = DAG.getSrcValue(F);
7452 
7453     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7454 
7455     DAG.setRoot(Res);
7456     return;
7457   }
7458   case Intrinsic::adjust_trampoline:
7459     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7460                              TLI.getPointerTy(DAG.getDataLayout()),
7461                              getValue(I.getArgOperand(0))));
7462     return;
7463   case Intrinsic::gcroot: {
7464     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7465            "only valid in functions with gc specified, enforced by Verifier");
7466     assert(GFI && "implied by previous");
7467     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7468     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7469 
7470     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7471     GFI->addStackRoot(FI->getIndex(), TypeMap);
7472     return;
7473   }
7474   case Intrinsic::gcread:
7475   case Intrinsic::gcwrite:
7476     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7477   case Intrinsic::get_rounding:
7478     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7479     setValue(&I, Res);
7480     DAG.setRoot(Res.getValue(1));
7481     return;
7482 
7483   case Intrinsic::expect:
7484     // Just replace __builtin_expect(exp, c) with EXP.
7485     setValue(&I, getValue(I.getArgOperand(0)));
7486     return;
7487 
7488   case Intrinsic::ubsantrap:
7489   case Intrinsic::debugtrap:
7490   case Intrinsic::trap: {
7491     StringRef TrapFuncName =
7492         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7493     if (TrapFuncName.empty()) {
7494       switch (Intrinsic) {
7495       case Intrinsic::trap:
7496         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7497         break;
7498       case Intrinsic::debugtrap:
7499         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7500         break;
7501       case Intrinsic::ubsantrap:
7502         DAG.setRoot(DAG.getNode(
7503             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7504             DAG.getTargetConstant(
7505                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7506                 MVT::i32)));
7507         break;
7508       default: llvm_unreachable("unknown trap intrinsic");
7509       }
7510       DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7511                              I.hasFnAttr(Attribute::NoMerge));
7512       return;
7513     }
7514     TargetLowering::ArgListTy Args;
7515     if (Intrinsic == Intrinsic::ubsantrap) {
7516       Args.push_back(TargetLoweringBase::ArgListEntry());
7517       Args[0].Val = I.getArgOperand(0);
7518       Args[0].Node = getValue(Args[0].Val);
7519       Args[0].Ty = Args[0].Val->getType();
7520     }
7521 
7522     TargetLowering::CallLoweringInfo CLI(DAG);
7523     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7524         CallingConv::C, I.getType(),
7525         DAG.getExternalSymbol(TrapFuncName.data(),
7526                               TLI.getPointerTy(DAG.getDataLayout())),
7527         std::move(Args));
7528     CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7529     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7530     DAG.setRoot(Result.second);
7531     return;
7532   }
7533 
7534   case Intrinsic::allow_runtime_check:
7535   case Intrinsic::allow_ubsan_check:
7536     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7537     return;
7538 
7539   case Intrinsic::uadd_with_overflow:
7540   case Intrinsic::sadd_with_overflow:
7541   case Intrinsic::usub_with_overflow:
7542   case Intrinsic::ssub_with_overflow:
7543   case Intrinsic::umul_with_overflow:
7544   case Intrinsic::smul_with_overflow: {
7545     ISD::NodeType Op;
7546     switch (Intrinsic) {
7547     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7548     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7549     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7550     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7551     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7552     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7553     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7554     }
7555     SDValue Op1 = getValue(I.getArgOperand(0));
7556     SDValue Op2 = getValue(I.getArgOperand(1));
7557 
7558     EVT ResultVT = Op1.getValueType();
7559     EVT OverflowVT = MVT::i1;
7560     if (ResultVT.isVector())
7561       OverflowVT = EVT::getVectorVT(
7562           *Context, OverflowVT, ResultVT.getVectorElementCount());
7563 
7564     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7565     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7566     return;
7567   }
7568   case Intrinsic::prefetch: {
7569     SDValue Ops[5];
7570     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7571     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7572     Ops[0] = DAG.getRoot();
7573     Ops[1] = getValue(I.getArgOperand(0));
7574     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7575                                    MVT::i32);
7576     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7577                                    MVT::i32);
7578     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7579                                    MVT::i32);
7580     SDValue Result = DAG.getMemIntrinsicNode(
7581         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7582         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7583         /* align */ std::nullopt, Flags);
7584 
7585     // Chain the prefetch in parallel with any pending loads, to stay out of
7586     // the way of later optimizations.
7587     PendingLoads.push_back(Result);
7588     Result = getRoot();
7589     DAG.setRoot(Result);
7590     return;
7591   }
7592   case Intrinsic::lifetime_start:
7593   case Intrinsic::lifetime_end: {
7594     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7595     // Stack coloring is not enabled in O0, discard region information.
7596     if (TM.getOptLevel() == CodeGenOptLevel::None)
7597       return;
7598 
7599     const int64_t ObjectSize =
7600         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7601     Value *const ObjectPtr = I.getArgOperand(1);
7602     SmallVector<const Value *, 4> Allocas;
7603     getUnderlyingObjects(ObjectPtr, Allocas);
7604 
7605     for (const Value *Alloca : Allocas) {
7606       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7607 
7608       // Could not find an Alloca.
7609       if (!LifetimeObject)
7610         continue;
7611 
7612       // First check that the Alloca is static, otherwise it won't have a
7613       // valid frame index.
7614       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7615       if (SI == FuncInfo.StaticAllocaMap.end())
7616         return;
7617 
7618       const int FrameIndex = SI->second;
7619       int64_t Offset;
7620       if (GetPointerBaseWithConstantOffset(
7621               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7622         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7623       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7624                                 Offset);
7625       DAG.setRoot(Res);
7626     }
7627     return;
7628   }
7629   case Intrinsic::pseudoprobe: {
7630     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7631     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7632     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7633     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7634     DAG.setRoot(Res);
7635     return;
7636   }
7637   case Intrinsic::invariant_start:
7638     // Discard region information.
7639     setValue(&I,
7640              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7641     return;
7642   case Intrinsic::invariant_end:
7643     // Discard region information.
7644     return;
7645   case Intrinsic::clear_cache: {
7646     SDValue InputChain = DAG.getRoot();
7647     SDValue StartVal = getValue(I.getArgOperand(0));
7648     SDValue EndVal = getValue(I.getArgOperand(1));
7649     Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7650                       {InputChain, StartVal, EndVal});
7651     setValue(&I, Res);
7652     DAG.setRoot(Res);
7653     return;
7654   }
7655   case Intrinsic::donothing:
7656   case Intrinsic::seh_try_begin:
7657   case Intrinsic::seh_scope_begin:
7658   case Intrinsic::seh_try_end:
7659   case Intrinsic::seh_scope_end:
7660     // ignore
7661     return;
7662   case Intrinsic::experimental_stackmap:
7663     visitStackmap(I);
7664     return;
7665   case Intrinsic::experimental_patchpoint_void:
7666   case Intrinsic::experimental_patchpoint:
7667     visitPatchpoint(I);
7668     return;
7669   case Intrinsic::experimental_gc_statepoint:
7670     LowerStatepoint(cast<GCStatepointInst>(I));
7671     return;
7672   case Intrinsic::experimental_gc_result:
7673     visitGCResult(cast<GCResultInst>(I));
7674     return;
7675   case Intrinsic::experimental_gc_relocate:
7676     visitGCRelocate(cast<GCRelocateInst>(I));
7677     return;
7678   case Intrinsic::instrprof_cover:
7679     llvm_unreachable("instrprof failed to lower a cover");
7680   case Intrinsic::instrprof_increment:
7681     llvm_unreachable("instrprof failed to lower an increment");
7682   case Intrinsic::instrprof_timestamp:
7683     llvm_unreachable("instrprof failed to lower a timestamp");
7684   case Intrinsic::instrprof_value_profile:
7685     llvm_unreachable("instrprof failed to lower a value profiling call");
7686   case Intrinsic::instrprof_mcdc_parameters:
7687     llvm_unreachable("instrprof failed to lower mcdc parameters");
7688   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7689     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7690   case Intrinsic::localescape: {
7691     MachineFunction &MF = DAG.getMachineFunction();
7692     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7693 
7694     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7695     // is the same on all targets.
7696     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7697       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7698       if (isa<ConstantPointerNull>(Arg))
7699         continue; // Skip null pointers. They represent a hole in index space.
7700       AllocaInst *Slot = cast<AllocaInst>(Arg);
7701       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7702              "can only escape static allocas");
7703       int FI = FuncInfo.StaticAllocaMap[Slot];
7704       MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7705           GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7706       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7707               TII->get(TargetOpcode::LOCAL_ESCAPE))
7708           .addSym(FrameAllocSym)
7709           .addFrameIndex(FI);
7710     }
7711 
7712     return;
7713   }
7714 
7715   case Intrinsic::localrecover: {
7716     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7717     MachineFunction &MF = DAG.getMachineFunction();
7718 
7719     // Get the symbol that defines the frame offset.
7720     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7721     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7722     unsigned IdxVal =
7723         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7724     MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7725         GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7726 
7727     Value *FP = I.getArgOperand(1);
7728     SDValue FPVal = getValue(FP);
7729     EVT PtrVT = FPVal.getValueType();
7730 
7731     // Create a MCSymbol for the label to avoid any target lowering
7732     // that would make this PC relative.
7733     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7734     SDValue OffsetVal =
7735         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7736 
7737     // Add the offset to the FP.
7738     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7739     setValue(&I, Add);
7740 
7741     return;
7742   }
7743 
7744   case Intrinsic::fake_use: {
7745     Value *V = I.getArgOperand(0);
7746     SDValue Ops[2];
7747     // For Values not declared or previously used in this basic block, the
7748     // NodeMap will not have an entry, and `getValue` will assert if V has no
7749     // valid register value.
7750     auto FakeUseValue = [&]() -> SDValue {
7751       SDValue &N = NodeMap[V];
7752       if (N.getNode())
7753         return N;
7754 
7755       // If there's a virtual register allocated and initialized for this
7756       // value, use it.
7757       if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
7758         return copyFromReg;
7759       // FIXME: Do we want to preserve constants? It seems pointless.
7760       if (isa<Constant>(V))
7761         return getValue(V);
7762       return SDValue();
7763     }();
7764     if (!FakeUseValue || FakeUseValue.isUndef())
7765       return;
7766     Ops[0] = getRoot();
7767     Ops[1] = FakeUseValue;
7768     // Also, do not translate a fake use with an undef operand, or any other
7769     // empty SDValues.
7770     if (!Ops[1] || Ops[1].isUndef())
7771       return;
7772     DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops));
7773     return;
7774   }
7775 
7776   case Intrinsic::eh_exceptionpointer:
7777   case Intrinsic::eh_exceptioncode: {
7778     // Get the exception pointer vreg, copy from it, and resize it to fit.
7779     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7780     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7781     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7782     Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7783     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7784     if (Intrinsic == Intrinsic::eh_exceptioncode)
7785       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7786     setValue(&I, N);
7787     return;
7788   }
7789   case Intrinsic::xray_customevent: {
7790     // Here we want to make sure that the intrinsic behaves as if it has a
7791     // specific calling convention.
7792     const auto &Triple = DAG.getTarget().getTargetTriple();
7793     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7794       return;
7795 
7796     SmallVector<SDValue, 8> Ops;
7797 
7798     // We want to say that we always want the arguments in registers.
7799     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7800     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7801     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7802     SDValue Chain = getRoot();
7803     Ops.push_back(LogEntryVal);
7804     Ops.push_back(StrSizeVal);
7805     Ops.push_back(Chain);
7806 
7807     // We need to enforce the calling convention for the callsite, so that
7808     // argument ordering is enforced correctly, and that register allocation can
7809     // see that some registers may be assumed clobbered and have to preserve
7810     // them across calls to the intrinsic.
7811     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7812                                            sdl, NodeTys, Ops);
7813     SDValue patchableNode = SDValue(MN, 0);
7814     DAG.setRoot(patchableNode);
7815     setValue(&I, patchableNode);
7816     return;
7817   }
7818   case Intrinsic::xray_typedevent: {
7819     // Here we want to make sure that the intrinsic behaves as if it has a
7820     // specific calling convention.
7821     const auto &Triple = DAG.getTarget().getTargetTriple();
7822     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7823       return;
7824 
7825     SmallVector<SDValue, 8> Ops;
7826 
7827     // We want to say that we always want the arguments in registers.
7828     // It's unclear to me how manipulating the selection DAG here forces callers
7829     // to provide arguments in registers instead of on the stack.
7830     SDValue LogTypeId = getValue(I.getArgOperand(0));
7831     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7832     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7833     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7834     SDValue Chain = getRoot();
7835     Ops.push_back(LogTypeId);
7836     Ops.push_back(LogEntryVal);
7837     Ops.push_back(StrSizeVal);
7838     Ops.push_back(Chain);
7839 
7840     // We need to enforce the calling convention for the callsite, so that
7841     // argument ordering is enforced correctly, and that register allocation can
7842     // see that some registers may be assumed clobbered and have to preserve
7843     // them across calls to the intrinsic.
7844     MachineSDNode *MN = DAG.getMachineNode(
7845         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7846     SDValue patchableNode = SDValue(MN, 0);
7847     DAG.setRoot(patchableNode);
7848     setValue(&I, patchableNode);
7849     return;
7850   }
7851   case Intrinsic::experimental_deoptimize:
7852     LowerDeoptimizeCall(&I);
7853     return;
7854   case Intrinsic::stepvector:
7855     visitStepVector(I);
7856     return;
7857   case Intrinsic::vector_reduce_fadd:
7858   case Intrinsic::vector_reduce_fmul:
7859   case Intrinsic::vector_reduce_add:
7860   case Intrinsic::vector_reduce_mul:
7861   case Intrinsic::vector_reduce_and:
7862   case Intrinsic::vector_reduce_or:
7863   case Intrinsic::vector_reduce_xor:
7864   case Intrinsic::vector_reduce_smax:
7865   case Intrinsic::vector_reduce_smin:
7866   case Intrinsic::vector_reduce_umax:
7867   case Intrinsic::vector_reduce_umin:
7868   case Intrinsic::vector_reduce_fmax:
7869   case Intrinsic::vector_reduce_fmin:
7870   case Intrinsic::vector_reduce_fmaximum:
7871   case Intrinsic::vector_reduce_fminimum:
7872     visitVectorReduce(I, Intrinsic);
7873     return;
7874 
7875   case Intrinsic::icall_branch_funnel: {
7876     SmallVector<SDValue, 16> Ops;
7877     Ops.push_back(getValue(I.getArgOperand(0)));
7878 
7879     int64_t Offset;
7880     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7881         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7882     if (!Base)
7883       report_fatal_error(
7884           "llvm.icall.branch.funnel operand must be a GlobalValue");
7885     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7886 
7887     struct BranchFunnelTarget {
7888       int64_t Offset;
7889       SDValue Target;
7890     };
7891     SmallVector<BranchFunnelTarget, 8> Targets;
7892 
7893     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7894       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7895           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7896       if (ElemBase != Base)
7897         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7898                            "to the same GlobalValue");
7899 
7900       SDValue Val = getValue(I.getArgOperand(Op + 1));
7901       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7902       if (!GA)
7903         report_fatal_error(
7904             "llvm.icall.branch.funnel operand must be a GlobalValue");
7905       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7906                                      GA->getGlobal(), sdl, Val.getValueType(),
7907                                      GA->getOffset())});
7908     }
7909     llvm::sort(Targets,
7910                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7911                  return T1.Offset < T2.Offset;
7912                });
7913 
7914     for (auto &T : Targets) {
7915       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7916       Ops.push_back(T.Target);
7917     }
7918 
7919     Ops.push_back(DAG.getRoot()); // Chain
7920     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7921                                  MVT::Other, Ops),
7922               0);
7923     DAG.setRoot(N);
7924     setValue(&I, N);
7925     HasTailCall = true;
7926     return;
7927   }
7928 
7929   case Intrinsic::wasm_landingpad_index:
7930     // Information this intrinsic contained has been transferred to
7931     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7932     // delete it now.
7933     return;
7934 
7935   case Intrinsic::aarch64_settag:
7936   case Intrinsic::aarch64_settag_zero: {
7937     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7938     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7939     SDValue Val = TSI.EmitTargetCodeForSetTag(
7940         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7941         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7942         ZeroMemory);
7943     DAG.setRoot(Val);
7944     setValue(&I, Val);
7945     return;
7946   }
7947   case Intrinsic::amdgcn_cs_chain: {
7948     assert(I.arg_size() == 5 && "Additional args not supported yet");
7949     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7950            "Non-zero flags not supported yet");
7951 
7952     // At this point we don't care if it's amdgpu_cs_chain or
7953     // amdgpu_cs_chain_preserve.
7954     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7955 
7956     Type *RetTy = I.getType();
7957     assert(RetTy->isVoidTy() && "Should not return");
7958 
7959     SDValue Callee = getValue(I.getOperand(0));
7960 
7961     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7962     // We'll also tack the value of the EXEC mask at the end.
7963     TargetLowering::ArgListTy Args;
7964     Args.reserve(3);
7965 
7966     for (unsigned Idx : {2, 3, 1}) {
7967       TargetLowering::ArgListEntry Arg;
7968       Arg.Node = getValue(I.getOperand(Idx));
7969       Arg.Ty = I.getOperand(Idx)->getType();
7970       Arg.setAttributes(&I, Idx);
7971       Args.push_back(Arg);
7972     }
7973 
7974     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7975     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7976     Args[2].IsInReg = true; // EXEC should be inreg
7977 
7978     TargetLowering::CallLoweringInfo CLI(DAG);
7979     CLI.setDebugLoc(getCurSDLoc())
7980         .setChain(getRoot())
7981         .setCallee(CC, RetTy, Callee, std::move(Args))
7982         .setNoReturn(true)
7983         .setTailCall(true)
7984         .setConvergent(I.isConvergent());
7985     CLI.CB = &I;
7986     std::pair<SDValue, SDValue> Result =
7987         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7988     (void)Result;
7989     assert(!Result.first.getNode() && !Result.second.getNode() &&
7990            "Should've lowered as tail call");
7991 
7992     HasTailCall = true;
7993     return;
7994   }
7995   case Intrinsic::ptrmask: {
7996     SDValue Ptr = getValue(I.getOperand(0));
7997     SDValue Mask = getValue(I.getOperand(1));
7998 
7999     // On arm64_32, pointers are 32 bits when stored in memory, but
8000     // zero-extended to 64 bits when in registers.  Thus the mask is 32 bits to
8001     // match the index type, but the pointer is 64 bits, so the the mask must be
8002     // zero-extended up to 64 bits to match the pointer.
8003     EVT PtrVT =
8004         TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8005     EVT MemVT =
8006         TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8007     assert(PtrVT == Ptr.getValueType());
8008     assert(MemVT == Mask.getValueType());
8009     if (MemVT != PtrVT)
8010       Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8011 
8012     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
8013     return;
8014   }
8015   case Intrinsic::threadlocal_address: {
8016     setValue(&I, getValue(I.getOperand(0)));
8017     return;
8018   }
8019   case Intrinsic::get_active_lane_mask: {
8020     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8021     SDValue Index = getValue(I.getOperand(0));
8022     EVT ElementVT = Index.getValueType();
8023 
8024     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
8025       visitTargetIntrinsic(I, Intrinsic);
8026       return;
8027     }
8028 
8029     SDValue TripCount = getValue(I.getOperand(1));
8030     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
8031                                  CCVT.getVectorElementCount());
8032 
8033     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
8034     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
8035     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
8036     SDValue VectorInduction = DAG.getNode(
8037         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
8038     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
8039                                  VectorTripCount, ISD::CondCode::SETULT);
8040     setValue(&I, SetCC);
8041     return;
8042   }
8043   case Intrinsic::experimental_get_vector_length: {
8044     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
8045            "Expected positive VF");
8046     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
8047     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
8048 
8049     SDValue Count = getValue(I.getOperand(0));
8050     EVT CountVT = Count.getValueType();
8051 
8052     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
8053       visitTargetIntrinsic(I, Intrinsic);
8054       return;
8055     }
8056 
8057     // Expand to a umin between the trip count and the maximum elements the type
8058     // can hold.
8059     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8060 
8061     // Extend the trip count to at least the result VT.
8062     if (CountVT.bitsLT(VT)) {
8063       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
8064       CountVT = VT;
8065     }
8066 
8067     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
8068                                          ElementCount::get(VF, IsScalable));
8069 
8070     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
8071     // Clip to the result type if needed.
8072     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
8073 
8074     setValue(&I, Trunc);
8075     return;
8076   }
8077   case Intrinsic::experimental_vector_partial_reduce_add: {
8078 
8079     if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) {
8080       visitTargetIntrinsic(I, Intrinsic);
8081       return;
8082     }
8083 
8084     setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()),
8085                                          getValue(I.getOperand(0)),
8086                                          getValue(I.getOperand(1))));
8087     return;
8088   }
8089   case Intrinsic::experimental_cttz_elts: {
8090     auto DL = getCurSDLoc();
8091     SDValue Op = getValue(I.getOperand(0));
8092     EVT OpVT = Op.getValueType();
8093 
8094     if (!TLI.shouldExpandCttzElements(OpVT)) {
8095       visitTargetIntrinsic(I, Intrinsic);
8096       return;
8097     }
8098 
8099     if (OpVT.getScalarType() != MVT::i1) {
8100       // Compare the input vector elements to zero & use to count trailing zeros
8101       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8102       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8103                               OpVT.getVectorElementCount());
8104       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8105     }
8106 
8107     // If the zero-is-poison flag is set, we can assume the upper limit
8108     // of the result is VF-1.
8109     bool ZeroIsPoison =
8110         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8111     ConstantRange VScaleRange(1, true); // Dummy value.
