1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 323 324 } 325 326 // Trivial bitcast if the types are the same size and the destination 327 // vector type is legal. 328 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 329 TLI.isTypeLegal(ValueVT)) 330 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 331 332 // Handle cases such as i8 -> <1 x i1> 333 if (ValueVT.getVectorNumElements() != 1) { 334 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 335 "non-trivial scalar-to-vector conversion"); 336 return DAG.getUNDEF(ValueVT); 337 } 338 339 if (ValueVT.getVectorNumElements() == 1 && 340 ValueVT.getVectorElementType() != PartEVT) 341 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 342 343 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 344 } 345 346 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V); 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 MVT PartVT, const Value *V, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 EVT ValueVT = Val.getValueType(); 358 359 // Handle the vector case separately. 360 if (ValueVT.isVector()) 361 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 362 363 unsigned PartBits = PartVT.getSizeInBits(); 364 unsigned OrigNumParts = NumParts; 365 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 366 "Copying to an illegal type!"); 367 368 if (NumParts == 0) 369 return; 370 371 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 372 EVT PartEVT = PartVT; 373 if (PartEVT == ValueVT) { 374 assert(NumParts == 1 && "No-op copy with multiple parts!"); 375 Parts[0] = Val; 376 return; 377 } 378 379 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 380 // If the parts cover more bits than the value has, promote the value. 381 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 382 assert(NumParts == 1 && "Do not know what to promote to!"); 383 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 384 } else { 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 } else if (PartBits == ValueVT.getSizeInBits()) { 394 // Different types of the same size. 395 assert(NumParts == 1 && PartEVT != ValueVT); 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 398 // If the parts cover less bits than value has, truncate the value. 399 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 400 ValueVT.isInteger() && 401 "Unknown mismatch!"); 402 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 403 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 404 if (PartVT == MVT::x86mmx) 405 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 406 } 407 408 // The value may have changed - recompute ValueVT. 409 ValueVT = Val.getValueType(); 410 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 411 "Failed to tile the value with PartVT!"); 412 413 if (NumParts == 1) { 414 if (PartEVT != ValueVT) 415 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 416 "scalar-to-vector conversion failed"); 417 418 Parts[0] = Val; 419 return; 420 } 421 422 // Expand the value into multiple parts. 423 if (NumParts & (NumParts - 1)) { 424 // The number of parts is not a power of 2. Split off and copy the tail. 425 assert(PartVT.isInteger() && ValueVT.isInteger() && 426 "Do not know what to expand to!"); 427 unsigned RoundParts = 1 << Log2_32(NumParts); 428 unsigned RoundBits = RoundParts * PartBits; 429 unsigned OddParts = NumParts - RoundParts; 430 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 431 DAG.getIntPtrConstant(RoundBits, DL)); 432 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 433 434 if (DAG.getDataLayout().isBigEndian()) 435 // The odd parts were reversed by getCopyToParts - unreverse them. 436 std::reverse(Parts + RoundParts, Parts + NumParts); 437 438 NumParts = RoundParts; 439 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 441 } 442 443 // The number of parts is a power of 2. Repeatedly bisect the value using 444 // EXTRACT_ELEMENT. 445 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 446 EVT::getIntegerVT(*DAG.getContext(), 447 ValueVT.getSizeInBits()), 448 Val); 449 450 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 451 for (unsigned i = 0; i < NumParts; i += StepSize) { 452 unsigned ThisBits = StepSize * PartBits / 2; 453 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 454 SDValue &Part0 = Parts[i]; 455 SDValue &Part1 = Parts[i+StepSize/2]; 456 457 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 459 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 461 462 if (ThisBits == PartBits && ThisVT != PartVT) { 463 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 464 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 465 } 466 } 467 } 468 469 if (DAG.getDataLayout().isBigEndian()) 470 std::reverse(Parts, Parts + OrigNumParts); 471 } 472 473 474 /// getCopyToPartsVector - Create a series of nodes that contain the specified 475 /// value split into legal parts. 476 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 477 SDValue Val, SDValue *Parts, unsigned NumParts, 478 MVT PartVT, const Value *V) { 479 EVT ValueVT = Val.getValueType(); 480 assert(ValueVT.isVector() && "Not a vector"); 481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 482 483 if (NumParts == 1) { 484 EVT PartEVT = PartVT; 485 if (PartEVT == ValueVT) { 486 // Nothing to do. 487 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 488 // Bitconvert vector->vector case. 489 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 490 } else if (PartVT.isVector() && 491 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 492 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 493 EVT ElementVT = PartVT.getVectorElementType(); 494 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 495 // undef elements. 496 SmallVector<SDValue, 16> Ops; 497 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getNode( 499 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 500 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 501 502 for (unsigned i = ValueVT.getVectorNumElements(), 503 e = PartVT.getVectorNumElements(); i != e; ++i) 504 Ops.push_back(DAG.getUNDEF(ElementVT)); 505 506 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 507 508 // FIXME: Use CONCAT for 2x -> 4x. 509 510 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 511 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType().bitsGE( 514 ValueVT.getVectorElementType()) && 515 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 516 517 // Promoted vector extract 518 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode( 524 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 526 527 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = 552 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 554 TLI.getVectorIdxTy(DAG.getDataLayout()))); 555 else 556 Ops[i] = DAG.getNode( 557 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 558 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 RegsForValue::RegsForValue() {} 580 581 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 582 EVT valuevt) 583 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 584 585 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 586 const DataLayout &DL, unsigned Reg, Type *Ty) { 587 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 588 589 for (EVT ValueVT : ValueVTs) { 590 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 591 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 592 for (unsigned i = 0; i != NumRegs; ++i) 593 Regs.push_back(Reg + i); 594 RegVTs.push_back(RegisterVT); 595 Reg += NumRegs; 596 } 597 } 598 599 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 600 /// this value and returns the result as a ValueVT value. This uses 601 /// Chain/Flag as the input and updates them for the output Chain/Flag. 602 /// If the Flag pointer is NULL, no flag is used. 603 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 604 FunctionLoweringInfo &FuncInfo, 605 SDLoc dl, 606 SDValue &Chain, SDValue *Flag, 607 const Value *V) const { 608 // A Value with type {} or [0 x %t] needs no registers. 609 if (ValueVTs.empty()) 610 return SDValue(); 611 612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 613 614 // Assemble the legal parts into the final values. 615 SmallVector<SDValue, 4> Values(ValueVTs.size()); 616 SmallVector<SDValue, 8> Parts; 617 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 // Copy the legal parts from the registers. 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 621 MVT RegisterVT = RegVTs[Value]; 622 623 Parts.resize(NumRegs); 624 for (unsigned i = 0; i != NumRegs; ++i) { 625 SDValue P; 626 if (!Flag) { 627 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 628 } else { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 630 *Flag = P.getValue(2); 631 } 632 633 Chain = P.getValue(1); 634 Parts[i] = P; 635 636 // If the source register was virtual and if we know something about it, 637 // add an assert node. 638 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 639 !RegisterVT.isInteger() || RegisterVT.isVector()) 640 continue; 641 642 const FunctionLoweringInfo::LiveOutInfo *LOI = 643 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 644 if (!LOI) 645 continue; 646 647 unsigned RegSize = RegisterVT.getSizeInBits(); 648 unsigned NumSignBits = LOI->NumSignBits; 649 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 650 651 if (NumZeroBits == RegSize) { 652 // The current value is a zero. 653 // Explicitly express that as it would be easier for 654 // optimizations to kick in. 655 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 656 continue; 657 } 658 659 // FIXME: We capture more information than the dag can represent. For 660 // now, just use the tightest assertzext/assertsext possible. 661 bool isSExt = true; 662 EVT FromVT(MVT::Other); 663 if (NumSignBits == RegSize) 664 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 665 else if (NumZeroBits >= RegSize-1) 666 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 667 else if (NumSignBits > RegSize-8) 668 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 669 else if (NumZeroBits >= RegSize-8) 670 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 671 else if (NumSignBits > RegSize-16) 672 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 673 else if (NumZeroBits >= RegSize-16) 674 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 675 else if (NumSignBits > RegSize-32) 676 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 677 else if (NumZeroBits >= RegSize-32) 678 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 679 else 680 continue; 681 682 // Add an assertion node. 683 assert(FromVT != MVT::Other); 684 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 685 RegisterVT, P, DAG.getValueType(FromVT)); 686 } 687 688 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 689 NumRegs, RegisterVT, ValueVT, V); 690 Part += NumRegs; 691 Parts.clear(); 692 } 693 694 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 695 } 696 697 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 698 /// specified value into the registers specified by this object. This uses 699 /// Chain/Flag as the input and updates them for the output Chain/Flag. 700 /// If the Flag pointer is NULL, no flag is used. 701 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 702 SDValue &Chain, SDValue *Flag, const Value *V, 703 ISD::NodeType PreferredExtendType) const { 704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 705 ISD::NodeType ExtendKind = PreferredExtendType; 706 707 // Get the list of the values's legal parts. 708 unsigned NumRegs = Regs.size(); 709 SmallVector<SDValue, 8> Parts(NumRegs); 710 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 711 EVT ValueVT = ValueVTs[Value]; 712 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 713 MVT RegisterVT = RegVTs[Value]; 714 715 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 716 ExtendKind = ISD::ZERO_EXTEND; 717 718 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 719 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 720 Part += NumParts; 721 } 722 723 // Copy the parts into the registers. 724 SmallVector<SDValue, 8> Chains(NumRegs); 725 for (unsigned i = 0; i != NumRegs; ++i) { 726 SDValue Part; 727 if (!Flag) { 728 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 729 } else { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 731 *Flag = Part.getValue(1); 732 } 733 734 Chains[i] = Part.getValue(0); 735 } 736 737 if (NumRegs == 1 || Flag) 738 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 739 // flagged to it. That is the CopyToReg nodes and the user are considered 740 // a single scheduling unit. If we create a TokenFactor and return it as 741 // chain, then the TokenFactor is both a predecessor (operand) of the 742 // user as well as a successor (the TF operands are flagged to the user). 743 // c1, f1 = CopyToReg 744 // c2, f2 = CopyToReg 745 // c3 = TokenFactor c1, c2 746 // ... 747 // = op c3, ..., f2 748 Chain = Chains[NumRegs-1]; 749 else 750 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 751 } 752 753 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 754 /// operand list. This adds the code marker and includes the number of 755 /// values added into it. 756 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 757 unsigned MatchingIdx, SDLoc dl, 758 SelectionDAG &DAG, 759 std::vector<SDValue> &Ops) const { 760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 761 762 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 763 if (HasMatching) 764 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 765 else if (!Regs.empty() && 766 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 767 // Put the register class of the virtual registers in the flag word. That 768 // way, later passes can recompute register class constraints for inline 769 // assembly as well as normal instructions. 770 // Don't do this for tied operands that can use the regclass information 771 // from the def. 772 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 773 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 774 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 775 } 776 777 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 778 Ops.push_back(Res); 779 780 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 781 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 783 MVT RegisterVT = RegVTs[Value]; 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 786 unsigned TheReg = Regs[Reg++]; 787 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 788 789 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 790 // If we clobbered the stack pointer, MFI should know about it. 791 assert(DAG.getMachineFunction().getFrameInfo()-> 792 hasOpaqueSPAdjustment()); 793 } 794 } 795 } 796 } 797 798 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 799 const TargetLibraryInfo *li) { 800 AA = &aa; 801 GFI = gfi; 802 LibInfo = li; 803 DL = &DAG.getDataLayout(); 804 Context = DAG.getContext(); 805 LPadToCallSiteMap.clear(); 806 } 807 808 /// clear - Clear out the current SelectionDAG and the associated 809 /// state and prepare this SelectionDAGBuilder object to be used 810 /// for a new block. This doesn't clear out information about 811 /// additional blocks that are needed to complete switch lowering 812 /// or PHI node updating; that information is cleared out as it is 813 /// consumed. 814 void SelectionDAGBuilder::clear() { 815 NodeMap.clear(); 816 UnusedArgNodeMap.clear(); 817 PendingLoads.clear(); 818 PendingExports.clear(); 819 CurInst = nullptr; 820 HasTailCall = false; 821 SDNodeOrder = LowestSDNodeOrder; 822 StatepointLowering.clear(); 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is separated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 853 PendingLoads); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 883 PendingExports); 884 PendingExports.clear(); 885 DAG.setRoot(Root); 886 return Root; 887 } 888 889 void SelectionDAGBuilder::visit(const Instruction &I) { 890 // Set up outgoing PHI node register values before emitting the terminator. 891 if (isa<TerminatorInst>(&I)) 892 HandlePHINodesInSuccessorBlocks(I.getParent()); 893 894 ++SDNodeOrder; 895 896 CurInst = &I; 897 898 visit(I.getOpcode(), I); 899 900 if (!isa<TerminatorInst>(&I) && !HasTailCall) 901 CopyToExportRegsIfNeeded(&I); 902 903 CurInst = nullptr; 904 } 905 906 void SelectionDAGBuilder::visitPHI(const PHINode &) { 907 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 908 } 909 910 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 911 // Note: this doesn't use InstVisitor, because it has to work with 912 // ConstantExpr's in addition to instructions. 913 switch (Opcode) { 914 default: llvm_unreachable("Unknown instruction type encountered!"); 915 // Build the switch statement using the Instruction.def file. 916 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 917 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 918 #include "llvm/IR/Instruction.def" 919 } 920 } 921 922 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 923 // generate the debug data structures now that we've seen its definition. 924 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 925 SDValue Val) { 926 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 927 if (DDI.getDI()) { 928 const DbgValueInst *DI = DDI.getDI(); 929 DebugLoc dl = DDI.getdl(); 930 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 931 DILocalVariable *Variable = DI->getVariable(); 932 DIExpression *Expr = DI->getExpression(); 933 assert(Variable->isValidLocationForIntrinsic(dl) && 934 "Expected inlined-at fields to agree"); 935 uint64_t Offset = DI->getOffset(); 936 // A dbg.value for an alloca is always indirect. 937 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 938 SDDbgValue *SDV; 939 if (Val.getNode()) { 940 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 941 Val)) { 942 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 943 IsIndirect, Offset, dl, DbgSDNodeOrder); 944 DAG.AddDbgValue(SDV, Val.getNode(), false); 945 } 946 } else 947 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 948 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 949 } 950 } 951 952 /// getCopyFromRegs - If there was virtual register allocated for the value V 953 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 954 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 955 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 956 SDValue Result; 957 958 if (It != FuncInfo.ValueMap.end()) { 959 unsigned InReg = It->second; 960 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 961 DAG.getDataLayout(), InReg, Ty); 962 SDValue Chain = DAG.getEntryNode(); 963 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 964 resolveDanglingDebugInfo(V, Result); 965 } 966 967 return Result; 968 } 969 970 /// getValue - Return an SDValue for the given Value. 971 SDValue SelectionDAGBuilder::getValue(const Value *V) { 972 // If we already have an SDValue for this value, use it. It's important 973 // to do this first, so that we don't create a CopyFromReg if we already 974 // have a regular SDValue. 975 SDValue &N = NodeMap[V]; 976 if (N.getNode()) return N; 977 978 // If there's a virtual register allocated and initialized for this 979 // value, use it. 980 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 981 if (copyFromReg.getNode()) { 982 return copyFromReg; 983 } 984 985 // Otherwise create a new SDValue and remember it. 986 SDValue Val = getValueImpl(V); 987 NodeMap[V] = Val; 988 resolveDanglingDebugInfo(V, Val); 989 return Val; 990 } 991 992 // Return true if SDValue exists for the given Value 993 bool SelectionDAGBuilder::findValue(const Value *V) const { 994 return (NodeMap.find(V) != NodeMap.end()) || 995 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) { 1004 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1005 // Remove the debug location from the node as the node is about to be used 1006 // in a location which may differ from the original debug location. This 1007 // is relevant to Constant and ConstantFP nodes because they can appear 1008 // as constant expressions inside PHI nodes. 1009 N->setDebugLoc(DebugLoc()); 1010 } 1011 return N; 1012 } 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 if (const Constant *C = dyn_cast<Constant>(V)) { 1027 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1028 1029 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1030 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1031 1032 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1033 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1034 1035 if (isa<ConstantPointerNull>(C)) { 1036 unsigned AS = V->getType()->getPointerAddressSpace(); 1037 return DAG.getConstant(0, getCurSDLoc(), 1038 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1039 } 1040 1041 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1042 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1043 1044 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1045 return DAG.getUNDEF(VT); 1046 1047 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1048 visit(CE->getOpcode(), *CE); 1049 SDValue N1 = NodeMap[V]; 1050 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1051 return N1; 1052 } 1053 1054 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1055 SmallVector<SDValue, 4> Constants; 1056 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1057 OI != OE; ++OI) { 1058 SDNode *Val = getValue(*OI).getNode(); 1059 // If the operand is an empty aggregate, there are no values. 1060 if (!Val) continue; 1061 // Add each leaf value from the operand to the Constants list 1062 // to form a flattened list of all the values. 1063 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1064 Constants.push_back(SDValue(Val, i)); 1065 } 1066 1067 return DAG.getMergeValues(Constants, getCurSDLoc()); 1068 } 1069 1070 if (const ConstantDataSequential *CDS = 1071 dyn_cast<ConstantDataSequential>(C)) { 1072 SmallVector<SDValue, 4> Ops; 1073 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1074 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1075 // Add each leaf value from the operand to the Constants list 1076 // to form a flattened list of all the values. 1077 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1078 Ops.push_back(SDValue(Val, i)); 1079 } 1080 1081 if (isa<ArrayType>(CDS->getType())) 1082 return DAG.getMergeValues(Ops, getCurSDLoc()); 1083 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1084 VT, Ops); 1085 } 1086 1087 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1088 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1089 "Unknown struct or array constant!"); 1090 1091 SmallVector<EVT, 4> ValueVTs; 1092 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1093 unsigned NumElts = ValueVTs.size(); 1094 if (NumElts == 0) 1095 return SDValue(); // empty struct 1096 SmallVector<SDValue, 4> Constants(NumElts); 1097 for (unsigned i = 0; i != NumElts; ++i) { 1098 EVT EltVT = ValueVTs[i]; 1099 if (isa<UndefValue>(C)) 1100 Constants[i] = DAG.getUNDEF(EltVT); 1101 else if (EltVT.isFloatingPoint()) 1102 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1103 else 1104 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1105 } 1106 1107 return DAG.getMergeValues(Constants, getCurSDLoc()); 1108 } 1109 1110 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1111 return DAG.getBlockAddress(BA, VT); 1112 1113 VectorType *VecTy = cast<VectorType>(V->getType()); 1114 unsigned NumElements = VecTy->getNumElements(); 1115 1116 // Now that we know the number and type of the elements, get that number of 1117 // elements into the Ops array based on what kind of constant it is. 1118 SmallVector<SDValue, 16> Ops; 1119 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1120 for (unsigned i = 0; i != NumElements; ++i) 1121 Ops.push_back(getValue(CV->getOperand(i))); 1122 } else { 1123 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1124 EVT EltVT = 1125 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1126 1127 SDValue Op; 1128 if (EltVT.isFloatingPoint()) 1129 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 Ops.assign(NumElements, Op); 1133 } 1134 1135 // Create a BUILD_VECTOR node. 1136 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1137 } 1138 1139 // If this is a static alloca, generate it as the frameindex instead of 1140 // computation. 1141 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1142 DenseMap<const AllocaInst*, int>::iterator SI = 1143 FuncInfo.StaticAllocaMap.find(AI); 1144 if (SI != FuncInfo.StaticAllocaMap.end()) 1145 return DAG.getFrameIndex(SI->second, 1146 TLI.getPointerTy(DAG.getDataLayout())); 1147 } 1148 1149 // If this is an instruction which fast-isel has deferred, select it now. 1150 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1151 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1152 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1153 Inst->getType()); 1154 SDValue Chain = DAG.getEntryNode(); 1155 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1156 } 1157 1158 llvm_unreachable("Can't get register for value!"); 1159 } 1160 1161 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1162 report_fatal_error("visitCleanupRet not yet implemented!"); 1163 } 1164 1165 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1166 report_fatal_error("visitCatchEndPad not yet implemented!"); 1167 } 1168 1169 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1170 report_fatal_error("visitCatchRet not yet implemented!"); 1171 } 1172 1173 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1174 report_fatal_error("visitCatchPad not yet implemented!"); 1175 } 1176 1177 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1178 report_fatal_error("visitTerminatePad not yet implemented!"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 report_fatal_error("visitCleanupPad not yet implemented!"); 1183 } 1184 1185 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1187 auto &DL = DAG.getDataLayout(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i], 1216 getCurSDLoc())); 1217 Chains[i] = 1218 DAG.getStore(Chain, getCurSDLoc(), 1219 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1220 // FIXME: better loc info would be nice. 1221 Add, MachinePointerInfo(), false, false, 0); 1222 } 1223 1224 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1225 MVT::Other, Chains); 1226 } else if (I.getNumOperands() != 0) { 1227 SmallVector<EVT, 4> ValueVTs; 1228 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1229 unsigned NumValues = ValueVTs.size(); 1230 if (NumValues) { 1231 SDValue RetOp = getValue(I.getOperand(0)); 1232 1233 const Function *F = I.getParent()->getParent(); 1234 1235 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1236 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1237 Attribute::SExt)) 1238 ExtendKind = ISD::SIGN_EXTEND; 1239 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::ZExt)) 1241 ExtendKind = ISD::ZERO_EXTEND; 1242 1243 LLVMContext &Context = F->getContext(); 1244 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1245 Attribute::InReg); 1246 1247 for (unsigned j = 0; j != NumValues; ++j) { 1248 EVT VT = ValueVTs[j]; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1254 MVT PartVT = TLI.getRegisterType(Context, VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (RetInReg) 1263 Flags.setInReg(); 1264 1265 // Propagate extension type if any 1266 if (ExtendKind == ISD::SIGN_EXTEND) 1267 Flags.setSExt(); 1268 else if (ExtendKind == ISD::ZERO_EXTEND) 1269 Flags.setZExt(); 1270 1271 for (unsigned i = 0; i < NumParts; ++i) { 1272 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1273 VT, /*isfixed=*/true, 0, 0)); 1274 OutVals.push_back(Parts[i]); 1275 } 1276 } 1277 } 1278 } 1279 1280 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1281 CallingConv::ID CallConv = 1282 DAG.getMachineFunction().getFunction()->getCallingConv(); 1283 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1284 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1285 1286 // Verify that the target's LowerReturn behaved as expected. 1287 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1288 "LowerReturn didn't return a valid chain!"); 1289 1290 // Update the DAG with the new chain value resulting from return lowering. 1291 DAG.setRoot(Chain); 1292 } 1293 1294 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1295 /// created for it, emit nodes to copy the value into the virtual 1296 /// registers. 1297 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1298 // Skip empty types 1299 if (V->getType()->isEmptyTy()) 1300 return; 1301 1302 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1303 if (VMI != FuncInfo.ValueMap.end()) { 1304 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1305 CopyValueToVirtualRegister(V, VMI->second); 1306 } 1307 } 1308 1309 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1310 /// the current basic block, add it to ValueMap now so that we'll get a 1311 /// CopyTo/FromReg. 1312 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1313 // No need to export constants. 1314 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1315 1316 // Already exported? 1317 if (FuncInfo.isExportedInst(V)) return; 1318 1319 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1320 CopyValueToVirtualRegister(V, Reg); 1321 } 1322 1323 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1324 const BasicBlock *FromBB) { 1325 // The operands of the setcc have to be in this block. We don't know 1326 // how to export them from some other block. 1327 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1328 // Can export from current BB. 1329 if (VI->getParent() == FromBB) 1330 return true; 1331 1332 // Is already exported, noop. 1333 return FuncInfo.isExportedInst(V); 1334 } 1335 1336 // If this is an argument, we can export it if the BB is the entry block or 1337 // if it is already exported. 1338 if (isa<Argument>(V)) { 1339 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1340 return true; 1341 1342 // Otherwise, can only export this if it is already exported. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // Otherwise, constants can always be exported. 1347 return true; 1348 } 1349 1350 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1351 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1352 const MachineBasicBlock *Dst) const { 1353 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1354 if (!BPI) 1355 return 0; 1356 const BasicBlock *SrcBB = Src->getBasicBlock(); 1357 const BasicBlock *DstBB = Dst->getBasicBlock(); 1358 return BPI->getEdgeWeight(SrcBB, DstBB); 1359 } 1360 1361 void SelectionDAGBuilder:: 1362 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1363 uint32_t Weight /* = 0 */) { 1364 if (!Weight) 1365 Weight = getEdgeWeight(Src, Dst); 1366 Src->addSuccessor(Dst, Weight); 1367 } 1368 1369 1370 static bool InBlock(const Value *V, const BasicBlock *BB) { 1371 if (const Instruction *I = dyn_cast<Instruction>(V)) 1372 return I->getParent() == BB; 1373 return true; 1374 } 1375 1376 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1377 /// This function emits a branch and is used at the leaves of an OR or an 1378 /// AND operator tree. 1379 /// 1380 void 1381 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1382 MachineBasicBlock *TBB, 1383 MachineBasicBlock *FBB, 1384 MachineBasicBlock *CurBB, 1385 MachineBasicBlock *SwitchBB, 1386 uint32_t TWeight, 1387 uint32_t FWeight) { 1388 const BasicBlock *BB = CurBB->getBasicBlock(); 1389 1390 // If the leaf of the tree is a comparison, merge the condition into 1391 // the caseblock. 1392 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1393 // The operands of the cmp have to be in this block. We don't know 1394 // how to export them from some other block. If this is the first block 1395 // of the sequence, no exporting is needed. 1396 if (CurBB == SwitchBB || 1397 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1398 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1399 ISD::CondCode Condition; 1400 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1401 Condition = getICmpCondCode(IC->getPredicate()); 1402 } else { 1403 const FCmpInst *FC = cast<FCmpInst>(Cond); 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } 1408 1409 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1410 TBB, FBB, CurBB, TWeight, FWeight); 1411 SwitchCases.push_back(CB); 1412 return; 1413 } 1414 } 1415 1416 // Create a CaseBlock record representing this branch. 1417 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1418 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1419 SwitchCases.push_back(CB); 1420 } 1421 1422 /// Scale down both weights to fit into uint32_t. 1423 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1424 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1425 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1426 NewTrue = NewTrue / Scale; 1427 NewFalse = NewFalse / Scale; 1428 } 1429 1430 /// FindMergedConditions - If Cond is an expression like 1431 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1432 MachineBasicBlock *TBB, 1433 MachineBasicBlock *FBB, 1434 MachineBasicBlock *CurBB, 1435 MachineBasicBlock *SwitchBB, 1436 Instruction::BinaryOps Opc, 1437 uint32_t TWeight, 1438 uint32_t FWeight) { 1439 // If this node is not part of the or/and tree, emit it as a branch. 1440 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1441 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1442 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1443 BOp->getParent() != CurBB->getBasicBlock() || 1444 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1445 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1446 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1447 TWeight, FWeight); 1448 return; 1449 } 1450 1451 // Create TmpBB after CurBB. 1452 MachineFunction::iterator BBI = CurBB; 1453 MachineFunction &MF = DAG.getMachineFunction(); 1454 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1455 CurBB->getParent()->insert(++BBI, TmpBB); 1456 1457 if (Opc == Instruction::Or) { 1458 // Codegen X | Y as: 1459 // BB1: 1460 // jmp_if_X TBB 1461 // jmp TmpBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 1467 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1468 // The requirement is that 1469 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1470 // = TrueProb for original BB. 1471 // Assuming the original weights are A and B, one choice is to set BB1's 1472 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1473 // assumes that 1474 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1475 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1476 // TmpBB, but the math is more complicated. 1477 1478 uint64_t NewTrueWeight = TWeight; 1479 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1480 ScaleWeights(NewTrueWeight, NewFalseWeight); 1481 // Emit the LHS condition. 1482 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1483 NewTrueWeight, NewFalseWeight); 1484 1485 NewTrueWeight = TWeight; 1486 NewFalseWeight = 2 * (uint64_t)FWeight; 1487 ScaleWeights(NewTrueWeight, NewFalseWeight); 1488 // Emit the RHS condition into TmpBB. 1489 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1490 NewTrueWeight, NewFalseWeight); 1491 } else { 1492 assert(Opc == Instruction::And && "Unknown merge op!"); 1493 // Codegen X & Y as: 1494 // BB1: 1495 // jmp_if_X TmpBB 1496 // jmp FBB 1497 // TmpBB: 1498 // jmp_if_Y TBB 1499 // jmp FBB 1500 // 1501 // This requires creation of TmpBB after CurBB. 