1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 // Limit the width of DAG chains. This is important in general to prevent 73 // prevent DAG-based analysis from blowing up. For example, alias analysis and 74 // load clustering may not complete in reasonable time. It is difficult to 75 // recognize and avoid this situation within each individual analysis, and 76 // future analyses are likely to have the same behavior. Limiting DAG width is 77 // the safe approach, and will be especially important with global DAGs. 78 // 79 // MaxParallelChains default is arbitrarily high to avoid affecting 80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 81 // sequence over this should have been converted to llvm.memcpy by the 82 // frontend. It easy to induce this behavior with .ll code such as: 83 // %buffer = alloca [4096 x i8] 84 // %data = load [4096 x i8]* %argPtr 85 // store [4096 x i8] %data, [4096 x i8]* %buffer 86 static const unsigned MaxParallelChains = 64; 87 88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 89 const SDValue *Parts, unsigned NumParts, 90 EVT PartVT, EVT ValueVT); 91 92 /// getCopyFromParts - Create a value that contains the specified legal parts 93 /// combined into the value they represent. If the parts combine to a type 94 /// larger then ValueVT then AssertOp can be used to specify whether the extra 95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 96 /// (ISD::AssertSext). 97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 98 const SDValue *Parts, 99 unsigned NumParts, EVT PartVT, EVT ValueVT, 100 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 101 if (ValueVT.isVector()) 102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 103 104 assert(NumParts > 0 && "No parts to assemble!"); 105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 106 SDValue Val = Parts[0]; 107 108 if (NumParts > 1) { 109 // Assemble the value from multiple parts. 110 if (ValueVT.isInteger()) { 111 unsigned PartBits = PartVT.getSizeInBits(); 112 unsigned ValueBits = ValueVT.getSizeInBits(); 113 114 // Assemble the power of 2 part. 115 unsigned RoundParts = NumParts & (NumParts - 1) ? 116 1 << Log2_32(NumParts) : NumParts; 117 unsigned RoundBits = PartBits * RoundParts; 118 EVT RoundVT = RoundBits == ValueBits ? 119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 120 SDValue Lo, Hi; 121 122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 123 124 if (RoundParts > 2) { 125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 126 PartVT, HalfVT); 127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 128 RoundParts / 2, PartVT, HalfVT); 129 } else { 130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 132 } 133 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 138 139 if (RoundParts < NumParts) { 140 // Assemble the trailing non-power-of-2 part. 141 unsigned OddParts = NumParts - RoundParts; 142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 143 Hi = getCopyFromParts(DAG, DL, 144 Parts + RoundParts, OddParts, PartVT, OddVT); 145 146 // Combine the round and odd parts. 147 Lo = Val; 148 if (TLI.isBigEndian()) 149 std::swap(Lo, Hi); 150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 153 DAG.getConstant(Lo.getValueType().getSizeInBits(), 154 TLI.getPointerTy())); 155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 157 } 158 } else if (PartVT.isFloatingPoint()) { 159 // FP split into multiple FP parts (for ppcf128) 160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 161 "Unexpected split"); 162 SDValue Lo, Hi; 163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 165 if (TLI.isBigEndian()) 166 std::swap(Lo, Hi); 167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 168 } else { 169 // FP split into integer parts (soft fp) 170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 171 !PartVT.isVector() && "Unexpected split"); 172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 174 } 175 } 176 177 // There is now one part, held in Val. Correct it to match ValueVT. 178 PartVT = Val.getValueType(); 179 180 if (PartVT == ValueVT) 181 return Val; 182 183 if (PartVT.isInteger() && ValueVT.isInteger()) { 184 if (ValueVT.bitsLT(PartVT)) { 185 // For a truncate, see if we have any information to 186 // indicate whether the truncated bits will always be 187 // zero or sign-extension. 188 if (AssertOp != ISD::DELETED_NODE) 189 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 190 DAG.getValueType(ValueVT)); 191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 192 } 193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 194 } 195 196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 197 // FP_ROUND's are always exact here. 198 if (ValueVT.bitsLT(Val.getValueType())) 199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 200 DAG.getIntPtrConstant(1)); 201 202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 203 } 204 205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 207 208 llvm_unreachable("Unknown mismatch!"); 209 return SDValue(); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert(PartVT.isInteger() && ValueVT.isInteger() && 357 "Unknown mismatch!"); 358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 360 } 361 } else if (PartBits == ValueVT.getSizeInBits()) { 362 // Different types of the same size. 363 assert(NumParts == 1 && PartVT != ValueVT); 364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 366 // If the parts cover less bits than value has, truncate the value. 367 assert(PartVT.isInteger() && ValueVT.isInteger() && 368 "Unknown mismatch!"); 369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 371 } 372 373 // The value may have changed - recompute ValueVT. 374 ValueVT = Val.getValueType(); 375 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 376 "Failed to tile the value with PartVT!"); 377 378 if (NumParts == 1) { 379 assert(PartVT == ValueVT && "Type conversion failed!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 // Expand the value into multiple parts. 385 if (NumParts & (NumParts - 1)) { 386 // The number of parts is not a power of 2. Split off and copy the tail. 387 assert(PartVT.isInteger() && ValueVT.isInteger() && 388 "Do not know what to expand to!"); 389 unsigned RoundParts = 1 << Log2_32(NumParts); 390 unsigned RoundBits = RoundParts * PartBits; 391 unsigned OddParts = NumParts - RoundParts; 392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 393 DAG.getIntPtrConstant(RoundBits)); 394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 395 396 if (TLI.isBigEndian()) 397 // The odd parts were reversed by getCopyToParts - unreverse them. 398 std::reverse(Parts + RoundParts, Parts + NumParts); 399 400 NumParts = RoundParts; 401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 403 } 404 405 // The number of parts is a power of 2. Repeatedly bisect the value using 406 // EXTRACT_ELEMENT. 407 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 408 EVT::getIntegerVT(*DAG.getContext(), 409 ValueVT.getSizeInBits()), 410 Val); 411 412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 413 for (unsigned i = 0; i < NumParts; i += StepSize) { 414 unsigned ThisBits = StepSize * PartBits / 2; 415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 416 SDValue &Part0 = Parts[i]; 417 SDValue &Part1 = Parts[i+StepSize/2]; 418 419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 420 ThisVT, Part0, DAG.getIntPtrConstant(1)); 421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 422 ThisVT, Part0, DAG.getIntPtrConstant(0)); 423 424 if (ThisBits == PartBits && ThisVT != PartVT) { 425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 427 } 428 } 429 } 430 431 if (TLI.isBigEndian()) 432 std::reverse(Parts, Parts + OrigNumParts); 433 } 434 435 436 /// getCopyToPartsVector - Create a series of nodes that contain the specified 437 /// value split into legal parts. 438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 439 SDValue Val, SDValue *Parts, unsigned NumParts, 440 EVT PartVT) { 441 EVT ValueVT = Val.getValueType(); 442 assert(ValueVT.isVector() && "Not a vector"); 443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 444 445 if (NumParts == 1) { 446 if (PartVT == ValueVT) { 447 // Nothing to do. 448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 449 // Bitconvert vector->vector case. 450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 451 } else if (PartVT.isVector() && 452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 454 EVT ElementVT = PartVT.getVectorElementType(); 455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 456 // undef elements. 457 SmallVector<SDValue, 16> Ops; 458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 460 ElementVT, Val, DAG.getIntPtrConstant(i))); 461 462 for (unsigned i = ValueVT.getVectorNumElements(), 463 e = PartVT.getVectorNumElements(); i != e; ++i) 464 Ops.push_back(DAG.getUNDEF(ElementVT)); 465 466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 467 468 // FIXME: Use CONCAT for 2x -> 4x. 469 470 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 472 } else if (PartVT.isVector() && 473 PartVT.getVectorElementType().bitsGE( 474 ValueVT.getVectorElementType()) && 475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 476 477 // Promoted vector extract 478 unsigned NumElts = ValueVT.getVectorNumElements(); 479 SmallVector<SDValue, 8> NewOps; 480 for (unsigned i = 0; i < NumElts; ++i) { 481 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 482 ValueVT.getScalarType(), Val ,DAG.getIntPtrConstant(i)); 483 SDValue Cast = DAG.getNode(ISD::ANY_EXTEND, 484 DL, PartVT.getScalarType(), Ext); 485 NewOps.push_back(Cast); 486 } 487 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, 488 &NewOps[0], NewOps.size()); 489 } else{ 490 // Vector -> scalar conversion. 491 assert(ValueVT.getVectorNumElements() == 1 && 492 "Only trivial vector-to-scalar conversions should get here!"); 493 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 494 PartVT, Val, DAG.getIntPtrConstant(0)); 495 496 bool Smaller = ValueVT.bitsLE(PartVT); 497 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 498 DL, PartVT, Val); 499 } 500 501 Parts[0] = Val; 502 return; 503 } 504 505 // Handle a multi-element vector. 506 EVT IntermediateVT, RegisterVT; 507 unsigned NumIntermediates; 508 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 509 IntermediateVT, 510 NumIntermediates, RegisterVT); 511 unsigned NumElements = ValueVT.getVectorNumElements(); 512 513 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 514 NumParts = NumRegs; // Silence a compiler warning. 515 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 516 517 // Split the vector into intermediate operands. 518 SmallVector<SDValue, 8> Ops(NumIntermediates); 519 for (unsigned i = 0; i != NumIntermediates; ++i) { 520 if (IntermediateVT.isVector()) 521 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 522 IntermediateVT, Val, 523 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 524 else 525 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 526 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 527 } 528 529 // Split the intermediate operands into legal parts. 530 if (NumParts == NumIntermediates) { 531 // If the register was not expanded, promote or copy the value, 532 // as appropriate. 533 for (unsigned i = 0; i != NumParts; ++i) 534 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 535 } else if (NumParts > 0) { 536 // If the intermediate type was expanded, split each the value into 537 // legal parts. 538 assert(NumParts % NumIntermediates == 0 && 539 "Must expand into a divisible number of parts!"); 540 unsigned Factor = NumParts / NumIntermediates; 541 for (unsigned i = 0; i != NumIntermediates; ++i) 542 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 543 } 544 } 545 546 547 548 549 namespace { 550 /// RegsForValue - This struct represents the registers (physical or virtual) 551 /// that a particular set of values is assigned, and the type information 552 /// about the value. The most common situation is to represent one value at a 553 /// time, but struct or array values are handled element-wise as multiple 554 /// values. The splitting of aggregates is performed recursively, so that we 555 /// never have aggregate-typed registers. The values at this point do not 556 /// necessarily have legal types, so each value may require one or more 557 /// registers of some legal type. 558 /// 559 struct RegsForValue { 560 /// ValueVTs - The value types of the values, which may not be legal, and 561 /// may need be promoted or synthesized from one or more registers. 562 /// 563 SmallVector<EVT, 4> ValueVTs; 564 565 /// RegVTs - The value types of the registers. This is the same size as 566 /// ValueVTs and it records, for each value, what the type of the assigned 567 /// register or registers are. (Individual values are never synthesized 568 /// from more than one type of register.) 569 /// 570 /// With virtual registers, the contents of RegVTs is redundant with TLI's 571 /// getRegisterType member function, however when with physical registers 572 /// it is necessary to have a separate record of the types. 573 /// 574 SmallVector<EVT, 4> RegVTs; 575 576 /// Regs - This list holds the registers assigned to the values. 577 /// Each legal or promoted value requires one register, and each 578 /// expanded value requires multiple registers. 579 /// 580 SmallVector<unsigned, 4> Regs; 581 582 RegsForValue() {} 583 584 RegsForValue(const SmallVector<unsigned, 4> ®s, 585 EVT regvt, EVT valuevt) 586 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 587 588 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 589 unsigned Reg, const Type *Ty) { 590 ComputeValueVTs(tli, Ty, ValueVTs); 591 592 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 593 EVT ValueVT = ValueVTs[Value]; 594 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 595 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 596 for (unsigned i = 0; i != NumRegs; ++i) 597 Regs.push_back(Reg + i); 598 RegVTs.push_back(RegisterVT); 599 Reg += NumRegs; 600 } 601 } 602 603 /// areValueTypesLegal - Return true if types of all the values are legal. 604 bool areValueTypesLegal(const TargetLowering &TLI) { 605 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 606 EVT RegisterVT = RegVTs[Value]; 607 if (!TLI.isTypeLegal(RegisterVT)) 608 return false; 609 } 610 return true; 611 } 612 613 /// append - Add the specified values to this one. 614 void append(const RegsForValue &RHS) { 615 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 616 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 617 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 618 } 619 620 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 621 /// this value and returns the result as a ValueVTs value. This uses 622 /// Chain/Flag as the input and updates them for the output Chain/Flag. 623 /// If the Flag pointer is NULL, no flag is used. 624 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 625 DebugLoc dl, 626 SDValue &Chain, SDValue *Flag) const; 627 628 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 629 /// specified value into the registers specified by this object. This uses 630 /// Chain/Flag as the input and updates them for the output Chain/Flag. 631 /// If the Flag pointer is NULL, no flag is used. 632 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 633 SDValue &Chain, SDValue *Flag) const; 634 635 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 636 /// operand list. This adds the code marker, matching input operand index 637 /// (if applicable), and includes the number of values added into it. 638 void AddInlineAsmOperands(unsigned Kind, 639 bool HasMatching, unsigned MatchingIdx, 640 SelectionDAG &DAG, 641 std::vector<SDValue> &Ops) const; 642 }; 643 } 644 645 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 646 /// this value and returns the result as a ValueVT value. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 650 FunctionLoweringInfo &FuncInfo, 651 DebugLoc dl, 652 SDValue &Chain, SDValue *Flag) const { 653 // A Value with type {} or [0 x %t] needs no registers. 654 if (ValueVTs.empty()) 655 return SDValue(); 656 657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 658 659 // Assemble the legal parts into the final values. 660 SmallVector<SDValue, 4> Values(ValueVTs.size()); 661 SmallVector<SDValue, 8> Parts; 662 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 663 // Copy the legal parts from the registers. 664 EVT ValueVT = ValueVTs[Value]; 665 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 666 EVT RegisterVT = RegVTs[Value]; 667 668 Parts.resize(NumRegs); 669 for (unsigned i = 0; i != NumRegs; ++i) { 670 SDValue P; 671 if (Flag == 0) { 672 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 673 } else { 674 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 675 *Flag = P.getValue(2); 676 } 677 678 Chain = P.getValue(1); 679 Parts[i] = P; 680 681 // If the source register was virtual and if we know something about it, 682 // add an assert node. 683 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 684 !RegisterVT.isInteger() || RegisterVT.isVector()) 685 continue; 686 687 const FunctionLoweringInfo::LiveOutInfo *LOI = 688 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 689 if (!LOI) 690 continue; 691 692 unsigned RegSize = RegisterVT.getSizeInBits(); 693 unsigned NumSignBits = LOI->NumSignBits; 694 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 695 696 // FIXME: We capture more information than the dag can represent. For 697 // now, just use the tightest assertzext/assertsext possible. 698 bool isSExt = true; 699 EVT FromVT(MVT::Other); 700 if (NumSignBits == RegSize) 701 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 702 else if (NumZeroBits >= RegSize-1) 703 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 704 else if (NumSignBits > RegSize-8) 705 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 706 else if (NumZeroBits >= RegSize-8) 707 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 708 else if (NumSignBits > RegSize-16) 709 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 710 else if (NumZeroBits >= RegSize-16) 711 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 712 else if (NumSignBits > RegSize-32) 713 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 714 else if (NumZeroBits >= RegSize-32) 715 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 716 else 717 continue; 718 719 // Add an assertion node. 720 assert(FromVT != MVT::Other); 721 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 722 RegisterVT, P, DAG.getValueType(FromVT)); 723 } 724 725 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 726 NumRegs, RegisterVT, ValueVT); 727 Part += NumRegs; 728 Parts.clear(); 729 } 730 731 return DAG.getNode(ISD::MERGE_VALUES, dl, 732 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 733 &Values[0], ValueVTs.size()); 734 } 735 736 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 737 /// specified value into the registers specified by this object. This uses 738 /// Chain/Flag as the input and updates them for the output Chain/Flag. 739 /// If the Flag pointer is NULL, no flag is used. 740 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 741 SDValue &Chain, SDValue *Flag) const { 742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 743 744 // Get the list of the values's legal parts. 745 unsigned NumRegs = Regs.size(); 746 SmallVector<SDValue, 8> Parts(NumRegs); 747 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 748 EVT ValueVT = ValueVTs[Value]; 749 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 750 EVT RegisterVT = RegVTs[Value]; 751 752 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 753 &Parts[Part], NumParts, RegisterVT); 754 Part += NumParts; 755 } 756 757 // Copy the parts into the registers. 758 SmallVector<SDValue, 8> Chains(NumRegs); 759 for (unsigned i = 0; i != NumRegs; ++i) { 760 SDValue Part; 761 if (Flag == 0) { 762 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 763 } else { 764 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 765 *Flag = Part.getValue(1); 766 } 767 768 Chains[i] = Part.getValue(0); 769 } 770 771 if (NumRegs == 1 || Flag) 772 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 773 // flagged to it. That is the CopyToReg nodes and the user are considered 774 // a single scheduling unit. If we create a TokenFactor and return it as 775 // chain, then the TokenFactor is both a predecessor (operand) of the 776 // user as well as a successor (the TF operands are flagged to the user). 777 // c1, f1 = CopyToReg 778 // c2, f2 = CopyToReg 779 // c3 = TokenFactor c1, c2 780 // ... 781 // = op c3, ..., f2 782 Chain = Chains[NumRegs-1]; 783 else 784 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 785 } 786 787 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 788 /// operand list. This adds the code marker and includes the number of 789 /// values added into it. 790 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 791 unsigned MatchingIdx, 792 SelectionDAG &DAG, 793 std::vector<SDValue> &Ops) const { 794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 795 796 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 797 if (HasMatching) 798 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 799 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 800 Ops.push_back(Res); 801 802 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 803 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 804 EVT RegisterVT = RegVTs[Value]; 805 for (unsigned i = 0; i != NumRegs; ++i) { 806 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 807 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 808 } 809 } 810 } 811 812 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 813 AA = &aa; 814 GFI = gfi; 815 TD = DAG.getTarget().getTargetData(); 816 } 817 818 /// clear - Clear out the current SelectionDAG and the associated 819 /// state and prepare this SelectionDAGBuilder object to be used 820 /// for a new block. This doesn't clear out information about 821 /// additional blocks that are needed to complete switch lowering 822 /// or PHI node updating; that information is cleared out as it is 823 /// consumed. 824 void SelectionDAGBuilder::clear() { 825 NodeMap.clear(); 826 UnusedArgNodeMap.clear(); 827 PendingLoads.clear(); 828 PendingExports.clear(); 829 CurDebugLoc = DebugLoc(); 830 HasTailCall = false; 831 } 832 833 /// clearDanglingDebugInfo - Clear the dangling debug information 834 /// map. This function is seperated from the clear so that debug 835 /// information that is dangling in a basic block can be properly 836 /// resolved in a different basic block. This allows the 837 /// SelectionDAG to resolve dangling debug information attached 838 /// to PHI nodes. 839 void SelectionDAGBuilder::clearDanglingDebugInfo() { 840 DanglingDebugInfoMap.clear(); 841 } 842 843 /// getRoot - Return the current virtual root of the Selection DAG, 844 /// flushing any PendingLoad items. This must be done before emitting 845 /// a store or any other node that may need to be ordered after any 846 /// prior load instructions. 847 /// 848 SDValue SelectionDAGBuilder::getRoot() { 849 if (PendingLoads.empty()) 850 return DAG.getRoot(); 851 852 if (PendingLoads.size() == 1) { 853 SDValue Root = PendingLoads[0]; 854 DAG.setRoot(Root); 855 PendingLoads.clear(); 856 return Root; 857 } 858 859 // Otherwise, we have to make a token factor node. 860 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 861 &PendingLoads[0], PendingLoads.size()); 862 PendingLoads.clear(); 863 DAG.setRoot(Root); 864 return Root; 865 } 866 867 /// getControlRoot - Similar to getRoot, but instead of flushing all the 868 /// PendingLoad items, flush all the PendingExports items. It is necessary 869 /// to do this before emitting a terminator instruction. 870 /// 871 SDValue SelectionDAGBuilder::getControlRoot() { 872 SDValue Root = DAG.getRoot(); 873 874 if (PendingExports.empty()) 875 return Root; 876 877 // Turn all of the CopyToReg chains into one factored node. 878 if (Root.getOpcode() != ISD::EntryToken) { 879 unsigned i = 0, e = PendingExports.size(); 880 for (; i != e; ++i) { 881 assert(PendingExports[i].getNode()->getNumOperands() > 1); 882 if (PendingExports[i].getNode()->getOperand(0) == Root) 883 break; // Don't add the root if we already indirectly depend on it. 884 } 885 886 if (i == e) 887 PendingExports.push_back(Root); 888 } 889 890 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 891 &PendingExports[0], 892 PendingExports.size()); 893 PendingExports.clear(); 894 DAG.setRoot(Root); 895 return Root; 896 } 897 898 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 899 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 900 DAG.AssignOrdering(Node, SDNodeOrder); 901 902 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 903 AssignOrderingToNode(Node->getOperand(I).getNode()); 904 } 905 906 void SelectionDAGBuilder::visit(const Instruction &I) { 907 // Set up outgoing PHI node register values before emitting the terminator. 908 if (isa<TerminatorInst>(&I)) 909 HandlePHINodesInSuccessorBlocks(I.getParent()); 910 911 CurDebugLoc = I.getDebugLoc(); 912 913 visit(I.getOpcode(), I); 914 915 if (!isa<TerminatorInst>(&I) && !HasTailCall) 916 CopyToExportRegsIfNeeded(&I); 917 918 CurDebugLoc = DebugLoc(); 919 } 920 921 void SelectionDAGBuilder::visitPHI(const PHINode &) { 922 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 923 } 924 925 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 926 // Note: this doesn't use InstVisitor, because it has to work with 927 // ConstantExpr's in addition to instructions. 928 switch (Opcode) { 929 default: llvm_unreachable("Unknown instruction type encountered!"); 930 // Build the switch statement using the Instruction.def file. 931 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 932 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 933 #include "llvm/Instruction.def" 934 } 935 936 // Assign the ordering to the freshly created DAG nodes. 937 if (NodeMap.count(&I)) { 938 ++SDNodeOrder; 939 AssignOrderingToNode(getValue(&I).getNode()); 940 } 941 } 942 943 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 944 // generate the debug data structures now that we've seen its definition. 945 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 946 SDValue Val) { 947 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 948 if (DDI.getDI()) { 949 const DbgValueInst *DI = DDI.getDI(); 950 DebugLoc dl = DDI.getdl(); 951 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 952 MDNode *Variable = DI->getVariable(); 953 uint64_t Offset = DI->getOffset(); 954 SDDbgValue *SDV; 955 if (Val.getNode()) { 956 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 957 SDV = DAG.getDbgValue(Variable, Val.getNode(), 958 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 959 DAG.AddDbgValue(SDV, Val.getNode(), false); 960 } 961 } else 962 DEBUG(dbgs() << "Dropping debug info for " << DI); 963 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 964 } 965 } 966 967 // getValue - Return an SDValue for the given Value. 968 SDValue SelectionDAGBuilder::getValue(const Value *V) { 969 // If we already have an SDValue for this value, use it. It's important 970 // to do this first, so that we don't create a CopyFromReg if we already 971 // have a regular SDValue. 972 SDValue &N = NodeMap[V]; 973 if (N.getNode()) return N; 974 975 // If there's a virtual register allocated and initialized for this 976 // value, use it. 977 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 978 if (It != FuncInfo.ValueMap.end()) { 979 unsigned InReg = It->second; 980 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 981 SDValue Chain = DAG.getEntryNode(); 982 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 983 resolveDanglingDebugInfo(V, N); 984 return N; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 /// getNonRegisterValue - Return an SDValue for the given Value, but 995 /// don't look in FuncInfo.ValueMap for a virtual register. 