8112     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8113       VScaleRange = getVScaleRange(I.getCaller(), 64);
8114     unsigned EltWidth = TLI.getBitWidthForCttzElements(
8115         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8116 
8117     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8118 
8119     // Create the new vector type & get the vector length
8120     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8121                                  OpVT.getVectorElementCount());
8122 
8123     SDValue VL =
8124         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8125 
8126     SDValue StepVec = DAG.getStepVector(DL, NewVT);
8127     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8128     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8129     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8130     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8131     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8132     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8133 
8134     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8135     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8136 
8137     setValue(&I, Ret);
8138     return;
8139   }
8140   case Intrinsic::vector_insert: {
8141     SDValue Vec = getValue(I.getOperand(0));
8142     SDValue SubVec = getValue(I.getOperand(1));
8143     SDValue Index = getValue(I.getOperand(2));
8144 
8145     // The intrinsic's index type is i64, but the SDNode requires an index type
8146     // suitable for the target. Convert the index as required.
8147     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8148     if (Index.getValueType() != VectorIdxTy)
8149       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8150 
8151     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8152     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8153                              Index));
8154     return;
8155   }
8156   case Intrinsic::vector_extract: {
8157     SDValue Vec = getValue(I.getOperand(0));
8158     SDValue Index = getValue(I.getOperand(1));
8159     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8160 
8161     // The intrinsic's index type is i64, but the SDNode requires an index type
8162     // suitable for the target. Convert the index as required.
8163     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8164     if (Index.getValueType() != VectorIdxTy)
8165       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8166 
8167     setValue(&I,
8168              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8169     return;
8170   }
8171   case Intrinsic::vector_reverse:
8172     visitVectorReverse(I);
8173     return;
8174   case Intrinsic::vector_splice:
8175     visitVectorSplice(I);
8176     return;
8177   case Intrinsic::callbr_landingpad:
8178     visitCallBrLandingPad(I);
8179     return;
8180   case Intrinsic::vector_interleave2:
8181     visitVectorInterleave(I);
8182     return;
8183   case Intrinsic::vector_deinterleave2:
8184     visitVectorDeinterleave(I);
8185     return;
8186   case Intrinsic::experimental_vector_compress:
8187     setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8188                              getValue(I.getArgOperand(0)).getValueType(),
8189                              getValue(I.getArgOperand(0)),
8190                              getValue(I.getArgOperand(1)),
8191                              getValue(I.getArgOperand(2)), Flags));
8192     return;
8193   case Intrinsic::experimental_convergence_anchor:
8194   case Intrinsic::experimental_convergence_entry:
8195   case Intrinsic::experimental_convergence_loop:
8196     visitConvergenceControl(I, Intrinsic);
8197     return;
8198   case Intrinsic::experimental_vector_histogram_add: {
8199     visitVectorHistogram(I, Intrinsic);
8200     return;
8201   }
8202   }
8203 }
8204 
8205 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8206     const ConstrainedFPIntrinsic &FPI) {
8207   SDLoc sdl = getCurSDLoc();
8208 
8209   // We do not need to serialize constrained FP intrinsics against
8210   // each other or against (nonvolatile) loads, so they can be
8211   // chained like loads.
8212   SDValue Chain = DAG.getRoot();
8213   SmallVector<SDValue, 4> Opers;
8214   Opers.push_back(Chain);
8215   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8216     Opers.push_back(getValue(FPI.getArgOperand(I)));
8217 
8218   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8219     assert(Result.getNode()->getNumValues() == 2);
8220 
8221     // Push node to the appropriate list so that future instructions can be
8222     // chained up correctly.
8223     SDValue OutChain = Result.getValue(1);
8224     switch (EB) {
8225     case fp::ExceptionBehavior::ebIgnore:
8226       // The only reason why ebIgnore nodes still need to be chained is that
8227       // they might depend on the current rounding mode, and therefore must
8228       // not be moved across instruction that may change that mode.
8229       [[fallthrough]];
8230     case fp::ExceptionBehavior::ebMayTrap:
8231       // These must not be moved across calls or instructions that may change
8232       // floating-point exception masks.
8233       PendingConstrainedFP.push_back(OutChain);
8234       break;
8235     case fp::ExceptionBehavior::ebStrict:
8236       // These must not be moved across calls or instructions that may change
8237       // floating-point exception masks or read floating-point exception flags.
8238       // In addition, they cannot be optimized out even if unused.
8239       PendingConstrainedFPStrict.push_back(OutChain);
8240       break;
8241     }
8242   };
8243 
8244   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8245   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8246   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8247   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8248 
8249   SDNodeFlags Flags;
8250   if (EB == fp::ExceptionBehavior::ebIgnore)
8251     Flags.setNoFPExcept(true);
8252 
8253   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8254     Flags.copyFMF(*FPOp);
8255 
8256   unsigned Opcode;
8257   switch (FPI.getIntrinsicID()) {
8258   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8259 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8260   case Intrinsic::INTRINSIC:                                                   \
8261     Opcode = ISD::STRICT_##DAGN;                                               \
8262     break;
8263 #include "llvm/IR/ConstrainedOps.def"
8264   case Intrinsic::experimental_constrained_fmuladd: {
8265     Opcode = ISD::STRICT_FMA;
8266     // Break fmuladd into fmul and fadd.
8267     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8268         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8269       Opers.pop_back();
8270       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8271       pushOutChain(Mul, EB);
8272       Opcode = ISD::STRICT_FADD;
8273       Opers.clear();
8274       Opers.push_back(Mul.getValue(1));
8275       Opers.push_back(Mul.getValue(0));
8276       Opers.push_back(getValue(FPI.getArgOperand(2)));
8277     }
8278     break;
8279   }
8280   }
8281 
8282   // A few strict DAG nodes carry additional operands that are not
8283   // set up by the default code above.
8284   switch (Opcode) {
8285   default: break;
8286   case ISD::STRICT_FP_ROUND:
8287     Opers.push_back(
8288         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8289     break;
8290   case ISD::STRICT_FSETCC:
8291   case ISD::STRICT_FSETCCS: {
8292     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8293     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8294     if (TM.Options.NoNaNsFPMath)
8295       Condition = getFCmpCodeWithoutNaN(Condition);
8296     Opers.push_back(DAG.getCondCode(Condition));
8297     break;
8298   }
8299   }
8300 
8301   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8302   pushOutChain(Result, EB);
8303 
8304   SDValue FPResult = Result.getValue(0);
8305   setValue(&FPI, FPResult);
8306 }
8307 
8308 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8309   std::optional<unsigned> ResOPC;
8310   switch (VPIntrin.getIntrinsicID()) {
8311   case Intrinsic::vp_ctlz: {
8312     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8313     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8314     break;
8315   }
8316   case Intrinsic::vp_cttz: {
8317     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8318     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8319     break;
8320   }
8321   case Intrinsic::vp_cttz_elts: {
8322     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8323     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8324     break;
8325   }
8326 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8327   case Intrinsic::VPID:                                                        \
8328     ResOPC = ISD::VPSD;                                                        \
8329     break;
8330 #include "llvm/IR/VPIntrinsics.def"
8331   }
8332 
8333   if (!ResOPC)
8334     llvm_unreachable(
8335         "Inconsistency: no SDNode available for this VPIntrinsic!");
8336 
8337   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8338       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8339     if (VPIntrin.getFastMathFlags().allowReassoc())
8340       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8341                                                 : ISD::VP_REDUCE_FMUL;
8342   }
8343 
8344   return *ResOPC;
8345 }
8346 
8347 void SelectionDAGBuilder::visitVPLoad(
8348     const VPIntrinsic &VPIntrin, EVT VT,
8349     const SmallVectorImpl<SDValue> &OpValues) {
8350   SDLoc DL = getCurSDLoc();
8351   Value *PtrOperand = VPIntrin.getArgOperand(0);
8352   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8353   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8354   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8355   SDValue LD;
8356   // Do not serialize variable-length loads of constant memory with
8357   // anything.
8358   if (!Alignment)
8359     Alignment = DAG.getEVTAlign(VT);
8360   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8361   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8362   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8363   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8364       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8365       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8366   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8367                      MMO, false /*IsExpanding */);
8368   if (AddToChain)
8369     PendingLoads.push_back(LD.getValue(1));
8370   setValue(&VPIntrin, LD);
8371 }
8372 
8373 void SelectionDAGBuilder::visitVPGather(
8374     const VPIntrinsic &VPIntrin, EVT VT,
8375     const SmallVectorImpl<SDValue> &OpValues) {
8376   SDLoc DL = getCurSDLoc();
8377   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8378   Value *PtrOperand = VPIntrin.getArgOperand(0);
8379   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8380   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8381   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8382   SDValue LD;
8383   if (!Alignment)
8384     Alignment = DAG.getEVTAlign(VT.getScalarType());
8385   unsigned AS =
8386     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8387   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8388       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8389       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8390   SDValue Base, Index, Scale;
8391   ISD::MemIndexType IndexType;
8392   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8393                                     this, VPIntrin.getParent(),
8394                                     VT.getScalarStoreSize());
8395   if (!UniformBase) {
8396     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8397     Index = getValue(PtrOperand);
8398     IndexType = ISD::SIGNED_SCALED;
8399     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8400   }
8401   EVT IdxVT = Index.getValueType();
8402   EVT EltTy = IdxVT.getVectorElementType();
8403   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8404     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8405     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8406   }
8407   LD = DAG.getGatherVP(
8408       DAG.getVTList(VT, MVT::Other), VT, DL,
8409       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8410       IndexType);
8411   PendingLoads.push_back(LD.getValue(1));
8412   setValue(&VPIntrin, LD);
8413 }
8414 
8415 void SelectionDAGBuilder::visitVPStore(
8416     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8417   SDLoc DL = getCurSDLoc();
8418   Value *PtrOperand = VPIntrin.getArgOperand(1);
8419   EVT VT = OpValues[0].getValueType();
8420   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8421   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8422   SDValue ST;
8423   if (!Alignment)
8424     Alignment = DAG.getEVTAlign(VT);
8425   SDValue Ptr = OpValues[1];
8426   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8427   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8428       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8429       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8430   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8431                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8432                       /* IsTruncating */ false, /*IsCompressing*/ false);
8433   DAG.setRoot(ST);
8434   setValue(&VPIntrin, ST);
8435 }
8436 
8437 void SelectionDAGBuilder::visitVPScatter(
8438     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8439   SDLoc DL = getCurSDLoc();
8440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8441   Value *PtrOperand = VPIntrin.getArgOperand(1);
8442   EVT VT = OpValues[0].getValueType();
8443   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8444   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8445   SDValue ST;
8446   if (!Alignment)
8447     Alignment = DAG.getEVTAlign(VT.getScalarType());
8448   unsigned AS =
8449       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8450   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8451       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8452       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8453   SDValue Base, Index, Scale;
8454   ISD::MemIndexType IndexType;
8455   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8456                                     this, VPIntrin.getParent(),
8457                                     VT.getScalarStoreSize());
8458   if (!UniformBase) {
8459     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8460     Index = getValue(PtrOperand);
8461     IndexType = ISD::SIGNED_SCALED;
8462     Scale =
8463       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8464   }
8465   EVT IdxVT = Index.getValueType();
8466   EVT EltTy = IdxVT.getVectorElementType();
8467   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8468     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8469     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8470   }
8471   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8472                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8473                          OpValues[2], OpValues[3]},
8474                         MMO, IndexType);
8475   DAG.setRoot(ST);
8476   setValue(&VPIntrin, ST);
8477 }
8478 
8479 void SelectionDAGBuilder::visitVPStridedLoad(
8480     const VPIntrinsic &VPIntrin, EVT VT,
8481     const SmallVectorImpl<SDValue> &OpValues) {
8482   SDLoc DL = getCurSDLoc();
8483   Value *PtrOperand = VPIntrin.getArgOperand(0);
8484   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8485   if (!Alignment)
8486     Alignment = DAG.getEVTAlign(VT.getScalarType());
8487   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8488   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8489   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8490   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8491   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8492   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8493   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8494       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8495       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8496 
8497   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8498                                     OpValues[2], OpValues[3], MMO,
8499                                     false /*IsExpanding*/);
8500 
8501   if (AddToChain)
8502     PendingLoads.push_back(LD.getValue(1));
8503   setValue(&VPIntrin, LD);
8504 }
8505 
8506 void SelectionDAGBuilder::visitVPStridedStore(
8507     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8508   SDLoc DL = getCurSDLoc();
8509   Value *PtrOperand = VPIntrin.getArgOperand(1);
8510   EVT VT = OpValues[0].getValueType();
8511   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8512   if (!Alignment)
8513     Alignment = DAG.getEVTAlign(VT.getScalarType());
8514   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8515   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8516   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8517       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8518       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8519 
8520   SDValue ST = DAG.getStridedStoreVP(
8521       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8522       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8523       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8524       /*IsCompressing*/ false);
8525 
8526   DAG.setRoot(ST);
8527   setValue(&VPIntrin, ST);
8528 }
8529 
8530 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8532   SDLoc DL = getCurSDLoc();
8533 
8534   ISD::CondCode Condition;
8535   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8536   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8537   if (IsFP) {
8538     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8539     // flags, but calls that don't return floating-point types can't be
8540     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8541     Condition = getFCmpCondCode(CondCode);
8542     if (TM.Options.NoNaNsFPMath)
8543       Condition = getFCmpCodeWithoutNaN(Condition);
8544   } else {
8545     Condition = getICmpCondCode(CondCode);
8546   }
8547 
8548   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8549   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8550   // #2 is the condition code
8551   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8552   SDValue EVL = getValue(VPIntrin.getOperand(4));
8553   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8554   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8555          "Unexpected target EVL type");
8556   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8557 
8558   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8559                                                         VPIntrin.getType());
8560   setValue(&VPIntrin,
8561            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8562 }
8563 
8564 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8565     const VPIntrinsic &VPIntrin) {
8566   SDLoc DL = getCurSDLoc();
8567   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8568 
8569   auto IID = VPIntrin.getIntrinsicID();
8570 
8571   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8572     return visitVPCmp(*CmpI);
8573 
8574   SmallVector<EVT, 4> ValueVTs;
8575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8576   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8577   SDVTList VTs = DAG.getVTList(ValueVTs);
8578 
8579   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8580 
8581   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8582   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8583          "Unexpected target EVL type");
8584 
8585   // Request operands.
8586   SmallVector<SDValue, 7> OpValues;
8587   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8588     auto Op = getValue(VPIntrin.getArgOperand(I));
8589     if (I == EVLParamPos)
8590       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8591     OpValues.push_back(Op);
8592   }
8593 
8594   switch (Opcode) {
8595   default: {
8596     SDNodeFlags SDFlags;
8597     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8598       SDFlags.copyFMF(*FPMO);
8599     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8600     setValue(&VPIntrin, Result);
8601     break;
8602   }
8603   case ISD::VP_LOAD:
8604     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8605     break;
8606   case ISD::VP_GATHER:
8607     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8608     break;
8609   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8610     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8611     break;
8612   case ISD::VP_STORE:
8613     visitVPStore(VPIntrin, OpValues);
8614     break;
8615   case ISD::VP_SCATTER:
8616     visitVPScatter(VPIntrin, OpValues);
8617     break;
8618   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8619     visitVPStridedStore(VPIntrin, OpValues);
8620     break;
8621   case ISD::VP_FMULADD: {
8622     assert(OpValues.size() == 5 && "Unexpected number of operands");
8623     SDNodeFlags SDFlags;
8624     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8625       SDFlags.copyFMF(*FPMO);
8626     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8627         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8628       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8629     } else {
8630       SDValue Mul = DAG.getNode(
8631           ISD::VP_FMUL, DL, VTs,
8632           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8633       SDValue Add =
8634           DAG.getNode(ISD::VP_FADD, DL, VTs,
8635                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8636       setValue(&VPIntrin, Add);
8637     }
8638     break;
8639   }
8640   case ISD::VP_IS_FPCLASS: {
8641     const DataLayout DLayout = DAG.getDataLayout();
8642     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8643     auto Constant = OpValues[1]->getAsZExtVal();
8644     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8645     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8646                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8647     setValue(&VPIntrin, V);
8648     return;
8649   }
8650   case ISD::VP_INTTOPTR: {
8651     SDValue N = OpValues[0];
8652     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8653     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8654     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8655                                OpValues[2]);
8656     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8657                              OpValues[2]);
8658     setValue(&VPIntrin, N);
8659     break;
8660   }
8661   case ISD::VP_PTRTOINT: {
8662     SDValue N = OpValues[0];
8663     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8664                                                           VPIntrin.getType());
8665     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8666                                        VPIntrin.getOperand(0)->getType());
8667     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8668                                OpValues[2]);
8669     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8670                              OpValues[2]);
8671     setValue(&VPIntrin, N);
8672     break;
8673   }
8674   case ISD::VP_ABS:
8675   case ISD::VP_CTLZ:
8676   case ISD::VP_CTLZ_ZERO_UNDEF:
8677   case ISD::VP_CTTZ:
8678   case ISD::VP_CTTZ_ZERO_UNDEF:
8679   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8680   case ISD::VP_CTTZ_ELTS: {
8681     SDValue Result =
8682         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8683     setValue(&VPIntrin, Result);
8684     break;
8685   }
8686   }
8687 }
8688 
8689 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8690                                           const BasicBlock *EHPadBB,
8691                                           MCSymbol *&BeginLabel) {
8692   MachineFunction &MF = DAG.getMachineFunction();
8693 
8694   // Insert a label before the invoke call to mark the try range.  This can be
8695   // used to detect deletion of the invoke via the MachineModuleInfo.
8696   BeginLabel = MF.getContext().createTempSymbol();
8697 
8698   // For SjLj, keep track of which landing pads go with which invokes
8699   // so as to maintain the ordering of pads in the LSDA.
8700   unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8701   if (CallSiteIndex) {
8702     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8703     LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8704 
8705     // Now that the call site is handled, stop tracking it.
8706     FuncInfo.setCurrentCallSite(0);
8707   }
8708 
8709   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8710 }
8711 
8712 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8713                                         const BasicBlock *EHPadBB,
8714                                         MCSymbol *BeginLabel) {
8715   assert(BeginLabel && "BeginLabel should've been set");
8716 
8717   MachineFunction &MF = DAG.getMachineFunction();
8718 
8719   // Insert a label at the end of the invoke call to mark the try range.  This
8720   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8721   MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8722   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8723 
8724   // Inform MachineModuleInfo of range.
8725   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8726   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8727   // actually use outlined funclets and their LSDA info style.
8728   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8729     assert(II && "II should've been set");
8730     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8731     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8732   } else if (!isScopedEHPersonality(Pers)) {
8733     assert(EHPadBB);
8734     MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
8735   }
8736 
8737   return Chain;
8738 }
8739 
8740 std::pair<SDValue, SDValue>
8741 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8742                                     const BasicBlock *EHPadBB) {
8743   MCSymbol *BeginLabel = nullptr;
8744 
8745   if (EHPadBB) {
8746     // Both PendingLoads and PendingExports must be flushed here;
8747     // this call might not return.
8748     (void)getRoot();
8749     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8750     CLI.setChain(getRoot());
8751   }
8752 
8753   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8754   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8755 
8756   assert((CLI.IsTailCall || Result.second.getNode()) &&
8757          "Non-null chain expected with non-tail call!");
8758   assert((Result.second.getNode() || !Result.first.getNode()) &&
8759          "Null value expected with tail call!");
8760 
8761   if (!Result.second.getNode()) {
8762     // As a special case, a null chain means that a tail call has been emitted
8763     // and the DAG root is already updated.
8764     HasTailCall = true;
8765 
8766     // Since there's no actual continuation from this block, nothing can be
8767     // relying on us setting vregs for them.
8768     PendingExports.clear();
8769   } else {
8770     DAG.setRoot(Result.second);
8771   }
8772 
8773   if (EHPadBB) {
8774     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8775                            BeginLabel));
8776     Result.second = getRoot();
8777   }
8778 
8779   return Result;
8780 }
8781 
8782 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8783                                       bool isTailCall, bool isMustTailCall,
8784                                       const BasicBlock *EHPadBB,
8785                                       const TargetLowering::PtrAuthInfo *PAI) {
8786   auto &DL = DAG.getDataLayout();
8787   FunctionType *FTy = CB.getFunctionType();
8788   Type *RetTy = CB.getType();
8789 
8790   TargetLowering::ArgListTy Args;
8791   Args.reserve(CB.arg_size());
8792 
8793   const Value *SwiftErrorVal = nullptr;
8794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8795 
8796   if (isTailCall) {
8797     // Avoid emitting tail calls in functions with the disable-tail-calls
8798     // attribute.
8799     auto *Caller = CB.getParent()->getParent();
8800     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8801         "true" && !isMustTailCall)
8802       isTailCall = false;
8803 
8804     // We can't tail call inside a function with a swifterror argument. Lowering
8805     // does not support this yet. It would have to move into the swifterror
8806     // register before the call.
8807     if (TLI.supportSwiftError() &&
8808         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8809       isTailCall = false;
8810   }
8811 
8812   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8813     TargetLowering::ArgListEntry Entry;
8814     const Value *V = *I;
8815 
8816     // Skip empty types
8817     if (V->getType()->isEmptyTy())
8818       continue;
8819 
8820     SDValue ArgNode = getValue(V);
8821     Entry.Node = ArgNode; Entry.Ty = V->getType();
8822 
8823     Entry.setAttributes(&CB, I - CB.arg_begin());
8824 
8825     // Use swifterror virtual register as input to the call.
8826     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8827       SwiftErrorVal = V;
8828       // We find the virtual register for the actual swifterror argument.
