xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 12a43bdde50592d78d4119569eba5328bfab123e)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87 
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91 
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103 
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107 
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113 
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121 
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123 
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133 
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136 
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138 
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145 
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176 
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179 
180   if (PartVT == ValueVT)
181     return Val;
182 
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195 
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getIntPtrConstant(1));
201 
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204 
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207 
208   llvm_unreachable("Unknown mismatch!");
209   return SDValue();
210 }
211 
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent.  If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                       const SDValue *Parts, unsigned NumParts,
219                                       EVT PartVT, EVT ValueVT) {
220   assert(ValueVT.isVector() && "Not a vector value");
221   assert(NumParts > 0 && "No parts to assemble!");
222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223   SDValue Val = Parts[0];
224 
225   // Handle a multi-element vector.
226   if (NumParts > 1) {
227     EVT IntermediateVT, RegisterVT;
228     unsigned NumIntermediates;
229     unsigned NumRegs =
230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                                NumIntermediates, RegisterVT);
232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233     NumParts = NumRegs; // Silence a compiler warning.
234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235     assert(RegisterVT == Parts[0].getValueType() &&
236            "Part type doesn't match part!");
237 
238     // Assemble the parts into intermediate operands.
239     SmallVector<SDValue, 8> Ops(NumIntermediates);
240     if (NumIntermediates == NumParts) {
241       // If the register was not expanded, truncate or copy the value,
242       // as appropriate.
243       for (unsigned i = 0; i != NumParts; ++i)
244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                   PartVT, IntermediateVT);
246     } else if (NumParts > 0) {
247       // If the intermediate type was expanded, build the intermediate
248       // operands from the parts.
249       assert(NumParts % NumIntermediates == 0 &&
250              "Must expand into a divisible number of parts!");
251       unsigned Factor = NumParts / NumIntermediates;
252       for (unsigned i = 0; i != NumIntermediates; ++i)
253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                   PartVT, IntermediateVT);
255     }
256 
257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258     // intermediate operands.
259     Val = DAG.getNode(IntermediateVT.isVector() ?
260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                       ValueVT, &Ops[0], NumIntermediates);
262   }
263 
264   // There is now one part, held in Val.  Correct it to match ValueVT.
265   PartVT = Val.getValueType();
266 
267   if (PartVT == ValueVT)
268     return Val;
269 
270   if (PartVT.isVector()) {
271     // If the element type of the source/dest vectors are the same, but the
272     // parts vector has more elements than the value vector, then we have a
273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274     // elements we want.
275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277              "Cannot narrow, it would be a lossy transformation");
278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                          DAG.getIntPtrConstant(0));
280     }
281 
282     // Vector/Vector bitcast.
283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285 
286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287       "Cannot handle this kind of promotion");
288     // Promoted vector extract
289     bool Smaller = ValueVT.bitsLE(PartVT);
290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                        DL, ValueVT, Val);
292 
293   }
294 
295   // Trivial bitcast if the types are the same size and the destination
296   // vector type is legal.
297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298       TLI.isTypeLegal(ValueVT))
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle cases such as i8 -> <1 x i1>
302   assert(ValueVT.getVectorNumElements() == 1 &&
303          "Only trivial scalar-to-vector conversions should get here!");
304 
305   if (ValueVT.getVectorNumElements() == 1 &&
306       ValueVT.getVectorElementType() != PartVT) {
307     bool Smaller = ValueVT.bitsLE(PartVT);
308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                        DL, ValueVT.getScalarType(), Val);
310   }
311 
312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314 
315 
316 
317 
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
320                                  EVT PartVT);
321 
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts.  If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                            SDValue Val, SDValue *Parts, unsigned NumParts,
327                            EVT PartVT,
328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329   EVT ValueVT = Val.getValueType();
330 
331   // Handle the vector case separately.
332   if (ValueVT.isVector())
333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   unsigned PartBits = PartVT.getSizeInBits();
337   unsigned OrigNumParts = NumParts;
338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339 
340   if (NumParts == 0)
341     return;
342 
343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344   if (PartVT == ValueVT) {
345     assert(NumParts == 1 && "No-op copy with multiple parts!");
346     Parts[0] = Val;
347     return;
348   }
349 
350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351     // If the parts cover more bits than the value has, promote the value.
352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353       assert(NumParts == 1 && "Do not know what to promote to!");
354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355     } else {
356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
357              "Unknown mismatch!");
358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360     }
361   } else if (PartBits == ValueVT.getSizeInBits()) {
362     // Different types of the same size.
363     assert(NumParts == 1 && PartVT != ValueVT);
364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366     // If the parts cover less bits than value has, truncate the value.
367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
368            "Unknown mismatch!");
369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371   }
372 
373   // The value may have changed - recompute ValueVT.
374   ValueVT = Val.getValueType();
375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376          "Failed to tile the value with PartVT!");
377 
378   if (NumParts == 1) {
379     assert(PartVT == ValueVT && "Type conversion failed!");
380     Parts[0] = Val;
381     return;
382   }
383 
384   // Expand the value into multiple parts.
385   if (NumParts & (NumParts - 1)) {
386     // The number of parts is not a power of 2.  Split off and copy the tail.
387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
388            "Do not know what to expand to!");
389     unsigned RoundParts = 1 << Log2_32(NumParts);
390     unsigned RoundBits = RoundParts * PartBits;
391     unsigned OddParts = NumParts - RoundParts;
392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                  DAG.getIntPtrConstant(RoundBits));
394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395 
396     if (TLI.isBigEndian())
397       // The odd parts were reversed by getCopyToParts - unreverse them.
398       std::reverse(Parts + RoundParts, Parts + NumParts);
399 
400     NumParts = RoundParts;
401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403   }
404 
405   // The number of parts is a power of 2.  Repeatedly bisect the value using
406   // EXTRACT_ELEMENT.
407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            ValueVT.getSizeInBits()),
410                          Val);
411 
412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413     for (unsigned i = 0; i < NumParts; i += StepSize) {
414       unsigned ThisBits = StepSize * PartBits / 2;
415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416       SDValue &Part0 = Parts[i];
417       SDValue &Part1 = Parts[i+StepSize/2];
418 
419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
423 
424       if (ThisBits == PartBits && ThisVT != PartVT) {
425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427       }
428     }
429   }
430 
431   if (TLI.isBigEndian())
432     std::reverse(Parts, Parts + OrigNumParts);
433 }
434 
435 
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
440                                  EVT PartVT) {
441   EVT ValueVT = Val.getValueType();
442   assert(ValueVT.isVector() && "Not a vector");
443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444 
445   if (NumParts == 1) {
446     if (PartVT == ValueVT) {
447       // Nothing to do.
448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449       // Bitconvert vector->vector case.
450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451     } else if (PartVT.isVector() &&
452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454       EVT ElementVT = PartVT.getVectorElementType();
455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456       // undef elements.
457       SmallVector<SDValue, 16> Ops;
458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
461 
462       for (unsigned i = ValueVT.getVectorNumElements(),
463            e = PartVT.getVectorNumElements(); i != e; ++i)
464         Ops.push_back(DAG.getUNDEF(ElementVT));
465 
466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467 
468       // FIXME: Use CONCAT for 2x -> 4x.
469 
470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472     } else if (PartVT.isVector() &&
473                PartVT.getVectorElementType().bitsGE(
474                  ValueVT.getVectorElementType()) &&
475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476 
477       // Promoted vector extract
478       unsigned NumElts = ValueVT.getVectorNumElements();
479       SmallVector<SDValue, 8> NewOps;
480       for (unsigned i = 0; i < NumElts; ++i) {
481         SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
482                        ValueVT.getScalarType(), Val ,DAG.getIntPtrConstant(i));
483         SDValue Cast = DAG.getNode(ISD::ANY_EXTEND,
484                        DL, PartVT.getScalarType(), Ext);
485         NewOps.push_back(Cast);
486       }
487       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT,
488                         &NewOps[0], NewOps.size());
489     } else{
490       // Vector -> scalar conversion.
491       assert(ValueVT.getVectorNumElements() == 1 &&
492              "Only trivial vector-to-scalar conversions should get here!");
493       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
494                         PartVT, Val, DAG.getIntPtrConstant(0));
495 
496       bool Smaller = ValueVT.bitsLE(PartVT);
497       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
498                          DL, PartVT, Val);
499     }
500 
501     Parts[0] = Val;
502     return;
503   }
504 
505   // Handle a multi-element vector.
506   EVT IntermediateVT, RegisterVT;
507   unsigned NumIntermediates;
508   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
509                                                 IntermediateVT,
510                                                 NumIntermediates, RegisterVT);
511   unsigned NumElements = ValueVT.getVectorNumElements();
512 
513   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
514   NumParts = NumRegs; // Silence a compiler warning.
515   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
516 
517   // Split the vector into intermediate operands.
518   SmallVector<SDValue, 8> Ops(NumIntermediates);
519   for (unsigned i = 0; i != NumIntermediates; ++i) {
520     if (IntermediateVT.isVector())
521       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
522                            IntermediateVT, Val,
523                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
524     else
525       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
526                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
527   }
528 
529   // Split the intermediate operands into legal parts.
530   if (NumParts == NumIntermediates) {
531     // If the register was not expanded, promote or copy the value,
532     // as appropriate.
533     for (unsigned i = 0; i != NumParts; ++i)
534       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
535   } else if (NumParts > 0) {
536     // If the intermediate type was expanded, split each the value into
537     // legal parts.
538     assert(NumParts % NumIntermediates == 0 &&
539            "Must expand into a divisible number of parts!");
540     unsigned Factor = NumParts / NumIntermediates;
541     for (unsigned i = 0; i != NumIntermediates; ++i)
542       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
543   }
544 }
545 
546 
547 
548 
549 namespace {
550   /// RegsForValue - This struct represents the registers (physical or virtual)
551   /// that a particular set of values is assigned, and the type information
552   /// about the value. The most common situation is to represent one value at a
553   /// time, but struct or array values are handled element-wise as multiple
554   /// values.  The splitting of aggregates is performed recursively, so that we
555   /// never have aggregate-typed registers. The values at this point do not
556   /// necessarily have legal types, so each value may require one or more
557   /// registers of some legal type.
558   ///
559   struct RegsForValue {
560     /// ValueVTs - The value types of the values, which may not be legal, and
561     /// may need be promoted or synthesized from one or more registers.
562     ///
563     SmallVector<EVT, 4> ValueVTs;
564 
565     /// RegVTs - The value types of the registers. This is the same size as
566     /// ValueVTs and it records, for each value, what the type of the assigned
567     /// register or registers are. (Individual values are never synthesized
568     /// from more than one type of register.)
569     ///
570     /// With virtual registers, the contents of RegVTs is redundant with TLI's
571     /// getRegisterType member function, however when with physical registers
572     /// it is necessary to have a separate record of the types.
573     ///
574     SmallVector<EVT, 4> RegVTs;
575 
576     /// Regs - This list holds the registers assigned to the values.
577     /// Each legal or promoted value requires one register, and each
578     /// expanded value requires multiple registers.
579     ///
580     SmallVector<unsigned, 4> Regs;
581 
582     RegsForValue() {}
583 
584     RegsForValue(const SmallVector<unsigned, 4> &regs,
585                  EVT regvt, EVT valuevt)
586       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
587 
588     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
589                  unsigned Reg, const Type *Ty) {
590       ComputeValueVTs(tli, Ty, ValueVTs);
591 
592       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
593         EVT ValueVT = ValueVTs[Value];
594         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
595         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
596         for (unsigned i = 0; i != NumRegs; ++i)
597           Regs.push_back(Reg + i);
598         RegVTs.push_back(RegisterVT);
599         Reg += NumRegs;
600       }
601     }
602 
603     /// areValueTypesLegal - Return true if types of all the values are legal.
604     bool areValueTypesLegal(const TargetLowering &TLI) {
605       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
606         EVT RegisterVT = RegVTs[Value];
607         if (!TLI.isTypeLegal(RegisterVT))
608           return false;
609       }
610       return true;
611     }
612 
613     /// append - Add the specified values to this one.
614     void append(const RegsForValue &RHS) {
615       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
616       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
617       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
618     }
619 
620     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
621     /// this value and returns the result as a ValueVTs value.  This uses
622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
623     /// If the Flag pointer is NULL, no flag is used.
624     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
625                             DebugLoc dl,
626                             SDValue &Chain, SDValue *Flag) const;
627 
628     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
629     /// specified value into the registers specified by this object.  This uses
630     /// Chain/Flag as the input and updates them for the output Chain/Flag.
631     /// If the Flag pointer is NULL, no flag is used.
632     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
633                        SDValue &Chain, SDValue *Flag) const;
634 
635     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
636     /// operand list.  This adds the code marker, matching input operand index
637     /// (if applicable), and includes the number of values added into it.
638     void AddInlineAsmOperands(unsigned Kind,
639                               bool HasMatching, unsigned MatchingIdx,
640                               SelectionDAG &DAG,
641                               std::vector<SDValue> &Ops) const;
642   };
643 }
644 
645 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
646 /// this value and returns the result as a ValueVT value.  This uses
647 /// Chain/Flag as the input and updates them for the output Chain/Flag.
648 /// If the Flag pointer is NULL, no flag is used.
649 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
650                                       FunctionLoweringInfo &FuncInfo,
651                                       DebugLoc dl,
652                                       SDValue &Chain, SDValue *Flag) const {
653   // A Value with type {} or [0 x %t] needs no registers.
654   if (ValueVTs.empty())
655     return SDValue();
656 
657   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
658 
659   // Assemble the legal parts into the final values.
660   SmallVector<SDValue, 4> Values(ValueVTs.size());
661   SmallVector<SDValue, 8> Parts;
662   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
663     // Copy the legal parts from the registers.
664     EVT ValueVT = ValueVTs[Value];
665     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
666     EVT RegisterVT = RegVTs[Value];
667 
668     Parts.resize(NumRegs);
669     for (unsigned i = 0; i != NumRegs; ++i) {
670       SDValue P;
671       if (Flag == 0) {
672         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
673       } else {
674         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
675         *Flag = P.getValue(2);
676       }
677 
678       Chain = P.getValue(1);
679       Parts[i] = P;
680 
681       // If the source register was virtual and if we know something about it,
682       // add an assert node.
683       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
684           !RegisterVT.isInteger() || RegisterVT.isVector())
685         continue;
686 
687       const FunctionLoweringInfo::LiveOutInfo *LOI =
688         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
689       if (!LOI)
690         continue;
691 
692       unsigned RegSize = RegisterVT.getSizeInBits();
693       unsigned NumSignBits = LOI->NumSignBits;
694       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
695 
696       // FIXME: We capture more information than the dag can represent.  For
697       // now, just use the tightest assertzext/assertsext possible.
698       bool isSExt = true;
699       EVT FromVT(MVT::Other);
700       if (NumSignBits == RegSize)
701         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
702       else if (NumZeroBits >= RegSize-1)
703         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
704       else if (NumSignBits > RegSize-8)
705         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
706       else if (NumZeroBits >= RegSize-8)
707         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
708       else if (NumSignBits > RegSize-16)
709         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
710       else if (NumZeroBits >= RegSize-16)
711         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
712       else if (NumSignBits > RegSize-32)
713         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
714       else if (NumZeroBits >= RegSize-32)
715         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
716       else
717         continue;
718 
719       // Add an assertion node.
720       assert(FromVT != MVT::Other);
721       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
722                              RegisterVT, P, DAG.getValueType(FromVT));
723     }
724 
725     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
726                                      NumRegs, RegisterVT, ValueVT);
727     Part += NumRegs;
728     Parts.clear();
729   }
730 
731   return DAG.getNode(ISD::MERGE_VALUES, dl,
732                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
733                      &Values[0], ValueVTs.size());
734 }
735 
736 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
737 /// specified value into the registers specified by this object.  This uses
738 /// Chain/Flag as the input and updates them for the output Chain/Flag.
739 /// If the Flag pointer is NULL, no flag is used.
740 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
741                                  SDValue &Chain, SDValue *Flag) const {
742   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
743 
744   // Get the list of the values's legal parts.
745   unsigned NumRegs = Regs.size();
746   SmallVector<SDValue, 8> Parts(NumRegs);
747   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
748     EVT ValueVT = ValueVTs[Value];
749     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
750     EVT RegisterVT = RegVTs[Value];
751 
752     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
753                    &Parts[Part], NumParts, RegisterVT);
754     Part += NumParts;
755   }
756 
757   // Copy the parts into the registers.
758   SmallVector<SDValue, 8> Chains(NumRegs);
759   for (unsigned i = 0; i != NumRegs; ++i) {
760     SDValue Part;
761     if (Flag == 0) {
762       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
763     } else {
764       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
765       *Flag = Part.getValue(1);
766     }
767 
768     Chains[i] = Part.getValue(0);
769   }
770 
771   if (NumRegs == 1 || Flag)
772     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
773     // flagged to it. That is the CopyToReg nodes and the user are considered
774     // a single scheduling unit. If we create a TokenFactor and return it as
775     // chain, then the TokenFactor is both a predecessor (operand) of the
776     // user as well as a successor (the TF operands are flagged to the user).
777     // c1, f1 = CopyToReg
778     // c2, f2 = CopyToReg
779     // c3     = TokenFactor c1, c2
780     // ...
781     //        = op c3, ..., f2
782     Chain = Chains[NumRegs-1];
783   else
784     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
785 }
786 
787 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
788 /// operand list.  This adds the code marker and includes the number of
789 /// values added into it.
790 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
791                                         unsigned MatchingIdx,
792                                         SelectionDAG &DAG,
793                                         std::vector<SDValue> &Ops) const {
794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
795 
796   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
797   if (HasMatching)
798     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
799   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
800   Ops.push_back(Res);
801 
802   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
803     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
804     EVT RegisterVT = RegVTs[Value];
805     for (unsigned i = 0; i != NumRegs; ++i) {
806       assert(Reg < Regs.size() && "Mismatch in # registers expected");
807       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
808     }
809   }
810 }
811 
812 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
813   AA = &aa;
814   GFI = gfi;
815   TD = DAG.getTarget().getTargetData();
816 }
817 
818 /// clear - Clear out the current SelectionDAG and the associated
819 /// state and prepare this SelectionDAGBuilder object to be used
820 /// for a new block. This doesn't clear out information about
821 /// additional blocks that are needed to complete switch lowering
822 /// or PHI node updating; that information is cleared out as it is
823 /// consumed.
824 void SelectionDAGBuilder::clear() {
825   NodeMap.clear();
826   UnusedArgNodeMap.clear();
827   PendingLoads.clear();
828   PendingExports.clear();
829   CurDebugLoc = DebugLoc();
830   HasTailCall = false;
831 }
832 
833 /// clearDanglingDebugInfo - Clear the dangling debug information
834 /// map. This function is seperated from the clear so that debug
835 /// information that is dangling in a basic block can be properly
836 /// resolved in a different basic block. This allows the
837 /// SelectionDAG to resolve dangling debug information attached
838 /// to PHI nodes.
839 void SelectionDAGBuilder::clearDanglingDebugInfo() {
840   DanglingDebugInfoMap.clear();
841 }
842 
843 /// getRoot - Return the current virtual root of the Selection DAG,
844 /// flushing any PendingLoad items. This must be done before emitting
845 /// a store or any other node that may need to be ordered after any
846 /// prior load instructions.
847 ///
848 SDValue SelectionDAGBuilder::getRoot() {
849   if (PendingLoads.empty())
850     return DAG.getRoot();
851 
852   if (PendingLoads.size() == 1) {
853     SDValue Root = PendingLoads[0];
854     DAG.setRoot(Root);
855     PendingLoads.clear();
856     return Root;
857   }
858 
859   // Otherwise, we have to make a token factor node.
860   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
861                                &PendingLoads[0], PendingLoads.size());
862   PendingLoads.clear();
863   DAG.setRoot(Root);
864   return Root;
865 }
866 
867 /// getControlRoot - Similar to getRoot, but instead of flushing all the
868 /// PendingLoad items, flush all the PendingExports items. It is necessary
869 /// to do this before emitting a terminator instruction.
870 ///
871 SDValue SelectionDAGBuilder::getControlRoot() {
872   SDValue Root = DAG.getRoot();
873 
874   if (PendingExports.empty())
875     return Root;
876 
877   // Turn all of the CopyToReg chains into one factored node.
878   if (Root.getOpcode() != ISD::EntryToken) {
879     unsigned i = 0, e = PendingExports.size();
880     for (; i != e; ++i) {
881       assert(PendingExports[i].getNode()->getNumOperands() > 1);
882       if (PendingExports[i].getNode()->getOperand(0) == Root)
883         break;  // Don't add the root if we already indirectly depend on it.
884     }
885 
886     if (i == e)
887       PendingExports.push_back(Root);
888   }
889 
890   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
891                      &PendingExports[0],
892                      PendingExports.size());
893   PendingExports.clear();
894   DAG.setRoot(Root);
895   return Root;
896 }
897 
898 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
899   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
900   DAG.AssignOrdering(Node, SDNodeOrder);
901 
902   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
903     AssignOrderingToNode(Node->getOperand(I).getNode());
904 }
905 
906 void SelectionDAGBuilder::visit(const Instruction &I) {
907   // Set up outgoing PHI node register values before emitting the terminator.
908   if (isa<TerminatorInst>(&I))
909     HandlePHINodesInSuccessorBlocks(I.getParent());
910 
911   CurDebugLoc = I.getDebugLoc();
912 
913   visit(I.getOpcode(), I);
914 
915   if (!isa<TerminatorInst>(&I) && !HasTailCall)
916     CopyToExportRegsIfNeeded(&I);
917 
918   CurDebugLoc = DebugLoc();
919 }
920 
921 void SelectionDAGBuilder::visitPHI(const PHINode &) {
922   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
923 }
924 
925 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
926   // Note: this doesn't use InstVisitor, because it has to work with
927   // ConstantExpr's in addition to instructions.
928   switch (Opcode) {
929   default: llvm_unreachable("Unknown instruction type encountered!");
930     // Build the switch statement using the Instruction.def file.
931 #define HANDLE_INST(NUM, OPCODE, CLASS) \
932     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
933 #include "llvm/Instruction.def"
934   }
935 
936   // Assign the ordering to the freshly created DAG nodes.
937   if (NodeMap.count(&I)) {
938     ++SDNodeOrder;
939     AssignOrderingToNode(getValue(&I).getNode());
940   }
941 }
942 
943 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
944 // generate the debug data structures now that we've seen its definition.
945 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
946                                                    SDValue Val) {
947   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
948   if (DDI.getDI()) {
949     const DbgValueInst *DI = DDI.getDI();
950     DebugLoc dl = DDI.getdl();
951     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
952     MDNode *Variable = DI->getVariable();
953     uint64_t Offset = DI->getOffset();
954     SDDbgValue *SDV;
955     if (Val.getNode()) {
956       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
957         SDV = DAG.getDbgValue(Variable, Val.getNode(),
958                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
959         DAG.AddDbgValue(SDV, Val.getNode(), false);
960       }
961     } else
962       DEBUG(dbgs() << "Dropping debug info for " << DI);
963     DanglingDebugInfoMap[V] = DanglingDebugInfo();
964   }
965 }
966 
967 // getValue - Return an SDValue for the given Value.
968 SDValue SelectionDAGBuilder::getValue(const Value *V) {
969   // If we already have an SDValue for this value, use it. It's important
970   // to do this first, so that we don't create a CopyFromReg if we already
971   // have a regular SDValue.
972   SDValue &N = NodeMap[V];
973   if (N.getNode()) return N;
974 
975   // If there's a virtual register allocated and initialized for this
976   // value, use it.
977   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
978   if (It != FuncInfo.ValueMap.end()) {
979     unsigned InReg = It->second;
980     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
981     SDValue Chain = DAG.getEntryNode();
982     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
983     resolveDanglingDebugInfo(V, N);
984     return N;
985   }
986 
987   // Otherwise create a new SDValue and remember it.
988   SDValue Val = getValueImpl(V);
989   NodeMap[V] = Val;
990   resolveDanglingDebugInfo(V, Val);
991   return Val;
992 }
993 
994 /// getNonRegisterValue - Return an SDValue for the given Value, but
995 /// don't look in FuncInfo.ValueMap for a virtual register.
996 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
997   // If we already have an SDValue for this value, use it.
998   SDValue &N = NodeMap[V];
999   if (N.getNode()) return N;
1000 
1001   // Otherwise create a new SDValue and remember it.
1002   SDValue Val = getValueImpl(V);
1003   NodeMap[V] = Val;
1004   resolveDanglingDebugInfo(V, Val);
1005   return Val;
1006 }
1007 
1008 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1009 /// Create an SDValue for the given value.
1010 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1011   if (const Constant *C = dyn_cast<Constant>(V)) {
1012     EVT VT = TLI.getValueType(V->getType(), true);
1013 
1014     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1015       return DAG.getConstant(*CI, VT);
1016 
1017     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1018       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1019 
1020     if (isa<ConstantPointerNull>(C))
1021       return DAG.getConstant(0, TLI.getPointerTy());
1022 
1023     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1024       return DAG.getConstantFP(*CFP, VT);
1025 
1026     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1027       return DAG.getUNDEF(VT);
1028 
1029     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1030       visit(CE->getOpcode(), *CE);
1031       SDValue N1 = NodeMap[V];
1032       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1033       return N1;
1034     }
1035 
1036     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1037       SmallVector<SDValue, 4> Constants;
1038       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1039            OI != OE; ++OI) {
1040         SDNode *Val = getValue(*OI).getNode();
1041         // If the operand is an empty aggregate, there are no values.
1042         if (!Val) continue;
1043         // Add each leaf value from the operand to the Constants list
1044         // to form a flattened list of all the values.