996 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 997 // If we already have an SDValue for this value, use it. 998 SDValue &N = NodeMap[V]; 999 if (N.getNode()) return N; 1000 1001 // Otherwise create a new SDValue and remember it. 1002 SDValue Val = getValueImpl(V); 1003 NodeMap[V] = Val; 1004 resolveDanglingDebugInfo(V, Val); 1005 return Val; 1006 } 1007 1008 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1009 /// Create an SDValue for the given value. 1010 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1011 if (const Constant *C = dyn_cast<Constant>(V)) { 1012 EVT VT = TLI.getValueType(V->getType(), true); 1013 1014 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1015 return DAG.getConstant(*CI, VT); 1016 1017 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1018 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1019 1020 if (isa<ConstantPointerNull>(C)) 1021 return DAG.getConstant(0, TLI.getPointerTy()); 1022 1023 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1024 return DAG.getConstantFP(*CFP, VT); 1025 1026 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1027 return DAG.getUNDEF(VT); 1028 1029 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1030 visit(CE->getOpcode(), *CE); 1031 SDValue N1 = NodeMap[V]; 1032 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1033 return N1; 1034 } 1035 1036 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1037 SmallVector<SDValue, 4> Constants; 1038 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1039 OI != OE; ++OI) { 1040 SDNode *Val = getValue(*OI).getNode(); 1041 // If the operand is an empty aggregate, there are no values. 1042 if (!Val) continue; 1043 // Add each leaf value from the operand to the Constants list 1044 // to form a flattened list of all the values. 1045 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1046 Constants.push_back(SDValue(Val, i)); 1047 } 1048 1049 return DAG.getMergeValues(&Constants[0], Constants.size(), 1050 getCurDebugLoc()); 1051 } 1052 1053 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1054 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1055 "Unknown struct or array constant!"); 1056 1057 SmallVector<EVT, 4> ValueVTs; 1058 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1059 unsigned NumElts = ValueVTs.size(); 1060 if (NumElts == 0) 1061 return SDValue(); // empty struct 1062 SmallVector<SDValue, 4> Constants(NumElts); 1063 for (unsigned i = 0; i != NumElts; ++i) { 1064 EVT EltVT = ValueVTs[i]; 1065 if (isa<UndefValue>(C)) 1066 Constants[i] = DAG.getUNDEF(EltVT); 1067 else if (EltVT.isFloatingPoint()) 1068 Constants[i] = DAG.getConstantFP(0, EltVT); 1069 else 1070 Constants[i] = DAG.getConstant(0, EltVT); 1071 } 1072 1073 return DAG.getMergeValues(&Constants[0], NumElts, 1074 getCurDebugLoc()); 1075 } 1076 1077 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1078 return DAG.getBlockAddress(BA, VT); 1079 1080 const VectorType *VecTy = cast<VectorType>(V->getType()); 1081 unsigned NumElements = VecTy->getNumElements(); 1082 1083 // Now that we know the number and type of the elements, get that number of 1084 // elements into the Ops array based on what kind of constant it is. 1085 SmallVector<SDValue, 16> Ops; 1086 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1087 for (unsigned i = 0; i != NumElements; ++i) 1088 Ops.push_back(getValue(CP->getOperand(i))); 1089 } else { 1090 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1091 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1092 1093 SDValue Op; 1094 if (EltVT.isFloatingPoint()) 1095 Op = DAG.getConstantFP(0, EltVT); 1096 else 1097 Op = DAG.getConstant(0, EltVT); 1098 Ops.assign(NumElements, Op); 1099 } 1100 1101 // Create a BUILD_VECTOR node. 1102 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1103 VT, &Ops[0], Ops.size()); 1104 } 1105 1106 // If this is a static alloca, generate it as the frameindex instead of 1107 // computation. 1108 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1109 DenseMap<const AllocaInst*, int>::iterator SI = 1110 FuncInfo.StaticAllocaMap.find(AI); 1111 if (SI != FuncInfo.StaticAllocaMap.end()) 1112 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1113 } 1114 1115 // If this is an instruction which fast-isel has deferred, select it now. 1116 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1117 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1118 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1119 SDValue Chain = DAG.getEntryNode(); 1120 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1121 } 1122 1123 llvm_unreachable("Can't get register for value!"); 1124 return SDValue(); 1125 } 1126 1127 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1128 SDValue Chain = getControlRoot(); 1129 SmallVector<ISD::OutputArg, 8> Outs; 1130 SmallVector<SDValue, 8> OutVals; 1131 1132 if (!FuncInfo.CanLowerReturn) { 1133 unsigned DemoteReg = FuncInfo.DemoteRegister; 1134 const Function *F = I.getParent()->getParent(); 1135 1136 // Emit a store of the return value through the virtual register. 1137 // Leave Outs empty so that LowerReturn won't try to load return 1138 // registers the usual way. 1139 SmallVector<EVT, 1> PtrValueVTs; 1140 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1141 PtrValueVTs); 1142 1143 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1144 SDValue RetOp = getValue(I.getOperand(0)); 1145 1146 SmallVector<EVT, 4> ValueVTs; 1147 SmallVector<uint64_t, 4> Offsets; 1148 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1149 unsigned NumValues = ValueVTs.size(); 1150 1151 SmallVector<SDValue, 4> Chains(NumValues); 1152 for (unsigned i = 0; i != NumValues; ++i) { 1153 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1154 RetPtr.getValueType(), RetPtr, 1155 DAG.getIntPtrConstant(Offsets[i])); 1156 Chains[i] = 1157 DAG.getStore(Chain, getCurDebugLoc(), 1158 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1159 // FIXME: better loc info would be nice. 1160 Add, MachinePointerInfo(), false, false, 0); 1161 } 1162 1163 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1164 MVT::Other, &Chains[0], NumValues); 1165 } else if (I.getNumOperands() != 0) { 1166 SmallVector<EVT, 4> ValueVTs; 1167 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1168 unsigned NumValues = ValueVTs.size(); 1169 if (NumValues) { 1170 SDValue RetOp = getValue(I.getOperand(0)); 1171 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1172 EVT VT = ValueVTs[j]; 1173 1174 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1175 1176 const Function *F = I.getParent()->getParent(); 1177 if (F->paramHasAttr(0, Attribute::SExt)) 1178 ExtendKind = ISD::SIGN_EXTEND; 1179 else if (F->paramHasAttr(0, Attribute::ZExt)) 1180 ExtendKind = ISD::ZERO_EXTEND; 1181 1182 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1183 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1184 1185 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1186 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1187 SmallVector<SDValue, 4> Parts(NumParts); 1188 getCopyToParts(DAG, getCurDebugLoc(), 1189 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1190 &Parts[0], NumParts, PartVT, ExtendKind); 1191 1192 // 'inreg' on function refers to return value 1193 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1194 if (F->paramHasAttr(0, Attribute::InReg)) 1195 Flags.setInReg(); 1196 1197 // Propagate extension type if any 1198 if (ExtendKind == ISD::SIGN_EXTEND) 1199 Flags.setSExt(); 1200 else if (ExtendKind == ISD::ZERO_EXTEND) 1201 Flags.setZExt(); 1202 1203 for (unsigned i = 0; i < NumParts; ++i) { 1204 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1205 /*isfixed=*/true)); 1206 OutVals.push_back(Parts[i]); 1207 } 1208 } 1209 } 1210 } 1211 1212 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1213 CallingConv::ID CallConv = 1214 DAG.getMachineFunction().getFunction()->getCallingConv(); 1215 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1216 Outs, OutVals, getCurDebugLoc(), DAG); 1217 1218 // Verify that the target's LowerReturn behaved as expected. 1219 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1220 "LowerReturn didn't return a valid chain!"); 1221 1222 // Update the DAG with the new chain value resulting from return lowering. 1223 DAG.setRoot(Chain); 1224 } 1225 1226 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1227 /// created for it, emit nodes to copy the value into the virtual 1228 /// registers. 1229 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1230 // Skip empty types 1231 if (V->getType()->isEmptyTy()) 1232 return; 1233 1234 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1235 if (VMI != FuncInfo.ValueMap.end()) { 1236 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1237 CopyValueToVirtualRegister(V, VMI->second); 1238 } 1239 } 1240 1241 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1242 /// the current basic block, add it to ValueMap now so that we'll get a 1243 /// CopyTo/FromReg. 1244 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1245 // No need to export constants. 1246 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1247 1248 // Already exported? 1249 if (FuncInfo.isExportedInst(V)) return; 1250 1251 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1252 CopyValueToVirtualRegister(V, Reg); 1253 } 1254 1255 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1256 const BasicBlock *FromBB) { 1257 // The operands of the setcc have to be in this block. We don't know 1258 // how to export them from some other block. 1259 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1260 // Can export from current BB. 1261 if (VI->getParent() == FromBB) 1262 return true; 1263 1264 // Is already exported, noop. 1265 return FuncInfo.isExportedInst(V); 1266 } 1267 1268 // If this is an argument, we can export it if the BB is the entry block or 1269 // if it is already exported. 1270 if (isa<Argument>(V)) { 1271 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1272 return true; 1273 1274 // Otherwise, can only export this if it is already exported. 1275 return FuncInfo.isExportedInst(V); 1276 } 1277 1278 // Otherwise, constants can always be exported. 1279 return true; 1280 } 1281 1282 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1283 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, 1284 MachineBasicBlock *Dst) { 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 if (!BPI) 1287 return 0; 1288 BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock()); 1289 BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock()); 1290 return BPI->getEdgeWeight(SrcBB, DstBB); 1291 } 1292 1293 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src, 1294 MachineBasicBlock *Dst) { 1295 uint32_t weight = getEdgeWeight(Src, Dst); 1296 Src->addSuccessor(Dst, weight); 1297 } 1298 1299 1300 static bool InBlock(const Value *V, const BasicBlock *BB) { 1301 if (const Instruction *I = dyn_cast<Instruction>(V)) 1302 return I->getParent() == BB; 1303 return true; 1304 } 1305 1306 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1307 /// This function emits a branch and is used at the leaves of an OR or an 1308 /// AND operator tree. 1309 /// 1310 void 1311 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1312 MachineBasicBlock *TBB, 1313 MachineBasicBlock *FBB, 1314 MachineBasicBlock *CurBB, 1315 MachineBasicBlock *SwitchBB) { 1316 const BasicBlock *BB = CurBB->getBasicBlock(); 1317 1318 // If the leaf of the tree is a comparison, merge the condition into 1319 // the caseblock. 1320 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1321 // The operands of the cmp have to be in this block. We don't know 1322 // how to export them from some other block. If this is the first block 1323 // of the sequence, no exporting is needed. 1324 if (CurBB == SwitchBB || 1325 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1326 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1327 ISD::CondCode Condition; 1328 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1329 Condition = getICmpCondCode(IC->getPredicate()); 1330 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1331 Condition = getFCmpCondCode(FC->getPredicate()); 1332 } else { 1333 Condition = ISD::SETEQ; // silence warning. 1334 llvm_unreachable("Unknown compare instruction"); 1335 } 1336 1337 CaseBlock CB(Condition, BOp->getOperand(0), 1338 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1339 SwitchCases.push_back(CB); 1340 return; 1341 } 1342 } 1343 1344 // Create a CaseBlock record representing this branch. 1345 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1346 NULL, TBB, FBB, CurBB); 1347 SwitchCases.push_back(CB); 1348 } 1349 1350 /// FindMergedConditions - If Cond is an expression like 1351 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1352 MachineBasicBlock *TBB, 1353 MachineBasicBlock *FBB, 1354 MachineBasicBlock *CurBB, 1355 MachineBasicBlock *SwitchBB, 1356 unsigned Opc) { 1357 // If this node is not part of the or/and tree, emit it as a branch. 1358 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1359 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1360 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1361 BOp->getParent() != CurBB->getBasicBlock() || 1362 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1363 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1364 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1365 return; 1366 } 1367 1368 // Create TmpBB after CurBB. 1369 MachineFunction::iterator BBI = CurBB; 1370 MachineFunction &MF = DAG.getMachineFunction(); 1371 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1372 CurBB->getParent()->insert(++BBI, TmpBB); 1373 1374 if (Opc == Instruction::Or) { 1375 // Codegen X | Y as: 1376 // jmp_if_X TBB 1377 // jmp TmpBB 1378 // TmpBB: 1379 // jmp_if_Y TBB 1380 // jmp FBB 1381 // 1382 1383 // Emit the LHS condition. 1384 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1385 1386 // Emit the RHS condition into TmpBB. 1387 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1388 } else { 1389 assert(Opc == Instruction::And && "Unknown merge op!"); 1390 // Codegen X & Y as: 1391 // jmp_if_X TmpBB 1392 // jmp FBB 1393 // TmpBB: 1394 // jmp_if_Y TBB 1395 // jmp FBB 1396 // 1397 // This requires creation of TmpBB after CurBB. 1398 1399 // Emit the LHS condition. 1400 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1401 1402 // Emit the RHS condition into TmpBB. 1403 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1404 } 1405 } 1406 1407 /// If the set of cases should be emitted as a series of branches, return true. 1408 /// If we should emit this as a bunch of and/or'd together conditions, return 1409 /// false. 1410 bool 1411 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1412 if (Cases.size() != 2) return true; 1413 1414 // If this is two comparisons of the same values or'd or and'd together, they 1415 // will get folded into a single comparison, so don't emit two blocks. 1416 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1417 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1418 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1419 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1420 return false; 1421 } 1422 1423 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1424 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1425 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1426 Cases[0].CC == Cases[1].CC && 1427 isa<Constant>(Cases[0].CmpRHS) && 1428 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1429 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1430 return false; 1431 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1432 return false; 1433 } 1434 1435 return true; 1436 } 1437 1438 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1439 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1440 1441 // Update machine-CFG edges. 1442 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1443 1444 // Figure out which block is immediately after the current one. 1445 MachineBasicBlock *NextBlock = 0; 1446 MachineFunction::iterator BBI = BrMBB; 1447 if (++BBI != FuncInfo.MF->end()) 1448 NextBlock = BBI; 1449 1450 if (I.isUnconditional()) { 1451 // Update machine-CFG edges. 1452 BrMBB->addSuccessor(Succ0MBB); 1453 1454 // If this is not a fall-through branch, emit the branch. 1455 if (Succ0MBB != NextBlock) 1456 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1457 MVT::Other, getControlRoot(), 1458 DAG.getBasicBlock(Succ0MBB))); 1459 1460 return; 1461 } 1462 1463 // If this condition is one of the special cases we handle, do special stuff 1464 // now. 1465 const Value *CondVal = I.getCondition(); 1466 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1467 1468 // If this is a series of conditions that are or'd or and'd together, emit 1469 // this as a sequence of branches instead of setcc's with and/or operations. 1470 // As long as jumps are not expensive, this should improve performance. 1471 // For example, instead of something like: 1472 // cmp A, B 1473 // C = seteq 1474 // cmp D, E 1475 // F = setle 1476 // or C, F 1477 // jnz foo 1478 // Emit: 1479 // cmp A, B 1480 // je foo 1481 // cmp D, E 1482 // jle foo 1483 // 1484 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1485 if (!TLI.isJumpExpensive() && 1486 BOp->hasOneUse() && 1487 (BOp->getOpcode() == Instruction::And || 1488 BOp->getOpcode() == Instruction::Or)) { 1489 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1490 BOp->getOpcode()); 1491 // If the compares in later blocks need to use values not currently 1492 // exported from this block, export them now. This block should always 1493 // be the first entry. 1494 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1495 1496 // Allow some cases to be rejected. 1497 if (ShouldEmitAsBranches(SwitchCases)) { 1498 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1499 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1500 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1501 } 1502 1503 // Emit the branch for this block. 1504 visitSwitchCase(SwitchCases[0], BrMBB); 1505 SwitchCases.erase(SwitchCases.begin()); 1506 return; 1507 } 1508 1509 // Okay, we decided not to do this, remove any inserted MBB's and clear 1510 // SwitchCases. 1511 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1512 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1513 1514 SwitchCases.clear(); 1515 } 1516 } 1517 1518 // Create a CaseBlock record representing this branch. 1519 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1520 NULL, Succ0MBB, Succ1MBB, BrMBB); 1521 1522 // Use visitSwitchCase to actually insert the fast branch sequence for this 1523 // cond branch. 1524 visitSwitchCase(CB, BrMBB); 1525 } 1526 1527 /// visitSwitchCase - Emits the necessary code to represent a single node in 1528 /// the binary search tree resulting from lowering a switch instruction. 1529 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1530 MachineBasicBlock *SwitchBB) { 1531 SDValue Cond; 1532 SDValue CondLHS = getValue(CB.CmpLHS); 1533 DebugLoc dl = getCurDebugLoc(); 1534 1535 // Build the setcc now. 1536 if (CB.CmpMHS == NULL) { 1537 // Fold "(X == true)" to X and "(X == false)" to !X to 1538 // handle common cases produced by branch lowering. 1539 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1540 CB.CC == ISD::SETEQ) 1541 Cond = CondLHS; 1542 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1543 CB.CC == ISD::SETEQ) { 1544 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1545 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1546 } else 1547 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1548 } else { 1549 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1550 1551 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1552 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1553 1554 SDValue CmpOp = getValue(CB.CmpMHS); 1555 EVT VT = CmpOp.getValueType(); 1556 1557 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1558 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1559 ISD::SETLE); 1560 } else { 1561 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1562 VT, CmpOp, DAG.getConstant(Low, VT)); 1563 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1564 DAG.getConstant(High-Low, VT), ISD::SETULE); 1565 } 1566 } 1567 1568 // Update successor info 1569 addSuccessorWithWeight(SwitchBB, CB.TrueBB); 1570 addSuccessorWithWeight(SwitchBB, CB.FalseBB); 1571 1572 // Set NextBlock to be the MBB immediately after the current one, if any. 1573 // This is used to avoid emitting unnecessary branches to the next block. 1574 MachineBasicBlock *NextBlock = 0; 1575 MachineFunction::iterator BBI = SwitchBB; 1576 if (++BBI != FuncInfo.MF->end()) 1577 NextBlock = BBI; 1578 1579 // If the lhs block is the next block, invert the condition so that we can 1580 // fall through to the lhs instead of the rhs block. 1581 if (CB.TrueBB == NextBlock) { 1582 std::swap(CB.TrueBB, CB.FalseBB); 1583 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1584 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1585 } 1586 1587 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1588 MVT::Other, getControlRoot(), Cond, 1589 DAG.getBasicBlock(CB.TrueBB)); 1590 1591 // Insert the false branch. Do this even if it's a fall through branch, 1592 // this makes it easier to do DAG optimizations which require inverting 1593 // the branch condition. 1594 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1595 DAG.getBasicBlock(CB.FalseBB)); 1596 1597 DAG.setRoot(BrCond); 1598 } 1599 1600 /// visitJumpTable - Emit JumpTable node in the current MBB 1601 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1602 // Emit the code for the jump table 1603 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1604 EVT PTy = TLI.getPointerTy(); 1605 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1606 JT.Reg, PTy); 1607 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1608 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1609 MVT::Other, Index.getValue(1), 1610 Table, Index); 1611 DAG.setRoot(BrJumpTable); 1612 } 1613 1614 /// visitJumpTableHeader - This function emits necessary code to produce index 1615 /// in the JumpTable from switch case. 1616 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1617 JumpTableHeader &JTH, 1618 MachineBasicBlock *SwitchBB) { 1619 // Subtract the lowest switch case value from the value being switched on and 1620 // conditional branch to default mbb if the result is greater than the 1621 // difference between smallest and largest cases. 1622 SDValue SwitchOp = getValue(JTH.SValue); 1623 EVT VT = SwitchOp.getValueType(); 1624 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1625 DAG.getConstant(JTH.First, VT)); 1626 1627 // The SDNode we just created, which holds the value being switched on minus 1628 // the smallest case value, needs to be copied to a virtual register so it 1629 // can be used as an index into the jump table in a subsequent basic block. 1630 // This value may be smaller or larger than the target's pointer type, and 1631 // therefore require extension or truncating. 1632 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1633 1634 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1635 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1636 JumpTableReg, SwitchOp); 1637 JT.Reg = JumpTableReg; 1638 1639 // Emit the range check for the jump table, and branch to the default block 1640 // for the switch statement if the value being switched on exceeds the largest 1641 // case in the switch. 1642 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1643 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1644 DAG.getConstant(JTH.Last-JTH.First,VT), 1645 ISD::SETUGT); 1646 1647 // Set NextBlock to be the MBB immediately after the current one, if any. 1648 // This is used to avoid emitting unnecessary branches to the next block. 1649 MachineBasicBlock *NextBlock = 0; 1650 MachineFunction::iterator BBI = SwitchBB; 1651 1652 if (++BBI != FuncInfo.MF->end()) 1653 NextBlock = BBI; 1654 1655 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1656 MVT::Other, CopyTo, CMP, 1657 DAG.getBasicBlock(JT.Default)); 1658 1659 if (JT.MBB != NextBlock) 1660 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1661 DAG.getBasicBlock(JT.MBB)); 1662 1663 DAG.setRoot(BrCond); 1664 } 1665 1666 /// visitBitTestHeader - This function emits necessary code to produce value 1667 /// suitable for "bit tests" 1668 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1669 MachineBasicBlock *SwitchBB) { 1670 // Subtract the minimum value 1671 SDValue SwitchOp = getValue(B.SValue); 1672 EVT VT = SwitchOp.getValueType(); 1673 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1674 DAG.getConstant(B.First, VT)); 1675 1676 // Check range 1677 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1678 TLI.getSetCCResultType(Sub.getValueType()), 1679 Sub, DAG.getConstant(B.Range, VT), 1680 ISD::SETUGT); 1681 1682 // Determine the type of the test operands. 1683 bool UsePtrType = false; 1684 if (!TLI.isTypeLegal(VT)) 1685 UsePtrType = true; 1686 else { 1687 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1688 if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) { 1689 // Switch table case range are encoded into series of masks. 1690 // Just use pointer type, it's guaranteed to fit. 1691 UsePtrType = true; 1692 break; 1693 } 1694 } 1695 if (UsePtrType) { 1696 VT = TLI.getPointerTy(); 1697 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1698 } 1699 1700 B.RegVT = VT; 1701 B.Reg = FuncInfo.CreateReg(VT); 1702 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1703 B.Reg, Sub); 1704 1705 // Set NextBlock to be the MBB immediately after the current one, if any. 1706 // This is used to avoid emitting unnecessary branches to the next block. 1707 MachineBasicBlock *NextBlock = 0; 1708 MachineFunction::iterator BBI = SwitchBB; 1709 if (++BBI != FuncInfo.MF->end()) 1710 NextBlock = BBI; 1711 1712 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1713 1714 addSuccessorWithWeight(SwitchBB, B.Default); 1715 addSuccessorWithWeight(SwitchBB, MBB); 1716 1717 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1718 MVT::Other, CopyTo, RangeCmp, 1719 DAG.getBasicBlock(B.Default)); 1720 1721 if (MBB != NextBlock) 1722 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1723 DAG.getBasicBlock(MBB)); 1724 1725 DAG.setRoot(BrRange); 1726 } 1727 1728 /// visitBitTestCase - this function produces one "bit test" 1729 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1730 MachineBasicBlock* NextMBB, 1731 unsigned Reg, 1732 BitTestCase &B, 1733 MachineBasicBlock *SwitchBB) { 1734 EVT VT = BB.RegVT; 1735 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1736 Reg, VT); 1737 SDValue Cmp; 1738 if (CountPopulation_64(B.Mask) == 1) { 1739 // Testing for a single bit; just compare the shift count with what it 1740 // would need to be to shift a 1 bit in that position. 1741 Cmp = DAG.getSetCC(getCurDebugLoc(), 1742 TLI.getSetCCResultType(VT), 1743 ShiftOp, 1744 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1745 ISD::SETEQ); 1746 } else { 1747 // Make desired shift 1748 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1749 DAG.getConstant(1, VT), ShiftOp); 1750 1751 // Emit bit tests and jumps 1752 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1753 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1754 Cmp = DAG.getSetCC(getCurDebugLoc(), 1755 TLI.getSetCCResultType(VT), 1756 AndOp, DAG.getConstant(0, VT), 1757 ISD::SETNE); 1758 } 1759 1760 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1761 addSuccessorWithWeight(SwitchBB, NextMBB); 1762 1763 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1764 MVT::Other, getControlRoot(), 1765 Cmp, DAG.getBasicBlock(B.TargetBB)); 1766 1767 // Set NextBlock to be the MBB immediately after the current one, if any. 1768 // This is used to avoid emitting unnecessary branches to the next block. 1769 MachineBasicBlock *NextBlock = 0; 1770 MachineFunction::iterator BBI = SwitchBB; 1771 if (++BBI != FuncInfo.MF->end()) 1772 NextBlock = BBI; 1773 1774 if (NextMBB != NextBlock) 1775 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1776 DAG.getBasicBlock(NextMBB)); 1777 1778 DAG.setRoot(BrAnd); 1779 } 1780 1781 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1782 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1783 1784 // Retrieve successors. 