8829       // Instead of using the Value, we use the virtual register instead.
8830       Entry.Node =
8831           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8832                           EVT(TLI.getPointerTy(DL)));
8833     }
8834 
8835     Args.push_back(Entry);
8836 
8837     // If we have an explicit sret argument that is an Instruction, (i.e., it
8838     // might point to function-local memory), we can't meaningfully tail-call.
8839     if (Entry.IsSRet && isa<Instruction>(V))
8840       isTailCall = false;
8841   }
8842 
8843   // If call site has a cfguardtarget operand bundle, create and add an
8844   // additional ArgListEntry.
8845   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8846     TargetLowering::ArgListEntry Entry;
8847     Value *V = Bundle->Inputs[0];
8848     SDValue ArgNode = getValue(V);
8849     Entry.Node = ArgNode;
8850     Entry.Ty = V->getType();
8851     Entry.IsCFGuardTarget = true;
8852     Args.push_back(Entry);
8853   }
8854 
8855   // Check if target-independent constraints permit a tail call here.
8856   // Target-dependent constraints are checked within TLI->LowerCallTo.
8857   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8858     isTailCall = false;
8859 
8860   // Disable tail calls if there is an swifterror argument. Targets have not
8861   // been updated to support tail calls.
8862   if (TLI.supportSwiftError() && SwiftErrorVal)
8863     isTailCall = false;
8864 
8865   ConstantInt *CFIType = nullptr;
8866   if (CB.isIndirectCall()) {
8867     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8868       if (!TLI.supportKCFIBundles())
8869         report_fatal_error(
8870             "Target doesn't support calls with kcfi operand bundles.");
8871       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8872       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8873     }
8874   }
8875 
8876   SDValue ConvControlToken;
8877   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8878     auto *Token = Bundle->Inputs[0].get();
8879     ConvControlToken = getValue(Token);
8880   }
8881 
8882   TargetLowering::CallLoweringInfo CLI(DAG);
8883   CLI.setDebugLoc(getCurSDLoc())
8884       .setChain(getRoot())
8885       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8886       .setTailCall(isTailCall)
8887       .setConvergent(CB.isConvergent())
8888       .setIsPreallocated(
8889           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8890       .setCFIType(CFIType)
8891       .setConvergenceControlToken(ConvControlToken);
8892 
8893   // Set the pointer authentication info if we have it.
8894   if (PAI) {
8895     if (!TLI.supportPtrAuthBundles())
8896       report_fatal_error(
8897           "This target doesn't support calls with ptrauth operand bundles.");
8898     CLI.setPtrAuth(*PAI);
8899   }
8900 
8901   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8902 
8903   if (Result.first.getNode()) {
8904     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8905     setValue(&CB, Result.first);
8906   }
8907 
8908   // The last element of CLI.InVals has the SDValue for swifterror return.
8909   // Here we copy it to a virtual register and update SwiftErrorMap for
8910   // book-keeping.
8911   if (SwiftErrorVal && TLI.supportSwiftError()) {
8912     // Get the last element of InVals.
8913     SDValue Src = CLI.InVals.back();
8914     Register VReg =
8915         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8916     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8917     DAG.setRoot(CopyNode);
8918   }
8919 }
8920 
8921 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8922                              SelectionDAGBuilder &Builder) {
8923   // Check to see if this load can be trivially constant folded, e.g. if the
8924   // input is from a string literal.
8925   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8926     // Cast pointer to the type we really want to load.
8927     Type *LoadTy =
8928         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8929     if (LoadVT.isVector())
8930       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8931 
8932     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8933                                          PointerType::getUnqual(LoadTy));
8934 
8935     if (const Constant *LoadCst =
8936             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8937                                          LoadTy, Builder.DAG.getDataLayout()))
8938       return Builder.getValue(LoadCst);
8939   }
8940 
8941   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8942   // still constant memory, the input chain can be the entry node.
8943   SDValue Root;
8944   bool ConstantMemory = false;
8945 
8946   // Do not serialize (non-volatile) loads of constant memory with anything.
8947   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8948     Root = Builder.DAG.getEntryNode();
8949     ConstantMemory = true;
8950   } else {
8951     // Do not serialize non-volatile loads against each other.
8952     Root = Builder.DAG.getRoot();
8953   }
8954 
8955   SDValue Ptr = Builder.getValue(PtrVal);
8956   SDValue LoadVal =
8957       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8958                           MachinePointerInfo(PtrVal), Align(1));
8959 
8960   if (!ConstantMemory)
8961     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8962   return LoadVal;
8963 }
8964 
8965 /// Record the value for an instruction that produces an integer result,
8966 /// converting the type where necessary.
8967 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8968                                                   SDValue Value,
8969                                                   bool IsSigned) {
8970   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8971                                                     I.getType(), true);
8972   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8973   setValue(&I, Value);
8974 }
8975 
8976 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8977 /// true and lower it. Otherwise return false, and it will be lowered like a
8978 /// normal call.
8979 /// The caller already checked that \p I calls the appropriate LibFunc with a
8980 /// correct prototype.
8981 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8982   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8983   const Value *Size = I.getArgOperand(2);
8984   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8985   if (CSize && CSize->getZExtValue() == 0) {
8986     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8987                                                           I.getType(), true);
8988     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8989     return true;
8990   }
8991 
8992   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8993   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8994       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8995       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8996   if (Res.first.getNode()) {
8997     processIntegerCallValue(I, Res.first, true);
8998     PendingLoads.push_back(Res.second);
8999     return true;
9000   }
9001 
9002   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
9003   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
9004   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
9005     return false;
9006 
9007   // If the target has a fast compare for the given size, it will return a
9008   // preferred load type for that size. Require that the load VT is legal and
9009   // that the target supports unaligned loads of that type. Otherwise, return
9010   // INVALID.
9011   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
9012     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9013     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
9014     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
9015       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
9016       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
9017       // TODO: Check alignment of src and dest ptrs.
9018       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
9019       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
9020       if (!TLI.isTypeLegal(LVT) ||
9021           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
9022           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
9023         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
9024     }
9025 
9026     return LVT;
9027   };
9028 
9029   // This turns into unaligned loads. We only do this if the target natively
9030   // supports the MVT we'll be loading or if it is small enough (<= 4) that
9031   // we'll only produce a small number of byte loads.
9032   MVT LoadVT;
9033   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
9034   switch (NumBitsToCompare) {
9035   default:
9036     return false;
9037   case 16:
9038     LoadVT = MVT::i16;
9039     break;
9040   case 32:
9041     LoadVT = MVT::i32;
9042     break;
9043   case 64:
9044   case 128:
9045   case 256:
9046     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9047     break;
9048   }
9049 
9050   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
9051     return false;
9052 
9053   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
9054   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9055 
9056   // Bitcast to a wide integer type if the loads are vectors.
9057   if (LoadVT.isVector()) {
9058     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9059     LoadL = DAG.getBitcast(CmpVT, LoadL);
9060     LoadR = DAG.getBitcast(CmpVT, LoadR);
9061   }
9062 
9063   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9064   processIntegerCallValue(I, Cmp, false);
9065   return true;
9066 }
9067 
9068 /// See if we can lower a memchr call into an optimized form. If so, return
9069 /// true and lower it. Otherwise return false, and it will be lowered like a
9070 /// normal call.
9071 /// The caller already checked that \p I calls the appropriate LibFunc with a
9072 /// correct prototype.
9073 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9074   const Value *Src = I.getArgOperand(0);
9075   const Value *Char = I.getArgOperand(1);
9076   const Value *Length = I.getArgOperand(2);
9077 
9078   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9079   std::pair<SDValue, SDValue> Res =
9080     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9081                                 getValue(Src), getValue(Char), getValue(Length),
9082                                 MachinePointerInfo(Src));
9083   if (Res.first.getNode()) {
9084     setValue(&I, Res.first);
9085     PendingLoads.push_back(Res.second);
9086     return true;
9087   }
9088 
9089   return false;
9090 }
9091 
9092 /// See if we can lower a mempcpy call into an optimized form. If so, return
9093 /// true and lower it. Otherwise return false, and it will be lowered like a
9094 /// normal call.
9095 /// The caller already checked that \p I calls the appropriate LibFunc with a
9096 /// correct prototype.
9097 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9098   SDValue Dst = getValue(I.getArgOperand(0));
9099   SDValue Src = getValue(I.getArgOperand(1));
9100   SDValue Size = getValue(I.getArgOperand(2));
9101 
9102   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9103   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9104   // DAG::getMemcpy needs Alignment to be defined.
9105   Align Alignment = std::min(DstAlign, SrcAlign);
9106 
9107   SDLoc sdl = getCurSDLoc();
9108 
9109   // In the mempcpy context we need to pass in a false value for isTailCall
9110   // because the return pointer needs to be adjusted by the size of
9111   // the copied memory.
9112   SDValue Root = getMemoryRoot();
9113   SDValue MC = DAG.getMemcpy(
9114       Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9115       std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9116       MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9117   assert(MC.getNode() != nullptr &&
9118          "** memcpy should not be lowered as TailCall in mempcpy context **");
9119   DAG.setRoot(MC);
9120 
9121   // Check if Size needs to be truncated or extended.
9122   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9123 
9124   // Adjust return pointer to point just past the last dst byte.
9125   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
9126                                     Dst, Size);
9127   setValue(&I, DstPlusSize);
9128   return true;
9129 }
9130 
9131 /// See if we can lower a strcpy call into an optimized form.  If so, return
9132 /// true and lower it, otherwise return false and it will be lowered like a
9133 /// normal call.
9134 /// The caller already checked that \p I calls the appropriate LibFunc with a
9135 /// correct prototype.
9136 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9137   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9138 
9139   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9140   std::pair<SDValue, SDValue> Res =
9141     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
9142                                 getValue(Arg0), getValue(Arg1),
9143                                 MachinePointerInfo(Arg0),
9144                                 MachinePointerInfo(Arg1), isStpcpy);
9145   if (Res.first.getNode()) {
9146     setValue(&I, Res.first);
9147     DAG.setRoot(Res.second);
9148     return true;
9149   }
9150 
9151   return false;
9152 }
9153 
9154 /// See if we can lower a strcmp call into an optimized form.  If so, return
9155 /// true and lower it, otherwise return false and it will be lowered like a
9156 /// normal call.
9157 /// The caller already checked that \p I calls the appropriate LibFunc with a
9158 /// correct prototype.
9159 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9160   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9161 
9162   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9163   std::pair<SDValue, SDValue> Res =
9164     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9165                                 getValue(Arg0), getValue(Arg1),
9166                                 MachinePointerInfo(Arg0),
9167                                 MachinePointerInfo(Arg1));
9168   if (Res.first.getNode()) {
9169     processIntegerCallValue(I, Res.first, true);
9170     PendingLoads.push_back(Res.second);
9171     return true;
9172   }
9173 
9174   return false;
9175 }
9176 
9177 /// See if we can lower a strlen call into an optimized form.  If so, return
9178 /// true and lower it, otherwise return false and it will be lowered like a
9179 /// normal call.
9180 /// The caller already checked that \p I calls the appropriate LibFunc with a
9181 /// correct prototype.
9182 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9183   const Value *Arg0 = I.getArgOperand(0);
9184 
9185   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9186   std::pair<SDValue, SDValue> Res =
9187     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9188                                 getValue(Arg0), MachinePointerInfo(Arg0));
9189   if (Res.first.getNode()) {
9190     processIntegerCallValue(I, Res.first, false);
9191     PendingLoads.push_back(Res.second);
9192     return true;
9193   }
9194 
9195   return false;
9196 }
9197 
9198 /// See if we can lower a strnlen call into an optimized form.  If so, return
9199 /// true and lower it, otherwise return false and it will be lowered like a
9200 /// normal call.
9201 /// The caller already checked that \p I calls the appropriate LibFunc with a
9202 /// correct prototype.
9203 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9204   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9205 
9206   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9207   std::pair<SDValue, SDValue> Res =
9208     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9209                                  getValue(Arg0), getValue(Arg1),
9210                                  MachinePointerInfo(Arg0));
9211   if (Res.first.getNode()) {
9212     processIntegerCallValue(I, Res.first, false);
9213     PendingLoads.push_back(Res.second);
9214     return true;
9215   }
9216 
9217   return false;
9218 }
9219 
9220 /// See if we can lower a unary floating-point operation into an SDNode with
9221 /// the specified Opcode.  If so, return true and lower it, otherwise return
9222 /// false and it will be lowered like a normal call.
9223 /// The caller already checked that \p I calls the appropriate LibFunc with a
9224 /// correct prototype.
9225 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9226                                               unsigned Opcode) {
9227   // We already checked this call's prototype; verify it doesn't modify errno.
9228   if (!I.onlyReadsMemory())
9229     return false;
9230 
9231   SDNodeFlags Flags;
9232   Flags.copyFMF(cast<FPMathOperator>(I));
9233 
9234   SDValue Tmp = getValue(I.getArgOperand(0));
9235   setValue(&I,
9236            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9237   return true;
9238 }
9239 
9240 /// See if we can lower a binary floating-point operation into an SDNode with
9241 /// the specified Opcode. If so, return true and lower it. Otherwise return
9242 /// false, and it will be lowered like a normal call.
9243 /// The caller already checked that \p I calls the appropriate LibFunc with a
9244 /// correct prototype.
9245 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9246                                                unsigned Opcode) {
9247   // We already checked this call's prototype; verify it doesn't modify errno.
9248   if (!I.onlyReadsMemory())
9249     return false;
9250 
9251   SDNodeFlags Flags;
9252   Flags.copyFMF(cast<FPMathOperator>(I));
9253 
9254   SDValue Tmp0 = getValue(I.getArgOperand(0));
9255   SDValue Tmp1 = getValue(I.getArgOperand(1));
9256   EVT VT = Tmp0.getValueType();
9257   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9258   return true;
9259 }
9260 
9261 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9262   // Handle inline assembly differently.
9263   if (I.isInlineAsm()) {
9264     visitInlineAsm(I);
9265     return;
9266   }
9267 
9268   diagnoseDontCall(I);
9269 
9270   if (Function *F = I.getCalledFunction()) {
9271     if (F->isDeclaration()) {
9272       // Is this an LLVM intrinsic or a target-specific intrinsic?
9273       unsigned IID = F->getIntrinsicID();
9274       if (!IID)
9275         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9276           IID = II->getIntrinsicID(F);
9277 
9278       if (IID) {
9279         visitIntrinsicCall(I, IID);
9280         return;
9281       }
9282     }
9283 
9284     // Check for well-known libc/libm calls.  If the function is internal, it
9285     // can't be a library call.  Don't do the check if marked as nobuiltin for
9286     // some reason or the call site requires strict floating point semantics.
9287     LibFunc Func;
9288     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9289         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9290         LibInfo->hasOptimizedCodeGen(Func)) {
9291       switch (Func) {
9292       default: break;
9293       case LibFunc_bcmp:
9294         if (visitMemCmpBCmpCall(I))
9295           return;
9296         break;
9297       case LibFunc_copysign:
9298       case LibFunc_copysignf:
9299       case LibFunc_copysignl:
9300         // We already checked this call's prototype; verify it doesn't modify
9301         // errno.
9302         if (I.onlyReadsMemory()) {
9303           SDValue LHS = getValue(I.getArgOperand(0));
9304           SDValue RHS = getValue(I.getArgOperand(1));
9305           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9306                                    LHS.getValueType(), LHS, RHS));
9307           return;
9308         }
9309         break;
9310       case LibFunc_fabs:
9311       case LibFunc_fabsf:
9312       case LibFunc_fabsl:
9313         if (visitUnaryFloatCall(I, ISD::FABS))
9314           return;
9315         break;
9316       case LibFunc_fmin:
9317       case LibFunc_fminf:
9318       case LibFunc_fminl:
9319         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9320           return;
9321         break;
9322       case LibFunc_fmax:
9323       case LibFunc_fmaxf:
9324       case LibFunc_fmaxl:
9325         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9326           return;
9327         break;
9328       case LibFunc_fminimum_num:
9329       case LibFunc_fminimum_numf:
9330       case LibFunc_fminimum_numl:
9331         if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM))
9332           return;
9333         break;
9334       case LibFunc_fmaximum_num:
9335       case LibFunc_fmaximum_numf:
9336       case LibFunc_fmaximum_numl:
9337         if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM))
9338           return;
9339         break;
9340       case LibFunc_sin:
9341       case LibFunc_sinf:
9342       case LibFunc_sinl:
9343         if (visitUnaryFloatCall(I, ISD::FSIN))
9344           return;
9345         break;
9346       case LibFunc_cos:
9347       case LibFunc_cosf:
9348       case LibFunc_cosl:
9349         if (visitUnaryFloatCall(I, ISD::FCOS))
9350           return;
9351         break;
9352       case LibFunc_tan:
9353       case LibFunc_tanf:
9354       case LibFunc_tanl:
9355         if (visitUnaryFloatCall(I, ISD::FTAN))
9356           return;
9357         break;
9358       case LibFunc_asin:
9359       case LibFunc_asinf:
9360       case LibFunc_asinl:
9361         if (visitUnaryFloatCall(I, ISD::FASIN))
9362           return;
9363         break;
9364       case LibFunc_acos:
9365       case LibFunc_acosf:
9366       case LibFunc_acosl:
9367         if (visitUnaryFloatCall(I, ISD::FACOS))
9368           return;
9369         break;
9370       case LibFunc_atan:
9371       case LibFunc_atanf:
9372       case LibFunc_atanl:
9373         if (visitUnaryFloatCall(I, ISD::FATAN))
9374           return;
9375         break;
9376       case LibFunc_atan2:
9377       case LibFunc_atan2f:
9378       case LibFunc_atan2l:
9379         if (visitBinaryFloatCall(I, ISD::FATAN2))
9380           return;
9381         break;
9382       case LibFunc_sinh:
9383       case LibFunc_sinhf:
9384       case LibFunc_sinhl:
9385         if (visitUnaryFloatCall(I, ISD::FSINH))
9386           return;
9387         break;
9388       case LibFunc_cosh:
9389       case LibFunc_coshf:
9390       case LibFunc_coshl:
9391         if (visitUnaryFloatCall(I, ISD::FCOSH))
9392           return;
9393         break;
9394       case LibFunc_tanh:
9395       case LibFunc_tanhf:
9396       case LibFunc_tanhl:
9397         if (visitUnaryFloatCall(I, ISD::FTANH))
9398           return;
9399         break;
9400       case LibFunc_sqrt:
9401       case LibFunc_sqrtf:
9402       case LibFunc_sqrtl:
9403       case LibFunc_sqrt_finite:
9404       case LibFunc_sqrtf_finite:
9405       case LibFunc_sqrtl_finite:
9406         if (visitUnaryFloatCall(I, ISD::FSQRT))
9407           return;
9408         break;
9409       case LibFunc_floor:
9410       case LibFunc_floorf:
9411       case LibFunc_floorl:
9412         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9413           return;
9414         break;
9415       case LibFunc_nearbyint:
9416       case LibFunc_nearbyintf:
9417       case LibFunc_nearbyintl:
9418         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9419           return;
9420         break;
9421       case LibFunc_ceil:
9422       case LibFunc_ceilf:
9423       case LibFunc_ceill:
9424         if (visitUnaryFloatCall(I, ISD::FCEIL))
9425           return;
9426         break;
9427       case LibFunc_rint:
9428       case LibFunc_rintf:
9429       case LibFunc_rintl:
9430         if (visitUnaryFloatCall(I, ISD::FRINT))
9431           return;
9432         break;
9433       case LibFunc_round:
9434       case LibFunc_roundf:
9435       case LibFunc_roundl:
9436         if (visitUnaryFloatCall(I, ISD::FROUND))
9437           return;
9438         break;
9439       case LibFunc_trunc:
9440       case LibFunc_truncf:
9441       case LibFunc_truncl:
9442         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9443           return;
9444         break;
9445       case LibFunc_log2:
9446       case LibFunc_log2f:
9447       case LibFunc_log2l:
9448         if (visitUnaryFloatCall(I, ISD::FLOG2))
9449           return;
9450         break;
9451       case LibFunc_exp2:
9452       case LibFunc_exp2f:
9453       case LibFunc_exp2l:
9454         if (visitUnaryFloatCall(I, ISD::FEXP2))
9455           return;
9456         break;
9457       case LibFunc_exp10:
9458       case LibFunc_exp10f:
9459       case LibFunc_exp10l:
9460         if (visitUnaryFloatCall(I, ISD::FEXP10))
9461           return;
9462         break;
9463       case LibFunc_ldexp:
9464       case LibFunc_ldexpf:
9465       case LibFunc_ldexpl:
9466         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9467           return;
9468         break;
9469       case LibFunc_memcmp:
9470         if (visitMemCmpBCmpCall(I))
9471           return;
9472         break;
9473       case LibFunc_mempcpy:
9474         if (visitMemPCpyCall(I))
9475           return;
9476         break;
9477       case LibFunc_memchr:
9478         if (visitMemChrCall(I))
9479           return;
9480         break;
9481       case LibFunc_strcpy:
9482         if (visitStrCpyCall(I, false))
9483           return;
9484         break;
9485       case LibFunc_stpcpy:
9486         if (visitStrCpyCall(I, true))
9487           return;
9488         break;
9489       case LibFunc_strcmp:
9490         if (visitStrCmpCall(I))
9491           return;
9492         break;
9493       case LibFunc_strlen:
9494         if (visitStrLenCall(I))
9495           return;
9496         break;
9497       case LibFunc_strnlen:
9498         if (visitStrNLenCall(I))
9499           return;
9500         break;
9501       }
9502     }
9503   }
9504 
9505   if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9506     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9507     return;
9508   }
9509 
9510   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9511   // have to do anything here to lower funclet bundles.