1502 1503 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1504 // The requirement is that 1505 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1506 // = FalseProb for original BB. 1507 // Assuming the original weights are A and B, one choice is to set BB1's 1508 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1509 // assumes that 1510 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1511 1512 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1513 uint64_t NewFalseWeight = FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the LHS condition. 1516 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 1519 NewTrueWeight = 2 * (uint64_t)TWeight; 1520 NewFalseWeight = FWeight; 1521 ScaleWeights(NewTrueWeight, NewFalseWeight); 1522 // Emit the RHS condition into TmpBB. 1523 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1524 NewTrueWeight, NewFalseWeight); 1525 } 1526 } 1527 1528 /// If the set of cases should be emitted as a series of branches, return true. 1529 /// If we should emit this as a bunch of and/or'd together conditions, return 1530 /// false. 1531 bool 1532 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1533 if (Cases.size() != 2) return true; 1534 1535 // If this is two comparisons of the same values or'd or and'd together, they 1536 // will get folded into a single comparison, so don't emit two blocks. 1537 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1538 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1539 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1540 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1541 return false; 1542 } 1543 1544 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1545 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1546 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1547 Cases[0].CC == Cases[1].CC && 1548 isa<Constant>(Cases[0].CmpRHS) && 1549 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1550 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1551 return false; 1552 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1553 return false; 1554 } 1555 1556 return true; 1557 } 1558 1559 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1560 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1561 1562 // Update machine-CFG edges. 1563 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1564 1565 if (I.isUnconditional()) { 1566 // Update machine-CFG edges. 1567 BrMBB->addSuccessor(Succ0MBB); 1568 1569 // If this is not a fall-through branch or optimizations are switched off, 1570 // emit the branch. 1571 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1572 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1573 MVT::Other, getControlRoot(), 1574 DAG.getBasicBlock(Succ0MBB))); 1575 1576 return; 1577 } 1578 1579 // If this condition is one of the special cases we handle, do special stuff 1580 // now. 1581 const Value *CondVal = I.getCondition(); 1582 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1583 1584 // If this is a series of conditions that are or'd or and'd together, emit 1585 // this as a sequence of branches instead of setcc's with and/or operations. 1586 // As long as jumps are not expensive, this should improve performance. 1587 // For example, instead of something like: 1588 // cmp A, B 1589 // C = seteq 1590 // cmp D, E 1591 // F = setle 1592 // or C, F 1593 // jnz foo 1594 // Emit: 1595 // cmp A, B 1596 // je foo 1597 // cmp D, E 1598 // jle foo 1599 // 1600 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1601 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1602 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1603 BOp->getOpcode() == Instruction::Or)) { 1604 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1605 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1606 getEdgeWeight(BrMBB, Succ1MBB)); 1607 // If the compares in later blocks need to use values not currently 1608 // exported from this block, export them now. This block should always 1609 // be the first entry. 1610 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1611 1612 // Allow some cases to be rejected. 1613 if (ShouldEmitAsBranches(SwitchCases)) { 1614 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1615 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1616 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1617 } 1618 1619 // Emit the branch for this block. 1620 visitSwitchCase(SwitchCases[0], BrMBB); 1621 SwitchCases.erase(SwitchCases.begin()); 1622 return; 1623 } 1624 1625 // Okay, we decided not to do this, remove any inserted MBB's and clear 1626 // SwitchCases. 1627 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1628 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1629 1630 SwitchCases.clear(); 1631 } 1632 } 1633 1634 // Create a CaseBlock record representing this branch. 1635 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1636 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1637 1638 // Use visitSwitchCase to actually insert the fast branch sequence for this 1639 // cond branch. 1640 visitSwitchCase(CB, BrMBB); 1641 } 1642 1643 /// visitSwitchCase - Emits the necessary code to represent a single node in 1644 /// the binary search tree resulting from lowering a switch instruction. 1645 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1646 MachineBasicBlock *SwitchBB) { 1647 SDValue Cond; 1648 SDValue CondLHS = getValue(CB.CmpLHS); 1649 SDLoc dl = getCurSDLoc(); 1650 1651 // Build the setcc now. 1652 if (!CB.CmpMHS) { 1653 // Fold "(X == true)" to X and "(X == false)" to !X to 1654 // handle common cases produced by branch lowering. 1655 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1656 CB.CC == ISD::SETEQ) 1657 Cond = CondLHS; 1658 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1659 CB.CC == ISD::SETEQ) { 1660 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1662 } else 1663 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1664 } else { 1665 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1666 1667 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1668 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1669 1670 SDValue CmpOp = getValue(CB.CmpMHS); 1671 EVT VT = CmpOp.getValueType(); 1672 1673 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1674 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1675 ISD::SETLE); 1676 } else { 1677 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1678 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1679 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1680 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1681 } 1682 } 1683 1684 // Update successor info 1685 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1686 // TrueBB and FalseBB are always different unless the incoming IR is 1687 // degenerate. This only happens when running llc on weird IR. 1688 if (CB.TrueBB != CB.FalseBB) 1689 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1690 1691 // If the lhs block is the next block, invert the condition so that we can 1692 // fall through to the lhs instead of the rhs block. 1693 if (CB.TrueBB == NextBlock(SwitchBB)) { 1694 std::swap(CB.TrueBB, CB.FalseBB); 1695 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1696 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1697 } 1698 1699 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1700 MVT::Other, getControlRoot(), Cond, 1701 DAG.getBasicBlock(CB.TrueBB)); 1702 1703 // Insert the false branch. Do this even if it's a fall through branch, 1704 // this makes it easier to do DAG optimizations which require inverting 1705 // the branch condition. 1706 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1707 DAG.getBasicBlock(CB.FalseBB)); 1708 1709 DAG.setRoot(BrCond); 1710 } 1711 1712 /// visitJumpTable - Emit JumpTable node in the current MBB 1713 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1714 // Emit the code for the jump table 1715 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1716 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1717 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1718 JT.Reg, PTy); 1719 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1720 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1721 MVT::Other, Index.getValue(1), 1722 Table, Index); 1723 DAG.setRoot(BrJumpTable); 1724 } 1725 1726 /// visitJumpTableHeader - This function emits necessary code to produce index 1727 /// in the JumpTable from switch case. 1728 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1729 JumpTableHeader &JTH, 1730 MachineBasicBlock *SwitchBB) { 1731 SDLoc dl = getCurSDLoc(); 1732 1733 // Subtract the lowest switch case value from the value being switched on and 1734 // conditional branch to default mbb if the result is greater than the 1735 // difference between smallest and largest cases. 1736 SDValue SwitchOp = getValue(JTH.SValue); 1737 EVT VT = SwitchOp.getValueType(); 1738 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1739 DAG.getConstant(JTH.First, dl, VT)); 1740 1741 // The SDNode we just created, which holds the value being switched on minus 1742 // the smallest case value, needs to be copied to a virtual register so it 1743 // can be used as an index into the jump table in a subsequent basic block. 1744 // This value may be smaller or larger than the target's pointer type, and 1745 // therefore require extension or truncating. 1746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1747 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1748 1749 unsigned JumpTableReg = 1750 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1751 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1752 JumpTableReg, SwitchOp); 1753 JT.Reg = JumpTableReg; 1754 1755 // Emit the range check for the jump table, and branch to the default block 1756 // for the switch statement if the value being switched on exceeds the largest 1757 // case in the switch. 1758 SDValue CMP = DAG.getSetCC( 1759 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1760 Sub.getValueType()), 1761 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1762 1763 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1764 MVT::Other, CopyTo, CMP, 1765 DAG.getBasicBlock(JT.Default)); 1766 1767 // Avoid emitting unnecessary branches to the next block. 1768 if (JT.MBB != NextBlock(SwitchBB)) 1769 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1770 DAG.getBasicBlock(JT.MBB)); 1771 1772 DAG.setRoot(BrCond); 1773 } 1774 1775 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1776 /// tail spliced into a stack protector check success bb. 1777 /// 1778 /// For a high level explanation of how this fits into the stack protector 1779 /// generation see the comment on the declaration of class 1780 /// StackProtectorDescriptor. 1781 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1782 MachineBasicBlock *ParentBB) { 1783 1784 // First create the loads to the guard/stack slot for the comparison. 1785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1786 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1787 1788 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1789 int FI = MFI->getStackProtectorIndex(); 1790 1791 const Value *IRGuard = SPD.getGuard(); 1792 SDValue GuardPtr = getValue(IRGuard); 1793 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1794 1795 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1796 1797 SDValue Guard; 1798 SDLoc dl = getCurSDLoc(); 1799 1800 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1801 // guard value from the virtual register holding the value. Otherwise, emit a 1802 // volatile load to retrieve the stack guard value. 1803 unsigned GuardReg = SPD.getGuardReg(); 1804 1805 if (GuardReg && TLI.useLoadStackGuardNode()) 1806 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1807 PtrTy); 1808 else 1809 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1810 GuardPtr, MachinePointerInfo(IRGuard, 0), 1811 true, false, false, Align); 1812 1813 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1814 StackSlotPtr, 1815 MachinePointerInfo::getFixedStack(FI), 1816 true, false, false, Align); 1817 1818 // Perform the comparison via a subtract/getsetcc. 1819 EVT VT = Guard.getValueType(); 1820 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1821 1822 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1823 *DAG.getContext(), 1824 Sub.getValueType()), 1825 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1826 1827 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1828 // branch to failure MBB. 1829 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1830 MVT::Other, StackSlot.getOperand(0), 1831 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1832 // Otherwise branch to success MBB. 1833 SDValue Br = DAG.getNode(ISD::BR, dl, 1834 MVT::Other, BrCond, 1835 DAG.getBasicBlock(SPD.getSuccessMBB())); 1836 1837 DAG.setRoot(Br); 1838 } 1839 1840 /// Codegen the failure basic block for a stack protector check. 1841 /// 1842 /// A failure stack protector machine basic block consists simply of a call to 1843 /// __stack_chk_fail(). 1844 /// 1845 /// For a high level explanation of how this fits into the stack protector 1846 /// generation see the comment on the declaration of class 1847 /// StackProtectorDescriptor. 1848 void 1849 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1851 SDValue Chain = 1852 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1853 nullptr, 0, false, getCurSDLoc(), false, false).second; 1854 DAG.setRoot(Chain); 1855 } 1856 1857 /// visitBitTestHeader - This function emits necessary code to produce value 1858 /// suitable for "bit tests" 1859 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1860 MachineBasicBlock *SwitchBB) { 1861 SDLoc dl = getCurSDLoc(); 1862 1863 // Subtract the minimum value 1864 SDValue SwitchOp = getValue(B.SValue); 1865 EVT VT = SwitchOp.getValueType(); 1866 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1867 DAG.getConstant(B.First, dl, VT)); 1868 1869 // Check range 1870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1871 SDValue RangeCmp = DAG.getSetCC( 1872 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1873 Sub.getValueType()), 1874 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1875 1876 // Determine the type of the test operands. 1877 bool UsePtrType = false; 1878 if (!TLI.isTypeLegal(VT)) 1879 UsePtrType = true; 1880 else { 1881 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1882 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1883 // Switch table case range are encoded into series of masks. 1884 // Just use pointer type, it's guaranteed to fit. 1885 UsePtrType = true; 1886 break; 1887 } 1888 } 1889 if (UsePtrType) { 1890 VT = TLI.getPointerTy(DAG.getDataLayout()); 1891 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1892 } 1893 1894 B.RegVT = VT.getSimpleVT(); 1895 B.Reg = FuncInfo.CreateReg(B.RegVT); 1896 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1897 1898 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1899 1900 addSuccessorWithWeight(SwitchBB, B.Default); 1901 addSuccessorWithWeight(SwitchBB, MBB); 1902 1903 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1904 MVT::Other, CopyTo, RangeCmp, 1905 DAG.getBasicBlock(B.Default)); 1906 1907 // Avoid emitting unnecessary branches to the next block. 1908 if (MBB != NextBlock(SwitchBB)) 1909 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1910 DAG.getBasicBlock(MBB)); 1911 1912 DAG.setRoot(BrRange); 1913 } 1914 1915 /// visitBitTestCase - this function produces one "bit test" 1916 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1917 MachineBasicBlock* NextMBB, 1918 uint32_t BranchWeightToNext, 1919 unsigned Reg, 1920 BitTestCase &B, 1921 MachineBasicBlock *SwitchBB) { 1922 SDLoc dl = getCurSDLoc(); 1923 MVT VT = BB.RegVT; 1924 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1925 SDValue Cmp; 1926 unsigned PopCount = countPopulation(B.Mask); 1927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1928 if (PopCount == 1) { 1929 // Testing for a single bit; just compare the shift count with what it 1930 // would need to be to shift a 1 bit in that position. 1931 Cmp = DAG.getSetCC( 1932 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1933 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1934 ISD::SETEQ); 1935 } else if (PopCount == BB.Range) { 1936 // There is only one zero bit in the range, test for it directly. 1937 Cmp = DAG.getSetCC( 1938 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1939 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1940 ISD::SETNE); 1941 } else { 1942 // Make desired shift 1943 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1944 DAG.getConstant(1, dl, VT), ShiftOp); 1945 1946 // Emit bit tests and jumps 1947 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1948 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1949 Cmp = DAG.getSetCC( 1950 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1951 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1952 } 1953 1954 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1955 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1956 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1957 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1958 1959 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1960 MVT::Other, getControlRoot(), 1961 Cmp, DAG.getBasicBlock(B.TargetBB)); 1962 1963 // Avoid emitting unnecessary branches to the next block. 1964 if (NextMBB != NextBlock(SwitchBB)) 1965 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1966 DAG.getBasicBlock(NextMBB)); 1967 1968 DAG.setRoot(BrAnd); 1969 } 1970 1971 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1972 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1973 1974 // Retrieve successors. 1975 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1976 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1977 1978 const Value *Callee(I.getCalledValue()); 1979 const Function *Fn = dyn_cast<Function>(Callee); 1980 if (isa<InlineAsm>(Callee)) 1981 visitInlineAsm(&I); 1982 else if (Fn && Fn->isIntrinsic()) { 1983 switch (Fn->getIntrinsicID()) { 1984 default: 1985 llvm_unreachable("Cannot invoke this intrinsic"); 1986 case Intrinsic::donothing: 1987 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1988 break; 1989 case Intrinsic::experimental_patchpoint_void: 1990 case Intrinsic::experimental_patchpoint_i64: 1991 visitPatchpoint(&I, LandingPad); 1992 break; 1993 case Intrinsic::experimental_gc_statepoint: 1994 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1995 break; 1996 } 1997 } else 1998 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1999 2000 // If the value of the invoke is used outside of its defining block, make it 2001 // available as a virtual register. 2002 // We already took care of the exported value for the statepoint instruction 2003 // during call to the LowerStatepoint. 2004 if (!isStatepoint(I)) { 2005 CopyToExportRegsIfNeeded(&I); 2006 } 2007 2008 // Update successor info 2009 addSuccessorWithWeight(InvokeMBB, Return); 2010 addSuccessorWithWeight(InvokeMBB, LandingPad); 2011 2012 // Drop into normal successor. 2013 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2014 MVT::Other, getControlRoot(), 2015 DAG.getBasicBlock(Return))); 2016 } 2017 2018 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2019 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2020 } 2021 2022 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2023 assert(FuncInfo.MBB->isLandingPad() && 2024 "Call to landingpad not in landing pad!"); 2025 2026 MachineBasicBlock *MBB = FuncInfo.MBB; 2027 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2028 AddLandingPadInfo(LP, MMI, MBB); 2029 2030 // If there aren't registers to copy the values into (e.g., during SjLj 2031 // exceptions), then don't bother to create these DAG nodes. 2032 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2033 if (TLI.getExceptionPointerRegister() == 0 && 2034 TLI.getExceptionSelectorRegister() == 0) 2035 return; 2036 2037 SmallVector<EVT, 2> ValueVTs; 2038 SDLoc dl = getCurSDLoc(); 2039 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2040 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2041 2042 // Get the two live-in registers as SDValues. The physregs have already been 2043 // copied into virtual registers. 2044 SDValue Ops[2]; 2045 if (FuncInfo.ExceptionPointerVirtReg) { 2046 Ops[0] = DAG.getZExtOrTrunc( 2047 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2048 FuncInfo.ExceptionPointerVirtReg, 2049 TLI.getPointerTy(DAG.getDataLayout())), 2050 dl, ValueVTs[0]); 2051 } else { 2052 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2053 } 2054 Ops[1] = DAG.getZExtOrTrunc( 2055 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2056 FuncInfo.ExceptionSelectorVirtReg, 2057 TLI.getPointerTy(DAG.getDataLayout())), 2058 dl, ValueVTs[1]); 2059 2060 // Merge into one. 2061 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2062 DAG.getVTList(ValueVTs), Ops); 2063 setValue(&LP, Res); 2064 } 2065 2066 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2067 #ifndef NDEBUG 2068 for (const CaseCluster &CC : Clusters) 2069 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2070 #endif 2071 2072 std::sort(Clusters.begin(), Clusters.end(), 2073 [](const CaseCluster &a, const CaseCluster &b) { 2074 return a.Low->getValue().slt(b.Low->getValue()); 2075 }); 2076 2077 // Merge adjacent clusters with the same destination. 2078 const unsigned N = Clusters.size(); 2079 unsigned DstIndex = 0; 2080 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2081 CaseCluster &CC = Clusters[SrcIndex]; 2082 const ConstantInt *CaseVal = CC.Low; 2083 MachineBasicBlock *Succ = CC.MBB; 2084 2085 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2086 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2087 // If this case has the same successor and is a neighbour, merge it into 2088 // the previous cluster. 2089 Clusters[DstIndex - 1].High = CaseVal; 2090 Clusters[DstIndex - 1].Weight += CC.Weight; 2091 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2092 } else { 2093 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2094 sizeof(Clusters[SrcIndex])); 2095 } 2096 } 2097 Clusters.resize(DstIndex); 2098 } 2099 2100 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2101 MachineBasicBlock *Last) { 2102 // Update JTCases. 2103 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2104 if (JTCases[i].first.HeaderBB == First) 2105 JTCases[i].first.HeaderBB = Last; 2106 2107 // Update BitTestCases. 2108 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2109 if (BitTestCases[i].Parent == First) 2110 BitTestCases[i].Parent = Last; 2111 } 2112 2113 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2114 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2115 2116 // Update machine-CFG edges with unique successors. 2117 SmallSet<BasicBlock*, 32> Done; 2118 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2119 BasicBlock *BB = I.getSuccessor(i); 2120 bool Inserted = Done.insert(BB).second; 2121 if (!Inserted) 2122 continue; 2123 2124 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2125 addSuccessorWithWeight(IndirectBrMBB, Succ); 2126 } 2127 2128 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2129 MVT::Other, getControlRoot(), 2130 getValue(I.getAddress()))); 2131 } 2132 2133 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2134 if (DAG.getTarget().Options.TrapUnreachable) 2135 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2136 } 2137 2138 void SelectionDAGBuilder::visitFSub(const User &I) { 2139 // -0.0 - X --> fneg 2140 Type *Ty = I.getType(); 2141 if (isa<Constant>(I.getOperand(0)) && 2142 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2143 SDValue Op2 = getValue(I.getOperand(1)); 2144 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2145 Op2.getValueType(), Op2)); 2146 return; 2147 } 2148 2149 visitBinary(I, ISD::FSUB); 2150 } 2151 2152 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2153 SDValue Op1 = getValue(I.getOperand(0)); 2154 SDValue Op2 = getValue(I.getOperand(1)); 2155 2156 bool nuw = false; 2157 bool nsw = false; 2158 bool exact = false; 2159 FastMathFlags FMF; 2160 2161 if (const OverflowingBinaryOperator *OFBinOp = 2162 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2163 nuw = OFBinOp->hasNoUnsignedWrap(); 2164 nsw = OFBinOp->hasNoSignedWrap(); 2165 } 2166 if (const PossiblyExactOperator *ExactOp = 2167 dyn_cast<const PossiblyExactOperator>(&I)) 2168 exact = ExactOp->isExact(); 2169 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2170 FMF = FPOp->getFastMathFlags(); 2171 2172 SDNodeFlags Flags; 2173 Flags.setExact(exact); 2174 Flags.setNoSignedWrap(nsw); 2175 Flags.setNoUnsignedWrap(nuw); 2176 if (EnableFMFInDAG) { 2177 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2178 Flags.setNoInfs(FMF.noInfs()); 2179 Flags.setNoNaNs(FMF.noNaNs()); 2180 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2181 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2182 } 2183 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2184 Op1, Op2, &Flags); 2185 setValue(&I, BinNodeValue); 2186 } 2187 2188 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2189 SDValue Op1 = getValue(I.getOperand(0)); 2190 SDValue Op2 = getValue(I.getOperand(1)); 2191 2192 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2193 Op2.getValueType(), DAG.getDataLayout()); 2194 2195 // Coerce the shift amount to the right type if we can. 2196 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2197 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2198 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2199 SDLoc DL = getCurSDLoc(); 2200 2201 // If the operand is smaller than the shift count type, promote it. 2202 if (ShiftSize > Op2Size) 2203 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2204 2205 // If the operand is larger than the shift count type but the shift 2206 // count type has enough bits to represent any shift value, truncate 2207 // it now. This is a common case and it exposes the truncate to 2208 // optimization early. 2209 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2210 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2211 // Otherwise we'll need to temporarily settle for some other convenient 2212 // type. Type legalization will make adjustments once the shiftee is split. 2213 else 2214 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2215 } 2216 2217 bool nuw = false; 2218 bool nsw = false; 2219 bool exact = false; 2220 2221 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2222 2223 if (const OverflowingBinaryOperator *OFBinOp = 2224 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2225 nuw = OFBinOp->hasNoUnsignedWrap(); 2226 nsw = OFBinOp->hasNoSignedWrap(); 2227 } 2228 if (const PossiblyExactOperator *ExactOp = 2229 dyn_cast<const PossiblyExactOperator>(&I)) 2230 exact = ExactOp->isExact(); 2231 } 2232 SDNodeFlags Flags; 2233 Flags.setExact(exact); 2234 Flags.setNoSignedWrap(nsw); 2235 Flags.setNoUnsignedWrap(nuw); 2236 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2237 &Flags); 2238 setValue(&I, Res); 2239 } 2240 2241 void SelectionDAGBuilder::visitSDiv(const User &I) { 2242 SDValue Op1 = getValue(I.getOperand(0)); 2243 SDValue Op2 = getValue(I.getOperand(1)); 2244 2245 SDNodeFlags Flags; 2246 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2247 cast<PossiblyExactOperator>(&I)->isExact()); 2248 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2249 Op2, &Flags)); 2250 } 2251 2252 void SelectionDAGBuilder::visitICmp(const User &I) { 2253 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2254 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2255 predicate = IC->getPredicate(); 2256 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2257 predicate = ICmpInst::Predicate(IC->getPredicate()); 2258 SDValue Op1 = getValue(I.getOperand(0)); 2259 SDValue Op2 = getValue(I.getOperand(1)); 2260 ISD::CondCode Opcode = getICmpCondCode(predicate); 2261 2262 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2263 I.getType()); 2264 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2265 } 2266 2267 void SelectionDAGBuilder::visitFCmp(const User &I) { 2268 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2269 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2270 predicate = FC->getPredicate(); 2271 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2272 predicate = FCmpInst::Predicate(FC->getPredicate()); 2273 SDValue Op1 = getValue(I.getOperand(0)); 2274 SDValue Op2 = getValue(I.getOperand(1)); 2275 ISD::CondCode Condition = getFCmpCondCode(predicate); 2276 if (TM.Options.NoNaNsFPMath) 2277 Condition = getFCmpCodeWithoutNaN(Condition); 2278 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2279 I.getType()); 2280 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2281 } 2282 2283 void SelectionDAGBuilder::visitSelect(const User &I) { 2284 SmallVector<EVT, 4> ValueVTs; 2285 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2286 ValueVTs); 2287 unsigned NumValues = ValueVTs.size(); 2288 if (NumValues == 0) return; 2289 2290 SmallVector<SDValue, 4> Values(NumValues); 2291 SDValue Cond = getValue(I.getOperand(0)); 2292 SDValue LHSVal = getValue(I.getOperand(1)); 2293 SDValue RHSVal = getValue(I.getOperand(2)); 2294 auto BaseOps = {Cond}; 2295 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2296 ISD::VSELECT : ISD::SELECT; 2297 2298 // Min/max matching is only viable if all output VTs are the same. 2299 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2300 Value *LHS, *RHS; 2301 SelectPatternFlavor SPF = 2302 matchSelectPattern(const_cast<User*>(&I), LHS, RHS).Flavor; 2303 ISD::NodeType Opc = ISD::DELETED_NODE; 2304 switch (SPF) { 2305 case SPF_UMAX: Opc = ISD::UMAX; break; 2306 case SPF_UMIN: Opc = ISD::UMIN; break; 2307 case SPF_SMAX: Opc = ISD::SMAX; break; 2308 case SPF_SMIN: Opc = ISD::SMIN; break; 2309 default: break; 2310 } 2311 2312 EVT VT = ValueVTs[0]; 2313 LLVMContext &Ctx = *DAG.getContext(); 2314 auto &TLI = DAG.getTargetLoweringInfo(); 2315 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2316 VT = TLI.getTypeToTransformTo(Ctx, VT); 2317 2318 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2319 // If the underlying comparison instruction is used by any other instruction, 2320 // the consumed instructions won't be destroyed, so it is not profitable 2321 // to convert to a min/max. 2322 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2323 OpCode = Opc; 2324 LHSVal = getValue(LHS); 2325 RHSVal = getValue(RHS); 2326 BaseOps = {}; 2327 } 2328 } 2329 2330 for (unsigned i = 0; i != NumValues; ++i) { 2331 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2332 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2333 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2334 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2335 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2336 Ops); 2337 } 2338 2339 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2340 DAG.getVTList(ValueVTs), Values)); 2341 } 2342 2343 void SelectionDAGBuilder::visitTrunc(const User &I) { 2344 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2345 SDValue N = getValue(I.getOperand(0)); 2346 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2347 I.getType()); 2348 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2349 } 2350 2351 void SelectionDAGBuilder::visitZExt(const User &I) { 2352 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2353 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2354 SDValue N = getValue(I.getOperand(0)); 2355 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2356 I.getType()); 2357 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2358 } 2359 2360 void SelectionDAGBuilder::visitSExt(const User &I) { 2361 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2362 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2363 SDValue N = getValue(I.getOperand(0)); 2364 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2365 I.getType()); 2366 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2367 } 2368 2369 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2370 // FPTrunc is never a no-op cast, no need to check 2371 SDValue N = getValue(I.getOperand(0)); 2372 SDLoc dl = getCurSDLoc(); 2373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2374 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2375 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2376 DAG.getTargetConstant( 2377 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2378 } 2379 2380 void SelectionDAGBuilder::visitFPExt(const User &I) { 2381 // FPExt is never a no-op cast, no need to check 2382 SDValue N = getValue(I.getOperand(0)); 2383 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2384 I.getType()); 2385 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2386 } 2387 2388 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2389 // FPToUI is never a no-op cast, no need to check 2390 SDValue N = getValue(I.getOperand(0)); 2391 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2392 I.getType()); 2393 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2394 } 2395 2396 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2397 // FPToSI is never a no-op cast, no need to check 2398 SDValue N = getValue(I.getOperand(0)); 2399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2400 I.getType()); 2401 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2402 } 2403 2404 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2405 // UIToFP is never a no-op cast, no need to check 2406 SDValue N = getValue(I.getOperand(0)); 2407 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2408 I.getType()); 2409 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2410 } 2411 2412 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2413 // SIToFP is never a no-op cast, no need to check 2414 SDValue N = getValue(I.getOperand(0)); 2415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2416 I.getType()); 2417 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2418 } 2419 2420 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2421 // What to do depends on the size of the integer and the size of the pointer. 2422 // We can either truncate, zero extend, or no-op, accordingly. 2423 SDValue N = getValue(I.getOperand(0)); 2424 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2425 I.getType()); 2426 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2427 } 2428 2429 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2430 // What to do depends on the size of the integer and the size of the pointer. 2431 // We can either truncate, zero extend, or no-op, accordingly. 2432 SDValue N = getValue(I.getOperand(0)); 2433 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2434 I.getType()); 2435 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2436 } 2437 2438 void SelectionDAGBuilder::visitBitCast(const User &I) { 2439 SDValue N = getValue(I.getOperand(0)); 2440 SDLoc dl = getCurSDLoc(); 2441 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2442 I.getType()); 2443 2444 // BitCast assures us that source and destination are the same size so this is 2445 // either a BITCAST or a no-op. 2446 if (DestVT != N.getValueType()) 2447 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2448 DestVT, N)); // convert types. 2449 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2450 // might fold any kind of constant expression to an integer constant and that 2451 // is not what we are looking for. Only regcognize a bitcast of a genuine 2452 // constant integer as an opaque constant. 