1045         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1046           Constants.push_back(SDValue(Val, i));
1047       }
1048 
1049       return DAG.getMergeValues(&Constants[0], Constants.size(),
1050                                 getCurDebugLoc());
1051     }
1052 
1053     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1054       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1055              "Unknown struct or array constant!");
1056 
1057       SmallVector<EVT, 4> ValueVTs;
1058       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1059       unsigned NumElts = ValueVTs.size();
1060       if (NumElts == 0)
1061         return SDValue(); // empty struct
1062       SmallVector<SDValue, 4> Constants(NumElts);
1063       for (unsigned i = 0; i != NumElts; ++i) {
1064         EVT EltVT = ValueVTs[i];
1065         if (isa<UndefValue>(C))
1066           Constants[i] = DAG.getUNDEF(EltVT);
1067         else if (EltVT.isFloatingPoint())
1068           Constants[i] = DAG.getConstantFP(0, EltVT);
1069         else
1070           Constants[i] = DAG.getConstant(0, EltVT);
1071       }
1072 
1073       return DAG.getMergeValues(&Constants[0], NumElts,
1074                                 getCurDebugLoc());
1075     }
1076 
1077     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1078       return DAG.getBlockAddress(BA, VT);
1079 
1080     const VectorType *VecTy = cast<VectorType>(V->getType());
1081     unsigned NumElements = VecTy->getNumElements();
1082 
1083     // Now that we know the number and type of the elements, get that number of
1084     // elements into the Ops array based on what kind of constant it is.
1085     SmallVector<SDValue, 16> Ops;
1086     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1087       for (unsigned i = 0; i != NumElements; ++i)
1088         Ops.push_back(getValue(CP->getOperand(i)));
1089     } else {
1090       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1091       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1092 
1093       SDValue Op;
1094       if (EltVT.isFloatingPoint())
1095         Op = DAG.getConstantFP(0, EltVT);
1096       else
1097         Op = DAG.getConstant(0, EltVT);
1098       Ops.assign(NumElements, Op);
1099     }
1100 
1101     // Create a BUILD_VECTOR node.
1102     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1103                                     VT, &Ops[0], Ops.size());
1104   }
1105 
1106   // If this is a static alloca, generate it as the frameindex instead of
1107   // computation.
1108   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1109     DenseMap<const AllocaInst*, int>::iterator SI =
1110       FuncInfo.StaticAllocaMap.find(AI);
1111     if (SI != FuncInfo.StaticAllocaMap.end())
1112       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1113   }
1114 
1115   // If this is an instruction which fast-isel has deferred, select it now.
1116   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1117     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1118     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1119     SDValue Chain = DAG.getEntryNode();
1120     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1121   }
1122 
1123   llvm_unreachable("Can't get register for value!");
1124   return SDValue();
1125 }
1126 
1127 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1128   SDValue Chain = getControlRoot();
1129   SmallVector<ISD::OutputArg, 8> Outs;
1130   SmallVector<SDValue, 8> OutVals;
1131 
1132   if (!FuncInfo.CanLowerReturn) {
1133     unsigned DemoteReg = FuncInfo.DemoteRegister;
1134     const Function *F = I.getParent()->getParent();
1135 
1136     // Emit a store of the return value through the virtual register.
1137     // Leave Outs empty so that LowerReturn won't try to load return
1138     // registers the usual way.
1139     SmallVector<EVT, 1> PtrValueVTs;
1140     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1141                     PtrValueVTs);
1142 
1143     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1144     SDValue RetOp = getValue(I.getOperand(0));
1145 
1146     SmallVector<EVT, 4> ValueVTs;
1147     SmallVector<uint64_t, 4> Offsets;
1148     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1149     unsigned NumValues = ValueVTs.size();
1150 
1151     SmallVector<SDValue, 4> Chains(NumValues);
1152     for (unsigned i = 0; i != NumValues; ++i) {
1153       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1154                                 RetPtr.getValueType(), RetPtr,
1155                                 DAG.getIntPtrConstant(Offsets[i]));
1156       Chains[i] =
1157         DAG.getStore(Chain, getCurDebugLoc(),
1158                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1159                      // FIXME: better loc info would be nice.
1160                      Add, MachinePointerInfo(), false, false, 0);
1161     }
1162 
1163     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1164                         MVT::Other, &Chains[0], NumValues);
1165   } else if (I.getNumOperands() != 0) {
1166     SmallVector<EVT, 4> ValueVTs;
1167     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1168     unsigned NumValues = ValueVTs.size();
1169     if (NumValues) {
1170       SDValue RetOp = getValue(I.getOperand(0));
1171       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1172         EVT VT = ValueVTs[j];
1173 
1174         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1175 
1176         const Function *F = I.getParent()->getParent();
1177         if (F->paramHasAttr(0, Attribute::SExt))
1178           ExtendKind = ISD::SIGN_EXTEND;
1179         else if (F->paramHasAttr(0, Attribute::ZExt))
1180           ExtendKind = ISD::ZERO_EXTEND;
1181 
1182         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1183           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1184 
1185         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1186         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1187         SmallVector<SDValue, 4> Parts(NumParts);
1188         getCopyToParts(DAG, getCurDebugLoc(),
1189                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1190                        &Parts[0], NumParts, PartVT, ExtendKind);
1191 
1192         // 'inreg' on function refers to return value
1193         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1194         if (F->paramHasAttr(0, Attribute::InReg))
1195           Flags.setInReg();
1196 
1197         // Propagate extension type if any
1198         if (ExtendKind == ISD::SIGN_EXTEND)
1199           Flags.setSExt();
1200         else if (ExtendKind == ISD::ZERO_EXTEND)
1201           Flags.setZExt();
1202 
1203         for (unsigned i = 0; i < NumParts; ++i) {
1204           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1205                                         /*isfixed=*/true));
1206           OutVals.push_back(Parts[i]);
1207         }
1208       }
1209     }
1210   }
1211 
1212   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1213   CallingConv::ID CallConv =
1214     DAG.getMachineFunction().getFunction()->getCallingConv();
1215   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1216                           Outs, OutVals, getCurDebugLoc(), DAG);
1217 
1218   // Verify that the target's LowerReturn behaved as expected.
1219   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1220          "LowerReturn didn't return a valid chain!");
1221 
1222   // Update the DAG with the new chain value resulting from return lowering.
1223   DAG.setRoot(Chain);
1224 }
1225 
1226 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1227 /// created for it, emit nodes to copy the value into the virtual
1228 /// registers.
1229 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1230   // Skip empty types
1231   if (V->getType()->isEmptyTy())
1232     return;
1233 
1234   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1235   if (VMI != FuncInfo.ValueMap.end()) {
1236     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1237     CopyValueToVirtualRegister(V, VMI->second);
1238   }
1239 }
1240 
1241 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1242 /// the current basic block, add it to ValueMap now so that we'll get a
1243 /// CopyTo/FromReg.
1244 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1245   // No need to export constants.
1246   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1247 
1248   // Already exported?
1249   if (FuncInfo.isExportedInst(V)) return;
1250 
1251   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1252   CopyValueToVirtualRegister(V, Reg);
1253 }
1254 
1255 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1256                                                      const BasicBlock *FromBB) {
1257   // The operands of the setcc have to be in this block.  We don't know
1258   // how to export them from some other block.
1259   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1260     // Can export from current BB.
1261     if (VI->getParent() == FromBB)
1262       return true;
1263 
1264     // Is already exported, noop.
1265     return FuncInfo.isExportedInst(V);
1266   }
1267 
1268   // If this is an argument, we can export it if the BB is the entry block or
1269   // if it is already exported.
1270   if (isa<Argument>(V)) {
1271     if (FromBB == &FromBB->getParent()->getEntryBlock())
1272       return true;
1273 
1274     // Otherwise, can only export this if it is already exported.
1275     return FuncInfo.isExportedInst(V);
1276   }
1277 
1278   // Otherwise, constants can always be exported.
1279   return true;
1280 }
1281 
1282 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1283 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1284                                             MachineBasicBlock *Dst) {
1285   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1286   if (!BPI)
1287     return 0;
1288   BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
1289   BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
1290   return BPI->getEdgeWeight(SrcBB, DstBB);
1291 }
1292 
1293 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
1294                                                  MachineBasicBlock *Dst) {
1295   uint32_t weight = getEdgeWeight(Src, Dst);
1296   Src->addSuccessor(Dst, weight);
1297 }
1298 
1299 
1300 static bool InBlock(const Value *V, const BasicBlock *BB) {
1301   if (const Instruction *I = dyn_cast<Instruction>(V))
1302     return I->getParent() == BB;
1303   return true;
1304 }
1305 
1306 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1307 /// This function emits a branch and is used at the leaves of an OR or an
1308 /// AND operator tree.
1309 ///
1310 void
1311 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1312                                                   MachineBasicBlock *TBB,
1313                                                   MachineBasicBlock *FBB,
1314                                                   MachineBasicBlock *CurBB,
1315                                                   MachineBasicBlock *SwitchBB) {
1316   const BasicBlock *BB = CurBB->getBasicBlock();
1317 
1318   // If the leaf of the tree is a comparison, merge the condition into
1319   // the caseblock.
1320   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1321     // The operands of the cmp have to be in this block.  We don't know
1322     // how to export them from some other block.  If this is the first block
1323     // of the sequence, no exporting is needed.
1324     if (CurBB == SwitchBB ||
1325         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1326          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1327       ISD::CondCode Condition;
1328       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1329         Condition = getICmpCondCode(IC->getPredicate());
1330       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1331         Condition = getFCmpCondCode(FC->getPredicate());
1332       } else {
1333         Condition = ISD::SETEQ; // silence warning.
1334         llvm_unreachable("Unknown compare instruction");
1335       }
1336 
1337       CaseBlock CB(Condition, BOp->getOperand(0),
1338                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1339       SwitchCases.push_back(CB);
1340       return;
1341     }
1342   }
1343 
1344   // Create a CaseBlock record representing this branch.
1345   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1346                NULL, TBB, FBB, CurBB);
1347   SwitchCases.push_back(CB);
1348 }
1349 
1350 /// FindMergedConditions - If Cond is an expression like
1351 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1352                                                MachineBasicBlock *TBB,
1353                                                MachineBasicBlock *FBB,
1354                                                MachineBasicBlock *CurBB,
1355                                                MachineBasicBlock *SwitchBB,
1356                                                unsigned Opc) {
1357   // If this node is not part of the or/and tree, emit it as a branch.
1358   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1359   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1360       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1361       BOp->getParent() != CurBB->getBasicBlock() ||
1362       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1363       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1364     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1365     return;
1366   }
1367 
1368   //  Create TmpBB after CurBB.
1369   MachineFunction::iterator BBI = CurBB;
1370   MachineFunction &MF = DAG.getMachineFunction();
1371   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1372   CurBB->getParent()->insert(++BBI, TmpBB);
1373 
1374   if (Opc == Instruction::Or) {
1375     // Codegen X | Y as:
1376     //   jmp_if_X TBB
1377     //   jmp TmpBB
1378     // TmpBB:
1379     //   jmp_if_Y TBB
1380     //   jmp FBB
1381     //
1382 
1383     // Emit the LHS condition.
1384     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1385 
1386     // Emit the RHS condition into TmpBB.
1387     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1388   } else {
1389     assert(Opc == Instruction::And && "Unknown merge op!");
1390     // Codegen X & Y as:
1391     //   jmp_if_X TmpBB
1392     //   jmp FBB
1393     // TmpBB:
1394     //   jmp_if_Y TBB
1395     //   jmp FBB
1396     //
1397     //  This requires creation of TmpBB after CurBB.
1398 
1399     // Emit the LHS condition.
1400     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1401 
1402     // Emit the RHS condition into TmpBB.
1403     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1404   }
1405 }
1406 
1407 /// If the set of cases should be emitted as a series of branches, return true.
1408 /// If we should emit this as a bunch of and/or'd together conditions, return
1409 /// false.
1410 bool
1411 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1412   if (Cases.size() != 2) return true;
1413 
1414   // If this is two comparisons of the same values or'd or and'd together, they
1415   // will get folded into a single comparison, so don't emit two blocks.
1416   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1417        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1418       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1419        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1420     return false;
1421   }
1422 
1423   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1424   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1425   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1426       Cases[0].CC == Cases[1].CC &&
1427       isa<Constant>(Cases[0].CmpRHS) &&
1428       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1429     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1430       return false;
1431     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1432       return false;
1433   }
1434 
1435   return true;
1436 }
1437 
1438 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1439   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1440 
1441   // Update machine-CFG edges.
1442   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1443 
1444   // Figure out which block is immediately after the current one.
1445   MachineBasicBlock *NextBlock = 0;
1446   MachineFunction::iterator BBI = BrMBB;
1447   if (++BBI != FuncInfo.MF->end())
1448     NextBlock = BBI;
1449 
1450   if (I.isUnconditional()) {
1451     // Update machine-CFG edges.
1452     BrMBB->addSuccessor(Succ0MBB);
1453 
1454     // If this is not a fall-through branch, emit the branch.
1455     if (Succ0MBB != NextBlock)
1456       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1457                               MVT::Other, getControlRoot(),
1458                               DAG.getBasicBlock(Succ0MBB)));
1459 
1460     return;
1461   }
1462 
1463   // If this condition is one of the special cases we handle, do special stuff
1464   // now.
1465   const Value *CondVal = I.getCondition();
1466   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1467 
1468   // If this is a series of conditions that are or'd or and'd together, emit
1469   // this as a sequence of branches instead of setcc's with and/or operations.
1470   // As long as jumps are not expensive, this should improve performance.
1471   // For example, instead of something like:
1472   //     cmp A, B
1473   //     C = seteq
1474   //     cmp D, E
1475   //     F = setle
1476   //     or C, F
1477   //     jnz foo
1478   // Emit:
1479   //     cmp A, B
1480   //     je foo
1481   //     cmp D, E
1482   //     jle foo
1483   //
1484   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1485     if (!TLI.isJumpExpensive() &&
1486         BOp->hasOneUse() &&
1487         (BOp->getOpcode() == Instruction::And ||
1488          BOp->getOpcode() == Instruction::Or)) {
1489       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1490                            BOp->getOpcode());
1491       // If the compares in later blocks need to use values not currently
1492       // exported from this block, export them now.  This block should always
1493       // be the first entry.
1494       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1495 
1496       // Allow some cases to be rejected.
1497       if (ShouldEmitAsBranches(SwitchCases)) {
1498         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1499           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1500           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1501         }
1502 
1503         // Emit the branch for this block.
1504         visitSwitchCase(SwitchCases[0], BrMBB);
1505         SwitchCases.erase(SwitchCases.begin());
1506         return;
1507       }
1508 
1509       // Okay, we decided not to do this, remove any inserted MBB's and clear
1510       // SwitchCases.
1511       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1512         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1513 
1514       SwitchCases.clear();
1515     }
1516   }
1517 
1518   // Create a CaseBlock record representing this branch.
1519   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1520                NULL, Succ0MBB, Succ1MBB, BrMBB);
1521 
1522   // Use visitSwitchCase to actually insert the fast branch sequence for this
1523   // cond branch.
1524   visitSwitchCase(CB, BrMBB);
1525 }
1526 
1527 /// visitSwitchCase - Emits the necessary code to represent a single node in
1528 /// the binary search tree resulting from lowering a switch instruction.
1529 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1530                                           MachineBasicBlock *SwitchBB) {
1531   SDValue Cond;
1532   SDValue CondLHS = getValue(CB.CmpLHS);
1533   DebugLoc dl = getCurDebugLoc();
1534 
1535   // Build the setcc now.
1536   if (CB.CmpMHS == NULL) {
1537     // Fold "(X == true)" to X and "(X == false)" to !X to
1538     // handle common cases produced by branch lowering.
1539     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1540         CB.CC == ISD::SETEQ)
1541       Cond = CondLHS;
1542     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1543              CB.CC == ISD::SETEQ) {
1544       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1545       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1546     } else
1547       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1548   } else {
1549     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1550 
1551     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1552     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1553 
1554     SDValue CmpOp = getValue(CB.CmpMHS);
1555     EVT VT = CmpOp.getValueType();
1556 
1557     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1558       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1559                           ISD::SETLE);
1560     } else {
1561       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1562                                 VT, CmpOp, DAG.getConstant(Low, VT));
1563       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1564                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1565     }
1566   }
1567 
1568   // Update successor info
1569   addSuccessorWithWeight(SwitchBB, CB.TrueBB);
1570   addSuccessorWithWeight(SwitchBB, CB.FalseBB);
1571 
1572   // Set NextBlock to be the MBB immediately after the current one, if any.
1573   // This is used to avoid emitting unnecessary branches to the next block.
1574   MachineBasicBlock *NextBlock = 0;
1575   MachineFunction::iterator BBI = SwitchBB;
1576   if (++BBI != FuncInfo.MF->end())
1577     NextBlock = BBI;
1578 
1579   // If the lhs block is the next block, invert the condition so that we can
1580   // fall through to the lhs instead of the rhs block.
1581   if (CB.TrueBB == NextBlock) {
1582     std::swap(CB.TrueBB, CB.FalseBB);
1583     SDValue True = DAG.getConstant(1, Cond.getValueType());
1584     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1585   }
1586 
1587   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1588                                MVT::Other, getControlRoot(), Cond,
1589                                DAG.getBasicBlock(CB.TrueBB));
1590 
1591   // Insert the false branch. Do this even if it's a fall through branch,
1592   // this makes it easier to do DAG optimizations which require inverting
1593   // the branch condition.
1594   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1595                        DAG.getBasicBlock(CB.FalseBB));
1596 
1597   DAG.setRoot(BrCond);
1598 }
1599 
1600 /// visitJumpTable - Emit JumpTable node in the current MBB
1601 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1602   // Emit the code for the jump table
1603   assert(JT.Reg != -1U && "Should lower JT Header first!");
1604   EVT PTy = TLI.getPointerTy();
1605   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1606                                      JT.Reg, PTy);
1607   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1608   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1609                                     MVT::Other, Index.getValue(1),
1610                                     Table, Index);
1611   DAG.setRoot(BrJumpTable);
1612 }
1613 
1614 /// visitJumpTableHeader - This function emits necessary code to produce index
1615 /// in the JumpTable from switch case.
1616 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1617                                                JumpTableHeader &JTH,
1618                                                MachineBasicBlock *SwitchBB) {
1619   // Subtract the lowest switch case value from the value being switched on and
1620   // conditional branch to default mbb if the result is greater than the
1621   // difference between smallest and largest cases.
1622   SDValue SwitchOp = getValue(JTH.SValue);
1623   EVT VT = SwitchOp.getValueType();
1624   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1625                             DAG.getConstant(JTH.First, VT));
1626 
1627   // The SDNode we just created, which holds the value being switched on minus
1628   // the smallest case value, needs to be copied to a virtual register so it
1629   // can be used as an index into the jump table in a subsequent basic block.
1630   // This value may be smaller or larger than the target's pointer type, and
1631   // therefore require extension or truncating.
1632   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1633 
1634   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1635   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1636                                     JumpTableReg, SwitchOp);
1637   JT.Reg = JumpTableReg;
1638 
1639   // Emit the range check for the jump table, and branch to the default block
1640   // for the switch statement if the value being switched on exceeds the largest
1641   // case in the switch.
1642   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1643                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1644                              DAG.getConstant(JTH.Last-JTH.First,VT),
1645                              ISD::SETUGT);
1646 
1647   // Set NextBlock to be the MBB immediately after the current one, if any.
1648   // This is used to avoid emitting unnecessary branches to the next block.
1649   MachineBasicBlock *NextBlock = 0;
1650   MachineFunction::iterator BBI = SwitchBB;
1651 
1652   if (++BBI != FuncInfo.MF->end())
1653     NextBlock = BBI;
1654 
1655   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1656                                MVT::Other, CopyTo, CMP,
1657                                DAG.getBasicBlock(JT.Default));
1658 
1659   if (JT.MBB != NextBlock)
1660     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1661                          DAG.getBasicBlock(JT.MBB));
1662 
1663   DAG.setRoot(BrCond);
1664 }
1665 
1666 /// visitBitTestHeader - This function emits necessary code to produce value
1667 /// suitable for "bit tests"
1668 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1669                                              MachineBasicBlock *SwitchBB) {
1670   // Subtract the minimum value
1671   SDValue SwitchOp = getValue(B.SValue);
1672   EVT VT = SwitchOp.getValueType();
1673   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1674                             DAG.getConstant(B.First, VT));
1675 
1676   // Check range
1677   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1678                                   TLI.getSetCCResultType(Sub.getValueType()),
1679                                   Sub, DAG.getConstant(B.Range, VT),
1680                                   ISD::SETUGT);
1681 
1682   // Determine the type of the test operands.
1683   bool UsePtrType = false;
1684   if (!TLI.isTypeLegal(VT))
1685     UsePtrType = true;
1686   else {
1687     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1688       if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1689         // Switch table case range are encoded into series of masks.
1690         // Just use pointer type, it's guaranteed to fit.
1691         UsePtrType = true;
1692         break;
1693       }
1694   }
1695   if (UsePtrType) {
1696     VT = TLI.getPointerTy();
1697     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1698   }
1699 
1700   B.RegVT = VT;
1701   B.Reg = FuncInfo.CreateReg(VT);
1702   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1703                                     B.Reg, Sub);
1704 
1705   // Set NextBlock to be the MBB immediately after the current one, if any.
1706   // This is used to avoid emitting unnecessary branches to the next block.
1707   MachineBasicBlock *NextBlock = 0;
1708   MachineFunction::iterator BBI = SwitchBB;
1709   if (++BBI != FuncInfo.MF->end())
1710     NextBlock = BBI;
1711 
1712   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1713 
1714   addSuccessorWithWeight(SwitchBB, B.Default);
1715   addSuccessorWithWeight(SwitchBB, MBB);
1716 
1717   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1718                                 MVT::Other, CopyTo, RangeCmp,
1719                                 DAG.getBasicBlock(B.Default));
1720 
1721   if (MBB != NextBlock)
1722     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1723                           DAG.getBasicBlock(MBB));
1724 
1725   DAG.setRoot(BrRange);
1726 }
1727 
1728 /// visitBitTestCase - this function produces one "bit test"
1729 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1730                                            MachineBasicBlock* NextMBB,
1731                                            unsigned Reg,
1732                                            BitTestCase &B,
1733                                            MachineBasicBlock *SwitchBB) {
1734   EVT VT = BB.RegVT;
1735   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1736                                        Reg, VT);
1737   SDValue Cmp;
1738   if (CountPopulation_64(B.Mask) == 1) {
1739     // Testing for a single bit; just compare the shift count with what it
1740     // would need to be to shift a 1 bit in that position.
1741     Cmp = DAG.getSetCC(getCurDebugLoc(),
1742                        TLI.getSetCCResultType(VT),
1743                        ShiftOp,
1744                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1745                        ISD::SETEQ);
1746   } else {
1747     // Make desired shift
1748     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1749                                     DAG.getConstant(1, VT), ShiftOp);
1750 
1751     // Emit bit tests and jumps
1752     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1753                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1754     Cmp = DAG.getSetCC(getCurDebugLoc(),
1755                        TLI.getSetCCResultType(VT),
1756                        AndOp, DAG.getConstant(0, VT),
1757                        ISD::SETNE);
1758   }
1759 
1760   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1761   addSuccessorWithWeight(SwitchBB, NextMBB);
1762 
1763   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1764                               MVT::Other, getControlRoot(),
1765                               Cmp, DAG.getBasicBlock(B.TargetBB));
1766 
1767   // Set NextBlock to be the MBB immediately after the current one, if any.
1768   // This is used to avoid emitting unnecessary branches to the next block.
1769   MachineBasicBlock *NextBlock = 0;
1770   MachineFunction::iterator BBI = SwitchBB;
1771   if (++BBI != FuncInfo.MF->end())
1772     NextBlock = BBI;
1773 
1774   if (NextMBB != NextBlock)
1775     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1776                         DAG.getBasicBlock(NextMBB));
1777 
1778   DAG.setRoot(BrAnd);
1779 }
1780 
1781 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1782   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1783 
1784   // Retrieve successors.
1785   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1786   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1787 
1788   const Value *Callee(I.getCalledValue());
1789   if (isa<InlineAsm>(Callee))
1790     visitInlineAsm(&I);
1791   else
1792     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1793 
1794   // If the value of the invoke is used outside of its defining block, make it
1795   // available as a virtual register.
1796   CopyToExportRegsIfNeeded(&I);
1797 
1798   // Update successor info
1799   InvokeMBB->addSuccessor(Return);
1800   InvokeMBB->addSuccessor(LandingPad);
1801 
1802   // Drop into normal successor.
1803   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1804                           MVT::Other, getControlRoot(),
1805                           DAG.getBasicBlock(Return)));
1806 }
1807 
1808 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1809 }
1810 
1811 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1812 /// small case ranges).
1813 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1814                                                  CaseRecVector& WorkList,
1815                                                  const Value* SV,
1816                                                  MachineBasicBlock *Default,
1817                                                  MachineBasicBlock *SwitchBB) {
1818   Case& BackCase  = *(CR.Range.second-1);
1819 
1820   // Size is the number of Cases represented by this range.
1821   size_t Size = CR.Range.second - CR.Range.first;
1822   if (Size > 3)
1823     return false;
1824 
1825   // Get the MachineFunction which holds the current MBB.  This is used when
1826   // inserting any additional MBBs necessary to represent the switch.
1827   MachineFunction *CurMF = FuncInfo.MF;
1828 
1829   // Figure out which block is immediately after the current one.
1830   MachineBasicBlock *NextBlock = 0;
1831   MachineFunction::iterator BBI = CR.CaseBB;
1832 
1833   if (++BBI != FuncInfo.MF->end())
1834     NextBlock = BBI;
1835 
1836   // If any two of the cases has the same destination, and if one value
1837   // is the same as the other, but has one bit unset that the other has set,
1838   // use bit manipulation to do two compares at once.  For example:
1839   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1840   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1841   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1842   if (Size == 2 && CR.CaseBB == SwitchBB) {
1843     Case &Small = *CR.Range.first;
1844     Case &Big = *(CR.Range.second-1);
1845 
1846     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1847       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1848       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1849 
1850       // Check that there is only one bit different.