9512   // CFGuardTarget bundles are lowered in LowerCallTo.
9513   assert(!I.hasOperandBundlesOtherThan(
9514              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9515               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9516               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9517               LLVMContext::OB_convergencectrl}) &&
9518          "Cannot lower calls with arbitrary operand bundles!");
9519 
9520   SDValue Callee = getValue(I.getCalledOperand());
9521 
9522   if (I.hasDeoptState())
9523     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9524   else
9525     // Check if we can potentially perform a tail call. More detailed checking
9526     // is be done within LowerCallTo, after more information about the call is
9527     // known.
9528     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9529 }
9530 
9531 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9532     const CallBase &CB, const BasicBlock *EHPadBB) {
9533   auto PAB = CB.getOperandBundle("ptrauth");
9534   const Value *CalleeV = CB.getCalledOperand();
9535 
9536   // Gather the call ptrauth data from the operand bundle:
9537   //   [ i32 <key>, i64 <discriminator> ]
9538   const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9539   const Value *Discriminator = PAB->Inputs[1];
9540 
9541   assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9542   assert(Discriminator->getType()->isIntegerTy(64) &&
9543          "Invalid ptrauth discriminator");
9544 
9545   // Look through ptrauth constants to find the raw callee.
9546   // Do a direct unauthenticated call if we found it and everything matches.
9547   if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9548     if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9549                                          DAG.getDataLayout()))
9550       return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9551                          CB.isMustTailCall(), EHPadBB);
9552 
9553   // Functions should never be ptrauth-called directly.
9554   assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9555 
9556   // Otherwise, do an authenticated indirect call.
9557   TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9558                                      getValue(Discriminator)};
9559 
9560   LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9561               EHPadBB, &PAI);
9562 }
9563 
9564 namespace {
9565 
9566 /// AsmOperandInfo - This contains information for each constraint that we are
9567 /// lowering.
9568 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9569 public:
9570   /// CallOperand - If this is the result output operand or a clobber
9571   /// this is null, otherwise it is the incoming operand to the CallInst.
9572   /// This gets modified as the asm is processed.
9573   SDValue CallOperand;
9574 
9575   /// AssignedRegs - If this is a register or register class operand, this
9576   /// contains the set of register corresponding to the operand.
9577   RegsForValue AssignedRegs;
9578 
9579   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9580     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9581   }
9582 
9583   /// Whether or not this operand accesses memory
9584   bool hasMemory(const TargetLowering &TLI) const {
9585     // Indirect operand accesses access memory.
9586     if (isIndirect)
9587       return true;
9588 
9589     for (const auto &Code : Codes)
9590       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9591         return true;
9592 
9593     return false;
9594   }
9595 };
9596 
9597 
9598 } // end anonymous namespace
9599 
9600 /// Make sure that the output operand \p OpInfo and its corresponding input
9601 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9602 /// out).
9603 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9604                                SDISelAsmOperandInfo &MatchingOpInfo,
9605                                SelectionDAG &DAG) {
9606   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9607     return;
9608 
9609   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9610   const auto &TLI = DAG.getTargetLoweringInfo();
9611 
9612   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9613       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9614                                        OpInfo.ConstraintVT);
9615   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9616       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9617                                        MatchingOpInfo.ConstraintVT);
9618   const bool OutOpIsIntOrFP =
9619       OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9620   const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9621                              MatchingOpInfo.ConstraintVT.isFloatingPoint();
9622   if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9623     // FIXME: error out in a more elegant fashion
9624     report_fatal_error("Unsupported asm: input constraint"
9625                        " with a matching output constraint of"
9626                        " incompatible type!");
9627   }
9628   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9629 }
9630 
9631 /// Get a direct memory input to behave well as an indirect operand.
9632 /// This may introduce stores, hence the need for a \p Chain.
9633 /// \return The (possibly updated) chain.
9634 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9635                                         SDISelAsmOperandInfo &OpInfo,
9636                                         SelectionDAG &DAG) {
9637   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9638 
9639   // If we don't have an indirect input, put it in the constpool if we can,
9640   // otherwise spill it to a stack slot.
9641   // TODO: This isn't quite right. We need to handle these according to
9642   // the addressing mode that the constraint wants. Also, this may take
9643   // an additional register for the computation and we don't want that
9644   // either.
9645 
9646   // If the operand is a float, integer, or vector constant, spill to a
9647   // constant pool entry to get its address.
9648   const Value *OpVal = OpInfo.CallOperandVal;
9649   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9650       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9651     OpInfo.CallOperand = DAG.getConstantPool(
9652         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9653     return Chain;
9654   }
9655 
9656   // Otherwise, create a stack slot and emit a store to it before the asm.
9657   Type *Ty = OpVal->getType();
9658   auto &DL = DAG.getDataLayout();
9659   TypeSize TySize = DL.getTypeAllocSize(Ty);
9660   MachineFunction &MF = DAG.getMachineFunction();
9661   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
9662   int StackID = 0;
9663   if (TySize.isScalable())
9664     StackID = TFI->getStackIDForScalableVectors();
9665   int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9666                                                  DL.getPrefTypeAlign(Ty), false,
9667                                                  nullptr, StackID);
9668   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9669   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9670                             MachinePointerInfo::getFixedStack(MF, SSFI),
9671                             TLI.getMemValueType(DL, Ty));
9672   OpInfo.CallOperand = StackSlot;
9673 
9674   return Chain;
9675 }
9676 
9677 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9678 /// specified operand.  We prefer to assign virtual registers, to allow the
9679 /// register allocator to handle the assignment process.  However, if the asm
9680 /// uses features that we can't model on machineinstrs, we have SDISel do the
9681 /// allocation.  This produces generally horrible, but correct, code.
9682 ///
9683 ///   OpInfo describes the operand
9684 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9685 static std::optional<unsigned>
9686 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9687                      SDISelAsmOperandInfo &OpInfo,
9688                      SDISelAsmOperandInfo &RefOpInfo) {
9689   LLVMContext &Context = *DAG.getContext();
9690   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9691 
9692   MachineFunction &MF = DAG.getMachineFunction();
9693   SmallVector<Register, 4> Regs;
9694   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9695 
9696   // No work to do for memory/address operands.
9697   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9698       OpInfo.ConstraintType == TargetLowering::C_Address)
9699     return std::nullopt;
9700 
9701   // If this is a constraint for a single physreg, or a constraint for a
9702   // register class, find it.
9703   unsigned AssignedReg;
9704   const TargetRegisterClass *RC;
9705   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9706       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9707   // RC is unset only on failure. Return immediately.
9708   if (!RC)
9709     return std::nullopt;
9710 
9711   // Get the actual register value type.  This is important, because the user
9712   // may have asked for (e.g.) the AX register in i32 type.  We need to
9713   // remember that AX is actually i16 to get the right extension.
9714   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9715 
9716   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9717     // If this is an FP operand in an integer register (or visa versa), or more
9718     // generally if the operand value disagrees with the register class we plan
9719     // to stick it in, fix the operand type.
9720     //
9721     // If this is an input value, the bitcast to the new type is done now.
9722     // Bitcast for output value is done at the end of visitInlineAsm().
9723     if ((OpInfo.Type == InlineAsm::isOutput ||
9724          OpInfo.Type == InlineAsm::isInput) &&
9725         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9726       // Try to convert to the first EVT that the reg class contains.  If the
9727       // types are identical size, use a bitcast to convert (e.g. two differing
9728       // vector types).  Note: output bitcast is done at the end of
9729       // visitInlineAsm().
9730       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9731         // Exclude indirect inputs while they are unsupported because the code
9732         // to perform the load is missing and thus OpInfo.CallOperand still
9733         // refers to the input address rather than the pointed-to value.
9734         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9735           OpInfo.CallOperand =
9736               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9737         OpInfo.ConstraintVT = RegVT;
9738         // If the operand is an FP value and we want it in integer registers,
9739         // use the corresponding integer type. This turns an f64 value into
9740         // i64, which can be passed with two i32 values on a 32-bit machine.
9741       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9742         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9743         if (OpInfo.Type == InlineAsm::isInput)
9744           OpInfo.CallOperand =
9745               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9746         OpInfo.ConstraintVT = VT;
9747       }
9748     }
9749   }
9750 
9751   // No need to allocate a matching input constraint since the constraint it's
9752   // matching to has already been allocated.
9753   if (OpInfo.isMatchingInputConstraint())
9754     return std::nullopt;
9755 
9756   EVT ValueVT = OpInfo.ConstraintVT;
9757   if (OpInfo.ConstraintVT == MVT::Other)
9758     ValueVT = RegVT;
9759 
9760   // Initialize NumRegs.
9761   unsigned NumRegs = 1;
9762   if (OpInfo.ConstraintVT != MVT::Other)
9763     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9764 
9765   // If this is a constraint for a specific physical register, like {r17},
9766   // assign it now.
9767 
9768   // If this associated to a specific register, initialize iterator to correct
9769   // place. If virtual, make sure we have enough registers
9770 
9771   // Initialize iterator if necessary
9772   TargetRegisterClass::iterator I = RC->begin();
9773   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9774 
9775   // Do not check for single registers.
9776   if (AssignedReg) {
9777     I = std::find(I, RC->end(), AssignedReg);
9778     if (I == RC->end()) {
9779       // RC does not contain the selected register, which indicates a
9780       // mismatch between the register and the required type/bitwidth.
9781       return {AssignedReg};
9782     }
9783   }
9784 
9785   for (; NumRegs; --NumRegs, ++I) {
9786     assert(I != RC->end() && "Ran out of registers to allocate!");
9787     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9788     Regs.push_back(R);
9789   }
9790 
9791   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9792   return std::nullopt;
9793 }
9794 
9795 static unsigned
9796 findMatchingInlineAsmOperand(unsigned OperandNo,
9797                              const std::vector<SDValue> &AsmNodeOperands) {
9798   // Scan until we find the definition we already emitted of this operand.
9799   unsigned CurOp = InlineAsm::Op_FirstOperand;
9800   for (; OperandNo; --OperandNo) {
9801     // Advance to the next operand.
9802     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9803     const InlineAsm::Flag F(OpFlag);
9804     assert(
9805         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9806         "Skipped past definitions?");
9807     CurOp += F.getNumOperandRegisters() + 1;
9808   }
9809   return CurOp;
9810 }
9811 
9812 namespace {
9813 
9814 class ExtraFlags {
9815   unsigned Flags = 0;
9816 
9817 public:
9818   explicit ExtraFlags(const CallBase &Call) {
9819     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9820     if (IA->hasSideEffects())
9821       Flags |= InlineAsm::Extra_HasSideEffects;
9822     if (IA->isAlignStack())
9823       Flags |= InlineAsm::Extra_IsAlignStack;
9824     if (Call.isConvergent())
9825       Flags |= InlineAsm::Extra_IsConvergent;
9826     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9827   }
9828 
9829   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9830     // Ideally, we would only check against memory constraints.  However, the
9831     // meaning of an Other constraint can be target-specific and we can't easily
9832     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9833     // for Other constraints as well.
9834     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9835         OpInfo.ConstraintType == TargetLowering::C_Other) {
9836       if (OpInfo.Type == InlineAsm::isInput)
9837         Flags |= InlineAsm::Extra_MayLoad;
9838       else if (OpInfo.Type == InlineAsm::isOutput)
9839         Flags |= InlineAsm::Extra_MayStore;
9840       else if (OpInfo.Type == InlineAsm::isClobber)
9841         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9842     }
9843   }
9844 
9845   unsigned get() const { return Flags; }
9846 };
9847 
9848 } // end anonymous namespace
9849 
9850 static bool isFunction(SDValue Op) {
9851   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9852     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9853       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9854 
9855       // In normal "call dllimport func" instruction (non-inlineasm) it force
9856       // indirect access by specifing call opcode. And usually specially print
9857       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9858       // not do in this way now. (In fact, this is similar with "Data Access"
9859       // action). So here we ignore dllimport function.
9860       if (Fn && !Fn->hasDLLImportStorageClass())
9861         return true;
9862     }
9863   }
9864   return false;
9865 }
9866 
9867 /// visitInlineAsm - Handle a call to an InlineAsm object.
9868 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9869                                          const BasicBlock *EHPadBB) {
9870   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9871 
9872   /// ConstraintOperands - Information about all of the constraints.
9873   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9874 
9875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9876   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9877       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9878 
9879   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9880   // AsmDialect, MayLoad, MayStore).
9881   bool HasSideEffect = IA->hasSideEffects();
9882   ExtraFlags ExtraInfo(Call);
9883 
9884   for (auto &T : TargetConstraints) {
9885     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9886     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9887 
9888     if (OpInfo.CallOperandVal)
9889       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9890 
9891     if (!HasSideEffect)
9892       HasSideEffect = OpInfo.hasMemory(TLI);
9893 
9894     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9895     // FIXME: Could we compute this on OpInfo rather than T?
9896 
9897     // Compute the constraint code and ConstraintType to use.
9898     TLI.ComputeConstraintToUse(T, SDValue());
9899 
9900     if (T.ConstraintType == TargetLowering::C_Immediate &&
9901         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9902       // We've delayed emitting a diagnostic like the "n" constraint because
9903       // inlining could cause an integer showing up.
9904       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9905                                           "' expects an integer constant "
9906                                           "expression");
9907 
9908     ExtraInfo.update(T);
9909   }
9910 
9911   // We won't need to flush pending loads if this asm doesn't touch
9912   // memory and is nonvolatile.
9913   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9914 
9915   bool EmitEHLabels = isa<InvokeInst>(Call);
9916   if (EmitEHLabels) {
9917     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9918   }
9919   bool IsCallBr = isa<CallBrInst>(Call);
9920 
9921   if (IsCallBr || EmitEHLabels) {
9922     // If this is a callbr or invoke we need to flush pending exports since
9923     // inlineasm_br and invoke are terminators.
9924     // We need to do this before nodes are glued to the inlineasm_br node.
9925     Chain = getControlRoot();
9926   }
9927 
9928   MCSymbol *BeginLabel = nullptr;
9929   if (EmitEHLabels) {
9930     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9931   }
9932 
9933   int OpNo = -1;
9934   SmallVector<StringRef> AsmStrs;
9935   IA->collectAsmStrs(AsmStrs);
9936 
9937   // Second pass over the constraints: compute which constraint option to use.
9938   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9939     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9940       OpNo++;
9941 
9942     // If this is an output operand with a matching input operand, look up the
9943     // matching input. If their types mismatch, e.g. one is an integer, the
9944     // other is floating point, or their sizes are different, flag it as an
9945     // error.
9946     if (OpInfo.hasMatchingInput()) {
9947       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9948       patchMatchingInput(OpInfo, Input, DAG);
9949     }
9950 
9951     // Compute the constraint code and ConstraintType to use.
9952     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9953 
9954     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9955          OpInfo.Type == InlineAsm::isClobber) ||
9956         OpInfo.ConstraintType == TargetLowering::C_Address)
9957       continue;
9958 
9959     // In Linux PIC model, there are 4 cases about value/label addressing:
9960     //
9961     // 1: Function call or Label jmp inside the module.
9962     // 2: Data access (such as global variable, static variable) inside module.
9963     // 3: Function call or Label jmp outside the module.
9964     // 4: Data access (such as global variable) outside the module.
9965     //
9966     // Due to current llvm inline asm architecture designed to not "recognize"
9967     // the asm code, there are quite troubles for us to treat mem addressing
9968     // differently for same value/adress used in different instuctions.
9969     // For example, in pic model, call a func may in plt way or direclty
9970     // pc-related, but lea/mov a function adress may use got.
9971     //
9972     // Here we try to "recognize" function call for the case 1 and case 3 in
9973     // inline asm. And try to adjust the constraint for them.
9974     //
9975     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9976     // label, so here we don't handle jmp function label now, but we need to
9977     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9978     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9979         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9980         TM.getCodeModel() != CodeModel::Large) {
9981       OpInfo.isIndirect = false;
9982       OpInfo.ConstraintType = TargetLowering::C_Address;
9983     }
9984 
9985     // If this is a memory input, and if the operand is not indirect, do what we
9986     // need to provide an address for the memory input.
9987     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9988         !OpInfo.isIndirect) {
9989       assert((OpInfo.isMultipleAlternative ||
9990               (OpInfo.Type == InlineAsm::isInput)) &&
9991              "Can only indirectify direct input operands!");
9992 
9993       // Memory operands really want the address of the value.
9994       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9995 
9996       // There is no longer a Value* corresponding to this operand.
9997       OpInfo.CallOperandVal = nullptr;
9998 
9999       // It is now an indirect operand.
10000       OpInfo.isIndirect = true;
10001     }
10002 
10003   }
10004 
10005   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
10006   std::vector<SDValue> AsmNodeOperands;
10007   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
10008   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
10009       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
10010 
10011   // If we have a !srcloc metadata node associated with it, we want to attach
10012   // this to the ultimately generated inline asm machineinstr.  To do this, we
10013   // pass in the third operand as this (potentially null) inline asm MDNode.
10014   const MDNode *SrcLoc = Call.getMetadata("srcloc");
10015   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
10016 
10017   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
10018   // bits as operand 3.
10019   AsmNodeOperands.push_back(DAG.getTargetConstant(
10020       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10021 
10022   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
10023   // this, assign virtual and physical registers for inputs and otput.
10024   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10025     // Assign Registers.
10026     SDISelAsmOperandInfo &RefOpInfo =
10027         OpInfo.isMatchingInputConstraint()
10028             ? ConstraintOperands[OpInfo.getMatchedOperand()]
10029             : OpInfo;
10030     const auto RegError =
10031         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
10032     if (RegError) {
10033       const MachineFunction &MF = DAG.getMachineFunction();
10034       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10035       const char *RegName = TRI.getName(*RegError);
10036       emitInlineAsmError(Call, "register '" + Twine(RegName) +
10037                                    "' allocated for constraint '" +
10038                                    Twine(OpInfo.ConstraintCode) +
10039                                    "' does not match required type");
10040       return;
10041     }
10042 
10043     auto DetectWriteToReservedRegister = [&]() {
10044       const MachineFunction &MF = DAG.getMachineFunction();
10045       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10046       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
10047         if (Register::isPhysicalRegister(Reg) &&
10048             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
10049           const char *RegName = TRI.getName(Reg);
10050           emitInlineAsmError(Call, "write to reserved register '" +
10051                                        Twine(RegName) + "'");
10052           return true;
10053         }
10054       }
10055       return false;
10056     };
10057     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
10058             (OpInfo.Type == InlineAsm::isInput &&
10059              !OpInfo.isMatchingInputConstraint())) &&
10060            "Only address as input operand is allowed.");
10061 
10062     switch (OpInfo.Type) {
10063     case InlineAsm::isOutput:
10064       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10065         const InlineAsm::ConstraintCode ConstraintID =
10066             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10067         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10068                "Failed to convert memory constraint code to constraint id.");
10069 
10070         // Add information to the INLINEASM node to know about this output.
10071         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10072         OpFlags.setMemConstraint(ConstraintID);
10073         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10074                                                         MVT::i32));
10075         AsmNodeOperands.push_back(OpInfo.CallOperand);
10076       } else {
10077         // Otherwise, this outputs to a register (directly for C_Register /
10078         // C_RegisterClass, and a target-defined fashion for
10079         // C_Immediate/C_Other). Find a register that we can use.
10080         if (OpInfo.AssignedRegs.Regs.empty()) {
10081           emitInlineAsmError(
10082               Call, "couldn't allocate output register for constraint '" +
10083                         Twine(OpInfo.ConstraintCode) + "'");
10084           return;
10085         }
10086 
10087         if (DetectWriteToReservedRegister())
10088           return;
10089 
10090         // Add information to the INLINEASM node to know that this register is
10091         // set.
10092         OpInfo.AssignedRegs.AddInlineAsmOperands(
10093             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10094                                   : InlineAsm::Kind::RegDef,
10095             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10096       }
10097       break;
10098 
10099     case InlineAsm::isInput:
10100     case InlineAsm::isLabel: {
10101       SDValue InOperandVal = OpInfo.CallOperand;
10102 
10103       if (OpInfo.isMatchingInputConstraint()) {
10104         // If this is required to match an output register we have already set,
10105         // just use its register.
10106         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10107                                                   AsmNodeOperands);
10108         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10109         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10110           if (OpInfo.isIndirect) {
10111             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10112             emitInlineAsmError(Call, "inline asm not supported yet: "
10113                                      "don't know how to handle tied "
10114                                      "indirect register inputs");
10115             return;
10116           }
10117 
10118           SmallVector<Register, 4> Regs;
10119           MachineFunction &MF = DAG.getMachineFunction();
10120           MachineRegisterInfo &MRI = MF.getRegInfo();
10121           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10122           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10123           Register TiedReg = R->getReg();
10124           MVT RegVT = R->getSimpleValueType(0);
10125           const TargetRegisterClass *RC =
10126               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
10127               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10128                                       : TRI.getMinimalPhysRegClass(TiedReg);
10129           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10130             Regs.push_back(MRI.createVirtualRegister(RC));
10131 
10132           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10133 
10134           SDLoc dl = getCurSDLoc();
10135           // Use the produced MatchedRegs object to
10136           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10137           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10138                                            OpInfo.getMatchedOperand(), dl, DAG,
10139                                            AsmNodeOperands);
10140           break;
10141         }
10142 
10143         assert(Flag.isMemKind() && "Unknown matching constraint!");
10144         assert(Flag.getNumOperandRegisters() == 1 &&
10145                "Unexpected number of operands");
10146         // Add information to the INLINEASM node to know about this input.
10147         // See InlineAsm.h isUseOperandTiedToDef.