1785 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1786 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1787 1788 const Value *Callee(I.getCalledValue()); 1789 if (isa<InlineAsm>(Callee)) 1790 visitInlineAsm(&I); 1791 else 1792 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1793 1794 // If the value of the invoke is used outside of its defining block, make it 1795 // available as a virtual register. 1796 CopyToExportRegsIfNeeded(&I); 1797 1798 // Update successor info 1799 InvokeMBB->addSuccessor(Return); 1800 InvokeMBB->addSuccessor(LandingPad); 1801 1802 // Drop into normal successor. 1803 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1804 MVT::Other, getControlRoot(), 1805 DAG.getBasicBlock(Return))); 1806 } 1807 1808 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1809 } 1810 1811 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1812 /// small case ranges). 1813 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1814 CaseRecVector& WorkList, 1815 const Value* SV, 1816 MachineBasicBlock *Default, 1817 MachineBasicBlock *SwitchBB) { 1818 Case& BackCase = *(CR.Range.second-1); 1819 1820 // Size is the number of Cases represented by this range. 1821 size_t Size = CR.Range.second - CR.Range.first; 1822 if (Size > 3) 1823 return false; 1824 1825 // Get the MachineFunction which holds the current MBB. This is used when 1826 // inserting any additional MBBs necessary to represent the switch. 1827 MachineFunction *CurMF = FuncInfo.MF; 1828 1829 // Figure out which block is immediately after the current one. 1830 MachineBasicBlock *NextBlock = 0; 1831 MachineFunction::iterator BBI = CR.CaseBB; 1832 1833 if (++BBI != FuncInfo.MF->end()) 1834 NextBlock = BBI; 1835 1836 // If any two of the cases has the same destination, and if one value 1837 // is the same as the other, but has one bit unset that the other has set, 1838 // use bit manipulation to do two compares at once. For example: 1839 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1840 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1841 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1842 if (Size == 2 && CR.CaseBB == SwitchBB) { 1843 Case &Small = *CR.Range.first; 1844 Case &Big = *(CR.Range.second-1); 1845 1846 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1847 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1848 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1849 1850 // Check that there is only one bit different. 1851 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1852 (SmallValue | BigValue) == BigValue) { 1853 // Isolate the common bit. 1854 APInt CommonBit = BigValue & ~SmallValue; 1855 assert((SmallValue | CommonBit) == BigValue && 1856 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1857 1858 SDValue CondLHS = getValue(SV); 1859 EVT VT = CondLHS.getValueType(); 1860 DebugLoc DL = getCurDebugLoc(); 1861 1862 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1863 DAG.getConstant(CommonBit, VT)); 1864 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1865 Or, DAG.getConstant(BigValue, VT), 1866 ISD::SETEQ); 1867 1868 // Update successor info. 1869 SwitchBB->addSuccessor(Small.BB); 1870 SwitchBB->addSuccessor(Default); 1871 1872 // Insert the true branch. 1873 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1874 getControlRoot(), Cond, 1875 DAG.getBasicBlock(Small.BB)); 1876 1877 // Insert the false branch. 1878 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1879 DAG.getBasicBlock(Default)); 1880 1881 DAG.setRoot(BrCond); 1882 return true; 1883 } 1884 } 1885 } 1886 1887 // Rearrange the case blocks so that the last one falls through if possible. 1888 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1889 // The last case block won't fall through into 'NextBlock' if we emit the 1890 // branches in this order. See if rearranging a case value would help. 1891 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1892 if (I->BB == NextBlock) { 1893 std::swap(*I, BackCase); 1894 break; 1895 } 1896 } 1897 } 1898 1899 // Create a CaseBlock record representing a conditional branch to 1900 // the Case's target mbb if the value being switched on SV is equal 1901 // to C. 1902 MachineBasicBlock *CurBlock = CR.CaseBB; 1903 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1904 MachineBasicBlock *FallThrough; 1905 if (I != E-1) { 1906 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1907 CurMF->insert(BBI, FallThrough); 1908 1909 // Put SV in a virtual register to make it available from the new blocks. 1910 ExportFromCurrentBlock(SV); 1911 } else { 1912 // If the last case doesn't match, go to the default block. 1913 FallThrough = Default; 1914 } 1915 1916 const Value *RHS, *LHS, *MHS; 1917 ISD::CondCode CC; 1918 if (I->High == I->Low) { 1919 // This is just small small case range :) containing exactly 1 case 1920 CC = ISD::SETEQ; 1921 LHS = SV; RHS = I->High; MHS = NULL; 1922 } else { 1923 CC = ISD::SETLE; 1924 LHS = I->Low; MHS = SV; RHS = I->High; 1925 } 1926 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1927 1928 // If emitting the first comparison, just call visitSwitchCase to emit the 1929 // code into the current block. Otherwise, push the CaseBlock onto the 1930 // vector to be later processed by SDISel, and insert the node's MBB 1931 // before the next MBB. 1932 if (CurBlock == SwitchBB) 1933 visitSwitchCase(CB, SwitchBB); 1934 else 1935 SwitchCases.push_back(CB); 1936 1937 CurBlock = FallThrough; 1938 } 1939 1940 return true; 1941 } 1942 1943 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1944 return !DisableJumpTables && 1945 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1946 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1947 } 1948 1949 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1950 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1951 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 1952 return (LastExt - FirstExt + 1ULL); 1953 } 1954 1955 /// handleJTSwitchCase - Emit jumptable for current switch case range 1956 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1957 CaseRecVector& WorkList, 1958 const Value* SV, 1959 MachineBasicBlock* Default, 1960 MachineBasicBlock *SwitchBB) { 1961 Case& FrontCase = *CR.Range.first; 1962 Case& BackCase = *(CR.Range.second-1); 1963 1964 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1965 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1966 1967 APInt TSize(First.getBitWidth(), 0); 1968 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1969 I!=E; ++I) 1970 TSize += I->size(); 1971 1972 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1973 return false; 1974 1975 APInt Range = ComputeRange(First, Last); 1976 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1977 if (Density < 0.4) 1978 return false; 1979 1980 DEBUG(dbgs() << "Lowering jump table\n" 1981 << "First entry: " << First << ". Last entry: " << Last << '\n' 1982 << "Range: " << Range 1983 << ". Size: " << TSize << ". Density: " << Density << "\n\n"); 1984 1985 // Get the MachineFunction which holds the current MBB. This is used when 1986 // inserting any additional MBBs necessary to represent the switch. 1987 MachineFunction *CurMF = FuncInfo.MF; 1988 1989 // Figure out which block is immediately after the current one. 1990 MachineFunction::iterator BBI = CR.CaseBB; 1991 ++BBI; 1992 1993 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1994 1995 // Create a new basic block to hold the code for loading the address 1996 // of the jump table, and jumping to it. Update successor information; 1997 // we will either branch to the default case for the switch, or the jump 1998 // table. 1999 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2000 CurMF->insert(BBI, JumpTableBB); 2001 2002 addSuccessorWithWeight(CR.CaseBB, Default); 2003 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2004 2005 // Build a vector of destination BBs, corresponding to each target 2006 // of the jump table. If the value of the jump table slot corresponds to 2007 // a case statement, push the case's BB onto the vector, otherwise, push 2008 // the default BB. 2009 std::vector<MachineBasicBlock*> DestBBs; 2010 APInt TEI = First; 2011 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2012 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2013 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2014 2015 if (Low.sle(TEI) && TEI.sle(High)) { 2016 DestBBs.push_back(I->BB); 2017 if (TEI==High) 2018 ++I; 2019 } else { 2020 DestBBs.push_back(Default); 2021 } 2022 } 2023 2024 // Update successor info. Add one edge to each unique successor. 2025 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2026 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2027 E = DestBBs.end(); I != E; ++I) { 2028 if (!SuccsHandled[(*I)->getNumber()]) { 2029 SuccsHandled[(*I)->getNumber()] = true; 2030 addSuccessorWithWeight(JumpTableBB, *I); 2031 } 2032 } 2033 2034 // Create a jump table index for this jump table. 2035 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2036 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2037 ->createJumpTableIndex(DestBBs); 2038 2039 // Set the jump table information so that we can codegen it as a second 2040 // MachineBasicBlock 2041 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2042 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2043 if (CR.CaseBB == SwitchBB) 2044 visitJumpTableHeader(JT, JTH, SwitchBB); 2045 2046 JTCases.push_back(JumpTableBlock(JTH, JT)); 2047 2048 return true; 2049 } 2050 2051 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2052 /// 2 subtrees. 2053 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2054 CaseRecVector& WorkList, 2055 const Value* SV, 2056 MachineBasicBlock *Default, 2057 MachineBasicBlock *SwitchBB) { 2058 // Get the MachineFunction which holds the current MBB. This is used when 2059 // inserting any additional MBBs necessary to represent the switch. 2060 MachineFunction *CurMF = FuncInfo.MF; 2061 2062 // Figure out which block is immediately after the current one. 2063 MachineFunction::iterator BBI = CR.CaseBB; 2064 ++BBI; 2065 2066 Case& FrontCase = *CR.Range.first; 2067 Case& BackCase = *(CR.Range.second-1); 2068 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2069 2070 // Size is the number of Cases represented by this range. 2071 unsigned Size = CR.Range.second - CR.Range.first; 2072 2073 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2074 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2075 double FMetric = 0; 2076 CaseItr Pivot = CR.Range.first + Size/2; 2077 2078 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2079 // (heuristically) allow us to emit JumpTable's later. 2080 APInt TSize(First.getBitWidth(), 0); 2081 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2082 I!=E; ++I) 2083 TSize += I->size(); 2084 2085 APInt LSize = FrontCase.size(); 2086 APInt RSize = TSize-LSize; 2087 DEBUG(dbgs() << "Selecting best pivot: \n" 2088 << "First: " << First << ", Last: " << Last <<'\n' 2089 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2090 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2091 J!=E; ++I, ++J) { 2092 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2093 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2094 APInt Range = ComputeRange(LEnd, RBegin); 2095 assert((Range - 2ULL).isNonNegative() && 2096 "Invalid case distance"); 2097 // Use volatile double here to avoid excess precision issues on some hosts, 2098 // e.g. that use 80-bit X87 registers. 2099 volatile double LDensity = 2100 (double)LSize.roundToDouble() / 2101 (LEnd - First + 1ULL).roundToDouble(); 2102 volatile double RDensity = 2103 (double)RSize.roundToDouble() / 2104 (Last - RBegin + 1ULL).roundToDouble(); 2105 double Metric = Range.logBase2()*(LDensity+RDensity); 2106 // Should always split in some non-trivial place 2107 DEBUG(dbgs() <<"=>Step\n" 2108 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2109 << "LDensity: " << LDensity 2110 << ", RDensity: " << RDensity << '\n' 2111 << "Metric: " << Metric << '\n'); 2112 if (FMetric < Metric) { 2113 Pivot = J; 2114 FMetric = Metric; 2115 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2116 } 2117 2118 LSize += J->size(); 2119 RSize -= J->size(); 2120 } 2121 if (areJTsAllowed(TLI)) { 2122 // If our case is dense we *really* should handle it earlier! 2123 assert((FMetric > 0) && "Should handle dense range earlier!"); 2124 } else { 2125 Pivot = CR.Range.first + Size/2; 2126 } 2127 2128 CaseRange LHSR(CR.Range.first, Pivot); 2129 CaseRange RHSR(Pivot, CR.Range.second); 2130 Constant *C = Pivot->Low; 2131 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2132 2133 // We know that we branch to the LHS if the Value being switched on is 2134 // less than the Pivot value, C. We use this to optimize our binary 2135 // tree a bit, by recognizing that if SV is greater than or equal to the 2136 // LHS's Case Value, and that Case Value is exactly one less than the 2137 // Pivot's Value, then we can branch directly to the LHS's Target, 2138 // rather than creating a leaf node for it. 2139 if ((LHSR.second - LHSR.first) == 1 && 2140 LHSR.first->High == CR.GE && 2141 cast<ConstantInt>(C)->getValue() == 2142 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2143 TrueBB = LHSR.first->BB; 2144 } else { 2145 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2146 CurMF->insert(BBI, TrueBB); 2147 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2148 2149 // Put SV in a virtual register to make it available from the new blocks. 2150 ExportFromCurrentBlock(SV); 2151 } 2152 2153 // Similar to the optimization above, if the Value being switched on is 2154 // known to be less than the Constant CR.LT, and the current Case Value 2155 // is CR.LT - 1, then we can branch directly to the target block for 2156 // the current Case Value, rather than emitting a RHS leaf node for it. 2157 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2158 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2159 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2160 FalseBB = RHSR.first->BB; 2161 } else { 2162 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2163 CurMF->insert(BBI, FalseBB); 2164 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2165 2166 // Put SV in a virtual register to make it available from the new blocks. 2167 ExportFromCurrentBlock(SV); 2168 } 2169 2170 // Create a CaseBlock record representing a conditional branch to 2171 // the LHS node if the value being switched on SV is less than C. 2172 // Otherwise, branch to LHS. 2173 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2174 2175 if (CR.CaseBB == SwitchBB) 2176 visitSwitchCase(CB, SwitchBB); 2177 else 2178 SwitchCases.push_back(CB); 2179 2180 return true; 2181 } 2182 2183 /// handleBitTestsSwitchCase - if current case range has few destination and 2184 /// range span less, than machine word bitwidth, encode case range into series 2185 /// of masks and emit bit tests with these masks. 2186 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2187 CaseRecVector& WorkList, 2188 const Value* SV, 2189 MachineBasicBlock* Default, 2190 MachineBasicBlock *SwitchBB){ 2191 EVT PTy = TLI.getPointerTy(); 2192 unsigned IntPtrBits = PTy.getSizeInBits(); 2193 2194 Case& FrontCase = *CR.Range.first; 2195 Case& BackCase = *(CR.Range.second-1); 2196 2197 // Get the MachineFunction which holds the current MBB. This is used when 2198 // inserting any additional MBBs necessary to represent the switch. 2199 MachineFunction *CurMF = FuncInfo.MF; 2200 2201 // If target does not have legal shift left, do not emit bit tests at all. 2202 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2203 return false; 2204 2205 size_t numCmps = 0; 2206 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2207 I!=E; ++I) { 2208 // Single case counts one, case range - two. 2209 numCmps += (I->Low == I->High ? 1 : 2); 2210 } 2211 2212 // Count unique destinations 2213 SmallSet<MachineBasicBlock*, 4> Dests; 2214 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2215 Dests.insert(I->BB); 2216 if (Dests.size() > 3) 2217 // Don't bother the code below, if there are too much unique destinations 2218 return false; 2219 } 2220 DEBUG(dbgs() << "Total number of unique destinations: " 2221 << Dests.size() << '\n' 2222 << "Total number of comparisons: " << numCmps << '\n'); 2223 2224 // Compute span of values. 2225 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2226 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2227 APInt cmpRange = maxValue - minValue; 2228 2229 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2230 << "Low bound: " << minValue << '\n' 2231 << "High bound: " << maxValue << '\n'); 2232 2233 if (cmpRange.uge(IntPtrBits) || 2234 (!(Dests.size() == 1 && numCmps >= 3) && 2235 !(Dests.size() == 2 && numCmps >= 5) && 2236 !(Dests.size() >= 3 && numCmps >= 6))) 2237 return false; 2238 2239 DEBUG(dbgs() << "Emitting bit tests\n"); 2240 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2241 2242 // Optimize the case where all the case values fit in a 2243 // word without having to subtract minValue. In this case, 2244 // we can optimize away the subtraction. 2245 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2246 cmpRange = maxValue; 2247 } else { 2248 lowBound = minValue; 2249 } 2250 2251 CaseBitsVector CasesBits; 2252 unsigned i, count = 0; 2253 2254 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2255 MachineBasicBlock* Dest = I->BB; 2256 for (i = 0; i < count; ++i) 2257 if (Dest == CasesBits[i].BB) 2258 break; 2259 2260 if (i == count) { 2261 assert((count < 3) && "Too much destinations to test!"); 2262 CasesBits.push_back(CaseBits(0, Dest, 0)); 2263 count++; 2264 } 2265 2266 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2267 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2268 2269 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2270 uint64_t hi = (highValue - lowBound).getZExtValue(); 2271 2272 for (uint64_t j = lo; j <= hi; j++) { 2273 CasesBits[i].Mask |= 1ULL << j; 2274 CasesBits[i].Bits++; 2275 } 2276 2277 } 2278 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2279 2280 BitTestInfo BTC; 2281 2282 // Figure out which block is immediately after the current one. 2283 MachineFunction::iterator BBI = CR.CaseBB; 2284 ++BBI; 2285 2286 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2287 2288 DEBUG(dbgs() << "Cases:\n"); 2289 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2290 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2291 << ", Bits: " << CasesBits[i].Bits 2292 << ", BB: " << CasesBits[i].BB << '\n'); 2293 2294 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2295 CurMF->insert(BBI, CaseBB); 2296 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2297 CaseBB, 2298 CasesBits[i].BB)); 2299 2300 // Put SV in a virtual register to make it available from the new blocks. 2301 ExportFromCurrentBlock(SV); 2302 } 2303 2304 BitTestBlock BTB(lowBound, cmpRange, SV, 2305 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2306 CR.CaseBB, Default, BTC); 2307 2308 if (CR.CaseBB == SwitchBB) 2309 visitBitTestHeader(BTB, SwitchBB); 2310 2311 BitTestCases.push_back(BTB); 2312 2313 return true; 2314 } 2315 2316 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2317 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2318 const SwitchInst& SI) { 2319 size_t numCmps = 0; 2320 2321 // Start with "simple" cases 2322 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2323 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2324 Cases.push_back(Case(SI.getSuccessorValue(i), 2325 SI.getSuccessorValue(i), 2326 SMBB)); 2327 } 2328 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2329 2330 // Merge case into clusters 2331 if (Cases.size() >= 2) 2332 // Must recompute end() each iteration because it may be 2333 // invalidated by erase if we hold on to it 2334 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2335 J != Cases.end(); ) { 2336 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2337 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2338 MachineBasicBlock* nextBB = J->BB; 2339 MachineBasicBlock* currentBB = I->BB; 2340 2341 // If the two neighboring cases go to the same destination, merge them 2342 // into a single case. 2343 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2344 I->High = J->High; 2345 J = Cases.erase(J); 2346 } else { 2347 I = J++; 2348 } 2349 } 2350 2351 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2352 if (I->Low != I->High) 2353 // A range counts double, since it requires two compares. 2354 ++numCmps; 2355 } 2356 2357 return numCmps; 2358 } 2359 2360 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2361 MachineBasicBlock *Last) { 2362 // Update JTCases. 2363 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2364 if (JTCases[i].first.HeaderBB == First) 2365 JTCases[i].first.HeaderBB = Last; 2366 2367 // Update BitTestCases. 2368 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2369 if (BitTestCases[i].Parent == First) 2370 BitTestCases[i].Parent = Last; 2371 } 2372 2373 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2374 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2375 2376 // Figure out which block is immediately after the current one. 2377 MachineBasicBlock *NextBlock = 0; 2378 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2379 2380 // If there is only the default destination, branch to it if it is not the 2381 // next basic block. Otherwise, just fall through. 2382 if (SI.getNumOperands() == 2) { 2383 // Update machine-CFG edges. 2384 2385 // If this is not a fall-through branch, emit the branch. 2386 SwitchMBB->addSuccessor(Default); 2387 if (Default != NextBlock) 2388 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2389 MVT::Other, getControlRoot(), 2390 DAG.getBasicBlock(Default))); 2391 2392 return; 2393 } 2394 2395 // If there are any non-default case statements, create a vector of Cases 2396 // representing each one, and sort the vector so that we can efficiently 2397 // create a binary search tree from them. 2398 CaseVector Cases; 2399 size_t numCmps = Clusterify(Cases, SI); 2400 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2401 << ". Total compares: " << numCmps << '\n'); 2402 numCmps = 0; 2403 2404 // Get the Value to be switched on and default basic blocks, which will be 2405 // inserted into CaseBlock records, representing basic blocks in the binary 2406 // search tree. 2407 const Value *SV = SI.getOperand(0); 2408 2409 // Push the initial CaseRec onto the worklist 2410 CaseRecVector WorkList; 2411 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2412 CaseRange(Cases.begin(),Cases.end()))); 2413 2414 while (!WorkList.empty()) { 2415 // Grab a record representing a case range to process off the worklist 2416 CaseRec CR = WorkList.back(); 2417 WorkList.pop_back(); 2418 2419 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2420 continue; 2421 2422 // If the range has few cases (two or less) emit a series of specific 2423 // tests. 2424 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2425 continue; 2426 2427 // If the switch has more than 5 blocks, and at least 40% dense, and the 2428 // target supports indirect branches, then emit a jump table rather than 2429 // lowering the switch to a binary tree of conditional branches. 2430 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2431 continue; 2432 2433 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2434 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2435 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2436 } 2437 } 2438 2439 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2440 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2441 2442 // Update machine-CFG edges with unique successors. 2443 SmallVector<BasicBlock*, 32> succs; 2444 succs.reserve(I.getNumSuccessors()); 2445 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2446 succs.push_back(I.getSuccessor(i)); 2447 array_pod_sort(succs.begin(), succs.end()); 2448 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2449 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2450 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2451 addSuccessorWithWeight(IndirectBrMBB, Succ); 2452 } 2453 2454 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2455 MVT::Other, getControlRoot(), 2456 getValue(I.getAddress()))); 2457 } 2458 2459 void SelectionDAGBuilder::visitFSub(const User &I) { 2460 // -0.0 - X --> fneg 2461 const Type *Ty = I.getType(); 2462 if (isa<Constant>(I.getOperand(0)) && 2463 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2464 SDValue Op2 = getValue(I.getOperand(1)); 2465 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2466 Op2.getValueType(), Op2)); 2467 return; 2468 } 2469 2470 visitBinary(I, ISD::FSUB); 2471 } 2472 2473 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2474 SDValue Op1 = getValue(I.getOperand(0)); 2475 SDValue Op2 = getValue(I.getOperand(1)); 2476 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2477 Op1.getValueType(), Op1, Op2)); 2478 } 2479 2480 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2481 SDValue Op1 = getValue(I.getOperand(0)); 2482 SDValue Op2 = getValue(I.getOperand(1)); 2483 2484 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2485 2486 // Coerce the shift amount to the right type if we can. 2487 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2488 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2489 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2490 DebugLoc DL = getCurDebugLoc(); 2491 2492 // If the operand is smaller than the shift count type, promote it. 2493 if (ShiftSize > Op2Size) 2494 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2495 2496 // If the operand is larger than the shift count type but the shift 2497 // count type has enough bits to represent any shift value, truncate 2498 // it now. This is a common case and it exposes the truncate to 2499 // optimization early. 2500 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2501 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2502 // Otherwise we'll need to temporarily settle for some other convenient 2503 // type. Type legalization will make adjustments once the shiftee is split. 