1851       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1852           (SmallValue | BigValue) == BigValue) {
1853         // Isolate the common bit.
1854         APInt CommonBit = BigValue & ~SmallValue;
1855         assert((SmallValue | CommonBit) == BigValue &&
1856                CommonBit.countPopulation() == 1 && "Not a common bit?");
1857 
1858         SDValue CondLHS = getValue(SV);
1859         EVT VT = CondLHS.getValueType();
1860         DebugLoc DL = getCurDebugLoc();
1861 
1862         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1863                                  DAG.getConstant(CommonBit, VT));
1864         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1865                                     Or, DAG.getConstant(BigValue, VT),
1866                                     ISD::SETEQ);
1867 
1868         // Update successor info.
1869         SwitchBB->addSuccessor(Small.BB);
1870         SwitchBB->addSuccessor(Default);
1871 
1872         // Insert the true branch.
1873         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1874                                      getControlRoot(), Cond,
1875                                      DAG.getBasicBlock(Small.BB));
1876 
1877         // Insert the false branch.
1878         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1879                              DAG.getBasicBlock(Default));
1880 
1881         DAG.setRoot(BrCond);
1882         return true;
1883       }
1884     }
1885   }
1886 
1887   // Rearrange the case blocks so that the last one falls through if possible.
1888   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1889     // The last case block won't fall through into 'NextBlock' if we emit the
1890     // branches in this order.  See if rearranging a case value would help.
1891     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1892       if (I->BB == NextBlock) {
1893         std::swap(*I, BackCase);
1894         break;
1895       }
1896     }
1897   }
1898 
1899   // Create a CaseBlock record representing a conditional branch to
1900   // the Case's target mbb if the value being switched on SV is equal
1901   // to C.
1902   MachineBasicBlock *CurBlock = CR.CaseBB;
1903   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1904     MachineBasicBlock *FallThrough;
1905     if (I != E-1) {
1906       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1907       CurMF->insert(BBI, FallThrough);
1908 
1909       // Put SV in a virtual register to make it available from the new blocks.
1910       ExportFromCurrentBlock(SV);
1911     } else {
1912       // If the last case doesn't match, go to the default block.
1913       FallThrough = Default;
1914     }
1915 
1916     const Value *RHS, *LHS, *MHS;
1917     ISD::CondCode CC;
1918     if (I->High == I->Low) {
1919       // This is just small small case range :) containing exactly 1 case
1920       CC = ISD::SETEQ;
1921       LHS = SV; RHS = I->High; MHS = NULL;
1922     } else {
1923       CC = ISD::SETLE;
1924       LHS = I->Low; MHS = SV; RHS = I->High;
1925     }
1926     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1927 
1928     // If emitting the first comparison, just call visitSwitchCase to emit the
1929     // code into the current block.  Otherwise, push the CaseBlock onto the
1930     // vector to be later processed by SDISel, and insert the node's MBB
1931     // before the next MBB.
1932     if (CurBlock == SwitchBB)
1933       visitSwitchCase(CB, SwitchBB);
1934     else
1935       SwitchCases.push_back(CB);
1936 
1937     CurBlock = FallThrough;
1938   }
1939 
1940   return true;
1941 }
1942 
1943 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1944   return !DisableJumpTables &&
1945           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1946            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1947 }
1948 
1949 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1950   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1951   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1952   return (LastExt - FirstExt + 1ULL);
1953 }
1954 
1955 /// handleJTSwitchCase - Emit jumptable for current switch case range
1956 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1957                                              CaseRecVector& WorkList,
1958                                              const Value* SV,
1959                                              MachineBasicBlock* Default,
1960                                              MachineBasicBlock *SwitchBB) {
1961   Case& FrontCase = *CR.Range.first;
1962   Case& BackCase  = *(CR.Range.second-1);
1963 
1964   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1965   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1966 
1967   APInt TSize(First.getBitWidth(), 0);
1968   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1969        I!=E; ++I)
1970     TSize += I->size();
1971 
1972   if (!areJTsAllowed(TLI) || TSize.ult(4))
1973     return false;
1974 
1975   APInt Range = ComputeRange(First, Last);
1976   double Density = TSize.roundToDouble() / Range.roundToDouble();
1977   if (Density < 0.4)
1978     return false;
1979 
1980   DEBUG(dbgs() << "Lowering jump table\n"
1981                << "First entry: " << First << ". Last entry: " << Last << '\n'
1982                << "Range: " << Range
1983                << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1984 
1985   // Get the MachineFunction which holds the current MBB.  This is used when
1986   // inserting any additional MBBs necessary to represent the switch.
1987   MachineFunction *CurMF = FuncInfo.MF;
1988 
1989   // Figure out which block is immediately after the current one.
1990   MachineFunction::iterator BBI = CR.CaseBB;
1991   ++BBI;
1992 
1993   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1994 
1995   // Create a new basic block to hold the code for loading the address
1996   // of the jump table, and jumping to it.  Update successor information;
1997   // we will either branch to the default case for the switch, or the jump
1998   // table.
1999   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2000   CurMF->insert(BBI, JumpTableBB);
2001 
2002   addSuccessorWithWeight(CR.CaseBB, Default);
2003   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2004 
2005   // Build a vector of destination BBs, corresponding to each target
2006   // of the jump table. If the value of the jump table slot corresponds to
2007   // a case statement, push the case's BB onto the vector, otherwise, push
2008   // the default BB.
2009   std::vector<MachineBasicBlock*> DestBBs;
2010   APInt TEI = First;
2011   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2012     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2013     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2014 
2015     if (Low.sle(TEI) && TEI.sle(High)) {
2016       DestBBs.push_back(I->BB);
2017       if (TEI==High)
2018         ++I;
2019     } else {
2020       DestBBs.push_back(Default);
2021     }
2022   }
2023 
2024   // Update successor info. Add one edge to each unique successor.
2025   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2026   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2027          E = DestBBs.end(); I != E; ++I) {
2028     if (!SuccsHandled[(*I)->getNumber()]) {
2029       SuccsHandled[(*I)->getNumber()] = true;
2030       addSuccessorWithWeight(JumpTableBB, *I);
2031     }
2032   }
2033 
2034   // Create a jump table index for this jump table.
2035   unsigned JTEncoding = TLI.getJumpTableEncoding();
2036   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2037                        ->createJumpTableIndex(DestBBs);
2038 
2039   // Set the jump table information so that we can codegen it as a second
2040   // MachineBasicBlock
2041   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2042   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2043   if (CR.CaseBB == SwitchBB)
2044     visitJumpTableHeader(JT, JTH, SwitchBB);
2045 
2046   JTCases.push_back(JumpTableBlock(JTH, JT));
2047 
2048   return true;
2049 }
2050 
2051 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2052 /// 2 subtrees.
2053 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2054                                                   CaseRecVector& WorkList,
2055                                                   const Value* SV,
2056                                                   MachineBasicBlock *Default,
2057                                                   MachineBasicBlock *SwitchBB) {
2058   // Get the MachineFunction which holds the current MBB.  This is used when
2059   // inserting any additional MBBs necessary to represent the switch.
2060   MachineFunction *CurMF = FuncInfo.MF;
2061 
2062   // Figure out which block is immediately after the current one.
2063   MachineFunction::iterator BBI = CR.CaseBB;
2064   ++BBI;
2065 
2066   Case& FrontCase = *CR.Range.first;
2067   Case& BackCase  = *(CR.Range.second-1);
2068   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2069 
2070   // Size is the number of Cases represented by this range.
2071   unsigned Size = CR.Range.second - CR.Range.first;
2072 
2073   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2074   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2075   double FMetric = 0;
2076   CaseItr Pivot = CR.Range.first + Size/2;
2077 
2078   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2079   // (heuristically) allow us to emit JumpTable's later.
2080   APInt TSize(First.getBitWidth(), 0);
2081   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2082        I!=E; ++I)
2083     TSize += I->size();
2084 
2085   APInt LSize = FrontCase.size();
2086   APInt RSize = TSize-LSize;
2087   DEBUG(dbgs() << "Selecting best pivot: \n"
2088                << "First: " << First << ", Last: " << Last <<'\n'
2089                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2090   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2091        J!=E; ++I, ++J) {
2092     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2093     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2094     APInt Range = ComputeRange(LEnd, RBegin);
2095     assert((Range - 2ULL).isNonNegative() &&
2096            "Invalid case distance");
2097     // Use volatile double here to avoid excess precision issues on some hosts,
2098     // e.g. that use 80-bit X87 registers.
2099     volatile double LDensity =
2100        (double)LSize.roundToDouble() /
2101                            (LEnd - First + 1ULL).roundToDouble();
2102     volatile double RDensity =
2103       (double)RSize.roundToDouble() /
2104                            (Last - RBegin + 1ULL).roundToDouble();
2105     double Metric = Range.logBase2()*(LDensity+RDensity);
2106     // Should always split in some non-trivial place
2107     DEBUG(dbgs() <<"=>Step\n"
2108                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2109                  << "LDensity: " << LDensity
2110                  << ", RDensity: " << RDensity << '\n'
2111                  << "Metric: " << Metric << '\n');
2112     if (FMetric < Metric) {
2113       Pivot = J;
2114       FMetric = Metric;
2115       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2116     }
2117 
2118     LSize += J->size();
2119     RSize -= J->size();
2120   }
2121   if (areJTsAllowed(TLI)) {
2122     // If our case is dense we *really* should handle it earlier!
2123     assert((FMetric > 0) && "Should handle dense range earlier!");
2124   } else {
2125     Pivot = CR.Range.first + Size/2;
2126   }
2127 
2128   CaseRange LHSR(CR.Range.first, Pivot);
2129   CaseRange RHSR(Pivot, CR.Range.second);
2130   Constant *C = Pivot->Low;
2131   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2132 
2133   // We know that we branch to the LHS if the Value being switched on is
2134   // less than the Pivot value, C.  We use this to optimize our binary
2135   // tree a bit, by recognizing that if SV is greater than or equal to the
2136   // LHS's Case Value, and that Case Value is exactly one less than the
2137   // Pivot's Value, then we can branch directly to the LHS's Target,
2138   // rather than creating a leaf node for it.
2139   if ((LHSR.second - LHSR.first) == 1 &&
2140       LHSR.first->High == CR.GE &&
2141       cast<ConstantInt>(C)->getValue() ==
2142       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2143     TrueBB = LHSR.first->BB;
2144   } else {
2145     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2146     CurMF->insert(BBI, TrueBB);
2147     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2148 
2149     // Put SV in a virtual register to make it available from the new blocks.
2150     ExportFromCurrentBlock(SV);
2151   }
2152 
2153   // Similar to the optimization above, if the Value being switched on is
2154   // known to be less than the Constant CR.LT, and the current Case Value
2155   // is CR.LT - 1, then we can branch directly to the target block for
2156   // the current Case Value, rather than emitting a RHS leaf node for it.
2157   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2158       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2159       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2160     FalseBB = RHSR.first->BB;
2161   } else {
2162     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2163     CurMF->insert(BBI, FalseBB);
2164     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2165 
2166     // Put SV in a virtual register to make it available from the new blocks.
2167     ExportFromCurrentBlock(SV);
2168   }
2169 
2170   // Create a CaseBlock record representing a conditional branch to
2171   // the LHS node if the value being switched on SV is less than C.
2172   // Otherwise, branch to LHS.
2173   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2174 
2175   if (CR.CaseBB == SwitchBB)
2176     visitSwitchCase(CB, SwitchBB);
2177   else
2178     SwitchCases.push_back(CB);
2179 
2180   return true;
2181 }
2182 
2183 /// handleBitTestsSwitchCase - if current case range has few destination and
2184 /// range span less, than machine word bitwidth, encode case range into series
2185 /// of masks and emit bit tests with these masks.
2186 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2187                                                    CaseRecVector& WorkList,
2188                                                    const Value* SV,
2189                                                    MachineBasicBlock* Default,
2190                                                    MachineBasicBlock *SwitchBB){
2191   EVT PTy = TLI.getPointerTy();
2192   unsigned IntPtrBits = PTy.getSizeInBits();
2193 
2194   Case& FrontCase = *CR.Range.first;
2195   Case& BackCase  = *(CR.Range.second-1);
2196 
2197   // Get the MachineFunction which holds the current MBB.  This is used when
2198   // inserting any additional MBBs necessary to represent the switch.
2199   MachineFunction *CurMF = FuncInfo.MF;
2200 
2201   // If target does not have legal shift left, do not emit bit tests at all.
2202   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2203     return false;
2204 
2205   size_t numCmps = 0;
2206   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2207        I!=E; ++I) {
2208     // Single case counts one, case range - two.
2209     numCmps += (I->Low == I->High ? 1 : 2);
2210   }
2211 
2212   // Count unique destinations
2213   SmallSet<MachineBasicBlock*, 4> Dests;
2214   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2215     Dests.insert(I->BB);
2216     if (Dests.size() > 3)
2217       // Don't bother the code below, if there are too much unique destinations
2218       return false;
2219   }
2220   DEBUG(dbgs() << "Total number of unique destinations: "
2221         << Dests.size() << '\n'
2222         << "Total number of comparisons: " << numCmps << '\n');
2223 
2224   // Compute span of values.
2225   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2226   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2227   APInt cmpRange = maxValue - minValue;
2228 
2229   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2230                << "Low bound: " << minValue << '\n'
2231                << "High bound: " << maxValue << '\n');
2232 
2233   if (cmpRange.uge(IntPtrBits) ||
2234       (!(Dests.size() == 1 && numCmps >= 3) &&
2235        !(Dests.size() == 2 && numCmps >= 5) &&
2236        !(Dests.size() >= 3 && numCmps >= 6)))
2237     return false;
2238 
2239   DEBUG(dbgs() << "Emitting bit tests\n");
2240   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2241 
2242   // Optimize the case where all the case values fit in a
2243   // word without having to subtract minValue. In this case,
2244   // we can optimize away the subtraction.
2245   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2246     cmpRange = maxValue;
2247   } else {
2248     lowBound = minValue;
2249   }
2250 
2251   CaseBitsVector CasesBits;
2252   unsigned i, count = 0;
2253 
2254   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2255     MachineBasicBlock* Dest = I->BB;
2256     for (i = 0; i < count; ++i)
2257       if (Dest == CasesBits[i].BB)
2258         break;
2259 
2260     if (i == count) {
2261       assert((count < 3) && "Too much destinations to test!");
2262       CasesBits.push_back(CaseBits(0, Dest, 0));
2263       count++;
2264     }
2265 
2266     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2267     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2268 
2269     uint64_t lo = (lowValue - lowBound).getZExtValue();
2270     uint64_t hi = (highValue - lowBound).getZExtValue();
2271 
2272     for (uint64_t j = lo; j <= hi; j++) {
2273       CasesBits[i].Mask |=  1ULL << j;
2274       CasesBits[i].Bits++;
2275     }
2276 
2277   }
2278   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2279 
2280   BitTestInfo BTC;
2281 
2282   // Figure out which block is immediately after the current one.
2283   MachineFunction::iterator BBI = CR.CaseBB;
2284   ++BBI;
2285 
2286   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2287 
2288   DEBUG(dbgs() << "Cases:\n");
2289   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2290     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2291                  << ", Bits: " << CasesBits[i].Bits
2292                  << ", BB: " << CasesBits[i].BB << '\n');
2293 
2294     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2295     CurMF->insert(BBI, CaseBB);
2296     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2297                               CaseBB,
2298                               CasesBits[i].BB));
2299 
2300     // Put SV in a virtual register to make it available from the new blocks.
2301     ExportFromCurrentBlock(SV);
2302   }
2303 
2304   BitTestBlock BTB(lowBound, cmpRange, SV,
2305                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2306                    CR.CaseBB, Default, BTC);
2307 
2308   if (CR.CaseBB == SwitchBB)
2309     visitBitTestHeader(BTB, SwitchBB);
2310 
2311   BitTestCases.push_back(BTB);
2312 
2313   return true;
2314 }
2315 
2316 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2317 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2318                                        const SwitchInst& SI) {
2319   size_t numCmps = 0;
2320 
2321   // Start with "simple" cases
2322   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2323     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2324     Cases.push_back(Case(SI.getSuccessorValue(i),
2325                          SI.getSuccessorValue(i),
2326                          SMBB));
2327   }
2328   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2329 
2330   // Merge case into clusters
2331   if (Cases.size() >= 2)
2332     // Must recompute end() each iteration because it may be
2333     // invalidated by erase if we hold on to it
2334     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2335          J != Cases.end(); ) {
2336       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2337       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2338       MachineBasicBlock* nextBB = J->BB;
2339       MachineBasicBlock* currentBB = I->BB;
2340 
2341       // If the two neighboring cases go to the same destination, merge them
2342       // into a single case.
2343       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2344         I->High = J->High;
2345         J = Cases.erase(J);
2346       } else {
2347         I = J++;
2348       }
2349     }
2350 
2351   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2352     if (I->Low != I->High)
2353       // A range counts double, since it requires two compares.
2354       ++numCmps;
2355   }
2356 
2357   return numCmps;
2358 }
2359 
2360 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2361                                            MachineBasicBlock *Last) {
2362   // Update JTCases.
2363   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2364     if (JTCases[i].first.HeaderBB == First)
2365       JTCases[i].first.HeaderBB = Last;
2366 
2367   // Update BitTestCases.
2368   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2369     if (BitTestCases[i].Parent == First)
2370       BitTestCases[i].Parent = Last;
2371 }
2372 
2373 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2374   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2375 
2376   // Figure out which block is immediately after the current one.
2377   MachineBasicBlock *NextBlock = 0;
2378   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2379 
2380   // If there is only the default destination, branch to it if it is not the
2381   // next basic block.  Otherwise, just fall through.
2382   if (SI.getNumOperands() == 2) {
2383     // Update machine-CFG edges.
2384 
2385     // If this is not a fall-through branch, emit the branch.
2386     SwitchMBB->addSuccessor(Default);
2387     if (Default != NextBlock)
2388       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2389                               MVT::Other, getControlRoot(),
2390                               DAG.getBasicBlock(Default)));
2391 
2392     return;
2393   }
2394 
2395   // If there are any non-default case statements, create a vector of Cases
2396   // representing each one, and sort the vector so that we can efficiently
2397   // create a binary search tree from them.
2398   CaseVector Cases;
2399   size_t numCmps = Clusterify(Cases, SI);
2400   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2401                << ". Total compares: " << numCmps << '\n');
2402   numCmps = 0;
2403 
2404   // Get the Value to be switched on and default basic blocks, which will be
2405   // inserted into CaseBlock records, representing basic blocks in the binary
2406   // search tree.
2407   const Value *SV = SI.getOperand(0);
2408 
2409   // Push the initial CaseRec onto the worklist
2410   CaseRecVector WorkList;
2411   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2412                              CaseRange(Cases.begin(),Cases.end())));
2413 
2414   while (!WorkList.empty()) {
2415     // Grab a record representing a case range to process off the worklist
2416     CaseRec CR = WorkList.back();
2417     WorkList.pop_back();
2418 
2419     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2420       continue;
2421 
2422     // If the range has few cases (two or less) emit a series of specific
2423     // tests.
2424     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2425       continue;
2426 
2427     // If the switch has more than 5 blocks, and at least 40% dense, and the
2428     // target supports indirect branches, then emit a jump table rather than
2429     // lowering the switch to a binary tree of conditional branches.
2430     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2431       continue;
2432 
2433     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2434     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2435     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2436   }
2437 }
2438 
2439 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2440   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2441 
2442   // Update machine-CFG edges with unique successors.
2443   SmallVector<BasicBlock*, 32> succs;
2444   succs.reserve(I.getNumSuccessors());
2445   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2446     succs.push_back(I.getSuccessor(i));
2447   array_pod_sort(succs.begin(), succs.end());
2448   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2449   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2450     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2451     addSuccessorWithWeight(IndirectBrMBB, Succ);
2452   }
2453 
2454   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2455                           MVT::Other, getControlRoot(),
2456                           getValue(I.getAddress())));
2457 }
2458 
2459 void SelectionDAGBuilder::visitFSub(const User &I) {
2460   // -0.0 - X --> fneg
2461   const Type *Ty = I.getType();
2462   if (isa<Constant>(I.getOperand(0)) &&
2463       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2464     SDValue Op2 = getValue(I.getOperand(1));
2465     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2466                              Op2.getValueType(), Op2));
2467     return;
2468   }
2469 
2470   visitBinary(I, ISD::FSUB);
2471 }
2472 
2473 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2474   SDValue Op1 = getValue(I.getOperand(0));
2475   SDValue Op2 = getValue(I.getOperand(1));
2476   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2477                            Op1.getValueType(), Op1, Op2));
2478 }
2479 
2480 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2481   SDValue Op1 = getValue(I.getOperand(0));
2482   SDValue Op2 = getValue(I.getOperand(1));
2483 
2484   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2485 
2486   // Coerce the shift amount to the right type if we can.
2487   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2488     unsigned ShiftSize = ShiftTy.getSizeInBits();
2489     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2490     DebugLoc DL = getCurDebugLoc();
2491 
2492     // If the operand is smaller than the shift count type, promote it.
2493     if (ShiftSize > Op2Size)
2494       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2495 
2496     // If the operand is larger than the shift count type but the shift
2497     // count type has enough bits to represent any shift value, truncate
2498     // it now. This is a common case and it exposes the truncate to
2499     // optimization early.
2500     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2501       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2502     // Otherwise we'll need to temporarily settle for some other convenient
2503     // type.  Type legalization will make adjustments once the shiftee is split.
2504     else
2505       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2506   }
2507 
2508   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2509                            Op1.getValueType(), Op1, Op2));
2510 }
2511 
2512 void SelectionDAGBuilder::visitICmp(const User &I) {
2513   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2514   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2515     predicate = IC->getPredicate();
2516   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2517     predicate = ICmpInst::Predicate(IC->getPredicate());
2518   SDValue Op1 = getValue(I.getOperand(0));
2519   SDValue Op2 = getValue(I.getOperand(1));
2520   ISD::CondCode Opcode = getICmpCondCode(predicate);
2521 
2522   EVT DestVT = TLI.getValueType(I.getType());
2523   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2524 }
2525 
2526 void SelectionDAGBuilder::visitFCmp(const User &I) {
2527   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2528   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2529     predicate = FC->getPredicate();
2530   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2531     predicate = FCmpInst::Predicate(FC->getPredicate());
2532   SDValue Op1 = getValue(I.getOperand(0));
2533   SDValue Op2 = getValue(I.getOperand(1));
2534   ISD::CondCode Condition = getFCmpCondCode(predicate);
2535   EVT DestVT = TLI.getValueType(I.getType());
2536   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2537 }
2538 
2539 void SelectionDAGBuilder::visitSelect(const User &I) {
2540   SmallVector<EVT, 4> ValueVTs;
2541   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2542   unsigned NumValues = ValueVTs.size();
2543   if (NumValues == 0) return;
2544 
2545   SmallVector<SDValue, 4> Values(NumValues);
2546   SDValue Cond     = getValue(I.getOperand(0));
2547   SDValue TrueVal  = getValue(I.getOperand(1));
2548   SDValue FalseVal = getValue(I.getOperand(2));
2549 
2550   for (unsigned i = 0; i != NumValues; ++i)
2551     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2552                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2553                             Cond,
2554                             SDValue(TrueVal.getNode(),
2555                                     TrueVal.getResNo() + i),
2556                             SDValue(FalseVal.getNode(),
2557                                     FalseVal.getResNo() + i));
2558 
2559   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2560                            DAG.getVTList(&ValueVTs[0], NumValues),
2561                            &Values[0], NumValues));
2562 }
2563 
2564 void SelectionDAGBuilder::visitTrunc(const User &I) {
2565   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2566   SDValue N = getValue(I.getOperand(0));
2567   EVT DestVT = TLI.getValueType(I.getType());
2568   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2569 }
2570 
2571 void SelectionDAGBuilder::visitZExt(const User &I) {
2572   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2573   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2574   SDValue N = getValue(I.getOperand(0));
2575   EVT DestVT = TLI.getValueType(I.getType());
2576   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2577 }
2578 
2579 void SelectionDAGBuilder::visitSExt(const User &I) {
2580   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2581   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2582   SDValue N = getValue(I.getOperand(0));
2583   EVT DestVT = TLI.getValueType(I.getType());
2584   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2585 }
2586 
2587 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2588   // FPTrunc is never a no-op cast, no need to check
2589   SDValue N = getValue(I.getOperand(0));
2590   EVT DestVT = TLI.getValueType(I.getType());
2591   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2592                            DestVT, N, DAG.getIntPtrConstant(0)));
2593 }
2594 
2595 void SelectionDAGBuilder::visitFPExt(const User &I){
2596   // FPTrunc is never a no-op cast, no need to check
2597   SDValue N = getValue(I.getOperand(0));
2598   EVT DestVT = TLI.getValueType(I.getType());
2599   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2600 }
2601 
2602 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2603   // FPToUI is never a no-op cast, no need to check
2604   SDValue N = getValue(I.getOperand(0));
2605   EVT DestVT = TLI.getValueType(I.getType());
2606   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2607 }
2608 
2609 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2610   // FPToSI is never a no-op cast, no need to check
2611   SDValue N = getValue(I.getOperand(0));
2612   EVT DestVT = TLI.getValueType(I.getType());
2613   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2614 }
2615 
2616 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2617   // UIToFP is never a no-op cast, no need to check
2618   SDValue N = getValue(I.getOperand(0));
2619   EVT DestVT = TLI.getValueType(I.getType());
2620   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2621 }
2622 
2623 void SelectionDAGBuilder::visitSIToFP(const User &I){
2624   // SIToFP is never a no-op cast, no need to check
2625   SDValue N = getValue(I.getOperand(0));
2626   EVT DestVT = TLI.getValueType(I.getType());
2627   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2628 }
2629 
2630 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2631   // What to do depends on the size of the integer and the size of the pointer.