2453 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2454 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2455 /*isOpaque*/true)); 2456 else 2457 setValue(&I, N); // noop cast. 2458 } 2459 2460 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2462 const Value *SV = I.getOperand(0); 2463 SDValue N = getValue(SV); 2464 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2465 2466 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2467 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2468 2469 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2470 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2471 2472 setValue(&I, N); 2473 } 2474 2475 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2477 SDValue InVec = getValue(I.getOperand(0)); 2478 SDValue InVal = getValue(I.getOperand(1)); 2479 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2480 TLI.getVectorIdxTy(DAG.getDataLayout())); 2481 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2482 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2483 InVec, InVal, InIdx)); 2484 } 2485 2486 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2488 SDValue InVec = getValue(I.getOperand(0)); 2489 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2490 TLI.getVectorIdxTy(DAG.getDataLayout())); 2491 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2492 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2493 InVec, InIdx)); 2494 } 2495 2496 // Utility for visitShuffleVector - Return true if every element in Mask, 2497 // beginning from position Pos and ending in Pos+Size, falls within the 2498 // specified sequential range [L, L+Pos). or is undef. 2499 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2500 unsigned Pos, unsigned Size, int Low) { 2501 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2502 if (Mask[i] >= 0 && Mask[i] != Low) 2503 return false; 2504 return true; 2505 } 2506 2507 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2508 SDValue Src1 = getValue(I.getOperand(0)); 2509 SDValue Src2 = getValue(I.getOperand(1)); 2510 2511 SmallVector<int, 8> Mask; 2512 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2513 unsigned MaskNumElts = Mask.size(); 2514 2515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2516 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2517 EVT SrcVT = Src1.getValueType(); 2518 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2519 2520 if (SrcNumElts == MaskNumElts) { 2521 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2522 &Mask[0])); 2523 return; 2524 } 2525 2526 // Normalize the shuffle vector since mask and vector length don't match. 2527 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2528 // Mask is longer than the source vectors and is a multiple of the source 2529 // vectors. We can use concatenate vector to make the mask and vectors 2530 // lengths match. 2531 if (SrcNumElts*2 == MaskNumElts) { 2532 // First check for Src1 in low and Src2 in high 2533 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2534 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2535 // The shuffle is concatenating two vectors together. 2536 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2537 VT, Src1, Src2)); 2538 return; 2539 } 2540 // Then check for Src2 in low and Src1 in high 2541 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2542 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2543 // The shuffle is concatenating two vectors together. 2544 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2545 VT, Src2, Src1)); 2546 return; 2547 } 2548 } 2549 2550 // Pad both vectors with undefs to make them the same length as the mask. 2551 unsigned NumConcat = MaskNumElts / SrcNumElts; 2552 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2553 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2554 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2555 2556 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2557 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2558 MOps1[0] = Src1; 2559 MOps2[0] = Src2; 2560 2561 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2562 getCurSDLoc(), VT, MOps1); 2563 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2564 getCurSDLoc(), VT, MOps2); 2565 2566 // Readjust mask for new input vector length. 2567 SmallVector<int, 8> MappedOps; 2568 for (unsigned i = 0; i != MaskNumElts; ++i) { 2569 int Idx = Mask[i]; 2570 if (Idx >= (int)SrcNumElts) 2571 Idx -= SrcNumElts - MaskNumElts; 2572 MappedOps.push_back(Idx); 2573 } 2574 2575 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2576 &MappedOps[0])); 2577 return; 2578 } 2579 2580 if (SrcNumElts > MaskNumElts) { 2581 // Analyze the access pattern of the vector to see if we can extract 2582 // two subvectors and do the shuffle. The analysis is done by calculating 2583 // the range of elements the mask access on both vectors. 2584 int MinRange[2] = { static_cast<int>(SrcNumElts), 2585 static_cast<int>(SrcNumElts)}; 2586 int MaxRange[2] = {-1, -1}; 2587 2588 for (unsigned i = 0; i != MaskNumElts; ++i) { 2589 int Idx = Mask[i]; 2590 unsigned Input = 0; 2591 if (Idx < 0) 2592 continue; 2593 2594 if (Idx >= (int)SrcNumElts) { 2595 Input = 1; 2596 Idx -= SrcNumElts; 2597 } 2598 if (Idx > MaxRange[Input]) 2599 MaxRange[Input] = Idx; 2600 if (Idx < MinRange[Input]) 2601 MinRange[Input] = Idx; 2602 } 2603 2604 // Check if the access is smaller than the vector size and can we find 2605 // a reasonable extract index. 2606 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2607 // Extract. 2608 int StartIdx[2]; // StartIdx to extract from 2609 for (unsigned Input = 0; Input < 2; ++Input) { 2610 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2611 RangeUse[Input] = 0; // Unused 2612 StartIdx[Input] = 0; 2613 continue; 2614 } 2615 2616 // Find a good start index that is a multiple of the mask length. Then 2617 // see if the rest of the elements are in range. 2618 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2619 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2620 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2621 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2622 } 2623 2624 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2625 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2626 return; 2627 } 2628 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2629 // Extract appropriate subvector and generate a vector shuffle 2630 for (unsigned Input = 0; Input < 2; ++Input) { 2631 SDValue &Src = Input == 0 ? Src1 : Src2; 2632 if (RangeUse[Input] == 0) 2633 Src = DAG.getUNDEF(VT); 2634 else { 2635 SDLoc dl = getCurSDLoc(); 2636 Src = DAG.getNode( 2637 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2638 DAG.getConstant(StartIdx[Input], dl, 2639 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2640 } 2641 } 2642 2643 // Calculate new mask. 2644 SmallVector<int, 8> MappedOps; 2645 for (unsigned i = 0; i != MaskNumElts; ++i) { 2646 int Idx = Mask[i]; 2647 if (Idx >= 0) { 2648 if (Idx < (int)SrcNumElts) 2649 Idx -= StartIdx[0]; 2650 else 2651 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2652 } 2653 MappedOps.push_back(Idx); 2654 } 2655 2656 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2657 &MappedOps[0])); 2658 return; 2659 } 2660 } 2661 2662 // We can't use either concat vectors or extract subvectors so fall back to 2663 // replacing the shuffle with extract and build vector. 2664 // to insert and build vector. 2665 EVT EltVT = VT.getVectorElementType(); 2666 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2667 SDLoc dl = getCurSDLoc(); 2668 SmallVector<SDValue,8> Ops; 2669 for (unsigned i = 0; i != MaskNumElts; ++i) { 2670 int Idx = Mask[i]; 2671 SDValue Res; 2672 2673 if (Idx < 0) { 2674 Res = DAG.getUNDEF(EltVT); 2675 } else { 2676 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2677 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2678 2679 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2680 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2681 } 2682 2683 Ops.push_back(Res); 2684 } 2685 2686 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2687 } 2688 2689 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2690 const Value *Op0 = I.getOperand(0); 2691 const Value *Op1 = I.getOperand(1); 2692 Type *AggTy = I.getType(); 2693 Type *ValTy = Op1->getType(); 2694 bool IntoUndef = isa<UndefValue>(Op0); 2695 bool FromUndef = isa<UndefValue>(Op1); 2696 2697 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2698 2699 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2700 SmallVector<EVT, 4> AggValueVTs; 2701 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2702 SmallVector<EVT, 4> ValValueVTs; 2703 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2704 2705 unsigned NumAggValues = AggValueVTs.size(); 2706 unsigned NumValValues = ValValueVTs.size(); 2707 SmallVector<SDValue, 4> Values(NumAggValues); 2708 2709 // Ignore an insertvalue that produces an empty object 2710 if (!NumAggValues) { 2711 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2712 return; 2713 } 2714 2715 SDValue Agg = getValue(Op0); 2716 unsigned i = 0; 2717 // Copy the beginning value(s) from the original aggregate. 2718 for (; i != LinearIndex; ++i) 2719 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2720 SDValue(Agg.getNode(), Agg.getResNo() + i); 2721 // Copy values from the inserted value(s). 2722 if (NumValValues) { 2723 SDValue Val = getValue(Op1); 2724 for (; i != LinearIndex + NumValValues; ++i) 2725 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2726 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2727 } 2728 // Copy remaining value(s) from the original aggregate. 2729 for (; i != NumAggValues; ++i) 2730 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2731 SDValue(Agg.getNode(), Agg.getResNo() + i); 2732 2733 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2734 DAG.getVTList(AggValueVTs), Values)); 2735 } 2736 2737 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2738 const Value *Op0 = I.getOperand(0); 2739 Type *AggTy = Op0->getType(); 2740 Type *ValTy = I.getType(); 2741 bool OutOfUndef = isa<UndefValue>(Op0); 2742 2743 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2744 2745 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2746 SmallVector<EVT, 4> ValValueVTs; 2747 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2748 2749 unsigned NumValValues = ValValueVTs.size(); 2750 2751 // Ignore a extractvalue that produces an empty object 2752 if (!NumValValues) { 2753 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2754 return; 2755 } 2756 2757 SmallVector<SDValue, 4> Values(NumValValues); 2758 2759 SDValue Agg = getValue(Op0); 2760 // Copy out the selected value(s). 2761 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2762 Values[i - LinearIndex] = 2763 OutOfUndef ? 2764 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2765 SDValue(Agg.getNode(), Agg.getResNo() + i); 2766 2767 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2768 DAG.getVTList(ValValueVTs), Values)); 2769 } 2770 2771 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2772 Value *Op0 = I.getOperand(0); 2773 // Note that the pointer operand may be a vector of pointers. Take the scalar 2774 // element which holds a pointer. 2775 Type *Ty = Op0->getType()->getScalarType(); 2776 unsigned AS = Ty->getPointerAddressSpace(); 2777 SDValue N = getValue(Op0); 2778 SDLoc dl = getCurSDLoc(); 2779 2780 // Normalize Vector GEP - all scalar operands should be converted to the 2781 // splat vector. 2782 unsigned VectorWidth = I.getType()->isVectorTy() ? 2783 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2784 2785 if (VectorWidth && !N.getValueType().isVector()) { 2786 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2787 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2788 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2789 } 2790 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2791 OI != E; ++OI) { 2792 const Value *Idx = *OI; 2793 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2794 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2795 if (Field) { 2796 // N = N + Offset 2797 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2798 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2799 DAG.getConstant(Offset, dl, N.getValueType())); 2800 } 2801 2802 Ty = StTy->getElementType(Field); 2803 } else { 2804 Ty = cast<SequentialType>(Ty)->getElementType(); 2805 MVT PtrTy = 2806 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2807 unsigned PtrSize = PtrTy.getSizeInBits(); 2808 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2809 2810 // If this is a scalar constant or a splat vector of constants, 2811 // handle it quickly. 2812 const auto *CI = dyn_cast<ConstantInt>(Idx); 2813 if (!CI && isa<ConstantDataVector>(Idx) && 2814 cast<ConstantDataVector>(Idx)->getSplatValue()) 2815 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2816 2817 if (CI) { 2818 if (CI->isZero()) 2819 continue; 2820 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2821 SDValue OffsVal = VectorWidth ? 2822 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2823 DAG.getConstant(Offs, dl, PtrTy); 2824 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2825 continue; 2826 } 2827 2828 // N = N + Idx * ElementSize; 2829 SDValue IdxN = getValue(Idx); 2830 2831 if (!IdxN.getValueType().isVector() && VectorWidth) { 2832 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2833 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2834 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2835 } 2836 // If the index is smaller or larger than intptr_t, truncate or extend 2837 // it. 2838 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2839 2840 // If this is a multiply by a power of two, turn it into a shl 2841 // immediately. This is a very common case. 2842 if (ElementSize != 1) { 2843 if (ElementSize.isPowerOf2()) { 2844 unsigned Amt = ElementSize.logBase2(); 2845 IdxN = DAG.getNode(ISD::SHL, dl, 2846 N.getValueType(), IdxN, 2847 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2848 } else { 2849 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2850 IdxN = DAG.getNode(ISD::MUL, dl, 2851 N.getValueType(), IdxN, Scale); 2852 } 2853 } 2854 2855 N = DAG.getNode(ISD::ADD, dl, 2856 N.getValueType(), N, IdxN); 2857 } 2858 } 2859 2860 setValue(&I, N); 2861 } 2862 2863 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2864 // If this is a fixed sized alloca in the entry block of the function, 2865 // allocate it statically on the stack. 2866 if (FuncInfo.StaticAllocaMap.count(&I)) 2867 return; // getValue will auto-populate this. 2868 2869 SDLoc dl = getCurSDLoc(); 2870 Type *Ty = I.getAllocatedType(); 2871 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2872 auto &DL = DAG.getDataLayout(); 2873 uint64_t TySize = DL.getTypeAllocSize(Ty); 2874 unsigned Align = 2875 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2876 2877 SDValue AllocSize = getValue(I.getArraySize()); 2878 2879 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2880 if (AllocSize.getValueType() != IntPtr) 2881 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2882 2883 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2884 AllocSize, 2885 DAG.getConstant(TySize, dl, IntPtr)); 2886 2887 // Handle alignment. If the requested alignment is less than or equal to 2888 // the stack alignment, ignore it. If the size is greater than or equal to 2889 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2890 unsigned StackAlign = 2891 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2892 if (Align <= StackAlign) 2893 Align = 0; 2894 2895 // Round the size of the allocation up to the stack alignment size 2896 // by add SA-1 to the size. 2897 AllocSize = DAG.getNode(ISD::ADD, dl, 2898 AllocSize.getValueType(), AllocSize, 2899 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2900 2901 // Mask out the low bits for alignment purposes. 2902 AllocSize = DAG.getNode(ISD::AND, dl, 2903 AllocSize.getValueType(), AllocSize, 2904 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2905 dl)); 2906 2907 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2908 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2909 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2910 setValue(&I, DSA); 2911 DAG.setRoot(DSA.getValue(1)); 2912 2913 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2914 } 2915 2916 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2917 if (I.isAtomic()) 2918 return visitAtomicLoad(I); 2919 2920 const Value *SV = I.getOperand(0); 2921 SDValue Ptr = getValue(SV); 2922 2923 Type *Ty = I.getType(); 2924 2925 bool isVolatile = I.isVolatile(); 2926 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2927 2928 // The IR notion of invariant_load only guarantees that all *non-faulting* 2929 // invariant loads result in the same value. The MI notion of invariant load 2930 // guarantees that the load can be legally moved to any location within its 2931 // containing function. The MI notion of invariant_load is stronger than the 2932 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2933 // with a guarantee that the location being loaded from is dereferenceable 2934 // throughout the function's lifetime. 2935 2936 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2937 isDereferenceablePointer(SV, DAG.getDataLayout()); 2938 unsigned Alignment = I.getAlignment(); 2939 2940 AAMDNodes AAInfo; 2941 I.getAAMetadata(AAInfo); 2942 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2943 2944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2945 SmallVector<EVT, 4> ValueVTs; 2946 SmallVector<uint64_t, 4> Offsets; 2947 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2948 unsigned NumValues = ValueVTs.size(); 2949 if (NumValues == 0) 2950 return; 2951 2952 SDValue Root; 2953 bool ConstantMemory = false; 2954 if (isVolatile || NumValues > MaxParallelChains) 2955 // Serialize volatile loads with other side effects. 2956 Root = getRoot(); 2957 else if (AA->pointsToConstantMemory(MemoryLocation( 2958 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 2959 // Do not serialize (non-volatile) loads of constant memory with anything. 2960 Root = DAG.getEntryNode(); 2961 ConstantMemory = true; 2962 } else { 2963 // Do not serialize non-volatile loads against each other. 2964 Root = DAG.getRoot(); 2965 } 2966 2967 SDLoc dl = getCurSDLoc(); 2968 2969 if (isVolatile) 2970 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2971 2972 SmallVector<SDValue, 4> Values(NumValues); 2973 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2974 EVT PtrVT = Ptr.getValueType(); 2975 unsigned ChainI = 0; 2976 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2977 // Serializing loads here may result in excessive register pressure, and 2978 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2979 // could recover a bit by hoisting nodes upward in the chain by recognizing 2980 // they are side-effect free or do not alias. The optimizer should really 2981 // avoid this case by converting large object/array copies to llvm.memcpy 2982 // (MaxParallelChains should always remain as failsafe). 2983 if (ChainI == MaxParallelChains) { 2984 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2985 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2986 makeArrayRef(Chains.data(), ChainI)); 2987 Root = Chain; 2988 ChainI = 0; 2989 } 2990 SDValue A = DAG.getNode(ISD::ADD, dl, 2991 PtrVT, Ptr, 2992 DAG.getConstant(Offsets[i], dl, PtrVT)); 2993 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2994 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2995 isNonTemporal, isInvariant, Alignment, AAInfo, 2996 Ranges); 2997 2998 Values[i] = L; 2999 Chains[ChainI] = L.getValue(1); 3000 } 3001 3002 if (!ConstantMemory) { 3003 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3004 makeArrayRef(Chains.data(), ChainI)); 3005 if (isVolatile) 3006 DAG.setRoot(Chain); 3007 else 3008 PendingLoads.push_back(Chain); 3009 } 3010 3011 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3012 DAG.getVTList(ValueVTs), Values)); 3013 } 3014 3015 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3016 if (I.isAtomic()) 3017 return visitAtomicStore(I); 3018 3019 const Value *SrcV = I.getOperand(0); 3020 const Value *PtrV = I.getOperand(1); 3021 3022 SmallVector<EVT, 4> ValueVTs; 3023 SmallVector<uint64_t, 4> Offsets; 3024 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3025 SrcV->getType(), ValueVTs, &Offsets); 3026 unsigned NumValues = ValueVTs.size(); 3027 if (NumValues == 0) 3028 return; 3029 3030 // Get the lowered operands. Note that we do this after 3031 // checking if NumResults is zero, because with zero results 3032 // the operands won't have values in the map. 3033 SDValue Src = getValue(SrcV); 3034 SDValue Ptr = getValue(PtrV); 3035 3036 SDValue Root = getRoot(); 3037 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3038 EVT PtrVT = Ptr.getValueType(); 3039 bool isVolatile = I.isVolatile(); 3040 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3041 unsigned Alignment = I.getAlignment(); 3042 SDLoc dl = getCurSDLoc(); 3043 3044 AAMDNodes AAInfo; 3045 I.getAAMetadata(AAInfo); 3046 3047 unsigned ChainI = 0; 3048 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3049 // See visitLoad comments. 3050 if (ChainI == MaxParallelChains) { 3051 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3052 makeArrayRef(Chains.data(), ChainI)); 3053 Root = Chain; 3054 ChainI = 0; 3055 } 3056 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3057 DAG.getConstant(Offsets[i], dl, PtrVT)); 3058 SDValue St = DAG.getStore(Root, dl, 3059 SDValue(Src.getNode(), Src.getResNo() + i), 3060 Add, MachinePointerInfo(PtrV, Offsets[i]), 3061 isVolatile, isNonTemporal, Alignment, AAInfo); 3062 Chains[ChainI] = St; 3063 } 3064 3065 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3066 makeArrayRef(Chains.data(), ChainI)); 3067 DAG.setRoot(StoreNode); 3068 } 3069 3070 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3071 SDLoc sdl = getCurSDLoc(); 3072 3073 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3074 Value *PtrOperand = I.getArgOperand(1); 3075 SDValue Ptr = getValue(PtrOperand); 3076 SDValue Src0 = getValue(I.getArgOperand(0)); 3077 SDValue Mask = getValue(I.getArgOperand(3)); 3078 EVT VT = Src0.getValueType(); 3079 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3080 if (!Alignment) 3081 Alignment = DAG.getEVTAlignment(VT); 3082 3083 AAMDNodes AAInfo; 3084 I.getAAMetadata(AAInfo); 3085 3086 MachineMemOperand *MMO = 3087 DAG.getMachineFunction(). 3088 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3089 MachineMemOperand::MOStore, VT.getStoreSize(), 3090 Alignment, AAInfo); 3091 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3092 MMO, false); 3093 DAG.setRoot(StoreNode); 3094 setValue(&I, StoreNode); 3095 } 3096 3097 // Gather/scatter receive a vector of pointers. 3098 // This vector of pointers may be represented as a base pointer + vector of 3099 // indices, it depends on GEP and instruction preceding GEP 3100 // that calculates indices 3101 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3102 SelectionDAGBuilder* SDB) { 3103 3104 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 3105 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3106 if (!Gep || Gep->getNumOperands() > 2) 3107 return false; 3108 ShuffleVectorInst *ShuffleInst = 3109 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3110 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3111 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3112 Instruction::InsertElement) 3113 return false; 3114 3115 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3116 3117 SelectionDAG& DAG = SDB->DAG; 3118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3119 // Check is the Ptr is inside current basic block 3120 // If not, look for the shuffle instruction 3121 if (SDB->findValue(Ptr)) 3122 Base = SDB->getValue(Ptr); 3123 else if (SDB->findValue(ShuffleInst)) { 3124 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3125 SDLoc sdl = ShuffleNode; 3126 Base = DAG.getNode( 3127 ISD::EXTRACT_VECTOR_ELT, sdl, 3128 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3129 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3130 SDB->setValue(Ptr, Base); 3131 } 3132 else 3133 return false; 3134 3135 Value *IndexVal = Gep->getOperand(1); 3136 if (SDB->findValue(IndexVal)) { 3137 Index = SDB->getValue(IndexVal); 3138 3139 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3140 IndexVal = Sext->getOperand(0); 3141 if (SDB->findValue(IndexVal)) 3142 Index = SDB->getValue(IndexVal); 3143 } 3144 return true; 3145 } 3146 return false; 3147 } 3148 3149 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3150 SDLoc sdl = getCurSDLoc(); 3151 3152 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3153 Value *Ptr = I.getArgOperand(1); 3154 SDValue Src0 = getValue(I.getArgOperand(0)); 3155 SDValue Mask = getValue(I.getArgOperand(3)); 3156 EVT VT = Src0.getValueType(); 3157 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3158 if (!Alignment) 3159 Alignment = DAG.getEVTAlignment(VT); 3160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3161 3162 AAMDNodes AAInfo; 3163 I.getAAMetadata(AAInfo); 3164 3165 SDValue Base; 3166 SDValue Index; 3167 Value *BasePtr = Ptr; 3168 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3169 3170 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3171 MachineMemOperand *MMO = DAG.getMachineFunction(). 3172 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3173 MachineMemOperand::MOStore, VT.getStoreSize(), 3174 Alignment, AAInfo); 3175 if (!UniformBase) { 3176 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3177 Index = getValue(Ptr); 3178 } 3179 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3180 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3181 Ops, MMO); 3182 DAG.setRoot(Scatter); 3183 setValue(&I, Scatter); 3184 } 3185 3186 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3187 SDLoc sdl = getCurSDLoc(); 3188 3189 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3190 Value *PtrOperand = I.getArgOperand(0); 3191 SDValue Ptr = getValue(PtrOperand); 3192 SDValue Src0 = getValue(I.getArgOperand(3)); 3193 SDValue Mask = getValue(I.getArgOperand(2)); 3194 3195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3196 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3197 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3198 if (!Alignment) 3199 Alignment = DAG.getEVTAlignment(VT); 3200 3201 AAMDNodes AAInfo; 3202 I.getAAMetadata(AAInfo); 3203 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3204 3205 SDValue InChain = DAG.getRoot(); 3206 if (AA->pointsToConstantMemory(MemoryLocation( 3207 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3208 AAInfo))) { 3209 // Do not serialize (non-volatile) loads of constant memory with anything. 3210 InChain = DAG.getEntryNode(); 3211 } 3212 3213 MachineMemOperand *MMO = 3214 DAG.getMachineFunction(). 3215 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3216 MachineMemOperand::MOLoad, VT.getStoreSize(), 3217 Alignment, AAInfo, Ranges); 3218 3219 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3220 ISD::NON_EXTLOAD); 3221 SDValue OutChain = Load.getValue(1); 3222 DAG.setRoot(OutChain); 3223 setValue(&I, Load); 3224 } 3225 3226 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3227 SDLoc sdl = getCurSDLoc(); 3228 3229 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3230 Value *Ptr = I.getArgOperand(0); 3231 SDValue Src0 = getValue(I.getArgOperand(3)); 3232 SDValue Mask = getValue(I.getArgOperand(2)); 3233 3234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3235 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3236 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3237 if (!Alignment) 3238 Alignment = DAG.getEVTAlignment(VT); 3239 3240 AAMDNodes AAInfo; 3241 I.getAAMetadata(AAInfo); 3242 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3243 3244 SDValue Root = DAG.getRoot(); 3245 SDValue Base; 3246 SDValue Index; 3247 Value *BasePtr = Ptr; 3248 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3249 bool ConstantMemory = false; 3250 if (UniformBase && 3251 AA->pointsToConstantMemory(MemoryLocation( 3252 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3253 AAInfo))) { 3254 // Do not serialize (non-volatile) loads of constant memory with anything. 3255 Root = DAG.getEntryNode(); 3256 ConstantMemory = true; 3257 } 3258 3259 MachineMemOperand *MMO = 3260 DAG.getMachineFunction(). 3261 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3262 MachineMemOperand::MOLoad, VT.getStoreSize(), 3263 Alignment, AAInfo, Ranges); 3264 3265 if (!UniformBase) { 3266 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3267 Index = getValue(Ptr); 3268 } 3269 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3270 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3271 Ops, MMO); 3272 3273 SDValue OutChain = Gather.getValue(1); 3274 if (!ConstantMemory) 3275 PendingLoads.push_back(OutChain); 3276 setValue(&I, Gather); 3277 } 3278 3279 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3280 SDLoc dl = getCurSDLoc(); 3281 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3282 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3283 SynchronizationScope Scope = I.getSynchScope(); 3284 3285 SDValue InChain = getRoot(); 3286 3287 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3288 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3289 SDValue L = DAG.getAtomicCmpSwap( 3290 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3291 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3292 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3293 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3294 3295 SDValue OutChain = L.getValue(2); 3296 3297 setValue(&I, L); 3298 DAG.setRoot(OutChain); 3299 } 3300 3301 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3302 SDLoc dl = getCurSDLoc(); 3303 ISD::NodeType NT; 3304 switch (I.getOperation()) { 3305 default: llvm_unreachable("Unknown atomicrmw operation"); 3306 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3307 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3308 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3309 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3310 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3311 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3312 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3313 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3314 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3315 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3316 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3317 } 3318 AtomicOrdering Order = I.getOrdering(); 3319 SynchronizationScope Scope = I.getSynchScope(); 3320 3321 SDValue InChain = getRoot(); 3322 3323 SDValue L = 3324 DAG.getAtomic(NT, dl, 3325 getValue(I.getValOperand()).getSimpleValueType(), 3326 InChain, 3327 getValue(I.getPointerOperand()), 3328 getValue(I.getValOperand()), 3329 I.getPointerOperand(), 3330 /* Alignment=*/ 0, Order, Scope); 3331 3332 SDValue OutChain = L.getValue(1); 3333 3334 setValue(&I, L); 3335 DAG.setRoot(OutChain); 3336 } 3337 3338 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3339 SDLoc dl = getCurSDLoc(); 3340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3341 SDValue Ops[3]; 3342 Ops[0] = getRoot(); 3343 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3344 TLI.getPointerTy(DAG.getDataLayout())); 3345 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3346 TLI.getPointerTy(DAG.getDataLayout())); 3347 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3348 } 3349 3350 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3351 SDLoc dl = getCurSDLoc(); 3352 AtomicOrdering Order = I.getOrdering(); 3353 SynchronizationScope Scope = I.getSynchScope(); 3354 3355 SDValue InChain = getRoot(); 3356 3357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3358 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3359 3360 if (I.getAlignment() < VT.getSizeInBits() / 8) 3361 report_fatal_error("Cannot generate unaligned atomic load"); 3362 3363 MachineMemOperand *MMO = 3364 DAG.getMachineFunction(). 3365 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3366 MachineMemOperand::MOVolatile | 3367 MachineMemOperand::MOLoad, 3368 VT.getStoreSize(), 3369 I.getAlignment() ? I.getAlignment() : 3370 DAG.getEVTAlignment(VT)); 3371 3372 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3373 SDValue L = 3374 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3375 getValue(I.getPointerOperand()), MMO, 3376 Order, Scope); 3377 3378 SDValue OutChain = L.getValue(1); 3379 3380 setValue(&I, L); 3381 DAG.setRoot(OutChain); 3382 } 3383 3384 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3385 SDLoc dl = getCurSDLoc(); 3386 3387 AtomicOrdering Order = I.getOrdering(); 3388 SynchronizationScope Scope = I.getSynchScope(); 3389 3390 SDValue InChain = getRoot(); 3391 3392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3393 EVT VT = 3394 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3395 3396 if (I.getAlignment() < VT.getSizeInBits() / 8) 3397 report_fatal_error("Cannot generate unaligned atomic store"); 3398 3399 SDValue OutChain = 3400 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3401 InChain, 3402 getValue(I.getPointerOperand()), 3403 getValue(I.getValueOperand()), 3404 I.getPointerOperand(), I.getAlignment(), 3405 Order, Scope); 3406 3407 DAG.setRoot(OutChain); 3408 } 3409 3410 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3411 /// node. 3412 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3413 unsigned Intrinsic) { 3414 bool HasChain = !I.doesNotAccessMemory(); 3415 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3416 3417 // Build the operand list. 3418 SmallVector<SDValue, 8> Ops; 3419 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3420 if (OnlyLoad) { 3421 // We don't need to serialize loads against other loads. 3422 Ops.push_back(DAG.getRoot()); 3423 } else { 3424 Ops.push_back(getRoot()); 3425 } 3426 } 3427 3428 // Info is set by getTgtMemInstrinsic 3429 TargetLowering::IntrinsicInfo Info; 3430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3431 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3432 3433 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3434 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3435 Info.opc == ISD::INTRINSIC_W_CHAIN) 3436 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3437 TLI.getPointerTy(DAG.getDataLayout()))); 3438 3439 // Add all operands of the call to the operand list. 3440 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3441 SDValue Op = getValue(I.getArgOperand(i)); 3442 Ops.push_back(Op); 3443 } 3444 3445 SmallVector<EVT, 4> ValueVTs; 3446 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3447 3448 if (HasChain) 3449 ValueVTs.push_back(MVT::Other); 3450 3451 SDVTList VTs = DAG.getVTList(ValueVTs); 3452 3453 // Create the node. 3454 SDValue Result; 3455 if (IsTgtIntrinsic) { 3456 // This is target intrinsic that touches memory 3457 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3458 VTs, Ops, Info.memVT, 3459 MachinePointerInfo(Info.ptrVal, Info.offset), 3460 Info.align, Info.vol, 3461 Info.readMem, Info.writeMem, Info.size); 3462 } else if (!HasChain) { 3463 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3464 } else if (!I.getType()->isVoidTy()) { 3465 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3466 } else { 3467 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3468 } 3469 3470 if (HasChain) { 3471 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3472 if (OnlyLoad) 3473 PendingLoads.push_back(Chain); 3474 else 3475 DAG.setRoot(Chain); 3476 } 3477 3478 if (!I.getType()->isVoidTy()) { 3479 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3480 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3481 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3482 } 3483 3484 setValue(&I, Result); 3485 } 3486 } 3487 3488 /// GetSignificand - Get the significand and build it into a floating-point 3489 /// number with exponent of 1: 3490 /// 3491 /// Op = (Op & 0x007fffff) | 0x3f800000; 3492 /// 3493 /// where Op is the hexadecimal representation of floating point value. 