2504 else 2505 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2506 } 2507 2508 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2509 Op1.getValueType(), Op1, Op2)); 2510 } 2511 2512 void SelectionDAGBuilder::visitICmp(const User &I) { 2513 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2514 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2515 predicate = IC->getPredicate(); 2516 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2517 predicate = ICmpInst::Predicate(IC->getPredicate()); 2518 SDValue Op1 = getValue(I.getOperand(0)); 2519 SDValue Op2 = getValue(I.getOperand(1)); 2520 ISD::CondCode Opcode = getICmpCondCode(predicate); 2521 2522 EVT DestVT = TLI.getValueType(I.getType()); 2523 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2524 } 2525 2526 void SelectionDAGBuilder::visitFCmp(const User &I) { 2527 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2528 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2529 predicate = FC->getPredicate(); 2530 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2531 predicate = FCmpInst::Predicate(FC->getPredicate()); 2532 SDValue Op1 = getValue(I.getOperand(0)); 2533 SDValue Op2 = getValue(I.getOperand(1)); 2534 ISD::CondCode Condition = getFCmpCondCode(predicate); 2535 EVT DestVT = TLI.getValueType(I.getType()); 2536 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2537 } 2538 2539 void SelectionDAGBuilder::visitSelect(const User &I) { 2540 SmallVector<EVT, 4> ValueVTs; 2541 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2542 unsigned NumValues = ValueVTs.size(); 2543 if (NumValues == 0) return; 2544 2545 SmallVector<SDValue, 4> Values(NumValues); 2546 SDValue Cond = getValue(I.getOperand(0)); 2547 SDValue TrueVal = getValue(I.getOperand(1)); 2548 SDValue FalseVal = getValue(I.getOperand(2)); 2549 2550 for (unsigned i = 0; i != NumValues; ++i) 2551 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2552 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2553 Cond, 2554 SDValue(TrueVal.getNode(), 2555 TrueVal.getResNo() + i), 2556 SDValue(FalseVal.getNode(), 2557 FalseVal.getResNo() + i)); 2558 2559 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2560 DAG.getVTList(&ValueVTs[0], NumValues), 2561 &Values[0], NumValues)); 2562 } 2563 2564 void SelectionDAGBuilder::visitTrunc(const User &I) { 2565 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2566 SDValue N = getValue(I.getOperand(0)); 2567 EVT DestVT = TLI.getValueType(I.getType()); 2568 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2569 } 2570 2571 void SelectionDAGBuilder::visitZExt(const User &I) { 2572 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2573 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2574 SDValue N = getValue(I.getOperand(0)); 2575 EVT DestVT = TLI.getValueType(I.getType()); 2576 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2577 } 2578 2579 void SelectionDAGBuilder::visitSExt(const User &I) { 2580 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2581 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2582 SDValue N = getValue(I.getOperand(0)); 2583 EVT DestVT = TLI.getValueType(I.getType()); 2584 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2585 } 2586 2587 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2588 // FPTrunc is never a no-op cast, no need to check 2589 SDValue N = getValue(I.getOperand(0)); 2590 EVT DestVT = TLI.getValueType(I.getType()); 2591 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2592 DestVT, N, DAG.getIntPtrConstant(0))); 2593 } 2594 2595 void SelectionDAGBuilder::visitFPExt(const User &I){ 2596 // FPTrunc is never a no-op cast, no need to check 2597 SDValue N = getValue(I.getOperand(0)); 2598 EVT DestVT = TLI.getValueType(I.getType()); 2599 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2600 } 2601 2602 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2603 // FPToUI is never a no-op cast, no need to check 2604 SDValue N = getValue(I.getOperand(0)); 2605 EVT DestVT = TLI.getValueType(I.getType()); 2606 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2607 } 2608 2609 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2610 // FPToSI is never a no-op cast, no need to check 2611 SDValue N = getValue(I.getOperand(0)); 2612 EVT DestVT = TLI.getValueType(I.getType()); 2613 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2614 } 2615 2616 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2617 // UIToFP is never a no-op cast, no need to check 2618 SDValue N = getValue(I.getOperand(0)); 2619 EVT DestVT = TLI.getValueType(I.getType()); 2620 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2621 } 2622 2623 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2624 // SIToFP is never a no-op cast, no need to check 2625 SDValue N = getValue(I.getOperand(0)); 2626 EVT DestVT = TLI.getValueType(I.getType()); 2627 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2628 } 2629 2630 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2631 // What to do depends on the size of the integer and the size of the pointer. 2632 // We can either truncate, zero extend, or no-op, accordingly. 2633 SDValue N = getValue(I.getOperand(0)); 2634 EVT DestVT = TLI.getValueType(I.getType()); 2635 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2636 } 2637 2638 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2639 // What to do depends on the size of the integer and the size of the pointer. 2640 // We can either truncate, zero extend, or no-op, accordingly. 2641 SDValue N = getValue(I.getOperand(0)); 2642 EVT DestVT = TLI.getValueType(I.getType()); 2643 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2644 } 2645 2646 void SelectionDAGBuilder::visitBitCast(const User &I) { 2647 SDValue N = getValue(I.getOperand(0)); 2648 EVT DestVT = TLI.getValueType(I.getType()); 2649 2650 // BitCast assures us that source and destination are the same size so this is 2651 // either a BITCAST or a no-op. 2652 if (DestVT != N.getValueType()) 2653 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2654 DestVT, N)); // convert types. 2655 else 2656 setValue(&I, N); // noop cast. 2657 } 2658 2659 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2660 SDValue InVec = getValue(I.getOperand(0)); 2661 SDValue InVal = getValue(I.getOperand(1)); 2662 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2663 TLI.getPointerTy(), 2664 getValue(I.getOperand(2))); 2665 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2666 TLI.getValueType(I.getType()), 2667 InVec, InVal, InIdx)); 2668 } 2669 2670 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2671 SDValue InVec = getValue(I.getOperand(0)); 2672 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2673 TLI.getPointerTy(), 2674 getValue(I.getOperand(1))); 2675 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2676 TLI.getValueType(I.getType()), InVec, InIdx)); 2677 } 2678 2679 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2680 // from SIndx and increasing to the element length (undefs are allowed). 2681 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2682 unsigned MaskNumElts = Mask.size(); 2683 for (unsigned i = 0; i != MaskNumElts; ++i) 2684 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2685 return false; 2686 return true; 2687 } 2688 2689 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2690 SmallVector<int, 8> Mask; 2691 SDValue Src1 = getValue(I.getOperand(0)); 2692 SDValue Src2 = getValue(I.getOperand(1)); 2693 2694 // Convert the ConstantVector mask operand into an array of ints, with -1 2695 // representing undef values. 2696 SmallVector<Constant*, 8> MaskElts; 2697 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2698 unsigned MaskNumElts = MaskElts.size(); 2699 for (unsigned i = 0; i != MaskNumElts; ++i) { 2700 if (isa<UndefValue>(MaskElts[i])) 2701 Mask.push_back(-1); 2702 else 2703 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2704 } 2705 2706 EVT VT = TLI.getValueType(I.getType()); 2707 EVT SrcVT = Src1.getValueType(); 2708 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2709 2710 if (SrcNumElts == MaskNumElts) { 2711 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2712 &Mask[0])); 2713 return; 2714 } 2715 2716 // Normalize the shuffle vector since mask and vector length don't match. 2717 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2718 // Mask is longer than the source vectors and is a multiple of the source 2719 // vectors. We can use concatenate vector to make the mask and vectors 2720 // lengths match. 2721 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2722 // The shuffle is concatenating two vectors together. 2723 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2724 VT, Src1, Src2)); 2725 return; 2726 } 2727 2728 // Pad both vectors with undefs to make them the same length as the mask. 2729 unsigned NumConcat = MaskNumElts / SrcNumElts; 2730 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2731 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2732 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2733 2734 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2735 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2736 MOps1[0] = Src1; 2737 MOps2[0] = Src2; 2738 2739 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2740 getCurDebugLoc(), VT, 2741 &MOps1[0], NumConcat); 2742 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2743 getCurDebugLoc(), VT, 2744 &MOps2[0], NumConcat); 2745 2746 // Readjust mask for new input vector length. 2747 SmallVector<int, 8> MappedOps; 2748 for (unsigned i = 0; i != MaskNumElts; ++i) { 2749 int Idx = Mask[i]; 2750 if (Idx < (int)SrcNumElts) 2751 MappedOps.push_back(Idx); 2752 else 2753 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2754 } 2755 2756 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2757 &MappedOps[0])); 2758 return; 2759 } 2760 2761 if (SrcNumElts > MaskNumElts) { 2762 // Analyze the access pattern of the vector to see if we can extract 2763 // two subvectors and do the shuffle. The analysis is done by calculating 2764 // the range of elements the mask access on both vectors. 2765 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2766 int MaxRange[2] = {-1, -1}; 2767 2768 for (unsigned i = 0; i != MaskNumElts; ++i) { 2769 int Idx = Mask[i]; 2770 int Input = 0; 2771 if (Idx < 0) 2772 continue; 2773 2774 if (Idx >= (int)SrcNumElts) { 2775 Input = 1; 2776 Idx -= SrcNumElts; 2777 } 2778 if (Idx > MaxRange[Input]) 2779 MaxRange[Input] = Idx; 2780 if (Idx < MinRange[Input]) 2781 MinRange[Input] = Idx; 2782 } 2783 2784 // Check if the access is smaller than the vector size and can we find 2785 // a reasonable extract index. 2786 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2787 // Extract. 2788 int StartIdx[2]; // StartIdx to extract from 2789 for (int Input=0; Input < 2; ++Input) { 2790 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2791 RangeUse[Input] = 0; // Unused 2792 StartIdx[Input] = 0; 2793 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2794 // Fits within range but we should see if we can find a good 2795 // start index that is a multiple of the mask length. 2796 if (MaxRange[Input] < (int)MaskNumElts) { 2797 RangeUse[Input] = 1; // Extract from beginning of the vector 2798 StartIdx[Input] = 0; 2799 } else { 2800 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2801 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2802 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2803 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2804 } 2805 } 2806 } 2807 2808 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2809 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2810 return; 2811 } 2812 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2813 // Extract appropriate subvector and generate a vector shuffle 2814 for (int Input=0; Input < 2; ++Input) { 2815 SDValue &Src = Input == 0 ? Src1 : Src2; 2816 if (RangeUse[Input] == 0) 2817 Src = DAG.getUNDEF(VT); 2818 else 2819 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2820 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2821 } 2822 2823 // Calculate new mask. 2824 SmallVector<int, 8> MappedOps; 2825 for (unsigned i = 0; i != MaskNumElts; ++i) { 2826 int Idx = Mask[i]; 2827 if (Idx < 0) 2828 MappedOps.push_back(Idx); 2829 else if (Idx < (int)SrcNumElts) 2830 MappedOps.push_back(Idx - StartIdx[0]); 2831 else 2832 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2833 } 2834 2835 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2836 &MappedOps[0])); 2837 return; 2838 } 2839 } 2840 2841 // We can't use either concat vectors or extract subvectors so fall back to 2842 // replacing the shuffle with extract and build vector. 2843 // to insert and build vector. 2844 EVT EltVT = VT.getVectorElementType(); 2845 EVT PtrVT = TLI.getPointerTy(); 2846 SmallVector<SDValue,8> Ops; 2847 for (unsigned i = 0; i != MaskNumElts; ++i) { 2848 if (Mask[i] < 0) { 2849 Ops.push_back(DAG.getUNDEF(EltVT)); 2850 } else { 2851 int Idx = Mask[i]; 2852 SDValue Res; 2853 2854 if (Idx < (int)SrcNumElts) 2855 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2856 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2857 else 2858 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2859 EltVT, Src2, 2860 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2861 2862 Ops.push_back(Res); 2863 } 2864 } 2865 2866 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2867 VT, &Ops[0], Ops.size())); 2868 } 2869 2870 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2871 const Value *Op0 = I.getOperand(0); 2872 const Value *Op1 = I.getOperand(1); 2873 const Type *AggTy = I.getType(); 2874 const Type *ValTy = Op1->getType(); 2875 bool IntoUndef = isa<UndefValue>(Op0); 2876 bool FromUndef = isa<UndefValue>(Op1); 2877 2878 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2879 2880 SmallVector<EVT, 4> AggValueVTs; 2881 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2882 SmallVector<EVT, 4> ValValueVTs; 2883 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2884 2885 unsigned NumAggValues = AggValueVTs.size(); 2886 unsigned NumValValues = ValValueVTs.size(); 2887 SmallVector<SDValue, 4> Values(NumAggValues); 2888 2889 SDValue Agg = getValue(Op0); 2890 unsigned i = 0; 2891 // Copy the beginning value(s) from the original aggregate. 2892 for (; i != LinearIndex; ++i) 2893 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2894 SDValue(Agg.getNode(), Agg.getResNo() + i); 2895 // Copy values from the inserted value(s). 2896 if (NumValValues) { 2897 SDValue Val = getValue(Op1); 2898 for (; i != LinearIndex + NumValValues; ++i) 2899 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2900 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2901 } 2902 // Copy remaining value(s) from the original aggregate. 2903 for (; i != NumAggValues; ++i) 2904 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2905 SDValue(Agg.getNode(), Agg.getResNo() + i); 2906 2907 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2908 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2909 &Values[0], NumAggValues)); 2910 } 2911 2912 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2913 const Value *Op0 = I.getOperand(0); 2914 const Type *AggTy = Op0->getType(); 2915 const Type *ValTy = I.getType(); 2916 bool OutOfUndef = isa<UndefValue>(Op0); 2917 2918 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2919 2920 SmallVector<EVT, 4> ValValueVTs; 2921 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2922 2923 unsigned NumValValues = ValValueVTs.size(); 2924 2925 // Ignore a extractvalue that produces an empty object 2926 if (!NumValValues) { 2927 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2928 return; 2929 } 2930 2931 SmallVector<SDValue, 4> Values(NumValValues); 2932 2933 SDValue Agg = getValue(Op0); 2934 // Copy out the selected value(s). 2935 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2936 Values[i - LinearIndex] = 2937 OutOfUndef ? 2938 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2939 SDValue(Agg.getNode(), Agg.getResNo() + i); 2940 2941 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2942 DAG.getVTList(&ValValueVTs[0], NumValValues), 2943 &Values[0], NumValValues)); 2944 } 2945 2946 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2947 SDValue N = getValue(I.getOperand(0)); 2948 const Type *Ty = I.getOperand(0)->getType(); 2949 2950 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2951 OI != E; ++OI) { 2952 const Value *Idx = *OI; 2953 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2954 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2955 if (Field) { 2956 // N = N + Offset 2957 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2958 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2959 DAG.getIntPtrConstant(Offset)); 2960 } 2961 2962 Ty = StTy->getElementType(Field); 2963 } else { 2964 Ty = cast<SequentialType>(Ty)->getElementType(); 2965 2966 // If this is a constant subscript, handle it quickly. 2967 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2968 if (CI->isZero()) continue; 2969 uint64_t Offs = 2970 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2971 SDValue OffsVal; 2972 EVT PTy = TLI.getPointerTy(); 2973 unsigned PtrBits = PTy.getSizeInBits(); 2974 if (PtrBits < 64) 2975 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2976 TLI.getPointerTy(), 2977 DAG.getConstant(Offs, MVT::i64)); 2978 else 2979 OffsVal = DAG.getIntPtrConstant(Offs); 2980 2981 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2982 OffsVal); 2983 continue; 2984 } 2985 2986 // N = N + Idx * ElementSize; 2987 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2988 TD->getTypeAllocSize(Ty)); 2989 SDValue IdxN = getValue(Idx); 2990 2991 // If the index is smaller or larger than intptr_t, truncate or extend 2992 // it. 2993 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2994 2995 // If this is a multiply by a power of two, turn it into a shl 2996 // immediately. This is a very common case. 2997 if (ElementSize != 1) { 2998 if (ElementSize.isPowerOf2()) { 2999 unsigned Amt = ElementSize.logBase2(); 3000 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3001 N.getValueType(), IdxN, 3002 DAG.getConstant(Amt, TLI.getPointerTy())); 3003 } else { 3004 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3005 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3006 N.getValueType(), IdxN, Scale); 3007 } 3008 } 3009 3010 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3011 N.getValueType(), N, IdxN); 3012 } 3013 } 3014 3015 setValue(&I, N); 3016 } 3017 3018 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3019 // If this is a fixed sized alloca in the entry block of the function, 3020 // allocate it statically on the stack. 3021 if (FuncInfo.StaticAllocaMap.count(&I)) 3022 return; // getValue will auto-populate this. 3023 3024 const Type *Ty = I.getAllocatedType(); 3025 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3026 unsigned Align = 3027 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3028 I.getAlignment()); 3029 3030 SDValue AllocSize = getValue(I.getArraySize()); 3031 3032 EVT IntPtr = TLI.getPointerTy(); 3033 if (AllocSize.getValueType() != IntPtr) 3034 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3035 3036 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3037 AllocSize, 3038 DAG.getConstant(TySize, IntPtr)); 3039 3040 // Handle alignment. If the requested alignment is less than or equal to 3041 // the stack alignment, ignore it. If the size is greater than or equal to 3042 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3043 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3044 if (Align <= StackAlign) 3045 Align = 0; 3046 3047 // Round the size of the allocation up to the stack alignment size 3048 // by add SA-1 to the size. 3049 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3050 AllocSize.getValueType(), AllocSize, 3051 DAG.getIntPtrConstant(StackAlign-1)); 3052 3053 // Mask out the low bits for alignment purposes. 3054 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3055 AllocSize.getValueType(), AllocSize, 3056 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3057 3058 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3059 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3060 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3061 VTs, Ops, 3); 3062 setValue(&I, DSA); 3063 DAG.setRoot(DSA.getValue(1)); 3064 3065 // Inform the Frame Information that we have just allocated a variable-sized 3066 // object. 3067 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3068 } 3069 3070 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3071 const Value *SV = I.getOperand(0); 3072 SDValue Ptr = getValue(SV); 3073 3074 const Type *Ty = I.getType(); 3075 3076 bool isVolatile = I.isVolatile(); 3077 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3078 unsigned Alignment = I.getAlignment(); 3079 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3080 3081 SmallVector<EVT, 4> ValueVTs; 3082 SmallVector<uint64_t, 4> Offsets; 3083 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3084 unsigned NumValues = ValueVTs.size(); 3085 if (NumValues == 0) 3086 return; 3087 3088 SDValue Root; 3089 bool ConstantMemory = false; 3090 if (I.isVolatile() || NumValues > MaxParallelChains) 3091 // Serialize volatile loads with other side effects. 3092 Root = getRoot(); 3093 else if (AA->pointsToConstantMemory( 3094 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3095 // Do not serialize (non-volatile) loads of constant memory with anything. 3096 Root = DAG.getEntryNode(); 3097 ConstantMemory = true; 3098 } else { 3099 // Do not serialize non-volatile loads against each other. 3100 Root = DAG.getRoot(); 3101 } 3102 3103 SmallVector<SDValue, 4> Values(NumValues); 3104 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3105 NumValues)); 3106 EVT PtrVT = Ptr.getValueType(); 3107 unsigned ChainI = 0; 3108 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3109 // Serializing loads here may result in excessive register pressure, and 3110 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3111 // could recover a bit by hoisting nodes upward in the chain by recognizing 3112 // they are side-effect free or do not alias. The optimizer should really 3113 // avoid this case by converting large object/array copies to llvm.memcpy 3114 // (MaxParallelChains should always remain as failsafe). 3115 if (ChainI == MaxParallelChains) { 3116 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3117 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3118 MVT::Other, &Chains[0], ChainI); 3119 Root = Chain; 3120 ChainI = 0; 3121 } 3122 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3123 PtrVT, Ptr, 3124 DAG.getConstant(Offsets[i], PtrVT)); 3125 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3126 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3127 isNonTemporal, Alignment, TBAAInfo); 3128 3129 Values[i] = L; 3130 Chains[ChainI] = L.getValue(1); 3131 } 3132 3133 if (!ConstantMemory) { 3134 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3135 MVT::Other, &Chains[0], ChainI); 3136 if (isVolatile) 3137 DAG.setRoot(Chain); 3138 else 3139 PendingLoads.push_back(Chain); 3140 } 3141 3142 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3143 DAG.getVTList(&ValueVTs[0], NumValues), 3144 &Values[0], NumValues)); 3145 } 3146 3147 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3148 const Value *SrcV = I.getOperand(0); 3149 const Value *PtrV = I.getOperand(1); 3150 3151 SmallVector<EVT, 4> ValueVTs; 3152 SmallVector<uint64_t, 4> Offsets; 3153 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3154 unsigned NumValues = ValueVTs.size(); 3155 if (NumValues == 0) 3156 return; 3157 3158 // Get the lowered operands. Note that we do this after 3159 // checking if NumResults is zero, because with zero results 3160 // the operands won't have values in the map. 3161 SDValue Src = getValue(SrcV); 3162 SDValue Ptr = getValue(PtrV); 3163 3164 SDValue Root = getRoot(); 3165 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3166 NumValues)); 3167 EVT PtrVT = Ptr.getValueType(); 3168 bool isVolatile = I.isVolatile(); 3169 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3170 unsigned Alignment = I.getAlignment(); 3171 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3172 3173 unsigned ChainI = 0; 3174 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3175 // See visitLoad comments. 3176 if (ChainI == MaxParallelChains) { 3177 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3178 MVT::Other, &Chains[0], ChainI); 3179 Root = Chain; 3180 ChainI = 0; 3181 } 3182 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3183 DAG.getConstant(Offsets[i], PtrVT)); 3184 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3185 SDValue(Src.getNode(), Src.getResNo() + i), 3186 Add, MachinePointerInfo(PtrV, Offsets[i]), 3187 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3188 Chains[ChainI] = St; 3189 } 3190 3191 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3192 MVT::Other, &Chains[0], ChainI); 3193 ++SDNodeOrder; 3194 AssignOrderingToNode(StoreNode.getNode()); 3195 DAG.setRoot(StoreNode); 3196 } 3197 3198 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3199 /// node. 3200 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3201 unsigned Intrinsic) { 3202 bool HasChain = !I.doesNotAccessMemory(); 3203 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3204 3205 // Build the operand list. 3206 SmallVector<SDValue, 8> Ops; 3207 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3208 if (OnlyLoad) { 3209 // We don't need to serialize loads against other loads. 3210 Ops.push_back(DAG.getRoot()); 3211 } else { 3212 Ops.push_back(getRoot()); 3213 } 3214 } 3215 3216 // Info is set by getTgtMemInstrinsic 3217 TargetLowering::IntrinsicInfo Info; 3218 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3219 3220 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3221 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3222 Info.opc == ISD::INTRINSIC_W_CHAIN) 3223 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3224 3225 // Add all operands of the call to the operand list. 3226 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3227 SDValue Op = getValue(I.getArgOperand(i)); 3228 assert(TLI.isTypeLegal(Op.getValueType()) && 3229 "Intrinsic uses a non-legal type?"); 3230 Ops.push_back(Op); 3231 } 3232 3233 SmallVector<EVT, 4> ValueVTs; 3234 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3235 #ifndef NDEBUG 3236 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3237 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3238 "Intrinsic uses a non-legal type?"); 3239 } 3240 #endif // NDEBUG 3241 3242 if (HasChain) 3243 ValueVTs.push_back(MVT::Other); 3244 3245 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3246 3247 // Create the node. 3248 SDValue Result; 3249 if (IsTgtIntrinsic) { 3250 // This is target intrinsic that touches memory 3251 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3252 VTs, &Ops[0], Ops.size(), 3253 Info.memVT, 3254 MachinePointerInfo(Info.ptrVal, Info.offset), 3255 Info.align, Info.vol, 3256 Info.readMem, Info.writeMem); 3257 } else if (!HasChain) { 3258 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3259 VTs, &Ops[0], Ops.size()); 3260 } else if (!I.getType()->isVoidTy()) { 3261 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3262 VTs, &Ops[0], Ops.size()); 3263 } else { 3264 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3265 VTs, &Ops[0], Ops.size()); 3266 } 3267 3268 if (HasChain) { 3269 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3270 if (OnlyLoad) 3271 PendingLoads.push_back(Chain); 3272 else 3273 DAG.setRoot(Chain); 3274 } 3275 3276 if (!I.getType()->isVoidTy()) { 3277 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3278 EVT VT = TLI.getValueType(PTy); 3279 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3280 } 3281 3282 setValue(&I, Result); 3283 } 3284 } 3285 3286 /// GetSignificand - Get the significand and build it into a floating-point 3287 /// number with exponent of 1: 3288 /// 3289 /// Op = (Op & 0x007fffff) | 0x3f800000; 3290 /// 3291 /// where Op is the hexidecimal representation of floating point value. 3292 static SDValue 3293 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3294 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3295 DAG.getConstant(0x007fffff, MVT::i32)); 3296 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3297 DAG.getConstant(0x3f800000, MVT::i32)); 3298 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3299 } 3300 3301 /// GetExponent - Get the exponent: 3302 /// 3303 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3304 /// 3305 /// where Op is the hexidecimal representation of floating point value. 3306 static SDValue 3307 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3308 DebugLoc dl) { 3309 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3310 DAG.getConstant(0x7f800000, MVT::i32)); 3311 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3312 DAG.getConstant(23, TLI.getPointerTy())); 3313 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3314 DAG.getConstant(127, MVT::i32)); 3315 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3316 } 3317 3318 /// getF32Constant - Get 32-bit floating point constant. 