2632   // We can either truncate, zero extend, or no-op, accordingly.
2633   SDValue N = getValue(I.getOperand(0));
2634   EVT DestVT = TLI.getValueType(I.getType());
2635   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2636 }
2637 
2638 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2639   // What to do depends on the size of the integer and the size of the pointer.
2640   // We can either truncate, zero extend, or no-op, accordingly.
2641   SDValue N = getValue(I.getOperand(0));
2642   EVT DestVT = TLI.getValueType(I.getType());
2643   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2644 }
2645 
2646 void SelectionDAGBuilder::visitBitCast(const User &I) {
2647   SDValue N = getValue(I.getOperand(0));
2648   EVT DestVT = TLI.getValueType(I.getType());
2649 
2650   // BitCast assures us that source and destination are the same size so this is
2651   // either a BITCAST or a no-op.
2652   if (DestVT != N.getValueType())
2653     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2654                              DestVT, N)); // convert types.
2655   else
2656     setValue(&I, N);            // noop cast.
2657 }
2658 
2659 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2660   SDValue InVec = getValue(I.getOperand(0));
2661   SDValue InVal = getValue(I.getOperand(1));
2662   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2663                               TLI.getPointerTy(),
2664                               getValue(I.getOperand(2)));
2665   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2666                            TLI.getValueType(I.getType()),
2667                            InVec, InVal, InIdx));
2668 }
2669 
2670 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2671   SDValue InVec = getValue(I.getOperand(0));
2672   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2673                               TLI.getPointerTy(),
2674                               getValue(I.getOperand(1)));
2675   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2676                            TLI.getValueType(I.getType()), InVec, InIdx));
2677 }
2678 
2679 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2680 // from SIndx and increasing to the element length (undefs are allowed).
2681 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2682   unsigned MaskNumElts = Mask.size();
2683   for (unsigned i = 0; i != MaskNumElts; ++i)
2684     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2685       return false;
2686   return true;
2687 }
2688 
2689 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2690   SmallVector<int, 8> Mask;
2691   SDValue Src1 = getValue(I.getOperand(0));
2692   SDValue Src2 = getValue(I.getOperand(1));
2693 
2694   // Convert the ConstantVector mask operand into an array of ints, with -1
2695   // representing undef values.
2696   SmallVector<Constant*, 8> MaskElts;
2697   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2698   unsigned MaskNumElts = MaskElts.size();
2699   for (unsigned i = 0; i != MaskNumElts; ++i) {
2700     if (isa<UndefValue>(MaskElts[i]))
2701       Mask.push_back(-1);
2702     else
2703       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2704   }
2705 
2706   EVT VT = TLI.getValueType(I.getType());
2707   EVT SrcVT = Src1.getValueType();
2708   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2709 
2710   if (SrcNumElts == MaskNumElts) {
2711     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2712                                       &Mask[0]));
2713     return;
2714   }
2715 
2716   // Normalize the shuffle vector since mask and vector length don't match.
2717   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2718     // Mask is longer than the source vectors and is a multiple of the source
2719     // vectors.  We can use concatenate vector to make the mask and vectors
2720     // lengths match.
2721     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2722       // The shuffle is concatenating two vectors together.
2723       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2724                                VT, Src1, Src2));
2725       return;
2726     }
2727 
2728     // Pad both vectors with undefs to make them the same length as the mask.
2729     unsigned NumConcat = MaskNumElts / SrcNumElts;
2730     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2731     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2732     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2733 
2734     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2735     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2736     MOps1[0] = Src1;
2737     MOps2[0] = Src2;
2738 
2739     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2740                                                   getCurDebugLoc(), VT,
2741                                                   &MOps1[0], NumConcat);
2742     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2743                                                   getCurDebugLoc(), VT,
2744                                                   &MOps2[0], NumConcat);
2745 
2746     // Readjust mask for new input vector length.
2747     SmallVector<int, 8> MappedOps;
2748     for (unsigned i = 0; i != MaskNumElts; ++i) {
2749       int Idx = Mask[i];
2750       if (Idx < (int)SrcNumElts)
2751         MappedOps.push_back(Idx);
2752       else
2753         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2754     }
2755 
2756     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2757                                       &MappedOps[0]));
2758     return;
2759   }
2760 
2761   if (SrcNumElts > MaskNumElts) {
2762     // Analyze the access pattern of the vector to see if we can extract
2763     // two subvectors and do the shuffle. The analysis is done by calculating
2764     // the range of elements the mask access on both vectors.
2765     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2766     int MaxRange[2] = {-1, -1};
2767 
2768     for (unsigned i = 0; i != MaskNumElts; ++i) {
2769       int Idx = Mask[i];
2770       int Input = 0;
2771       if (Idx < 0)
2772         continue;
2773 
2774       if (Idx >= (int)SrcNumElts) {
2775         Input = 1;
2776         Idx -= SrcNumElts;
2777       }
2778       if (Idx > MaxRange[Input])
2779         MaxRange[Input] = Idx;
2780       if (Idx < MinRange[Input])
2781         MinRange[Input] = Idx;
2782     }
2783 
2784     // Check if the access is smaller than the vector size and can we find
2785     // a reasonable extract index.
2786     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2787                                  // Extract.
2788     int StartIdx[2];  // StartIdx to extract from
2789     for (int Input=0; Input < 2; ++Input) {
2790       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2791         RangeUse[Input] = 0; // Unused
2792         StartIdx[Input] = 0;
2793       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2794         // Fits within range but we should see if we can find a good
2795         // start index that is a multiple of the mask length.
2796         if (MaxRange[Input] < (int)MaskNumElts) {
2797           RangeUse[Input] = 1; // Extract from beginning of the vector
2798           StartIdx[Input] = 0;
2799         } else {
2800           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2801           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2802               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2803             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2804         }
2805       }
2806     }
2807 
2808     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2809       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2810       return;
2811     }
2812     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2813       // Extract appropriate subvector and generate a vector shuffle
2814       for (int Input=0; Input < 2; ++Input) {
2815         SDValue &Src = Input == 0 ? Src1 : Src2;
2816         if (RangeUse[Input] == 0)
2817           Src = DAG.getUNDEF(VT);
2818         else
2819           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2820                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2821       }
2822 
2823       // Calculate new mask.
2824       SmallVector<int, 8> MappedOps;
2825       for (unsigned i = 0; i != MaskNumElts; ++i) {
2826         int Idx = Mask[i];
2827         if (Idx < 0)
2828           MappedOps.push_back(Idx);
2829         else if (Idx < (int)SrcNumElts)
2830           MappedOps.push_back(Idx - StartIdx[0]);
2831         else
2832           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2833       }
2834 
2835       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2836                                         &MappedOps[0]));
2837       return;
2838     }
2839   }
2840 
2841   // We can't use either concat vectors or extract subvectors so fall back to
2842   // replacing the shuffle with extract and build vector.
2843   // to insert and build vector.
2844   EVT EltVT = VT.getVectorElementType();
2845   EVT PtrVT = TLI.getPointerTy();
2846   SmallVector<SDValue,8> Ops;
2847   for (unsigned i = 0; i != MaskNumElts; ++i) {
2848     if (Mask[i] < 0) {
2849       Ops.push_back(DAG.getUNDEF(EltVT));
2850     } else {
2851       int Idx = Mask[i];
2852       SDValue Res;
2853 
2854       if (Idx < (int)SrcNumElts)
2855         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2856                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2857       else
2858         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2859                           EltVT, Src2,
2860                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2861 
2862       Ops.push_back(Res);
2863     }
2864   }
2865 
2866   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2867                            VT, &Ops[0], Ops.size()));
2868 }
2869 
2870 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2871   const Value *Op0 = I.getOperand(0);
2872   const Value *Op1 = I.getOperand(1);
2873   const Type *AggTy = I.getType();
2874   const Type *ValTy = Op1->getType();
2875   bool IntoUndef = isa<UndefValue>(Op0);
2876   bool FromUndef = isa<UndefValue>(Op1);
2877 
2878   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2879 
2880   SmallVector<EVT, 4> AggValueVTs;
2881   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2882   SmallVector<EVT, 4> ValValueVTs;
2883   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2884 
2885   unsigned NumAggValues = AggValueVTs.size();
2886   unsigned NumValValues = ValValueVTs.size();
2887   SmallVector<SDValue, 4> Values(NumAggValues);
2888 
2889   SDValue Agg = getValue(Op0);
2890   unsigned i = 0;
2891   // Copy the beginning value(s) from the original aggregate.
2892   for (; i != LinearIndex; ++i)
2893     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2894                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2895   // Copy values from the inserted value(s).
2896   if (NumValValues) {
2897     SDValue Val = getValue(Op1);
2898     for (; i != LinearIndex + NumValValues; ++i)
2899       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2900                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2901   }
2902   // Copy remaining value(s) from the original aggregate.
2903   for (; i != NumAggValues; ++i)
2904     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2905                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2906 
2907   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2908                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2909                            &Values[0], NumAggValues));
2910 }
2911 
2912 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2913   const Value *Op0 = I.getOperand(0);
2914   const Type *AggTy = Op0->getType();
2915   const Type *ValTy = I.getType();
2916   bool OutOfUndef = isa<UndefValue>(Op0);
2917 
2918   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2919 
2920   SmallVector<EVT, 4> ValValueVTs;
2921   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2922 
2923   unsigned NumValValues = ValValueVTs.size();
2924 
2925   // Ignore a extractvalue that produces an empty object
2926   if (!NumValValues) {
2927     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2928     return;
2929   }
2930 
2931   SmallVector<SDValue, 4> Values(NumValValues);
2932 
2933   SDValue Agg = getValue(Op0);
2934   // Copy out the selected value(s).
2935   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2936     Values[i - LinearIndex] =
2937       OutOfUndef ?
2938         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2939         SDValue(Agg.getNode(), Agg.getResNo() + i);
2940 
2941   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2942                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2943                            &Values[0], NumValValues));
2944 }
2945 
2946 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2947   SDValue N = getValue(I.getOperand(0));
2948   const Type *Ty = I.getOperand(0)->getType();
2949 
2950   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2951        OI != E; ++OI) {
2952     const Value *Idx = *OI;
2953     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2954       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2955       if (Field) {
2956         // N = N + Offset
2957         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2958         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2959                         DAG.getIntPtrConstant(Offset));
2960       }
2961 
2962       Ty = StTy->getElementType(Field);
2963     } else {
2964       Ty = cast<SequentialType>(Ty)->getElementType();
2965 
2966       // If this is a constant subscript, handle it quickly.
2967       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2968         if (CI->isZero()) continue;
2969         uint64_t Offs =
2970             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2971         SDValue OffsVal;
2972         EVT PTy = TLI.getPointerTy();
2973         unsigned PtrBits = PTy.getSizeInBits();
2974         if (PtrBits < 64)
2975           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2976                                 TLI.getPointerTy(),
2977                                 DAG.getConstant(Offs, MVT::i64));
2978         else
2979           OffsVal = DAG.getIntPtrConstant(Offs);
2980 
2981         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2982                         OffsVal);
2983         continue;
2984       }
2985 
2986       // N = N + Idx * ElementSize;
2987       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2988                                 TD->getTypeAllocSize(Ty));
2989       SDValue IdxN = getValue(Idx);
2990 
2991       // If the index is smaller or larger than intptr_t, truncate or extend
2992       // it.
2993       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2994 
2995       // If this is a multiply by a power of two, turn it into a shl
2996       // immediately.  This is a very common case.
2997       if (ElementSize != 1) {
2998         if (ElementSize.isPowerOf2()) {
2999           unsigned Amt = ElementSize.logBase2();
3000           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3001                              N.getValueType(), IdxN,
3002                              DAG.getConstant(Amt, TLI.getPointerTy()));
3003         } else {
3004           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3005           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3006                              N.getValueType(), IdxN, Scale);
3007         }
3008       }
3009 
3010       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3011                       N.getValueType(), N, IdxN);
3012     }
3013   }
3014 
3015   setValue(&I, N);
3016 }
3017 
3018 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3019   // If this is a fixed sized alloca in the entry block of the function,
3020   // allocate it statically on the stack.
3021   if (FuncInfo.StaticAllocaMap.count(&I))
3022     return;   // getValue will auto-populate this.
3023 
3024   const Type *Ty = I.getAllocatedType();
3025   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3026   unsigned Align =
3027     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3028              I.getAlignment());
3029 
3030   SDValue AllocSize = getValue(I.getArraySize());
3031 
3032   EVT IntPtr = TLI.getPointerTy();
3033   if (AllocSize.getValueType() != IntPtr)
3034     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3035 
3036   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3037                           AllocSize,
3038                           DAG.getConstant(TySize, IntPtr));
3039 
3040   // Handle alignment.  If the requested alignment is less than or equal to
3041   // the stack alignment, ignore it.  If the size is greater than or equal to
3042   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3043   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3044   if (Align <= StackAlign)
3045     Align = 0;
3046 
3047   // Round the size of the allocation up to the stack alignment size
3048   // by add SA-1 to the size.
3049   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3050                           AllocSize.getValueType(), AllocSize,
3051                           DAG.getIntPtrConstant(StackAlign-1));
3052 
3053   // Mask out the low bits for alignment purposes.
3054   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3055                           AllocSize.getValueType(), AllocSize,
3056                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3057 
3058   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3059   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3060   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3061                             VTs, Ops, 3);
3062   setValue(&I, DSA);
3063   DAG.setRoot(DSA.getValue(1));
3064 
3065   // Inform the Frame Information that we have just allocated a variable-sized
3066   // object.
3067   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3068 }
3069 
3070 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3071   const Value *SV = I.getOperand(0);
3072   SDValue Ptr = getValue(SV);
3073 
3074   const Type *Ty = I.getType();
3075 
3076   bool isVolatile = I.isVolatile();
3077   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3078   unsigned Alignment = I.getAlignment();
3079   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3080 
3081   SmallVector<EVT, 4> ValueVTs;
3082   SmallVector<uint64_t, 4> Offsets;
3083   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3084   unsigned NumValues = ValueVTs.size();
3085   if (NumValues == 0)
3086     return;
3087 
3088   SDValue Root;
3089   bool ConstantMemory = false;
3090   if (I.isVolatile() || NumValues > MaxParallelChains)
3091     // Serialize volatile loads with other side effects.
3092     Root = getRoot();
3093   else if (AA->pointsToConstantMemory(
3094              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3095     // Do not serialize (non-volatile) loads of constant memory with anything.
3096     Root = DAG.getEntryNode();
3097     ConstantMemory = true;
3098   } else {
3099     // Do not serialize non-volatile loads against each other.
3100     Root = DAG.getRoot();
3101   }
3102 
3103   SmallVector<SDValue, 4> Values(NumValues);
3104   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3105                                           NumValues));
3106   EVT PtrVT = Ptr.getValueType();
3107   unsigned ChainI = 0;
3108   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3109     // Serializing loads here may result in excessive register pressure, and
3110     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3111     // could recover a bit by hoisting nodes upward in the chain by recognizing
3112     // they are side-effect free or do not alias. The optimizer should really
3113     // avoid this case by converting large object/array copies to llvm.memcpy
3114     // (MaxParallelChains should always remain as failsafe).
3115     if (ChainI == MaxParallelChains) {
3116       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3117       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3118                                   MVT::Other, &Chains[0], ChainI);
3119       Root = Chain;
3120       ChainI = 0;
3121     }
3122     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3123                             PtrVT, Ptr,
3124                             DAG.getConstant(Offsets[i], PtrVT));
3125     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3126                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3127                             isNonTemporal, Alignment, TBAAInfo);
3128 
3129     Values[i] = L;
3130     Chains[ChainI] = L.getValue(1);
3131   }
3132 
3133   if (!ConstantMemory) {
3134     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3135                                 MVT::Other, &Chains[0], ChainI);
3136     if (isVolatile)
3137       DAG.setRoot(Chain);
3138     else
3139       PendingLoads.push_back(Chain);
3140   }
3141 
3142   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3143                            DAG.getVTList(&ValueVTs[0], NumValues),
3144                            &Values[0], NumValues));
3145 }
3146 
3147 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3148   const Value *SrcV = I.getOperand(0);
3149   const Value *PtrV = I.getOperand(1);
3150 
3151   SmallVector<EVT, 4> ValueVTs;
3152   SmallVector<uint64_t, 4> Offsets;
3153   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3154   unsigned NumValues = ValueVTs.size();
3155   if (NumValues == 0)
3156     return;
3157 
3158   // Get the lowered operands. Note that we do this after
3159   // checking if NumResults is zero, because with zero results
3160   // the operands won't have values in the map.
3161   SDValue Src = getValue(SrcV);
3162   SDValue Ptr = getValue(PtrV);
3163 
3164   SDValue Root = getRoot();
3165   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3166                                           NumValues));
3167   EVT PtrVT = Ptr.getValueType();
3168   bool isVolatile = I.isVolatile();
3169   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3170   unsigned Alignment = I.getAlignment();
3171   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3172 
3173   unsigned ChainI = 0;
3174   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3175     // See visitLoad comments.
3176     if (ChainI == MaxParallelChains) {
3177       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3178                                   MVT::Other, &Chains[0], ChainI);
3179       Root = Chain;
3180       ChainI = 0;
3181     }
3182     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3183                               DAG.getConstant(Offsets[i], PtrVT));
3184     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3185                               SDValue(Src.getNode(), Src.getResNo() + i),
3186                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3187                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3188     Chains[ChainI] = St;
3189   }
3190 
3191   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3192                                   MVT::Other, &Chains[0], ChainI);
3193   ++SDNodeOrder;
3194   AssignOrderingToNode(StoreNode.getNode());
3195   DAG.setRoot(StoreNode);
3196 }
3197 
3198 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3199 /// node.
3200 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3201                                                unsigned Intrinsic) {
3202   bool HasChain = !I.doesNotAccessMemory();
3203   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3204 
3205   // Build the operand list.
3206   SmallVector<SDValue, 8> Ops;
3207   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3208     if (OnlyLoad) {
3209       // We don't need to serialize loads against other loads.
3210       Ops.push_back(DAG.getRoot());
3211     } else {
3212       Ops.push_back(getRoot());
3213     }
3214   }
3215 
3216   // Info is set by getTgtMemInstrinsic
3217   TargetLowering::IntrinsicInfo Info;
3218   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3219 
3220   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3221   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3222       Info.opc == ISD::INTRINSIC_W_CHAIN)
3223     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3224 
3225   // Add all operands of the call to the operand list.
3226   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3227     SDValue Op = getValue(I.getArgOperand(i));
3228     assert(TLI.isTypeLegal(Op.getValueType()) &&
3229            "Intrinsic uses a non-legal type?");
3230     Ops.push_back(Op);
3231   }
3232 
3233   SmallVector<EVT, 4> ValueVTs;
3234   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3235 #ifndef NDEBUG
3236   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3237     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3238            "Intrinsic uses a non-legal type?");
3239   }
3240 #endif // NDEBUG
3241 
3242   if (HasChain)
3243     ValueVTs.push_back(MVT::Other);
3244 
3245   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3246 
3247   // Create the node.
3248   SDValue Result;
3249   if (IsTgtIntrinsic) {
3250     // This is target intrinsic that touches memory
3251     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3252                                      VTs, &Ops[0], Ops.size(),
3253                                      Info.memVT,
3254                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3255                                      Info.align, Info.vol,
3256                                      Info.readMem, Info.writeMem);
3257   } else if (!HasChain) {
3258     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3259                          VTs, &Ops[0], Ops.size());
3260   } else if (!I.getType()->isVoidTy()) {
3261     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3262                          VTs, &Ops[0], Ops.size());
3263   } else {
3264     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3265                          VTs, &Ops[0], Ops.size());
3266   }
3267 
3268   if (HasChain) {
3269     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3270     if (OnlyLoad)
3271       PendingLoads.push_back(Chain);
3272     else
3273       DAG.setRoot(Chain);
3274   }
3275 
3276   if (!I.getType()->isVoidTy()) {
3277     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3278       EVT VT = TLI.getValueType(PTy);
3279       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3280     }
3281 
3282     setValue(&I, Result);
3283   }
3284 }
3285 
3286 /// GetSignificand - Get the significand and build it into a floating-point
3287 /// number with exponent of 1:
3288 ///
3289 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3290 ///
3291 /// where Op is the hexidecimal representation of floating point value.
3292 static SDValue
3293 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3294   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3295                            DAG.getConstant(0x007fffff, MVT::i32));
3296   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3297                            DAG.getConstant(0x3f800000, MVT::i32));
3298   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3299 }
3300 
3301 /// GetExponent - Get the exponent:
3302 ///
3303 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3304 ///
3305 /// where Op is the hexidecimal representation of floating point value.
3306 static SDValue
3307 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3308             DebugLoc dl) {
3309   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3310                            DAG.getConstant(0x7f800000, MVT::i32));
3311   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3312                            DAG.getConstant(23, TLI.getPointerTy()));
3313   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3314                            DAG.getConstant(127, MVT::i32));
3315   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3316 }
3317 
3318 /// getF32Constant - Get 32-bit floating point constant.
3319 static SDValue
3320 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3321   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3322 }
3323 
3324 /// Inlined utility function to implement binary input atomic intrinsics for
3325 /// visitIntrinsicCall: I is a call instruction
3326 ///                     Op is the associated NodeType for I
3327 const char *
3328 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3329                                            ISD::NodeType Op) {
3330   SDValue Root = getRoot();
3331   SDValue L =
3332     DAG.getAtomic(Op, getCurDebugLoc(),
3333                   getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3334                   Root,
3335                   getValue(I.getArgOperand(0)),
3336                   getValue(I.getArgOperand(1)),
3337                   I.getArgOperand(0));
3338   setValue(&I, L);
3339   DAG.setRoot(L.getValue(1));
3340   return 0;
3341 }
3342 
3343 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3344 const char *
3345 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3346   SDValue Op1 = getValue(I.getArgOperand(0));
3347   SDValue Op2 = getValue(I.getArgOperand(1));
3348 
3349   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3350   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3351   return 0;
3352 }
3353 
3354 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3355 /// limited-precision mode.
3356 void
3357 SelectionDAGBuilder::visitExp(const CallInst &I) {
3358   SDValue result;
3359   DebugLoc dl = getCurDebugLoc();
3360 
3361   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3362       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3363     SDValue Op = getValue(I.getArgOperand(0));
3364 
3365     // Put the exponent in the right bit position for later addition to the
3366     // final result:
3367     //
3368     //   #define LOG2OFe 1.4426950f
3369     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3370     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3371                              getF32Constant(DAG, 0x3fb8aa3b));
3372     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3373 
3374     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3375     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3376     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3377 
3378     //   IntegerPartOfX <<= 23;
3379     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3380                                  DAG.getConstant(23, TLI.getPointerTy()));
3381 
3382     if (LimitFloatPrecision <= 6) {
3383       // For floating-point precision of 6:
3384       //
3385       //   TwoToFractionalPartOfX =
3386       //     0.997535578f +
3387       //       (0.735607626f + 0.252464424f * x) * x;
3388       //
3389       // error 0.0144103317, which is 6 bits
3390       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3391                                getF32Constant(DAG, 0x3e814304));
3392       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3393                                getF32Constant(DAG, 0x3f3c50c8));
3394       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3395       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3396                                getF32Constant(DAG, 0x3f7f5e7e));
3397       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3398 
3399       // Add the exponent into the result in integer domain.
3400       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3401                                TwoToFracPartOfX, IntegerPartOfX);
3402 
3403       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3404     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3405       // For floating-point precision of 12:
3406       //
3407       //   TwoToFractionalPartOfX =
3408       //     0.999892986f +
3409       //       (0.696457318f +
3410       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3411       //
3412       // 0.000107046256 error, which is 13 to 14 bits
3413       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3414                                getF32Constant(DAG, 0x3da235e3));
3415       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3416                                getF32Constant(DAG, 0x3e65b8f3));
3417       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3418       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3419                                getF32Constant(DAG, 0x3f324b07));
3420       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3421       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3422                                getF32Constant(DAG, 0x3f7ff8fd));
3423       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3424 
3425       // Add the exponent into the result in integer domain.
3426       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3427                                TwoToFracPartOfX, IntegerPartOfX);
3428 
3429       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3430     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3431       // For floating-point precision of 18:
3432       //
3433       //   TwoToFractionalPartOfX =
3434       //     0.999999982f +
3435       //       (0.693148872f +
3436       //         (0.240227044f +
3437       //           (0.554906021e-1f +
3438       //             (0.961591928e-2f +
3439       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3440       //
3441       // error 2.47208000*10^(-7), which is better than 18 bits
3442       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3443                                getF32Constant(DAG, 0x3924b03e));
3444       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3445                                getF32Constant(DAG, 0x3ab24b87));
3446       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3447       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3448                                getF32Constant(DAG, 0x3c1d8c17));
3449       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3450       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3451                                getF32Constant(DAG, 0x3d634a1d));
3452       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3453       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3454                                getF32Constant(DAG, 0x3e75fe14));
3455       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3456       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3457                                 getF32Constant(DAG, 0x3f317234));
3458       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3459       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3460                                 getF32Constant(DAG, 0x3f800000));
3461       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3462                                              MVT::i32, t13);
3463 
3464       // Add the exponent into the result in integer domain.
3465       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3466                                 TwoToFracPartOfX, IntegerPartOfX);
3467 
3468       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3469     }
3470   } else {
3471     // No special expansion.