10148         Flag.clearMemConstraint();
10149         Flag.setMatchingOp(OpInfo.getMatchedOperand());
10150         AsmNodeOperands.push_back(DAG.getTargetConstant(
10151             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10152         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10153         break;
10154       }
10155 
10156       // Treat indirect 'X' constraint as memory.
10157       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10158           OpInfo.isIndirect)
10159         OpInfo.ConstraintType = TargetLowering::C_Memory;
10160 
10161       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10162           OpInfo.ConstraintType == TargetLowering::C_Other) {
10163         std::vector<SDValue> Ops;
10164         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10165                                           Ops, DAG);
10166         if (Ops.empty()) {
10167           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10168             if (isa<ConstantSDNode>(InOperandVal)) {
10169               emitInlineAsmError(Call, "value out of range for constraint '" +
10170                                            Twine(OpInfo.ConstraintCode) + "'");
10171               return;
10172             }
10173 
10174           emitInlineAsmError(Call,
10175                              "invalid operand for inline asm constraint '" +
10176                                  Twine(OpInfo.ConstraintCode) + "'");
10177           return;
10178         }
10179 
10180         // Add information to the INLINEASM node to know about this input.
10181         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10182         AsmNodeOperands.push_back(DAG.getTargetConstant(
10183             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10184         llvm::append_range(AsmNodeOperands, Ops);
10185         break;
10186       }
10187 
10188       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10189         assert((OpInfo.isIndirect ||
10190                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10191                "Operand must be indirect to be a mem!");
10192         assert(InOperandVal.getValueType() ==
10193                    TLI.getPointerTy(DAG.getDataLayout()) &&
10194                "Memory operands expect pointer values");
10195 
10196         const InlineAsm::ConstraintCode ConstraintID =
10197             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10198         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10199                "Failed to convert memory constraint code to constraint id.");
10200 
10201         // Add information to the INLINEASM node to know about this input.
10202         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10203         ResOpType.setMemConstraint(ConstraintID);
10204         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10205                                                         getCurSDLoc(),
10206                                                         MVT::i32));
10207         AsmNodeOperands.push_back(InOperandVal);
10208         break;
10209       }
10210 
10211       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10212         const InlineAsm::ConstraintCode ConstraintID =
10213             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10214         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10215                "Failed to convert memory constraint code to constraint id.");
10216 
10217         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10218 
10219         SDValue AsmOp = InOperandVal;
10220         if (isFunction(InOperandVal)) {
10221           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10222           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10223           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10224                                              InOperandVal.getValueType(),
10225                                              GA->getOffset());
10226         }
10227 
10228         // Add information to the INLINEASM node to know about this input.
10229         ResOpType.setMemConstraint(ConstraintID);
10230 
10231         AsmNodeOperands.push_back(
10232             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10233 
10234         AsmNodeOperands.push_back(AsmOp);
10235         break;
10236       }
10237 
10238       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10239           OpInfo.ConstraintType != TargetLowering::C_Register) {
10240         emitInlineAsmError(Call, "unknown asm constraint '" +
10241                                      Twine(OpInfo.ConstraintCode) + "'");
10242         return;
10243       }
10244 
10245       // TODO: Support this.
10246       if (OpInfo.isIndirect) {
10247         emitInlineAsmError(
10248             Call, "Don't know how to handle indirect register inputs yet "
10249                   "for constraint '" +
10250                       Twine(OpInfo.ConstraintCode) + "'");
10251         return;
10252       }
10253 
10254       // Copy the input into the appropriate registers.
10255       if (OpInfo.AssignedRegs.Regs.empty()) {
10256         emitInlineAsmError(Call,
10257                            "couldn't allocate input reg for constraint '" +
10258                                Twine(OpInfo.ConstraintCode) + "'");
10259         return;
10260       }
10261 
10262       if (DetectWriteToReservedRegister())
10263         return;
10264 
10265       SDLoc dl = getCurSDLoc();
10266 
10267       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10268                                         &Call);
10269 
10270       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10271                                                0, dl, DAG, AsmNodeOperands);
10272       break;
10273     }
10274     case InlineAsm::isClobber:
10275       // Add the clobbered value to the operand list, so that the register
10276       // allocator is aware that the physreg got clobbered.
10277       if (!OpInfo.AssignedRegs.Regs.empty())
10278         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10279                                                  false, 0, getCurSDLoc(), DAG,
10280                                                  AsmNodeOperands);
10281       break;
10282     }
10283   }
10284 
10285   // Finish up input operands.  Set the input chain and add the flag last.
10286   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10287   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10288 
10289   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10290   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10291                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10292   Glue = Chain.getValue(1);
10293 
10294   // Do additional work to generate outputs.
10295 
10296   SmallVector<EVT, 1> ResultVTs;
10297   SmallVector<SDValue, 1> ResultValues;
10298   SmallVector<SDValue, 8> OutChains;
10299 
10300   llvm::Type *CallResultType = Call.getType();
10301   ArrayRef<Type *> ResultTypes;
10302   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10303     ResultTypes = StructResult->elements();
10304   else if (!CallResultType->isVoidTy())
10305     ResultTypes = ArrayRef(CallResultType);
10306 
10307   auto CurResultType = ResultTypes.begin();
10308   auto handleRegAssign = [&](SDValue V) {
10309     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10310     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10311     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10312     ++CurResultType;
10313     // If the type of the inline asm call site return value is different but has
10314     // same size as the type of the asm output bitcast it.  One example of this
10315     // is for vectors with different width / number of elements.  This can
10316     // happen for register classes that can contain multiple different value
10317     // types.  The preg or vreg allocated may not have the same VT as was
10318     // expected.
10319     //
10320     // This can also happen for a return value that disagrees with the register
10321     // class it is put in, eg. a double in a general-purpose register on a
10322     // 32-bit machine.
10323     if (ResultVT != V.getValueType() &&
10324         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10325       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10326     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10327              V.getValueType().isInteger()) {
10328       // If a result value was tied to an input value, the computed result
10329       // may have a wider width than the expected result.  Extract the
10330       // relevant portion.
10331       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10332     }
10333     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10334     ResultVTs.push_back(ResultVT);
10335     ResultValues.push_back(V);
10336   };
10337 
10338   // Deal with output operands.
10339   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10340     if (OpInfo.Type == InlineAsm::isOutput) {
10341       SDValue Val;
10342       // Skip trivial output operands.
10343       if (OpInfo.AssignedRegs.Regs.empty())
10344         continue;
10345 
10346       switch (OpInfo.ConstraintType) {
10347       case TargetLowering::C_Register:
10348       case TargetLowering::C_RegisterClass:
10349         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10350                                                   Chain, &Glue, &Call);
10351         break;
10352       case TargetLowering::C_Immediate:
10353       case TargetLowering::C_Other:
10354         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10355                                               OpInfo, DAG);
10356         break;
10357       case TargetLowering::C_Memory:
10358         break; // Already handled.
10359       case TargetLowering::C_Address:
10360         break; // Silence warning.
10361       case TargetLowering::C_Unknown:
10362         assert(false && "Unexpected unknown constraint");
10363       }
10364 
10365       // Indirect output manifest as stores. Record output chains.
10366       if (OpInfo.isIndirect) {
10367         const Value *Ptr = OpInfo.CallOperandVal;
10368         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10369         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10370                                      MachinePointerInfo(Ptr));
10371         OutChains.push_back(Store);
10372       } else {
10373         // generate CopyFromRegs to associated registers.
10374         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10375         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10376           for (const SDValue &V : Val->op_values())
10377             handleRegAssign(V);
10378         } else
10379           handleRegAssign(Val);
10380       }
10381     }
10382   }
10383 
10384   // Set results.
10385   if (!ResultValues.empty()) {
10386     assert(CurResultType == ResultTypes.end() &&
10387            "Mismatch in number of ResultTypes");
10388     assert(ResultValues.size() == ResultTypes.size() &&
10389            "Mismatch in number of output operands in asm result");
10390 
10391     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10392                             DAG.getVTList(ResultVTs), ResultValues);
10393     setValue(&Call, V);
10394   }
10395 
10396   // Collect store chains.
10397   if (!OutChains.empty())
10398     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10399 
10400   if (EmitEHLabels) {
10401     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10402   }
10403 
10404   // Only Update Root if inline assembly has a memory effect.
10405   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10406       EmitEHLabels)
10407     DAG.setRoot(Chain);
10408 }
10409 
10410 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10411                                              const Twine &Message) {
10412   LLVMContext &Ctx = *DAG.getContext();
10413   Ctx.emitError(&Call, Message);
10414 
10415   // Make sure we leave the DAG in a valid state
10416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10417   SmallVector<EVT, 1> ValueVTs;
10418   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10419 
10420   if (ValueVTs.empty())
10421     return;
10422 
10423   SmallVector<SDValue, 1> Ops;
10424   for (const EVT &VT : ValueVTs)
10425     Ops.push_back(DAG.getUNDEF(VT));
10426 
10427   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10428 }
10429 
10430 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10431   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10432                           MVT::Other, getRoot(),
10433                           getValue(I.getArgOperand(0)),
10434                           DAG.getSrcValue(I.getArgOperand(0))));
10435 }
10436 
10437 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10439   const DataLayout &DL = DAG.getDataLayout();
10440   SDValue V = DAG.getVAArg(
10441       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10442       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10443       DL.getABITypeAlign(I.getType()).value());
10444   DAG.setRoot(V.getValue(1));
10445 
10446   if (I.getType()->isPointerTy())
10447     V = DAG.getPtrExtOrTrunc(
10448         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10449   setValue(&I, V);
10450 }
10451 
10452 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10453   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10454                           MVT::Other, getRoot(),
10455                           getValue(I.getArgOperand(0)),
10456                           DAG.getSrcValue(I.getArgOperand(0))));
10457 }
10458 
10459 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10460   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10461                           MVT::Other, getRoot(),
10462                           getValue(I.getArgOperand(0)),
10463                           getValue(I.getArgOperand(1)),
10464                           DAG.getSrcValue(I.getArgOperand(0)),
10465                           DAG.getSrcValue(I.getArgOperand(1))));
10466 }
10467 
10468 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10469                                                     const Instruction &I,
10470                                                     SDValue Op) {
10471   std::optional<ConstantRange> CR = getRange(I);
10472 
10473   if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10474     return Op;
10475 
10476   APInt Lo = CR->getUnsignedMin();
10477   if (!Lo.isMinValue())
10478     return Op;
10479 
10480   APInt Hi = CR->getUnsignedMax();
10481   unsigned Bits = std::max(Hi.getActiveBits(),
10482                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10483 
10484   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10485 
10486   SDLoc SL = getCurSDLoc();
10487 
10488   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10489                              DAG.getValueType(SmallVT));
10490   unsigned NumVals = Op.getNode()->getNumValues();
10491   if (NumVals == 1)
10492     return ZExt;
10493 
10494   SmallVector<SDValue, 4> Ops;
10495 
10496   Ops.push_back(ZExt);
10497   for (unsigned I = 1; I != NumVals; ++I)
10498     Ops.push_back(Op.getValue(I));
10499 
10500   return DAG.getMergeValues(Ops, SL);
10501 }
10502 
10503 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10504 /// the call being lowered.
10505 ///
10506 /// This is a helper for lowering intrinsics that follow a target calling
10507 /// convention or require stack pointer adjustment. Only a subset of the
10508 /// intrinsic's operands need to participate in the calling convention.
10509 void SelectionDAGBuilder::populateCallLoweringInfo(
10510     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10511     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10512     AttributeSet RetAttrs, bool IsPatchPoint) {
10513   TargetLowering::ArgListTy Args;
10514   Args.reserve(NumArgs);
10515 
10516   // Populate the argument list.
10517   // Attributes for args start at offset 1, after the return attribute.
10518   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10519        ArgI != ArgE; ++ArgI) {
10520     const Value *V = Call->getOperand(ArgI);
10521 
10522     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10523 
10524     TargetLowering::ArgListEntry Entry;
10525     Entry.Node = getValue(V);
10526     Entry.Ty = V->getType();
10527     Entry.setAttributes(Call, ArgI);
10528     Args.push_back(Entry);
10529   }
10530 
10531   CLI.setDebugLoc(getCurSDLoc())
10532       .setChain(getRoot())
10533       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10534                  RetAttrs)
10535       .setDiscardResult(Call->use_empty())
10536       .setIsPatchPoint(IsPatchPoint)
10537       .setIsPreallocated(
10538           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10539 }
10540 
10541 /// Add a stack map intrinsic call's live variable operands to a stackmap
10542 /// or patchpoint target node's operand list.
10543 ///
10544 /// Constants are converted to TargetConstants purely as an optimization to
10545 /// avoid constant materialization and register allocation.
10546 ///
10547 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10548 /// generate addess computation nodes, and so FinalizeISel can convert the
10549 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10550 /// address materialization and register allocation, but may also be required
10551 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10552 /// alloca in the entry block, then the runtime may assume that the alloca's
10553 /// StackMap location can be read immediately after compilation and that the
10554 /// location is valid at any point during execution (this is similar to the
10555 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10556 /// only available in a register, then the runtime would need to trap when
10557 /// execution reaches the StackMap in order to read the alloca's location.
10558 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10559                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10560                                 SelectionDAGBuilder &Builder) {
10561   SelectionDAG &DAG = Builder.DAG;
10562   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10563     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10564 
10565     // Things on the stack are pointer-typed, meaning that they are already
10566     // legal and can be emitted directly to target nodes.
10567     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10568       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10569     } else {
10570       // Otherwise emit a target independent node to be legalised.
10571       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10572     }
10573   }
10574 }
10575 
10576 /// Lower llvm.experimental.stackmap.
10577 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10578   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10579   //                                  [live variables...])
10580 
10581   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10582 
10583   SDValue Chain, InGlue, Callee;
10584   SmallVector<SDValue, 32> Ops;
10585 
10586   SDLoc DL = getCurSDLoc();
10587   Callee = getValue(CI.getCalledOperand());
10588 
10589   // The stackmap intrinsic only records the live variables (the arguments
10590   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10591   // intrinsic, this won't be lowered to a function call. This means we don't
10592   // have to worry about calling conventions and target specific lowering code.
10593   // Instead we perform the call lowering right here.
10594   //
10595   // chain, flag = CALLSEQ_START(chain, 0, 0)
10596   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10597   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10598   //
10599   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10600   InGlue = Chain.getValue(1);
10601 
10602   // Add the STACKMAP operands, starting with DAG house-keeping.
10603   Ops.push_back(Chain);
10604   Ops.push_back(InGlue);
10605 
10606   // Add the <id>, <numShadowBytes> operands.
10607   //
10608   // These do not require legalisation, and can be emitted directly to target
10609   // constant nodes.
10610   SDValue ID = getValue(CI.getArgOperand(0));
10611   assert(ID.getValueType() == MVT::i64);
10612   SDValue IDConst =
10613       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10614   Ops.push_back(IDConst);
10615 
10616   SDValue Shad = getValue(CI.getArgOperand(1));
10617   assert(Shad.getValueType() == MVT::i32);
10618   SDValue ShadConst =
10619       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10620   Ops.push_back(ShadConst);
10621 
10622   // Add the live variables.
10623   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10624 
10625   // Create the STACKMAP node.
10626   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10627   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10628   InGlue = Chain.getValue(1);
10629 
10630   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10631 
10632   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10633 
10634   // Set the root to the target-lowered call chain.
10635   DAG.setRoot(Chain);
10636 
10637   // Inform the Frame Information that we have a stackmap in this function.
10638   FuncInfo.MF->getFrameInfo().setHasStackMap();
10639 }
10640 
10641 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10642 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10643                                           const BasicBlock *EHPadBB) {
10644   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10645   //                                         i32 <numBytes>,
10646   //                                         i8* <target>,
10647   //                                         i32 <numArgs>,
10648   //                                         [Args...],
10649   //                                         [live variables...])
10650 
10651   CallingConv::ID CC = CB.getCallingConv();
10652   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10653   bool HasDef = !CB.getType()->isVoidTy();
10654   SDLoc dl = getCurSDLoc();
10655   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10656 
10657   // Handle immediate and symbolic callees.
10658   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10659     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10660                                    /*isTarget=*/true);
10661   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10662     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10663                                          SDLoc(SymbolicCallee),
10664                                          SymbolicCallee->getValueType(0));
10665 
10666   // Get the real number of arguments participating in the call <numArgs>
10667   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10668   unsigned NumArgs = NArgVal->getAsZExtVal();
10669 
10670   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10671   // Intrinsics include all meta-operands up to but not including CC.
10672   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10673   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10674          "Not enough arguments provided to the patchpoint intrinsic");
10675 
10676   // For AnyRegCC the arguments are lowered later on manually.
10677   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10678   Type *ReturnTy =
10679       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10680 
10681   TargetLowering::CallLoweringInfo CLI(DAG);
10682   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10683                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10684   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10685 
10686   SDNode *CallEnd = Result.second.getNode();
10687   if (CallEnd->getOpcode() == ISD::EH_LABEL)
10688     CallEnd = CallEnd->getOperand(0).getNode();
10689   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10690     CallEnd = CallEnd->getOperand(0).getNode();
10691 
10692   /// Get a call instruction from the call sequence chain.
10693   /// Tail calls are not allowed.
10694   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10695          "Expected a callseq node.");
10696   SDNode *Call = CallEnd->getOperand(0).getNode();
10697   bool HasGlue = Call->getGluedNode();
10698 
10699   // Replace the target specific call node with the patchable intrinsic.
10700   SmallVector<SDValue, 8> Ops;
10701 
10702   // Push the chain.
10703   Ops.push_back(*(Call->op_begin()));
10704 
10705   // Optionally, push the glue (if any).
10706   if (HasGlue)
10707     Ops.push_back(*(Call->op_end() - 1));
10708 
10709   // Push the register mask info.
10710   if (HasGlue)
10711     Ops.push_back(*(Call->op_end() - 2));
10712   else
10713     Ops.push_back(*(Call->op_end() - 1));
10714 
10715   // Add the <id> and <numBytes> constants.
10716   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10717   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10718   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10719   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10720 
10721   // Add the callee.
10722   Ops.push_back(Callee);
10723 
10724   // Adjust <numArgs> to account for any arguments that have been passed on the
10725   // stack instead.
10726   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10727   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10728   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10729   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10730 
10731   // Add the calling convention
10732   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10733 
10734   // Add the arguments we omitted previously. The register allocator should
10735   // place these in any free register.
10736   if (IsAnyRegCC)
10737     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10738       Ops.push_back(getValue(CB.getArgOperand(i)));
10739 
10740   // Push the arguments from the call instruction.
10741   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10742   Ops.append(Call->op_begin() + 2, e);
10743 
10744   // Push live variables for the stack map.
10745   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10746 
10747   SDVTList NodeTys;
10748   if (IsAnyRegCC && HasDef) {
10749     // Create the return types based on the intrinsic definition
10750     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10751     SmallVector<EVT, 3> ValueVTs;
10752     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10753     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10754 
10755     // There is always a chain and a glue type at the end
10756     ValueVTs.push_back(MVT::Other);
10757     ValueVTs.push_back(MVT::Glue);
10758     NodeTys = DAG.getVTList(ValueVTs);
10759   } else
10760     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10761 
10762   // Replace the target specific call node with a PATCHPOINT node.
10763   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10764 
10765   // Update the NodeMap.
10766   if (HasDef) {
10767     if (IsAnyRegCC)
10768       setValue(&CB, SDValue(PPV.getNode(), 0));
10769     else
10770       setValue(&CB, Result.first);
10771   }
10772 
10773   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10774   // call sequence. Furthermore the location of the chain and glue can change
10775   // when the AnyReg calling convention is used and the intrinsic returns a
10776   // value.
10777   if (IsAnyRegCC && HasDef) {
10778     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10779     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10780     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10781   } else
10782     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10783   DAG.DeleteNode(Call);
10784 
10785   // Inform the Frame Information that we have a patchpoint in this function.
10786   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10787 }
10788 
10789 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10790                                             unsigned Intrinsic) {
10791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10792   SDValue Op1 = getValue(I.getArgOperand(0));
10793   SDValue Op2;
10794   if (I.arg_size() > 1)
10795     Op2 = getValue(I.getArgOperand(1));
10796   SDLoc dl = getCurSDLoc();
10797   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10798   SDValue Res;
10799   SDNodeFlags SDFlags;
10800   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10801     SDFlags.copyFMF(*FPMO);
10802 
10803   switch (Intrinsic) {
10804   case Intrinsic::vector_reduce_fadd:
10805     if (SDFlags.hasAllowReassociation())
10806       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10807                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10808                         SDFlags);
10809     else
10810       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10811     break;
10812   case Intrinsic::vector_reduce_fmul:
10813     if (SDFlags.hasAllowReassociation())
10814       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10815                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10816                         SDFlags);
10817     else
10818       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10819     break;
10820   case Intrinsic::vector_reduce_add:
10821     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10822     break;
10823   case Intrinsic::vector_reduce_mul:
10824     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10825     break;
10826   case Intrinsic::vector_reduce_and:
10827     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10828     break;
10829   case Intrinsic::vector_reduce_or:
10830     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10831     break;
10832   case Intrinsic::vector_reduce_xor:
10833     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10834     break;
10835   case Intrinsic::vector_reduce_smax:
10836     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10837     break;
10838   case Intrinsic::vector_reduce_smin:
10839     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10840     break;
10841   case Intrinsic::vector_reduce_umax:
10842     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10843     break;
10844   case Intrinsic::vector_reduce_umin:
10845     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10846     break;
10847   case Intrinsic::vector_reduce_fmax:
10848     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10849     break;
10850   case Intrinsic::vector_reduce_fmin:
10851     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10852     break;
10853   case Intrinsic::vector_reduce_fmaximum:
10854     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10855     break;
10856   case Intrinsic::vector_reduce_fminimum:
10857     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10858     break;
10859   default:
10860     llvm_unreachable("Unhandled vector reduce intrinsic");
10861   }
10862   setValue(&I, Res);
10863 }
10864 
10865 /// Returns an AttributeList representing the attributes applied to the return
10866 /// value of the given call.