3319 static SDValue 3320 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3321 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3322 } 3323 3324 /// Inlined utility function to implement binary input atomic intrinsics for 3325 /// visitIntrinsicCall: I is a call instruction 3326 /// Op is the associated NodeType for I 3327 const char * 3328 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3329 ISD::NodeType Op) { 3330 SDValue Root = getRoot(); 3331 SDValue L = 3332 DAG.getAtomic(Op, getCurDebugLoc(), 3333 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3334 Root, 3335 getValue(I.getArgOperand(0)), 3336 getValue(I.getArgOperand(1)), 3337 I.getArgOperand(0)); 3338 setValue(&I, L); 3339 DAG.setRoot(L.getValue(1)); 3340 return 0; 3341 } 3342 3343 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3344 const char * 3345 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3346 SDValue Op1 = getValue(I.getArgOperand(0)); 3347 SDValue Op2 = getValue(I.getArgOperand(1)); 3348 3349 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3350 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3351 return 0; 3352 } 3353 3354 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3355 /// limited-precision mode. 3356 void 3357 SelectionDAGBuilder::visitExp(const CallInst &I) { 3358 SDValue result; 3359 DebugLoc dl = getCurDebugLoc(); 3360 3361 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3362 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3363 SDValue Op = getValue(I.getArgOperand(0)); 3364 3365 // Put the exponent in the right bit position for later addition to the 3366 // final result: 3367 // 3368 // #define LOG2OFe 1.4426950f 3369 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3370 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3371 getF32Constant(DAG, 0x3fb8aa3b)); 3372 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3373 3374 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3375 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3376 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3377 3378 // IntegerPartOfX <<= 23; 3379 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3380 DAG.getConstant(23, TLI.getPointerTy())); 3381 3382 if (LimitFloatPrecision <= 6) { 3383 // For floating-point precision of 6: 3384 // 3385 // TwoToFractionalPartOfX = 3386 // 0.997535578f + 3387 // (0.735607626f + 0.252464424f * x) * x; 3388 // 3389 // error 0.0144103317, which is 6 bits 3390 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3391 getF32Constant(DAG, 0x3e814304)); 3392 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3393 getF32Constant(DAG, 0x3f3c50c8)); 3394 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3395 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3396 getF32Constant(DAG, 0x3f7f5e7e)); 3397 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3398 3399 // Add the exponent into the result in integer domain. 3400 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3401 TwoToFracPartOfX, IntegerPartOfX); 3402 3403 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3404 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3405 // For floating-point precision of 12: 3406 // 3407 // TwoToFractionalPartOfX = 3408 // 0.999892986f + 3409 // (0.696457318f + 3410 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3411 // 3412 // 0.000107046256 error, which is 13 to 14 bits 3413 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3414 getF32Constant(DAG, 0x3da235e3)); 3415 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3416 getF32Constant(DAG, 0x3e65b8f3)); 3417 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3418 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3419 getF32Constant(DAG, 0x3f324b07)); 3420 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3421 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3422 getF32Constant(DAG, 0x3f7ff8fd)); 3423 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3424 3425 // Add the exponent into the result in integer domain. 3426 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3427 TwoToFracPartOfX, IntegerPartOfX); 3428 3429 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3430 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3431 // For floating-point precision of 18: 3432 // 3433 // TwoToFractionalPartOfX = 3434 // 0.999999982f + 3435 // (0.693148872f + 3436 // (0.240227044f + 3437 // (0.554906021e-1f + 3438 // (0.961591928e-2f + 3439 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3440 // 3441 // error 2.47208000*10^(-7), which is better than 18 bits 3442 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3443 getF32Constant(DAG, 0x3924b03e)); 3444 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3445 getF32Constant(DAG, 0x3ab24b87)); 3446 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3447 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3448 getF32Constant(DAG, 0x3c1d8c17)); 3449 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3450 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3451 getF32Constant(DAG, 0x3d634a1d)); 3452 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3453 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3454 getF32Constant(DAG, 0x3e75fe14)); 3455 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3456 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3457 getF32Constant(DAG, 0x3f317234)); 3458 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3459 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3460 getF32Constant(DAG, 0x3f800000)); 3461 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3462 MVT::i32, t13); 3463 3464 // Add the exponent into the result in integer domain. 3465 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3466 TwoToFracPartOfX, IntegerPartOfX); 3467 3468 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3469 } 3470 } else { 3471 // No special expansion. 3472 result = DAG.getNode(ISD::FEXP, dl, 3473 getValue(I.getArgOperand(0)).getValueType(), 3474 getValue(I.getArgOperand(0))); 3475 } 3476 3477 setValue(&I, result); 3478 } 3479 3480 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3481 /// limited-precision mode. 3482 void 3483 SelectionDAGBuilder::visitLog(const CallInst &I) { 3484 SDValue result; 3485 DebugLoc dl = getCurDebugLoc(); 3486 3487 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3488 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3489 SDValue Op = getValue(I.getArgOperand(0)); 3490 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3491 3492 // Scale the exponent by log(2) [0.69314718f]. 3493 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3494 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3495 getF32Constant(DAG, 0x3f317218)); 3496 3497 // Get the significand and build it into a floating-point number with 3498 // exponent of 1. 3499 SDValue X = GetSignificand(DAG, Op1, dl); 3500 3501 if (LimitFloatPrecision <= 6) { 3502 // For floating-point precision of 6: 3503 // 3504 // LogofMantissa = 3505 // -1.1609546f + 3506 // (1.4034025f - 0.23903021f * x) * x; 3507 // 3508 // error 0.0034276066, which is better than 8 bits 3509 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3510 getF32Constant(DAG, 0xbe74c456)); 3511 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3512 getF32Constant(DAG, 0x3fb3a2b1)); 3513 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3514 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3515 getF32Constant(DAG, 0x3f949a29)); 3516 3517 result = DAG.getNode(ISD::FADD, dl, 3518 MVT::f32, LogOfExponent, LogOfMantissa); 3519 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3520 // For floating-point precision of 12: 3521 // 3522 // LogOfMantissa = 3523 // -1.7417939f + 3524 // (2.8212026f + 3525 // (-1.4699568f + 3526 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3527 // 3528 // error 0.000061011436, which is 14 bits 3529 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3530 getF32Constant(DAG, 0xbd67b6d6)); 3531 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3532 getF32Constant(DAG, 0x3ee4f4b8)); 3533 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3534 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3535 getF32Constant(DAG, 0x3fbc278b)); 3536 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3537 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3538 getF32Constant(DAG, 0x40348e95)); 3539 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3540 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3541 getF32Constant(DAG, 0x3fdef31a)); 3542 3543 result = DAG.getNode(ISD::FADD, dl, 3544 MVT::f32, LogOfExponent, LogOfMantissa); 3545 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3546 // For floating-point precision of 18: 3547 // 3548 // LogOfMantissa = 3549 // -2.1072184f + 3550 // (4.2372794f + 3551 // (-3.7029485f + 3552 // (2.2781945f + 3553 // (-0.87823314f + 3554 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3555 // 3556 // error 0.0000023660568, which is better than 18 bits 3557 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3558 getF32Constant(DAG, 0xbc91e5ac)); 3559 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3560 getF32Constant(DAG, 0x3e4350aa)); 3561 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3562 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3563 getF32Constant(DAG, 0x3f60d3e3)); 3564 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3565 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3566 getF32Constant(DAG, 0x4011cdf0)); 3567 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3568 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3569 getF32Constant(DAG, 0x406cfd1c)); 3570 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3571 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3572 getF32Constant(DAG, 0x408797cb)); 3573 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3574 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3575 getF32Constant(DAG, 0x4006dcab)); 3576 3577 result = DAG.getNode(ISD::FADD, dl, 3578 MVT::f32, LogOfExponent, LogOfMantissa); 3579 } 3580 } else { 3581 // No special expansion. 3582 result = DAG.getNode(ISD::FLOG, dl, 3583 getValue(I.getArgOperand(0)).getValueType(), 3584 getValue(I.getArgOperand(0))); 3585 } 3586 3587 setValue(&I, result); 3588 } 3589 3590 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3591 /// limited-precision mode. 3592 void 3593 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3594 SDValue result; 3595 DebugLoc dl = getCurDebugLoc(); 3596 3597 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3598 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3599 SDValue Op = getValue(I.getArgOperand(0)); 3600 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3601 3602 // Get the exponent. 3603 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3604 3605 // Get the significand and build it into a floating-point number with 3606 // exponent of 1. 3607 SDValue X = GetSignificand(DAG, Op1, dl); 3608 3609 // Different possible minimax approximations of significand in 3610 // floating-point for various degrees of accuracy over [1,2]. 3611 if (LimitFloatPrecision <= 6) { 3612 // For floating-point precision of 6: 3613 // 3614 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3615 // 3616 // error 0.0049451742, which is more than 7 bits 3617 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3618 getF32Constant(DAG, 0xbeb08fe0)); 3619 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3620 getF32Constant(DAG, 0x40019463)); 3621 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3622 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3623 getF32Constant(DAG, 0x3fd6633d)); 3624 3625 result = DAG.getNode(ISD::FADD, dl, 3626 MVT::f32, LogOfExponent, Log2ofMantissa); 3627 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3628 // For floating-point precision of 12: 3629 // 3630 // Log2ofMantissa = 3631 // -2.51285454f + 3632 // (4.07009056f + 3633 // (-2.12067489f + 3634 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3635 // 3636 // error 0.0000876136000, which is better than 13 bits 3637 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3638 getF32Constant(DAG, 0xbda7262e)); 3639 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3640 getF32Constant(DAG, 0x3f25280b)); 3641 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3642 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3643 getF32Constant(DAG, 0x4007b923)); 3644 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3645 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3646 getF32Constant(DAG, 0x40823e2f)); 3647 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3648 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3649 getF32Constant(DAG, 0x4020d29c)); 3650 3651 result = DAG.getNode(ISD::FADD, dl, 3652 MVT::f32, LogOfExponent, Log2ofMantissa); 3653 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3654 // For floating-point precision of 18: 3655 // 3656 // Log2ofMantissa = 3657 // -3.0400495f + 3658 // (6.1129976f + 3659 // (-5.3420409f + 3660 // (3.2865683f + 3661 // (-1.2669343f + 3662 // (0.27515199f - 3663 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3664 // 3665 // error 0.0000018516, which is better than 18 bits 3666 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3667 getF32Constant(DAG, 0xbcd2769e)); 3668 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3669 getF32Constant(DAG, 0x3e8ce0b9)); 3670 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3671 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3672 getF32Constant(DAG, 0x3fa22ae7)); 3673 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3674 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3675 getF32Constant(DAG, 0x40525723)); 3676 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3677 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3678 getF32Constant(DAG, 0x40aaf200)); 3679 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3680 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3681 getF32Constant(DAG, 0x40c39dad)); 3682 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3683 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3684 getF32Constant(DAG, 0x4042902c)); 3685 3686 result = DAG.getNode(ISD::FADD, dl, 3687 MVT::f32, LogOfExponent, Log2ofMantissa); 3688 } 3689 } else { 3690 // No special expansion. 3691 result = DAG.getNode(ISD::FLOG2, dl, 3692 getValue(I.getArgOperand(0)).getValueType(), 3693 getValue(I.getArgOperand(0))); 3694 } 3695 3696 setValue(&I, result); 3697 } 3698 3699 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3700 /// limited-precision mode. 3701 void 3702 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3703 SDValue result; 3704 DebugLoc dl = getCurDebugLoc(); 3705 3706 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3707 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3708 SDValue Op = getValue(I.getArgOperand(0)); 3709 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3710 3711 // Scale the exponent by log10(2) [0.30102999f]. 3712 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3713 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3714 getF32Constant(DAG, 0x3e9a209a)); 3715 3716 // Get the significand and build it into a floating-point number with 3717 // exponent of 1. 3718 SDValue X = GetSignificand(DAG, Op1, dl); 3719 3720 if (LimitFloatPrecision <= 6) { 3721 // For floating-point precision of 6: 3722 // 3723 // Log10ofMantissa = 3724 // -0.50419619f + 3725 // (0.60948995f - 0.10380950f * x) * x; 3726 // 3727 // error 0.0014886165, which is 6 bits 3728 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3729 getF32Constant(DAG, 0xbdd49a13)); 3730 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3731 getF32Constant(DAG, 0x3f1c0789)); 3732 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3733 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3734 getF32Constant(DAG, 0x3f011300)); 3735 3736 result = DAG.getNode(ISD::FADD, dl, 3737 MVT::f32, LogOfExponent, Log10ofMantissa); 3738 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3739 // For floating-point precision of 12: 3740 // 3741 // Log10ofMantissa = 3742 // -0.64831180f + 3743 // (0.91751397f + 3744 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3745 // 3746 // error 0.00019228036, which is better than 12 bits 3747 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3748 getF32Constant(DAG, 0x3d431f31)); 3749 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3750 getF32Constant(DAG, 0x3ea21fb2)); 3751 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3752 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3753 getF32Constant(DAG, 0x3f6ae232)); 3754 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3755 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3756 getF32Constant(DAG, 0x3f25f7c3)); 3757 3758 result = DAG.getNode(ISD::FADD, dl, 3759 MVT::f32, LogOfExponent, Log10ofMantissa); 3760 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3761 // For floating-point precision of 18: 3762 // 3763 // Log10ofMantissa = 3764 // -0.84299375f + 3765 // (1.5327582f + 3766 // (-1.0688956f + 3767 // (0.49102474f + 3768 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3769 // 3770 // error 0.0000037995730, which is better than 18 bits 3771 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3772 getF32Constant(DAG, 0x3c5d51ce)); 3773 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3774 getF32Constant(DAG, 0x3e00685a)); 3775 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3776 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3777 getF32Constant(DAG, 0x3efb6798)); 3778 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3779 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3780 getF32Constant(DAG, 0x3f88d192)); 3781 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3782 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3783 getF32Constant(DAG, 0x3fc4316c)); 3784 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3785 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3786 getF32Constant(DAG, 0x3f57ce70)); 3787 3788 result = DAG.getNode(ISD::FADD, dl, 3789 MVT::f32, LogOfExponent, Log10ofMantissa); 3790 } 3791 } else { 3792 // No special expansion. 3793 result = DAG.getNode(ISD::FLOG10, dl, 3794 getValue(I.getArgOperand(0)).getValueType(), 3795 getValue(I.getArgOperand(0))); 3796 } 3797 3798 setValue(&I, result); 3799 } 3800 3801 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3802 /// limited-precision mode. 3803 void 3804 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3805 SDValue result; 3806 DebugLoc dl = getCurDebugLoc(); 3807 3808 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3809 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3810 SDValue Op = getValue(I.getArgOperand(0)); 3811 3812 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3813 3814 // FractionalPartOfX = x - (float)IntegerPartOfX; 3815 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3816 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3817 3818 // IntegerPartOfX <<= 23; 3819 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3820 DAG.getConstant(23, TLI.getPointerTy())); 3821 3822 if (LimitFloatPrecision <= 6) { 3823 // For floating-point precision of 6: 3824 // 3825 // TwoToFractionalPartOfX = 3826 // 0.997535578f + 3827 // (0.735607626f + 0.252464424f * x) * x; 3828 // 3829 // error 0.0144103317, which is 6 bits 3830 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3831 getF32Constant(DAG, 0x3e814304)); 3832 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3833 getF32Constant(DAG, 0x3f3c50c8)); 3834 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3835 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3836 getF32Constant(DAG, 0x3f7f5e7e)); 3837 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3838 SDValue TwoToFractionalPartOfX = 3839 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3840 3841 result = DAG.getNode(ISD::BITCAST, dl, 3842 MVT::f32, TwoToFractionalPartOfX); 3843 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3844 // For floating-point precision of 12: 3845 // 3846 // TwoToFractionalPartOfX = 3847 // 0.999892986f + 3848 // (0.696457318f + 3849 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3850 // 3851 // error 0.000107046256, which is 13 to 14 bits 3852 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3853 getF32Constant(DAG, 0x3da235e3)); 3854 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3855 getF32Constant(DAG, 0x3e65b8f3)); 3856 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3857 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3858 getF32Constant(DAG, 0x3f324b07)); 3859 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3860 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3861 getF32Constant(DAG, 0x3f7ff8fd)); 3862 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3863 SDValue TwoToFractionalPartOfX = 3864 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3865 3866 result = DAG.getNode(ISD::BITCAST, dl, 3867 MVT::f32, TwoToFractionalPartOfX); 3868 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3869 // For floating-point precision of 18: 3870 // 3871 // TwoToFractionalPartOfX = 3872 // 0.999999982f + 3873 // (0.693148872f + 3874 // (0.240227044f + 3875 // (0.554906021e-1f + 3876 // (0.961591928e-2f + 3877 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3878 // error 2.47208000*10^(-7), which is better than 18 bits 3879 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3880 getF32Constant(DAG, 0x3924b03e)); 3881 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3882 getF32Constant(DAG, 0x3ab24b87)); 3883 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3884 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3885 getF32Constant(DAG, 0x3c1d8c17)); 3886 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3887 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3888 getF32Constant(DAG, 0x3d634a1d)); 3889 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3890 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3891 getF32Constant(DAG, 0x3e75fe14)); 3892 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3893 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3894 getF32Constant(DAG, 0x3f317234)); 3895 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3896 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3897 getF32Constant(DAG, 0x3f800000)); 3898 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3899 SDValue TwoToFractionalPartOfX = 3900 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3901 3902 result = DAG.getNode(ISD::BITCAST, dl, 3903 MVT::f32, TwoToFractionalPartOfX); 3904 } 3905 } else { 3906 // No special expansion. 3907 result = DAG.getNode(ISD::FEXP2, dl, 3908 getValue(I.getArgOperand(0)).getValueType(), 3909 getValue(I.getArgOperand(0))); 3910 } 3911 3912 setValue(&I, result); 3913 } 3914 3915 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3916 /// limited-precision mode with x == 10.0f. 3917 void 3918 SelectionDAGBuilder::visitPow(const CallInst &I) { 3919 SDValue result; 3920 const Value *Val = I.getArgOperand(0); 3921 DebugLoc dl = getCurDebugLoc(); 3922 bool IsExp10 = false; 3923 3924 if (getValue(Val).getValueType() == MVT::f32 && 3925 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3926 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3927 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3928 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3929 APFloat Ten(10.0f); 3930 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3931 } 3932 } 3933 } 3934 3935 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3936 SDValue Op = getValue(I.getArgOperand(1)); 3937 3938 // Put the exponent in the right bit position for later addition to the 3939 // final result: 3940 // 3941 // #define LOG2OF10 3.3219281f 3942 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3943 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3944 getF32Constant(DAG, 0x40549a78)); 3945 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3946 3947 // FractionalPartOfX = x - (float)IntegerPartOfX; 3948 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3949 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3950 3951 // IntegerPartOfX <<= 23; 3952 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3953 DAG.getConstant(23, TLI.getPointerTy())); 3954 3955 if (LimitFloatPrecision <= 6) { 3956 // For floating-point precision of 6: 3957 // 3958 // twoToFractionalPartOfX = 3959 // 0.997535578f + 3960 // (0.735607626f + 0.252464424f * x) * x; 3961 // 3962 // error 0.0144103317, which is 6 bits 3963 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3964 getF32Constant(DAG, 0x3e814304)); 3965 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3966 getF32Constant(DAG, 0x3f3c50c8)); 3967 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3968 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3969 getF32Constant(DAG, 0x3f7f5e7e)); 3970 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3971 SDValue TwoToFractionalPartOfX = 3972 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3973 3974 result = DAG.getNode(ISD::BITCAST, dl, 3975 MVT::f32, TwoToFractionalPartOfX); 3976 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3977 // For floating-point precision of 12: 3978 // 3979 // TwoToFractionalPartOfX = 3980 // 0.999892986f + 3981 // (0.696457318f + 3982 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3983 // 3984 // error 0.000107046256, which is 13 to 14 bits 3985 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3986 getF32Constant(DAG, 0x3da235e3)); 3987 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3988 getF32Constant(DAG, 0x3e65b8f3)); 3989 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3990 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3991 getF32Constant(DAG, 0x3f324b07)); 3992 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3993 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3994 getF32Constant(DAG, 0x3f7ff8fd)); 3995 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3996 SDValue TwoToFractionalPartOfX = 3997 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3998 3999 result = DAG.getNode(ISD::BITCAST, dl, 4000 MVT::f32, TwoToFractionalPartOfX); 4001 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4002 // For floating-point precision of 18: 4003 // 4004 // TwoToFractionalPartOfX = 4005 // 0.999999982f + 4006 // (0.693148872f + 4007 // (0.240227044f + 4008 // (0.554906021e-1f + 4009 // (0.961591928e-2f + 4010 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4011 // error 2.47208000*10^(-7), which is better than 18 bits 4012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4013 getF32Constant(DAG, 0x3924b03e)); 4014 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4015 getF32Constant(DAG, 0x3ab24b87)); 4016 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4017 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4018 getF32Constant(DAG, 0x3c1d8c17)); 4019 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4020 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4021 getF32Constant(DAG, 0x3d634a1d)); 4022 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4023 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4024 getF32Constant(DAG, 0x3e75fe14)); 4025 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4026 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4027 getF32Constant(DAG, 0x3f317234)); 4028 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4029 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4030 getF32Constant(DAG, 0x3f800000)); 4031 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4032 SDValue TwoToFractionalPartOfX = 4033 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4034 4035 result = DAG.getNode(ISD::BITCAST, dl, 4036 MVT::f32, TwoToFractionalPartOfX); 4037 } 4038 } else { 4039 // No special expansion. 4040 result = DAG.getNode(ISD::FPOW, dl, 4041 getValue(I.getArgOperand(0)).getValueType(), 4042 getValue(I.getArgOperand(0)), 4043 getValue(I.getArgOperand(1))); 4044 } 4045 4046 setValue(&I, result); 4047 } 4048 4049 4050 /// ExpandPowI - Expand a llvm.powi intrinsic. 4051 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4052 SelectionDAG &DAG) { 4053 // If RHS is a constant, we can expand this out to a multiplication tree, 4054 // otherwise we end up lowering to a call to __powidf2 (for example). When 4055 // optimizing for size, we only want to do this if the expansion would produce 4056 // a small number of multiplies, otherwise we do the full expansion. 4057 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4058 // Get the exponent as a positive value. 4059 unsigned Val = RHSC->getSExtValue(); 4060 if ((int)Val < 0) Val = -Val; 4061 4062 // powi(x, 0) -> 1.0 4063 if (Val == 0) 4064 return DAG.getConstantFP(1.0, LHS.getValueType()); 4065 4066 const Function *F = DAG.getMachineFunction().getFunction(); 4067 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4068 // If optimizing for size, don't insert too many multiplies. This 4069 // inserts up to 5 multiplies. 4070 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4071 // We use the simple binary decomposition method to generate the multiply 4072 // sequence. There are more optimal ways to do this (for example, 4073 // powi(x,15) generates one more multiply than it should), but this has 4074 // the benefit of being both really simple and much better than a libcall. 