3472     result = DAG.getNode(ISD::FEXP, dl,
3473                          getValue(I.getArgOperand(0)).getValueType(),
3474                          getValue(I.getArgOperand(0)));
3475   }
3476 
3477   setValue(&I, result);
3478 }
3479 
3480 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3481 /// limited-precision mode.
3482 void
3483 SelectionDAGBuilder::visitLog(const CallInst &I) {
3484   SDValue result;
3485   DebugLoc dl = getCurDebugLoc();
3486 
3487   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3488       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3489     SDValue Op = getValue(I.getArgOperand(0));
3490     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3491 
3492     // Scale the exponent by log(2) [0.69314718f].
3493     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3494     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3495                                         getF32Constant(DAG, 0x3f317218));
3496 
3497     // Get the significand and build it into a floating-point number with
3498     // exponent of 1.
3499     SDValue X = GetSignificand(DAG, Op1, dl);
3500 
3501     if (LimitFloatPrecision <= 6) {
3502       // For floating-point precision of 6:
3503       //
3504       //   LogofMantissa =
3505       //     -1.1609546f +
3506       //       (1.4034025f - 0.23903021f * x) * x;
3507       //
3508       // error 0.0034276066, which is better than 8 bits
3509       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3510                                getF32Constant(DAG, 0xbe74c456));
3511       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3512                                getF32Constant(DAG, 0x3fb3a2b1));
3513       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3514       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3515                                           getF32Constant(DAG, 0x3f949a29));
3516 
3517       result = DAG.getNode(ISD::FADD, dl,
3518                            MVT::f32, LogOfExponent, LogOfMantissa);
3519     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3520       // For floating-point precision of 12:
3521       //
3522       //   LogOfMantissa =
3523       //     -1.7417939f +
3524       //       (2.8212026f +
3525       //         (-1.4699568f +
3526       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3527       //
3528       // error 0.000061011436, which is 14 bits
3529       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3530                                getF32Constant(DAG, 0xbd67b6d6));
3531       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3532                                getF32Constant(DAG, 0x3ee4f4b8));
3533       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3534       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3535                                getF32Constant(DAG, 0x3fbc278b));
3536       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3537       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3538                                getF32Constant(DAG, 0x40348e95));
3539       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3540       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3541                                           getF32Constant(DAG, 0x3fdef31a));
3542 
3543       result = DAG.getNode(ISD::FADD, dl,
3544                            MVT::f32, LogOfExponent, LogOfMantissa);
3545     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3546       // For floating-point precision of 18:
3547       //
3548       //   LogOfMantissa =
3549       //     -2.1072184f +
3550       //       (4.2372794f +
3551       //         (-3.7029485f +
3552       //           (2.2781945f +
3553       //             (-0.87823314f +
3554       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3555       //
3556       // error 0.0000023660568, which is better than 18 bits
3557       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3558                                getF32Constant(DAG, 0xbc91e5ac));
3559       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3560                                getF32Constant(DAG, 0x3e4350aa));
3561       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3562       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3563                                getF32Constant(DAG, 0x3f60d3e3));
3564       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3565       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3566                                getF32Constant(DAG, 0x4011cdf0));
3567       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3568       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3569                                getF32Constant(DAG, 0x406cfd1c));
3570       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3571       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3572                                getF32Constant(DAG, 0x408797cb));
3573       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3574       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3575                                           getF32Constant(DAG, 0x4006dcab));
3576 
3577       result = DAG.getNode(ISD::FADD, dl,
3578                            MVT::f32, LogOfExponent, LogOfMantissa);
3579     }
3580   } else {
3581     // No special expansion.
3582     result = DAG.getNode(ISD::FLOG, dl,
3583                          getValue(I.getArgOperand(0)).getValueType(),
3584                          getValue(I.getArgOperand(0)));
3585   }
3586 
3587   setValue(&I, result);
3588 }
3589 
3590 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3591 /// limited-precision mode.
3592 void
3593 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3594   SDValue result;
3595   DebugLoc dl = getCurDebugLoc();
3596 
3597   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3598       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3599     SDValue Op = getValue(I.getArgOperand(0));
3600     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3601 
3602     // Get the exponent.
3603     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3604 
3605     // Get the significand and build it into a floating-point number with
3606     // exponent of 1.
3607     SDValue X = GetSignificand(DAG, Op1, dl);
3608 
3609     // Different possible minimax approximations of significand in
3610     // floating-point for various degrees of accuracy over [1,2].
3611     if (LimitFloatPrecision <= 6) {
3612       // For floating-point precision of 6:
3613       //
3614       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3615       //
3616       // error 0.0049451742, which is more than 7 bits
3617       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3618                                getF32Constant(DAG, 0xbeb08fe0));
3619       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3620                                getF32Constant(DAG, 0x40019463));
3621       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3622       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3623                                            getF32Constant(DAG, 0x3fd6633d));
3624 
3625       result = DAG.getNode(ISD::FADD, dl,
3626                            MVT::f32, LogOfExponent, Log2ofMantissa);
3627     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3628       // For floating-point precision of 12:
3629       //
3630       //   Log2ofMantissa =
3631       //     -2.51285454f +
3632       //       (4.07009056f +
3633       //         (-2.12067489f +
3634       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3635       //
3636       // error 0.0000876136000, which is better than 13 bits
3637       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3638                                getF32Constant(DAG, 0xbda7262e));
3639       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3640                                getF32Constant(DAG, 0x3f25280b));
3641       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3642       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3643                                getF32Constant(DAG, 0x4007b923));
3644       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3645       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3646                                getF32Constant(DAG, 0x40823e2f));
3647       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3648       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3649                                            getF32Constant(DAG, 0x4020d29c));
3650 
3651       result = DAG.getNode(ISD::FADD, dl,
3652                            MVT::f32, LogOfExponent, Log2ofMantissa);
3653     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3654       // For floating-point precision of 18:
3655       //
3656       //   Log2ofMantissa =
3657       //     -3.0400495f +
3658       //       (6.1129976f +
3659       //         (-5.3420409f +
3660       //           (3.2865683f +
3661       //             (-1.2669343f +
3662       //               (0.27515199f -
3663       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3664       //
3665       // error 0.0000018516, which is better than 18 bits
3666       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3667                                getF32Constant(DAG, 0xbcd2769e));
3668       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3669                                getF32Constant(DAG, 0x3e8ce0b9));
3670       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3671       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3672                                getF32Constant(DAG, 0x3fa22ae7));
3673       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3674       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3675                                getF32Constant(DAG, 0x40525723));
3676       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3677       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3678                                getF32Constant(DAG, 0x40aaf200));
3679       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3680       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3681                                getF32Constant(DAG, 0x40c39dad));
3682       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3683       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3684                                            getF32Constant(DAG, 0x4042902c));
3685 
3686       result = DAG.getNode(ISD::FADD, dl,
3687                            MVT::f32, LogOfExponent, Log2ofMantissa);
3688     }
3689   } else {
3690     // No special expansion.
3691     result = DAG.getNode(ISD::FLOG2, dl,
3692                          getValue(I.getArgOperand(0)).getValueType(),
3693                          getValue(I.getArgOperand(0)));
3694   }
3695 
3696   setValue(&I, result);
3697 }
3698 
3699 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3700 /// limited-precision mode.
3701 void
3702 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3703   SDValue result;
3704   DebugLoc dl = getCurDebugLoc();
3705 
3706   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3707       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3708     SDValue Op = getValue(I.getArgOperand(0));
3709     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3710 
3711     // Scale the exponent by log10(2) [0.30102999f].
3712     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3713     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3714                                         getF32Constant(DAG, 0x3e9a209a));
3715 
3716     // Get the significand and build it into a floating-point number with
3717     // exponent of 1.
3718     SDValue X = GetSignificand(DAG, Op1, dl);
3719 
3720     if (LimitFloatPrecision <= 6) {
3721       // For floating-point precision of 6:
3722       //
3723       //   Log10ofMantissa =
3724       //     -0.50419619f +
3725       //       (0.60948995f - 0.10380950f * x) * x;
3726       //
3727       // error 0.0014886165, which is 6 bits
3728       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3729                                getF32Constant(DAG, 0xbdd49a13));
3730       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3731                                getF32Constant(DAG, 0x3f1c0789));
3732       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3733       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3734                                             getF32Constant(DAG, 0x3f011300));
3735 
3736       result = DAG.getNode(ISD::FADD, dl,
3737                            MVT::f32, LogOfExponent, Log10ofMantissa);
3738     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3739       // For floating-point precision of 12:
3740       //
3741       //   Log10ofMantissa =
3742       //     -0.64831180f +
3743       //       (0.91751397f +
3744       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3745       //
3746       // error 0.00019228036, which is better than 12 bits
3747       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3748                                getF32Constant(DAG, 0x3d431f31));
3749       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3750                                getF32Constant(DAG, 0x3ea21fb2));
3751       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3752       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3753                                getF32Constant(DAG, 0x3f6ae232));
3754       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3755       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3756                                             getF32Constant(DAG, 0x3f25f7c3));
3757 
3758       result = DAG.getNode(ISD::FADD, dl,
3759                            MVT::f32, LogOfExponent, Log10ofMantissa);
3760     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3761       // For floating-point precision of 18:
3762       //
3763       //   Log10ofMantissa =
3764       //     -0.84299375f +
3765       //       (1.5327582f +
3766       //         (-1.0688956f +
3767       //           (0.49102474f +
3768       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3769       //
3770       // error 0.0000037995730, which is better than 18 bits
3771       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3772                                getF32Constant(DAG, 0x3c5d51ce));
3773       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3774                                getF32Constant(DAG, 0x3e00685a));
3775       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3776       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3777                                getF32Constant(DAG, 0x3efb6798));
3778       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3779       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3780                                getF32Constant(DAG, 0x3f88d192));
3781       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3782       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3783                                getF32Constant(DAG, 0x3fc4316c));
3784       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3785       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3786                                             getF32Constant(DAG, 0x3f57ce70));
3787 
3788       result = DAG.getNode(ISD::FADD, dl,
3789                            MVT::f32, LogOfExponent, Log10ofMantissa);
3790     }
3791   } else {
3792     // No special expansion.
3793     result = DAG.getNode(ISD::FLOG10, dl,
3794                          getValue(I.getArgOperand(0)).getValueType(),
3795                          getValue(I.getArgOperand(0)));
3796   }
3797 
3798   setValue(&I, result);
3799 }
3800 
3801 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3802 /// limited-precision mode.
3803 void
3804 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3805   SDValue result;
3806   DebugLoc dl = getCurDebugLoc();
3807 
3808   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3809       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3810     SDValue Op = getValue(I.getArgOperand(0));
3811 
3812     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3813 
3814     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3815     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3816     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3817 
3818     //   IntegerPartOfX <<= 23;
3819     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3820                                  DAG.getConstant(23, TLI.getPointerTy()));
3821 
3822     if (LimitFloatPrecision <= 6) {
3823       // For floating-point precision of 6:
3824       //
3825       //   TwoToFractionalPartOfX =
3826       //     0.997535578f +
3827       //       (0.735607626f + 0.252464424f * x) * x;
3828       //
3829       // error 0.0144103317, which is 6 bits
3830       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3831                                getF32Constant(DAG, 0x3e814304));
3832       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3833                                getF32Constant(DAG, 0x3f3c50c8));
3834       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3835       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3836                                getF32Constant(DAG, 0x3f7f5e7e));
3837       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3838       SDValue TwoToFractionalPartOfX =
3839         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3840 
3841       result = DAG.getNode(ISD::BITCAST, dl,
3842                            MVT::f32, TwoToFractionalPartOfX);
3843     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3844       // For floating-point precision of 12:
3845       //
3846       //   TwoToFractionalPartOfX =
3847       //     0.999892986f +
3848       //       (0.696457318f +
3849       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3850       //
3851       // error 0.000107046256, which is 13 to 14 bits
3852       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3853                                getF32Constant(DAG, 0x3da235e3));
3854       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3855                                getF32Constant(DAG, 0x3e65b8f3));
3856       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3857       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3858                                getF32Constant(DAG, 0x3f324b07));
3859       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3860       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3861                                getF32Constant(DAG, 0x3f7ff8fd));
3862       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3863       SDValue TwoToFractionalPartOfX =
3864         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3865 
3866       result = DAG.getNode(ISD::BITCAST, dl,
3867                            MVT::f32, TwoToFractionalPartOfX);
3868     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3869       // For floating-point precision of 18:
3870       //
3871       //   TwoToFractionalPartOfX =
3872       //     0.999999982f +
3873       //       (0.693148872f +
3874       //         (0.240227044f +
3875       //           (0.554906021e-1f +
3876       //             (0.961591928e-2f +
3877       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3878       // error 2.47208000*10^(-7), which is better than 18 bits
3879       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3880                                getF32Constant(DAG, 0x3924b03e));
3881       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3882                                getF32Constant(DAG, 0x3ab24b87));
3883       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3884       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3885                                getF32Constant(DAG, 0x3c1d8c17));
3886       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3887       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3888                                getF32Constant(DAG, 0x3d634a1d));
3889       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3890       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3891                                getF32Constant(DAG, 0x3e75fe14));
3892       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3893       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3894                                 getF32Constant(DAG, 0x3f317234));
3895       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3896       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3897                                 getF32Constant(DAG, 0x3f800000));
3898       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3899       SDValue TwoToFractionalPartOfX =
3900         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3901 
3902       result = DAG.getNode(ISD::BITCAST, dl,
3903                            MVT::f32, TwoToFractionalPartOfX);
3904     }
3905   } else {
3906     // No special expansion.
3907     result = DAG.getNode(ISD::FEXP2, dl,
3908                          getValue(I.getArgOperand(0)).getValueType(),
3909                          getValue(I.getArgOperand(0)));
3910   }
3911 
3912   setValue(&I, result);
3913 }
3914 
3915 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3916 /// limited-precision mode with x == 10.0f.
3917 void
3918 SelectionDAGBuilder::visitPow(const CallInst &I) {
3919   SDValue result;
3920   const Value *Val = I.getArgOperand(0);
3921   DebugLoc dl = getCurDebugLoc();
3922   bool IsExp10 = false;
3923 
3924   if (getValue(Val).getValueType() == MVT::f32 &&
3925       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3926       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3927     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3928       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3929         APFloat Ten(10.0f);
3930         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3931       }
3932     }
3933   }
3934 
3935   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3936     SDValue Op = getValue(I.getArgOperand(1));
3937 
3938     // Put the exponent in the right bit position for later addition to the
3939     // final result:
3940     //
3941     //   #define LOG2OF10 3.3219281f
3942     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3943     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3944                              getF32Constant(DAG, 0x40549a78));
3945     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3946 
3947     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3948     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3949     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3950 
3951     //   IntegerPartOfX <<= 23;
3952     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3953                                  DAG.getConstant(23, TLI.getPointerTy()));
3954 
3955     if (LimitFloatPrecision <= 6) {
3956       // For floating-point precision of 6:
3957       //
3958       //   twoToFractionalPartOfX =
3959       //     0.997535578f +
3960       //       (0.735607626f + 0.252464424f * x) * x;
3961       //
3962       // error 0.0144103317, which is 6 bits
3963       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3964                                getF32Constant(DAG, 0x3e814304));
3965       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3966                                getF32Constant(DAG, 0x3f3c50c8));
3967       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3968       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3969                                getF32Constant(DAG, 0x3f7f5e7e));
3970       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3971       SDValue TwoToFractionalPartOfX =
3972         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3973 
3974       result = DAG.getNode(ISD::BITCAST, dl,
3975                            MVT::f32, TwoToFractionalPartOfX);
3976     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3977       // For floating-point precision of 12:
3978       //
3979       //   TwoToFractionalPartOfX =
3980       //     0.999892986f +
3981       //       (0.696457318f +
3982       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3983       //
3984       // error 0.000107046256, which is 13 to 14 bits
3985       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3986                                getF32Constant(DAG, 0x3da235e3));
3987       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3988                                getF32Constant(DAG, 0x3e65b8f3));
3989       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3990       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3991                                getF32Constant(DAG, 0x3f324b07));
3992       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3993       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3994                                getF32Constant(DAG, 0x3f7ff8fd));
3995       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3996       SDValue TwoToFractionalPartOfX =
3997         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3998 
3999       result = DAG.getNode(ISD::BITCAST, dl,
4000                            MVT::f32, TwoToFractionalPartOfX);
4001     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4002       // For floating-point precision of 18:
4003       //
4004       //   TwoToFractionalPartOfX =
4005       //     0.999999982f +
4006       //       (0.693148872f +
4007       //         (0.240227044f +
4008       //           (0.554906021e-1f +
4009       //             (0.961591928e-2f +
4010       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4011       // error 2.47208000*10^(-7), which is better than 18 bits
4012       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4013                                getF32Constant(DAG, 0x3924b03e));
4014       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4015                                getF32Constant(DAG, 0x3ab24b87));
4016       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4017       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4018                                getF32Constant(DAG, 0x3c1d8c17));
4019       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4020       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4021                                getF32Constant(DAG, 0x3d634a1d));
4022       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4023       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4024                                getF32Constant(DAG, 0x3e75fe14));
4025       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4026       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4027                                 getF32Constant(DAG, 0x3f317234));
4028       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4029       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4030                                 getF32Constant(DAG, 0x3f800000));
4031       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4032       SDValue TwoToFractionalPartOfX =
4033         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4034 
4035       result = DAG.getNode(ISD::BITCAST, dl,
4036                            MVT::f32, TwoToFractionalPartOfX);
4037     }
4038   } else {
4039     // No special expansion.
4040     result = DAG.getNode(ISD::FPOW, dl,
4041                          getValue(I.getArgOperand(0)).getValueType(),
4042                          getValue(I.getArgOperand(0)),
4043                          getValue(I.getArgOperand(1)));
4044   }
4045 
4046   setValue(&I, result);
4047 }
4048 
4049 
4050 /// ExpandPowI - Expand a llvm.powi intrinsic.
4051 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4052                           SelectionDAG &DAG) {
4053   // If RHS is a constant, we can expand this out to a multiplication tree,
4054   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4055   // optimizing for size, we only want to do this if the expansion would produce
4056   // a small number of multiplies, otherwise we do the full expansion.
4057   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4058     // Get the exponent as a positive value.
4059     unsigned Val = RHSC->getSExtValue();
4060     if ((int)Val < 0) Val = -Val;
4061 
4062     // powi(x, 0) -> 1.0
4063     if (Val == 0)
4064       return DAG.getConstantFP(1.0, LHS.getValueType());
4065 
4066     const Function *F = DAG.getMachineFunction().getFunction();
4067     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4068         // If optimizing for size, don't insert too many multiplies.  This
4069         // inserts up to 5 multiplies.
4070         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4071       // We use the simple binary decomposition method to generate the multiply
4072       // sequence.  There are more optimal ways to do this (for example,
4073       // powi(x,15) generates one more multiply than it should), but this has
4074       // the benefit of being both really simple and much better than a libcall.
4075       SDValue Res;  // Logically starts equal to 1.0
4076       SDValue CurSquare = LHS;
4077       while (Val) {
4078         if (Val & 1) {
4079           if (Res.getNode())
4080             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4081           else
4082             Res = CurSquare;  // 1.0*CurSquare.
4083         }
4084 
4085         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4086                                 CurSquare, CurSquare);
4087         Val >>= 1;
4088       }
4089 
4090       // If the original was negative, invert the result, producing 1/(x*x*x).
4091       if (RHSC->getSExtValue() < 0)
4092         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4093                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4094       return Res;
4095     }
4096   }
4097 
4098   // Otherwise, expand to a libcall.
4099   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4100 }
4101 
4102 // getTruncatedArgReg - Find underlying register used for an truncated
4103 // argument.
4104 static unsigned getTruncatedArgReg(const SDValue &N) {
4105   if (N.getOpcode() != ISD::TRUNCATE)
4106     return 0;
4107 
4108   const SDValue &Ext = N.getOperand(0);
4109   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4110     const SDValue &CFR = Ext.getOperand(0);
4111     if (CFR.getOpcode() == ISD::CopyFromReg)
4112       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4113     else
4114       if (CFR.getOpcode() == ISD::TRUNCATE)
4115         return getTruncatedArgReg(CFR);
4116   }
4117   return 0;
4118 }
4119 
4120 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4121 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4122 /// At the end of instruction selection, they will be inserted to the entry BB.
4123 bool
4124 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4125                                               int64_t Offset,
4126                                               const SDValue &N) {
4127   const Argument *Arg = dyn_cast<Argument>(V);
4128   if (!Arg)
4129     return false;
4130 
4131   MachineFunction &MF = DAG.getMachineFunction();
4132   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4133   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4134 
4135   // Ignore inlined function arguments here.
4136   DIVariable DV(Variable);
4137   if (DV.isInlinedFnArgument(MF.getFunction()))
4138     return false;
4139 
4140   unsigned Reg = 0;
4141   if (Arg->hasByValAttr()) {
4142     // Byval arguments' frame index is recorded during argument lowering.
4143     // Use this info directly.
4144     Reg = TRI->getFrameRegister(MF);
4145     Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4146     // If byval argument ofset is not recorded then ignore this.
4147     if (!Offset)
4148       Reg = 0;
4149   }
4150 
4151   if (N.getNode()) {
4152     if (N.getOpcode() == ISD::CopyFromReg)
4153       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4154     else
4155       Reg = getTruncatedArgReg(N);
4156     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4157       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4158       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4159       if (PR)
4160         Reg = PR;
4161     }
4162   }
4163 
4164   if (!Reg) {
4165     // Check if ValueMap has reg number.
4166     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4167     if (VMI != FuncInfo.ValueMap.end())
4168       Reg = VMI->second;
4169   }
4170 
4171   if (!Reg && N.getNode()) {
4172     // Check if frame index is available.
4173     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4174       if (FrameIndexSDNode *FINode =
4175           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4176         Reg = TRI->getFrameRegister(MF);
4177         Offset = FINode->getIndex();
4178       }
4179   }
4180 
4181   if (!Reg)
4182     return false;
4183 
4184   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4185                                     TII->get(TargetOpcode::DBG_VALUE))
4186     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4187   FuncInfo.ArgDbgValues.push_back(&*MIB);
4188   return true;
4189 }
4190 
4191 // VisualStudio defines setjmp as _setjmp
4192 #if defined(_MSC_VER) && defined(setjmp) && \
4193                          !defined(setjmp_undefined_for_msvc)
4194 #  pragma push_macro("setjmp")
4195 #  undef setjmp
4196 #  define setjmp_undefined_for_msvc
4197 #endif
4198 
4199 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4200 /// we want to emit this as a call to a named external function, return the name
4201 /// otherwise lower it and return null.
4202 const char *
4203 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4204   DebugLoc dl = getCurDebugLoc();
4205   SDValue Res;
4206 
4207   switch (Intrinsic) {
4208   default:
4209     // By default, turn this into a target intrinsic node.
4210     visitTargetIntrinsic(I, Intrinsic);
4211     return 0;
4212   case Intrinsic::vastart:  visitVAStart(I); return 0;
4213   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4214   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4215   case Intrinsic::returnaddress:
4216     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4217                              getValue(I.getArgOperand(0))));
4218     return 0;
4219   case Intrinsic::frameaddress:
4220     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4221                              getValue(I.getArgOperand(0))));
4222     return 0;
4223   case Intrinsic::setjmp:
4224     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4225   case Intrinsic::longjmp:
4226     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4227   case Intrinsic::memcpy: {
4228     // Assert for address < 256 since we support only user defined address
4229     // spaces.
4230     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4231            < 256 &&
4232            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4233            < 256 &&
4234            "Unknown address space");
4235     SDValue Op1 = getValue(I.getArgOperand(0));
4236     SDValue Op2 = getValue(I.getArgOperand(1));
4237     SDValue Op3 = getValue(I.getArgOperand(2));
4238     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4239     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4240     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4241                               MachinePointerInfo(I.getArgOperand(0)),
4242                               MachinePointerInfo(I.getArgOperand(1))));
4243     return 0;
4244   }
4245   case Intrinsic::memset: {
4246     // Assert for address < 256 since we support only user defined address
4247     // spaces.
4248     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4249            < 256 &&
4250            "Unknown address space");
4251     SDValue Op1 = getValue(I.getArgOperand(0));
4252     SDValue Op2 = getValue(I.getArgOperand(1));
4253     SDValue Op3 = getValue(I.getArgOperand(2));
4254     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4255     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4256     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4257                               MachinePointerInfo(I.getArgOperand(0))));
4258     return 0;
4259   }
4260   case Intrinsic::memmove: {
4261     // Assert for address < 256 since we support only user defined address
4262     // spaces.
4263     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4264            < 256 &&
4265            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4266            < 256 &&
4267            "Unknown address space");
4268     SDValue Op1 = getValue(I.getArgOperand(0));
4269     SDValue Op2 = getValue(I.getArgOperand(1));
4270     SDValue Op3 = getValue(I.getArgOperand(2));
4271     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4272     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4273     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4274                                MachinePointerInfo(I.getArgOperand(0)),
4275                                MachinePointerInfo(I.getArgOperand(1))));
4276     return 0;
4277   }
4278   case Intrinsic::dbg_declare: {
4279     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4280     MDNode *Variable = DI.getVariable();
4281     const Value *Address = DI.getAddress();
4282     if (!Address || !DIVariable(DI.getVariable()).Verify())
4283       return 0;
4284 
4285     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4286     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4287     // absolute, but not relative, values are different depending on whether
4288     // debug info exists.
4289     ++SDNodeOrder;
4290 
4291     // Check if address has undef value.
4292     if (isa<UndefValue>(Address) ||
4293         (Address->use_empty() && !isa<Argument>(Address))) {
4294       DEBUG(dbgs() << "Dropping debug info for " << DI);
4295       return 0;
4296     }
4297 
4298     SDValue &N = NodeMap[Address];
4299     if (!N.getNode() && isa<Argument>(Address))
4300       // Check unused arguments map.