3494 static SDValue 3495 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3496 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3497 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3498 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3499 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3500 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3501 } 3502 3503 /// GetExponent - Get the exponent: 3504 /// 3505 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3506 /// 3507 /// where Op is the hexadecimal representation of floating point value. 3508 static SDValue 3509 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3510 SDLoc dl) { 3511 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3512 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3513 SDValue t1 = DAG.getNode( 3514 ISD::SRL, dl, MVT::i32, t0, 3515 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3516 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3517 DAG.getConstant(127, dl, MVT::i32)); 3518 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3519 } 3520 3521 /// getF32Constant - Get 32-bit floating point constant. 3522 static SDValue 3523 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3524 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3525 MVT::f32); 3526 } 3527 3528 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3529 SelectionDAG &DAG) { 3530 // IntegerPartOfX = ((int32_t)(t0); 3531 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3532 3533 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3534 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3535 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3536 3537 // IntegerPartOfX <<= 23; 3538 IntegerPartOfX = DAG.getNode( 3539 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3540 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3541 DAG.getDataLayout()))); 3542 3543 SDValue TwoToFractionalPartOfX; 3544 if (LimitFloatPrecision <= 6) { 3545 // For floating-point precision of 6: 3546 // 3547 // TwoToFractionalPartOfX = 3548 // 0.997535578f + 3549 // (0.735607626f + 0.252464424f * x) * x; 3550 // 3551 // error 0.0144103317, which is 6 bits 3552 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3553 getF32Constant(DAG, 0x3e814304, dl)); 3554 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3555 getF32Constant(DAG, 0x3f3c50c8, dl)); 3556 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3557 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3558 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3559 } else if (LimitFloatPrecision <= 12) { 3560 // For floating-point precision of 12: 3561 // 3562 // TwoToFractionalPartOfX = 3563 // 0.999892986f + 3564 // (0.696457318f + 3565 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3566 // 3567 // error 0.000107046256, which is 13 to 14 bits 3568 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3569 getF32Constant(DAG, 0x3da235e3, dl)); 3570 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3571 getF32Constant(DAG, 0x3e65b8f3, dl)); 3572 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3573 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3574 getF32Constant(DAG, 0x3f324b07, dl)); 3575 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3576 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3577 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3578 } else { // LimitFloatPrecision <= 18 3579 // For floating-point precision of 18: 3580 // 3581 // TwoToFractionalPartOfX = 3582 // 0.999999982f + 3583 // (0.693148872f + 3584 // (0.240227044f + 3585 // (0.554906021e-1f + 3586 // (0.961591928e-2f + 3587 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3588 // error 2.47208000*10^(-7), which is better than 18 bits 3589 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3590 getF32Constant(DAG, 0x3924b03e, dl)); 3591 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3592 getF32Constant(DAG, 0x3ab24b87, dl)); 3593 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3594 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3595 getF32Constant(DAG, 0x3c1d8c17, dl)); 3596 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3597 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3598 getF32Constant(DAG, 0x3d634a1d, dl)); 3599 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3600 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3601 getF32Constant(DAG, 0x3e75fe14, dl)); 3602 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3603 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3604 getF32Constant(DAG, 0x3f317234, dl)); 3605 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3606 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3607 getF32Constant(DAG, 0x3f800000, dl)); 3608 } 3609 3610 // Add the exponent into the result in integer domain. 3611 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3612 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3613 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3614 } 3615 3616 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3617 /// limited-precision mode. 3618 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3619 const TargetLowering &TLI) { 3620 if (Op.getValueType() == MVT::f32 && 3621 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3622 3623 // Put the exponent in the right bit position for later addition to the 3624 // final result: 3625 // 3626 // #define LOG2OFe 1.4426950f 3627 // t0 = Op * LOG2OFe 3628 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3629 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3630 return getLimitedPrecisionExp2(t0, dl, DAG); 3631 } 3632 3633 // No special expansion. 3634 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3635 } 3636 3637 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3638 /// limited-precision mode. 3639 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3640 const TargetLowering &TLI) { 3641 if (Op.getValueType() == MVT::f32 && 3642 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3643 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3644 3645 // Scale the exponent by log(2) [0.69314718f]. 3646 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3647 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3648 getF32Constant(DAG, 0x3f317218, dl)); 3649 3650 // Get the significand and build it into a floating-point number with 3651 // exponent of 1. 3652 SDValue X = GetSignificand(DAG, Op1, dl); 3653 3654 SDValue LogOfMantissa; 3655 if (LimitFloatPrecision <= 6) { 3656 // For floating-point precision of 6: 3657 // 3658 // LogofMantissa = 3659 // -1.1609546f + 3660 // (1.4034025f - 0.23903021f * x) * x; 3661 // 3662 // error 0.0034276066, which is better than 8 bits 3663 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3664 getF32Constant(DAG, 0xbe74c456, dl)); 3665 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3666 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3667 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3668 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3669 getF32Constant(DAG, 0x3f949a29, dl)); 3670 } else if (LimitFloatPrecision <= 12) { 3671 // For floating-point precision of 12: 3672 // 3673 // LogOfMantissa = 3674 // -1.7417939f + 3675 // (2.8212026f + 3676 // (-1.4699568f + 3677 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3678 // 3679 // error 0.000061011436, which is 14 bits 3680 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3681 getF32Constant(DAG, 0xbd67b6d6, dl)); 3682 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3683 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3684 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3685 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3686 getF32Constant(DAG, 0x3fbc278b, dl)); 3687 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3688 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3689 getF32Constant(DAG, 0x40348e95, dl)); 3690 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3691 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3692 getF32Constant(DAG, 0x3fdef31a, dl)); 3693 } else { // LimitFloatPrecision <= 18 3694 // For floating-point precision of 18: 3695 // 3696 // LogOfMantissa = 3697 // -2.1072184f + 3698 // (4.2372794f + 3699 // (-3.7029485f + 3700 // (2.2781945f + 3701 // (-0.87823314f + 3702 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3703 // 3704 // error 0.0000023660568, which is better than 18 bits 3705 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3706 getF32Constant(DAG, 0xbc91e5ac, dl)); 3707 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3708 getF32Constant(DAG, 0x3e4350aa, dl)); 3709 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3710 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3711 getF32Constant(DAG, 0x3f60d3e3, dl)); 3712 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3713 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3714 getF32Constant(DAG, 0x4011cdf0, dl)); 3715 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3716 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3717 getF32Constant(DAG, 0x406cfd1c, dl)); 3718 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3719 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3720 getF32Constant(DAG, 0x408797cb, dl)); 3721 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3722 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3723 getF32Constant(DAG, 0x4006dcab, dl)); 3724 } 3725 3726 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3727 } 3728 3729 // No special expansion. 3730 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3731 } 3732 3733 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3734 /// limited-precision mode. 3735 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3736 const TargetLowering &TLI) { 3737 if (Op.getValueType() == MVT::f32 && 3738 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3739 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3740 3741 // Get the exponent. 3742 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3743 3744 // Get the significand and build it into a floating-point number with 3745 // exponent of 1. 3746 SDValue X = GetSignificand(DAG, Op1, dl); 3747 3748 // Different possible minimax approximations of significand in 3749 // floating-point for various degrees of accuracy over [1,2]. 3750 SDValue Log2ofMantissa; 3751 if (LimitFloatPrecision <= 6) { 3752 // For floating-point precision of 6: 3753 // 3754 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3755 // 3756 // error 0.0049451742, which is more than 7 bits 3757 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3758 getF32Constant(DAG, 0xbeb08fe0, dl)); 3759 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3760 getF32Constant(DAG, 0x40019463, dl)); 3761 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3762 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3763 getF32Constant(DAG, 0x3fd6633d, dl)); 3764 } else if (LimitFloatPrecision <= 12) { 3765 // For floating-point precision of 12: 3766 // 3767 // Log2ofMantissa = 3768 // -2.51285454f + 3769 // (4.07009056f + 3770 // (-2.12067489f + 3771 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3772 // 3773 // error 0.0000876136000, which is better than 13 bits 3774 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3775 getF32Constant(DAG, 0xbda7262e, dl)); 3776 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3777 getF32Constant(DAG, 0x3f25280b, dl)); 3778 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3779 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3780 getF32Constant(DAG, 0x4007b923, dl)); 3781 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3782 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3783 getF32Constant(DAG, 0x40823e2f, dl)); 3784 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3785 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3786 getF32Constant(DAG, 0x4020d29c, dl)); 3787 } else { // LimitFloatPrecision <= 18 3788 // For floating-point precision of 18: 3789 // 3790 // Log2ofMantissa = 3791 // -3.0400495f + 3792 // (6.1129976f + 3793 // (-5.3420409f + 3794 // (3.2865683f + 3795 // (-1.2669343f + 3796 // (0.27515199f - 3797 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3798 // 3799 // error 0.0000018516, which is better than 18 bits 3800 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3801 getF32Constant(DAG, 0xbcd2769e, dl)); 3802 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3803 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3804 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3805 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3806 getF32Constant(DAG, 0x3fa22ae7, dl)); 3807 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3808 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3809 getF32Constant(DAG, 0x40525723, dl)); 3810 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3811 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3812 getF32Constant(DAG, 0x40aaf200, dl)); 3813 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3814 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3815 getF32Constant(DAG, 0x40c39dad, dl)); 3816 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3817 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3818 getF32Constant(DAG, 0x4042902c, dl)); 3819 } 3820 3821 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3822 } 3823 3824 // No special expansion. 3825 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3826 } 3827 3828 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3829 /// limited-precision mode. 3830 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3831 const TargetLowering &TLI) { 3832 if (Op.getValueType() == MVT::f32 && 3833 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3834 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3835 3836 // Scale the exponent by log10(2) [0.30102999f]. 3837 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3838 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3839 getF32Constant(DAG, 0x3e9a209a, dl)); 3840 3841 // Get the significand and build it into a floating-point number with 3842 // exponent of 1. 3843 SDValue X = GetSignificand(DAG, Op1, dl); 3844 3845 SDValue Log10ofMantissa; 3846 if (LimitFloatPrecision <= 6) { 3847 // For floating-point precision of 6: 3848 // 3849 // Log10ofMantissa = 3850 // -0.50419619f + 3851 // (0.60948995f - 0.10380950f * x) * x; 3852 // 3853 // error 0.0014886165, which is 6 bits 3854 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3855 getF32Constant(DAG, 0xbdd49a13, dl)); 3856 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3857 getF32Constant(DAG, 0x3f1c0789, dl)); 3858 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3859 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3860 getF32Constant(DAG, 0x3f011300, dl)); 3861 } else if (LimitFloatPrecision <= 12) { 3862 // For floating-point precision of 12: 3863 // 3864 // Log10ofMantissa = 3865 // -0.64831180f + 3866 // (0.91751397f + 3867 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3868 // 3869 // error 0.00019228036, which is better than 12 bits 3870 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3871 getF32Constant(DAG, 0x3d431f31, dl)); 3872 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3873 getF32Constant(DAG, 0x3ea21fb2, dl)); 3874 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3875 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3876 getF32Constant(DAG, 0x3f6ae232, dl)); 3877 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3878 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3879 getF32Constant(DAG, 0x3f25f7c3, dl)); 3880 } else { // LimitFloatPrecision <= 18 3881 // For floating-point precision of 18: 3882 // 3883 // Log10ofMantissa = 3884 // -0.84299375f + 3885 // (1.5327582f + 3886 // (-1.0688956f + 3887 // (0.49102474f + 3888 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3889 // 3890 // error 0.0000037995730, which is better than 18 bits 3891 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3892 getF32Constant(DAG, 0x3c5d51ce, dl)); 3893 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3894 getF32Constant(DAG, 0x3e00685a, dl)); 3895 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3896 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3897 getF32Constant(DAG, 0x3efb6798, dl)); 3898 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3899 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3900 getF32Constant(DAG, 0x3f88d192, dl)); 3901 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3902 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3903 getF32Constant(DAG, 0x3fc4316c, dl)); 3904 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3905 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3906 getF32Constant(DAG, 0x3f57ce70, dl)); 3907 } 3908 3909 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3910 } 3911 3912 // No special expansion. 3913 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3914 } 3915 3916 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3917 /// limited-precision mode. 3918 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3919 const TargetLowering &TLI) { 3920 if (Op.getValueType() == MVT::f32 && 3921 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3922 return getLimitedPrecisionExp2(Op, dl, DAG); 3923 3924 // No special expansion. 3925 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3926 } 3927 3928 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3929 /// limited-precision mode with x == 10.0f. 3930 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3931 SelectionDAG &DAG, const TargetLowering &TLI) { 3932 bool IsExp10 = false; 3933 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3934 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3935 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3936 APFloat Ten(10.0f); 3937 IsExp10 = LHSC->isExactlyValue(Ten); 3938 } 3939 } 3940 3941 if (IsExp10) { 3942 // Put the exponent in the right bit position for later addition to the 3943 // final result: 3944 // 3945 // #define LOG2OF10 3.3219281f 3946 // t0 = Op * LOG2OF10; 3947 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3948 getF32Constant(DAG, 0x40549a78, dl)); 3949 return getLimitedPrecisionExp2(t0, dl, DAG); 3950 } 3951 3952 // No special expansion. 3953 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3954 } 3955 3956 3957 /// ExpandPowI - Expand a llvm.powi intrinsic. 3958 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3959 SelectionDAG &DAG) { 3960 // If RHS is a constant, we can expand this out to a multiplication tree, 3961 // otherwise we end up lowering to a call to __powidf2 (for example). When 3962 // optimizing for size, we only want to do this if the expansion would produce 3963 // a small number of multiplies, otherwise we do the full expansion. 3964 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3965 // Get the exponent as a positive value. 3966 unsigned Val = RHSC->getSExtValue(); 3967 if ((int)Val < 0) Val = -Val; 3968 3969 // powi(x, 0) -> 1.0 3970 if (Val == 0) 3971 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3972 3973 const Function *F = DAG.getMachineFunction().getFunction(); 3974 // FIXME: Use Function::optForSize(). 3975 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3976 // If optimizing for size, don't insert too many multiplies. This 3977 // inserts up to 5 multiplies. 3978 countPopulation(Val) + Log2_32(Val) < 7) { 3979 // We use the simple binary decomposition method to generate the multiply 3980 // sequence. There are more optimal ways to do this (for example, 3981 // powi(x,15) generates one more multiply than it should), but this has 3982 // the benefit of being both really simple and much better than a libcall. 3983 SDValue Res; // Logically starts equal to 1.0 3984 SDValue CurSquare = LHS; 3985 while (Val) { 3986 if (Val & 1) { 3987 if (Res.getNode()) 3988 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3989 else 3990 Res = CurSquare; // 1.0*CurSquare. 3991 } 3992 3993 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3994 CurSquare, CurSquare); 3995 Val >>= 1; 3996 } 3997 3998 // If the original was negative, invert the result, producing 1/(x*x*x). 3999 if (RHSC->getSExtValue() < 0) 4000 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4001 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4002 return Res; 4003 } 4004 } 4005 4006 // Otherwise, expand to a libcall. 4007 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4008 } 4009 4010 // getTruncatedArgReg - Find underlying register used for an truncated 4011 // argument. 4012 static unsigned getTruncatedArgReg(const SDValue &N) { 4013 if (N.getOpcode() != ISD::TRUNCATE) 4014 return 0; 4015 4016 const SDValue &Ext = N.getOperand(0); 4017 if (Ext.getOpcode() == ISD::AssertZext || 4018 Ext.getOpcode() == ISD::AssertSext) { 4019 const SDValue &CFR = Ext.getOperand(0); 4020 if (CFR.getOpcode() == ISD::CopyFromReg) 4021 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4022 if (CFR.getOpcode() == ISD::TRUNCATE) 4023 return getTruncatedArgReg(CFR); 4024 } 4025 return 0; 4026 } 4027 4028 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4029 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4030 /// At the end of instruction selection, they will be inserted to the entry BB. 4031 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4032 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4033 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4034 const Argument *Arg = dyn_cast<Argument>(V); 4035 if (!Arg) 4036 return false; 4037 4038 MachineFunction &MF = DAG.getMachineFunction(); 4039 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4040 4041 // Ignore inlined function arguments here. 4042 // 4043 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4044 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4045 return false; 4046 4047 Optional<MachineOperand> Op; 4048 // Some arguments' frame index is recorded during argument lowering. 4049 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4050 Op = MachineOperand::CreateFI(FI); 4051 4052 if (!Op && N.getNode()) { 4053 unsigned Reg; 4054 if (N.getOpcode() == ISD::CopyFromReg) 4055 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4056 else 4057 Reg = getTruncatedArgReg(N); 4058 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4059 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4060 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4061 if (PR) 4062 Reg = PR; 4063 } 4064 if (Reg) 4065 Op = MachineOperand::CreateReg(Reg, false); 4066 } 4067 4068 if (!Op) { 4069 // Check if ValueMap has reg number. 4070 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4071 if (VMI != FuncInfo.ValueMap.end()) 4072 Op = MachineOperand::CreateReg(VMI->second, false); 4073 } 4074 4075 if (!Op && N.getNode()) 4076 // Check if frame index is available. 4077 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4078 if (FrameIndexSDNode *FINode = 4079 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4080 Op = MachineOperand::CreateFI(FINode->getIndex()); 4081 4082 if (!Op) 4083 return false; 4084 4085 assert(Variable->isValidLocationForIntrinsic(DL) && 4086 "Expected inlined-at fields to agree"); 4087 if (Op->isReg()) 4088 FuncInfo.ArgDbgValues.push_back( 4089 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4090 Op->getReg(), Offset, Variable, Expr)); 4091 else 4092 FuncInfo.ArgDbgValues.push_back( 4093 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4094 .addOperand(*Op) 4095 .addImm(Offset) 4096 .addMetadata(Variable) 4097 .addMetadata(Expr)); 4098 4099 return true; 4100 } 4101 4102 // VisualStudio defines setjmp as _setjmp 4103 #if defined(_MSC_VER) && defined(setjmp) && \ 4104 !defined(setjmp_undefined_for_msvc) 4105 # pragma push_macro("setjmp") 4106 # undef setjmp 4107 # define setjmp_undefined_for_msvc 4108 #endif 4109 4110 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4111 /// we want to emit this as a call to a named external function, return the name 4112 /// otherwise lower it and return null. 4113 const char * 4114 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4116 SDLoc sdl = getCurSDLoc(); 4117 DebugLoc dl = getCurDebugLoc(); 4118 SDValue Res; 4119 4120 switch (Intrinsic) { 4121 default: 4122 // By default, turn this into a target intrinsic node. 4123 visitTargetIntrinsic(I, Intrinsic); 4124 return nullptr; 4125 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4126 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4127 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4128 case Intrinsic::returnaddress: 4129 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4130 TLI.getPointerTy(DAG.getDataLayout()), 4131 getValue(I.getArgOperand(0)))); 4132 return nullptr; 4133 case Intrinsic::frameaddress: 4134 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4135 TLI.getPointerTy(DAG.getDataLayout()), 4136 getValue(I.getArgOperand(0)))); 4137 return nullptr; 4138 case Intrinsic::read_register: { 4139 Value *Reg = I.getArgOperand(0); 4140 SDValue Chain = getRoot(); 4141 SDValue RegName = 4142 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4143 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4144 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4145 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4146 setValue(&I, Res); 4147 DAG.setRoot(Res.getValue(1)); 4148 return nullptr; 4149 } 4150 case Intrinsic::write_register: { 4151 Value *Reg = I.getArgOperand(0); 4152 Value *RegValue = I.getArgOperand(1); 4153 SDValue Chain = getRoot(); 4154 SDValue RegName = 4155 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4156 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4157 RegName, getValue(RegValue))); 4158 return nullptr; 4159 } 4160 case Intrinsic::setjmp: 4161 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4162 case Intrinsic::longjmp: 4163 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4164 case Intrinsic::memcpy: { 4165 // FIXME: this definition of "user defined address space" is x86-specific 4166 // Assert for address < 256 since we support only user defined address 4167 // spaces. 4168 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4169 < 256 && 4170 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4171 < 256 && 4172 "Unknown address space"); 4173 SDValue Op1 = getValue(I.getArgOperand(0)); 4174 SDValue Op2 = getValue(I.getArgOperand(1)); 4175 SDValue Op3 = getValue(I.getArgOperand(2)); 4176 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4177 if (!Align) 4178 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4179 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4180 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4181 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4182 false, isTC, 4183 MachinePointerInfo(I.getArgOperand(0)), 4184 MachinePointerInfo(I.getArgOperand(1))); 4185 updateDAGForMaybeTailCall(MC); 4186 return nullptr; 4187 } 4188 case Intrinsic::memset: { 4189 // FIXME: this definition of "user defined address space" is x86-specific 4190 // Assert for address < 256 since we support only user defined address 4191 // spaces. 4192 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4193 < 256 && 4194 "Unknown address space"); 4195 SDValue Op1 = getValue(I.getArgOperand(0)); 4196 SDValue Op2 = getValue(I.getArgOperand(1)); 4197 SDValue Op3 = getValue(I.getArgOperand(2)); 4198 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4199 if (!Align) 4200 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4201 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4202 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4203 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4204 isTC, MachinePointerInfo(I.getArgOperand(0))); 4205 updateDAGForMaybeTailCall(MS); 4206 return nullptr; 4207 } 4208 case Intrinsic::memmove: { 4209 // FIXME: this definition of "user defined address space" is x86-specific 4210 // Assert for address < 256 since we support only user defined address 4211 // spaces. 4212 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4213 < 256 && 4214 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4215 < 256 && 4216 "Unknown address space"); 4217 SDValue Op1 = getValue(I.getArgOperand(0)); 4218 SDValue Op2 = getValue(I.getArgOperand(1)); 4219 SDValue Op3 = getValue(I.getArgOperand(2)); 4220 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4221 if (!Align) 4222 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4223 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4224 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4225 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4226 isTC, MachinePointerInfo(I.getArgOperand(0)), 4227 MachinePointerInfo(I.getArgOperand(1))); 4228 updateDAGForMaybeTailCall(MM); 4229 return nullptr; 4230 } 4231 case Intrinsic::dbg_declare: { 4232 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4233 DILocalVariable *Variable = DI.getVariable(); 4234 DIExpression *Expression = DI.getExpression(); 4235 const Value *Address = DI.getAddress(); 4236 assert(Variable && "Missing variable"); 4237 if (!Address) { 4238 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4239 return nullptr; 4240 } 4241 4242 // Check if address has undef value. 4243 if (isa<UndefValue>(Address) || 4244 (Address->use_empty() && !isa<Argument>(Address))) { 4245 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4246 return nullptr; 4247 } 4248 4249 SDValue &N = NodeMap[Address]; 4250 if (!N.getNode() && isa<Argument>(Address)) 4251 // Check unused arguments map. 4252 N = UnusedArgNodeMap[Address]; 4253 SDDbgValue *SDV; 4254 if (N.getNode()) { 4255 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4256 Address = BCI->getOperand(0); 4257 // Parameters are handled specially. 4258 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4259 4260 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4261 4262 if (isParameter && !AI) { 4263 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4264 if (FINode) 4265 // Byval parameter. We have a frame index at this point. 4266 SDV = DAG.getFrameIndexDbgValue( 4267 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4268 else { 4269 // Address is an argument, so try to emit its dbg value using 4270 // virtual register info from the FuncInfo.ValueMap. 4271 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4272 N); 4273 return nullptr; 4274 } 4275 } else if (AI) 4276 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4277 true, 0, dl, SDNodeOrder); 4278 else { 4279 // Can't do anything with other non-AI cases yet. 4280 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4281 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4282 DEBUG(Address->dump()); 4283 return nullptr; 4284 } 4285 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4286 } else { 4287 // If Address is an argument then try to emit its dbg value using 4288 // virtual register info from the FuncInfo.ValueMap. 4289 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4290 N)) { 4291 // If variable is pinned by a alloca in dominating bb then 4292 // use StaticAllocaMap. 4293 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4294 if (AI->getParent() != DI.getParent()) { 4295 DenseMap<const AllocaInst*, int>::iterator SI = 4296 FuncInfo.StaticAllocaMap.find(AI); 4297 if (SI != FuncInfo.StaticAllocaMap.end()) { 4298 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4299 0, dl, SDNodeOrder); 4300 DAG.AddDbgValue(SDV, nullptr, false); 4301 return nullptr; 4302 } 4303 } 4304 } 4305 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4306 } 4307 } 4308 return nullptr; 4309 } 4310 case Intrinsic::dbg_value: { 4311 const DbgValueInst &DI = cast<DbgValueInst>(I); 4312 assert(DI.getVariable() && "Missing variable"); 4313 4314 DILocalVariable *Variable = DI.getVariable(); 4315 DIExpression *Expression = DI.getExpression(); 4316 uint64_t Offset = DI.getOffset(); 4317 const Value *V = DI.getValue(); 4318 if (!V) 4319 return nullptr; 4320 4321 SDDbgValue *SDV; 4322 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4323 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4324 SDNodeOrder); 4325 DAG.AddDbgValue(SDV, nullptr, false); 4326 } else { 4327 // Do not use getValue() in here; we don't want to generate code at 4328 // this point if it hasn't been done yet. 4329 SDValue N = NodeMap[V]; 4330 if (!N.getNode() && isa<Argument>(V)) 4331 // Check unused arguments map. 4332 N = UnusedArgNodeMap[V]; 4333 if (N.getNode()) { 4334 // A dbg.value for an alloca is always indirect. 4335 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4336 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4337 IsIndirect, N)) { 4338 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4339 IsIndirect, Offset, dl, SDNodeOrder); 4340 DAG.AddDbgValue(SDV, N.getNode(), false); 4341 } 4342 } else if (!V->use_empty() ) { 4343 // Do not call getValue(V) yet, as we don't want to generate code. 4344 // Remember it for later. 4345 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4346 DanglingDebugInfoMap[V] = DDI; 4347 } else { 4348 // We may expand this to cover more cases. One case where we have no 4349 // data available is an unreferenced parameter. 4350 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4351 } 4352 } 4353 4354 // Build a debug info table entry. 4355 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4356 V = BCI->getOperand(0); 4357 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4358 // Don't handle byval struct arguments or VLAs, for example. 4359 if (!AI) { 4360 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4361 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4362 return nullptr; 4363 } 4364 DenseMap<const AllocaInst*, int>::iterator SI = 4365 FuncInfo.StaticAllocaMap.find(AI); 4366 if (SI == FuncInfo.StaticAllocaMap.end()) 4367 return nullptr; // VLAs. 4368 return nullptr; 4369 } 4370 4371 case Intrinsic::eh_typeid_for: { 4372 // Find the type id for the given typeinfo. 4373 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4374 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4375 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4376 setValue(&I, Res); 4377 return nullptr; 4378 } 4379 4380 case Intrinsic::eh_return_i32: 4381 case Intrinsic::eh_return_i64: 4382 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4383 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4384 MVT::Other, 4385 getControlRoot(), 4386 getValue(I.getArgOperand(0)), 4387 getValue(I.getArgOperand(1)))); 4388 return nullptr; 4389 case Intrinsic::eh_unwind_init: 4390 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4391 return nullptr; 4392 case Intrinsic::eh_dwarf_cfa: { 4393 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4394 TLI.getPointerTy(DAG.getDataLayout())); 4395 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4396 CfaArg.getValueType(), 4397 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4398 CfaArg.getValueType()), 4399 CfaArg); 4400 SDValue FA = DAG.getNode( 4401 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4402 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4403 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4404 FA, Offset)); 4405 return nullptr; 4406 } 4407 case Intrinsic::eh_sjlj_callsite: { 4408 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4409 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4410 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4411 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4412 4413 MMI.setCurrentCallSite(CI->getZExtValue()); 4414 return nullptr; 4415 } 4416 case Intrinsic::eh_sjlj_functioncontext: { 4417 // Get and store the index of the function context. 