4075 SDValue Res; // Logically starts equal to 1.0 4076 SDValue CurSquare = LHS; 4077 while (Val) { 4078 if (Val & 1) { 4079 if (Res.getNode()) 4080 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4081 else 4082 Res = CurSquare; // 1.0*CurSquare. 4083 } 4084 4085 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4086 CurSquare, CurSquare); 4087 Val >>= 1; 4088 } 4089 4090 // If the original was negative, invert the result, producing 1/(x*x*x). 4091 if (RHSC->getSExtValue() < 0) 4092 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4093 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4094 return Res; 4095 } 4096 } 4097 4098 // Otherwise, expand to a libcall. 4099 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4100 } 4101 4102 // getTruncatedArgReg - Find underlying register used for an truncated 4103 // argument. 4104 static unsigned getTruncatedArgReg(const SDValue &N) { 4105 if (N.getOpcode() != ISD::TRUNCATE) 4106 return 0; 4107 4108 const SDValue &Ext = N.getOperand(0); 4109 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4110 const SDValue &CFR = Ext.getOperand(0); 4111 if (CFR.getOpcode() == ISD::CopyFromReg) 4112 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4113 else 4114 if (CFR.getOpcode() == ISD::TRUNCATE) 4115 return getTruncatedArgReg(CFR); 4116 } 4117 return 0; 4118 } 4119 4120 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4121 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4122 /// At the end of instruction selection, they will be inserted to the entry BB. 4123 bool 4124 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4125 int64_t Offset, 4126 const SDValue &N) { 4127 const Argument *Arg = dyn_cast<Argument>(V); 4128 if (!Arg) 4129 return false; 4130 4131 MachineFunction &MF = DAG.getMachineFunction(); 4132 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4133 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4134 4135 // Ignore inlined function arguments here. 4136 DIVariable DV(Variable); 4137 if (DV.isInlinedFnArgument(MF.getFunction())) 4138 return false; 4139 4140 unsigned Reg = 0; 4141 if (Arg->hasByValAttr()) { 4142 // Byval arguments' frame index is recorded during argument lowering. 4143 // Use this info directly. 4144 Reg = TRI->getFrameRegister(MF); 4145 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4146 // If byval argument ofset is not recorded then ignore this. 4147 if (!Offset) 4148 Reg = 0; 4149 } 4150 4151 if (N.getNode()) { 4152 if (N.getOpcode() == ISD::CopyFromReg) 4153 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4154 else 4155 Reg = getTruncatedArgReg(N); 4156 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4157 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4158 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4159 if (PR) 4160 Reg = PR; 4161 } 4162 } 4163 4164 if (!Reg) { 4165 // Check if ValueMap has reg number. 4166 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4167 if (VMI != FuncInfo.ValueMap.end()) 4168 Reg = VMI->second; 4169 } 4170 4171 if (!Reg && N.getNode()) { 4172 // Check if frame index is available. 4173 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4174 if (FrameIndexSDNode *FINode = 4175 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4176 Reg = TRI->getFrameRegister(MF); 4177 Offset = FINode->getIndex(); 4178 } 4179 } 4180 4181 if (!Reg) 4182 return false; 4183 4184 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4185 TII->get(TargetOpcode::DBG_VALUE)) 4186 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4187 FuncInfo.ArgDbgValues.push_back(&*MIB); 4188 return true; 4189 } 4190 4191 // VisualStudio defines setjmp as _setjmp 4192 #if defined(_MSC_VER) && defined(setjmp) && \ 4193 !defined(setjmp_undefined_for_msvc) 4194 # pragma push_macro("setjmp") 4195 # undef setjmp 4196 # define setjmp_undefined_for_msvc 4197 #endif 4198 4199 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4200 /// we want to emit this as a call to a named external function, return the name 4201 /// otherwise lower it and return null. 4202 const char * 4203 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4204 DebugLoc dl = getCurDebugLoc(); 4205 SDValue Res; 4206 4207 switch (Intrinsic) { 4208 default: 4209 // By default, turn this into a target intrinsic node. 4210 visitTargetIntrinsic(I, Intrinsic); 4211 return 0; 4212 case Intrinsic::vastart: visitVAStart(I); return 0; 4213 case Intrinsic::vaend: visitVAEnd(I); return 0; 4214 case Intrinsic::vacopy: visitVACopy(I); return 0; 4215 case Intrinsic::returnaddress: 4216 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4217 getValue(I.getArgOperand(0)))); 4218 return 0; 4219 case Intrinsic::frameaddress: 4220 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4221 getValue(I.getArgOperand(0)))); 4222 return 0; 4223 case Intrinsic::setjmp: 4224 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4225 case Intrinsic::longjmp: 4226 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4227 case Intrinsic::memcpy: { 4228 // Assert for address < 256 since we support only user defined address 4229 // spaces. 4230 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4231 < 256 && 4232 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4233 < 256 && 4234 "Unknown address space"); 4235 SDValue Op1 = getValue(I.getArgOperand(0)); 4236 SDValue Op2 = getValue(I.getArgOperand(1)); 4237 SDValue Op3 = getValue(I.getArgOperand(2)); 4238 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4239 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4240 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4241 MachinePointerInfo(I.getArgOperand(0)), 4242 MachinePointerInfo(I.getArgOperand(1)))); 4243 return 0; 4244 } 4245 case Intrinsic::memset: { 4246 // Assert for address < 256 since we support only user defined address 4247 // spaces. 4248 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4249 < 256 && 4250 "Unknown address space"); 4251 SDValue Op1 = getValue(I.getArgOperand(0)); 4252 SDValue Op2 = getValue(I.getArgOperand(1)); 4253 SDValue Op3 = getValue(I.getArgOperand(2)); 4254 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4255 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4256 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4257 MachinePointerInfo(I.getArgOperand(0)))); 4258 return 0; 4259 } 4260 case Intrinsic::memmove: { 4261 // Assert for address < 256 since we support only user defined address 4262 // spaces. 4263 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4264 < 256 && 4265 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4266 < 256 && 4267 "Unknown address space"); 4268 SDValue Op1 = getValue(I.getArgOperand(0)); 4269 SDValue Op2 = getValue(I.getArgOperand(1)); 4270 SDValue Op3 = getValue(I.getArgOperand(2)); 4271 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4272 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4273 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4274 MachinePointerInfo(I.getArgOperand(0)), 4275 MachinePointerInfo(I.getArgOperand(1)))); 4276 return 0; 4277 } 4278 case Intrinsic::dbg_declare: { 4279 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4280 MDNode *Variable = DI.getVariable(); 4281 const Value *Address = DI.getAddress(); 4282 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4283 return 0; 4284 4285 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4286 // but do not always have a corresponding SDNode built. The SDNodeOrder 4287 // absolute, but not relative, values are different depending on whether 4288 // debug info exists. 4289 ++SDNodeOrder; 4290 4291 // Check if address has undef value. 4292 if (isa<UndefValue>(Address) || 4293 (Address->use_empty() && !isa<Argument>(Address))) { 4294 DEBUG(dbgs() << "Dropping debug info for " << DI); 4295 return 0; 4296 } 4297 4298 SDValue &N = NodeMap[Address]; 4299 if (!N.getNode() && isa<Argument>(Address)) 4300 // Check unused arguments map. 4301 N = UnusedArgNodeMap[Address]; 4302 SDDbgValue *SDV; 4303 if (N.getNode()) { 4304 // Parameters are handled specially. 4305 bool isParameter = 4306 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4307 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4308 Address = BCI->getOperand(0); 4309 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4310 4311 if (isParameter && !AI) { 4312 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4313 if (FINode) 4314 // Byval parameter. We have a frame index at this point. 4315 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4316 0, dl, SDNodeOrder); 4317 else { 4318 // Address is an argument, so try to emit its dbg value using 4319 // virtual register info from the FuncInfo.ValueMap. 4320 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4321 return 0; 4322 } 4323 } else if (AI) 4324 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4325 0, dl, SDNodeOrder); 4326 else { 4327 // Can't do anything with other non-AI cases yet. 4328 DEBUG(dbgs() << "Dropping debug info for " << DI); 4329 return 0; 4330 } 4331 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4332 } else { 4333 // If Address is an argument then try to emit its dbg value using 4334 // virtual register info from the FuncInfo.ValueMap. 4335 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4336 // If variable is pinned by a alloca in dominating bb then 4337 // use StaticAllocaMap. 4338 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4339 if (AI->getParent() != DI.getParent()) { 4340 DenseMap<const AllocaInst*, int>::iterator SI = 4341 FuncInfo.StaticAllocaMap.find(AI); 4342 if (SI != FuncInfo.StaticAllocaMap.end()) { 4343 SDV = DAG.getDbgValue(Variable, SI->second, 4344 0, dl, SDNodeOrder); 4345 DAG.AddDbgValue(SDV, 0, false); 4346 return 0; 4347 } 4348 } 4349 } 4350 DEBUG(dbgs() << "Dropping debug info for " << DI); 4351 } 4352 } 4353 return 0; 4354 } 4355 case Intrinsic::dbg_value: { 4356 const DbgValueInst &DI = cast<DbgValueInst>(I); 4357 if (!DIVariable(DI.getVariable()).Verify()) 4358 return 0; 4359 4360 MDNode *Variable = DI.getVariable(); 4361 uint64_t Offset = DI.getOffset(); 4362 const Value *V = DI.getValue(); 4363 if (!V) 4364 return 0; 4365 4366 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4367 // but do not always have a corresponding SDNode built. The SDNodeOrder 4368 // absolute, but not relative, values are different depending on whether 4369 // debug info exists. 4370 ++SDNodeOrder; 4371 SDDbgValue *SDV; 4372 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4373 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4374 DAG.AddDbgValue(SDV, 0, false); 4375 } else { 4376 // Do not use getValue() in here; we don't want to generate code at 4377 // this point if it hasn't been done yet. 4378 SDValue N = NodeMap[V]; 4379 if (!N.getNode() && isa<Argument>(V)) 4380 // Check unused arguments map. 4381 N = UnusedArgNodeMap[V]; 4382 if (N.getNode()) { 4383 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4384 SDV = DAG.getDbgValue(Variable, N.getNode(), 4385 N.getResNo(), Offset, dl, SDNodeOrder); 4386 DAG.AddDbgValue(SDV, N.getNode(), false); 4387 } 4388 } else if (!V->use_empty() ) { 4389 // Do not call getValue(V) yet, as we don't want to generate code. 4390 // Remember it for later. 4391 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4392 DanglingDebugInfoMap[V] = DDI; 4393 } else { 4394 // We may expand this to cover more cases. One case where we have no 4395 // data available is an unreferenced parameter. 4396 DEBUG(dbgs() << "Dropping debug info for " << DI); 4397 } 4398 } 4399 4400 // Build a debug info table entry. 4401 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4402 V = BCI->getOperand(0); 4403 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4404 // Don't handle byval struct arguments or VLAs, for example. 4405 if (!AI) 4406 return 0; 4407 DenseMap<const AllocaInst*, int>::iterator SI = 4408 FuncInfo.StaticAllocaMap.find(AI); 4409 if (SI == FuncInfo.StaticAllocaMap.end()) 4410 return 0; // VLAs. 4411 int FI = SI->second; 4412 4413 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4414 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4415 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4416 return 0; 4417 } 4418 case Intrinsic::eh_exception: { 4419 // Insert the EXCEPTIONADDR instruction. 4420 assert(FuncInfo.MBB->isLandingPad() && 4421 "Call to eh.exception not in landing pad!"); 4422 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4423 SDValue Ops[1]; 4424 Ops[0] = DAG.getRoot(); 4425 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4426 setValue(&I, Op); 4427 DAG.setRoot(Op.getValue(1)); 4428 return 0; 4429 } 4430 4431 case Intrinsic::eh_selector: { 4432 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4433 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4434 if (CallMBB->isLandingPad()) 4435 AddCatchInfo(I, &MMI, CallMBB); 4436 else { 4437 #ifndef NDEBUG 4438 FuncInfo.CatchInfoLost.insert(&I); 4439 #endif 4440 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4441 unsigned Reg = TLI.getExceptionSelectorRegister(); 4442 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4443 } 4444 4445 // Insert the EHSELECTION instruction. 4446 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4447 SDValue Ops[2]; 4448 Ops[0] = getValue(I.getArgOperand(0)); 4449 Ops[1] = getRoot(); 4450 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4451 DAG.setRoot(Op.getValue(1)); 4452 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4453 return 0; 4454 } 4455 4456 case Intrinsic::eh_typeid_for: { 4457 // Find the type id for the given typeinfo. 4458 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4459 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4460 Res = DAG.getConstant(TypeID, MVT::i32); 4461 setValue(&I, Res); 4462 return 0; 4463 } 4464 4465 case Intrinsic::eh_return_i32: 4466 case Intrinsic::eh_return_i64: 4467 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4468 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4469 MVT::Other, 4470 getControlRoot(), 4471 getValue(I.getArgOperand(0)), 4472 getValue(I.getArgOperand(1)))); 4473 return 0; 4474 case Intrinsic::eh_unwind_init: 4475 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4476 return 0; 4477 case Intrinsic::eh_dwarf_cfa: { 4478 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4479 TLI.getPointerTy()); 4480 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4481 TLI.getPointerTy(), 4482 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4483 TLI.getPointerTy()), 4484 CfaArg); 4485 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4486 TLI.getPointerTy(), 4487 DAG.getConstant(0, TLI.getPointerTy())); 4488 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4489 FA, Offset)); 4490 return 0; 4491 } 4492 case Intrinsic::eh_sjlj_callsite: { 4493 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4494 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4495 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4496 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4497 4498 MMI.setCurrentCallSite(CI->getZExtValue()); 4499 return 0; 4500 } 4501 case Intrinsic::eh_sjlj_setjmp: { 4502 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4503 getValue(I.getArgOperand(0)))); 4504 return 0; 4505 } 4506 case Intrinsic::eh_sjlj_longjmp: { 4507 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4508 getRoot(), getValue(I.getArgOperand(0)))); 4509 return 0; 4510 } 4511 case Intrinsic::eh_sjlj_dispatch_setup: { 4512 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4513 getRoot(), getValue(I.getArgOperand(0)))); 4514 return 0; 4515 } 4516 4517 case Intrinsic::x86_mmx_pslli_w: 4518 case Intrinsic::x86_mmx_pslli_d: 4519 case Intrinsic::x86_mmx_pslli_q: 4520 case Intrinsic::x86_mmx_psrli_w: 4521 case Intrinsic::x86_mmx_psrli_d: 4522 case Intrinsic::x86_mmx_psrli_q: 4523 case Intrinsic::x86_mmx_psrai_w: 4524 case Intrinsic::x86_mmx_psrai_d: { 4525 SDValue ShAmt = getValue(I.getArgOperand(1)); 4526 if (isa<ConstantSDNode>(ShAmt)) { 4527 visitTargetIntrinsic(I, Intrinsic); 4528 return 0; 4529 } 4530 unsigned NewIntrinsic = 0; 4531 EVT ShAmtVT = MVT::v2i32; 4532 switch (Intrinsic) { 4533 case Intrinsic::x86_mmx_pslli_w: 4534 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4535 break; 4536 case Intrinsic::x86_mmx_pslli_d: 4537 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4538 break; 4539 case Intrinsic::x86_mmx_pslli_q: 4540 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4541 break; 4542 case Intrinsic::x86_mmx_psrli_w: 4543 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4544 break; 4545 case Intrinsic::x86_mmx_psrli_d: 4546 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4547 break; 4548 case Intrinsic::x86_mmx_psrli_q: 4549 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4550 break; 4551 case Intrinsic::x86_mmx_psrai_w: 4552 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4553 break; 4554 case Intrinsic::x86_mmx_psrai_d: 4555 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4556 break; 4557 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4558 } 4559 4560 // The vector shift intrinsics with scalars uses 32b shift amounts but 4561 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4562 // to be zero. 4563 // We must do this early because v2i32 is not a legal type. 4564 DebugLoc dl = getCurDebugLoc(); 4565 SDValue ShOps[2]; 4566 ShOps[0] = ShAmt; 4567 ShOps[1] = DAG.getConstant(0, MVT::i32); 4568 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4569 EVT DestVT = TLI.getValueType(I.getType()); 4570 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4571 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4572 DAG.getConstant(NewIntrinsic, MVT::i32), 4573 getValue(I.getArgOperand(0)), ShAmt); 4574 setValue(&I, Res); 4575 return 0; 4576 } 4577 case Intrinsic::convertff: 4578 case Intrinsic::convertfsi: 4579 case Intrinsic::convertfui: 4580 case Intrinsic::convertsif: 4581 case Intrinsic::convertuif: 4582 case Intrinsic::convertss: 4583 case Intrinsic::convertsu: 4584 case Intrinsic::convertus: 4585 case Intrinsic::convertuu: { 4586 ISD::CvtCode Code = ISD::CVT_INVALID; 4587 switch (Intrinsic) { 4588 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4589 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4590 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4591 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4592 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4593 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4594 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4595 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4596 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4597 } 4598 EVT DestVT = TLI.getValueType(I.getType()); 4599 const Value *Op1 = I.getArgOperand(0); 4600 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4601 DAG.getValueType(DestVT), 4602 DAG.getValueType(getValue(Op1).getValueType()), 4603 getValue(I.getArgOperand(1)), 4604 getValue(I.getArgOperand(2)), 4605 Code); 4606 setValue(&I, Res); 4607 return 0; 4608 } 4609 case Intrinsic::sqrt: 4610 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4611 getValue(I.getArgOperand(0)).getValueType(), 4612 getValue(I.getArgOperand(0)))); 4613 return 0; 4614 case Intrinsic::powi: 4615 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4616 getValue(I.getArgOperand(1)), DAG)); 4617 return 0; 4618 case Intrinsic::sin: 4619 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4620 getValue(I.getArgOperand(0)).getValueType(), 4621 getValue(I.getArgOperand(0)))); 4622 return 0; 4623 case Intrinsic::cos: 4624 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4625 getValue(I.getArgOperand(0)).getValueType(), 4626 getValue(I.getArgOperand(0)))); 4627 return 0; 4628 case Intrinsic::log: 4629 visitLog(I); 4630 return 0; 4631 case Intrinsic::log2: 4632 visitLog2(I); 4633 return 0; 4634 case Intrinsic::log10: 4635 visitLog10(I); 4636 return 0; 4637 case Intrinsic::exp: 4638 visitExp(I); 4639 return 0; 4640 case Intrinsic::exp2: 4641 visitExp2(I); 4642 return 0; 4643 case Intrinsic::pow: 4644 visitPow(I); 4645 return 0; 4646 case Intrinsic::convert_to_fp16: 4647 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4648 MVT::i16, getValue(I.getArgOperand(0)))); 4649 return 0; 4650 case Intrinsic::convert_from_fp16: 4651 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4652 MVT::f32, getValue(I.getArgOperand(0)))); 4653 return 0; 4654 case Intrinsic::pcmarker: { 4655 SDValue Tmp = getValue(I.getArgOperand(0)); 4656 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4657 return 0; 4658 } 4659 case Intrinsic::readcyclecounter: { 4660 SDValue Op = getRoot(); 4661 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4662 DAG.getVTList(MVT::i64, MVT::Other), 4663 &Op, 1); 4664 setValue(&I, Res); 4665 DAG.setRoot(Res.getValue(1)); 4666 return 0; 4667 } 4668 case Intrinsic::bswap: 4669 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4670 getValue(I.getArgOperand(0)).getValueType(), 4671 getValue(I.getArgOperand(0)))); 4672 return 0; 4673 case Intrinsic::cttz: { 4674 SDValue Arg = getValue(I.getArgOperand(0)); 4675 EVT Ty = Arg.getValueType(); 4676 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4677 return 0; 4678 } 4679 case Intrinsic::ctlz: { 4680 SDValue Arg = getValue(I.getArgOperand(0)); 4681 EVT Ty = Arg.getValueType(); 4682 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4683 return 0; 4684 } 4685 case Intrinsic::ctpop: { 4686 SDValue Arg = getValue(I.getArgOperand(0)); 4687 EVT Ty = Arg.getValueType(); 4688 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4689 return 0; 4690 } 4691 case Intrinsic::stacksave: { 4692 SDValue Op = getRoot(); 4693 Res = DAG.getNode(ISD::STACKSAVE, dl, 4694 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4695 setValue(&I, Res); 4696 DAG.setRoot(Res.getValue(1)); 4697 return 0; 4698 } 4699 case Intrinsic::stackrestore: { 4700 Res = getValue(I.getArgOperand(0)); 4701 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4702 return 0; 4703 } 4704 case Intrinsic::stackprotector: { 4705 // Emit code into the DAG to store the stack guard onto the stack. 4706 MachineFunction &MF = DAG.getMachineFunction(); 4707 MachineFrameInfo *MFI = MF.getFrameInfo(); 4708 EVT PtrTy = TLI.getPointerTy(); 4709 4710 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4711 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4712 4713 int FI = FuncInfo.StaticAllocaMap[Slot]; 4714 MFI->setStackProtectorIndex(FI); 4715 4716 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4717 4718 // Store the stack protector onto the stack. 4719 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4720 MachinePointerInfo::getFixedStack(FI), 4721 true, false, 0); 4722 setValue(&I, Res); 4723 DAG.setRoot(Res); 4724 return 0; 4725 } 4726 case Intrinsic::objectsize: { 4727 // If we don't know by now, we're never going to know. 4728 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4729 4730 assert(CI && "Non-constant type in __builtin_object_size?"); 4731 4732 SDValue Arg = getValue(I.getCalledValue()); 4733 EVT Ty = Arg.getValueType(); 4734 4735 if (CI->isZero()) 4736 Res = DAG.getConstant(-1ULL, Ty); 4737 else 4738 Res = DAG.getConstant(0, Ty); 4739 4740 setValue(&I, Res); 4741 return 0; 4742 } 4743 case Intrinsic::var_annotation: 4744 // Discard annotate attributes 4745 return 0; 4746 4747 case Intrinsic::init_trampoline: { 4748 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4749 4750 SDValue Ops[6]; 4751 Ops[0] = getRoot(); 4752 Ops[1] = getValue(I.getArgOperand(0)); 4753 Ops[2] = getValue(I.getArgOperand(1)); 4754 Ops[3] = getValue(I.getArgOperand(2)); 4755 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4756 Ops[5] = DAG.getSrcValue(F); 4757 4758 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4759 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4760 Ops, 6); 4761 4762 setValue(&I, Res); 4763 DAG.setRoot(Res.getValue(1)); 4764 return 0; 4765 } 4766 case Intrinsic::gcroot: 4767 if (GFI) { 4768 const Value *Alloca = I.getArgOperand(0); 4769 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4770 4771 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4772 GFI->addStackRoot(FI->getIndex(), TypeMap); 4773 } 4774 return 0; 4775 case Intrinsic::gcread: 4776 case Intrinsic::gcwrite: 4777 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4778 return 0; 4779 case Intrinsic::flt_rounds: 4780 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4781 return 0; 4782 case Intrinsic::trap: { 4783 StringRef TrapFuncName = getTrapFunctionName(); 4784 if (TrapFuncName.empty()) { 4785 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4786 return 0; 4787 } 4788 TargetLowering::ArgListTy Args; 4789 std::pair<SDValue, SDValue> Result = 4790 TLI.LowerCallTo(getRoot(), I.getType(), 4791 false, false, false, false, 0, CallingConv::C, 4792 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 4793 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4794 Args, DAG, getCurDebugLoc()); 4795 DAG.setRoot(Result.second); 4796 return 0; 4797 } 4798 case Intrinsic::uadd_with_overflow: 4799 return implVisitAluOverflow(I, ISD::UADDO); 4800 case Intrinsic::sadd_with_overflow: 4801 return implVisitAluOverflow(I, ISD::SADDO); 4802 case Intrinsic::usub_with_overflow: 4803 return implVisitAluOverflow(I, ISD::USUBO); 4804 case Intrinsic::ssub_with_overflow: 4805 return implVisitAluOverflow(I, ISD::SSUBO); 4806 case Intrinsic::umul_with_overflow: 4807 return implVisitAluOverflow(I, ISD::UMULO); 4808 case Intrinsic::smul_with_overflow: 4809 return implVisitAluOverflow(I, ISD::SMULO); 4810 4811 case Intrinsic::prefetch: { 4812 SDValue Ops[5]; 4813 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4814 Ops[0] = getRoot(); 4815 Ops[1] = getValue(I.getArgOperand(0)); 4816 Ops[2] = getValue(I.getArgOperand(1)); 4817 Ops[3] = getValue(I.getArgOperand(2)); 4818 Ops[4] = getValue(I.getArgOperand(3)); 4819 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 4820 DAG.getVTList(MVT::Other), 4821 &Ops[0], 5, 4822 EVT::getIntegerVT(*Context, 8), 4823 MachinePointerInfo(I.getArgOperand(0)), 4824 0, /* align */ 4825 false, /* volatile */ 4826 rw==0, /* read */ 4827 rw==1)); /* write */ 4828 return 0; 4829 } 4830 case Intrinsic::memory_barrier: { 4831 SDValue Ops[6]; 4832 Ops[0] = getRoot(); 4833 for (int x = 1; x < 6; ++x) 4834 Ops[x] = getValue(I.getArgOperand(x - 1)); 4835 4836 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4837 return 0; 4838 } 4839 case Intrinsic::atomic_cmp_swap: { 4840 SDValue Root = getRoot(); 4841 SDValue L = 4842 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4843 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4844 Root, 4845 getValue(I.getArgOperand(0)), 4846 getValue(I.getArgOperand(1)), 4847 getValue(I.getArgOperand(2)), 4848 MachinePointerInfo(I.getArgOperand(0))); 4849 setValue(&I, L); 4850 DAG.setRoot(L.getValue(1)); 4851 return 0; 4852 } 4853 case Intrinsic::atomic_load_add: 4854 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4855 case Intrinsic::atomic_load_sub: 4856 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4857 case Intrinsic::atomic_load_or: 4858 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4859 case Intrinsic::atomic_load_xor: 4860 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4861 case Intrinsic::atomic_load_and: 4862 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4863 case Intrinsic::atomic_load_nand: 4864 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4865 case Intrinsic::atomic_load_max: 4866 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4867 case Intrinsic::atomic_load_min: 4868 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4869 case Intrinsic::atomic_load_umin: 4870 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4871 case Intrinsic::atomic_load_umax: 4872 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4873 case Intrinsic::atomic_swap: 4874 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4875 4876 case Intrinsic::invariant_start: 4877 case Intrinsic::lifetime_start: 4878 // Discard region information. 4879 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4880 return 0; 4881 case Intrinsic::invariant_end: 4882 case Intrinsic::lifetime_end: 4883 // Discard region information. 