4301       N = UnusedArgNodeMap[Address];
4302     SDDbgValue *SDV;
4303     if (N.getNode()) {
4304       // Parameters are handled specially.
4305       bool isParameter =
4306         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4307       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4308         Address = BCI->getOperand(0);
4309       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4310 
4311       if (isParameter && !AI) {
4312         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4313         if (FINode)
4314           // Byval parameter.  We have a frame index at this point.
4315           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4316                                 0, dl, SDNodeOrder);
4317         else {
4318           // Address is an argument, so try to emit its dbg value using
4319           // virtual register info from the FuncInfo.ValueMap.
4320           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4321           return 0;
4322         }
4323       } else if (AI)
4324         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4325                               0, dl, SDNodeOrder);
4326       else {
4327         // Can't do anything with other non-AI cases yet.
4328         DEBUG(dbgs() << "Dropping debug info for " << DI);
4329         return 0;
4330       }
4331       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4332     } else {
4333       // If Address is an argument then try to emit its dbg value using
4334       // virtual register info from the FuncInfo.ValueMap.
4335       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4336         // If variable is pinned by a alloca in dominating bb then
4337         // use StaticAllocaMap.
4338         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4339           if (AI->getParent() != DI.getParent()) {
4340             DenseMap<const AllocaInst*, int>::iterator SI =
4341               FuncInfo.StaticAllocaMap.find(AI);
4342             if (SI != FuncInfo.StaticAllocaMap.end()) {
4343               SDV = DAG.getDbgValue(Variable, SI->second,
4344                                     0, dl, SDNodeOrder);
4345               DAG.AddDbgValue(SDV, 0, false);
4346               return 0;
4347             }
4348           }
4349         }
4350         DEBUG(dbgs() << "Dropping debug info for " << DI);
4351       }
4352     }
4353     return 0;
4354   }
4355   case Intrinsic::dbg_value: {
4356     const DbgValueInst &DI = cast<DbgValueInst>(I);
4357     if (!DIVariable(DI.getVariable()).Verify())
4358       return 0;
4359 
4360     MDNode *Variable = DI.getVariable();
4361     uint64_t Offset = DI.getOffset();
4362     const Value *V = DI.getValue();
4363     if (!V)
4364       return 0;
4365 
4366     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4367     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4368     // absolute, but not relative, values are different depending on whether
4369     // debug info exists.
4370     ++SDNodeOrder;
4371     SDDbgValue *SDV;
4372     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4373       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4374       DAG.AddDbgValue(SDV, 0, false);
4375     } else {
4376       // Do not use getValue() in here; we don't want to generate code at
4377       // this point if it hasn't been done yet.
4378       SDValue N = NodeMap[V];
4379       if (!N.getNode() && isa<Argument>(V))
4380         // Check unused arguments map.
4381         N = UnusedArgNodeMap[V];
4382       if (N.getNode()) {
4383         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4384           SDV = DAG.getDbgValue(Variable, N.getNode(),
4385                                 N.getResNo(), Offset, dl, SDNodeOrder);
4386           DAG.AddDbgValue(SDV, N.getNode(), false);
4387         }
4388       } else if (!V->use_empty() ) {
4389         // Do not call getValue(V) yet, as we don't want to generate code.
4390         // Remember it for later.
4391         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4392         DanglingDebugInfoMap[V] = DDI;
4393       } else {
4394         // We may expand this to cover more cases.  One case where we have no
4395         // data available is an unreferenced parameter.
4396         DEBUG(dbgs() << "Dropping debug info for " << DI);
4397       }
4398     }
4399 
4400     // Build a debug info table entry.
4401     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4402       V = BCI->getOperand(0);
4403     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4404     // Don't handle byval struct arguments or VLAs, for example.
4405     if (!AI)
4406       return 0;
4407     DenseMap<const AllocaInst*, int>::iterator SI =
4408       FuncInfo.StaticAllocaMap.find(AI);
4409     if (SI == FuncInfo.StaticAllocaMap.end())
4410       return 0; // VLAs.
4411     int FI = SI->second;
4412 
4413     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4414     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4415       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4416     return 0;
4417   }
4418   case Intrinsic::eh_exception: {
4419     // Insert the EXCEPTIONADDR instruction.
4420     assert(FuncInfo.MBB->isLandingPad() &&
4421            "Call to eh.exception not in landing pad!");
4422     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4423     SDValue Ops[1];
4424     Ops[0] = DAG.getRoot();
4425     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4426     setValue(&I, Op);
4427     DAG.setRoot(Op.getValue(1));
4428     return 0;
4429   }
4430 
4431   case Intrinsic::eh_selector: {
4432     MachineBasicBlock *CallMBB = FuncInfo.MBB;
4433     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4434     if (CallMBB->isLandingPad())
4435       AddCatchInfo(I, &MMI, CallMBB);
4436     else {
4437 #ifndef NDEBUG
4438       FuncInfo.CatchInfoLost.insert(&I);
4439 #endif
4440       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4441       unsigned Reg = TLI.getExceptionSelectorRegister();
4442       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4443     }
4444 
4445     // Insert the EHSELECTION instruction.
4446     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4447     SDValue Ops[2];
4448     Ops[0] = getValue(I.getArgOperand(0));
4449     Ops[1] = getRoot();
4450     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4451     DAG.setRoot(Op.getValue(1));
4452     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4453     return 0;
4454   }
4455 
4456   case Intrinsic::eh_typeid_for: {
4457     // Find the type id for the given typeinfo.
4458     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4459     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4460     Res = DAG.getConstant(TypeID, MVT::i32);
4461     setValue(&I, Res);
4462     return 0;
4463   }
4464 
4465   case Intrinsic::eh_return_i32:
4466   case Intrinsic::eh_return_i64:
4467     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4468     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4469                             MVT::Other,
4470                             getControlRoot(),
4471                             getValue(I.getArgOperand(0)),
4472                             getValue(I.getArgOperand(1))));
4473     return 0;
4474   case Intrinsic::eh_unwind_init:
4475     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4476     return 0;
4477   case Intrinsic::eh_dwarf_cfa: {
4478     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4479                                         TLI.getPointerTy());
4480     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4481                                  TLI.getPointerTy(),
4482                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4483                                              TLI.getPointerTy()),
4484                                  CfaArg);
4485     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4486                              TLI.getPointerTy(),
4487                              DAG.getConstant(0, TLI.getPointerTy()));
4488     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4489                              FA, Offset));
4490     return 0;
4491   }
4492   case Intrinsic::eh_sjlj_callsite: {
4493     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4494     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4495     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4496     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4497 
4498     MMI.setCurrentCallSite(CI->getZExtValue());
4499     return 0;
4500   }
4501   case Intrinsic::eh_sjlj_setjmp: {
4502     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4503                              getValue(I.getArgOperand(0))));
4504     return 0;
4505   }
4506   case Intrinsic::eh_sjlj_longjmp: {
4507     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4508                             getRoot(), getValue(I.getArgOperand(0))));
4509     return 0;
4510   }
4511   case Intrinsic::eh_sjlj_dispatch_setup: {
4512     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4513                             getRoot(), getValue(I.getArgOperand(0))));
4514     return 0;
4515   }
4516 
4517   case Intrinsic::x86_mmx_pslli_w:
4518   case Intrinsic::x86_mmx_pslli_d:
4519   case Intrinsic::x86_mmx_pslli_q:
4520   case Intrinsic::x86_mmx_psrli_w:
4521   case Intrinsic::x86_mmx_psrli_d:
4522   case Intrinsic::x86_mmx_psrli_q:
4523   case Intrinsic::x86_mmx_psrai_w:
4524   case Intrinsic::x86_mmx_psrai_d: {
4525     SDValue ShAmt = getValue(I.getArgOperand(1));
4526     if (isa<ConstantSDNode>(ShAmt)) {
4527       visitTargetIntrinsic(I, Intrinsic);
4528       return 0;
4529     }
4530     unsigned NewIntrinsic = 0;
4531     EVT ShAmtVT = MVT::v2i32;
4532     switch (Intrinsic) {
4533     case Intrinsic::x86_mmx_pslli_w:
4534       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4535       break;
4536     case Intrinsic::x86_mmx_pslli_d:
4537       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4538       break;
4539     case Intrinsic::x86_mmx_pslli_q:
4540       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4541       break;
4542     case Intrinsic::x86_mmx_psrli_w:
4543       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4544       break;
4545     case Intrinsic::x86_mmx_psrli_d:
4546       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4547       break;
4548     case Intrinsic::x86_mmx_psrli_q:
4549       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4550       break;
4551     case Intrinsic::x86_mmx_psrai_w:
4552       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4553       break;
4554     case Intrinsic::x86_mmx_psrai_d:
4555       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4556       break;
4557     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4558     }
4559 
4560     // The vector shift intrinsics with scalars uses 32b shift amounts but
4561     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4562     // to be zero.
4563     // We must do this early because v2i32 is not a legal type.
4564     DebugLoc dl = getCurDebugLoc();
4565     SDValue ShOps[2];
4566     ShOps[0] = ShAmt;
4567     ShOps[1] = DAG.getConstant(0, MVT::i32);
4568     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4569     EVT DestVT = TLI.getValueType(I.getType());
4570     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4571     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4572                        DAG.getConstant(NewIntrinsic, MVT::i32),
4573                        getValue(I.getArgOperand(0)), ShAmt);
4574     setValue(&I, Res);
4575     return 0;
4576   }
4577   case Intrinsic::convertff:
4578   case Intrinsic::convertfsi:
4579   case Intrinsic::convertfui:
4580   case Intrinsic::convertsif:
4581   case Intrinsic::convertuif:
4582   case Intrinsic::convertss:
4583   case Intrinsic::convertsu:
4584   case Intrinsic::convertus:
4585   case Intrinsic::convertuu: {
4586     ISD::CvtCode Code = ISD::CVT_INVALID;
4587     switch (Intrinsic) {
4588     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4589     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4590     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4591     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4592     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4593     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4594     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4595     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4596     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4597     }
4598     EVT DestVT = TLI.getValueType(I.getType());
4599     const Value *Op1 = I.getArgOperand(0);
4600     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4601                                DAG.getValueType(DestVT),
4602                                DAG.getValueType(getValue(Op1).getValueType()),
4603                                getValue(I.getArgOperand(1)),
4604                                getValue(I.getArgOperand(2)),
4605                                Code);
4606     setValue(&I, Res);
4607     return 0;
4608   }
4609   case Intrinsic::sqrt:
4610     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4611                              getValue(I.getArgOperand(0)).getValueType(),
4612                              getValue(I.getArgOperand(0))));
4613     return 0;
4614   case Intrinsic::powi:
4615     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4616                             getValue(I.getArgOperand(1)), DAG));
4617     return 0;
4618   case Intrinsic::sin:
4619     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4620                              getValue(I.getArgOperand(0)).getValueType(),
4621                              getValue(I.getArgOperand(0))));
4622     return 0;
4623   case Intrinsic::cos:
4624     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4625                              getValue(I.getArgOperand(0)).getValueType(),
4626                              getValue(I.getArgOperand(0))));
4627     return 0;
4628   case Intrinsic::log:
4629     visitLog(I);
4630     return 0;
4631   case Intrinsic::log2:
4632     visitLog2(I);
4633     return 0;
4634   case Intrinsic::log10:
4635     visitLog10(I);
4636     return 0;
4637   case Intrinsic::exp:
4638     visitExp(I);
4639     return 0;
4640   case Intrinsic::exp2:
4641     visitExp2(I);
4642     return 0;
4643   case Intrinsic::pow:
4644     visitPow(I);
4645     return 0;
4646   case Intrinsic::convert_to_fp16:
4647     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4648                              MVT::i16, getValue(I.getArgOperand(0))));
4649     return 0;
4650   case Intrinsic::convert_from_fp16:
4651     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4652                              MVT::f32, getValue(I.getArgOperand(0))));
4653     return 0;
4654   case Intrinsic::pcmarker: {
4655     SDValue Tmp = getValue(I.getArgOperand(0));
4656     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4657     return 0;
4658   }
4659   case Intrinsic::readcyclecounter: {
4660     SDValue Op = getRoot();
4661     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4662                       DAG.getVTList(MVT::i64, MVT::Other),
4663                       &Op, 1);
4664     setValue(&I, Res);
4665     DAG.setRoot(Res.getValue(1));
4666     return 0;
4667   }
4668   case Intrinsic::bswap:
4669     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4670                              getValue(I.getArgOperand(0)).getValueType(),
4671                              getValue(I.getArgOperand(0))));
4672     return 0;
4673   case Intrinsic::cttz: {
4674     SDValue Arg = getValue(I.getArgOperand(0));
4675     EVT Ty = Arg.getValueType();
4676     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4677     return 0;
4678   }
4679   case Intrinsic::ctlz: {
4680     SDValue Arg = getValue(I.getArgOperand(0));
4681     EVT Ty = Arg.getValueType();
4682     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4683     return 0;
4684   }
4685   case Intrinsic::ctpop: {
4686     SDValue Arg = getValue(I.getArgOperand(0));
4687     EVT Ty = Arg.getValueType();
4688     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4689     return 0;
4690   }
4691   case Intrinsic::stacksave: {
4692     SDValue Op = getRoot();
4693     Res = DAG.getNode(ISD::STACKSAVE, dl,
4694                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4695     setValue(&I, Res);
4696     DAG.setRoot(Res.getValue(1));
4697     return 0;
4698   }
4699   case Intrinsic::stackrestore: {
4700     Res = getValue(I.getArgOperand(0));
4701     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4702     return 0;
4703   }
4704   case Intrinsic::stackprotector: {
4705     // Emit code into the DAG to store the stack guard onto the stack.
4706     MachineFunction &MF = DAG.getMachineFunction();
4707     MachineFrameInfo *MFI = MF.getFrameInfo();
4708     EVT PtrTy = TLI.getPointerTy();
4709 
4710     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4711     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4712 
4713     int FI = FuncInfo.StaticAllocaMap[Slot];
4714     MFI->setStackProtectorIndex(FI);
4715 
4716     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4717 
4718     // Store the stack protector onto the stack.
4719     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4720                        MachinePointerInfo::getFixedStack(FI),
4721                        true, false, 0);
4722     setValue(&I, Res);
4723     DAG.setRoot(Res);
4724     return 0;
4725   }
4726   case Intrinsic::objectsize: {
4727     // If we don't know by now, we're never going to know.
4728     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4729 
4730     assert(CI && "Non-constant type in __builtin_object_size?");
4731 
4732     SDValue Arg = getValue(I.getCalledValue());
4733     EVT Ty = Arg.getValueType();
4734 
4735     if (CI->isZero())
4736       Res = DAG.getConstant(-1ULL, Ty);
4737     else
4738       Res = DAG.getConstant(0, Ty);
4739 
4740     setValue(&I, Res);
4741     return 0;
4742   }
4743   case Intrinsic::var_annotation:
4744     // Discard annotate attributes
4745     return 0;
4746 
4747   case Intrinsic::init_trampoline: {
4748     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4749 
4750     SDValue Ops[6];
4751     Ops[0] = getRoot();
4752     Ops[1] = getValue(I.getArgOperand(0));
4753     Ops[2] = getValue(I.getArgOperand(1));
4754     Ops[3] = getValue(I.getArgOperand(2));
4755     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4756     Ops[5] = DAG.getSrcValue(F);
4757 
4758     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4759                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4760                       Ops, 6);
4761 
4762     setValue(&I, Res);
4763     DAG.setRoot(Res.getValue(1));
4764     return 0;
4765   }
4766   case Intrinsic::gcroot:
4767     if (GFI) {
4768       const Value *Alloca = I.getArgOperand(0);
4769       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4770 
4771       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4772       GFI->addStackRoot(FI->getIndex(), TypeMap);
4773     }
4774     return 0;
4775   case Intrinsic::gcread:
4776   case Intrinsic::gcwrite:
4777     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4778     return 0;
4779   case Intrinsic::flt_rounds:
4780     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4781     return 0;
4782   case Intrinsic::trap: {
4783     StringRef TrapFuncName = getTrapFunctionName();
4784     if (TrapFuncName.empty()) {
4785       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4786       return 0;
4787     }
4788     TargetLowering::ArgListTy Args;
4789     std::pair<SDValue, SDValue> Result =
4790       TLI.LowerCallTo(getRoot(), I.getType(),
4791                  false, false, false, false, 0, CallingConv::C,
4792                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4793                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4794                  Args, DAG, getCurDebugLoc());
4795     DAG.setRoot(Result.second);
4796     return 0;
4797   }
4798   case Intrinsic::uadd_with_overflow:
4799     return implVisitAluOverflow(I, ISD::UADDO);
4800   case Intrinsic::sadd_with_overflow:
4801     return implVisitAluOverflow(I, ISD::SADDO);
4802   case Intrinsic::usub_with_overflow:
4803     return implVisitAluOverflow(I, ISD::USUBO);
4804   case Intrinsic::ssub_with_overflow:
4805     return implVisitAluOverflow(I, ISD::SSUBO);
4806   case Intrinsic::umul_with_overflow:
4807     return implVisitAluOverflow(I, ISD::UMULO);
4808   case Intrinsic::smul_with_overflow:
4809     return implVisitAluOverflow(I, ISD::SMULO);
4810 
4811   case Intrinsic::prefetch: {
4812     SDValue Ops[5];
4813     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4814     Ops[0] = getRoot();
4815     Ops[1] = getValue(I.getArgOperand(0));
4816     Ops[2] = getValue(I.getArgOperand(1));
4817     Ops[3] = getValue(I.getArgOperand(2));
4818     Ops[4] = getValue(I.getArgOperand(3));
4819     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4820                                         DAG.getVTList(MVT::Other),
4821                                         &Ops[0], 5,
4822                                         EVT::getIntegerVT(*Context, 8),
4823                                         MachinePointerInfo(I.getArgOperand(0)),
4824                                         0, /* align */
4825                                         false, /* volatile */
4826                                         rw==0, /* read */
4827                                         rw==1)); /* write */
4828     return 0;
4829   }
4830   case Intrinsic::memory_barrier: {
4831     SDValue Ops[6];
4832     Ops[0] = getRoot();
4833     for (int x = 1; x < 6; ++x)
4834       Ops[x] = getValue(I.getArgOperand(x - 1));
4835 
4836     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4837     return 0;
4838   }
4839   case Intrinsic::atomic_cmp_swap: {
4840     SDValue Root = getRoot();
4841     SDValue L =
4842       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4843                     getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4844                     Root,
4845                     getValue(I.getArgOperand(0)),
4846                     getValue(I.getArgOperand(1)),
4847                     getValue(I.getArgOperand(2)),
4848                     MachinePointerInfo(I.getArgOperand(0)));
4849     setValue(&I, L);
4850     DAG.setRoot(L.getValue(1));
4851     return 0;
4852   }
4853   case Intrinsic::atomic_load_add:
4854     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4855   case Intrinsic::atomic_load_sub:
4856     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4857   case Intrinsic::atomic_load_or:
4858     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4859   case Intrinsic::atomic_load_xor:
4860     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4861   case Intrinsic::atomic_load_and:
4862     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4863   case Intrinsic::atomic_load_nand:
4864     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4865   case Intrinsic::atomic_load_max:
4866     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4867   case Intrinsic::atomic_load_min:
4868     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4869   case Intrinsic::atomic_load_umin:
4870     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4871   case Intrinsic::atomic_load_umax:
4872     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4873   case Intrinsic::atomic_swap:
4874     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4875 
4876   case Intrinsic::invariant_start:
4877   case Intrinsic::lifetime_start:
4878     // Discard region information.
4879     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4880     return 0;
4881   case Intrinsic::invariant_end:
4882   case Intrinsic::lifetime_end:
4883     // Discard region information.
4884     return 0;
4885   }
4886 }
4887 
4888 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4889                                       bool isTailCall,
4890                                       MachineBasicBlock *LandingPad) {
4891   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4892   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4893   const Type *RetTy = FTy->getReturnType();
4894   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4895   MCSymbol *BeginLabel = 0;
4896 
4897   TargetLowering::ArgListTy Args;
4898   TargetLowering::ArgListEntry Entry;
4899   Args.reserve(CS.arg_size());
4900 
4901   // Check whether the function can return without sret-demotion.
4902   SmallVector<ISD::OutputArg, 4> Outs;
4903   SmallVector<uint64_t, 4> Offsets;
4904   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4905                 Outs, TLI, &Offsets);
4906 
4907   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4908 					   DAG.getMachineFunction(),
4909 					   FTy->isVarArg(), Outs,
4910 					   FTy->getContext());
4911 
4912   SDValue DemoteStackSlot;
4913   int DemoteStackIdx = -100;
4914 
4915   if (!CanLowerReturn) {
4916     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4917                       FTy->getReturnType());
4918     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4919                       FTy->getReturnType());
4920     MachineFunction &MF = DAG.getMachineFunction();
4921     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4922     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4923 
4924     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4925     Entry.Node = DemoteStackSlot;
4926     Entry.Ty = StackSlotPtrType;
4927     Entry.isSExt = false;
4928     Entry.isZExt = false;
4929     Entry.isInReg = false;
4930     Entry.isSRet = true;
4931     Entry.isNest = false;
4932     Entry.isByVal = false;
4933     Entry.Alignment = Align;
4934     Args.push_back(Entry);
4935     RetTy = Type::getVoidTy(FTy->getContext());
4936   }
4937 
4938   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4939        i != e; ++i) {
4940     const Value *V = *i;
4941 
4942     // Skip empty types
4943     if (V->getType()->isEmptyTy())
4944       continue;
4945 
4946     SDValue ArgNode = getValue(V);
4947     Entry.Node = ArgNode; Entry.Ty = V->getType();
4948 
4949     unsigned attrInd = i - CS.arg_begin() + 1;
4950     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4951     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4952     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4953     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4954     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4955     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4956     Entry.Alignment = CS.getParamAlignment(attrInd);
4957     Args.push_back(Entry);
4958   }
4959 
4960   if (LandingPad) {
4961     // Insert a label before the invoke call to mark the try range.  This can be
4962     // used to detect deletion of the invoke via the MachineModuleInfo.
4963     BeginLabel = MMI.getContext().CreateTempSymbol();
4964 
4965     // For SjLj, keep track of which landing pads go with which invokes
4966     // so as to maintain the ordering of pads in the LSDA.
4967     unsigned CallSiteIndex = MMI.getCurrentCallSite();
4968     if (CallSiteIndex) {
4969       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4970       // Now that the call site is handled, stop tracking it.
4971       MMI.setCurrentCallSite(0);
4972     }
4973 
4974     // Both PendingLoads and PendingExports must be flushed here;
4975     // this call might not return.
4976     (void)getRoot();
4977     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4978   }
4979 
4980   // Check if target-independent constraints permit a tail call here.
4981   // Target-dependent constraints are checked within TLI.LowerCallTo.
4982   if (isTailCall &&
4983       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4984     isTailCall = false;
4985 
4986   // If there's a possibility that fast-isel has already selected some amount
4987   // of the current basic block, don't emit a tail call.
4988   if (isTailCall && EnableFastISel)
4989     isTailCall = false;
4990 
4991   std::pair<SDValue,SDValue> Result =
4992     TLI.LowerCallTo(getRoot(), RetTy,
4993                     CS.paramHasAttr(0, Attribute::SExt),
4994                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4995                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4996                     CS.getCallingConv(),
4997                     isTailCall,
4998                     !CS.getInstruction()->use_empty(),
4999                     Callee, Args, DAG, getCurDebugLoc());
5000   assert((isTailCall || Result.second.getNode()) &&
5001          "Non-null chain expected with non-tail call!");
5002   assert((Result.second.getNode() || !Result.first.getNode()) &&
5003          "Null value expected with tail call!");
5004   if (Result.first.getNode()) {
5005     setValue(CS.getInstruction(), Result.first);
5006   } else if (!CanLowerReturn && Result.second.getNode()) {
5007     // The instruction result is the result of loading from the
5008     // hidden sret parameter.
5009     SmallVector<EVT, 1> PVTs;
5010     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5011 
5012     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5013     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5014     EVT PtrVT = PVTs[0];
5015     unsigned NumValues = Outs.size();
5016     SmallVector<SDValue, 4> Values(NumValues);
5017     SmallVector<SDValue, 4> Chains(NumValues);
5018 
5019     for (unsigned i = 0; i < NumValues; ++i) {
5020       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5021                                 DemoteStackSlot,
5022                                 DAG.getConstant(Offsets[i], PtrVT));
5023       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5024                               Add,
5025                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5026                               false, false, 1);
5027       Values[i] = L;
5028       Chains[i] = L.getValue(1);
5029     }
5030 
5031     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5032                                 MVT::Other, &Chains[0], NumValues);
5033     PendingLoads.push_back(Chain);
5034 
5035     // Collect the legal value parts into potentially illegal values
5036     // that correspond to the original function's return values.
5037     SmallVector<EVT, 4> RetTys;
5038     RetTy = FTy->getReturnType();
5039     ComputeValueVTs(TLI, RetTy, RetTys);
5040     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5041     SmallVector<SDValue, 4> ReturnValues;
5042     unsigned CurReg = 0;
5043     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5044       EVT VT = RetTys[I];
5045       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5046       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5047 
5048       SDValue ReturnValue =
5049         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5050                          RegisterVT, VT, AssertOp);
5051       ReturnValues.push_back(ReturnValue);
5052       CurReg += NumRegs;
5053     }
5054 
5055     setValue(CS.getInstruction(),
5056              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5057                          DAG.getVTList(&RetTys[0], RetTys.size()),
5058                          &ReturnValues[0], ReturnValues.size()));
5059   }
5060 
5061   // Assign order to nodes here. If the call does not produce a result, it won't
5062   // be mapped to a SDNode and visit() will not assign it an order number.