4418 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4419 AllocaInst *FnCtx = 4420 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4421 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4422 MFI->setFunctionContextIndex(FI); 4423 return nullptr; 4424 } 4425 case Intrinsic::eh_sjlj_setjmp: { 4426 SDValue Ops[2]; 4427 Ops[0] = getRoot(); 4428 Ops[1] = getValue(I.getArgOperand(0)); 4429 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4430 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4431 setValue(&I, Op.getValue(0)); 4432 DAG.setRoot(Op.getValue(1)); 4433 return nullptr; 4434 } 4435 case Intrinsic::eh_sjlj_longjmp: { 4436 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4437 getRoot(), getValue(I.getArgOperand(0)))); 4438 return nullptr; 4439 } 4440 case Intrinsic::eh_sjlj_setup_dispatch: { 4441 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4442 getRoot())); 4443 return nullptr; 4444 } 4445 4446 case Intrinsic::masked_gather: 4447 visitMaskedGather(I); 4448 return nullptr; 4449 case Intrinsic::masked_load: 4450 visitMaskedLoad(I); 4451 return nullptr; 4452 case Intrinsic::masked_scatter: 4453 visitMaskedScatter(I); 4454 return nullptr; 4455 case Intrinsic::masked_store: 4456 visitMaskedStore(I); 4457 return nullptr; 4458 case Intrinsic::x86_mmx_pslli_w: 4459 case Intrinsic::x86_mmx_pslli_d: 4460 case Intrinsic::x86_mmx_pslli_q: 4461 case Intrinsic::x86_mmx_psrli_w: 4462 case Intrinsic::x86_mmx_psrli_d: 4463 case Intrinsic::x86_mmx_psrli_q: 4464 case Intrinsic::x86_mmx_psrai_w: 4465 case Intrinsic::x86_mmx_psrai_d: { 4466 SDValue ShAmt = getValue(I.getArgOperand(1)); 4467 if (isa<ConstantSDNode>(ShAmt)) { 4468 visitTargetIntrinsic(I, Intrinsic); 4469 return nullptr; 4470 } 4471 unsigned NewIntrinsic = 0; 4472 EVT ShAmtVT = MVT::v2i32; 4473 switch (Intrinsic) { 4474 case Intrinsic::x86_mmx_pslli_w: 4475 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4476 break; 4477 case Intrinsic::x86_mmx_pslli_d: 4478 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4479 break; 4480 case Intrinsic::x86_mmx_pslli_q: 4481 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4482 break; 4483 case Intrinsic::x86_mmx_psrli_w: 4484 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4485 break; 4486 case Intrinsic::x86_mmx_psrli_d: 4487 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4488 break; 4489 case Intrinsic::x86_mmx_psrli_q: 4490 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4491 break; 4492 case Intrinsic::x86_mmx_psrai_w: 4493 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4494 break; 4495 case Intrinsic::x86_mmx_psrai_d: 4496 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4497 break; 4498 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4499 } 4500 4501 // The vector shift intrinsics with scalars uses 32b shift amounts but 4502 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4503 // to be zero. 4504 // We must do this early because v2i32 is not a legal type. 4505 SDValue ShOps[2]; 4506 ShOps[0] = ShAmt; 4507 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4508 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4509 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4510 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4511 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4512 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4513 getValue(I.getArgOperand(0)), ShAmt); 4514 setValue(&I, Res); 4515 return nullptr; 4516 } 4517 case Intrinsic::convertff: 4518 case Intrinsic::convertfsi: 4519 case Intrinsic::convertfui: 4520 case Intrinsic::convertsif: 4521 case Intrinsic::convertuif: 4522 case Intrinsic::convertss: 4523 case Intrinsic::convertsu: 4524 case Intrinsic::convertus: 4525 case Intrinsic::convertuu: { 4526 ISD::CvtCode Code = ISD::CVT_INVALID; 4527 switch (Intrinsic) { 4528 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4529 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4530 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4531 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4532 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4533 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4534 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4535 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4536 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4537 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4538 } 4539 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4540 const Value *Op1 = I.getArgOperand(0); 4541 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4542 DAG.getValueType(DestVT), 4543 DAG.getValueType(getValue(Op1).getValueType()), 4544 getValue(I.getArgOperand(1)), 4545 getValue(I.getArgOperand(2)), 4546 Code); 4547 setValue(&I, Res); 4548 return nullptr; 4549 } 4550 case Intrinsic::powi: 4551 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4552 getValue(I.getArgOperand(1)), DAG)); 4553 return nullptr; 4554 case Intrinsic::log: 4555 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4556 return nullptr; 4557 case Intrinsic::log2: 4558 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4559 return nullptr; 4560 case Intrinsic::log10: 4561 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4562 return nullptr; 4563 case Intrinsic::exp: 4564 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4565 return nullptr; 4566 case Intrinsic::exp2: 4567 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4568 return nullptr; 4569 case Intrinsic::pow: 4570 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4571 getValue(I.getArgOperand(1)), DAG, TLI)); 4572 return nullptr; 4573 case Intrinsic::sqrt: 4574 case Intrinsic::fabs: 4575 case Intrinsic::sin: 4576 case Intrinsic::cos: 4577 case Intrinsic::floor: 4578 case Intrinsic::ceil: 4579 case Intrinsic::trunc: 4580 case Intrinsic::rint: 4581 case Intrinsic::nearbyint: 4582 case Intrinsic::round: { 4583 unsigned Opcode; 4584 switch (Intrinsic) { 4585 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4586 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4587 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4588 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4589 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4590 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4591 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4592 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4593 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4594 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4595 case Intrinsic::round: Opcode = ISD::FROUND; break; 4596 } 4597 4598 setValue(&I, DAG.getNode(Opcode, sdl, 4599 getValue(I.getArgOperand(0)).getValueType(), 4600 getValue(I.getArgOperand(0)))); 4601 return nullptr; 4602 } 4603 case Intrinsic::minnum: 4604 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4605 getValue(I.getArgOperand(0)).getValueType(), 4606 getValue(I.getArgOperand(0)), 4607 getValue(I.getArgOperand(1)))); 4608 return nullptr; 4609 case Intrinsic::maxnum: 4610 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4611 getValue(I.getArgOperand(0)).getValueType(), 4612 getValue(I.getArgOperand(0)), 4613 getValue(I.getArgOperand(1)))); 4614 return nullptr; 4615 case Intrinsic::copysign: 4616 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4617 getValue(I.getArgOperand(0)).getValueType(), 4618 getValue(I.getArgOperand(0)), 4619 getValue(I.getArgOperand(1)))); 4620 return nullptr; 4621 case Intrinsic::fma: 4622 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4623 getValue(I.getArgOperand(0)).getValueType(), 4624 getValue(I.getArgOperand(0)), 4625 getValue(I.getArgOperand(1)), 4626 getValue(I.getArgOperand(2)))); 4627 return nullptr; 4628 case Intrinsic::fmuladd: { 4629 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4630 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4631 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4632 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4633 getValue(I.getArgOperand(0)).getValueType(), 4634 getValue(I.getArgOperand(0)), 4635 getValue(I.getArgOperand(1)), 4636 getValue(I.getArgOperand(2)))); 4637 } else { 4638 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4639 getValue(I.getArgOperand(0)).getValueType(), 4640 getValue(I.getArgOperand(0)), 4641 getValue(I.getArgOperand(1))); 4642 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4643 getValue(I.getArgOperand(0)).getValueType(), 4644 Mul, 4645 getValue(I.getArgOperand(2))); 4646 setValue(&I, Add); 4647 } 4648 return nullptr; 4649 } 4650 case Intrinsic::convert_to_fp16: 4651 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4652 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4653 getValue(I.getArgOperand(0)), 4654 DAG.getTargetConstant(0, sdl, 4655 MVT::i32)))); 4656 return nullptr; 4657 case Intrinsic::convert_from_fp16: 4658 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4659 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4660 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4661 getValue(I.getArgOperand(0))))); 4662 return nullptr; 4663 case Intrinsic::pcmarker: { 4664 SDValue Tmp = getValue(I.getArgOperand(0)); 4665 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4666 return nullptr; 4667 } 4668 case Intrinsic::readcyclecounter: { 4669 SDValue Op = getRoot(); 4670 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4671 DAG.getVTList(MVT::i64, MVT::Other), Op); 4672 setValue(&I, Res); 4673 DAG.setRoot(Res.getValue(1)); 4674 return nullptr; 4675 } 4676 case Intrinsic::bswap: 4677 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4678 getValue(I.getArgOperand(0)).getValueType(), 4679 getValue(I.getArgOperand(0)))); 4680 return nullptr; 4681 case Intrinsic::uabsdiff: 4682 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4683 getValue(I.getArgOperand(0)).getValueType(), 4684 getValue(I.getArgOperand(0)), 4685 getValue(I.getArgOperand(1)))); 4686 return nullptr; 4687 case Intrinsic::sabsdiff: 4688 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4689 getValue(I.getArgOperand(0)).getValueType(), 4690 getValue(I.getArgOperand(0)), 4691 getValue(I.getArgOperand(1)))); 4692 return nullptr; 4693 case Intrinsic::cttz: { 4694 SDValue Arg = getValue(I.getArgOperand(0)); 4695 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4696 EVT Ty = Arg.getValueType(); 4697 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4698 sdl, Ty, Arg)); 4699 return nullptr; 4700 } 4701 case Intrinsic::ctlz: { 4702 SDValue Arg = getValue(I.getArgOperand(0)); 4703 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4704 EVT Ty = Arg.getValueType(); 4705 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4706 sdl, Ty, Arg)); 4707 return nullptr; 4708 } 4709 case Intrinsic::ctpop: { 4710 SDValue Arg = getValue(I.getArgOperand(0)); 4711 EVT Ty = Arg.getValueType(); 4712 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4713 return nullptr; 4714 } 4715 case Intrinsic::stacksave: { 4716 SDValue Op = getRoot(); 4717 Res = DAG.getNode( 4718 ISD::STACKSAVE, sdl, 4719 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4720 setValue(&I, Res); 4721 DAG.setRoot(Res.getValue(1)); 4722 return nullptr; 4723 } 4724 case Intrinsic::stackrestore: { 4725 Res = getValue(I.getArgOperand(0)); 4726 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4727 return nullptr; 4728 } 4729 case Intrinsic::stackprotector: { 4730 // Emit code into the DAG to store the stack guard onto the stack. 4731 MachineFunction &MF = DAG.getMachineFunction(); 4732 MachineFrameInfo *MFI = MF.getFrameInfo(); 4733 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4734 SDValue Src, Chain = getRoot(); 4735 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4736 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4737 4738 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4739 // global variable __stack_chk_guard. 4740 if (!GV) 4741 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4742 if (BC->getOpcode() == Instruction::BitCast) 4743 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4744 4745 if (GV && TLI.useLoadStackGuardNode()) { 4746 // Emit a LOAD_STACK_GUARD node. 4747 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4748 sdl, PtrTy, Chain); 4749 MachinePointerInfo MPInfo(GV); 4750 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4751 unsigned Flags = MachineMemOperand::MOLoad | 4752 MachineMemOperand::MOInvariant; 4753 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4754 PtrTy.getSizeInBits() / 8, 4755 DAG.getEVTAlignment(PtrTy)); 4756 Node->setMemRefs(MemRefs, MemRefs + 1); 4757 4758 // Copy the guard value to a virtual register so that it can be 4759 // retrieved in the epilogue. 4760 Src = SDValue(Node, 0); 4761 const TargetRegisterClass *RC = 4762 TLI.getRegClassFor(Src.getSimpleValueType()); 4763 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4764 4765 SPDescriptor.setGuardReg(Reg); 4766 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4767 } else { 4768 Src = getValue(I.getArgOperand(0)); // The guard's value. 4769 } 4770 4771 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4772 4773 int FI = FuncInfo.StaticAllocaMap[Slot]; 4774 MFI->setStackProtectorIndex(FI); 4775 4776 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4777 4778 // Store the stack protector onto the stack. 4779 Res = DAG.getStore(Chain, sdl, Src, FIN, 4780 MachinePointerInfo::getFixedStack(FI), 4781 true, false, 0); 4782 setValue(&I, Res); 4783 DAG.setRoot(Res); 4784 return nullptr; 4785 } 4786 case Intrinsic::objectsize: { 4787 // If we don't know by now, we're never going to know. 4788 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4789 4790 assert(CI && "Non-constant type in __builtin_object_size?"); 4791 4792 SDValue Arg = getValue(I.getCalledValue()); 4793 EVT Ty = Arg.getValueType(); 4794 4795 if (CI->isZero()) 4796 Res = DAG.getConstant(-1ULL, sdl, Ty); 4797 else 4798 Res = DAG.getConstant(0, sdl, Ty); 4799 4800 setValue(&I, Res); 4801 return nullptr; 4802 } 4803 case Intrinsic::annotation: 4804 case Intrinsic::ptr_annotation: 4805 // Drop the intrinsic, but forward the value 4806 setValue(&I, getValue(I.getOperand(0))); 4807 return nullptr; 4808 case Intrinsic::assume: 4809 case Intrinsic::var_annotation: 4810 // Discard annotate attributes and assumptions 4811 return nullptr; 4812 4813 case Intrinsic::init_trampoline: { 4814 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4815 4816 SDValue Ops[6]; 4817 Ops[0] = getRoot(); 4818 Ops[1] = getValue(I.getArgOperand(0)); 4819 Ops[2] = getValue(I.getArgOperand(1)); 4820 Ops[3] = getValue(I.getArgOperand(2)); 4821 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4822 Ops[5] = DAG.getSrcValue(F); 4823 4824 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4825 4826 DAG.setRoot(Res); 4827 return nullptr; 4828 } 4829 case Intrinsic::adjust_trampoline: { 4830 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4831 TLI.getPointerTy(DAG.getDataLayout()), 4832 getValue(I.getArgOperand(0)))); 4833 return nullptr; 4834 } 4835 case Intrinsic::gcroot: 4836 if (GFI) { 4837 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4838 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4839 4840 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4841 GFI->addStackRoot(FI->getIndex(), TypeMap); 4842 } 4843 return nullptr; 4844 case Intrinsic::gcread: 4845 case Intrinsic::gcwrite: 4846 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4847 case Intrinsic::flt_rounds: 4848 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4849 return nullptr; 4850 4851 case Intrinsic::expect: { 4852 // Just replace __builtin_expect(exp, c) with EXP. 4853 setValue(&I, getValue(I.getArgOperand(0))); 4854 return nullptr; 4855 } 4856 4857 case Intrinsic::debugtrap: 4858 case Intrinsic::trap: { 4859 StringRef TrapFuncName = 4860 I.getAttributes() 4861 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4862 .getValueAsString(); 4863 if (TrapFuncName.empty()) { 4864 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4865 ISD::TRAP : ISD::DEBUGTRAP; 4866 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4867 return nullptr; 4868 } 4869 TargetLowering::ArgListTy Args; 4870 4871 TargetLowering::CallLoweringInfo CLI(DAG); 4872 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4873 CallingConv::C, I.getType(), 4874 DAG.getExternalSymbol(TrapFuncName.data(), 4875 TLI.getPointerTy(DAG.getDataLayout())), 4876 std::move(Args), 0); 4877 4878 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4879 DAG.setRoot(Result.second); 4880 return nullptr; 4881 } 4882 4883 case Intrinsic::uadd_with_overflow: 4884 case Intrinsic::sadd_with_overflow: 4885 case Intrinsic::usub_with_overflow: 4886 case Intrinsic::ssub_with_overflow: 4887 case Intrinsic::umul_with_overflow: 4888 case Intrinsic::smul_with_overflow: { 4889 ISD::NodeType Op; 4890 switch (Intrinsic) { 4891 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4892 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4893 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4894 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4895 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4896 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4897 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4898 } 4899 SDValue Op1 = getValue(I.getArgOperand(0)); 4900 SDValue Op2 = getValue(I.getArgOperand(1)); 4901 4902 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4903 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4904 return nullptr; 4905 } 4906 case Intrinsic::prefetch: { 4907 SDValue Ops[5]; 4908 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4909 Ops[0] = getRoot(); 4910 Ops[1] = getValue(I.getArgOperand(0)); 4911 Ops[2] = getValue(I.getArgOperand(1)); 4912 Ops[3] = getValue(I.getArgOperand(2)); 4913 Ops[4] = getValue(I.getArgOperand(3)); 4914 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4915 DAG.getVTList(MVT::Other), Ops, 4916 EVT::getIntegerVT(*Context, 8), 4917 MachinePointerInfo(I.getArgOperand(0)), 4918 0, /* align */ 4919 false, /* volatile */ 4920 rw==0, /* read */ 4921 rw==1)); /* write */ 4922 return nullptr; 4923 } 4924 case Intrinsic::lifetime_start: 4925 case Intrinsic::lifetime_end: { 4926 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4927 // Stack coloring is not enabled in O0, discard region information. 4928 if (TM.getOptLevel() == CodeGenOpt::None) 4929 return nullptr; 4930 4931 SmallVector<Value *, 4> Allocas; 4932 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4933 4934 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4935 E = Allocas.end(); Object != E; ++Object) { 4936 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4937 4938 // Could not find an Alloca. 4939 if (!LifetimeObject) 4940 continue; 4941 4942 // First check that the Alloca is static, otherwise it won't have a 4943 // valid frame index. 4944 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4945 if (SI == FuncInfo.StaticAllocaMap.end()) 4946 return nullptr; 4947 4948 int FI = SI->second; 4949 4950 SDValue Ops[2]; 4951 Ops[0] = getRoot(); 4952 Ops[1] = 4953 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4954 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4955 4956 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4957 DAG.setRoot(Res); 4958 } 4959 return nullptr; 4960 } 4961 case Intrinsic::invariant_start: 4962 // Discard region information. 4963 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4964 return nullptr; 4965 case Intrinsic::invariant_end: 4966 // Discard region information. 4967 return nullptr; 4968 case Intrinsic::stackprotectorcheck: { 4969 // Do not actually emit anything for this basic block. Instead we initialize 4970 // the stack protector descriptor and export the guard variable so we can 4971 // access it in FinishBasicBlock. 4972 const BasicBlock *BB = I.getParent(); 4973 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4974 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4975 4976 // Flush our exports since we are going to process a terminator. 4977 (void)getControlRoot(); 4978 return nullptr; 4979 } 4980 case Intrinsic::clear_cache: 4981 return TLI.getClearCacheBuiltinName(); 4982 case Intrinsic::eh_actions: 4983 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4984 return nullptr; 4985 case Intrinsic::donothing: 4986 // ignore 4987 return nullptr; 4988 case Intrinsic::experimental_stackmap: { 4989 visitStackmap(I); 4990 return nullptr; 4991 } 4992 case Intrinsic::experimental_patchpoint_void: 4993 case Intrinsic::experimental_patchpoint_i64: { 4994 visitPatchpoint(&I); 4995 return nullptr; 4996 } 4997 case Intrinsic::experimental_gc_statepoint: { 4998 visitStatepoint(I); 4999 return nullptr; 5000 } 5001 case Intrinsic::experimental_gc_result_int: 5002 case Intrinsic::experimental_gc_result_float: 5003 case Intrinsic::experimental_gc_result_ptr: 5004 case Intrinsic::experimental_gc_result: { 5005 visitGCResult(I); 5006 return nullptr; 5007 } 5008 case Intrinsic::experimental_gc_relocate: { 5009 visitGCRelocate(I); 5010 return nullptr; 5011 } 5012 case Intrinsic::instrprof_increment: 5013 llvm_unreachable("instrprof failed to lower an increment"); 5014 5015 case Intrinsic::localescape: { 5016 MachineFunction &MF = DAG.getMachineFunction(); 5017 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5018 5019 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5020 // is the same on all targets. 5021 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5022 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5023 if (isa<ConstantPointerNull>(Arg)) 5024 continue; // Skip null pointers. They represent a hole in index space. 5025 AllocaInst *Slot = cast<AllocaInst>(Arg); 5026 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5027 "can only escape static allocas"); 5028 int FI = FuncInfo.StaticAllocaMap[Slot]; 5029 MCSymbol *FrameAllocSym = 5030 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5031 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5032 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5033 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5034 .addSym(FrameAllocSym) 5035 .addFrameIndex(FI); 5036 } 5037 5038 return nullptr; 5039 } 5040 5041 case Intrinsic::localrecover: { 5042 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5043 MachineFunction &MF = DAG.getMachineFunction(); 5044 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5045 5046 // Get the symbol that defines the frame offset. 5047 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5048 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5049 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5050 MCSymbol *FrameAllocSym = 5051 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5052 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5053 5054 // Create a MCSymbol for the label to avoid any target lowering 5055 // that would make this PC relative. 5056 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5057 SDValue OffsetVal = 5058 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5059 5060 // Add the offset to the FP. 5061 Value *FP = I.getArgOperand(1); 5062 SDValue FPVal = getValue(FP); 5063 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5064 setValue(&I, Add); 5065 5066 return nullptr; 5067 } 5068 case Intrinsic::eh_begincatch: 5069 case Intrinsic::eh_endcatch: 5070 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5071 case Intrinsic::eh_exceptioncode: { 5072 unsigned Reg = TLI.getExceptionPointerRegister(); 5073 assert(Reg && "cannot get exception code on this platform"); 5074 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5075 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5076 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5077 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5078 SDValue N = 5079 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5080 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5081 setValue(&I, N); 5082 return nullptr; 5083 } 5084 } 5085 } 5086 5087 std::pair<SDValue, SDValue> 5088 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5089 MachineBasicBlock *LandingPad) { 5090 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5091 MCSymbol *BeginLabel = nullptr; 5092 5093 if (LandingPad) { 5094 // Insert a label before the invoke call to mark the try range. This can be 5095 // used to detect deletion of the invoke via the MachineModuleInfo. 5096 BeginLabel = MMI.getContext().createTempSymbol(); 5097 5098 // For SjLj, keep track of which landing pads go with which invokes 5099 // so as to maintain the ordering of pads in the LSDA. 5100 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5101 if (CallSiteIndex) { 5102 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5103 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5104 5105 // Now that the call site is handled, stop tracking it. 5106 MMI.setCurrentCallSite(0); 5107 } 5108 5109 // Both PendingLoads and PendingExports must be flushed here; 5110 // this call might not return. 5111 (void)getRoot(); 5112 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5113 5114 CLI.setChain(getRoot()); 5115 } 5116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5117 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5118 5119 assert((CLI.IsTailCall || Result.second.getNode()) && 5120 "Non-null chain expected with non-tail call!"); 5121 assert((Result.second.getNode() || !Result.first.getNode()) && 5122 "Null value expected with tail call!"); 5123 5124 if (!Result.second.getNode()) { 5125 // As a special case, a null chain means that a tail call has been emitted 5126 // and the DAG root is already updated. 5127 HasTailCall = true; 5128 5129 // Since there's no actual continuation from this block, nothing can be 5130 // relying on us setting vregs for them. 5131 PendingExports.clear(); 5132 } else { 5133 DAG.setRoot(Result.second); 5134 } 5135 5136 if (LandingPad) { 5137 // Insert a label at the end of the invoke call to mark the try range. This 5138 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5139 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5140 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5141 5142 // Inform MachineModuleInfo of range. 5143 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5144 } 5145 5146 return Result; 5147 } 5148 5149 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5150 bool isTailCall, 5151 MachineBasicBlock *LandingPad) { 5152 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5153 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5154 Type *RetTy = FTy->getReturnType(); 5155 5156 TargetLowering::ArgListTy Args; 5157 TargetLowering::ArgListEntry Entry; 5158 Args.reserve(CS.arg_size()); 5159 5160 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5161 i != e; ++i) { 5162 const Value *V = *i; 5163 5164 // Skip empty types 5165 if (V->getType()->isEmptyTy()) 5166 continue; 5167 5168 SDValue ArgNode = getValue(V); 5169 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5170 5171 // Skip the first return-type Attribute to get to params. 5172 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5173 Args.push_back(Entry); 5174 5175 // If we have an explicit sret argument that is an Instruction, (i.e., it 5176 // might point to function-local memory), we can't meaningfully tail-call. 5177 if (Entry.isSRet && isa<Instruction>(V)) 5178 isTailCall = false; 5179 } 5180 5181 // Check if target-independent constraints permit a tail call here. 5182 // Target-dependent constraints are checked within TLI->LowerCallTo. 5183 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5184 isTailCall = false; 5185 5186 TargetLowering::CallLoweringInfo CLI(DAG); 5187 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5188 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5189 .setTailCall(isTailCall); 5190 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5191 5192 if (Result.first.getNode()) 5193 setValue(CS.getInstruction(), Result.first); 5194 } 5195 5196 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5197 /// value is equal or not-equal to zero. 5198 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5199 for (const User *U : V->users()) { 5200 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5201 if (IC->isEquality()) 5202 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5203 if (C->isNullValue()) 5204 continue; 5205 // Unknown instruction. 5206 return false; 5207 } 5208 return true; 5209 } 5210 5211 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5212 Type *LoadTy, 5213 SelectionDAGBuilder &Builder) { 5214 5215 // Check to see if this load can be trivially constant folded, e.g. if the 5216 // input is from a string literal. 5217 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5218 // Cast pointer to the type we really want to load. 5219 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5220 PointerType::getUnqual(LoadTy)); 5221 5222 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5223 const_cast<Constant *>(LoadInput), *Builder.DL)) 5224 return Builder.getValue(LoadCst); 5225 } 5226 5227 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5228 // still constant memory, the input chain can be the entry node. 5229 SDValue Root; 5230 bool ConstantMemory = false; 5231 5232 // Do not serialize (non-volatile) loads of constant memory with anything. 5233 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5234 Root = Builder.DAG.getEntryNode(); 5235 ConstantMemory = true; 5236 } else { 5237 // Do not serialize non-volatile loads against each other. 5238 Root = Builder.DAG.getRoot(); 5239 } 5240 5241 SDValue Ptr = Builder.getValue(PtrVal); 5242 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5243 Ptr, MachinePointerInfo(PtrVal), 5244 false /*volatile*/, 5245 false /*nontemporal*/, 5246 false /*isinvariant*/, 1 /* align=1 */); 5247 5248 if (!ConstantMemory) 5249 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5250 return LoadVal; 5251 } 5252 5253 /// processIntegerCallValue - Record the value for an instruction that 5254 /// produces an integer result, converting the type where necessary. 5255 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5256 SDValue Value, 5257 bool IsSigned) { 5258 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5259 I.getType(), true); 5260 if (IsSigned) 5261 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5262 else 5263 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5264 setValue(&I, Value); 5265 } 5266 5267 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5268 /// If so, return true and lower it, otherwise return false and it will be 5269 /// lowered like a normal call. 5270 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5271 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5272 if (I.getNumArgOperands() != 3) 5273 return false; 5274 5275 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5276 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5277 !I.getArgOperand(2)->getType()->isIntegerTy() || 5278 !I.getType()->isIntegerTy()) 5279 return false; 5280 5281 const Value *Size = I.getArgOperand(2); 5282 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5283 if (CSize && CSize->getZExtValue() == 0) { 5284 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5285 I.getType(), true); 5286 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5287 return true; 5288 } 5289 5290 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5291 std::pair<SDValue, SDValue> Res = 5292 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5293 getValue(LHS), getValue(RHS), getValue(Size), 5294 MachinePointerInfo(LHS), 5295 MachinePointerInfo(RHS)); 5296 if (Res.first.getNode()) { 5297 processIntegerCallValue(I, Res.first, true); 5298 PendingLoads.push_back(Res.second); 5299 return true; 5300 } 5301 5302 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5303 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5304 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5305 bool ActuallyDoIt = true; 5306 MVT LoadVT; 5307 Type *LoadTy; 5308 switch (CSize->getZExtValue()) { 5309 default: 5310 LoadVT = MVT::Other; 5311 LoadTy = nullptr; 5312 ActuallyDoIt = false; 5313 break; 5314 case 2: 5315 LoadVT = MVT::i16; 5316 LoadTy = Type::getInt16Ty(CSize->getContext()); 5317 break; 5318 case 4: 5319 LoadVT = MVT::i32; 5320 LoadTy = Type::getInt32Ty(CSize->getContext()); 5321 break; 5322 case 8: 5323 LoadVT = MVT::i64; 5324 LoadTy = Type::getInt64Ty(CSize->getContext()); 5325 break; 5326 /* 5327 case 16: 5328 LoadVT = MVT::v4i32; 5329 LoadTy = Type::getInt32Ty(CSize->getContext()); 5330 LoadTy = VectorType::get(LoadTy, 4); 5331 break; 5332 */ 5333 } 5334 5335 // This turns into unaligned loads. We only do this if the target natively 5336 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5337 // we'll only produce a small number of byte loads. 