4884 return 0; 4885 } 4886 } 4887 4888 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4889 bool isTailCall, 4890 MachineBasicBlock *LandingPad) { 4891 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4892 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4893 const Type *RetTy = FTy->getReturnType(); 4894 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4895 MCSymbol *BeginLabel = 0; 4896 4897 TargetLowering::ArgListTy Args; 4898 TargetLowering::ArgListEntry Entry; 4899 Args.reserve(CS.arg_size()); 4900 4901 // Check whether the function can return without sret-demotion. 4902 SmallVector<ISD::OutputArg, 4> Outs; 4903 SmallVector<uint64_t, 4> Offsets; 4904 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4905 Outs, TLI, &Offsets); 4906 4907 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4908 DAG.getMachineFunction(), 4909 FTy->isVarArg(), Outs, 4910 FTy->getContext()); 4911 4912 SDValue DemoteStackSlot; 4913 int DemoteStackIdx = -100; 4914 4915 if (!CanLowerReturn) { 4916 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4917 FTy->getReturnType()); 4918 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4919 FTy->getReturnType()); 4920 MachineFunction &MF = DAG.getMachineFunction(); 4921 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4922 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4923 4924 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4925 Entry.Node = DemoteStackSlot; 4926 Entry.Ty = StackSlotPtrType; 4927 Entry.isSExt = false; 4928 Entry.isZExt = false; 4929 Entry.isInReg = false; 4930 Entry.isSRet = true; 4931 Entry.isNest = false; 4932 Entry.isByVal = false; 4933 Entry.Alignment = Align; 4934 Args.push_back(Entry); 4935 RetTy = Type::getVoidTy(FTy->getContext()); 4936 } 4937 4938 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4939 i != e; ++i) { 4940 const Value *V = *i; 4941 4942 // Skip empty types 4943 if (V->getType()->isEmptyTy()) 4944 continue; 4945 4946 SDValue ArgNode = getValue(V); 4947 Entry.Node = ArgNode; Entry.Ty = V->getType(); 4948 4949 unsigned attrInd = i - CS.arg_begin() + 1; 4950 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4951 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4952 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4953 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4954 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4955 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4956 Entry.Alignment = CS.getParamAlignment(attrInd); 4957 Args.push_back(Entry); 4958 } 4959 4960 if (LandingPad) { 4961 // Insert a label before the invoke call to mark the try range. This can be 4962 // used to detect deletion of the invoke via the MachineModuleInfo. 4963 BeginLabel = MMI.getContext().CreateTempSymbol(); 4964 4965 // For SjLj, keep track of which landing pads go with which invokes 4966 // so as to maintain the ordering of pads in the LSDA. 4967 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4968 if (CallSiteIndex) { 4969 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4970 // Now that the call site is handled, stop tracking it. 4971 MMI.setCurrentCallSite(0); 4972 } 4973 4974 // Both PendingLoads and PendingExports must be flushed here; 4975 // this call might not return. 4976 (void)getRoot(); 4977 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4978 } 4979 4980 // Check if target-independent constraints permit a tail call here. 4981 // Target-dependent constraints are checked within TLI.LowerCallTo. 4982 if (isTailCall && 4983 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4984 isTailCall = false; 4985 4986 // If there's a possibility that fast-isel has already selected some amount 4987 // of the current basic block, don't emit a tail call. 4988 if (isTailCall && EnableFastISel) 4989 isTailCall = false; 4990 4991 std::pair<SDValue,SDValue> Result = 4992 TLI.LowerCallTo(getRoot(), RetTy, 4993 CS.paramHasAttr(0, Attribute::SExt), 4994 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4995 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4996 CS.getCallingConv(), 4997 isTailCall, 4998 !CS.getInstruction()->use_empty(), 4999 Callee, Args, DAG, getCurDebugLoc()); 5000 assert((isTailCall || Result.second.getNode()) && 5001 "Non-null chain expected with non-tail call!"); 5002 assert((Result.second.getNode() || !Result.first.getNode()) && 5003 "Null value expected with tail call!"); 5004 if (Result.first.getNode()) { 5005 setValue(CS.getInstruction(), Result.first); 5006 } else if (!CanLowerReturn && Result.second.getNode()) { 5007 // The instruction result is the result of loading from the 5008 // hidden sret parameter. 5009 SmallVector<EVT, 1> PVTs; 5010 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5011 5012 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5013 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5014 EVT PtrVT = PVTs[0]; 5015 unsigned NumValues = Outs.size(); 5016 SmallVector<SDValue, 4> Values(NumValues); 5017 SmallVector<SDValue, 4> Chains(NumValues); 5018 5019 for (unsigned i = 0; i < NumValues; ++i) { 5020 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5021 DemoteStackSlot, 5022 DAG.getConstant(Offsets[i], PtrVT)); 5023 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5024 Add, 5025 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5026 false, false, 1); 5027 Values[i] = L; 5028 Chains[i] = L.getValue(1); 5029 } 5030 5031 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5032 MVT::Other, &Chains[0], NumValues); 5033 PendingLoads.push_back(Chain); 5034 5035 // Collect the legal value parts into potentially illegal values 5036 // that correspond to the original function's return values. 5037 SmallVector<EVT, 4> RetTys; 5038 RetTy = FTy->getReturnType(); 5039 ComputeValueVTs(TLI, RetTy, RetTys); 5040 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5041 SmallVector<SDValue, 4> ReturnValues; 5042 unsigned CurReg = 0; 5043 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5044 EVT VT = RetTys[I]; 5045 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5046 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5047 5048 SDValue ReturnValue = 5049 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5050 RegisterVT, VT, AssertOp); 5051 ReturnValues.push_back(ReturnValue); 5052 CurReg += NumRegs; 5053 } 5054 5055 setValue(CS.getInstruction(), 5056 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5057 DAG.getVTList(&RetTys[0], RetTys.size()), 5058 &ReturnValues[0], ReturnValues.size())); 5059 } 5060 5061 // Assign order to nodes here. If the call does not produce a result, it won't 5062 // be mapped to a SDNode and visit() will not assign it an order number. 5063 if (!Result.second.getNode()) { 5064 // As a special case, a null chain means that a tail call has been emitted and 5065 // the DAG root is already updated. 5066 HasTailCall = true; 5067 ++SDNodeOrder; 5068 AssignOrderingToNode(DAG.getRoot().getNode()); 5069 } else { 5070 DAG.setRoot(Result.second); 5071 ++SDNodeOrder; 5072 AssignOrderingToNode(Result.second.getNode()); 5073 } 5074 5075 if (LandingPad) { 5076 // Insert a label at the end of the invoke call to mark the try range. This 5077 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5078 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5079 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5080 5081 // Inform MachineModuleInfo of range. 5082 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5083 } 5084 } 5085 5086 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5087 /// value is equal or not-equal to zero. 5088 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5089 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5090 UI != E; ++UI) { 5091 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5092 if (IC->isEquality()) 5093 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5094 if (C->isNullValue()) 5095 continue; 5096 // Unknown instruction. 5097 return false; 5098 } 5099 return true; 5100 } 5101 5102 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5103 const Type *LoadTy, 5104 SelectionDAGBuilder &Builder) { 5105 5106 // Check to see if this load can be trivially constant folded, e.g. if the 5107 // input is from a string literal. 5108 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5109 // Cast pointer to the type we really want to load. 5110 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5111 PointerType::getUnqual(LoadTy)); 5112 5113 if (const Constant *LoadCst = 5114 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5115 Builder.TD)) 5116 return Builder.getValue(LoadCst); 5117 } 5118 5119 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5120 // still constant memory, the input chain can be the entry node. 5121 SDValue Root; 5122 bool ConstantMemory = false; 5123 5124 // Do not serialize (non-volatile) loads of constant memory with anything. 5125 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5126 Root = Builder.DAG.getEntryNode(); 5127 ConstantMemory = true; 5128 } else { 5129 // Do not serialize non-volatile loads against each other. 5130 Root = Builder.DAG.getRoot(); 5131 } 5132 5133 SDValue Ptr = Builder.getValue(PtrVal); 5134 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5135 Ptr, MachinePointerInfo(PtrVal), 5136 false /*volatile*/, 5137 false /*nontemporal*/, 1 /* align=1 */); 5138 5139 if (!ConstantMemory) 5140 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5141 return LoadVal; 5142 } 5143 5144 5145 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5146 /// If so, return true and lower it, otherwise return false and it will be 5147 /// lowered like a normal call. 5148 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5149 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5150 if (I.getNumArgOperands() != 3) 5151 return false; 5152 5153 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5154 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5155 !I.getArgOperand(2)->getType()->isIntegerTy() || 5156 !I.getType()->isIntegerTy()) 5157 return false; 5158 5159 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5160 5161 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5162 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5163 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5164 bool ActuallyDoIt = true; 5165 MVT LoadVT; 5166 const Type *LoadTy; 5167 switch (Size->getZExtValue()) { 5168 default: 5169 LoadVT = MVT::Other; 5170 LoadTy = 0; 5171 ActuallyDoIt = false; 5172 break; 5173 case 2: 5174 LoadVT = MVT::i16; 5175 LoadTy = Type::getInt16Ty(Size->getContext()); 5176 break; 5177 case 4: 5178 LoadVT = MVT::i32; 5179 LoadTy = Type::getInt32Ty(Size->getContext()); 5180 break; 5181 case 8: 5182 LoadVT = MVT::i64; 5183 LoadTy = Type::getInt64Ty(Size->getContext()); 5184 break; 5185 /* 5186 case 16: 5187 LoadVT = MVT::v4i32; 5188 LoadTy = Type::getInt32Ty(Size->getContext()); 5189 LoadTy = VectorType::get(LoadTy, 4); 5190 break; 5191 */ 5192 } 5193 5194 // This turns into unaligned loads. We only do this if the target natively 5195 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5196 // we'll only produce a small number of byte loads. 5197 5198 // Require that we can find a legal MVT, and only do this if the target 5199 // supports unaligned loads of that type. Expanding into byte loads would 5200 // bloat the code. 5201 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5202 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5203 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5204 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5205 ActuallyDoIt = false; 5206 } 5207 5208 if (ActuallyDoIt) { 5209 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5210 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5211 5212 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5213 ISD::SETNE); 5214 EVT CallVT = TLI.getValueType(I.getType(), true); 5215 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5216 return true; 5217 } 5218 } 5219 5220 5221 return false; 5222 } 5223 5224 5225 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5226 // Handle inline assembly differently. 5227 if (isa<InlineAsm>(I.getCalledValue())) { 5228 visitInlineAsm(&I); 5229 return; 5230 } 5231 5232 // See if any floating point values are being passed to this function. This is 5233 // used to emit an undefined reference to fltused on Windows. 5234 const FunctionType *FT = 5235 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5236 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5237 if (FT->isVarArg() && 5238 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5239 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5240 const Type* T = I.getArgOperand(i)->getType(); 5241 for (po_iterator<const Type*> i = po_begin(T), e = po_end(T); 5242 i != e; ++i) { 5243 if (!i->isFloatingPointTy()) continue; 5244 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5245 break; 5246 } 5247 } 5248 } 5249 5250 const char *RenameFn = 0; 5251 if (Function *F = I.getCalledFunction()) { 5252 if (F->isDeclaration()) { 5253 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5254 if (unsigned IID = II->getIntrinsicID(F)) { 5255 RenameFn = visitIntrinsicCall(I, IID); 5256 if (!RenameFn) 5257 return; 5258 } 5259 } 5260 if (unsigned IID = F->getIntrinsicID()) { 5261 RenameFn = visitIntrinsicCall(I, IID); 5262 if (!RenameFn) 5263 return; 5264 } 5265 } 5266 5267 // Check for well-known libc/libm calls. If the function is internal, it 5268 // can't be a library call. 5269 if (!F->hasLocalLinkage() && F->hasName()) { 5270 StringRef Name = F->getName(); 5271 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5272 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5273 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5274 I.getType() == I.getArgOperand(0)->getType() && 5275 I.getType() == I.getArgOperand(1)->getType()) { 5276 SDValue LHS = getValue(I.getArgOperand(0)); 5277 SDValue RHS = getValue(I.getArgOperand(1)); 5278 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5279 LHS.getValueType(), LHS, RHS)); 5280 return; 5281 } 5282 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5283 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5284 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5285 I.getType() == I.getArgOperand(0)->getType()) { 5286 SDValue Tmp = getValue(I.getArgOperand(0)); 5287 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5288 Tmp.getValueType(), Tmp)); 5289 return; 5290 } 5291 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5292 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5293 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5294 I.getType() == I.getArgOperand(0)->getType() && 5295 I.onlyReadsMemory()) { 5296 SDValue Tmp = getValue(I.getArgOperand(0)); 5297 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5298 Tmp.getValueType(), Tmp)); 5299 return; 5300 } 5301 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5302 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5303 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5304 I.getType() == I.getArgOperand(0)->getType() && 5305 I.onlyReadsMemory()) { 5306 SDValue Tmp = getValue(I.getArgOperand(0)); 5307 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5308 Tmp.getValueType(), Tmp)); 5309 return; 5310 } 5311 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5312 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5313 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5314 I.getType() == I.getArgOperand(0)->getType() && 5315 I.onlyReadsMemory()) { 5316 SDValue Tmp = getValue(I.getArgOperand(0)); 5317 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5318 Tmp.getValueType(), Tmp)); 5319 return; 5320 } 5321 } else if (Name == "memcmp") { 5322 if (visitMemCmpCall(I)) 5323 return; 5324 } 5325 } 5326 } 5327 5328 SDValue Callee; 5329 if (!RenameFn) 5330 Callee = getValue(I.getCalledValue()); 5331 else 5332 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5333 5334 // Check if we can potentially perform a tail call. More detailed checking is 5335 // be done within LowerCallTo, after more information about the call is known. 5336 LowerCallTo(&I, Callee, I.isTailCall()); 5337 } 5338 5339 namespace { 5340 5341 /// AsmOperandInfo - This contains information for each constraint that we are 5342 /// lowering. 5343 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5344 public: 5345 /// CallOperand - If this is the result output operand or a clobber 5346 /// this is null, otherwise it is the incoming operand to the CallInst. 5347 /// This gets modified as the asm is processed. 5348 SDValue CallOperand; 5349 5350 /// AssignedRegs - If this is a register or register class operand, this 5351 /// contains the set of register corresponding to the operand. 5352 RegsForValue AssignedRegs; 5353 5354 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5355 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5356 } 5357 5358 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5359 /// busy in OutputRegs/InputRegs. 5360 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5361 std::set<unsigned> &OutputRegs, 5362 std::set<unsigned> &InputRegs, 5363 const TargetRegisterInfo &TRI) const { 5364 if (isOutReg) { 5365 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5366 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5367 } 5368 if (isInReg) { 5369 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5370 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5371 } 5372 } 5373 5374 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5375 /// corresponds to. If there is no Value* for this operand, it returns 5376 /// MVT::Other. 5377 EVT getCallOperandValEVT(LLVMContext &Context, 5378 const TargetLowering &TLI, 5379 const TargetData *TD) const { 5380 if (CallOperandVal == 0) return MVT::Other; 5381 5382 if (isa<BasicBlock>(CallOperandVal)) 5383 return TLI.getPointerTy(); 5384 5385 const llvm::Type *OpTy = CallOperandVal->getType(); 5386 5387 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5388 // If this is an indirect operand, the operand is a pointer to the 5389 // accessed type. 5390 if (isIndirect) { 5391 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5392 if (!PtrTy) 5393 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5394 OpTy = PtrTy->getElementType(); 5395 } 5396 5397 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5398 if (const StructType *STy = dyn_cast<StructType>(OpTy)) 5399 if (STy->getNumElements() == 1) 5400 OpTy = STy->getElementType(0); 5401 5402 // If OpTy is not a single value, it may be a struct/union that we 5403 // can tile with integers. 5404 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5405 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5406 switch (BitSize) { 5407 default: break; 5408 case 1: 5409 case 8: 5410 case 16: 5411 case 32: 5412 case 64: 5413 case 128: 5414 OpTy = IntegerType::get(Context, BitSize); 5415 break; 5416 } 5417 } 5418 5419 return TLI.getValueType(OpTy, true); 5420 } 5421 5422 private: 5423 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5424 /// specified set. 5425 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5426 const TargetRegisterInfo &TRI) { 5427 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5428 Regs.insert(Reg); 5429 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5430 for (; *Aliases; ++Aliases) 5431 Regs.insert(*Aliases); 5432 } 5433 }; 5434 5435 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5436 5437 } // end anonymous namespace 5438 5439 /// isAllocatableRegister - If the specified register is safe to allocate, 5440 /// i.e. it isn't a stack pointer or some other special register, return the 5441 /// register class for the register. Otherwise, return null. 5442 static const TargetRegisterClass * 5443 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5444 const TargetLowering &TLI, 5445 const TargetRegisterInfo *TRI) { 5446 EVT FoundVT = MVT::Other; 5447 const TargetRegisterClass *FoundRC = 0; 5448 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5449 E = TRI->regclass_end(); RCI != E; ++RCI) { 5450 EVT ThisVT = MVT::Other; 5451 5452 const TargetRegisterClass *RC = *RCI; 5453 if (!RC->isAllocatable()) 5454 continue; 5455 // If none of the value types for this register class are valid, we 5456 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5457 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5458 I != E; ++I) { 5459 if (TLI.isTypeLegal(*I)) { 5460 // If we have already found this register in a different register class, 5461 // choose the one with the largest VT specified. For example, on 5462 // PowerPC, we favor f64 register classes over f32. 5463 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5464 ThisVT = *I; 5465 break; 5466 } 5467 } 5468 } 5469 5470 if (ThisVT == MVT::Other) continue; 5471 5472 // NOTE: This isn't ideal. In particular, this might allocate the 5473 // frame pointer in functions that need it (due to them not being taken 5474 // out of allocation, because a variable sized allocation hasn't been seen 5475 // yet). This is a slight code pessimization, but should still work. 5476 ArrayRef<unsigned> RawOrder = RC->getRawAllocationOrder(MF); 5477 if (std::find(RawOrder.begin(), RawOrder.end(), Reg) != RawOrder.end()) { 5478 // We found a matching register class. Keep looking at others in case 5479 // we find one with larger registers that this physreg is also in. 5480 FoundRC = RC; 5481 FoundVT = ThisVT; 5482 break; 5483 } 5484 } 5485 return FoundRC; 5486 } 5487 5488 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5489 /// specified operand. We prefer to assign virtual registers, to allow the 5490 /// register allocator to handle the assignment process. However, if the asm 5491 /// uses features that we can't model on machineinstrs, we have SDISel do the 5492 /// allocation. This produces generally horrible, but correct, code. 5493 /// 5494 /// OpInfo describes the operand. 5495 /// Input and OutputRegs are the set of already allocated physical registers. 5496 /// 5497 static void GetRegistersForValue(SelectionDAG &DAG, 5498 const TargetLowering &TLI, 5499 DebugLoc DL, 5500 SDISelAsmOperandInfo &OpInfo, 5501 std::set<unsigned> &OutputRegs, 5502 std::set<unsigned> &InputRegs) { 5503 LLVMContext &Context = *DAG.getContext(); 5504 5505 // Compute whether this value requires an input register, an output register, 5506 // or both. 5507 bool isOutReg = false; 5508 bool isInReg = false; 5509 switch (OpInfo.Type) { 5510 case InlineAsm::isOutput: 5511 isOutReg = true; 5512 5513 // If there is an input constraint that matches this, we need to reserve 5514 // the input register so no other inputs allocate to it. 5515 isInReg = OpInfo.hasMatchingInput(); 5516 break; 5517 case InlineAsm::isInput: 5518 isInReg = true; 5519 isOutReg = false; 5520 break; 5521 case InlineAsm::isClobber: 5522 isOutReg = true; 5523 isInReg = true; 5524 break; 5525 } 5526 5527 5528 MachineFunction &MF = DAG.getMachineFunction(); 5529 SmallVector<unsigned, 4> Regs; 5530 5531 // If this is a constraint for a single physreg, or a constraint for a 5532 // register class, find it. 5533 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5534 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5535 OpInfo.ConstraintVT); 5536 5537 unsigned NumRegs = 1; 5538 if (OpInfo.ConstraintVT != MVT::Other) { 5539 // If this is a FP input in an integer register (or visa versa) insert a bit 5540 // cast of the input value. More generally, handle any case where the input 5541 // value disagrees with the register class we plan to stick this in. 5542 if (OpInfo.Type == InlineAsm::isInput && 5543 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5544 // Try to convert to the first EVT that the reg class contains. If the 5545 // types are identical size, use a bitcast to convert (e.g. two differing 5546 // vector types). 5547 EVT RegVT = *PhysReg.second->vt_begin(); 5548 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5549 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5550 RegVT, OpInfo.CallOperand); 5551 OpInfo.ConstraintVT = RegVT; 5552 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5553 // If the input is a FP value and we want it in FP registers, do a 5554 // bitcast to the corresponding integer type. This turns an f64 value 5555 // into i64, which can be passed with two i32 values on a 32-bit 5556 // machine. 5557 RegVT = EVT::getIntegerVT(Context, 5558 OpInfo.ConstraintVT.getSizeInBits()); 5559 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5560 RegVT, OpInfo.CallOperand); 5561 OpInfo.ConstraintVT = RegVT; 5562 } 5563 } 5564 5565 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5566 } 5567 5568 EVT RegVT; 5569 EVT ValueVT = OpInfo.ConstraintVT; 5570 5571 // If this is a constraint for a specific physical register, like {r17}, 5572 // assign it now. 5573 if (unsigned AssignedReg = PhysReg.first) { 5574 const TargetRegisterClass *RC = PhysReg.second; 5575 if (OpInfo.ConstraintVT == MVT::Other) 5576 ValueVT = *RC->vt_begin(); 5577 5578 // Get the actual register value type. This is important, because the user 5579 // may have asked for (e.g.) the AX register in i32 type. We need to 5580 // remember that AX is actually i16 to get the right extension. 5581 RegVT = *RC->vt_begin(); 5582 5583 // This is a explicit reference to a physical register. 5584 Regs.push_back(AssignedReg); 5585 5586 // If this is an expanded reference, add the rest of the regs to Regs. 5587 if (NumRegs != 1) { 5588 TargetRegisterClass::iterator I = RC->begin(); 5589 for (; *I != AssignedReg; ++I) 5590 assert(I != RC->end() && "Didn't find reg!"); 5591 5592 // Already added the first reg. 5593 --NumRegs; ++I; 5594 for (; NumRegs; --NumRegs, ++I) { 5595 assert(I != RC->end() && "Ran out of registers to allocate!"); 5596 Regs.push_back(*I); 5597 } 5598 } 5599 5600 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5601 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5602 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5603 return; 5604 } 5605 5606 // Otherwise, if this was a reference to an LLVM register class, create vregs 5607 // for this reference. 5608 if (const TargetRegisterClass *RC = PhysReg.second) { 5609 RegVT = *RC->vt_begin(); 5610 if (OpInfo.ConstraintVT == MVT::Other) 5611 ValueVT = RegVT; 5612 5613 // Create the appropriate number of virtual registers. 5614 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5615 for (; NumRegs; --NumRegs) 5616 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5617 5618 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5619 return; 5620 } 5621 5622 // This is a reference to a register class that doesn't directly correspond 5623 // to an LLVM register class. Allocate NumRegs consecutive, available, 5624 // registers from the class. 5625 std::vector<unsigned> RegClassRegs 5626 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5627 OpInfo.ConstraintVT); 5628 5629 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5630 BitVector Reserved = TRI->getReservedRegs(MF); 5631 unsigned NumAllocated = 0; 5632 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5633 unsigned Reg = RegClassRegs[i]; 5634 // Filter out the reserved registers, but note that reserved registers are 5635 // not fully determined at this point. We may still decide we need a frame 5636 // pointer. 5637 if (Reserved.test(Reg)) 5638 continue; 5639 // See if this register is available. 5640 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5641 (isInReg && InputRegs.count(Reg))) { // Already used. 5642 // Make sure we find consecutive registers. 5643 NumAllocated = 0; 5644 continue; 5645 } 5646 5647 // Check to see if this register is allocatable (i.e. don't give out the 5648 // stack pointer). 5649 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5650 if (!RC) { // Couldn't allocate this register. 5651 // Reset NumAllocated to make sure we return consecutive registers. 5652 NumAllocated = 0; 5653 continue; 5654 } 5655 5656 // Okay, this register is good, we can use it. 5657 ++NumAllocated; 5658 5659 // If we allocated enough consecutive registers, succeed. 