10867 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10868   SmallVector<Attribute::AttrKind, 2> Attrs;
10869   if (CLI.RetSExt)
10870     Attrs.push_back(Attribute::SExt);
10871   if (CLI.RetZExt)
10872     Attrs.push_back(Attribute::ZExt);
10873   if (CLI.IsInReg)
10874     Attrs.push_back(Attribute::InReg);
10875 
10876   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10877                             Attrs);
10878 }
10879 
10880 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10881 /// implementation, which just calls LowerCall.
10882 /// FIXME: When all targets are
10883 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10884 std::pair<SDValue, SDValue>
10885 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10886   // Handle the incoming return values from the call.
10887   CLI.Ins.clear();
10888   Type *OrigRetTy = CLI.RetTy;
10889   SmallVector<EVT, 4> RetTys;
10890   SmallVector<TypeSize, 4> Offsets;
10891   auto &DL = CLI.DAG.getDataLayout();
10892   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10893 
10894   if (CLI.IsPostTypeLegalization) {
10895     // If we are lowering a libcall after legalization, split the return type.
10896     SmallVector<EVT, 4> OldRetTys;
10897     SmallVector<TypeSize, 4> OldOffsets;
10898     RetTys.swap(OldRetTys);
10899     Offsets.swap(OldOffsets);
10900 
10901     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10902       EVT RetVT = OldRetTys[i];
10903       uint64_t Offset = OldOffsets[i];
10904       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10905       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10906       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10907       RetTys.append(NumRegs, RegisterVT);
10908       for (unsigned j = 0; j != NumRegs; ++j)
10909         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10910     }
10911   }
10912 
10913   SmallVector<ISD::OutputArg, 4> Outs;
10914   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10915 
10916   bool CanLowerReturn =
10917       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10918                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10919 
10920   SDValue DemoteStackSlot;
10921   int DemoteStackIdx = -100;
10922   if (!CanLowerReturn) {
10923     // FIXME: equivalent assert?
10924     // assert(!CS.hasInAllocaArgument() &&
10925     //        "sret demotion is incompatible with inalloca");
10926     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10927     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10928     MachineFunction &MF = CLI.DAG.getMachineFunction();
10929     DemoteStackIdx =
10930         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10931     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10932                                               DL.getAllocaAddrSpace());
10933 
10934     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10935     ArgListEntry Entry;
10936     Entry.Node = DemoteStackSlot;
10937     Entry.Ty = StackSlotPtrType;
10938     Entry.IsSExt = false;
10939     Entry.IsZExt = false;
10940     Entry.IsInReg = false;
10941     Entry.IsSRet = true;
10942     Entry.IsNest = false;
10943     Entry.IsByVal = false;
10944     Entry.IsByRef = false;
10945     Entry.IsReturned = false;
10946     Entry.IsSwiftSelf = false;
10947     Entry.IsSwiftAsync = false;
10948     Entry.IsSwiftError = false;
10949     Entry.IsCFGuardTarget = false;
10950     Entry.Alignment = Alignment;
10951     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10952     CLI.NumFixedArgs += 1;
10953     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10954     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10955 
10956     // sret demotion isn't compatible with tail-calls, since the sret argument
10957     // points into the callers stack frame.
10958     CLI.IsTailCall = false;
10959   } else {
10960     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10961         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10962     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10963       ISD::ArgFlagsTy Flags;
10964       if (NeedsRegBlock) {
10965         Flags.setInConsecutiveRegs();
10966         if (I == RetTys.size() - 1)
10967           Flags.setInConsecutiveRegsLast();
10968       }
10969       EVT VT = RetTys[I];
10970       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10971                                                      CLI.CallConv, VT);
10972       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10973                                                        CLI.CallConv, VT);
10974       for (unsigned i = 0; i != NumRegs; ++i) {
10975         ISD::InputArg MyFlags;
10976         MyFlags.Flags = Flags;
10977         MyFlags.VT = RegisterVT;
10978         MyFlags.ArgVT = VT;
10979         MyFlags.Used = CLI.IsReturnValueUsed;
10980         if (CLI.RetTy->isPointerTy()) {
10981           MyFlags.Flags.setPointer();
10982           MyFlags.Flags.setPointerAddrSpace(
10983               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10984         }
10985         if (CLI.RetSExt)
10986           MyFlags.Flags.setSExt();
10987         if (CLI.RetZExt)
10988           MyFlags.Flags.setZExt();
10989         if (CLI.IsInReg)
10990           MyFlags.Flags.setInReg();
10991         CLI.Ins.push_back(MyFlags);
10992       }
10993     }
10994   }
10995 
10996   // We push in swifterror return as the last element of CLI.Ins.
10997   ArgListTy &Args = CLI.getArgs();
10998   if (supportSwiftError()) {
10999     for (const ArgListEntry &Arg : Args) {
11000       if (Arg.IsSwiftError) {
11001         ISD::InputArg MyFlags;
11002         MyFlags.VT = getPointerTy(DL);
11003         MyFlags.ArgVT = EVT(getPointerTy(DL));
11004         MyFlags.Flags.setSwiftError();
11005         CLI.Ins.push_back(MyFlags);
11006       }
11007     }
11008   }
11009 
11010   // Handle all of the outgoing arguments.
11011   CLI.Outs.clear();
11012   CLI.OutVals.clear();
11013   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
11014     SmallVector<EVT, 4> ValueVTs;
11015     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
11016     // FIXME: Split arguments if CLI.IsPostTypeLegalization
11017     Type *FinalType = Args[i].Ty;
11018     if (Args[i].IsByVal)
11019       FinalType = Args[i].IndirectType;
11020     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11021         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
11022     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
11023          ++Value) {
11024       EVT VT = ValueVTs[Value];
11025       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
11026       SDValue Op = SDValue(Args[i].Node.getNode(),
11027                            Args[i].Node.getResNo() + Value);
11028       ISD::ArgFlagsTy Flags;
11029 
11030       // Certain targets (such as MIPS), may have a different ABI alignment
11031       // for a type depending on the context. Give the target a chance to
11032       // specify the alignment it wants.
11033       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
11034       Flags.setOrigAlign(OriginalAlignment);
11035 
11036       if (Args[i].Ty->isPointerTy()) {
11037         Flags.setPointer();
11038         Flags.setPointerAddrSpace(
11039             cast<PointerType>(Args[i].Ty)->getAddressSpace());
11040       }
11041       if (Args[i].IsZExt)
11042         Flags.setZExt();
11043       if (Args[i].IsSExt)
11044         Flags.setSExt();
11045       if (Args[i].IsNoExt)
11046         Flags.setNoExt();
11047       if (Args[i].IsInReg) {
11048         // If we are using vectorcall calling convention, a structure that is
11049         // passed InReg - is surely an HVA
11050         if (CLI.CallConv == CallingConv::X86_VectorCall &&
11051             isa<StructType>(FinalType)) {
11052           // The first value of a structure is marked
11053           if (0 == Value)
11054             Flags.setHvaStart();
11055           Flags.setHva();
11056         }
11057         // Set InReg Flag
11058         Flags.setInReg();
11059       }
11060       if (Args[i].IsSRet)
11061         Flags.setSRet();
11062       if (Args[i].IsSwiftSelf)
11063         Flags.setSwiftSelf();
11064       if (Args[i].IsSwiftAsync)
11065         Flags.setSwiftAsync();
11066       if (Args[i].IsSwiftError)
11067         Flags.setSwiftError();
11068       if (Args[i].IsCFGuardTarget)
11069         Flags.setCFGuardTarget();
11070       if (Args[i].IsByVal)
11071         Flags.setByVal();
11072       if (Args[i].IsByRef)
11073         Flags.setByRef();
11074       if (Args[i].IsPreallocated) {
11075         Flags.setPreallocated();
11076         // Set the byval flag for CCAssignFn callbacks that don't know about
11077         // preallocated.  This way we can know how many bytes we should've
11078         // allocated and how many bytes a callee cleanup function will pop.  If
11079         // we port preallocated to more targets, we'll have to add custom
11080         // preallocated handling in the various CC lowering callbacks.
11081         Flags.setByVal();
11082       }
11083       if (Args[i].IsInAlloca) {
11084         Flags.setInAlloca();
11085         // Set the byval flag for CCAssignFn callbacks that don't know about
11086         // inalloca.  This way we can know how many bytes we should've allocated
11087         // and how many bytes a callee cleanup function will pop.  If we port
11088         // inalloca to more targets, we'll have to add custom inalloca handling
11089         // in the various CC lowering callbacks.
11090         Flags.setByVal();
11091       }
11092       Align MemAlign;
11093       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11094         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11095         Flags.setByValSize(FrameSize);
11096 
11097         // info is not there but there are cases it cannot get right.
11098         if (auto MA = Args[i].Alignment)
11099           MemAlign = *MA;
11100         else
11101           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
11102       } else if (auto MA = Args[i].Alignment) {
11103         MemAlign = *MA;
11104       } else {
11105         MemAlign = OriginalAlignment;
11106       }
11107       Flags.setMemAlign(MemAlign);
11108       if (Args[i].IsNest)
11109         Flags.setNest();
11110       if (NeedsRegBlock)
11111         Flags.setInConsecutiveRegs();
11112 
11113       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11114                                                  CLI.CallConv, VT);
11115       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11116                                                         CLI.CallConv, VT);
11117       SmallVector<SDValue, 4> Parts(NumParts);
11118       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11119 
11120       if (Args[i].IsSExt)
11121         ExtendKind = ISD::SIGN_EXTEND;
11122       else if (Args[i].IsZExt)
11123         ExtendKind = ISD::ZERO_EXTEND;
11124 
11125       // Conservatively only handle 'returned' on non-vectors that can be lowered,
11126       // for now.
11127       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11128           CanLowerReturn) {
11129         assert((CLI.RetTy == Args[i].Ty ||
11130                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11131                  CLI.RetTy->getPointerAddressSpace() ==
11132                      Args[i].Ty->getPointerAddressSpace())) &&
11133                RetTys.size() == NumValues && "unexpected use of 'returned'");
11134         // Before passing 'returned' to the target lowering code, ensure that
11135         // either the register MVT and the actual EVT are the same size or that
11136         // the return value and argument are extended in the same way; in these
11137         // cases it's safe to pass the argument register value unchanged as the
11138         // return register value (although it's at the target's option whether
11139         // to do so)
11140         // TODO: allow code generation to take advantage of partially preserved
11141         // registers rather than clobbering the entire register when the
11142         // parameter extension method is not compatible with the return
11143         // extension method
11144         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11145             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11146              CLI.RetZExt == Args[i].IsZExt))
11147           Flags.setReturned();
11148       }
11149 
11150       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11151                      CLI.CallConv, ExtendKind);
11152 
11153       for (unsigned j = 0; j != NumParts; ++j) {
11154         // if it isn't first piece, alignment must be 1
11155         // For scalable vectors the scalable part is currently handled
11156         // by individual targets, so we just use the known minimum size here.
11157         ISD::OutputArg MyFlags(
11158             Flags, Parts[j].getValueType().getSimpleVT(), VT,
11159             i < CLI.NumFixedArgs, i,
11160             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11161         if (NumParts > 1 && j == 0)
11162           MyFlags.Flags.setSplit();
11163         else if (j != 0) {
11164           MyFlags.Flags.setOrigAlign(Align(1));
11165           if (j == NumParts - 1)
11166             MyFlags.Flags.setSplitEnd();
11167         }
11168 
11169         CLI.Outs.push_back(MyFlags);
11170         CLI.OutVals.push_back(Parts[j]);
11171       }
11172 
11173       if (NeedsRegBlock && Value == NumValues - 1)
11174         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11175     }
11176   }
11177 
11178   SmallVector<SDValue, 4> InVals;
11179   CLI.Chain = LowerCall(CLI, InVals);
11180 
11181   // Update CLI.InVals to use outside of this function.
11182   CLI.InVals = InVals;
11183 
11184   // Verify that the target's LowerCall behaved as expected.
11185   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11186          "LowerCall didn't return a valid chain!");
11187   assert((!CLI.IsTailCall || InVals.empty()) &&
11188          "LowerCall emitted a return value for a tail call!");
11189   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11190          "LowerCall didn't emit the correct number of values!");
11191 
11192   // For a tail call, the return value is merely live-out and there aren't
11193   // any nodes in the DAG representing it. Return a special value to
11194   // indicate that a tail call has been emitted and no more Instructions
11195   // should be processed in the current block.
11196   if (CLI.IsTailCall) {
11197     CLI.DAG.setRoot(CLI.Chain);
11198     return std::make_pair(SDValue(), SDValue());
11199   }
11200 
11201 #ifndef NDEBUG
11202   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11203     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11204     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11205            "LowerCall emitted a value with the wrong type!");
11206   }
11207 #endif
11208 
11209   SmallVector<SDValue, 4> ReturnValues;
11210   if (!CanLowerReturn) {
11211     // The instruction result is the result of loading from the
11212     // hidden sret parameter.
11213     SmallVector<EVT, 1> PVTs;
11214     Type *PtrRetTy =
11215         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
11216 
11217     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
11218     assert(PVTs.size() == 1 && "Pointers should fit in one register");
11219     EVT PtrVT = PVTs[0];
11220 
11221     unsigned NumValues = RetTys.size();
11222     ReturnValues.resize(NumValues);
11223     SmallVector<SDValue, 4> Chains(NumValues);
11224 
11225     // An aggregate return value cannot wrap around the address space, so
11226     // offsets to its parts don't wrap either.
11227     MachineFunction &MF = CLI.DAG.getMachineFunction();
11228     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11229     for (unsigned i = 0; i < NumValues; ++i) {
11230       SDValue Add =
11231           CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
11232                           CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT),
11233                           SDNodeFlags::NoUnsignedWrap);
11234       SDValue L = CLI.DAG.getLoad(
11235           RetTys[i], CLI.DL, CLI.Chain, Add,
11236           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
11237                                             DemoteStackIdx, Offsets[i]),
11238           HiddenSRetAlign);
11239       ReturnValues[i] = L;
11240       Chains[i] = L.getValue(1);
11241     }
11242 
11243     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11244   } else {
11245     // Collect the legal value parts into potentially illegal values
11246     // that correspond to the original function's return values.
11247     std::optional<ISD::NodeType> AssertOp;
11248     if (CLI.RetSExt)
11249       AssertOp = ISD::AssertSext;
11250     else if (CLI.RetZExt)
11251       AssertOp = ISD::AssertZext;
11252     unsigned CurReg = 0;
11253     for (EVT VT : RetTys) {
11254       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11255                                                      CLI.CallConv, VT);
11256       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11257                                                        CLI.CallConv, VT);
11258 
11259       ReturnValues.push_back(getCopyFromParts(
11260           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11261           CLI.Chain, CLI.CallConv, AssertOp));
11262       CurReg += NumRegs;
11263     }
11264 
11265     // For a function returning void, there is no return value. We can't create
11266     // such a node, so we just return a null return value in that case. In
11267     // that case, nothing will actually look at the value.
11268     if (ReturnValues.empty())
11269       return std::make_pair(SDValue(), CLI.Chain);
11270   }
11271 
11272   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11273                                 CLI.DAG.getVTList(RetTys), ReturnValues);
11274   return std::make_pair(Res, CLI.Chain);
11275 }
11276 
11277 /// Places new result values for the node in Results (their number
11278 /// and types must exactly match those of the original return values of
11279 /// the node), or leaves Results empty, which indicates that the node is not
11280 /// to be custom lowered after all.
11281 void TargetLowering::LowerOperationWrapper(SDNode *N,
11282                                            SmallVectorImpl<SDValue> &Results,
11283                                            SelectionDAG &DAG) const {
11284   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11285 
11286   if (!Res.getNode())
11287     return;
11288 
11289   // If the original node has one result, take the return value from
11290   // LowerOperation as is. It might not be result number 0.
11291   if (N->getNumValues() == 1) {
11292     Results.push_back(Res);
11293     return;
11294   }
11295 
11296   // If the original node has multiple results, then the return node should
11297   // have the same number of results.
11298   assert((N->getNumValues() == Res->getNumValues()) &&
11299       "Lowering returned the wrong number of results!");
11300 
11301   // Places new result values base on N result number.
11302   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11303     Results.push_back(Res.getValue(I));
11304 }
11305 
11306 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11307   llvm_unreachable("LowerOperation not implemented for this target!");
11308 }
11309 
11310 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11311                                                      unsigned Reg,
11312                                                      ISD::NodeType ExtendType) {
11313   SDValue Op = getNonRegisterValue(V);
11314   assert((Op.getOpcode() != ISD::CopyFromReg ||
11315           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11316          "Copy from a reg to the same reg!");
11317   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11318 
11319   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11320   // If this is an InlineAsm we have to match the registers required, not the
11321   // notional registers required by the type.
11322 
11323   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11324                    std::nullopt); // This is not an ABI copy.
11325   SDValue Chain = DAG.getEntryNode();
11326 
11327   if (ExtendType == ISD::ANY_EXTEND) {
11328     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11329     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11330       ExtendType = PreferredExtendIt->second;
11331   }
11332   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11333   PendingExports.push_back(Chain);
11334 }
11335 
11336 #include "llvm/CodeGen/SelectionDAGISel.h"
11337 
11338 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11339 /// entry block, return true.  This includes arguments used by switches, since
11340 /// the switch may expand into multiple basic blocks.
11341 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11342   // With FastISel active, we may be splitting blocks, so force creation
11343   // of virtual registers for all non-dead arguments.
11344   if (FastISel)
11345     return A->use_empty();
11346 
11347   const BasicBlock &Entry = A->getParent()->front();
11348   for (const User *U : A->users())
11349     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11350       return false;  // Use not in entry block.
11351 
11352   return true;
11353 }
11354 
11355 using ArgCopyElisionMapTy =
11356     DenseMap<const Argument *,
11357              std::pair<const AllocaInst *, const StoreInst *>>;
11358 
11359 /// Scan the entry block of the function in FuncInfo for arguments that look
11360 /// like copies into a local alloca. Record any copied arguments in
11361 /// ArgCopyElisionCandidates.
11362 static void
11363 findArgumentCopyElisionCandidates(const DataLayout &DL,
11364                                   FunctionLoweringInfo *FuncInfo,
11365                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11366   // Record the state of every static alloca used in the entry block. Argument
11367   // allocas are all used in the entry block, so we need approximately as many
11368   // entries as we have arguments.
11369   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11370   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11371   unsigned NumArgs = FuncInfo->Fn->arg_size();
11372   StaticAllocas.reserve(NumArgs * 2);
11373 
11374   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11375     if (!V)
11376       return nullptr;
11377     V = V->stripPointerCasts();
11378     const auto *AI = dyn_cast<AllocaInst>(V);
11379     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11380       return nullptr;
11381     auto Iter = StaticAllocas.insert({AI, Unknown});
11382     return &Iter.first->second;
11383   };
11384 
11385   // Look for stores of arguments to static allocas. Look through bitcasts and
11386   // GEPs to handle type coercions, as long as the alloca is fully initialized
11387   // by the store. Any non-store use of an alloca escapes it and any subsequent
11388   // unanalyzed store might write it.
11389   // FIXME: Handle structs initialized with multiple stores.
11390   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11391     // Look for stores, and handle non-store uses conservatively.
11392     const auto *SI = dyn_cast<StoreInst>(&I);
11393     if (!SI) {
11394       // We will look through cast uses, so ignore them completely.
11395       if (I.isCast())
11396         continue;
11397       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11398       // to allocas.
11399       if (I.isDebugOrPseudoInst())
11400         continue;
11401       // This is an unknown instruction. Assume it escapes or writes to all
11402       // static alloca operands.
11403       for (const Use &U : I.operands()) {
11404         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11405           *Info = StaticAllocaInfo::Clobbered;
11406       }
11407       continue;
11408     }
11409 
11410     // If the stored value is a static alloca, mark it as escaped.
11411     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11412       *Info = StaticAllocaInfo::Clobbered;
11413 
11414     // Check if the destination is a static alloca.
11415     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11416     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11417     if (!Info)
11418       continue;
11419     const AllocaInst *AI = cast<AllocaInst>(Dst);
11420 
11421     // Skip allocas that have been initialized or clobbered.
11422     if (*Info != StaticAllocaInfo::Unknown)
11423       continue;
11424 
11425     // Check if the stored value is an argument, and that this store fully
11426     // initializes the alloca.
11427     // If the argument type has padding bits we can't directly forward a pointer
11428     // as the upper bits may contain garbage.
11429     // Don't elide copies from the same argument twice.
11430     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11431     const auto *Arg = dyn_cast<Argument>(Val);
11432     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11433         Arg->getType()->isEmptyTy() ||
11434         DL.getTypeStoreSize(Arg->getType()) !=
11435             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11436         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11437         ArgCopyElisionCandidates.count(Arg)) {
11438       *Info = StaticAllocaInfo::Clobbered;
11439       continue;
11440     }
11441 
11442     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11443                       << '\n');
11444 
11445     // Mark this alloca and store for argument copy elision.
11446     *Info = StaticAllocaInfo::Elidable;
11447     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11448 
11449     // Stop scanning if we've seen all arguments. This will happen early in -O0
11450     // builds, which is useful, because -O0 builds have large entry blocks and
11451     // many allocas.