5338 5339 // Require that we can find a legal MVT, and only do this if the target 5340 // supports unaligned loads of that type. Expanding into byte loads would 5341 // bloat the code. 5342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5343 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5344 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5345 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5346 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5347 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5348 // TODO: Check alignment of src and dest ptrs. 5349 if (!TLI.isTypeLegal(LoadVT) || 5350 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5351 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5352 ActuallyDoIt = false; 5353 } 5354 5355 if (ActuallyDoIt) { 5356 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5357 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5358 5359 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5360 ISD::SETNE); 5361 processIntegerCallValue(I, Res, false); 5362 return true; 5363 } 5364 } 5365 5366 5367 return false; 5368 } 5369 5370 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5371 /// form. If so, return true and lower it, otherwise return false and it 5372 /// will be lowered like a normal call. 5373 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5374 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5375 if (I.getNumArgOperands() != 3) 5376 return false; 5377 5378 const Value *Src = I.getArgOperand(0); 5379 const Value *Char = I.getArgOperand(1); 5380 const Value *Length = I.getArgOperand(2); 5381 if (!Src->getType()->isPointerTy() || 5382 !Char->getType()->isIntegerTy() || 5383 !Length->getType()->isIntegerTy() || 5384 !I.getType()->isPointerTy()) 5385 return false; 5386 5387 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5388 std::pair<SDValue, SDValue> Res = 5389 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5390 getValue(Src), getValue(Char), getValue(Length), 5391 MachinePointerInfo(Src)); 5392 if (Res.first.getNode()) { 5393 setValue(&I, Res.first); 5394 PendingLoads.push_back(Res.second); 5395 return true; 5396 } 5397 5398 return false; 5399 } 5400 5401 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5402 /// optimized form. If so, return true and lower it, otherwise return false 5403 /// and it will be lowered like a normal call. 5404 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5405 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5406 if (I.getNumArgOperands() != 2) 5407 return false; 5408 5409 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5410 if (!Arg0->getType()->isPointerTy() || 5411 !Arg1->getType()->isPointerTy() || 5412 !I.getType()->isPointerTy()) 5413 return false; 5414 5415 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5416 std::pair<SDValue, SDValue> Res = 5417 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5418 getValue(Arg0), getValue(Arg1), 5419 MachinePointerInfo(Arg0), 5420 MachinePointerInfo(Arg1), isStpcpy); 5421 if (Res.first.getNode()) { 5422 setValue(&I, Res.first); 5423 DAG.setRoot(Res.second); 5424 return true; 5425 } 5426 5427 return false; 5428 } 5429 5430 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5431 /// If so, return true and lower it, otherwise return false and it will be 5432 /// lowered like a normal call. 5433 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5434 // Verify that the prototype makes sense. int strcmp(void*,void*) 5435 if (I.getNumArgOperands() != 2) 5436 return false; 5437 5438 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5439 if (!Arg0->getType()->isPointerTy() || 5440 !Arg1->getType()->isPointerTy() || 5441 !I.getType()->isIntegerTy()) 5442 return false; 5443 5444 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5445 std::pair<SDValue, SDValue> Res = 5446 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5447 getValue(Arg0), getValue(Arg1), 5448 MachinePointerInfo(Arg0), 5449 MachinePointerInfo(Arg1)); 5450 if (Res.first.getNode()) { 5451 processIntegerCallValue(I, Res.first, true); 5452 PendingLoads.push_back(Res.second); 5453 return true; 5454 } 5455 5456 return false; 5457 } 5458 5459 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5460 /// form. If so, return true and lower it, otherwise return false and it 5461 /// will be lowered like a normal call. 5462 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5463 // Verify that the prototype makes sense. size_t strlen(char *) 5464 if (I.getNumArgOperands() != 1) 5465 return false; 5466 5467 const Value *Arg0 = I.getArgOperand(0); 5468 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5469 return false; 5470 5471 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5472 std::pair<SDValue, SDValue> Res = 5473 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5474 getValue(Arg0), MachinePointerInfo(Arg0)); 5475 if (Res.first.getNode()) { 5476 processIntegerCallValue(I, Res.first, false); 5477 PendingLoads.push_back(Res.second); 5478 return true; 5479 } 5480 5481 return false; 5482 } 5483 5484 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5485 /// form. If so, return true and lower it, otherwise return false and it 5486 /// will be lowered like a normal call. 5487 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5488 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5489 if (I.getNumArgOperands() != 2) 5490 return false; 5491 5492 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5493 if (!Arg0->getType()->isPointerTy() || 5494 !Arg1->getType()->isIntegerTy() || 5495 !I.getType()->isIntegerTy()) 5496 return false; 5497 5498 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5499 std::pair<SDValue, SDValue> Res = 5500 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5501 getValue(Arg0), getValue(Arg1), 5502 MachinePointerInfo(Arg0)); 5503 if (Res.first.getNode()) { 5504 processIntegerCallValue(I, Res.first, false); 5505 PendingLoads.push_back(Res.second); 5506 return true; 5507 } 5508 5509 return false; 5510 } 5511 5512 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5513 /// operation (as expected), translate it to an SDNode with the specified opcode 5514 /// and return true. 5515 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5516 unsigned Opcode) { 5517 // Sanity check that it really is a unary floating-point call. 5518 if (I.getNumArgOperands() != 1 || 5519 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5520 I.getType() != I.getArgOperand(0)->getType() || 5521 !I.onlyReadsMemory()) 5522 return false; 5523 5524 SDValue Tmp = getValue(I.getArgOperand(0)); 5525 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5526 return true; 5527 } 5528 5529 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5530 /// operation (as expected), translate it to an SDNode with the specified opcode 5531 /// and return true. 5532 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5533 unsigned Opcode) { 5534 // Sanity check that it really is a binary floating-point call. 5535 if (I.getNumArgOperands() != 2 || 5536 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5537 I.getType() != I.getArgOperand(0)->getType() || 5538 I.getType() != I.getArgOperand(1)->getType() || 5539 !I.onlyReadsMemory()) 5540 return false; 5541 5542 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5543 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5544 EVT VT = Tmp0.getValueType(); 5545 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5546 return true; 5547 } 5548 5549 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5550 // Handle inline assembly differently. 5551 if (isa<InlineAsm>(I.getCalledValue())) { 5552 visitInlineAsm(&I); 5553 return; 5554 } 5555 5556 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5557 ComputeUsesVAFloatArgument(I, &MMI); 5558 5559 const char *RenameFn = nullptr; 5560 if (Function *F = I.getCalledFunction()) { 5561 if (F->isDeclaration()) { 5562 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5563 if (unsigned IID = II->getIntrinsicID(F)) { 5564 RenameFn = visitIntrinsicCall(I, IID); 5565 if (!RenameFn) 5566 return; 5567 } 5568 } 5569 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5570 RenameFn = visitIntrinsicCall(I, IID); 5571 if (!RenameFn) 5572 return; 5573 } 5574 } 5575 5576 // Check for well-known libc/libm calls. If the function is internal, it 5577 // can't be a library call. 5578 LibFunc::Func Func; 5579 if (!F->hasLocalLinkage() && F->hasName() && 5580 LibInfo->getLibFunc(F->getName(), Func) && 5581 LibInfo->hasOptimizedCodeGen(Func)) { 5582 switch (Func) { 5583 default: break; 5584 case LibFunc::copysign: 5585 case LibFunc::copysignf: 5586 case LibFunc::copysignl: 5587 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5588 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5589 I.getType() == I.getArgOperand(0)->getType() && 5590 I.getType() == I.getArgOperand(1)->getType() && 5591 I.onlyReadsMemory()) { 5592 SDValue LHS = getValue(I.getArgOperand(0)); 5593 SDValue RHS = getValue(I.getArgOperand(1)); 5594 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5595 LHS.getValueType(), LHS, RHS)); 5596 return; 5597 } 5598 break; 5599 case LibFunc::fabs: 5600 case LibFunc::fabsf: 5601 case LibFunc::fabsl: 5602 if (visitUnaryFloatCall(I, ISD::FABS)) 5603 return; 5604 break; 5605 case LibFunc::fmin: 5606 case LibFunc::fminf: 5607 case LibFunc::fminl: 5608 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5609 return; 5610 break; 5611 case LibFunc::fmax: 5612 case LibFunc::fmaxf: 5613 case LibFunc::fmaxl: 5614 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5615 return; 5616 break; 5617 case LibFunc::sin: 5618 case LibFunc::sinf: 5619 case LibFunc::sinl: 5620 if (visitUnaryFloatCall(I, ISD::FSIN)) 5621 return; 5622 break; 5623 case LibFunc::cos: 5624 case LibFunc::cosf: 5625 case LibFunc::cosl: 5626 if (visitUnaryFloatCall(I, ISD::FCOS)) 5627 return; 5628 break; 5629 case LibFunc::sqrt: 5630 case LibFunc::sqrtf: 5631 case LibFunc::sqrtl: 5632 case LibFunc::sqrt_finite: 5633 case LibFunc::sqrtf_finite: 5634 case LibFunc::sqrtl_finite: 5635 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5636 return; 5637 break; 5638 case LibFunc::floor: 5639 case LibFunc::floorf: 5640 case LibFunc::floorl: 5641 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5642 return; 5643 break; 5644 case LibFunc::nearbyint: 5645 case LibFunc::nearbyintf: 5646 case LibFunc::nearbyintl: 5647 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5648 return; 5649 break; 5650 case LibFunc::ceil: 5651 case LibFunc::ceilf: 5652 case LibFunc::ceill: 5653 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5654 return; 5655 break; 5656 case LibFunc::rint: 5657 case LibFunc::rintf: 5658 case LibFunc::rintl: 5659 if (visitUnaryFloatCall(I, ISD::FRINT)) 5660 return; 5661 break; 5662 case LibFunc::round: 5663 case LibFunc::roundf: 5664 case LibFunc::roundl: 5665 if (visitUnaryFloatCall(I, ISD::FROUND)) 5666 return; 5667 break; 5668 case LibFunc::trunc: 5669 case LibFunc::truncf: 5670 case LibFunc::truncl: 5671 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5672 return; 5673 break; 5674 case LibFunc::log2: 5675 case LibFunc::log2f: 5676 case LibFunc::log2l: 5677 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5678 return; 5679 break; 5680 case LibFunc::exp2: 5681 case LibFunc::exp2f: 5682 case LibFunc::exp2l: 5683 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5684 return; 5685 break; 5686 case LibFunc::memcmp: 5687 if (visitMemCmpCall(I)) 5688 return; 5689 break; 5690 case LibFunc::memchr: 5691 if (visitMemChrCall(I)) 5692 return; 5693 break; 5694 case LibFunc::strcpy: 5695 if (visitStrCpyCall(I, false)) 5696 return; 5697 break; 5698 case LibFunc::stpcpy: 5699 if (visitStrCpyCall(I, true)) 5700 return; 5701 break; 5702 case LibFunc::strcmp: 5703 if (visitStrCmpCall(I)) 5704 return; 5705 break; 5706 case LibFunc::strlen: 5707 if (visitStrLenCall(I)) 5708 return; 5709 break; 5710 case LibFunc::strnlen: 5711 if (visitStrNLenCall(I)) 5712 return; 5713 break; 5714 } 5715 } 5716 } 5717 5718 SDValue Callee; 5719 if (!RenameFn) 5720 Callee = getValue(I.getCalledValue()); 5721 else 5722 Callee = DAG.getExternalSymbol( 5723 RenameFn, 5724 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5725 5726 // Check if we can potentially perform a tail call. More detailed checking is 5727 // be done within LowerCallTo, after more information about the call is known. 5728 LowerCallTo(&I, Callee, I.isTailCall()); 5729 } 5730 5731 namespace { 5732 5733 /// AsmOperandInfo - This contains information for each constraint that we are 5734 /// lowering. 5735 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5736 public: 5737 /// CallOperand - If this is the result output operand or a clobber 5738 /// this is null, otherwise it is the incoming operand to the CallInst. 5739 /// This gets modified as the asm is processed. 5740 SDValue CallOperand; 5741 5742 /// AssignedRegs - If this is a register or register class operand, this 5743 /// contains the set of register corresponding to the operand. 5744 RegsForValue AssignedRegs; 5745 5746 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5747 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5748 } 5749 5750 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5751 /// corresponds to. If there is no Value* for this operand, it returns 5752 /// MVT::Other. 5753 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5754 const DataLayout &DL) const { 5755 if (!CallOperandVal) return MVT::Other; 5756 5757 if (isa<BasicBlock>(CallOperandVal)) 5758 return TLI.getPointerTy(DL); 5759 5760 llvm::Type *OpTy = CallOperandVal->getType(); 5761 5762 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5763 // If this is an indirect operand, the operand is a pointer to the 5764 // accessed type. 5765 if (isIndirect) { 5766 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5767 if (!PtrTy) 5768 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5769 OpTy = PtrTy->getElementType(); 5770 } 5771 5772 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5773 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5774 if (STy->getNumElements() == 1) 5775 OpTy = STy->getElementType(0); 5776 5777 // If OpTy is not a single value, it may be a struct/union that we 5778 // can tile with integers. 5779 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5780 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5781 switch (BitSize) { 5782 default: break; 5783 case 1: 5784 case 8: 5785 case 16: 5786 case 32: 5787 case 64: 5788 case 128: 5789 OpTy = IntegerType::get(Context, BitSize); 5790 break; 5791 } 5792 } 5793 5794 return TLI.getValueType(DL, OpTy, true); 5795 } 5796 }; 5797 5798 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5799 5800 } // end anonymous namespace 5801 5802 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5803 /// specified operand. We prefer to assign virtual registers, to allow the 5804 /// register allocator to handle the assignment process. However, if the asm 5805 /// uses features that we can't model on machineinstrs, we have SDISel do the 5806 /// allocation. This produces generally horrible, but correct, code. 5807 /// 5808 /// OpInfo describes the operand. 5809 /// 5810 static void GetRegistersForValue(SelectionDAG &DAG, 5811 const TargetLowering &TLI, 5812 SDLoc DL, 5813 SDISelAsmOperandInfo &OpInfo) { 5814 LLVMContext &Context = *DAG.getContext(); 5815 5816 MachineFunction &MF = DAG.getMachineFunction(); 5817 SmallVector<unsigned, 4> Regs; 5818 5819 // If this is a constraint for a single physreg, or a constraint for a 5820 // register class, find it. 5821 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5822 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5823 OpInfo.ConstraintCode, 5824 OpInfo.ConstraintVT); 5825 5826 unsigned NumRegs = 1; 5827 if (OpInfo.ConstraintVT != MVT::Other) { 5828 // If this is a FP input in an integer register (or visa versa) insert a bit 5829 // cast of the input value. More generally, handle any case where the input 5830 // value disagrees with the register class we plan to stick this in. 5831 if (OpInfo.Type == InlineAsm::isInput && 5832 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5833 // Try to convert to the first EVT that the reg class contains. If the 5834 // types are identical size, use a bitcast to convert (e.g. two differing 5835 // vector types). 5836 MVT RegVT = *PhysReg.second->vt_begin(); 5837 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5838 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5839 RegVT, OpInfo.CallOperand); 5840 OpInfo.ConstraintVT = RegVT; 5841 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5842 // If the input is a FP value and we want it in FP registers, do a 5843 // bitcast to the corresponding integer type. This turns an f64 value 5844 // into i64, which can be passed with two i32 values on a 32-bit 5845 // machine. 5846 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5847 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5848 RegVT, OpInfo.CallOperand); 5849 OpInfo.ConstraintVT = RegVT; 5850 } 5851 } 5852 5853 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5854 } 5855 5856 MVT RegVT; 5857 EVT ValueVT = OpInfo.ConstraintVT; 5858 5859 // If this is a constraint for a specific physical register, like {r17}, 5860 // assign it now. 5861 if (unsigned AssignedReg = PhysReg.first) { 5862 const TargetRegisterClass *RC = PhysReg.second; 5863 if (OpInfo.ConstraintVT == MVT::Other) 5864 ValueVT = *RC->vt_begin(); 5865 5866 // Get the actual register value type. This is important, because the user 5867 // may have asked for (e.g.) the AX register in i32 type. We need to 5868 // remember that AX is actually i16 to get the right extension. 5869 RegVT = *RC->vt_begin(); 5870 5871 // This is a explicit reference to a physical register. 5872 Regs.push_back(AssignedReg); 5873 5874 // If this is an expanded reference, add the rest of the regs to Regs. 5875 if (NumRegs != 1) { 5876 TargetRegisterClass::iterator I = RC->begin(); 5877 for (; *I != AssignedReg; ++I) 5878 assert(I != RC->end() && "Didn't find reg!"); 5879 5880 // Already added the first reg. 5881 --NumRegs; ++I; 5882 for (; NumRegs; --NumRegs, ++I) { 5883 assert(I != RC->end() && "Ran out of registers to allocate!"); 5884 Regs.push_back(*I); 5885 } 5886 } 5887 5888 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5889 return; 5890 } 5891 5892 // Otherwise, if this was a reference to an LLVM register class, create vregs 5893 // for this reference. 5894 if (const TargetRegisterClass *RC = PhysReg.second) { 5895 RegVT = *RC->vt_begin(); 5896 if (OpInfo.ConstraintVT == MVT::Other) 5897 ValueVT = RegVT; 5898 5899 // Create the appropriate number of virtual registers. 5900 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5901 for (; NumRegs; --NumRegs) 5902 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5903 5904 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5905 return; 5906 } 5907 5908 // Otherwise, we couldn't allocate enough registers for this. 5909 } 5910 5911 /// visitInlineAsm - Handle a call to an InlineAsm object. 5912 /// 5913 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5914 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5915 5916 /// ConstraintOperands - Information about all of the constraints. 5917 SDISelAsmOperandInfoVector ConstraintOperands; 5918 5919 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5920 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5921 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5922 5923 bool hasMemory = false; 5924 5925 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5926 unsigned ResNo = 0; // ResNo - The result number of the next output. 5927 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5928 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5929 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5930 5931 MVT OpVT = MVT::Other; 5932 5933 // Compute the value type for each operand. 5934 switch (OpInfo.Type) { 5935 case InlineAsm::isOutput: 5936 // Indirect outputs just consume an argument. 5937 if (OpInfo.isIndirect) { 5938 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5939 break; 5940 } 5941 5942 // The return value of the call is this value. As such, there is no 5943 // corresponding argument. 5944 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5945 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5946 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5947 STy->getElementType(ResNo)); 5948 } else { 5949 assert(ResNo == 0 && "Asm only has one result!"); 5950 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5951 } 5952 ++ResNo; 5953 break; 5954 case InlineAsm::isInput: 5955 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5956 break; 5957 case InlineAsm::isClobber: 5958 // Nothing to do. 5959 break; 5960 } 5961 5962 // If this is an input or an indirect output, process the call argument. 5963 // BasicBlocks are labels, currently appearing only in asm's. 5964 if (OpInfo.CallOperandVal) { 5965 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5966 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5967 } else { 5968 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5969 } 5970 5971 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5972 DAG.getDataLayout()).getSimpleVT(); 5973 } 5974 5975 OpInfo.ConstraintVT = OpVT; 5976 5977 // Indirect operand accesses access memory. 5978 if (OpInfo.isIndirect) 5979 hasMemory = true; 5980 else { 5981 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5982 TargetLowering::ConstraintType 5983 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5984 if (CType == TargetLowering::C_Memory) { 5985 hasMemory = true; 5986 break; 5987 } 5988 } 5989 } 5990 } 5991 5992 SDValue Chain, Flag; 5993 5994 // We won't need to flush pending loads if this asm doesn't touch 5995 // memory and is nonvolatile. 5996 if (hasMemory || IA->hasSideEffects()) 5997 Chain = getRoot(); 5998 else 5999 Chain = DAG.getRoot(); 6000 6001 // Second pass over the constraints: compute which constraint option to use 6002 // and assign registers to constraints that want a specific physreg. 6003 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6004 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6005 6006 // If this is an output operand with a matching input operand, look up the 6007 // matching input. If their types mismatch, e.g. one is an integer, the 6008 // other is floating point, or their sizes are different, flag it as an 6009 // error. 6010 if (OpInfo.hasMatchingInput()) { 6011 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6012 6013 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6014 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6015 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6016 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6017 OpInfo.ConstraintVT); 6018 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6019 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6020 Input.ConstraintVT); 6021 if ((OpInfo.ConstraintVT.isInteger() != 6022 Input.ConstraintVT.isInteger()) || 6023 (MatchRC.second != InputRC.second)) { 6024 report_fatal_error("Unsupported asm: input constraint" 6025 " with a matching output constraint of" 6026 " incompatible type!"); 6027 } 6028 Input.ConstraintVT = OpInfo.ConstraintVT; 6029 } 6030 } 6031 6032 // Compute the constraint code and ConstraintType to use. 6033 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6034 6035 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6036 OpInfo.Type == InlineAsm::isClobber) 6037 continue; 6038 6039 // If this is a memory input, and if the operand is not indirect, do what we 6040 // need to to provide an address for the memory input. 6041 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6042 !OpInfo.isIndirect) { 6043 assert((OpInfo.isMultipleAlternative || 6044 (OpInfo.Type == InlineAsm::isInput)) && 6045 "Can only indirectify direct input operands!"); 6046 6047 // Memory operands really want the address of the value. If we don't have 6048 // an indirect input, put it in the constpool if we can, otherwise spill 6049 // it to a stack slot. 6050 // TODO: This isn't quite right. We need to handle these according to 6051 // the addressing mode that the constraint wants. Also, this may take 6052 // an additional register for the computation and we don't want that 6053 // either. 6054 6055 // If the operand is a float, integer, or vector constant, spill to a 6056 // constant pool entry to get its address. 6057 const Value *OpVal = OpInfo.CallOperandVal; 6058 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6059 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6060 OpInfo.CallOperand = DAG.getConstantPool( 6061 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6062 } else { 6063 // Otherwise, create a stack slot and emit a store to it before the 6064 // asm. 6065 Type *Ty = OpVal->getType(); 6066 auto &DL = DAG.getDataLayout(); 6067 uint64_t TySize = DL.getTypeAllocSize(Ty); 6068 unsigned Align = DL.getPrefTypeAlignment(Ty); 6069 MachineFunction &MF = DAG.getMachineFunction(); 6070 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6071 SDValue StackSlot = 6072 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6073 Chain = DAG.getStore(Chain, getCurSDLoc(), 6074 OpInfo.CallOperand, StackSlot, 6075 MachinePointerInfo::getFixedStack(SSFI), 6076 false, false, 0); 6077 OpInfo.CallOperand = StackSlot; 6078 } 6079 6080 // There is no longer a Value* corresponding to this operand. 6081 OpInfo.CallOperandVal = nullptr; 6082 6083 // It is now an indirect operand. 6084 OpInfo.isIndirect = true; 6085 } 6086 6087 // If this constraint is for a specific register, allocate it before 6088 // anything else. 6089 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6090 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6091 } 6092 6093 // Second pass - Loop over all of the operands, assigning virtual or physregs 6094 // to register class operands. 6095 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6096 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6097 6098 // C_Register operands have already been allocated, Other/Memory don't need 6099 // to be. 6100 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6101 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6102 } 6103 6104 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6105 std::vector<SDValue> AsmNodeOperands; 6106 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6107 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6108 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6109 6110 // If we have a !srcloc metadata node associated with it, we want to attach 6111 // this to the ultimately generated inline asm machineinstr. To do this, we 6112 // pass in the third operand as this (potentially null) inline asm MDNode. 6113 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6114 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6115 6116 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6117 // bits as operand 3. 6118 unsigned ExtraInfo = 0; 6119 if (IA->hasSideEffects()) 6120 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6121 if (IA->isAlignStack()) 6122 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6123 // Set the asm dialect. 6124 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6125 6126 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6127 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6128 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6129 6130 // Compute the constraint code and ConstraintType to use. 6131 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6132 6133 // Ideally, we would only check against memory constraints. However, the 6134 // meaning of an other constraint can be target-specific and we can't easily 6135 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6136 // for other constriants as well. 6137 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6138 OpInfo.ConstraintType == TargetLowering::C_Other) { 6139 if (OpInfo.Type == InlineAsm::isInput) 6140 ExtraInfo |= InlineAsm::Extra_MayLoad; 6141 else if (OpInfo.Type == InlineAsm::isOutput) 6142 ExtraInfo |= InlineAsm::Extra_MayStore; 6143 else if (OpInfo.Type == InlineAsm::isClobber) 6144 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6145 } 6146 } 6147 6148 AsmNodeOperands.push_back(DAG.getTargetConstant( 6149 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6150 6151 // Loop over all of the inputs, copying the operand values into the 6152 // appropriate registers and processing the output regs. 6153 RegsForValue RetValRegs; 6154 6155 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6156 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6157 6158 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6159 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6160 6161 switch (OpInfo.Type) { 6162 case InlineAsm::isOutput: { 6163 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6164 OpInfo.ConstraintType != TargetLowering::C_Register) { 6165 // Memory output, or 'other' output (e.g. 'X' constraint). 6166 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6167 6168 unsigned ConstraintID = 6169 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6170 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6171 "Failed to convert memory constraint code to constraint id."); 6172 6173 // Add information to the INLINEASM node to know about this output. 6174 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6175 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6176 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6177 MVT::i32)); 6178 AsmNodeOperands.push_back(OpInfo.CallOperand); 6179 break; 6180 } 6181 6182 // Otherwise, this is a register or register class output. 6183 6184 // Copy the output from the appropriate register. Find a register that 6185 // we can use. 6186 if (OpInfo.AssignedRegs.Regs.empty()) { 6187 LLVMContext &Ctx = *DAG.getContext(); 6188 Ctx.emitError(CS.getInstruction(), 6189 "couldn't allocate output register for constraint '" + 6190 Twine(OpInfo.ConstraintCode) + "'"); 6191 return; 6192 } 6193 6194 // If this is an indirect operand, store through the pointer after the 6195 // asm. 6196 if (OpInfo.isIndirect) { 6197 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6198 OpInfo.CallOperandVal)); 6199 } else { 6200 // This is the result value of the call. 6201 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6202 // Concatenate this output onto the outputs list. 6203 RetValRegs.append(OpInfo.AssignedRegs); 6204 } 6205 6206 // Add information to the INLINEASM node to know that this register is 6207 // set. 6208 OpInfo.AssignedRegs 6209 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6210 ? InlineAsm::Kind_RegDefEarlyClobber 6211 : InlineAsm::Kind_RegDef, 6212 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6213 break; 6214 } 6215 case InlineAsm::isInput: { 6216 SDValue InOperandVal = OpInfo.CallOperand; 6217 6218 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6219 // If this is required to match an output register we have already set, 6220 // just use its register. 6221 unsigned OperandNo = OpInfo.getMatchedOperand(); 6222 6223 // Scan until we find the definition we already emitted of this operand. 6224 // When we find it, create a RegsForValue operand. 6225 unsigned CurOp = InlineAsm::Op_FirstOperand; 6226 for (; OperandNo; --OperandNo) { 6227 // Advance to the next operand. 6228 unsigned OpFlag = 6229 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6230 assert((InlineAsm::isRegDefKind(OpFlag) || 6231 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6232 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6233 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6234 } 6235 6236 unsigned OpFlag = 6237 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6238 if (InlineAsm::isRegDefKind(OpFlag) || 6239 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6240 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6241 if (OpInfo.isIndirect) { 6242 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6243 LLVMContext &Ctx = *DAG.getContext(); 6244 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6245 " don't know how to handle tied " 6246 "indirect register inputs"); 6247 return; 6248 } 6249 6250 RegsForValue MatchedRegs; 6251 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6252 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6253 MatchedRegs.RegVTs.push_back(RegVT); 6254 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6255 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6256 i != e; ++i) { 6257 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6258 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6259 else { 6260 LLVMContext &Ctx = *DAG.getContext(); 6261 Ctx.emitError(CS.getInstruction(), 6262 "inline asm error: This value" 6263 " type register class is not natively supported!"); 6264 return; 6265 } 6266 } 6267 SDLoc dl = getCurSDLoc(); 6268 // Use the produced MatchedRegs object to 6269 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6270 Chain, &Flag, CS.getInstruction()); 6271 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6272 true, OpInfo.getMatchedOperand(), dl, 6273 DAG, AsmNodeOperands); 6274 break; 6275 } 6276 6277 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6278 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6279 "Unexpected number of operands"); 6280 // Add information to the INLINEASM node to know about this input. 6281 // See InlineAsm.h isUseOperandTiedToDef. 6282 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6283 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6284 OpInfo.getMatchedOperand()); 6285 AsmNodeOperands.push_back(DAG.getTargetConstant( 6286 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6287 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6288 break; 6289 } 6290 6291 // Treat indirect 'X' constraint as memory. 6292 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6293 OpInfo.isIndirect) 6294 OpInfo.ConstraintType = TargetLowering::C_Memory; 6295 6296 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6297 std::vector<SDValue> Ops; 6298 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6299 Ops, DAG); 6300 if (Ops.empty()) { 6301 LLVMContext &Ctx = *DAG.getContext(); 6302 Ctx.emitError(CS.getInstruction(), 6303 "invalid operand for inline asm constraint '" + 6304 Twine(OpInfo.ConstraintCode) + "'"); 6305 return; 6306 } 6307 6308 // Add information to the INLINEASM node to know about this input. 6309 unsigned ResOpType = 6310 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6311 AsmNodeOperands.push_back(DAG.getTargetConstant( 6312 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6313 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6314 break; 6315 } 6316 6317 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6318 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6319 assert(InOperandVal.getValueType() == 6320 TLI.getPointerTy(DAG.getDataLayout()) && 6321 "Memory operands expect pointer values"); 6322 6323 unsigned ConstraintID = 6324 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6325 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6326 "Failed to convert memory constraint code to constraint id."); 6327 6328 // Add information to the INLINEASM node to know about this input. 6329 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6330 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6331 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6332 getCurSDLoc(), 6333 MVT::i32)); 6334 AsmNodeOperands.push_back(InOperandVal); 6335 break; 6336 } 6337 6338 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6339 OpInfo.ConstraintType == TargetLowering::C_Register) && 6340 "Unknown constraint type!"); 6341 6342 // TODO: Support this. 6343 if (OpInfo.isIndirect) { 6344 LLVMContext &Ctx = *DAG.getContext(); 6345 Ctx.emitError(CS.getInstruction(), 6346 "Don't know how to handle indirect register inputs yet " 6347 "for constraint '" + 6348 Twine(OpInfo.ConstraintCode) + "'"); 6349 return; 6350 } 6351 6352 // Copy the input into the appropriate registers. 6353 if (OpInfo.AssignedRegs.Regs.empty()) { 6354 LLVMContext &Ctx = *DAG.getContext(); 6355 Ctx.emitError(CS.getInstruction(), 6356 "couldn't allocate input reg for constraint '" + 6357 Twine(OpInfo.ConstraintCode) + "'"); 6358 return; 6359 } 6360 6361 SDLoc dl = getCurSDLoc(); 6362 6363 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6364 Chain, &Flag, CS.getInstruction()); 6365 6366 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6367 dl, DAG, AsmNodeOperands); 6368 break; 6369 } 6370 case InlineAsm::isClobber: { 6371 // Add the clobbered value to the operand list, so that the register 6372 // allocator is aware that the physreg got clobbered. 6373 if (!OpInfo.AssignedRegs.Regs.empty()) 6374 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6375 false, 0, getCurSDLoc(), DAG, 6376 AsmNodeOperands); 6377 break; 6378 } 6379 } 6380 } 6381 6382 // Finish up input operands. Set the input chain and add the flag last. 6383 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6384 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6385 6386 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6387 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6388 Flag = Chain.getValue(1); 6389 6390 // If this asm returns a register value, copy the result from that register 6391 // and set it as the value of the call. 6392 if (!RetValRegs.Regs.empty()) { 6393 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6394 Chain, &Flag, CS.getInstruction()); 6395 6396 // FIXME: Why don't we do this for inline asms with MRVs? 6397 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6398 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6399 6400 // If any of the results of the inline asm is a vector, it may have the 6401 // wrong width/num elts. This can happen for register classes that can 6402 // contain multiple different value types. The preg or vreg allocated may 6403 // not have the same VT as was expected. Convert it to the right type 6404 // with bit_convert. 