5063   if (!Result.second.getNode()) {
5064     // As a special case, a null chain means that a tail call has been emitted and
5065     // the DAG root is already updated.
5066     HasTailCall = true;
5067     ++SDNodeOrder;
5068     AssignOrderingToNode(DAG.getRoot().getNode());
5069   } else {
5070     DAG.setRoot(Result.second);
5071     ++SDNodeOrder;
5072     AssignOrderingToNode(Result.second.getNode());
5073   }
5074 
5075   if (LandingPad) {
5076     // Insert a label at the end of the invoke call to mark the try range.  This
5077     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5078     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5079     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5080 
5081     // Inform MachineModuleInfo of range.
5082     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5083   }
5084 }
5085 
5086 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5087 /// value is equal or not-equal to zero.
5088 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5089   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5090        UI != E; ++UI) {
5091     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5092       if (IC->isEquality())
5093         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5094           if (C->isNullValue())
5095             continue;
5096     // Unknown instruction.
5097     return false;
5098   }
5099   return true;
5100 }
5101 
5102 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5103                              const Type *LoadTy,
5104                              SelectionDAGBuilder &Builder) {
5105 
5106   // Check to see if this load can be trivially constant folded, e.g. if the
5107   // input is from a string literal.
5108   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5109     // Cast pointer to the type we really want to load.
5110     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5111                                          PointerType::getUnqual(LoadTy));
5112 
5113     if (const Constant *LoadCst =
5114           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5115                                        Builder.TD))
5116       return Builder.getValue(LoadCst);
5117   }
5118 
5119   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5120   // still constant memory, the input chain can be the entry node.
5121   SDValue Root;
5122   bool ConstantMemory = false;
5123 
5124   // Do not serialize (non-volatile) loads of constant memory with anything.
5125   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5126     Root = Builder.DAG.getEntryNode();
5127     ConstantMemory = true;
5128   } else {
5129     // Do not serialize non-volatile loads against each other.
5130     Root = Builder.DAG.getRoot();
5131   }
5132 
5133   SDValue Ptr = Builder.getValue(PtrVal);
5134   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5135                                         Ptr, MachinePointerInfo(PtrVal),
5136                                         false /*volatile*/,
5137                                         false /*nontemporal*/, 1 /* align=1 */);
5138 
5139   if (!ConstantMemory)
5140     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5141   return LoadVal;
5142 }
5143 
5144 
5145 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5146 /// If so, return true and lower it, otherwise return false and it will be
5147 /// lowered like a normal call.
5148 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5149   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5150   if (I.getNumArgOperands() != 3)
5151     return false;
5152 
5153   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5154   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5155       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5156       !I.getType()->isIntegerTy())
5157     return false;
5158 
5159   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5160 
5161   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5162   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5163   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5164     bool ActuallyDoIt = true;
5165     MVT LoadVT;
5166     const Type *LoadTy;
5167     switch (Size->getZExtValue()) {
5168     default:
5169       LoadVT = MVT::Other;
5170       LoadTy = 0;
5171       ActuallyDoIt = false;
5172       break;
5173     case 2:
5174       LoadVT = MVT::i16;
5175       LoadTy = Type::getInt16Ty(Size->getContext());
5176       break;
5177     case 4:
5178       LoadVT = MVT::i32;
5179       LoadTy = Type::getInt32Ty(Size->getContext());
5180       break;
5181     case 8:
5182       LoadVT = MVT::i64;
5183       LoadTy = Type::getInt64Ty(Size->getContext());
5184       break;
5185         /*
5186     case 16:
5187       LoadVT = MVT::v4i32;
5188       LoadTy = Type::getInt32Ty(Size->getContext());
5189       LoadTy = VectorType::get(LoadTy, 4);
5190       break;
5191          */
5192     }
5193 
5194     // This turns into unaligned loads.  We only do this if the target natively
5195     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5196     // we'll only produce a small number of byte loads.
5197 
5198     // Require that we can find a legal MVT, and only do this if the target
5199     // supports unaligned loads of that type.  Expanding into byte loads would
5200     // bloat the code.
5201     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5202       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5203       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5204       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5205         ActuallyDoIt = false;
5206     }
5207 
5208     if (ActuallyDoIt) {
5209       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5210       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5211 
5212       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5213                                  ISD::SETNE);
5214       EVT CallVT = TLI.getValueType(I.getType(), true);
5215       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5216       return true;
5217     }
5218   }
5219 
5220 
5221   return false;
5222 }
5223 
5224 
5225 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5226   // Handle inline assembly differently.
5227   if (isa<InlineAsm>(I.getCalledValue())) {
5228     visitInlineAsm(&I);
5229     return;
5230   }
5231 
5232   // See if any floating point values are being passed to this function. This is
5233   // used to emit an undefined reference to fltused on Windows.
5234   const FunctionType *FT =
5235     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5236   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5237   if (FT->isVarArg() &&
5238       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5239     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5240       const Type* T = I.getArgOperand(i)->getType();
5241       for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5242            i != e; ++i) {
5243         if (!i->isFloatingPointTy()) continue;
5244         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5245         break;
5246       }
5247     }
5248   }
5249 
5250   const char *RenameFn = 0;
5251   if (Function *F = I.getCalledFunction()) {
5252     if (F->isDeclaration()) {
5253       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5254         if (unsigned IID = II->getIntrinsicID(F)) {
5255           RenameFn = visitIntrinsicCall(I, IID);
5256           if (!RenameFn)
5257             return;
5258         }
5259       }
5260       if (unsigned IID = F->getIntrinsicID()) {
5261         RenameFn = visitIntrinsicCall(I, IID);
5262         if (!RenameFn)
5263           return;
5264       }
5265     }
5266 
5267     // Check for well-known libc/libm calls.  If the function is internal, it
5268     // can't be a library call.
5269     if (!F->hasLocalLinkage() && F->hasName()) {
5270       StringRef Name = F->getName();
5271       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5272         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5273             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5274             I.getType() == I.getArgOperand(0)->getType() &&
5275             I.getType() == I.getArgOperand(1)->getType()) {
5276           SDValue LHS = getValue(I.getArgOperand(0));
5277           SDValue RHS = getValue(I.getArgOperand(1));
5278           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5279                                    LHS.getValueType(), LHS, RHS));
5280           return;
5281         }
5282       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5283         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5284             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5285             I.getType() == I.getArgOperand(0)->getType()) {
5286           SDValue Tmp = getValue(I.getArgOperand(0));
5287           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5288                                    Tmp.getValueType(), Tmp));
5289           return;
5290         }
5291       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5292         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5293             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5294             I.getType() == I.getArgOperand(0)->getType() &&
5295             I.onlyReadsMemory()) {
5296           SDValue Tmp = getValue(I.getArgOperand(0));
5297           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5298                                    Tmp.getValueType(), Tmp));
5299           return;
5300         }
5301       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5302         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5303             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5304             I.getType() == I.getArgOperand(0)->getType() &&
5305             I.onlyReadsMemory()) {
5306           SDValue Tmp = getValue(I.getArgOperand(0));
5307           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5308                                    Tmp.getValueType(), Tmp));
5309           return;
5310         }
5311       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5312         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5313             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5314             I.getType() == I.getArgOperand(0)->getType() &&
5315             I.onlyReadsMemory()) {
5316           SDValue Tmp = getValue(I.getArgOperand(0));
5317           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5318                                    Tmp.getValueType(), Tmp));
5319           return;
5320         }
5321       } else if (Name == "memcmp") {
5322         if (visitMemCmpCall(I))
5323           return;
5324       }
5325     }
5326   }
5327 
5328   SDValue Callee;
5329   if (!RenameFn)
5330     Callee = getValue(I.getCalledValue());
5331   else
5332     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5333 
5334   // Check if we can potentially perform a tail call. More detailed checking is
5335   // be done within LowerCallTo, after more information about the call is known.
5336   LowerCallTo(&I, Callee, I.isTailCall());
5337 }
5338 
5339 namespace {
5340 
5341 /// AsmOperandInfo - This contains information for each constraint that we are
5342 /// lowering.
5343 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5344 public:
5345   /// CallOperand - If this is the result output operand or a clobber
5346   /// this is null, otherwise it is the incoming operand to the CallInst.
5347   /// This gets modified as the asm is processed.
5348   SDValue CallOperand;
5349 
5350   /// AssignedRegs - If this is a register or register class operand, this
5351   /// contains the set of register corresponding to the operand.
5352   RegsForValue AssignedRegs;
5353 
5354   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5355     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5356   }
5357 
5358   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5359   /// busy in OutputRegs/InputRegs.
5360   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5361                          std::set<unsigned> &OutputRegs,
5362                          std::set<unsigned> &InputRegs,
5363                          const TargetRegisterInfo &TRI) const {
5364     if (isOutReg) {
5365       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5366         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5367     }
5368     if (isInReg) {
5369       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5370         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5371     }
5372   }
5373 
5374   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5375   /// corresponds to.  If there is no Value* for this operand, it returns
5376   /// MVT::Other.
5377   EVT getCallOperandValEVT(LLVMContext &Context,
5378                            const TargetLowering &TLI,
5379                            const TargetData *TD) const {
5380     if (CallOperandVal == 0) return MVT::Other;
5381 
5382     if (isa<BasicBlock>(CallOperandVal))
5383       return TLI.getPointerTy();
5384 
5385     const llvm::Type *OpTy = CallOperandVal->getType();
5386 
5387     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5388     // If this is an indirect operand, the operand is a pointer to the
5389     // accessed type.
5390     if (isIndirect) {
5391       const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5392       if (!PtrTy)
5393         report_fatal_error("Indirect operand for inline asm not a pointer!");
5394       OpTy = PtrTy->getElementType();
5395     }
5396 
5397     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5398     if (const StructType *STy = dyn_cast<StructType>(OpTy))
5399       if (STy->getNumElements() == 1)
5400         OpTy = STy->getElementType(0);
5401 
5402     // If OpTy is not a single value, it may be a struct/union that we
5403     // can tile with integers.
5404     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5405       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5406       switch (BitSize) {
5407       default: break;
5408       case 1:
5409       case 8:
5410       case 16:
5411       case 32:
5412       case 64:
5413       case 128:
5414         OpTy = IntegerType::get(Context, BitSize);
5415         break;
5416       }
5417     }
5418 
5419     return TLI.getValueType(OpTy, true);
5420   }
5421 
5422 private:
5423   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5424   /// specified set.
5425   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5426                                 const TargetRegisterInfo &TRI) {
5427     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5428     Regs.insert(Reg);
5429     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5430       for (; *Aliases; ++Aliases)
5431         Regs.insert(*Aliases);
5432   }
5433 };
5434 
5435 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5436 
5437 } // end anonymous namespace
5438 
5439 /// isAllocatableRegister - If the specified register is safe to allocate,
5440 /// i.e. it isn't a stack pointer or some other special register, return the
5441 /// register class for the register.  Otherwise, return null.
5442 static const TargetRegisterClass *
5443 isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5444                       const TargetLowering &TLI,
5445                       const TargetRegisterInfo *TRI) {
5446   EVT FoundVT = MVT::Other;
5447   const TargetRegisterClass *FoundRC = 0;
5448   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5449        E = TRI->regclass_end(); RCI != E; ++RCI) {
5450     EVT ThisVT = MVT::Other;
5451 
5452     const TargetRegisterClass *RC = *RCI;
5453     if (!RC->isAllocatable())
5454       continue;
5455     // If none of the value types for this register class are valid, we
5456     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5457     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5458          I != E; ++I) {
5459       if (TLI.isTypeLegal(*I)) {
5460         // If we have already found this register in a different register class,
5461         // choose the one with the largest VT specified.  For example, on
5462         // PowerPC, we favor f64 register classes over f32.
5463         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5464           ThisVT = *I;
5465           break;
5466         }
5467       }
5468     }
5469 
5470     if (ThisVT == MVT::Other) continue;
5471 
5472     // NOTE: This isn't ideal.  In particular, this might allocate the
5473     // frame pointer in functions that need it (due to them not being taken
5474     // out of allocation, because a variable sized allocation hasn't been seen
5475     // yet).  This is a slight code pessimization, but should still work.
5476     ArrayRef<unsigned> RawOrder = RC->getRawAllocationOrder(MF);
5477     if (std::find(RawOrder.begin(), RawOrder.end(), Reg) != RawOrder.end()) {
5478       // We found a matching register class.  Keep looking at others in case
5479       // we find one with larger registers that this physreg is also in.
5480       FoundRC = RC;
5481       FoundVT = ThisVT;
5482       break;
5483     }
5484   }
5485   return FoundRC;
5486 }
5487 
5488 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5489 /// specified operand.  We prefer to assign virtual registers, to allow the
5490 /// register allocator to handle the assignment process.  However, if the asm
5491 /// uses features that we can't model on machineinstrs, we have SDISel do the
5492 /// allocation.  This produces generally horrible, but correct, code.
5493 ///
5494 ///   OpInfo describes the operand.
5495 ///   Input and OutputRegs are the set of already allocated physical registers.
5496 ///
5497 static void GetRegistersForValue(SelectionDAG &DAG,
5498                                  const TargetLowering &TLI,
5499                                  DebugLoc DL,
5500                                  SDISelAsmOperandInfo &OpInfo,
5501                                  std::set<unsigned> &OutputRegs,
5502                                  std::set<unsigned> &InputRegs) {
5503   LLVMContext &Context = *DAG.getContext();
5504 
5505   // Compute whether this value requires an input register, an output register,
5506   // or both.
5507   bool isOutReg = false;
5508   bool isInReg = false;
5509   switch (OpInfo.Type) {
5510   case InlineAsm::isOutput:
5511     isOutReg = true;
5512 
5513     // If there is an input constraint that matches this, we need to reserve
5514     // the input register so no other inputs allocate to it.
5515     isInReg = OpInfo.hasMatchingInput();
5516     break;
5517   case InlineAsm::isInput:
5518     isInReg = true;
5519     isOutReg = false;
5520     break;
5521   case InlineAsm::isClobber:
5522     isOutReg = true;
5523     isInReg = true;
5524     break;
5525   }
5526 
5527 
5528   MachineFunction &MF = DAG.getMachineFunction();
5529   SmallVector<unsigned, 4> Regs;
5530 
5531   // If this is a constraint for a single physreg, or a constraint for a
5532   // register class, find it.
5533   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5534     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5535                                      OpInfo.ConstraintVT);
5536 
5537   unsigned NumRegs = 1;
5538   if (OpInfo.ConstraintVT != MVT::Other) {
5539     // If this is a FP input in an integer register (or visa versa) insert a bit
5540     // cast of the input value.  More generally, handle any case where the input
5541     // value disagrees with the register class we plan to stick this in.
5542     if (OpInfo.Type == InlineAsm::isInput &&
5543         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5544       // Try to convert to the first EVT that the reg class contains.  If the
5545       // types are identical size, use a bitcast to convert (e.g. two differing
5546       // vector types).
5547       EVT RegVT = *PhysReg.second->vt_begin();
5548       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5549         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5550                                          RegVT, OpInfo.CallOperand);
5551         OpInfo.ConstraintVT = RegVT;
5552       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5553         // If the input is a FP value and we want it in FP registers, do a
5554         // bitcast to the corresponding integer type.  This turns an f64 value
5555         // into i64, which can be passed with two i32 values on a 32-bit
5556         // machine.
5557         RegVT = EVT::getIntegerVT(Context,
5558                                   OpInfo.ConstraintVT.getSizeInBits());
5559         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5560                                          RegVT, OpInfo.CallOperand);
5561         OpInfo.ConstraintVT = RegVT;
5562       }
5563     }
5564 
5565     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5566   }
5567 
5568   EVT RegVT;
5569   EVT ValueVT = OpInfo.ConstraintVT;
5570 
5571   // If this is a constraint for a specific physical register, like {r17},
5572   // assign it now.
5573   if (unsigned AssignedReg = PhysReg.first) {
5574     const TargetRegisterClass *RC = PhysReg.second;
5575     if (OpInfo.ConstraintVT == MVT::Other)
5576       ValueVT = *RC->vt_begin();
5577 
5578     // Get the actual register value type.  This is important, because the user
5579     // may have asked for (e.g.) the AX register in i32 type.  We need to
5580     // remember that AX is actually i16 to get the right extension.
5581     RegVT = *RC->vt_begin();
5582 
5583     // This is a explicit reference to a physical register.
5584     Regs.push_back(AssignedReg);
5585 
5586     // If this is an expanded reference, add the rest of the regs to Regs.
5587     if (NumRegs != 1) {
5588       TargetRegisterClass::iterator I = RC->begin();
5589       for (; *I != AssignedReg; ++I)
5590         assert(I != RC->end() && "Didn't find reg!");
5591 
5592       // Already added the first reg.
5593       --NumRegs; ++I;
5594       for (; NumRegs; --NumRegs, ++I) {
5595         assert(I != RC->end() && "Ran out of registers to allocate!");
5596         Regs.push_back(*I);
5597       }
5598     }
5599 
5600     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5601     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5602     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5603     return;
5604   }
5605 
5606   // Otherwise, if this was a reference to an LLVM register class, create vregs
5607   // for this reference.
5608   if (const TargetRegisterClass *RC = PhysReg.second) {
5609     RegVT = *RC->vt_begin();
5610     if (OpInfo.ConstraintVT == MVT::Other)
5611       ValueVT = RegVT;
5612 
5613     // Create the appropriate number of virtual registers.
5614     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5615     for (; NumRegs; --NumRegs)
5616       Regs.push_back(RegInfo.createVirtualRegister(RC));
5617 
5618     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5619     return;
5620   }
5621 
5622   // This is a reference to a register class that doesn't directly correspond
5623   // to an LLVM register class.  Allocate NumRegs consecutive, available,
5624   // registers from the class.
5625   std::vector<unsigned> RegClassRegs
5626     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5627                                             OpInfo.ConstraintVT);
5628 
5629   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5630   BitVector Reserved = TRI->getReservedRegs(MF);
5631   unsigned NumAllocated = 0;
5632   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5633     unsigned Reg = RegClassRegs[i];
5634     // Filter out the reserved registers, but note that reserved registers are
5635     // not fully determined at this point. We may still decide we need a frame
5636     // pointer.
5637     if (Reserved.test(Reg))
5638       continue;
5639     // See if this register is available.
5640     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5641         (isInReg  && InputRegs.count(Reg))) {    // Already used.
5642       // Make sure we find consecutive registers.
5643       NumAllocated = 0;
5644       continue;
5645     }
5646 
5647     // Check to see if this register is allocatable (i.e. don't give out the
5648     // stack pointer).
5649     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5650     if (!RC) {        // Couldn't allocate this register.
5651       // Reset NumAllocated to make sure we return consecutive registers.
5652       NumAllocated = 0;
5653       continue;
5654     }
5655 
5656     // Okay, this register is good, we can use it.
5657     ++NumAllocated;
5658 
5659     // If we allocated enough consecutive registers, succeed.
5660     if (NumAllocated == NumRegs) {
5661       unsigned RegStart = (i-NumAllocated)+1;
5662       unsigned RegEnd   = i+1;
5663       // Mark all of the allocated registers used.
5664       for (unsigned i = RegStart; i != RegEnd; ++i)
5665         Regs.push_back(RegClassRegs[i]);
5666 
5667       OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5668                                          OpInfo.ConstraintVT);
5669       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5670       return;
5671     }
5672   }
5673 
5674   // Otherwise, we couldn't allocate enough registers for this.
5675 }
5676 
5677 /// visitInlineAsm - Handle a call to an InlineAsm object.
5678 ///
5679 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5680   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5681 
5682   /// ConstraintOperands - Information about all of the constraints.
5683   SDISelAsmOperandInfoVector ConstraintOperands;
5684 
5685   std::set<unsigned> OutputRegs, InputRegs;
5686 
5687   TargetLowering::AsmOperandInfoVector
5688     TargetConstraints = TLI.ParseConstraints(CS);
5689 
5690   bool hasMemory = false;
5691 
5692   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5693   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5694   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5695     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5696     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5697 
5698     EVT OpVT = MVT::Other;
5699 
5700     // Compute the value type for each operand.
5701     switch (OpInfo.Type) {
5702     case InlineAsm::isOutput:
5703       // Indirect outputs just consume an argument.
5704       if (OpInfo.isIndirect) {
5705         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5706         break;
5707       }
5708 
5709       // The return value of the call is this value.  As such, there is no
5710       // corresponding argument.
5711       assert(!CS.getType()->isVoidTy() &&
5712              "Bad inline asm!");
5713       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5714         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5715       } else {
5716         assert(ResNo == 0 && "Asm only has one result!");
5717         OpVT = TLI.getValueType(CS.getType());
5718       }
5719       ++ResNo;
5720       break;
5721     case InlineAsm::isInput:
5722       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5723       break;
5724     case InlineAsm::isClobber:
5725       // Nothing to do.
5726       break;
5727     }
5728 
5729     // If this is an input or an indirect output, process the call argument.
5730     // BasicBlocks are labels, currently appearing only in asm's.
5731     if (OpInfo.CallOperandVal) {
5732       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5733         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5734       } else {
5735         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5736       }
5737 
5738       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5739     }
5740 
5741     OpInfo.ConstraintVT = OpVT;
5742 
5743     // Indirect operand accesses access memory.
5744     if (OpInfo.isIndirect)
5745       hasMemory = true;
5746     else {
5747       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5748         TargetLowering::ConstraintType
5749           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5750         if (CType == TargetLowering::C_Memory) {
5751           hasMemory = true;
5752           break;
5753         }
5754       }
5755     }
5756   }
5757 
5758   SDValue Chain, Flag;
5759 
5760   // We won't need to flush pending loads if this asm doesn't touch
5761   // memory and is nonvolatile.
5762   if (hasMemory || IA->hasSideEffects())
5763     Chain = getRoot();
5764   else
5765     Chain = DAG.getRoot();
5766 
5767   // Second pass over the constraints: compute which constraint option to use
5768   // and assign registers to constraints that want a specific physreg.
5769   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5770     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5771 
5772     // If this is an output operand with a matching input operand, look up the
5773     // matching input. If their types mismatch, e.g. one is an integer, the
5774     // other is floating point, or their sizes are different, flag it as an
5775     // error.
5776     if (OpInfo.hasMatchingInput()) {
5777       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5778 
5779       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5780         if ((OpInfo.ConstraintVT.isInteger() !=
5781              Input.ConstraintVT.isInteger()) ||
5782             (OpInfo.ConstraintVT.getSizeInBits() !=
5783              Input.ConstraintVT.getSizeInBits())) {
5784           report_fatal_error("Unsupported asm: input constraint"
5785                              " with a matching output constraint of"
5786                              " incompatible type!");
5787         }
5788         Input.ConstraintVT = OpInfo.ConstraintVT;
5789       }
5790     }
5791 
5792     // Compute the constraint code and ConstraintType to use.
5793     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5794 
5795     // If this is a memory input, and if the operand is not indirect, do what we
5796     // need to to provide an address for the memory input.
5797     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5798         !OpInfo.isIndirect) {
5799       assert((OpInfo.isMultipleAlternative ||
5800               (OpInfo.Type == InlineAsm::isInput)) &&
5801              "Can only indirectify direct input operands!");
5802 
5803       // Memory operands really want the address of the value.  If we don't have
5804       // an indirect input, put it in the constpool if we can, otherwise spill
5805       // it to a stack slot.
5806       // TODO: This isn't quite right. We need to handle these according to
5807       // the addressing mode that the constraint wants. Also, this may take
5808       // an additional register for the computation and we don't want that
5809       // either.
5810 
5811       // If the operand is a float, integer, or vector constant, spill to a
5812       // constant pool entry to get its address.
5813       const Value *OpVal = OpInfo.CallOperandVal;
5814       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5815           isa<ConstantVector>(OpVal)) {
5816         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5817                                                  TLI.getPointerTy());
5818       } else {
5819         // Otherwise, create a stack slot and emit a store to it before the
5820         // asm.
5821         const Type *Ty = OpVal->getType();
5822         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5823         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5824         MachineFunction &MF = DAG.getMachineFunction();
5825         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5826         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5827         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5828                              OpInfo.CallOperand, StackSlot,
5829                              MachinePointerInfo::getFixedStack(SSFI),
5830                              false, false, 0);
5831         OpInfo.CallOperand = StackSlot;
5832       }
5833 
5834       // There is no longer a Value* corresponding to this operand.
5835       OpInfo.CallOperandVal = 0;
5836 
5837       // It is now an indirect operand.
5838       OpInfo.isIndirect = true;
5839     }
5840 
5841     // If this constraint is for a specific register, allocate it before
5842     // anything else.
5843     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5844       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5845                            InputRegs);
5846   }
5847 
5848   // Second pass - Loop over all of the operands, assigning virtual or physregs
5849   // to register class operands.
5850   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5851     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5852 
5853     // C_Register operands have already been allocated, Other/Memory don't need
5854     // to be.
5855     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5856       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5857                            InputRegs);
5858   }
5859 
5860   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5861   std::vector<SDValue> AsmNodeOperands;
5862   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5863   AsmNodeOperands.push_back(
5864           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5865                                       TLI.getPointerTy()));
5866 
5867   // If we have a !srcloc metadata node associated with it, we want to attach
5868   // this to the ultimately generated inline asm machineinstr.  To do this, we
5869   // pass in the third operand as this (potentially null) inline asm MDNode.
5870   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5871   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5872 
5873   // Remember the HasSideEffect and AlignStack bits as operand 3.
5874   unsigned ExtraInfo = 0;
5875   if (IA->hasSideEffects())
5876     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5877   if (IA->isAlignStack())
5878     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5879   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5880                                                   TLI.getPointerTy()));
5881 
5882   // Loop over all of the inputs, copying the operand values into the
5883   // appropriate registers and processing the output regs.