11452     if (ArgCopyElisionCandidates.size() == NumArgs)
11453       break;
11454   }
11455 }
11456 
11457 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11458 /// ArgVal is a load from a suitable fixed stack object.
11459 static void tryToElideArgumentCopy(
11460     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11461     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11462     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11463     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11464     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11465   // Check if this is a load from a fixed stack object.
11466   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11467   if (!LNode)
11468     return;
11469   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11470   if (!FINode)
11471     return;
11472 
11473   // Check that the fixed stack object is the right size and alignment.
11474   // Look at the alignment that the user wrote on the alloca instead of looking
11475   // at the stack object.
11476   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11477   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11478   const AllocaInst *AI = ArgCopyIter->second.first;
11479   int FixedIndex = FINode->getIndex();
11480   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11481   int OldIndex = AllocaIndex;
11482   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11483   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11484     LLVM_DEBUG(
11485         dbgs() << "  argument copy elision failed due to bad fixed stack "
11486                   "object size\n");
11487     return;
11488   }
11489   Align RequiredAlignment = AI->getAlign();
11490   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11491     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11492                          "greater than stack argument alignment ("
11493                       << DebugStr(RequiredAlignment) << " vs "
11494                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11495     return;
11496   }
11497 
11498   // Perform the elision. Delete the old stack object and replace its only use
11499   // in the variable info map. Mark the stack object as mutable and aliased.
11500   LLVM_DEBUG({
11501     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11502            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11503            << '\n';
11504   });
11505   MFI.RemoveStackObject(OldIndex);
11506   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11507   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11508   AllocaIndex = FixedIndex;
11509   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11510   for (SDValue ArgVal : ArgVals)
11511     Chains.push_back(ArgVal.getValue(1));
11512 
11513   // Avoid emitting code for the store implementing the copy.
11514   const StoreInst *SI = ArgCopyIter->second.second;
11515   ElidedArgCopyInstrs.insert(SI);
11516 
11517   // Check for uses of the argument again so that we can avoid exporting ArgVal
11518   // if it is't used by anything other than the store.
11519   for (const Value *U : Arg.users()) {
11520     if (U != SI) {
11521       ArgHasUses = true;
11522       break;
11523     }
11524   }
11525 }
11526 
11527 void SelectionDAGISel::LowerArguments(const Function &F) {
11528   SelectionDAG &DAG = SDB->DAG;
11529   SDLoc dl = SDB->getCurSDLoc();
11530   const DataLayout &DL = DAG.getDataLayout();
11531   SmallVector<ISD::InputArg, 16> Ins;
11532 
11533   // In Naked functions we aren't going to save any registers.
11534   if (F.hasFnAttribute(Attribute::Naked))
11535     return;
11536 
11537   if (!FuncInfo->CanLowerReturn) {
11538     // Put in an sret pointer parameter before all the other parameters.
11539     SmallVector<EVT, 1> ValueVTs;
11540     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11541                     PointerType::get(F.getContext(),
11542                                      DAG.getDataLayout().getAllocaAddrSpace()),
11543                     ValueVTs);
11544 
11545     // NOTE: Assuming that a pointer will never break down to more than one VT
11546     // or one register.
11547     ISD::ArgFlagsTy Flags;
11548     Flags.setSRet();
11549     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11550     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11551                          ISD::InputArg::NoArgIndex, 0);
11552     Ins.push_back(RetArg);
11553   }
11554 
11555   // Look for stores of arguments to static allocas. Mark such arguments with a
11556   // flag to ask the target to give us the memory location of that argument if
11557   // available.
11558   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11559   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11560                                     ArgCopyElisionCandidates);
11561 
11562   // Set up the incoming argument description vector.
11563   for (const Argument &Arg : F.args()) {
11564     unsigned ArgNo = Arg.getArgNo();
11565     SmallVector<EVT, 4> ValueVTs;
11566     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11567     bool isArgValueUsed = !Arg.use_empty();
11568     unsigned PartBase = 0;
11569     Type *FinalType = Arg.getType();
11570     if (Arg.hasAttribute(Attribute::ByVal))
11571       FinalType = Arg.getParamByValType();
11572     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11573         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11574     for (unsigned Value = 0, NumValues = ValueVTs.size();
11575          Value != NumValues; ++Value) {
11576       EVT VT = ValueVTs[Value];
11577       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11578       ISD::ArgFlagsTy Flags;
11579 
11580 
11581       if (Arg.getType()->isPointerTy()) {
11582         Flags.setPointer();
11583         Flags.setPointerAddrSpace(
11584             cast<PointerType>(Arg.getType())->getAddressSpace());
11585       }
11586       if (Arg.hasAttribute(Attribute::ZExt))
11587         Flags.setZExt();
11588       if (Arg.hasAttribute(Attribute::SExt))
11589         Flags.setSExt();
11590       if (Arg.hasAttribute(Attribute::InReg)) {
11591         // If we are using vectorcall calling convention, a structure that is
11592         // passed InReg - is surely an HVA
11593         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11594             isa<StructType>(Arg.getType())) {
11595           // The first value of a structure is marked
11596           if (0 == Value)
11597             Flags.setHvaStart();
11598           Flags.setHva();
11599         }
11600         // Set InReg Flag
11601         Flags.setInReg();
11602       }
11603       if (Arg.hasAttribute(Attribute::StructRet))
11604         Flags.setSRet();
11605       if (Arg.hasAttribute(Attribute::SwiftSelf))
11606         Flags.setSwiftSelf();
11607       if (Arg.hasAttribute(Attribute::SwiftAsync))
11608         Flags.setSwiftAsync();
11609       if (Arg.hasAttribute(Attribute::SwiftError))
11610         Flags.setSwiftError();
11611       if (Arg.hasAttribute(Attribute::ByVal))
11612         Flags.setByVal();
11613       if (Arg.hasAttribute(Attribute::ByRef))
11614         Flags.setByRef();
11615       if (Arg.hasAttribute(Attribute::InAlloca)) {
11616         Flags.setInAlloca();
11617         // Set the byval flag for CCAssignFn callbacks that don't know about
11618         // inalloca.  This way we can know how many bytes we should've allocated
11619         // and how many bytes a callee cleanup function will pop.  If we port
11620         // inalloca to more targets, we'll have to add custom inalloca handling
11621         // in the various CC lowering callbacks.
11622         Flags.setByVal();
11623       }
11624       if (Arg.hasAttribute(Attribute::Preallocated)) {
11625         Flags.setPreallocated();
11626         // Set the byval flag for CCAssignFn callbacks that don't know about
11627         // preallocated.  This way we can know how many bytes we should've
11628         // allocated and how many bytes a callee cleanup function will pop.  If
11629         // we port preallocated to more targets, we'll have to add custom
11630         // preallocated handling in the various CC lowering callbacks.
11631         Flags.setByVal();
11632       }
11633 
11634       // Certain targets (such as MIPS), may have a different ABI alignment
11635       // for a type depending on the context. Give the target a chance to
11636       // specify the alignment it wants.
11637       const Align OriginalAlignment(
11638           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11639       Flags.setOrigAlign(OriginalAlignment);
11640 
11641       Align MemAlign;
11642       Type *ArgMemTy = nullptr;
11643       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11644           Flags.isByRef()) {
11645         if (!ArgMemTy)
11646           ArgMemTy = Arg.getPointeeInMemoryValueType();
11647 
11648         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11649 
11650         // For in-memory arguments, size and alignment should be passed from FE.
11651         // BE will guess if this info is not there but there are cases it cannot
11652         // get right.
11653         if (auto ParamAlign = Arg.getParamStackAlign())
11654           MemAlign = *ParamAlign;
11655         else if ((ParamAlign = Arg.getParamAlign()))
11656           MemAlign = *ParamAlign;
11657         else
11658           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11659         if (Flags.isByRef())
11660           Flags.setByRefSize(MemSize);
11661         else
11662           Flags.setByValSize(MemSize);
11663       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11664         MemAlign = *ParamAlign;
11665       } else {
11666         MemAlign = OriginalAlignment;
11667       }
11668       Flags.setMemAlign(MemAlign);
11669 
11670       if (Arg.hasAttribute(Attribute::Nest))
11671         Flags.setNest();
11672       if (NeedsRegBlock)
11673         Flags.setInConsecutiveRegs();
11674       if (ArgCopyElisionCandidates.count(&Arg))
11675         Flags.setCopyElisionCandidate();
11676       if (Arg.hasAttribute(Attribute::Returned))
11677         Flags.setReturned();
11678 
11679       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11680           *CurDAG->getContext(), F.getCallingConv(), VT);
11681       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11682           *CurDAG->getContext(), F.getCallingConv(), VT);
11683       for (unsigned i = 0; i != NumRegs; ++i) {
11684         // For scalable vectors, use the minimum size; individual targets
11685         // are responsible for handling scalable vector arguments and
11686         // return values.
11687         ISD::InputArg MyFlags(
11688             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11689             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11690         if (NumRegs > 1 && i == 0)
11691           MyFlags.Flags.setSplit();
11692         // if it isn't first piece, alignment must be 1
11693         else if (i > 0) {
11694           MyFlags.Flags.setOrigAlign(Align(1));
11695           if (i == NumRegs - 1)
11696             MyFlags.Flags.setSplitEnd();
11697         }
11698         Ins.push_back(MyFlags);
11699       }
11700       if (NeedsRegBlock && Value == NumValues - 1)
11701         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11702       PartBase += VT.getStoreSize().getKnownMinValue();
11703     }
11704   }
11705 
11706   // Call the target to set up the argument values.
11707   SmallVector<SDValue, 8> InVals;
11708   SDValue NewRoot = TLI->LowerFormalArguments(
11709       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11710 
11711   // Verify that the target's LowerFormalArguments behaved as expected.
11712   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11713          "LowerFormalArguments didn't return a valid chain!");
11714   assert(InVals.size() == Ins.size() &&
11715          "LowerFormalArguments didn't emit the correct number of values!");
11716   LLVM_DEBUG({
11717     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11718       assert(InVals[i].getNode() &&
11719              "LowerFormalArguments emitted a null value!");
11720       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11721              "LowerFormalArguments emitted a value with the wrong type!");
11722     }
11723   });
11724 
11725   // Update the DAG with the new chain value resulting from argument lowering.
11726   DAG.setRoot(NewRoot);
11727 
11728   // Set up the argument values.
11729   unsigned i = 0;
11730   if (!FuncInfo->CanLowerReturn) {
11731     // Create a virtual register for the sret pointer, and put in a copy
11732     // from the sret argument into it.
11733     SmallVector<EVT, 1> ValueVTs;
11734     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11735                     PointerType::get(F.getContext(),
11736                                      DAG.getDataLayout().getAllocaAddrSpace()),
11737                     ValueVTs);
11738     MVT VT = ValueVTs[0].getSimpleVT();
11739     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11740     std::optional<ISD::NodeType> AssertOp;
11741     SDValue ArgValue =
11742         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11743                          F.getCallingConv(), AssertOp);
11744 
11745     MachineFunction& MF = SDB->DAG.getMachineFunction();
11746     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11747     Register SRetReg =
11748         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11749     FuncInfo->DemoteRegister = SRetReg;
11750     NewRoot =
11751         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11752     DAG.setRoot(NewRoot);
11753 
11754     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11755     ++i;
11756   }
11757 
11758   SmallVector<SDValue, 4> Chains;
11759   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11760   for (const Argument &Arg : F.args()) {
11761     SmallVector<SDValue, 4> ArgValues;
11762     SmallVector<EVT, 4> ValueVTs;
11763     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11764     unsigned NumValues = ValueVTs.size();
11765     if (NumValues == 0)
11766       continue;
11767 
11768     bool ArgHasUses = !Arg.use_empty();
11769 
11770     // Elide the copying store if the target loaded this argument from a
11771     // suitable fixed stack object.
11772     if (Ins[i].Flags.isCopyElisionCandidate()) {
11773       unsigned NumParts = 0;
11774       for (EVT VT : ValueVTs)
11775         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11776                                                        F.getCallingConv(), VT);
11777 
11778       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11779                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11780                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11781     }
11782 
11783     // If this argument is unused then remember its value. It is used to generate
11784     // debugging information.
11785     bool isSwiftErrorArg =
11786         TLI->supportSwiftError() &&
11787         Arg.hasAttribute(Attribute::SwiftError);
11788     if (!ArgHasUses && !isSwiftErrorArg) {
11789       SDB->setUnusedArgValue(&Arg, InVals[i]);
11790 
11791       // Also remember any frame index for use in FastISel.
11792       if (FrameIndexSDNode *FI =
11793           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11794         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11795     }
11796 
11797     for (unsigned Val = 0; Val != NumValues; ++Val) {
11798       EVT VT = ValueVTs[Val];
11799       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11800                                                       F.getCallingConv(), VT);
11801       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11802           *CurDAG->getContext(), F.getCallingConv(), VT);
11803 
11804       // Even an apparent 'unused' swifterror argument needs to be returned. So
11805       // we do generate a copy for it that can be used on return from the
11806       // function.
11807       if (ArgHasUses || isSwiftErrorArg) {
11808         std::optional<ISD::NodeType> AssertOp;
11809         if (Arg.hasAttribute(Attribute::SExt))
11810           AssertOp = ISD::AssertSext;
11811         else if (Arg.hasAttribute(Attribute::ZExt))
11812           AssertOp = ISD::AssertZext;
11813 
11814         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11815                                              PartVT, VT, nullptr, NewRoot,
11816                                              F.getCallingConv(), AssertOp));
11817       }
11818 
11819       i += NumParts;
11820     }
11821 
11822     // We don't need to do anything else for unused arguments.
11823     if (ArgValues.empty())
11824       continue;
11825 
11826     // Note down frame index.
11827     if (FrameIndexSDNode *FI =
11828         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11829       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11830 
11831     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11832                                      SDB->getCurSDLoc());
11833 
11834     SDB->setValue(&Arg, Res);
11835     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11836       // We want to associate the argument with the frame index, among
11837       // involved operands, that correspond to the lowest address. The
11838       // getCopyFromParts function, called earlier, is swapping the order of
11839       // the operands to BUILD_PAIR depending on endianness. The result of
11840       // that swapping is that the least significant bits of the argument will
11841       // be in the first operand of the BUILD_PAIR node, and the most
11842       // significant bits will be in the second operand.
11843       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11844       if (LoadSDNode *LNode =
11845           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11846         if (FrameIndexSDNode *FI =
11847             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11848           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11849     }
11850 
11851     // Analyses past this point are naive and don't expect an assertion.
11852     if (Res.getOpcode() == ISD::AssertZext)
11853       Res = Res.getOperand(0);
11854 
11855     // Update the SwiftErrorVRegDefMap.
11856     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11857       Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11858       if (Reg.isVirtual())
11859         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11860                                    Reg);
11861     }
11862 
11863     // If this argument is live outside of the entry block, insert a copy from
11864     // wherever we got it to the vreg that other BB's will reference it as.
11865     if (Res.getOpcode() == ISD::CopyFromReg) {
11866       // If we can, though, try to skip creating an unnecessary vreg.
11867       // FIXME: This isn't very clean... it would be nice to make this more
11868       // general.
11869       Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11870       if (Reg.isVirtual()) {
11871         FuncInfo->ValueMap[&Arg] = Reg;
11872         continue;
11873       }
11874     }
11875     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11876       FuncInfo->InitializeRegForValue(&Arg);
11877       SDB->CopyToExportRegsIfNeeded(&Arg);
11878     }
11879   }
11880 
11881   if (!Chains.empty()) {
11882     Chains.push_back(NewRoot);
11883     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11884   }
11885 
11886   DAG.setRoot(NewRoot);
11887 
11888   assert(i == InVals.size() && "Argument register count mismatch!");
11889 
11890   // If any argument copy elisions occurred and we have debug info, update the
11891   // stale frame indices used in the dbg.declare variable info table.
11892   if (!ArgCopyElisionFrameIndexMap.empty()) {
11893     for (MachineFunction::VariableDbgInfo &VI :
11894          MF->getInStackSlotVariableDbgInfo()) {
11895       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11896       if (I != ArgCopyElisionFrameIndexMap.end())
11897         VI.updateStackSlot(I->second);
11898     }
11899   }
11900 
11901   // Finally, if the target has anything special to do, allow it to do so.
11902   emitFunctionEntryCode();
11903 }
11904 
11905 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11906 /// ensure constants are generated when needed.  Remember the virtual registers
11907 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11908 /// directly add them, because expansion might result in multiple MBB's for one
11909 /// BB.  As such, the start of the BB might correspond to a different MBB than
11910 /// the end.
11911 void
11912 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11913   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11914 
11915   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11916 
11917   // Check PHI nodes in successors that expect a value to be available from this
11918   // block.
11919   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11920     if (!isa<PHINode>(SuccBB->begin())) continue;
11921     MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
11922 
11923     // If this terminator has multiple identical successors (common for
11924     // switches), only handle each succ once.
11925     if (!SuccsHandled.insert(SuccMBB).second)
11926       continue;
11927 
11928     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11929 
11930     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11931     // nodes and Machine PHI nodes, but the incoming operands have not been
11932     // emitted yet.
11933     for (const PHINode &PN : SuccBB->phis()) {
11934       // Ignore dead phi's.
11935       if (PN.use_empty())
11936         continue;
11937 
11938       // Skip empty types
11939       if (PN.getType()->isEmptyTy())
11940         continue;
11941 
11942       unsigned Reg;
11943       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11944 
11945       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11946         unsigned &RegOut = ConstantsOut[C];
11947         if (RegOut == 0) {
11948           RegOut = FuncInfo.CreateRegs(C);
11949           // We need to zero/sign extend ConstantInt phi operands to match
11950           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11951           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11952           if (auto *CI = dyn_cast<ConstantInt>(C))
11953             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11954                                                     : ISD::ZERO_EXTEND;
11955           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11956         }
11957         Reg = RegOut;
11958       } else {
11959         DenseMap<const Value *, Register>::iterator I =
11960           FuncInfo.ValueMap.find(PHIOp);
11961         if (I != FuncInfo.ValueMap.end())
11962           Reg = I->second;
11963         else {
11964           assert(isa<AllocaInst>(PHIOp) &&
11965                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11966                  "Didn't codegen value into a register!??");
11967           Reg = FuncInfo.CreateRegs(PHIOp);
11968           CopyValueToVirtualRegister(PHIOp, Reg);
11969         }
11970       }
11971 
11972       // Remember that this register needs to added to the machine PHI node as
11973       // the input for this MBB.
11974       SmallVector<EVT, 4> ValueVTs;
11975       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11976       for (EVT VT : ValueVTs) {
11977         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11978         for (unsigned i = 0; i != NumRegisters; ++i)
11979           FuncInfo.PHINodesToUpdate.push_back(
11980               std::make_pair(&*MBBI++, Reg + i));
11981         Reg += NumRegisters;
11982       }
11983     }
11984   }
11985 
11986   ConstantsOut.clear();
11987 }
11988 
11989 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11990   MachineFunction::iterator I(MBB);
11991   if (++I == FuncInfo.MF->end())
11992     return nullptr;
11993   return &*I;
11994 }
11995 
11996 /// During lowering new call nodes can be created (such as memset, etc.).
11997 /// Those will become new roots of the current DAG, but complications arise
11998 /// when they are tail calls. In such cases, the call lowering will update
11999 /// the root, but the builder still needs to know that a tail call has been
12000 /// lowered in order to avoid generating an additional return.
12001 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
12002   // If the node is null, we do have a tail call.
12003   if (MaybeTC.getNode() != nullptr)
12004     DAG.setRoot(MaybeTC);
12005   else
12006     HasTailCall = true;
12007 }
12008 
12009 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
12010                                         MachineBasicBlock *SwitchMBB,
12011                                         MachineBasicBlock *DefaultMBB) {
12012   MachineFunction *CurMF = FuncInfo.MF;
12013   MachineBasicBlock *NextMBB = nullptr;
12014   MachineFunction::iterator BBI(W.MBB);
12015   if (++BBI != FuncInfo.MF->end())
12016     NextMBB = &*BBI;
12017 
12018   unsigned Size = W.LastCluster - W.FirstCluster + 1;
12019 
12020   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12021 
12022   if (Size == 2 && W.MBB == SwitchMBB) {
12023     // If any two of the cases has the same destination, and if one value
12024     // is the same as the other, but has one bit unset that the other has set,
12025     // use bit manipulation to do two compares at once.  For example:
12026     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
12027     // TODO: This could be extended to merge any 2 cases in switches with 3
12028     // cases.
12029     // TODO: Handle cases where W.CaseBB != SwitchBB.
12030     CaseCluster &Small = *W.FirstCluster;
12031     CaseCluster &Big = *W.LastCluster;
12032 
12033     if (Small.Low == Small.High && Big.Low == Big.High &&
12034         Small.MBB == Big.MBB) {
12035       const APInt &SmallValue = Small.Low->getValue();
12036       const APInt &BigValue = Big.Low->getValue();
12037 
12038       // Check that there is only one bit different.
12039       APInt CommonBit = BigValue ^ SmallValue;
12040       if (CommonBit.isPowerOf2()) {
12041         SDValue CondLHS = getValue(Cond);
12042         EVT VT = CondLHS.getValueType();
12043         SDLoc DL = getCurSDLoc();
12044 
12045         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
12046                                  DAG.getConstant(CommonBit, DL, VT));
12047         SDValue Cond = DAG.getSetCC(
12048             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
12049             ISD::SETEQ);
12050 
12051         // Update successor info.
12052         // Both Small and Big will jump to Small.BB, so we sum up the
12053         // probabilities.
12054         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
12055         if (BPI)
12056           addSuccessorWithProb(
12057               SwitchMBB, DefaultMBB,
12058               // The default destination is the first successor in IR.