6405 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6406 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6407 ResultType, Val); 6408 6409 } else if (ResultType != Val.getValueType() && 6410 ResultType.isInteger() && Val.getValueType().isInteger()) { 6411 // If a result value was tied to an input value, the computed result may 6412 // have a wider width than the expected result. Extract the relevant 6413 // portion. 6414 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6415 } 6416 6417 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6418 } 6419 6420 setValue(CS.getInstruction(), Val); 6421 // Don't need to use this as a chain in this case. 6422 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6423 return; 6424 } 6425 6426 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6427 6428 // Process indirect outputs, first output all of the flagged copies out of 6429 // physregs. 6430 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6431 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6432 const Value *Ptr = IndirectStoresToEmit[i].second; 6433 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6434 Chain, &Flag, IA); 6435 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6436 } 6437 6438 // Emit the non-flagged stores from the physregs. 6439 SmallVector<SDValue, 8> OutChains; 6440 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6441 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6442 StoresToEmit[i].first, 6443 getValue(StoresToEmit[i].second), 6444 MachinePointerInfo(StoresToEmit[i].second), 6445 false, false, 0); 6446 OutChains.push_back(Val); 6447 } 6448 6449 if (!OutChains.empty()) 6450 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6451 6452 DAG.setRoot(Chain); 6453 } 6454 6455 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6456 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6457 MVT::Other, getRoot(), 6458 getValue(I.getArgOperand(0)), 6459 DAG.getSrcValue(I.getArgOperand(0)))); 6460 } 6461 6462 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6464 const DataLayout &DL = DAG.getDataLayout(); 6465 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6466 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6467 DAG.getSrcValue(I.getOperand(0)), 6468 DL.getABITypeAlignment(I.getType())); 6469 setValue(&I, V); 6470 DAG.setRoot(V.getValue(1)); 6471 } 6472 6473 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6474 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6475 MVT::Other, getRoot(), 6476 getValue(I.getArgOperand(0)), 6477 DAG.getSrcValue(I.getArgOperand(0)))); 6478 } 6479 6480 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6481 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6482 MVT::Other, getRoot(), 6483 getValue(I.getArgOperand(0)), 6484 getValue(I.getArgOperand(1)), 6485 DAG.getSrcValue(I.getArgOperand(0)), 6486 DAG.getSrcValue(I.getArgOperand(1)))); 6487 } 6488 6489 /// \brief Lower an argument list according to the target calling convention. 6490 /// 6491 /// \return A tuple of <return-value, token-chain> 6492 /// 6493 /// This is a helper for lowering intrinsics that follow a target calling 6494 /// convention or require stack pointer adjustment. Only a subset of the 6495 /// intrinsic's operands need to participate in the calling convention. 6496 std::pair<SDValue, SDValue> 6497 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6498 unsigned NumArgs, SDValue Callee, 6499 Type *ReturnTy, 6500 MachineBasicBlock *LandingPad, 6501 bool IsPatchPoint) { 6502 TargetLowering::ArgListTy Args; 6503 Args.reserve(NumArgs); 6504 6505 // Populate the argument list. 6506 // Attributes for args start at offset 1, after the return attribute. 6507 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6508 ArgI != ArgE; ++ArgI) { 6509 const Value *V = CS->getOperand(ArgI); 6510 6511 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6512 6513 TargetLowering::ArgListEntry Entry; 6514 Entry.Node = getValue(V); 6515 Entry.Ty = V->getType(); 6516 Entry.setAttributes(&CS, AttrI); 6517 Args.push_back(Entry); 6518 } 6519 6520 TargetLowering::CallLoweringInfo CLI(DAG); 6521 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6522 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6523 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6524 6525 return lowerInvokable(CLI, LandingPad); 6526 } 6527 6528 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6529 /// or patchpoint target node's operand list. 6530 /// 6531 /// Constants are converted to TargetConstants purely as an optimization to 6532 /// avoid constant materialization and register allocation. 6533 /// 6534 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6535 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6536 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6537 /// address materialization and register allocation, but may also be required 6538 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6539 /// alloca in the entry block, then the runtime may assume that the alloca's 6540 /// StackMap location can be read immediately after compilation and that the 6541 /// location is valid at any point during execution (this is similar to the 6542 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6543 /// only available in a register, then the runtime would need to trap when 6544 /// execution reaches the StackMap in order to read the alloca's location. 6545 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6546 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6547 SelectionDAGBuilder &Builder) { 6548 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6549 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6550 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6551 Ops.push_back( 6552 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6553 Ops.push_back( 6554 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6555 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6556 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6557 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6558 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6559 } else 6560 Ops.push_back(OpVal); 6561 } 6562 } 6563 6564 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6565 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6566 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6567 // [live variables...]) 6568 6569 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6570 6571 SDValue Chain, InFlag, Callee, NullPtr; 6572 SmallVector<SDValue, 32> Ops; 6573 6574 SDLoc DL = getCurSDLoc(); 6575 Callee = getValue(CI.getCalledValue()); 6576 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6577 6578 // The stackmap intrinsic only records the live variables (the arguemnts 6579 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6580 // intrinsic, this won't be lowered to a function call. This means we don't 6581 // have to worry about calling conventions and target specific lowering code. 6582 // Instead we perform the call lowering right here. 6583 // 6584 // chain, flag = CALLSEQ_START(chain, 0) 6585 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6586 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6587 // 6588 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6589 InFlag = Chain.getValue(1); 6590 6591 // Add the <id> and <numBytes> constants. 6592 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6593 Ops.push_back(DAG.getTargetConstant( 6594 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6595 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6596 Ops.push_back(DAG.getTargetConstant( 6597 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6598 MVT::i32)); 6599 6600 // Push live variables for the stack map. 6601 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6602 6603 // We are not pushing any register mask info here on the operands list, 6604 // because the stackmap doesn't clobber anything. 6605 6606 // Push the chain and the glue flag. 6607 Ops.push_back(Chain); 6608 Ops.push_back(InFlag); 6609 6610 // Create the STACKMAP node. 6611 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6612 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6613 Chain = SDValue(SM, 0); 6614 InFlag = Chain.getValue(1); 6615 6616 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6617 6618 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6619 6620 // Set the root to the target-lowered call chain. 6621 DAG.setRoot(Chain); 6622 6623 // Inform the Frame Information that we have a stackmap in this function. 6624 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6625 } 6626 6627 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6628 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6629 MachineBasicBlock *LandingPad) { 6630 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6631 // i32 <numBytes>, 6632 // i8* <target>, 6633 // i32 <numArgs>, 6634 // [Args...], 6635 // [live variables...]) 6636 6637 CallingConv::ID CC = CS.getCallingConv(); 6638 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6639 bool HasDef = !CS->getType()->isVoidTy(); 6640 SDLoc dl = getCurSDLoc(); 6641 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6642 6643 // Handle immediate and symbolic callees. 6644 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6645 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6646 /*isTarget=*/true); 6647 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6648 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6649 SDLoc(SymbolicCallee), 6650 SymbolicCallee->getValueType(0)); 6651 6652 // Get the real number of arguments participating in the call <numArgs> 6653 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6654 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6655 6656 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6657 // Intrinsics include all meta-operands up to but not including CC. 6658 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6659 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6660 "Not enough arguments provided to the patchpoint intrinsic"); 6661 6662 // For AnyRegCC the arguments are lowered later on manually. 6663 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6664 Type *ReturnTy = 6665 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6666 std::pair<SDValue, SDValue> Result = 6667 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6668 LandingPad, true); 6669 6670 SDNode *CallEnd = Result.second.getNode(); 6671 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6672 CallEnd = CallEnd->getOperand(0).getNode(); 6673 6674 /// Get a call instruction from the call sequence chain. 6675 /// Tail calls are not allowed. 6676 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6677 "Expected a callseq node."); 6678 SDNode *Call = CallEnd->getOperand(0).getNode(); 6679 bool HasGlue = Call->getGluedNode(); 6680 6681 // Replace the target specific call node with the patchable intrinsic. 6682 SmallVector<SDValue, 8> Ops; 6683 6684 // Add the <id> and <numBytes> constants. 6685 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6686 Ops.push_back(DAG.getTargetConstant( 6687 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6688 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6689 Ops.push_back(DAG.getTargetConstant( 6690 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6691 MVT::i32)); 6692 6693 // Add the callee. 6694 Ops.push_back(Callee); 6695 6696 // Adjust <numArgs> to account for any arguments that have been passed on the 6697 // stack instead. 6698 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6699 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6700 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6701 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6702 6703 // Add the calling convention 6704 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6705 6706 // Add the arguments we omitted previously. The register allocator should 6707 // place these in any free register. 6708 if (IsAnyRegCC) 6709 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6710 Ops.push_back(getValue(CS.getArgument(i))); 6711 6712 // Push the arguments from the call instruction up to the register mask. 6713 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6714 Ops.append(Call->op_begin() + 2, e); 6715 6716 // Push live variables for the stack map. 6717 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6718 6719 // Push the register mask info. 6720 if (HasGlue) 6721 Ops.push_back(*(Call->op_end()-2)); 6722 else 6723 Ops.push_back(*(Call->op_end()-1)); 6724 6725 // Push the chain (this is originally the first operand of the call, but 6726 // becomes now the last or second to last operand). 6727 Ops.push_back(*(Call->op_begin())); 6728 6729 // Push the glue flag (last operand). 6730 if (HasGlue) 6731 Ops.push_back(*(Call->op_end()-1)); 6732 6733 SDVTList NodeTys; 6734 if (IsAnyRegCC && HasDef) { 6735 // Create the return types based on the intrinsic definition 6736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6737 SmallVector<EVT, 3> ValueVTs; 6738 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6739 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6740 6741 // There is always a chain and a glue type at the end 6742 ValueVTs.push_back(MVT::Other); 6743 ValueVTs.push_back(MVT::Glue); 6744 NodeTys = DAG.getVTList(ValueVTs); 6745 } else 6746 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6747 6748 // Replace the target specific call node with a PATCHPOINT node. 6749 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6750 dl, NodeTys, Ops); 6751 6752 // Update the NodeMap. 6753 if (HasDef) { 6754 if (IsAnyRegCC) 6755 setValue(CS.getInstruction(), SDValue(MN, 0)); 6756 else 6757 setValue(CS.getInstruction(), Result.first); 6758 } 6759 6760 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6761 // call sequence. Furthermore the location of the chain and glue can change 6762 // when the AnyReg calling convention is used and the intrinsic returns a 6763 // value. 6764 if (IsAnyRegCC && HasDef) { 6765 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6766 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6767 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6768 } else 6769 DAG.ReplaceAllUsesWith(Call, MN); 6770 DAG.DeleteNode(Call); 6771 6772 // Inform the Frame Information that we have a patchpoint in this function. 6773 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6774 } 6775 6776 /// Returns an AttributeSet representing the attributes applied to the return 6777 /// value of the given call. 6778 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6779 SmallVector<Attribute::AttrKind, 2> Attrs; 6780 if (CLI.RetSExt) 6781 Attrs.push_back(Attribute::SExt); 6782 if (CLI.RetZExt) 6783 Attrs.push_back(Attribute::ZExt); 6784 if (CLI.IsInReg) 6785 Attrs.push_back(Attribute::InReg); 6786 6787 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6788 Attrs); 6789 } 6790 6791 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6792 /// implementation, which just calls LowerCall. 6793 /// FIXME: When all targets are 6794 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6795 std::pair<SDValue, SDValue> 6796 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6797 // Handle the incoming return values from the call. 6798 CLI.Ins.clear(); 6799 Type *OrigRetTy = CLI.RetTy; 6800 SmallVector<EVT, 4> RetTys; 6801 SmallVector<uint64_t, 4> Offsets; 6802 auto &DL = CLI.DAG.getDataLayout(); 6803 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6804 6805 SmallVector<ISD::OutputArg, 4> Outs; 6806 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6807 6808 bool CanLowerReturn = 6809 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6810 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6811 6812 SDValue DemoteStackSlot; 6813 int DemoteStackIdx = -100; 6814 if (!CanLowerReturn) { 6815 // FIXME: equivalent assert? 6816 // assert(!CS.hasInAllocaArgument() && 6817 // "sret demotion is incompatible with inalloca"); 6818 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6819 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6820 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6821 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6822 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6823 6824 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6825 ArgListEntry Entry; 6826 Entry.Node = DemoteStackSlot; 6827 Entry.Ty = StackSlotPtrType; 6828 Entry.isSExt = false; 6829 Entry.isZExt = false; 6830 Entry.isInReg = false; 6831 Entry.isSRet = true; 6832 Entry.isNest = false; 6833 Entry.isByVal = false; 6834 Entry.isReturned = false; 6835 Entry.Alignment = Align; 6836 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6837 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6838 6839 // sret demotion isn't compatible with tail-calls, since the sret argument 6840 // points into the callers stack frame. 6841 CLI.IsTailCall = false; 6842 } else { 6843 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6844 EVT VT = RetTys[I]; 6845 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6846 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6847 for (unsigned i = 0; i != NumRegs; ++i) { 6848 ISD::InputArg MyFlags; 6849 MyFlags.VT = RegisterVT; 6850 MyFlags.ArgVT = VT; 6851 MyFlags.Used = CLI.IsReturnValueUsed; 6852 if (CLI.RetSExt) 6853 MyFlags.Flags.setSExt(); 6854 if (CLI.RetZExt) 6855 MyFlags.Flags.setZExt(); 6856 if (CLI.IsInReg) 6857 MyFlags.Flags.setInReg(); 6858 CLI.Ins.push_back(MyFlags); 6859 } 6860 } 6861 } 6862 6863 // Handle all of the outgoing arguments. 6864 CLI.Outs.clear(); 6865 CLI.OutVals.clear(); 6866 ArgListTy &Args = CLI.getArgs(); 6867 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6868 SmallVector<EVT, 4> ValueVTs; 6869 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6870 Type *FinalType = Args[i].Ty; 6871 if (Args[i].isByVal) 6872 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6873 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6874 FinalType, CLI.CallConv, CLI.IsVarArg); 6875 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6876 ++Value) { 6877 EVT VT = ValueVTs[Value]; 6878 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6879 SDValue Op = SDValue(Args[i].Node.getNode(), 6880 Args[i].Node.getResNo() + Value); 6881 ISD::ArgFlagsTy Flags; 6882 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6883 6884 if (Args[i].isZExt) 6885 Flags.setZExt(); 6886 if (Args[i].isSExt) 6887 Flags.setSExt(); 6888 if (Args[i].isInReg) 6889 Flags.setInReg(); 6890 if (Args[i].isSRet) 6891 Flags.setSRet(); 6892 if (Args[i].isByVal) 6893 Flags.setByVal(); 6894 if (Args[i].isInAlloca) { 6895 Flags.setInAlloca(); 6896 // Set the byval flag for CCAssignFn callbacks that don't know about 6897 // inalloca. This way we can know how many bytes we should've allocated 6898 // and how many bytes a callee cleanup function will pop. If we port 6899 // inalloca to more targets, we'll have to add custom inalloca handling 6900 // in the various CC lowering callbacks. 6901 Flags.setByVal(); 6902 } 6903 if (Args[i].isByVal || Args[i].isInAlloca) { 6904 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6905 Type *ElementTy = Ty->getElementType(); 6906 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6907 // For ByVal, alignment should come from FE. BE will guess if this 6908 // info is not there but there are cases it cannot get right. 6909 unsigned FrameAlign; 6910 if (Args[i].Alignment) 6911 FrameAlign = Args[i].Alignment; 6912 else 6913 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6914 Flags.setByValAlign(FrameAlign); 6915 } 6916 if (Args[i].isNest) 6917 Flags.setNest(); 6918 if (NeedsRegBlock) 6919 Flags.setInConsecutiveRegs(); 6920 Flags.setOrigAlign(OriginalAlignment); 6921 6922 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6923 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6924 SmallVector<SDValue, 4> Parts(NumParts); 6925 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6926 6927 if (Args[i].isSExt) 6928 ExtendKind = ISD::SIGN_EXTEND; 6929 else if (Args[i].isZExt) 6930 ExtendKind = ISD::ZERO_EXTEND; 6931 6932 // Conservatively only handle 'returned' on non-vectors for now 6933 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6934 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6935 "unexpected use of 'returned'"); 6936 // Before passing 'returned' to the target lowering code, ensure that 6937 // either the register MVT and the actual EVT are the same size or that 6938 // the return value and argument are extended in the same way; in these 6939 // cases it's safe to pass the argument register value unchanged as the 6940 // return register value (although it's at the target's option whether 6941 // to do so) 6942 // TODO: allow code generation to take advantage of partially preserved 6943 // registers rather than clobbering the entire register when the 6944 // parameter extension method is not compatible with the return 6945 // extension method 6946 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6947 (ExtendKind != ISD::ANY_EXTEND && 6948 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6949 Flags.setReturned(); 6950 } 6951 6952 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6953 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6954 6955 for (unsigned j = 0; j != NumParts; ++j) { 6956 // if it isn't first piece, alignment must be 1 6957 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6958 i < CLI.NumFixedArgs, 6959 i, j*Parts[j].getValueType().getStoreSize()); 6960 if (NumParts > 1 && j == 0) 6961 MyFlags.Flags.setSplit(); 6962 else if (j != 0) 6963 MyFlags.Flags.setOrigAlign(1); 6964 6965 CLI.Outs.push_back(MyFlags); 6966 CLI.OutVals.push_back(Parts[j]); 6967 } 6968 6969 if (NeedsRegBlock && Value == NumValues - 1) 6970 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6971 } 6972 } 6973 6974 SmallVector<SDValue, 4> InVals; 6975 CLI.Chain = LowerCall(CLI, InVals); 6976 6977 // Verify that the target's LowerCall behaved as expected. 6978 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6979 "LowerCall didn't return a valid chain!"); 6980 assert((!CLI.IsTailCall || InVals.empty()) && 6981 "LowerCall emitted a return value for a tail call!"); 6982 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6983 "LowerCall didn't emit the correct number of values!"); 6984 6985 // For a tail call, the return value is merely live-out and there aren't 6986 // any nodes in the DAG representing it. Return a special value to 6987 // indicate that a tail call has been emitted and no more Instructions 6988 // should be processed in the current block. 6989 if (CLI.IsTailCall) { 6990 CLI.DAG.setRoot(CLI.Chain); 6991 return std::make_pair(SDValue(), SDValue()); 6992 } 6993 6994 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6995 assert(InVals[i].getNode() && 6996 "LowerCall emitted a null value!"); 6997 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6998 "LowerCall emitted a value with the wrong type!"); 6999 }); 7000 7001 SmallVector<SDValue, 4> ReturnValues; 7002 if (!CanLowerReturn) { 7003 // The instruction result is the result of loading from the 7004 // hidden sret parameter. 7005 SmallVector<EVT, 1> PVTs; 7006 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7007 7008 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7009 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7010 EVT PtrVT = PVTs[0]; 7011 7012 unsigned NumValues = RetTys.size(); 7013 ReturnValues.resize(NumValues); 7014 SmallVector<SDValue, 4> Chains(NumValues); 7015 7016 for (unsigned i = 0; i < NumValues; ++i) { 7017 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7018 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7019 PtrVT)); 7020 SDValue L = CLI.DAG.getLoad( 7021 RetTys[i], CLI.DL, CLI.Chain, Add, 7022 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7023 false, false, 1); 7024 ReturnValues[i] = L; 7025 Chains[i] = L.getValue(1); 7026 } 7027 7028 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7029 } else { 7030 // Collect the legal value parts into potentially illegal values 7031 // that correspond to the original function's return values. 7032 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7033 if (CLI.RetSExt) 7034 AssertOp = ISD::AssertSext; 7035 else if (CLI.RetZExt) 7036 AssertOp = ISD::AssertZext; 7037 unsigned CurReg = 0; 7038 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7039 EVT VT = RetTys[I]; 7040 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7041 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7042 7043 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7044 NumRegs, RegisterVT, VT, nullptr, 7045 AssertOp)); 7046 CurReg += NumRegs; 7047 } 7048 7049 // For a function returning void, there is no return value. We can't create 7050 // such a node, so we just return a null return value in that case. In 7051 // that case, nothing will actually look at the value. 7052 if (ReturnValues.empty()) 7053 return std::make_pair(SDValue(), CLI.Chain); 7054 } 7055 7056 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7057 CLI.DAG.getVTList(RetTys), ReturnValues); 7058 return std::make_pair(Res, CLI.Chain); 7059 } 7060 7061 void TargetLowering::LowerOperationWrapper(SDNode *N, 7062 SmallVectorImpl<SDValue> &Results, 7063 SelectionDAG &DAG) const { 7064 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7065 if (Res.getNode()) 7066 Results.push_back(Res); 7067 } 7068 7069 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7070 llvm_unreachable("LowerOperation not implemented for this target!"); 7071 } 7072 7073 void 7074 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7075 SDValue Op = getNonRegisterValue(V); 7076 assert((Op.getOpcode() != ISD::CopyFromReg || 7077 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7078 "Copy from a reg to the same reg!"); 7079 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7080 7081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7082 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7083 V->getType()); 7084 SDValue Chain = DAG.getEntryNode(); 7085 7086 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7087 FuncInfo.PreferredExtendType.end()) 7088 ? ISD::ANY_EXTEND 7089 : FuncInfo.PreferredExtendType[V]; 7090 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7091 PendingExports.push_back(Chain); 7092 } 7093 7094 #include "llvm/CodeGen/SelectionDAGISel.h" 7095 7096 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7097 /// entry block, return true. This includes arguments used by switches, since 7098 /// the switch may expand into multiple basic blocks. 7099 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7100 // With FastISel active, we may be splitting blocks, so force creation 7101 // of virtual registers for all non-dead arguments. 7102 if (FastISel) 7103 return A->use_empty(); 7104 7105 const BasicBlock *Entry = A->getParent()->begin(); 7106 for (const User *U : A->users()) 7107 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7108 return false; // Use not in entry block. 7109 7110 return true; 7111 } 7112 7113 void SelectionDAGISel::LowerArguments(const Function &F) { 7114 SelectionDAG &DAG = SDB->DAG; 7115 SDLoc dl = SDB->getCurSDLoc(); 7116 const DataLayout &DL = DAG.getDataLayout(); 7117 SmallVector<ISD::InputArg, 16> Ins; 7118 7119 if (!FuncInfo->CanLowerReturn) { 7120 // Put in an sret pointer parameter before all the other parameters. 7121 SmallVector<EVT, 1> ValueVTs; 7122 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7123 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7124 7125 // NOTE: Assuming that a pointer will never break down to more than one VT 7126 // or one register. 7127 ISD::ArgFlagsTy Flags; 7128 Flags.setSRet(); 7129 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7130 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7131 ISD::InputArg::NoArgIndex, 0); 7132 Ins.push_back(RetArg); 7133 } 7134 7135 // Set up the incoming argument description vector. 7136 unsigned Idx = 1; 7137 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7138 I != E; ++I, ++Idx) { 7139 SmallVector<EVT, 4> ValueVTs; 7140 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7141 bool isArgValueUsed = !I->use_empty(); 7142 unsigned PartBase = 0; 7143 Type *FinalType = I->getType(); 7144 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7145 FinalType = cast<PointerType>(FinalType)->getElementType(); 7146 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7147 FinalType, F.getCallingConv(), F.isVarArg()); 7148 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7149 Value != NumValues; ++Value) { 7150 EVT VT = ValueVTs[Value]; 7151 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7152 ISD::ArgFlagsTy Flags; 7153 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7154 7155 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7156 Flags.setZExt(); 7157 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7158 Flags.setSExt(); 7159 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7160 Flags.setInReg(); 7161 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7162 Flags.setSRet(); 7163 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7164 Flags.setByVal(); 7165 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7166 Flags.setInAlloca(); 7167 // Set the byval flag for CCAssignFn callbacks that don't know about 7168 // inalloca. This way we can know how many bytes we should've allocated 7169 // and how many bytes a callee cleanup function will pop. If we port 7170 // inalloca to more targets, we'll have to add custom inalloca handling 7171 // in the various CC lowering callbacks. 7172 Flags.setByVal(); 7173 } 7174 if (Flags.isByVal() || Flags.isInAlloca()) { 7175 PointerType *Ty = cast<PointerType>(I->getType()); 7176 Type *ElementTy = Ty->getElementType(); 7177 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7178 // For ByVal, alignment should be passed from FE. BE will guess if 7179 // this info is not there but there are cases it cannot get right. 7180 unsigned FrameAlign; 7181 if (F.getParamAlignment(Idx)) 7182 FrameAlign = F.getParamAlignment(Idx); 7183 else 7184 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7185 Flags.setByValAlign(FrameAlign); 7186 } 7187 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7188 Flags.setNest(); 7189 if (NeedsRegBlock) 7190 Flags.setInConsecutiveRegs(); 7191 Flags.setOrigAlign(OriginalAlignment); 7192 7193 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7194 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7195 for (unsigned i = 0; i != NumRegs; ++i) { 7196 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7197 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7198 if (NumRegs > 1 && i == 0) 7199 MyFlags.Flags.setSplit(); 7200 // if it isn't first piece, alignment must be 1 7201 else if (i > 0) 7202 MyFlags.Flags.setOrigAlign(1); 7203 Ins.push_back(MyFlags); 7204 } 7205 if (NeedsRegBlock && Value == NumValues - 1) 7206 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7207 PartBase += VT.getStoreSize(); 7208 } 7209 } 7210 7211 // Call the target to set up the argument values. 7212 SmallVector<SDValue, 8> InVals; 7213 SDValue NewRoot = TLI->LowerFormalArguments( 7214 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7215 7216 // Verify that the target's LowerFormalArguments behaved as expected. 7217 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7218 "LowerFormalArguments didn't return a valid chain!"); 7219 assert(InVals.size() == Ins.size() && 7220 "LowerFormalArguments didn't emit the correct number of values!"); 7221 DEBUG({ 7222 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7223 assert(InVals[i].getNode() && 7224 "LowerFormalArguments emitted a null value!"); 7225 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7226 "LowerFormalArguments emitted a value with the wrong type!"); 7227 } 7228 }); 7229 7230 // Update the DAG with the new chain value resulting from argument lowering. 7231 DAG.setRoot(NewRoot); 7232 7233 // Set up the argument values. 7234 unsigned i = 0; 7235 Idx = 1; 7236 if (!FuncInfo->CanLowerReturn) { 7237 // Create a virtual register for the sret pointer, and put in a copy 7238 // from the sret argument into it. 7239 SmallVector<EVT, 1> ValueVTs; 7240 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7241 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7242 MVT VT = ValueVTs[0].getSimpleVT(); 7243 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7244 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7245 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7246 RegVT, VT, nullptr, AssertOp); 7247 7248 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7249 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7250 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7251 FuncInfo->DemoteRegister = SRetReg; 7252 NewRoot = 7253 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7254 DAG.setRoot(NewRoot); 7255 7256 // i indexes lowered arguments. Bump it past the hidden sret argument. 7257 // Idx indexes LLVM arguments. Don't touch it. 7258 ++i; 7259 } 7260 7261 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7262 ++I, ++Idx) { 7263 SmallVector<SDValue, 4> ArgValues; 7264 SmallVector<EVT, 4> ValueVTs; 7265 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7266 unsigned NumValues = ValueVTs.size(); 7267 7268 // If this argument is unused then remember its value. It is used to generate 7269 // debugging information. 7270 if (I->use_empty() && NumValues) { 7271 SDB->setUnusedArgValue(I, InVals[i]); 7272 7273 // Also remember any frame index for use in FastISel. 7274 if (FrameIndexSDNode *FI = 7275 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7276 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7277 } 7278 7279 for (unsigned Val = 0; Val != NumValues; ++Val) { 7280 EVT VT = ValueVTs[Val]; 7281 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7282 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7283 7284 if (!I->use_empty()) { 7285 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7286 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7287 AssertOp = ISD::AssertSext; 7288 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7289 AssertOp = ISD::AssertZext; 7290 7291 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7292 NumParts, PartVT, VT, 7293 nullptr, AssertOp)); 7294 } 7295 7296 i += NumParts; 7297 } 7298 7299 // We don't need to do anything else for unused arguments. 7300 if (ArgValues.empty()) 7301 continue; 7302 7303 // Note down frame index. 7304 if (FrameIndexSDNode *FI = 7305 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7306 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7307 7308 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7309 SDB->getCurSDLoc()); 7310 7311 SDB->setValue(I, Res); 7312 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7313 if (LoadSDNode *LNode = 7314 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7315 if (FrameIndexSDNode *FI = 7316 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7317 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7318 } 7319 7320 // If this argument is live outside of the entry block, insert a copy from 7321 // wherever we got it to the vreg that other BB's will reference it as. 7322 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7323 // If we can, though, try to skip creating an unnecessary vreg. 7324 // FIXME: This isn't very clean... it would be nice to make this more 7325 // general. It's also subtly incompatible with the hacks FastISel 7326 // uses with vregs. 