5884   RegsForValue RetValRegs;
5885 
5886   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5887   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5888 
5889   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5890     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5891 
5892     switch (OpInfo.Type) {
5893     case InlineAsm::isOutput: {
5894       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5895           OpInfo.ConstraintType != TargetLowering::C_Register) {
5896         // Memory output, or 'other' output (e.g. 'X' constraint).
5897         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5898 
5899         // Add information to the INLINEASM node to know about this output.
5900         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5901         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5902                                                         TLI.getPointerTy()));
5903         AsmNodeOperands.push_back(OpInfo.CallOperand);
5904         break;
5905       }
5906 
5907       // Otherwise, this is a register or register class output.
5908 
5909       // Copy the output from the appropriate register.  Find a register that
5910       // we can use.
5911       if (OpInfo.AssignedRegs.Regs.empty())
5912         report_fatal_error("Couldn't allocate output reg for constraint '" +
5913                            Twine(OpInfo.ConstraintCode) + "'!");
5914 
5915       // If this is an indirect operand, store through the pointer after the
5916       // asm.
5917       if (OpInfo.isIndirect) {
5918         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5919                                                       OpInfo.CallOperandVal));
5920       } else {
5921         // This is the result value of the call.
5922         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5923         // Concatenate this output onto the outputs list.
5924         RetValRegs.append(OpInfo.AssignedRegs);
5925       }
5926 
5927       // Add information to the INLINEASM node to know that this register is
5928       // set.
5929       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5930                                            InlineAsm::Kind_RegDefEarlyClobber :
5931                                                InlineAsm::Kind_RegDef,
5932                                                false,
5933                                                0,
5934                                                DAG,
5935                                                AsmNodeOperands);
5936       break;
5937     }
5938     case InlineAsm::isInput: {
5939       SDValue InOperandVal = OpInfo.CallOperand;
5940 
5941       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5942         // If this is required to match an output register we have already set,
5943         // just use its register.
5944         unsigned OperandNo = OpInfo.getMatchedOperand();
5945 
5946         // Scan until we find the definition we already emitted of this operand.
5947         // When we find it, create a RegsForValue operand.
5948         unsigned CurOp = InlineAsm::Op_FirstOperand;
5949         for (; OperandNo; --OperandNo) {
5950           // Advance to the next operand.
5951           unsigned OpFlag =
5952             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5953           assert((InlineAsm::isRegDefKind(OpFlag) ||
5954                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5955                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5956           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5957         }
5958 
5959         unsigned OpFlag =
5960           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5961         if (InlineAsm::isRegDefKind(OpFlag) ||
5962             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5963           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5964           if (OpInfo.isIndirect) {
5965             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5966             LLVMContext &Ctx = *DAG.getContext();
5967             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5968                           " don't know how to handle tied "
5969                           "indirect register inputs");
5970           }
5971 
5972           RegsForValue MatchedRegs;
5973           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5974           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5975           MatchedRegs.RegVTs.push_back(RegVT);
5976           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5977           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5978                i != e; ++i)
5979             MatchedRegs.Regs.push_back
5980               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5981 
5982           // Use the produced MatchedRegs object to
5983           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5984                                     Chain, &Flag);
5985           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5986                                            true, OpInfo.getMatchedOperand(),
5987                                            DAG, AsmNodeOperands);
5988           break;
5989         }
5990 
5991         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5992         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5993                "Unexpected number of operands");
5994         // Add information to the INLINEASM node to know about this input.
5995         // See InlineAsm.h isUseOperandTiedToDef.
5996         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5997                                                     OpInfo.getMatchedOperand());
5998         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5999                                                         TLI.getPointerTy()));
6000         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6001         break;
6002       }
6003 
6004       // Treat indirect 'X' constraint as memory.
6005       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6006           OpInfo.isIndirect)
6007         OpInfo.ConstraintType = TargetLowering::C_Memory;
6008 
6009       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6010         std::vector<SDValue> Ops;
6011         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6012                                          Ops, DAG);
6013         if (Ops.empty())
6014           report_fatal_error("Invalid operand for inline asm constraint '" +
6015                              Twine(OpInfo.ConstraintCode) + "'!");
6016 
6017         // Add information to the INLINEASM node to know about this input.
6018         unsigned ResOpType =
6019           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6020         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6021                                                         TLI.getPointerTy()));
6022         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6023         break;
6024       }
6025 
6026       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6027         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6028         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6029                "Memory operands expect pointer values");
6030 
6031         // Add information to the INLINEASM node to know about this input.
6032         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6033         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6034                                                         TLI.getPointerTy()));
6035         AsmNodeOperands.push_back(InOperandVal);
6036         break;
6037       }
6038 
6039       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6040               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6041              "Unknown constraint type!");
6042       assert(!OpInfo.isIndirect &&
6043              "Don't know how to handle indirect register inputs yet!");
6044 
6045       // Copy the input into the appropriate registers.
6046       if (OpInfo.AssignedRegs.Regs.empty() ||
6047           !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
6048         report_fatal_error("Couldn't allocate input reg for constraint '" +
6049                            Twine(OpInfo.ConstraintCode) + "'!");
6050 
6051       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6052                                         Chain, &Flag);
6053 
6054       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6055                                                DAG, AsmNodeOperands);
6056       break;
6057     }
6058     case InlineAsm::isClobber: {
6059       // Add the clobbered value to the operand list, so that the register
6060       // allocator is aware that the physreg got clobbered.
6061       if (!OpInfo.AssignedRegs.Regs.empty())
6062         OpInfo.AssignedRegs.AddInlineAsmOperands(
6063                                             InlineAsm::Kind_RegDefEarlyClobber,
6064                                                  false, 0, DAG,
6065                                                  AsmNodeOperands);
6066       break;
6067     }
6068     }
6069   }
6070 
6071   // Finish up input operands.  Set the input chain and add the flag last.
6072   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6073   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6074 
6075   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6076                       DAG.getVTList(MVT::Other, MVT::Glue),
6077                       &AsmNodeOperands[0], AsmNodeOperands.size());
6078   Flag = Chain.getValue(1);
6079 
6080   // If this asm returns a register value, copy the result from that register
6081   // and set it as the value of the call.
6082   if (!RetValRegs.Regs.empty()) {
6083     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6084                                              Chain, &Flag);
6085 
6086     // FIXME: Why don't we do this for inline asms with MRVs?
6087     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6088       EVT ResultType = TLI.getValueType(CS.getType());
6089 
6090       // If any of the results of the inline asm is a vector, it may have the
6091       // wrong width/num elts.  This can happen for register classes that can
6092       // contain multiple different value types.  The preg or vreg allocated may
6093       // not have the same VT as was expected.  Convert it to the right type
6094       // with bit_convert.
6095       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6096         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6097                           ResultType, Val);
6098 
6099       } else if (ResultType != Val.getValueType() &&
6100                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6101         // If a result value was tied to an input value, the computed result may
6102         // have a wider width than the expected result.  Extract the relevant
6103         // portion.
6104         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6105       }
6106 
6107       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6108     }
6109 
6110     setValue(CS.getInstruction(), Val);
6111     // Don't need to use this as a chain in this case.
6112     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6113       return;
6114   }
6115 
6116   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6117 
6118   // Process indirect outputs, first output all of the flagged copies out of
6119   // physregs.
6120   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6121     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6122     const Value *Ptr = IndirectStoresToEmit[i].second;
6123     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6124                                              Chain, &Flag);
6125     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6126   }
6127 
6128   // Emit the non-flagged stores from the physregs.
6129   SmallVector<SDValue, 8> OutChains;
6130   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6131     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6132                                StoresToEmit[i].first,
6133                                getValue(StoresToEmit[i].second),
6134                                MachinePointerInfo(StoresToEmit[i].second),
6135                                false, false, 0);
6136     OutChains.push_back(Val);
6137   }
6138 
6139   if (!OutChains.empty())
6140     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6141                         &OutChains[0], OutChains.size());
6142 
6143   DAG.setRoot(Chain);
6144 }
6145 
6146 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6147   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6148                           MVT::Other, getRoot(),
6149                           getValue(I.getArgOperand(0)),
6150                           DAG.getSrcValue(I.getArgOperand(0))));
6151 }
6152 
6153 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6154   const TargetData &TD = *TLI.getTargetData();
6155   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6156                            getRoot(), getValue(I.getOperand(0)),
6157                            DAG.getSrcValue(I.getOperand(0)),
6158                            TD.getABITypeAlignment(I.getType()));
6159   setValue(&I, V);
6160   DAG.setRoot(V.getValue(1));
6161 }
6162 
6163 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6164   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6165                           MVT::Other, getRoot(),
6166                           getValue(I.getArgOperand(0)),
6167                           DAG.getSrcValue(I.getArgOperand(0))));
6168 }
6169 
6170 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6171   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6172                           MVT::Other, getRoot(),
6173                           getValue(I.getArgOperand(0)),
6174                           getValue(I.getArgOperand(1)),
6175                           DAG.getSrcValue(I.getArgOperand(0)),
6176                           DAG.getSrcValue(I.getArgOperand(1))));
6177 }
6178 
6179 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6180 /// implementation, which just calls LowerCall.
6181 /// FIXME: When all targets are
6182 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6183 std::pair<SDValue, SDValue>
6184 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6185                             bool RetSExt, bool RetZExt, bool isVarArg,
6186                             bool isInreg, unsigned NumFixedArgs,
6187                             CallingConv::ID CallConv, bool isTailCall,
6188                             bool isReturnValueUsed,
6189                             SDValue Callee,
6190                             ArgListTy &Args, SelectionDAG &DAG,
6191                             DebugLoc dl) const {
6192   // Handle all of the outgoing arguments.
6193   SmallVector<ISD::OutputArg, 32> Outs;
6194   SmallVector<SDValue, 32> OutVals;
6195   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6196     SmallVector<EVT, 4> ValueVTs;
6197     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6198     for (unsigned Value = 0, NumValues = ValueVTs.size();
6199          Value != NumValues; ++Value) {
6200       EVT VT = ValueVTs[Value];
6201       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6202       SDValue Op = SDValue(Args[i].Node.getNode(),
6203                            Args[i].Node.getResNo() + Value);
6204       ISD::ArgFlagsTy Flags;
6205       unsigned OriginalAlignment =
6206         getTargetData()->getABITypeAlignment(ArgTy);
6207 
6208       if (Args[i].isZExt)
6209         Flags.setZExt();
6210       if (Args[i].isSExt)
6211         Flags.setSExt();
6212       if (Args[i].isInReg)
6213         Flags.setInReg();
6214       if (Args[i].isSRet)
6215         Flags.setSRet();
6216       if (Args[i].isByVal) {
6217         Flags.setByVal();
6218         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6219         const Type *ElementTy = Ty->getElementType();
6220         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6221         // For ByVal, alignment should come from FE.  BE will guess if this
6222         // info is not there but there are cases it cannot get right.
6223         unsigned FrameAlign;
6224         if (Args[i].Alignment)
6225           FrameAlign = Args[i].Alignment;
6226         else
6227           FrameAlign = getByValTypeAlignment(ElementTy);
6228         Flags.setByValAlign(FrameAlign);
6229       }
6230       if (Args[i].isNest)
6231         Flags.setNest();
6232       Flags.setOrigAlign(OriginalAlignment);
6233 
6234       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6235       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6236       SmallVector<SDValue, 4> Parts(NumParts);
6237       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6238 
6239       if (Args[i].isSExt)
6240         ExtendKind = ISD::SIGN_EXTEND;
6241       else if (Args[i].isZExt)
6242         ExtendKind = ISD::ZERO_EXTEND;
6243 
6244       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6245                      PartVT, ExtendKind);
6246 
6247       for (unsigned j = 0; j != NumParts; ++j) {
6248         // if it isn't first piece, alignment must be 1
6249         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6250                                i < NumFixedArgs);
6251         if (NumParts > 1 && j == 0)
6252           MyFlags.Flags.setSplit();
6253         else if (j != 0)
6254           MyFlags.Flags.setOrigAlign(1);
6255 
6256         Outs.push_back(MyFlags);
6257         OutVals.push_back(Parts[j]);
6258       }
6259     }
6260   }
6261 
6262   // Handle the incoming return values from the call.
6263   SmallVector<ISD::InputArg, 32> Ins;
6264   SmallVector<EVT, 4> RetTys;
6265   ComputeValueVTs(*this, RetTy, RetTys);
6266   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6267     EVT VT = RetTys[I];
6268     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6269     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6270     for (unsigned i = 0; i != NumRegs; ++i) {
6271       ISD::InputArg MyFlags;
6272       MyFlags.VT = RegisterVT.getSimpleVT();
6273       MyFlags.Used = isReturnValueUsed;
6274       if (RetSExt)
6275         MyFlags.Flags.setSExt();
6276       if (RetZExt)
6277         MyFlags.Flags.setZExt();
6278       if (isInreg)
6279         MyFlags.Flags.setInReg();
6280       Ins.push_back(MyFlags);
6281     }
6282   }
6283 
6284   SmallVector<SDValue, 4> InVals;
6285   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6286                     Outs, OutVals, Ins, dl, DAG, InVals);
6287 
6288   // Verify that the target's LowerCall behaved as expected.
6289   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6290          "LowerCall didn't return a valid chain!");
6291   assert((!isTailCall || InVals.empty()) &&
6292          "LowerCall emitted a return value for a tail call!");
6293   assert((isTailCall || InVals.size() == Ins.size()) &&
6294          "LowerCall didn't emit the correct number of values!");
6295 
6296   // For a tail call, the return value is merely live-out and there aren't
6297   // any nodes in the DAG representing it. Return a special value to
6298   // indicate that a tail call has been emitted and no more Instructions
6299   // should be processed in the current block.
6300   if (isTailCall) {
6301     DAG.setRoot(Chain);
6302     return std::make_pair(SDValue(), SDValue());
6303   }
6304 
6305   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6306           assert(InVals[i].getNode() &&
6307                  "LowerCall emitted a null value!");
6308           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6309                  "LowerCall emitted a value with the wrong type!");
6310         });
6311 
6312   // Collect the legal value parts into potentially illegal values
6313   // that correspond to the original function's return values.
6314   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6315   if (RetSExt)
6316     AssertOp = ISD::AssertSext;
6317   else if (RetZExt)
6318     AssertOp = ISD::AssertZext;
6319   SmallVector<SDValue, 4> ReturnValues;
6320   unsigned CurReg = 0;
6321   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6322     EVT VT = RetTys[I];
6323     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6324     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6325 
6326     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6327                                             NumRegs, RegisterVT, VT,
6328                                             AssertOp));
6329     CurReg += NumRegs;
6330   }
6331 
6332   // For a function returning void, there is no return value. We can't create
6333   // such a node, so we just return a null return value in that case. In
6334   // that case, nothing will actually look at the value.
6335   if (ReturnValues.empty())
6336     return std::make_pair(SDValue(), Chain);
6337 
6338   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6339                             DAG.getVTList(&RetTys[0], RetTys.size()),
6340                             &ReturnValues[0], ReturnValues.size());
6341   return std::make_pair(Res, Chain);
6342 }
6343 
6344 void TargetLowering::LowerOperationWrapper(SDNode *N,
6345                                            SmallVectorImpl<SDValue> &Results,
6346                                            SelectionDAG &DAG) const {
6347   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6348   if (Res.getNode())
6349     Results.push_back(Res);
6350 }
6351 
6352 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6353   llvm_unreachable("LowerOperation not implemented for this target!");
6354   return SDValue();
6355 }
6356 
6357 void
6358 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6359   SDValue Op = getNonRegisterValue(V);
6360   assert((Op.getOpcode() != ISD::CopyFromReg ||
6361           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6362          "Copy from a reg to the same reg!");
6363   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6364 
6365   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6366   SDValue Chain = DAG.getEntryNode();
6367   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6368   PendingExports.push_back(Chain);
6369 }
6370 
6371 #include "llvm/CodeGen/SelectionDAGISel.h"
6372 
6373 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6374 /// entry block, return true.  This includes arguments used by switches, since
6375 /// the switch may expand into multiple basic blocks.
6376 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6377   // With FastISel active, we may be splitting blocks, so force creation
6378   // of virtual registers for all non-dead arguments.
6379   if (EnableFastISel)
6380     return A->use_empty();
6381 
6382   const BasicBlock *Entry = A->getParent()->begin();
6383   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6384        UI != E; ++UI) {
6385     const User *U = *UI;
6386     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6387       return false;  // Use not in entry block.
6388   }
6389   return true;
6390 }
6391 
6392 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6393   // If this is the entry block, emit arguments.
6394   const Function &F = *LLVMBB->getParent();
6395   SelectionDAG &DAG = SDB->DAG;
6396   DebugLoc dl = SDB->getCurDebugLoc();
6397   const TargetData *TD = TLI.getTargetData();
6398   SmallVector<ISD::InputArg, 16> Ins;
6399 
6400   // Check whether the function can return without sret-demotion.
6401   SmallVector<ISD::OutputArg, 4> Outs;
6402   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6403                 Outs, TLI);
6404 
6405   if (!FuncInfo->CanLowerReturn) {
6406     // Put in an sret pointer parameter before all the other parameters.
6407     SmallVector<EVT, 1> ValueVTs;
6408     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6409 
6410     // NOTE: Assuming that a pointer will never break down to more than one VT
6411     // or one register.
6412     ISD::ArgFlagsTy Flags;
6413     Flags.setSRet();
6414     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6415     ISD::InputArg RetArg(Flags, RegisterVT, true);
6416     Ins.push_back(RetArg);
6417   }
6418 
6419   // Set up the incoming argument description vector.
6420   unsigned Idx = 1;
6421   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6422        I != E; ++I, ++Idx) {
6423     SmallVector<EVT, 4> ValueVTs;
6424     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6425     bool isArgValueUsed = !I->use_empty();
6426     for (unsigned Value = 0, NumValues = ValueVTs.size();
6427          Value != NumValues; ++Value) {
6428       EVT VT = ValueVTs[Value];
6429       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6430       ISD::ArgFlagsTy Flags;
6431       unsigned OriginalAlignment =
6432         TD->getABITypeAlignment(ArgTy);
6433 
6434       if (F.paramHasAttr(Idx, Attribute::ZExt))
6435         Flags.setZExt();
6436       if (F.paramHasAttr(Idx, Attribute::SExt))
6437         Flags.setSExt();
6438       if (F.paramHasAttr(Idx, Attribute::InReg))
6439         Flags.setInReg();
6440       if (F.paramHasAttr(Idx, Attribute::StructRet))
6441         Flags.setSRet();
6442       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6443         Flags.setByVal();
6444         const PointerType *Ty = cast<PointerType>(I->getType());
6445         const Type *ElementTy = Ty->getElementType();
6446         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6447         // For ByVal, alignment should be passed from FE.  BE will guess if
6448         // this info is not there but there are cases it cannot get right.
6449         unsigned FrameAlign;
6450         if (F.getParamAlignment(Idx))
6451           FrameAlign = F.getParamAlignment(Idx);
6452         else
6453           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6454         Flags.setByValAlign(FrameAlign);
6455       }
6456       if (F.paramHasAttr(Idx, Attribute::Nest))
6457         Flags.setNest();
6458       Flags.setOrigAlign(OriginalAlignment);
6459 
6460       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6461       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6462       for (unsigned i = 0; i != NumRegs; ++i) {
6463         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6464         if (NumRegs > 1 && i == 0)
6465           MyFlags.Flags.setSplit();
6466         // if it isn't first piece, alignment must be 1
6467         else if (i > 0)
6468           MyFlags.Flags.setOrigAlign(1);
6469         Ins.push_back(MyFlags);
6470       }
6471     }
6472   }
6473 
6474   // Call the target to set up the argument values.
6475   SmallVector<SDValue, 8> InVals;
6476   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6477                                              F.isVarArg(), Ins,
6478                                              dl, DAG, InVals);
6479 
6480   // Verify that the target's LowerFormalArguments behaved as expected.
6481   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6482          "LowerFormalArguments didn't return a valid chain!");
6483   assert(InVals.size() == Ins.size() &&
6484          "LowerFormalArguments didn't emit the correct number of values!");
6485   DEBUG({
6486       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6487         assert(InVals[i].getNode() &&
6488                "LowerFormalArguments emitted a null value!");
6489         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6490                "LowerFormalArguments emitted a value with the wrong type!");
6491       }
6492     });
6493 
6494   // Update the DAG with the new chain value resulting from argument lowering.
6495   DAG.setRoot(NewRoot);
6496 
6497   // Set up the argument values.
6498   unsigned i = 0;
6499   Idx = 1;
6500   if (!FuncInfo->CanLowerReturn) {
6501     // Create a virtual register for the sret pointer, and put in a copy
6502     // from the sret argument into it.
6503     SmallVector<EVT, 1> ValueVTs;
6504     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6505     EVT VT = ValueVTs[0];
6506     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6507     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6508     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6509                                         RegVT, VT, AssertOp);
6510 
6511     MachineFunction& MF = SDB->DAG.getMachineFunction();
6512     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6513     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6514     FuncInfo->DemoteRegister = SRetReg;
6515     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6516                                     SRetReg, ArgValue);
6517     DAG.setRoot(NewRoot);
6518 
6519     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6520     // Idx indexes LLVM arguments.  Don't touch it.
6521     ++i;
6522   }
6523 
6524   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6525       ++I, ++Idx) {
6526     SmallVector<SDValue, 4> ArgValues;
6527     SmallVector<EVT, 4> ValueVTs;
6528     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6529     unsigned NumValues = ValueVTs.size();
6530 
6531     // If this argument is unused then remember its value. It is used to generate
6532     // debugging information.
6533     if (I->use_empty() && NumValues)
6534       SDB->setUnusedArgValue(I, InVals[i]);
6535 
6536     for (unsigned Val = 0; Val != NumValues; ++Val) {
6537       EVT VT = ValueVTs[Val];
6538       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6539       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6540 
6541       if (!I->use_empty()) {
6542         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6543         if (F.paramHasAttr(Idx, Attribute::SExt))
6544           AssertOp = ISD::AssertSext;
6545         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6546           AssertOp = ISD::AssertZext;
6547 
6548         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6549                                              NumParts, PartVT, VT,
6550                                              AssertOp));
6551       }
6552 
6553       i += NumParts;
6554     }
6555 
6556     // We don't need to do anything else for unused arguments.
6557     if (ArgValues.empty())
6558       continue;
6559 
6560     // Note down frame index for byval arguments.
6561     if (I->hasByValAttr())
6562       if (FrameIndexSDNode *FI =
6563           dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6564         FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6565 
6566     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6567                                      SDB->getCurDebugLoc());
6568     SDB->setValue(I, Res);
6569 
6570     // If this argument is live outside of the entry block, insert a copy from
6571     // wherever we got it to the vreg that other BB's will reference it as.
6572     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6573       // If we can, though, try to skip creating an unnecessary vreg.
6574       // FIXME: This isn't very clean... it would be nice to make this more
6575       // general.  It's also subtly incompatible with the hacks FastISel
6576       // uses with vregs.
6577       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6578       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6579         FuncInfo->ValueMap[I] = Reg;
6580         continue;
6581       }
6582     }
6583     if (!isOnlyUsedInEntryBlock(I)) {
6584       FuncInfo->InitializeRegForValue(I);
6585       SDB->CopyToExportRegsIfNeeded(I);
6586     }
6587   }
6588 
6589   assert(i == InVals.size() && "Argument register count mismatch!");
6590 
6591   // Finally, if the target has anything special to do, allow it to do so.
6592   // FIXME: this should insert code into the DAG!
6593   EmitFunctionEntryCode();
6594 }
6595 
6596 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6597 /// ensure constants are generated when needed.  Remember the virtual registers
6598 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6599 /// directly add them, because expansion might result in multiple MBB's for one
6600 /// BB.  As such, the start of the BB might correspond to a different MBB than
6601 /// the end.
6602 ///
6603 void
6604 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6605   const TerminatorInst *TI = LLVMBB->getTerminator();
6606 
6607   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6608 
6609   // Check successor nodes' PHI nodes that expect a constant to be available
6610   // from this block.
6611   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6612     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6613     if (!isa<PHINode>(SuccBB->begin())) continue;
6614     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6615 
6616     // If this terminator has multiple identical successors (common for
6617     // switches), only handle each succ once.
6618     if (!SuccsHandled.insert(SuccMBB)) continue;
6619 
6620     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6621 
6622     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6623     // nodes and Machine PHI nodes, but the incoming operands have not been
6624     // emitted yet.
6625     for (BasicBlock::const_iterator I = SuccBB->begin();
6626          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6627       // Ignore dead phi's.
6628       if (PN->use_empty()) continue;
6629 
6630       // Skip empty types
6631       if (PN->getType()->isEmptyTy())
6632         continue;
6633 
6634       unsigned Reg;
6635       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6636 
6637       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6638         unsigned &RegOut = ConstantsOut[C];
6639         if (RegOut == 0) {
6640           RegOut = FuncInfo.CreateRegs(C->getType());
6641           CopyValueToVirtualRegister(C, RegOut);
6642         }
6643         Reg = RegOut;
6644       } else {
6645         DenseMap<const Value *, unsigned>::iterator I =
6646           FuncInfo.ValueMap.find(PHIOp);
6647         if (I != FuncInfo.ValueMap.end())
6648           Reg = I->second;
6649         else {
6650           assert(isa<AllocaInst>(PHIOp) &&
6651                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6652                  "Didn't codegen value into a register!??");
6653           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6654           CopyValueToVirtualRegister(PHIOp, Reg);
6655         }
6656       }
6657 
6658       // Remember that this register needs to added to the machine PHI node as
6659       // the input for this MBB.
6660       SmallVector<EVT, 4> ValueVTs;
6661       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6662       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6663         EVT VT = ValueVTs[vti];
6664         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6665         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6666           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6667         Reg += NumRegisters;
6668       }
6669     }
6670   }
6671   ConstantsOut.clear();
6672 }
6673