12059               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
12060         else
12061           addSuccessorWithProb(SwitchMBB, DefaultMBB);
12062 
12063         // Insert the true branch.
12064         SDValue BrCond =
12065             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12066                         DAG.getBasicBlock(Small.MBB));
12067         // Insert the false branch.
12068         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12069                              DAG.getBasicBlock(DefaultMBB));
12070 
12071         DAG.setRoot(BrCond);
12072         return;
12073       }
12074     }
12075   }
12076 
12077   if (TM.getOptLevel() != CodeGenOptLevel::None) {
12078     // Here, we order cases by probability so the most likely case will be
12079     // checked first. However, two clusters can have the same probability in
12080     // which case their relative ordering is non-deterministic. So we use Low
12081     // as a tie-breaker as clusters are guaranteed to never overlap.
12082     llvm::sort(W.FirstCluster, W.LastCluster + 1,
12083                [](const CaseCluster &a, const CaseCluster &b) {
12084       return a.Prob != b.Prob ?
12085              a.Prob > b.Prob :
12086              a.Low->getValue().slt(b.Low->getValue());
12087     });
12088 
12089     // Rearrange the case blocks so that the last one falls through if possible
12090     // without changing the order of probabilities.
12091     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12092       --I;
12093       if (I->Prob > W.LastCluster->Prob)
12094         break;
12095       if (I->Kind == CC_Range && I->MBB == NextMBB) {
12096         std::swap(*I, *W.LastCluster);
12097         break;
12098       }
12099     }
12100   }
12101 
12102   // Compute total probability.
12103   BranchProbability DefaultProb = W.DefaultProb;
12104   BranchProbability UnhandledProbs = DefaultProb;
12105   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12106     UnhandledProbs += I->Prob;
12107 
12108   MachineBasicBlock *CurMBB = W.MBB;
12109   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12110     bool FallthroughUnreachable = false;
12111     MachineBasicBlock *Fallthrough;
12112     if (I == W.LastCluster) {
12113       // For the last cluster, fall through to the default destination.
12114       Fallthrough = DefaultMBB;
12115       FallthroughUnreachable = isa<UnreachableInst>(
12116           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12117     } else {
12118       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12119       CurMF->insert(BBI, Fallthrough);
12120       // Put Cond in a virtual register to make it available from the new blocks.
12121       ExportFromCurrentBlock(Cond);
12122     }
12123     UnhandledProbs -= I->Prob;
12124 
12125     switch (I->Kind) {
12126       case CC_JumpTable: {
12127         // FIXME: Optimize away range check based on pivot comparisons.
12128         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12129         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12130 
12131         // The jump block hasn't been inserted yet; insert it here.
12132         MachineBasicBlock *JumpMBB = JT->MBB;
12133         CurMF->insert(BBI, JumpMBB);
12134 
12135         auto JumpProb = I->Prob;
12136         auto FallthroughProb = UnhandledProbs;
12137 
12138         // If the default statement is a target of the jump table, we evenly
12139         // distribute the default probability to successors of CurMBB. Also
12140         // update the probability on the edge from JumpMBB to Fallthrough.
12141         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12142                                               SE = JumpMBB->succ_end();
12143              SI != SE; ++SI) {
12144           if (*SI == DefaultMBB) {
12145             JumpProb += DefaultProb / 2;
12146             FallthroughProb -= DefaultProb / 2;
12147             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12148             JumpMBB->normalizeSuccProbs();
12149             break;
12150           }
12151         }
12152 
12153         // If the default clause is unreachable, propagate that knowledge into
12154         // JTH->FallthroughUnreachable which will use it to suppress the range
12155         // check.
12156         //
12157         // However, don't do this if we're doing branch target enforcement,
12158         // because a table branch _without_ a range check can be a tempting JOP
12159         // gadget - out-of-bounds inputs that are impossible in correct
12160         // execution become possible again if an attacker can influence the
12161         // control flow. So if an attacker doesn't already have a BTI bypass
12162         // available, we don't want them to be able to get one out of this
12163         // table branch.
12164         if (FallthroughUnreachable) {
12165           Function &CurFunc = CurMF->getFunction();
12166           if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12167             JTH->FallthroughUnreachable = true;
12168         }
12169 
12170         if (!JTH->FallthroughUnreachable)
12171           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12172         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12173         CurMBB->normalizeSuccProbs();
12174 
12175         // The jump table header will be inserted in our current block, do the
12176         // range check, and fall through to our fallthrough block.
12177         JTH->HeaderBB = CurMBB;
12178         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12179 
12180         // If we're in the right place, emit the jump table header right now.
12181         if (CurMBB == SwitchMBB) {
12182           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12183           JTH->Emitted = true;
12184         }
12185         break;
12186       }
12187       case CC_BitTests: {
12188         // FIXME: Optimize away range check based on pivot comparisons.
12189         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12190 
12191         // The bit test blocks haven't been inserted yet; insert them here.
12192         for (BitTestCase &BTC : BTB->Cases)
12193           CurMF->insert(BBI, BTC.ThisBB);
12194 
12195         // Fill in fields of the BitTestBlock.
12196         BTB->Parent = CurMBB;
12197         BTB->Default = Fallthrough;
12198 
12199         BTB->DefaultProb = UnhandledProbs;
12200         // If the cases in bit test don't form a contiguous range, we evenly
12201         // distribute the probability on the edge to Fallthrough to two
12202         // successors of CurMBB.
12203         if (!BTB->ContiguousRange) {
12204           BTB->Prob += DefaultProb / 2;
12205           BTB->DefaultProb -= DefaultProb / 2;
12206         }
12207 
12208         if (FallthroughUnreachable)
12209           BTB->FallthroughUnreachable = true;
12210 
12211         // If we're in the right place, emit the bit test header right now.
12212         if (CurMBB == SwitchMBB) {
12213           visitBitTestHeader(*BTB, SwitchMBB);
12214           BTB->Emitted = true;
12215         }
12216         break;
12217       }
12218       case CC_Range: {
12219         const Value *RHS, *LHS, *MHS;
12220         ISD::CondCode CC;
12221         if (I->Low == I->High) {
12222           // Check Cond == I->Low.
12223           CC = ISD::SETEQ;
12224           LHS = Cond;
12225           RHS=I->Low;
12226           MHS = nullptr;
12227         } else {
12228           // Check I->Low <= Cond <= I->High.
12229           CC = ISD::SETLE;
12230           LHS = I->Low;
12231           MHS = Cond;
12232           RHS = I->High;
12233         }
12234 
12235         // If Fallthrough is unreachable, fold away the comparison.
12236         if (FallthroughUnreachable)
12237           CC = ISD::SETTRUE;
12238 
12239         // The false probability is the sum of all unhandled cases.
12240         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12241                      getCurSDLoc(), I->Prob, UnhandledProbs);
12242 
12243         if (CurMBB == SwitchMBB)
12244           visitSwitchCase(CB, SwitchMBB);
12245         else
12246           SL->SwitchCases.push_back(CB);
12247 
12248         break;
12249       }
12250     }
12251     CurMBB = Fallthrough;
12252   }
12253 }
12254 
12255 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12256                                         const SwitchWorkListItem &W,
12257                                         Value *Cond,
12258                                         MachineBasicBlock *SwitchMBB) {
12259   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12260          "Clusters not sorted?");
12261   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12262 
12263   auto [LastLeft, FirstRight, LeftProb, RightProb] =
12264       SL->computeSplitWorkItemInfo(W);
12265 
12266   // Use the first element on the right as pivot since we will make less-than
12267   // comparisons against it.
12268   CaseClusterIt PivotCluster = FirstRight;
12269   assert(PivotCluster > W.FirstCluster);
12270   assert(PivotCluster <= W.LastCluster);
12271 
12272   CaseClusterIt FirstLeft = W.FirstCluster;
12273   CaseClusterIt LastRight = W.LastCluster;
12274 
12275   const ConstantInt *Pivot = PivotCluster->Low;
12276 
12277   // New blocks will be inserted immediately after the current one.
12278   MachineFunction::iterator BBI(W.MBB);
12279   ++BBI;
12280 
12281   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12282   // we can branch to its destination directly if it's squeezed exactly in
12283   // between the known lower bound and Pivot - 1.
12284   MachineBasicBlock *LeftMBB;
12285   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12286       FirstLeft->Low == W.GE &&
12287       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12288     LeftMBB = FirstLeft->MBB;
12289   } else {
12290     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12291     FuncInfo.MF->insert(BBI, LeftMBB);
12292     WorkList.push_back(
12293         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12294     // Put Cond in a virtual register to make it available from the new blocks.
12295     ExportFromCurrentBlock(Cond);
12296   }
12297 
12298   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12299   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12300   // directly if RHS.High equals the current upper bound.
12301   MachineBasicBlock *RightMBB;
12302   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12303       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12304     RightMBB = FirstRight->MBB;
12305   } else {
12306     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12307     FuncInfo.MF->insert(BBI, RightMBB);
12308     WorkList.push_back(
12309         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12310     // Put Cond in a virtual register to make it available from the new blocks.
12311     ExportFromCurrentBlock(Cond);
12312   }
12313 
12314   // Create the CaseBlock record that will be used to lower the branch.
12315   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12316                getCurSDLoc(), LeftProb, RightProb);
12317 
12318   if (W.MBB == SwitchMBB)
12319     visitSwitchCase(CB, SwitchMBB);
12320   else
12321     SL->SwitchCases.push_back(CB);
12322 }
12323 
12324 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12325 // from the swith statement.
12326 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12327                                             BranchProbability PeeledCaseProb) {
12328   if (PeeledCaseProb == BranchProbability::getOne())
12329     return BranchProbability::getZero();
12330   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12331 
12332   uint32_t Numerator = CaseProb.getNumerator();
12333   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12334   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12335 }
12336 
12337 // Try to peel the top probability case if it exceeds the threshold.
12338 // Return current MachineBasicBlock for the switch statement if the peeling
12339 // does not occur.
12340 // If the peeling is performed, return the newly created MachineBasicBlock
12341 // for the peeled switch statement. Also update Clusters to remove the peeled
12342 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12343 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12344     const SwitchInst &SI, CaseClusterVector &Clusters,
12345     BranchProbability &PeeledCaseProb) {
12346   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12347   // Don't perform if there is only one cluster or optimizing for size.
12348   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12349       TM.getOptLevel() == CodeGenOptLevel::None ||
12350       SwitchMBB->getParent()->getFunction().hasMinSize())
12351     return SwitchMBB;
12352 
12353   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12354   unsigned PeeledCaseIndex = 0;
12355   bool SwitchPeeled = false;
12356   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12357     CaseCluster &CC = Clusters[Index];
12358     if (CC.Prob < TopCaseProb)
12359       continue;
12360     TopCaseProb = CC.Prob;
12361     PeeledCaseIndex = Index;
12362     SwitchPeeled = true;
12363   }
12364   if (!SwitchPeeled)
12365     return SwitchMBB;
12366 
12367   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12368                     << TopCaseProb << "\n");
12369 
12370   // Record the MBB for the peeled switch statement.
12371   MachineFunction::iterator BBI(SwitchMBB);
12372   ++BBI;
12373   MachineBasicBlock *PeeledSwitchMBB =
12374       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12375   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12376 
12377   ExportFromCurrentBlock(SI.getCondition());
12378   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12379   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12380                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12381   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12382 
12383   Clusters.erase(PeeledCaseIt);
12384   for (CaseCluster &CC : Clusters) {
12385     LLVM_DEBUG(
12386         dbgs() << "Scale the probablity for one cluster, before scaling: "
12387                << CC.Prob << "\n");
12388     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12389     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12390   }
12391   PeeledCaseProb = TopCaseProb;
12392   return PeeledSwitchMBB;
12393 }
12394 
12395 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12396   // Extract cases from the switch.
12397   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12398   CaseClusterVector Clusters;
12399   Clusters.reserve(SI.getNumCases());
12400   for (auto I : SI.cases()) {
12401     MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12402     const ConstantInt *CaseVal = I.getCaseValue();
12403     BranchProbability Prob =
12404         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12405             : BranchProbability(1, SI.getNumCases() + 1);
12406     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12407   }
12408 
12409   MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12410 
12411   // Cluster adjacent cases with the same destination. We do this at all
12412   // optimization levels because it's cheap to do and will make codegen faster
12413   // if there are many clusters.
12414   sortAndRangeify(Clusters);
12415 
12416   // The branch probablity of the peeled case.
12417   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12418   MachineBasicBlock *PeeledSwitchMBB =
12419       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12420 
12421   // If there is only the default destination, jump there directly.
12422   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12423   if (Clusters.empty()) {
12424     assert(PeeledSwitchMBB == SwitchMBB);
12425     SwitchMBB->addSuccessor(DefaultMBB);
12426     if (DefaultMBB != NextBlock(SwitchMBB)) {
12427       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12428                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12429     }
12430     return;
12431   }
12432 
12433   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12434                      DAG.getBFI());
12435   SL->findBitTestClusters(Clusters, &SI);
12436 
12437   LLVM_DEBUG({
12438     dbgs() << "Case clusters: ";
12439     for (const CaseCluster &C : Clusters) {
12440       if (C.Kind == CC_JumpTable)
12441         dbgs() << "JT:";
12442       if (C.Kind == CC_BitTests)
12443         dbgs() << "BT:";
12444 
12445       C.Low->getValue().print(dbgs(), true);
12446       if (C.Low != C.High) {
12447         dbgs() << '-';
12448         C.High->getValue().print(dbgs(), true);
12449       }
12450       dbgs() << ' ';
12451     }
12452     dbgs() << '\n';
12453   });
12454 
12455   assert(!Clusters.empty());
12456   SwitchWorkList WorkList;
12457   CaseClusterIt First = Clusters.begin();
12458   CaseClusterIt Last = Clusters.end() - 1;
12459   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12460   // Scale the branchprobability for DefaultMBB if the peel occurs and
12461   // DefaultMBB is not replaced.
12462   if (PeeledCaseProb != BranchProbability::getZero() &&
12463       DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12464     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12465   WorkList.push_back(
12466       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12467 
12468   while (!WorkList.empty()) {
12469     SwitchWorkListItem W = WorkList.pop_back_val();
12470     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12471 
12472     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12473         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12474       // For optimized builds, lower large range as a balanced binary tree.
12475       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12476       continue;
12477     }
12478 
12479     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12480   }
12481 }
12482 
12483 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12484   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12485   auto DL = getCurSDLoc();
12486   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12487   setValue(&I, DAG.getStepVector(DL, ResultVT));
12488 }
12489 
12490 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12491   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12492   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12493 
12494   SDLoc DL = getCurSDLoc();
12495   SDValue V = getValue(I.getOperand(0));
12496   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12497 
12498   if (VT.isScalableVector()) {
12499     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12500     return;
12501   }
12502 
12503   // Use VECTOR_SHUFFLE for the fixed-length vector
12504   // to maintain existing behavior.
12505   SmallVector<int, 8> Mask;
12506   unsigned NumElts = VT.getVectorMinNumElements();
12507   for (unsigned i = 0; i != NumElts; ++i)
12508     Mask.push_back(NumElts - 1 - i);
12509 
12510   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12511 }
12512 
12513 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12514   auto DL = getCurSDLoc();
12515   SDValue InVec = getValue(I.getOperand(0));
12516   EVT OutVT =
12517       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12518 
12519   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12520 
12521   // ISD Node needs the input vectors split into two equal parts
12522   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12523                            DAG.getVectorIdxConstant(0, DL));
12524   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12525                            DAG.getVectorIdxConstant(OutNumElts, DL));
12526 
12527   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12528   // legalisation and combines.
12529   if (OutVT.isFixedLengthVector()) {
12530     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12531                                         createStrideMask(0, 2, OutNumElts));
12532     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12533                                        createStrideMask(1, 2, OutNumElts));
12534     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12535     setValue(&I, Res);
12536     return;
12537   }
12538 
12539   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12540                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12541   setValue(&I, Res);
12542 }
12543 
12544 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12545   auto DL = getCurSDLoc();
12546   EVT InVT = getValue(I.getOperand(0)).getValueType();
12547   SDValue InVec0 = getValue(I.getOperand(0));
12548   SDValue InVec1 = getValue(I.getOperand(1));
12549   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12550   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12551 
12552   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12553   // legalisation and combines.
12554   if (OutVT.isFixedLengthVector()) {
12555     unsigned NumElts = InVT.getVectorMinNumElements();
12556     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12557     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12558                                       createInterleaveMask(NumElts, 2)));
12559     return;
12560   }
12561 
12562   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12563                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12564   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12565                     Res.getValue(1));
12566   setValue(&I, Res);
12567 }
12568 
12569 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12570   SmallVector<EVT, 4> ValueVTs;
12571   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12572                   ValueVTs);
12573   unsigned NumValues = ValueVTs.size();
12574   if (NumValues == 0) return;
12575 
12576   SmallVector<SDValue, 4> Values(NumValues);
12577   SDValue Op = getValue(I.getOperand(0));
12578 
12579   for (unsigned i = 0; i != NumValues; ++i)
12580     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12581                             SDValue(Op.getNode(), Op.getResNo() + i));
12582 
12583   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12584                            DAG.getVTList(ValueVTs), Values));
12585 }
12586 
12587 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12588   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12589   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12590 
12591   SDLoc DL = getCurSDLoc();
12592   SDValue V1 = getValue(I.getOperand(0));
12593   SDValue V2 = getValue(I.getOperand(1));
12594   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12595 
12596   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12597   if (VT.isScalableVector()) {
12598     setValue(
12599         &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12600                         DAG.getSignedConstant(
12601                             Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
12602     return;
12603   }
12604 
12605   unsigned NumElts = VT.getVectorNumElements();
12606 
12607   uint64_t Idx = (NumElts + Imm) % NumElts;
12608 
12609   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12610   SmallVector<int, 8> Mask;
12611   for (unsigned i = 0; i < NumElts; ++i)
12612     Mask.push_back(Idx + i);
12613   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12614 }
12615 
12616 // Consider the following MIR after SelectionDAG, which produces output in
12617 // phyregs in the first case or virtregs in the second case.
12618 //
12619 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12620 // %5:gr32 = COPY $ebx
12621 // %6:gr32 = COPY $edx
12622 // %1:gr32 = COPY %6:gr32
12623 // %0:gr32 = COPY %5:gr32
12624 //
12625 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12626 // %1:gr32 = COPY %6:gr32
12627 // %0:gr32 = COPY %5:gr32
12628 //
12629 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12630 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12631 //
12632 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12633 // to a single virtreg (such as %0). The remaining outputs monotonically
12634 // increase in virtreg number from there. If a callbr has no outputs, then it
12635 // should not have a corresponding callbr landingpad; in fact, the callbr
12636 // landingpad would not even be able to refer to such a callbr.
12637 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12638   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12639   // There is definitely at least one copy.
12640   assert(MI->getOpcode() == TargetOpcode::COPY &&
12641          "start of copy chain MUST be COPY");
12642   Reg = MI->getOperand(1).getReg();
12643   MI = MRI.def_begin(Reg)->getParent();
12644   // There may be an optional second copy.
12645   if (MI->getOpcode() == TargetOpcode::COPY) {
12646     assert(Reg.isVirtual() && "expected COPY of virtual register");
12647     Reg = MI->getOperand(1).getReg();
12648     assert(Reg.isPhysical() && "expected COPY of physical register");
12649     MI = MRI.def_begin(Reg)->getParent();
12650   }
12651   // The start of the chain must be an INLINEASM_BR.
12652   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12653          "end of copy chain MUST be INLINEASM_BR");
12654   return Reg;
12655 }
12656 
12657 // We must do this walk rather than the simpler
12658 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12659 // otherwise we will end up with copies of virtregs only valid along direct
12660 // edges.
12661 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12662   SmallVector<EVT, 8> ResultVTs;
12663   SmallVector<SDValue, 8> ResultValues;
12664   const auto *CBR =
12665       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12666 
12667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12668   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12669   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12670 
12671   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12672   SDValue Chain = DAG.getRoot();
12673 
12674   // Re-parse the asm constraints string.
12675   TargetLowering::AsmOperandInfoVector TargetConstraints =
12676       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12677   for (auto &T : TargetConstraints) {
12678     SDISelAsmOperandInfo OpInfo(T);
12679     if (OpInfo.Type != InlineAsm::isOutput)
12680       continue;
12681 
12682     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12683     // individual constraint.
12684     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12685 
12686     switch (OpInfo.ConstraintType) {
12687     case TargetLowering::C_Register:
12688     case TargetLowering::C_RegisterClass: {
12689       // Fill in OpInfo.AssignedRegs.Regs.
12690       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12691 
12692       // getRegistersForValue may produce 1 to many registers based on whether
12693       // the OpInfo.ConstraintVT is legal on the target or not.
12694       for (Register &Reg : OpInfo.AssignedRegs.Regs) {
12695         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12696         if (Register::isPhysicalRegister(OriginalDef))
12697           FuncInfo.MBB->addLiveIn(OriginalDef);
12698         // Update the assigned registers to use the original defs.
12699         Reg = OriginalDef;
12700       }
12701 
12702       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12703           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12704       ResultValues.push_back(V);
12705       ResultVTs.push_back(OpInfo.ConstraintVT);
12706       break;
12707     }
12708     case TargetLowering::C_Other: {
12709       SDValue Flag;
12710       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12711                                                   OpInfo, DAG);
12712       ++InitialDef;
12713       ResultValues.push_back(V);
12714       ResultVTs.push_back(OpInfo.ConstraintVT);
12715       break;
12716     }
12717     default:
12718       break;
12719     }
12720   }
12721   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12722                           DAG.getVTList(ResultVTs), ResultValues);
12723   setValue(&I, V);
12724 }
12725