7327 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7328 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7329 FuncInfo->ValueMap[I] = Reg; 7330 continue; 7331 } 7332 } 7333 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7334 FuncInfo->InitializeRegForValue(I); 7335 SDB->CopyToExportRegsIfNeeded(I); 7336 } 7337 } 7338 7339 assert(i == InVals.size() && "Argument register count mismatch!"); 7340 7341 // Finally, if the target has anything special to do, allow it to do so. 7342 EmitFunctionEntryCode(); 7343 } 7344 7345 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7346 /// ensure constants are generated when needed. Remember the virtual registers 7347 /// that need to be added to the Machine PHI nodes as input. We cannot just 7348 /// directly add them, because expansion might result in multiple MBB's for one 7349 /// BB. As such, the start of the BB might correspond to a different MBB than 7350 /// the end. 7351 /// 7352 void 7353 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7354 const TerminatorInst *TI = LLVMBB->getTerminator(); 7355 7356 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7357 7358 // Check PHI nodes in successors that expect a value to be available from this 7359 // block. 7360 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7361 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7362 if (!isa<PHINode>(SuccBB->begin())) continue; 7363 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7364 7365 // If this terminator has multiple identical successors (common for 7366 // switches), only handle each succ once. 7367 if (!SuccsHandled.insert(SuccMBB).second) 7368 continue; 7369 7370 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7371 7372 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7373 // nodes and Machine PHI nodes, but the incoming operands have not been 7374 // emitted yet. 7375 for (BasicBlock::const_iterator I = SuccBB->begin(); 7376 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7377 // Ignore dead phi's. 7378 if (PN->use_empty()) continue; 7379 7380 // Skip empty types 7381 if (PN->getType()->isEmptyTy()) 7382 continue; 7383 7384 unsigned Reg; 7385 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7386 7387 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7388 unsigned &RegOut = ConstantsOut[C]; 7389 if (RegOut == 0) { 7390 RegOut = FuncInfo.CreateRegs(C->getType()); 7391 CopyValueToVirtualRegister(C, RegOut); 7392 } 7393 Reg = RegOut; 7394 } else { 7395 DenseMap<const Value *, unsigned>::iterator I = 7396 FuncInfo.ValueMap.find(PHIOp); 7397 if (I != FuncInfo.ValueMap.end()) 7398 Reg = I->second; 7399 else { 7400 assert(isa<AllocaInst>(PHIOp) && 7401 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7402 "Didn't codegen value into a register!??"); 7403 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7404 CopyValueToVirtualRegister(PHIOp, Reg); 7405 } 7406 } 7407 7408 // Remember that this register needs to added to the machine PHI node as 7409 // the input for this MBB. 7410 SmallVector<EVT, 4> ValueVTs; 7411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7412 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7413 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7414 EVT VT = ValueVTs[vti]; 7415 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7416 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7417 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7418 Reg += NumRegisters; 7419 } 7420 } 7421 } 7422 7423 ConstantsOut.clear(); 7424 } 7425 7426 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7427 /// is 0. 7428 MachineBasicBlock * 7429 SelectionDAGBuilder::StackProtectorDescriptor:: 7430 AddSuccessorMBB(const BasicBlock *BB, 7431 MachineBasicBlock *ParentMBB, 7432 bool IsLikely, 7433 MachineBasicBlock *SuccMBB) { 7434 // If SuccBB has not been created yet, create it. 7435 if (!SuccMBB) { 7436 MachineFunction *MF = ParentMBB->getParent(); 7437 MachineFunction::iterator BBI = ParentMBB; 7438 SuccMBB = MF->CreateMachineBasicBlock(BB); 7439 MF->insert(++BBI, SuccMBB); 7440 } 7441 // Add it as a successor of ParentMBB. 7442 ParentMBB->addSuccessor( 7443 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7444 return SuccMBB; 7445 } 7446 7447 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7448 MachineFunction::iterator I = MBB; 7449 if (++I == FuncInfo.MF->end()) 7450 return nullptr; 7451 return I; 7452 } 7453 7454 /// During lowering new call nodes can be created (such as memset, etc.). 7455 /// Those will become new roots of the current DAG, but complications arise 7456 /// when they are tail calls. In such cases, the call lowering will update 7457 /// the root, but the builder still needs to know that a tail call has been 7458 /// lowered in order to avoid generating an additional return. 7459 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7460 // If the node is null, we do have a tail call. 7461 if (MaybeTC.getNode() != nullptr) 7462 DAG.setRoot(MaybeTC); 7463 else 7464 HasTailCall = true; 7465 } 7466 7467 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7468 unsigned *TotalCases, unsigned First, 7469 unsigned Last) { 7470 assert(Last >= First); 7471 assert(TotalCases[Last] >= TotalCases[First]); 7472 7473 APInt LowCase = Clusters[First].Low->getValue(); 7474 APInt HighCase = Clusters[Last].High->getValue(); 7475 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7476 7477 // FIXME: A range of consecutive cases has 100% density, but only requires one 7478 // comparison to lower. We should discriminate against such consecutive ranges 7479 // in jump tables. 7480 7481 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7482 uint64_t Range = Diff + 1; 7483 7484 uint64_t NumCases = 7485 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7486 7487 assert(NumCases < UINT64_MAX / 100); 7488 assert(Range >= NumCases); 7489 7490 return NumCases * 100 >= Range * MinJumpTableDensity; 7491 } 7492 7493 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7494 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7495 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7496 } 7497 7498 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7499 unsigned First, unsigned Last, 7500 const SwitchInst *SI, 7501 MachineBasicBlock *DefaultMBB, 7502 CaseCluster &JTCluster) { 7503 assert(First <= Last); 7504 7505 uint32_t Weight = 0; 7506 unsigned NumCmps = 0; 7507 std::vector<MachineBasicBlock*> Table; 7508 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7509 for (unsigned I = First; I <= Last; ++I) { 7510 assert(Clusters[I].Kind == CC_Range); 7511 Weight += Clusters[I].Weight; 7512 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7513 APInt Low = Clusters[I].Low->getValue(); 7514 APInt High = Clusters[I].High->getValue(); 7515 NumCmps += (Low == High) ? 1 : 2; 7516 if (I != First) { 7517 // Fill the gap between this and the previous cluster. 7518 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7519 assert(PreviousHigh.slt(Low)); 7520 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7521 for (uint64_t J = 0; J < Gap; J++) 7522 Table.push_back(DefaultMBB); 7523 } 7524 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7525 for (uint64_t J = 0; J < ClusterSize; ++J) 7526 Table.push_back(Clusters[I].MBB); 7527 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7528 } 7529 7530 unsigned NumDests = JTWeights.size(); 7531 if (isSuitableForBitTests(NumDests, NumCmps, 7532 Clusters[First].Low->getValue(), 7533 Clusters[Last].High->getValue())) { 7534 // Clusters[First..Last] should be lowered as bit tests instead. 7535 return false; 7536 } 7537 7538 // Create the MBB that will load from and jump through the table. 7539 // Note: We create it here, but it's not inserted into the function yet. 7540 MachineFunction *CurMF = FuncInfo.MF; 7541 MachineBasicBlock *JumpTableMBB = 7542 CurMF->CreateMachineBasicBlock(SI->getParent()); 7543 7544 // Add successors. Note: use table order for determinism. 7545 SmallPtrSet<MachineBasicBlock *, 8> Done; 7546 for (MachineBasicBlock *Succ : Table) { 7547 if (Done.count(Succ)) 7548 continue; 7549 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7550 Done.insert(Succ); 7551 } 7552 7553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7554 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7555 ->createJumpTableIndex(Table); 7556 7557 // Set up the jump table info. 7558 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7559 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7560 Clusters[Last].High->getValue(), SI->getCondition(), 7561 nullptr, false); 7562 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7563 7564 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7565 JTCases.size() - 1, Weight); 7566 return true; 7567 } 7568 7569 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7570 const SwitchInst *SI, 7571 MachineBasicBlock *DefaultMBB) { 7572 #ifndef NDEBUG 7573 // Clusters must be non-empty, sorted, and only contain Range clusters. 7574 assert(!Clusters.empty()); 7575 for (CaseCluster &C : Clusters) 7576 assert(C.Kind == CC_Range); 7577 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7578 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7579 #endif 7580 7581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7582 if (!areJTsAllowed(TLI)) 7583 return; 7584 7585 const int64_t N = Clusters.size(); 7586 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7587 7588 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7589 SmallVector<unsigned, 8> TotalCases(N); 7590 7591 for (unsigned i = 0; i < N; ++i) { 7592 APInt Hi = Clusters[i].High->getValue(); 7593 APInt Lo = Clusters[i].Low->getValue(); 7594 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7595 if (i != 0) 7596 TotalCases[i] += TotalCases[i - 1]; 7597 } 7598 7599 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7600 // Cheap case: the whole range might be suitable for jump table. 7601 CaseCluster JTCluster; 7602 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7603 Clusters[0] = JTCluster; 7604 Clusters.resize(1); 7605 return; 7606 } 7607 } 7608 7609 // The algorithm below is not suitable for -O0. 7610 if (TM.getOptLevel() == CodeGenOpt::None) 7611 return; 7612 7613 // Split Clusters into minimum number of dense partitions. The algorithm uses 7614 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7615 // for the Case Statement'" (1994), but builds the MinPartitions array in 7616 // reverse order to make it easier to reconstruct the partitions in ascending 7617 // order. In the choice between two optimal partitionings, it picks the one 7618 // which yields more jump tables. 7619 7620 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7621 SmallVector<unsigned, 8> MinPartitions(N); 7622 // LastElement[i] is the last element of the partition starting at i. 7623 SmallVector<unsigned, 8> LastElement(N); 7624 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7625 SmallVector<unsigned, 8> NumTables(N); 7626 7627 // Base case: There is only one way to partition Clusters[N-1]. 7628 MinPartitions[N - 1] = 1; 7629 LastElement[N - 1] = N - 1; 7630 assert(MinJumpTableSize > 1); 7631 NumTables[N - 1] = 0; 7632 7633 // Note: loop indexes are signed to avoid underflow. 7634 for (int64_t i = N - 2; i >= 0; i--) { 7635 // Find optimal partitioning of Clusters[i..N-1]. 7636 // Baseline: Put Clusters[i] into a partition on its own. 7637 MinPartitions[i] = MinPartitions[i + 1] + 1; 7638 LastElement[i] = i; 7639 NumTables[i] = NumTables[i + 1]; 7640 7641 // Search for a solution that results in fewer partitions. 7642 for (int64_t j = N - 1; j > i; j--) { 7643 // Try building a partition from Clusters[i..j]. 7644 if (isDense(Clusters, &TotalCases[0], i, j)) { 7645 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7646 bool IsTable = j - i + 1 >= MinJumpTableSize; 7647 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7648 7649 // If this j leads to fewer partitions, or same number of partitions 7650 // with more lookup tables, it is a better partitioning. 7651 if (NumPartitions < MinPartitions[i] || 7652 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7653 MinPartitions[i] = NumPartitions; 7654 LastElement[i] = j; 7655 NumTables[i] = Tables; 7656 } 7657 } 7658 } 7659 } 7660 7661 // Iterate over the partitions, replacing some with jump tables in-place. 7662 unsigned DstIndex = 0; 7663 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7664 Last = LastElement[First]; 7665 assert(Last >= First); 7666 assert(DstIndex <= First); 7667 unsigned NumClusters = Last - First + 1; 7668 7669 CaseCluster JTCluster; 7670 if (NumClusters >= MinJumpTableSize && 7671 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7672 Clusters[DstIndex++] = JTCluster; 7673 } else { 7674 for (unsigned I = First; I <= Last; ++I) 7675 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7676 } 7677 } 7678 Clusters.resize(DstIndex); 7679 } 7680 7681 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7682 // FIXME: Using the pointer type doesn't seem ideal. 7683 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7684 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7685 return Range <= BW; 7686 } 7687 7688 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7689 unsigned NumCmps, 7690 const APInt &Low, 7691 const APInt &High) { 7692 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7693 // range of cases both require only one branch to lower. Just looking at the 7694 // number of clusters and destinations should be enough to decide whether to 7695 // build bit tests. 7696 7697 // To lower a range with bit tests, the range must fit the bitwidth of a 7698 // machine word. 7699 if (!rangeFitsInWord(Low, High)) 7700 return false; 7701 7702 // Decide whether it's profitable to lower this range with bit tests. Each 7703 // destination requires a bit test and branch, and there is an overall range 7704 // check branch. For a small number of clusters, separate comparisons might be 7705 // cheaper, and for many destinations, splitting the range might be better. 7706 return (NumDests == 1 && NumCmps >= 3) || 7707 (NumDests == 2 && NumCmps >= 5) || 7708 (NumDests == 3 && NumCmps >= 6); 7709 } 7710 7711 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7712 unsigned First, unsigned Last, 7713 const SwitchInst *SI, 7714 CaseCluster &BTCluster) { 7715 assert(First <= Last); 7716 if (First == Last) 7717 return false; 7718 7719 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7720 unsigned NumCmps = 0; 7721 for (int64_t I = First; I <= Last; ++I) { 7722 assert(Clusters[I].Kind == CC_Range); 7723 Dests.set(Clusters[I].MBB->getNumber()); 7724 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7725 } 7726 unsigned NumDests = Dests.count(); 7727 7728 APInt Low = Clusters[First].Low->getValue(); 7729 APInt High = Clusters[Last].High->getValue(); 7730 assert(Low.slt(High)); 7731 7732 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7733 return false; 7734 7735 APInt LowBound; 7736 APInt CmpRange; 7737 7738 const int BitWidth = DAG.getTargetLoweringInfo() 7739 .getPointerTy(DAG.getDataLayout()) 7740 .getSizeInBits(); 7741 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7742 7743 if (Low.isNonNegative() && High.slt(BitWidth)) { 7744 // Optimize the case where all the case values fit in a 7745 // word without having to subtract minValue. In this case, 7746 // we can optimize away the subtraction. 7747 LowBound = APInt::getNullValue(Low.getBitWidth()); 7748 CmpRange = High; 7749 } else { 7750 LowBound = Low; 7751 CmpRange = High - Low; 7752 } 7753 7754 CaseBitsVector CBV; 7755 uint32_t TotalWeight = 0; 7756 for (unsigned i = First; i <= Last; ++i) { 7757 // Find the CaseBits for this destination. 7758 unsigned j; 7759 for (j = 0; j < CBV.size(); ++j) 7760 if (CBV[j].BB == Clusters[i].MBB) 7761 break; 7762 if (j == CBV.size()) 7763 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7764 CaseBits *CB = &CBV[j]; 7765 7766 // Update Mask, Bits and ExtraWeight. 7767 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7768 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7769 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7770 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7771 CB->Bits += Hi - Lo + 1; 7772 CB->ExtraWeight += Clusters[i].Weight; 7773 TotalWeight += Clusters[i].Weight; 7774 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7775 } 7776 7777 BitTestInfo BTI; 7778 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7779 // Sort by weight first, number of bits second. 7780 if (a.ExtraWeight != b.ExtraWeight) 7781 return a.ExtraWeight > b.ExtraWeight; 7782 return a.Bits > b.Bits; 7783 }); 7784 7785 for (auto &CB : CBV) { 7786 MachineBasicBlock *BitTestBB = 7787 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7788 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7789 } 7790 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7791 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7792 nullptr, std::move(BTI)); 7793 7794 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7795 BitTestCases.size() - 1, TotalWeight); 7796 return true; 7797 } 7798 7799 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7800 const SwitchInst *SI) { 7801 // Partition Clusters into as few subsets as possible, where each subset has a 7802 // range that fits in a machine word and has <= 3 unique destinations. 7803 7804 #ifndef NDEBUG 7805 // Clusters must be sorted and contain Range or JumpTable clusters. 7806 assert(!Clusters.empty()); 7807 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7808 for (const CaseCluster &C : Clusters) 7809 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7810 for (unsigned i = 1; i < Clusters.size(); ++i) 7811 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7812 #endif 7813 7814 // The algorithm below is not suitable for -O0. 7815 if (TM.getOptLevel() == CodeGenOpt::None) 7816 return; 7817 7818 // If target does not have legal shift left, do not emit bit tests at all. 7819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7820 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7821 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7822 return; 7823 7824 int BitWidth = PTy.getSizeInBits(); 7825 const int64_t N = Clusters.size(); 7826 7827 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7828 SmallVector<unsigned, 8> MinPartitions(N); 7829 // LastElement[i] is the last element of the partition starting at i. 7830 SmallVector<unsigned, 8> LastElement(N); 7831 7832 // FIXME: This might not be the best algorithm for finding bit test clusters. 7833 7834 // Base case: There is only one way to partition Clusters[N-1]. 7835 MinPartitions[N - 1] = 1; 7836 LastElement[N - 1] = N - 1; 7837 7838 // Note: loop indexes are signed to avoid underflow. 7839 for (int64_t i = N - 2; i >= 0; --i) { 7840 // Find optimal partitioning of Clusters[i..N-1]. 7841 // Baseline: Put Clusters[i] into a partition on its own. 7842 MinPartitions[i] = MinPartitions[i + 1] + 1; 7843 LastElement[i] = i; 7844 7845 // Search for a solution that results in fewer partitions. 7846 // Note: the search is limited by BitWidth, reducing time complexity. 7847 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7848 // Try building a partition from Clusters[i..j]. 7849 7850 // Check the range. 7851 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7852 Clusters[j].High->getValue())) 7853 continue; 7854 7855 // Check nbr of destinations and cluster types. 7856 // FIXME: This works, but doesn't seem very efficient. 7857 bool RangesOnly = true; 7858 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7859 for (int64_t k = i; k <= j; k++) { 7860 if (Clusters[k].Kind != CC_Range) { 7861 RangesOnly = false; 7862 break; 7863 } 7864 Dests.set(Clusters[k].MBB->getNumber()); 7865 } 7866 if (!RangesOnly || Dests.count() > 3) 7867 break; 7868 7869 // Check if it's a better partition. 7870 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7871 if (NumPartitions < MinPartitions[i]) { 7872 // Found a better partition. 7873 MinPartitions[i] = NumPartitions; 7874 LastElement[i] = j; 7875 } 7876 } 7877 } 7878 7879 // Iterate over the partitions, replacing with bit-test clusters in-place. 7880 unsigned DstIndex = 0; 7881 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7882 Last = LastElement[First]; 7883 assert(First <= Last); 7884 assert(DstIndex <= First); 7885 7886 CaseCluster BitTestCluster; 7887 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7888 Clusters[DstIndex++] = BitTestCluster; 7889 } else { 7890 size_t NumClusters = Last - First + 1; 7891 std::memmove(&Clusters[DstIndex], &Clusters[First], 7892 sizeof(Clusters[0]) * NumClusters); 7893 DstIndex += NumClusters; 7894 } 7895 } 7896 Clusters.resize(DstIndex); 7897 } 7898 7899 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7900 MachineBasicBlock *SwitchMBB, 7901 MachineBasicBlock *DefaultMBB) { 7902 MachineFunction *CurMF = FuncInfo.MF; 7903 MachineBasicBlock *NextMBB = nullptr; 7904 MachineFunction::iterator BBI = W.MBB; 7905 if (++BBI != FuncInfo.MF->end()) 7906 NextMBB = BBI; 7907 7908 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7909 7910 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7911 7912 if (Size == 2 && W.MBB == SwitchMBB) { 7913 // If any two of the cases has the same destination, and if one value 7914 // is the same as the other, but has one bit unset that the other has set, 7915 // use bit manipulation to do two compares at once. For example: 7916 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7917 // TODO: This could be extended to merge any 2 cases in switches with 3 7918 // cases. 7919 // TODO: Handle cases where W.CaseBB != SwitchBB. 7920 CaseCluster &Small = *W.FirstCluster; 7921 CaseCluster &Big = *W.LastCluster; 7922 7923 if (Small.Low == Small.High && Big.Low == Big.High && 7924 Small.MBB == Big.MBB) { 7925 const APInt &SmallValue = Small.Low->getValue(); 7926 const APInt &BigValue = Big.Low->getValue(); 7927 7928 // Check that there is only one bit different. 7929 APInt CommonBit = BigValue ^ SmallValue; 7930 if (CommonBit.isPowerOf2()) { 7931 SDValue CondLHS = getValue(Cond); 7932 EVT VT = CondLHS.getValueType(); 7933 SDLoc DL = getCurSDLoc(); 7934 7935 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7936 DAG.getConstant(CommonBit, DL, VT)); 7937 SDValue Cond = DAG.getSetCC( 7938 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7939 ISD::SETEQ); 7940 7941 // Update successor info. 7942 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7943 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7944 addSuccessorWithWeight( 7945 SwitchMBB, DefaultMBB, 7946 // The default destination is the first successor in IR. 7947 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7948 : 0); 7949 7950 // Insert the true branch. 7951 SDValue BrCond = 7952 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7953 DAG.getBasicBlock(Small.MBB)); 7954 // Insert the false branch. 7955 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7956 DAG.getBasicBlock(DefaultMBB)); 7957 7958 DAG.setRoot(BrCond); 7959 return; 7960 } 7961 } 7962 } 7963 7964 if (TM.getOptLevel() != CodeGenOpt::None) { 7965 // Order cases by weight so the most likely case will be checked first. 7966 std::sort(W.FirstCluster, W.LastCluster + 1, 7967 [](const CaseCluster &a, const CaseCluster &b) { 7968 return a.Weight > b.Weight; 7969 }); 7970 7971 // Rearrange the case blocks so that the last one falls through if possible 7972 // without without changing the order of weights. 7973 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7974 --I; 7975 if (I->Weight > W.LastCluster->Weight) 7976 break; 7977 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7978 std::swap(*I, *W.LastCluster); 7979 break; 7980 } 7981 } 7982 } 7983 7984 // Compute total weight. 7985 uint32_t UnhandledWeights = 0; 7986 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7987 UnhandledWeights += I->Weight; 7988 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7989 } 7990 7991 MachineBasicBlock *CurMBB = W.MBB; 7992 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7993 MachineBasicBlock *Fallthrough; 7994 if (I == W.LastCluster) { 7995 // For the last cluster, fall through to the default destination. 7996 Fallthrough = DefaultMBB; 7997 } else { 7998 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7999 CurMF->insert(BBI, Fallthrough); 8000 // Put Cond in a virtual register to make it available from the new blocks. 8001 ExportFromCurrentBlock(Cond); 8002 } 8003 8004 switch (I->Kind) { 8005 case CC_JumpTable: { 8006 // FIXME: Optimize away range check based on pivot comparisons. 8007 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8008 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8009 8010 // The jump block hasn't been inserted yet; insert it here. 8011 MachineBasicBlock *JumpMBB = JT->MBB; 8012 CurMF->insert(BBI, JumpMBB); 8013 addSuccessorWithWeight(CurMBB, Fallthrough); 8014 addSuccessorWithWeight(CurMBB, JumpMBB); 8015 8016 // The jump table header will be inserted in our current block, do the 8017 // range check, and fall through to our fallthrough block. 8018 JTH->HeaderBB = CurMBB; 8019 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8020 8021 // If we're in the right place, emit the jump table header right now. 8022 if (CurMBB == SwitchMBB) { 8023 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8024 JTH->Emitted = true; 8025 } 8026 break; 8027 } 8028 case CC_BitTests: { 8029 // FIXME: Optimize away range check based on pivot comparisons. 8030 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8031 8032 // The bit test blocks haven't been inserted yet; insert them here. 8033 for (BitTestCase &BTC : BTB->Cases) 8034 CurMF->insert(BBI, BTC.ThisBB); 8035 8036 // Fill in fields of the BitTestBlock. 8037 BTB->Parent = CurMBB; 8038 BTB->Default = Fallthrough; 8039 8040 // If we're in the right place, emit the bit test header header right now. 8041 if (CurMBB ==SwitchMBB) { 8042 visitBitTestHeader(*BTB, SwitchMBB); 8043 BTB->Emitted = true; 8044 } 8045 break; 8046 } 8047 case CC_Range: { 8048 const Value *RHS, *LHS, *MHS; 8049 ISD::CondCode CC; 8050 if (I->Low == I->High) { 8051 // Check Cond == I->Low. 8052 CC = ISD::SETEQ; 8053 LHS = Cond; 8054 RHS=I->Low; 8055 MHS = nullptr; 8056 } else { 8057 // Check I->Low <= Cond <= I->High. 8058 CC = ISD::SETLE; 8059 LHS = I->Low; 8060 MHS = Cond; 8061 RHS = I->High; 8062 } 8063 8064 // The false weight is the sum of all unhandled cases. 8065 UnhandledWeights -= I->Weight; 8066 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8067 UnhandledWeights); 8068 8069 if (CurMBB == SwitchMBB) 8070 visitSwitchCase(CB, SwitchMBB); 8071 else 8072 SwitchCases.push_back(CB); 8073 8074 break; 8075 } 8076 } 8077 CurMBB = Fallthrough; 8078 } 8079 } 8080 8081 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8082 CaseClusterIt First, 8083 CaseClusterIt Last) { 8084 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8085 if (X.Weight != CC.Weight) 8086 return X.Weight > CC.Weight; 8087 8088 // Ties are broken by comparing the case value. 8089 return X.Low->getValue().slt(CC.Low->getValue()); 8090 }); 8091 } 8092 8093 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8094 const SwitchWorkListItem &W, 8095 Value *Cond, 8096 MachineBasicBlock *SwitchMBB) { 8097 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8098 "Clusters not sorted?"); 8099 8100 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8101 8102 // Balance the tree based on branch weights to create a near-optimal (in terms 8103 // of search time given key frequency) binary search tree. See e.g. Kurt 8104 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8105 CaseClusterIt LastLeft = W.FirstCluster; 8106 CaseClusterIt FirstRight = W.LastCluster; 8107 uint32_t LeftWeight = LastLeft->Weight; 8108 uint32_t RightWeight = FirstRight->Weight; 8109 8110 // Move LastLeft and FirstRight towards each other from opposite directions to 8111 // find a partitioning of the clusters which balances the weight on both 8112 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8113 // taken to ensure 0-weight nodes are distributed evenly. 8114 unsigned I = 0; 8115 while (LastLeft + 1 < FirstRight) { 8116 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8117 LeftWeight += (++LastLeft)->Weight; 8118 else 8119 RightWeight += (--FirstRight)->Weight; 8120 I++; 8121 } 8122 8123 for (;;) { 8124 // Our binary search tree differs from a typical BST in that ours can have up 8125 // to three values in each leaf. The pivot selection above doesn't take that 8126 // into account, which means the tree might require more nodes and be less 8127 // efficient. We compensate for this here. 8128 8129 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8130 unsigned NumRight = W.LastCluster - FirstRight + 1; 8131 8132 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8133 // If one side has less than 3 clusters, and the other has more than 3, 8134 // consider taking a cluster from the other side. 8135 8136 if (NumLeft < NumRight) { 8137 // Consider moving the first cluster on the right to the left side. 8138 CaseCluster &CC = *FirstRight; 8139 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8140 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8141 if (LeftSideRank <= RightSideRank) { 8142 // Moving the cluster to the left does not demote it. 8143 ++LastLeft; 8144 ++FirstRight; 8145 continue; 8146 } 8147 } else { 8148 assert(NumRight < NumLeft); 8149 // Consider moving the last element on the left to the right side. 8150 CaseCluster &CC = *LastLeft; 8151 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8152 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8153 if (RightSideRank <= LeftSideRank) { 8154 // Moving the cluster to the right does not demot it. 8155 --LastLeft; 8156 --FirstRight; 8157 continue; 8158 } 8159 } 8160 } 8161 break; 8162 } 8163 8164 assert(LastLeft + 1 == FirstRight); 8165 assert(LastLeft >= W.FirstCluster); 8166 assert(FirstRight <= W.LastCluster); 8167 8168 // Use the first element on the right as pivot since we will make less-than 8169 // comparisons against it. 8170 CaseClusterIt PivotCluster = FirstRight; 8171 assert(PivotCluster > W.FirstCluster); 8172 assert(PivotCluster <= W.LastCluster); 8173 8174 CaseClusterIt FirstLeft = W.FirstCluster; 8175 CaseClusterIt LastRight = W.LastCluster; 8176 8177 const ConstantInt *Pivot = PivotCluster->Low; 8178 8179 // New blocks will be inserted immediately after the current one. 8180 MachineFunction::iterator BBI = W.MBB; 8181 ++BBI; 8182 8183 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8184 // we can branch to its destination directly if it's squeezed exactly in 8185 // between the known lower bound and Pivot - 1. 8186 MachineBasicBlock *LeftMBB; 8187 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8188 FirstLeft->Low == W.GE && 8189 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8190 LeftMBB = FirstLeft->MBB; 8191 } else { 8192 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8193 FuncInfo.MF->insert(BBI, LeftMBB); 8194 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8195 // Put Cond in a virtual register to make it available from the new blocks. 8196 ExportFromCurrentBlock(Cond); 8197 } 8198 8199 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8200 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8201 // directly if RHS.High equals the current upper bound. 8202 MachineBasicBlock *RightMBB; 8203 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8204 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8205 RightMBB = FirstRight->MBB; 8206 } else { 8207 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8208 FuncInfo.MF->insert(BBI, RightMBB); 8209 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8210 // Put Cond in a virtual register to make it available from the new blocks. 8211 ExportFromCurrentBlock(Cond); 8212 } 8213 8214 // Create the CaseBlock record that will be used to lower the branch. 8215 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8216 LeftWeight, RightWeight); 8217 8218 if (W.MBB == SwitchMBB) 8219 visitSwitchCase(CB, SwitchMBB); 8220 else 8221 SwitchCases.push_back(CB); 8222 } 8223 8224 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8225 // Extract cases from the switch. 8226 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8227 CaseClusterVector Clusters; 8228 Clusters.reserve(SI.getNumCases()); 8229 for (auto I : SI.cases()) { 8230 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8231 const ConstantInt *CaseVal = I.getCaseValue(); 8232 uint32_t Weight = 8233 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8234 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8235 } 8236 8237 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8238 8239 // Cluster adjacent cases with the same destination. We do this at all 8240 // optimization levels because it's cheap to do and will make codegen faster 8241 // if there are many clusters. 8242 sortAndRangeify(Clusters); 8243 8244 if (TM.getOptLevel() != CodeGenOpt::None) { 8245 // Replace an unreachable default with the most popular destination. 8246 // FIXME: Exploit unreachable default more aggressively. 8247 bool UnreachableDefault = 8248 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8249 if (UnreachableDefault && !Clusters.empty()) { 8250 DenseMap<const BasicBlock *, unsigned> Popularity; 8251 unsigned MaxPop = 0; 8252 const BasicBlock *MaxBB = nullptr; 8253 for (auto I : SI.cases()) { 8254 const BasicBlock *BB = I.getCaseSuccessor(); 8255 if (++Popularity[BB] > MaxPop) { 8256 MaxPop = Popularity[BB]; 8257 MaxBB = BB; 8258 } 8259 } 8260 // Set new default. 8261 assert(MaxPop > 0 && MaxBB); 8262 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8263 8264 // Remove cases that were pointing to the destination that is now the 8265 // default. 8266 CaseClusterVector New; 8267 New.reserve(Clusters.size()); 8268 for (CaseCluster &CC : Clusters) { 8269 if (CC.MBB != DefaultMBB) 8270 New.push_back(CC); 8271 } 8272 Clusters = std::move(New); 8273 } 8274 } 8275 8276 // If there is only the default destination, jump there directly. 8277 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8278 if (Clusters.empty()) { 8279 SwitchMBB->addSuccessor(DefaultMBB); 8280 if (DefaultMBB != NextBlock(SwitchMBB)) { 8281 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8282 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8283 } 8284 return; 8285 } 8286 8287 findJumpTables(Clusters, &SI, DefaultMBB); 8288 findBitTestClusters(Clusters, &SI); 8289 8290 DEBUG({ 8291 dbgs() << "Case clusters: "; 8292 for (const CaseCluster &C : Clusters) { 8293 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8294 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8295 8296 C.Low->getValue().print(dbgs(), true); 8297 if (C.Low != C.High) { 8298 dbgs() << '-'; 8299 C.High->getValue().print(dbgs(), true); 8300 } 8301 dbgs() << ' '; 8302 } 8303 dbgs() << '\n'; 8304 }); 8305 8306 assert(!Clusters.empty()); 8307 SwitchWorkList WorkList; 8308 CaseClusterIt First = Clusters.begin(); 8309 CaseClusterIt Last = Clusters.end() - 1; 8310 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8311 8312 while (!WorkList.empty()) { 8313 SwitchWorkListItem W = WorkList.back(); 8314 WorkList.pop_back(); 8315 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8316 8317 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8318 // For optimized builds, lower large range as a balanced binary tree. 8319 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8320 continue; 8321 } 8322 8323 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8324 } 8325 } 8326