5660 if (NumAllocated == NumRegs) { 5661 unsigned RegStart = (i-NumAllocated)+1; 5662 unsigned RegEnd = i+1; 5663 // Mark all of the allocated registers used. 5664 for (unsigned i = RegStart; i != RegEnd; ++i) 5665 Regs.push_back(RegClassRegs[i]); 5666 5667 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5668 OpInfo.ConstraintVT); 5669 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5670 return; 5671 } 5672 } 5673 5674 // Otherwise, we couldn't allocate enough registers for this. 5675 } 5676 5677 /// visitInlineAsm - Handle a call to an InlineAsm object. 5678 /// 5679 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5680 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5681 5682 /// ConstraintOperands - Information about all of the constraints. 5683 SDISelAsmOperandInfoVector ConstraintOperands; 5684 5685 std::set<unsigned> OutputRegs, InputRegs; 5686 5687 TargetLowering::AsmOperandInfoVector 5688 TargetConstraints = TLI.ParseConstraints(CS); 5689 5690 bool hasMemory = false; 5691 5692 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5693 unsigned ResNo = 0; // ResNo - The result number of the next output. 5694 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5695 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5696 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5697 5698 EVT OpVT = MVT::Other; 5699 5700 // Compute the value type for each operand. 5701 switch (OpInfo.Type) { 5702 case InlineAsm::isOutput: 5703 // Indirect outputs just consume an argument. 5704 if (OpInfo.isIndirect) { 5705 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5706 break; 5707 } 5708 5709 // The return value of the call is this value. As such, there is no 5710 // corresponding argument. 5711 assert(!CS.getType()->isVoidTy() && 5712 "Bad inline asm!"); 5713 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5714 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5715 } else { 5716 assert(ResNo == 0 && "Asm only has one result!"); 5717 OpVT = TLI.getValueType(CS.getType()); 5718 } 5719 ++ResNo; 5720 break; 5721 case InlineAsm::isInput: 5722 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5723 break; 5724 case InlineAsm::isClobber: 5725 // Nothing to do. 5726 break; 5727 } 5728 5729 // If this is an input or an indirect output, process the call argument. 5730 // BasicBlocks are labels, currently appearing only in asm's. 5731 if (OpInfo.CallOperandVal) { 5732 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5733 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5734 } else { 5735 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5736 } 5737 5738 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5739 } 5740 5741 OpInfo.ConstraintVT = OpVT; 5742 5743 // Indirect operand accesses access memory. 5744 if (OpInfo.isIndirect) 5745 hasMemory = true; 5746 else { 5747 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5748 TargetLowering::ConstraintType 5749 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5750 if (CType == TargetLowering::C_Memory) { 5751 hasMemory = true; 5752 break; 5753 } 5754 } 5755 } 5756 } 5757 5758 SDValue Chain, Flag; 5759 5760 // We won't need to flush pending loads if this asm doesn't touch 5761 // memory and is nonvolatile. 5762 if (hasMemory || IA->hasSideEffects()) 5763 Chain = getRoot(); 5764 else 5765 Chain = DAG.getRoot(); 5766 5767 // Second pass over the constraints: compute which constraint option to use 5768 // and assign registers to constraints that want a specific physreg. 5769 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5770 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5771 5772 // If this is an output operand with a matching input operand, look up the 5773 // matching input. If their types mismatch, e.g. one is an integer, the 5774 // other is floating point, or their sizes are different, flag it as an 5775 // error. 5776 if (OpInfo.hasMatchingInput()) { 5777 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5778 5779 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5780 if ((OpInfo.ConstraintVT.isInteger() != 5781 Input.ConstraintVT.isInteger()) || 5782 (OpInfo.ConstraintVT.getSizeInBits() != 5783 Input.ConstraintVT.getSizeInBits())) { 5784 report_fatal_error("Unsupported asm: input constraint" 5785 " with a matching output constraint of" 5786 " incompatible type!"); 5787 } 5788 Input.ConstraintVT = OpInfo.ConstraintVT; 5789 } 5790 } 5791 5792 // Compute the constraint code and ConstraintType to use. 5793 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5794 5795 // If this is a memory input, and if the operand is not indirect, do what we 5796 // need to to provide an address for the memory input. 5797 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5798 !OpInfo.isIndirect) { 5799 assert((OpInfo.isMultipleAlternative || 5800 (OpInfo.Type == InlineAsm::isInput)) && 5801 "Can only indirectify direct input operands!"); 5802 5803 // Memory operands really want the address of the value. If we don't have 5804 // an indirect input, put it in the constpool if we can, otherwise spill 5805 // it to a stack slot. 5806 // TODO: This isn't quite right. We need to handle these according to 5807 // the addressing mode that the constraint wants. Also, this may take 5808 // an additional register for the computation and we don't want that 5809 // either. 5810 5811 // If the operand is a float, integer, or vector constant, spill to a 5812 // constant pool entry to get its address. 5813 const Value *OpVal = OpInfo.CallOperandVal; 5814 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5815 isa<ConstantVector>(OpVal)) { 5816 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5817 TLI.getPointerTy()); 5818 } else { 5819 // Otherwise, create a stack slot and emit a store to it before the 5820 // asm. 5821 const Type *Ty = OpVal->getType(); 5822 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5823 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5824 MachineFunction &MF = DAG.getMachineFunction(); 5825 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5826 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5827 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5828 OpInfo.CallOperand, StackSlot, 5829 MachinePointerInfo::getFixedStack(SSFI), 5830 false, false, 0); 5831 OpInfo.CallOperand = StackSlot; 5832 } 5833 5834 // There is no longer a Value* corresponding to this operand. 5835 OpInfo.CallOperandVal = 0; 5836 5837 // It is now an indirect operand. 5838 OpInfo.isIndirect = true; 5839 } 5840 5841 // If this constraint is for a specific register, allocate it before 5842 // anything else. 5843 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5844 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5845 InputRegs); 5846 } 5847 5848 // Second pass - Loop over all of the operands, assigning virtual or physregs 5849 // to register class operands. 5850 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5851 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5852 5853 // C_Register operands have already been allocated, Other/Memory don't need 5854 // to be. 5855 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5856 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5857 InputRegs); 5858 } 5859 5860 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5861 std::vector<SDValue> AsmNodeOperands; 5862 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5863 AsmNodeOperands.push_back( 5864 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5865 TLI.getPointerTy())); 5866 5867 // If we have a !srcloc metadata node associated with it, we want to attach 5868 // this to the ultimately generated inline asm machineinstr. To do this, we 5869 // pass in the third operand as this (potentially null) inline asm MDNode. 5870 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5871 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5872 5873 // Remember the HasSideEffect and AlignStack bits as operand 3. 5874 unsigned ExtraInfo = 0; 5875 if (IA->hasSideEffects()) 5876 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5877 if (IA->isAlignStack()) 5878 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5879 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 5880 TLI.getPointerTy())); 5881 5882 // Loop over all of the inputs, copying the operand values into the 5883 // appropriate registers and processing the output regs. 5884 RegsForValue RetValRegs; 5885 5886 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5887 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5888 5889 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5890 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5891 5892 switch (OpInfo.Type) { 5893 case InlineAsm::isOutput: { 5894 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5895 OpInfo.ConstraintType != TargetLowering::C_Register) { 5896 // Memory output, or 'other' output (e.g. 'X' constraint). 5897 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5898 5899 // Add information to the INLINEASM node to know about this output. 5900 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5901 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5902 TLI.getPointerTy())); 5903 AsmNodeOperands.push_back(OpInfo.CallOperand); 5904 break; 5905 } 5906 5907 // Otherwise, this is a register or register class output. 5908 5909 // Copy the output from the appropriate register. Find a register that 5910 // we can use. 5911 if (OpInfo.AssignedRegs.Regs.empty()) 5912 report_fatal_error("Couldn't allocate output reg for constraint '" + 5913 Twine(OpInfo.ConstraintCode) + "'!"); 5914 5915 // If this is an indirect operand, store through the pointer after the 5916 // asm. 5917 if (OpInfo.isIndirect) { 5918 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5919 OpInfo.CallOperandVal)); 5920 } else { 5921 // This is the result value of the call. 5922 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5923 // Concatenate this output onto the outputs list. 5924 RetValRegs.append(OpInfo.AssignedRegs); 5925 } 5926 5927 // Add information to the INLINEASM node to know that this register is 5928 // set. 5929 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5930 InlineAsm::Kind_RegDefEarlyClobber : 5931 InlineAsm::Kind_RegDef, 5932 false, 5933 0, 5934 DAG, 5935 AsmNodeOperands); 5936 break; 5937 } 5938 case InlineAsm::isInput: { 5939 SDValue InOperandVal = OpInfo.CallOperand; 5940 5941 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5942 // If this is required to match an output register we have already set, 5943 // just use its register. 5944 unsigned OperandNo = OpInfo.getMatchedOperand(); 5945 5946 // Scan until we find the definition we already emitted of this operand. 5947 // When we find it, create a RegsForValue operand. 5948 unsigned CurOp = InlineAsm::Op_FirstOperand; 5949 for (; OperandNo; --OperandNo) { 5950 // Advance to the next operand. 5951 unsigned OpFlag = 5952 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5953 assert((InlineAsm::isRegDefKind(OpFlag) || 5954 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5955 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5956 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5957 } 5958 5959 unsigned OpFlag = 5960 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5961 if (InlineAsm::isRegDefKind(OpFlag) || 5962 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5963 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5964 if (OpInfo.isIndirect) { 5965 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5966 LLVMContext &Ctx = *DAG.getContext(); 5967 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5968 " don't know how to handle tied " 5969 "indirect register inputs"); 5970 } 5971 5972 RegsForValue MatchedRegs; 5973 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5974 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5975 MatchedRegs.RegVTs.push_back(RegVT); 5976 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5977 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5978 i != e; ++i) 5979 MatchedRegs.Regs.push_back 5980 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5981 5982 // Use the produced MatchedRegs object to 5983 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5984 Chain, &Flag); 5985 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5986 true, OpInfo.getMatchedOperand(), 5987 DAG, AsmNodeOperands); 5988 break; 5989 } 5990 5991 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5992 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5993 "Unexpected number of operands"); 5994 // Add information to the INLINEASM node to know about this input. 5995 // See InlineAsm.h isUseOperandTiedToDef. 5996 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5997 OpInfo.getMatchedOperand()); 5998 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5999 TLI.getPointerTy())); 6000 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6001 break; 6002 } 6003 6004 // Treat indirect 'X' constraint as memory. 6005 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6006 OpInfo.isIndirect) 6007 OpInfo.ConstraintType = TargetLowering::C_Memory; 6008 6009 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6010 std::vector<SDValue> Ops; 6011 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6012 Ops, DAG); 6013 if (Ops.empty()) 6014 report_fatal_error("Invalid operand for inline asm constraint '" + 6015 Twine(OpInfo.ConstraintCode) + "'!"); 6016 6017 // Add information to the INLINEASM node to know about this input. 6018 unsigned ResOpType = 6019 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6020 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6021 TLI.getPointerTy())); 6022 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6023 break; 6024 } 6025 6026 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6027 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6028 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6029 "Memory operands expect pointer values"); 6030 6031 // Add information to the INLINEASM node to know about this input. 6032 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6033 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6034 TLI.getPointerTy())); 6035 AsmNodeOperands.push_back(InOperandVal); 6036 break; 6037 } 6038 6039 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6040 OpInfo.ConstraintType == TargetLowering::C_Register) && 6041 "Unknown constraint type!"); 6042 assert(!OpInfo.isIndirect && 6043 "Don't know how to handle indirect register inputs yet!"); 6044 6045 // Copy the input into the appropriate registers. 6046 if (OpInfo.AssignedRegs.Regs.empty() || 6047 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 6048 report_fatal_error("Couldn't allocate input reg for constraint '" + 6049 Twine(OpInfo.ConstraintCode) + "'!"); 6050 6051 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6052 Chain, &Flag); 6053 6054 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6055 DAG, AsmNodeOperands); 6056 break; 6057 } 6058 case InlineAsm::isClobber: { 6059 // Add the clobbered value to the operand list, so that the register 6060 // allocator is aware that the physreg got clobbered. 6061 if (!OpInfo.AssignedRegs.Regs.empty()) 6062 OpInfo.AssignedRegs.AddInlineAsmOperands( 6063 InlineAsm::Kind_RegDefEarlyClobber, 6064 false, 0, DAG, 6065 AsmNodeOperands); 6066 break; 6067 } 6068 } 6069 } 6070 6071 // Finish up input operands. Set the input chain and add the flag last. 6072 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6073 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6074 6075 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6076 DAG.getVTList(MVT::Other, MVT::Glue), 6077 &AsmNodeOperands[0], AsmNodeOperands.size()); 6078 Flag = Chain.getValue(1); 6079 6080 // If this asm returns a register value, copy the result from that register 6081 // and set it as the value of the call. 6082 if (!RetValRegs.Regs.empty()) { 6083 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6084 Chain, &Flag); 6085 6086 // FIXME: Why don't we do this for inline asms with MRVs? 6087 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6088 EVT ResultType = TLI.getValueType(CS.getType()); 6089 6090 // If any of the results of the inline asm is a vector, it may have the 6091 // wrong width/num elts. This can happen for register classes that can 6092 // contain multiple different value types. The preg or vreg allocated may 6093 // not have the same VT as was expected. Convert it to the right type 6094 // with bit_convert. 6095 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6096 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6097 ResultType, Val); 6098 6099 } else if (ResultType != Val.getValueType() && 6100 ResultType.isInteger() && Val.getValueType().isInteger()) { 6101 // If a result value was tied to an input value, the computed result may 6102 // have a wider width than the expected result. Extract the relevant 6103 // portion. 6104 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6105 } 6106 6107 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6108 } 6109 6110 setValue(CS.getInstruction(), Val); 6111 // Don't need to use this as a chain in this case. 6112 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6113 return; 6114 } 6115 6116 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6117 6118 // Process indirect outputs, first output all of the flagged copies out of 6119 // physregs. 6120 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6121 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6122 const Value *Ptr = IndirectStoresToEmit[i].second; 6123 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6124 Chain, &Flag); 6125 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6126 } 6127 6128 // Emit the non-flagged stores from the physregs. 6129 SmallVector<SDValue, 8> OutChains; 6130 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6131 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6132 StoresToEmit[i].first, 6133 getValue(StoresToEmit[i].second), 6134 MachinePointerInfo(StoresToEmit[i].second), 6135 false, false, 0); 6136 OutChains.push_back(Val); 6137 } 6138 6139 if (!OutChains.empty()) 6140 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6141 &OutChains[0], OutChains.size()); 6142 6143 DAG.setRoot(Chain); 6144 } 6145 6146 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6147 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6148 MVT::Other, getRoot(), 6149 getValue(I.getArgOperand(0)), 6150 DAG.getSrcValue(I.getArgOperand(0)))); 6151 } 6152 6153 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6154 const TargetData &TD = *TLI.getTargetData(); 6155 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6156 getRoot(), getValue(I.getOperand(0)), 6157 DAG.getSrcValue(I.getOperand(0)), 6158 TD.getABITypeAlignment(I.getType())); 6159 setValue(&I, V); 6160 DAG.setRoot(V.getValue(1)); 6161 } 6162 6163 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6164 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6165 MVT::Other, getRoot(), 6166 getValue(I.getArgOperand(0)), 6167 DAG.getSrcValue(I.getArgOperand(0)))); 6168 } 6169 6170 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6171 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6172 MVT::Other, getRoot(), 6173 getValue(I.getArgOperand(0)), 6174 getValue(I.getArgOperand(1)), 6175 DAG.getSrcValue(I.getArgOperand(0)), 6176 DAG.getSrcValue(I.getArgOperand(1)))); 6177 } 6178 6179 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6180 /// implementation, which just calls LowerCall. 6181 /// FIXME: When all targets are 6182 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6183 std::pair<SDValue, SDValue> 6184 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 6185 bool RetSExt, bool RetZExt, bool isVarArg, 6186 bool isInreg, unsigned NumFixedArgs, 6187 CallingConv::ID CallConv, bool isTailCall, 6188 bool isReturnValueUsed, 6189 SDValue Callee, 6190 ArgListTy &Args, SelectionDAG &DAG, 6191 DebugLoc dl) const { 6192 // Handle all of the outgoing arguments. 6193 SmallVector<ISD::OutputArg, 32> Outs; 6194 SmallVector<SDValue, 32> OutVals; 6195 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6196 SmallVector<EVT, 4> ValueVTs; 6197 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6198 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6199 Value != NumValues; ++Value) { 6200 EVT VT = ValueVTs[Value]; 6201 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6202 SDValue Op = SDValue(Args[i].Node.getNode(), 6203 Args[i].Node.getResNo() + Value); 6204 ISD::ArgFlagsTy Flags; 6205 unsigned OriginalAlignment = 6206 getTargetData()->getABITypeAlignment(ArgTy); 6207 6208 if (Args[i].isZExt) 6209 Flags.setZExt(); 6210 if (Args[i].isSExt) 6211 Flags.setSExt(); 6212 if (Args[i].isInReg) 6213 Flags.setInReg(); 6214 if (Args[i].isSRet) 6215 Flags.setSRet(); 6216 if (Args[i].isByVal) { 6217 Flags.setByVal(); 6218 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 6219 const Type *ElementTy = Ty->getElementType(); 6220 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6221 // For ByVal, alignment should come from FE. BE will guess if this 6222 // info is not there but there are cases it cannot get right. 6223 unsigned FrameAlign; 6224 if (Args[i].Alignment) 6225 FrameAlign = Args[i].Alignment; 6226 else 6227 FrameAlign = getByValTypeAlignment(ElementTy); 6228 Flags.setByValAlign(FrameAlign); 6229 } 6230 if (Args[i].isNest) 6231 Flags.setNest(); 6232 Flags.setOrigAlign(OriginalAlignment); 6233 6234 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6235 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6236 SmallVector<SDValue, 4> Parts(NumParts); 6237 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6238 6239 if (Args[i].isSExt) 6240 ExtendKind = ISD::SIGN_EXTEND; 6241 else if (Args[i].isZExt) 6242 ExtendKind = ISD::ZERO_EXTEND; 6243 6244 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6245 PartVT, ExtendKind); 6246 6247 for (unsigned j = 0; j != NumParts; ++j) { 6248 // if it isn't first piece, alignment must be 1 6249 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6250 i < NumFixedArgs); 6251 if (NumParts > 1 && j == 0) 6252 MyFlags.Flags.setSplit(); 6253 else if (j != 0) 6254 MyFlags.Flags.setOrigAlign(1); 6255 6256 Outs.push_back(MyFlags); 6257 OutVals.push_back(Parts[j]); 6258 } 6259 } 6260 } 6261 6262 // Handle the incoming return values from the call. 6263 SmallVector<ISD::InputArg, 32> Ins; 6264 SmallVector<EVT, 4> RetTys; 6265 ComputeValueVTs(*this, RetTy, RetTys); 6266 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6267 EVT VT = RetTys[I]; 6268 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6269 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6270 for (unsigned i = 0; i != NumRegs; ++i) { 6271 ISD::InputArg MyFlags; 6272 MyFlags.VT = RegisterVT.getSimpleVT(); 6273 MyFlags.Used = isReturnValueUsed; 6274 if (RetSExt) 6275 MyFlags.Flags.setSExt(); 6276 if (RetZExt) 6277 MyFlags.Flags.setZExt(); 6278 if (isInreg) 6279 MyFlags.Flags.setInReg(); 6280 Ins.push_back(MyFlags); 6281 } 6282 } 6283 6284 SmallVector<SDValue, 4> InVals; 6285 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6286 Outs, OutVals, Ins, dl, DAG, InVals); 6287 6288 // Verify that the target's LowerCall behaved as expected. 6289 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6290 "LowerCall didn't return a valid chain!"); 6291 assert((!isTailCall || InVals.empty()) && 6292 "LowerCall emitted a return value for a tail call!"); 6293 assert((isTailCall || InVals.size() == Ins.size()) && 6294 "LowerCall didn't emit the correct number of values!"); 6295 6296 // For a tail call, the return value is merely live-out and there aren't 6297 // any nodes in the DAG representing it. Return a special value to 6298 // indicate that a tail call has been emitted and no more Instructions 6299 // should be processed in the current block. 6300 if (isTailCall) { 6301 DAG.setRoot(Chain); 6302 return std::make_pair(SDValue(), SDValue()); 6303 } 6304 6305 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6306 assert(InVals[i].getNode() && 6307 "LowerCall emitted a null value!"); 6308 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6309 "LowerCall emitted a value with the wrong type!"); 6310 }); 6311 6312 // Collect the legal value parts into potentially illegal values 6313 // that correspond to the original function's return values. 6314 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6315 if (RetSExt) 6316 AssertOp = ISD::AssertSext; 6317 else if (RetZExt) 6318 AssertOp = ISD::AssertZext; 6319 SmallVector<SDValue, 4> ReturnValues; 6320 unsigned CurReg = 0; 6321 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6322 EVT VT = RetTys[I]; 6323 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6324 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6325 6326 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6327 NumRegs, RegisterVT, VT, 6328 AssertOp)); 6329 CurReg += NumRegs; 6330 } 6331 6332 // For a function returning void, there is no return value. We can't create 6333 // such a node, so we just return a null return value in that case. In 6334 // that case, nothing will actually look at the value. 6335 if (ReturnValues.empty()) 6336 return std::make_pair(SDValue(), Chain); 6337 6338 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6339 DAG.getVTList(&RetTys[0], RetTys.size()), 6340 &ReturnValues[0], ReturnValues.size()); 6341 return std::make_pair(Res, Chain); 6342 } 6343 6344 void TargetLowering::LowerOperationWrapper(SDNode *N, 6345 SmallVectorImpl<SDValue> &Results, 6346 SelectionDAG &DAG) const { 6347 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6348 if (Res.getNode()) 6349 Results.push_back(Res); 6350 } 6351 6352 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6353 llvm_unreachable("LowerOperation not implemented for this target!"); 6354 return SDValue(); 6355 } 6356 6357 void 6358 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6359 SDValue Op = getNonRegisterValue(V); 6360 assert((Op.getOpcode() != ISD::CopyFromReg || 6361 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6362 "Copy from a reg to the same reg!"); 6363 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6364 6365 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6366 SDValue Chain = DAG.getEntryNode(); 6367 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6368 PendingExports.push_back(Chain); 6369 } 6370 6371 #include "llvm/CodeGen/SelectionDAGISel.h" 6372 6373 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6374 /// entry block, return true. This includes arguments used by switches, since 6375 /// the switch may expand into multiple basic blocks. 6376 static bool isOnlyUsedInEntryBlock(const Argument *A) { 6377 // With FastISel active, we may be splitting blocks, so force creation 6378 // of virtual registers for all non-dead arguments. 6379 if (EnableFastISel) 6380 return A->use_empty(); 6381 6382 const BasicBlock *Entry = A->getParent()->begin(); 6383 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6384 UI != E; ++UI) { 6385 const User *U = *UI; 6386 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6387 return false; // Use not in entry block. 6388 } 6389 return true; 6390 } 6391 6392 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6393 // If this is the entry block, emit arguments. 6394 const Function &F = *LLVMBB->getParent(); 6395 SelectionDAG &DAG = SDB->DAG; 6396 DebugLoc dl = SDB->getCurDebugLoc(); 6397 const TargetData *TD = TLI.getTargetData(); 6398 SmallVector<ISD::InputArg, 16> Ins; 6399 6400 // Check whether the function can return without sret-demotion. 6401 SmallVector<ISD::OutputArg, 4> Outs; 6402 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6403 Outs, TLI); 6404 6405 if (!FuncInfo->CanLowerReturn) { 6406 // Put in an sret pointer parameter before all the other parameters. 6407 SmallVector<EVT, 1> ValueVTs; 6408 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6409 6410 // NOTE: Assuming that a pointer will never break down to more than one VT 6411 // or one register. 6412 ISD::ArgFlagsTy Flags; 6413 Flags.setSRet(); 6414 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6415 ISD::InputArg RetArg(Flags, RegisterVT, true); 6416 Ins.push_back(RetArg); 6417 } 6418 6419 // Set up the incoming argument description vector. 6420 unsigned Idx = 1; 6421 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6422 I != E; ++I, ++Idx) { 6423 SmallVector<EVT, 4> ValueVTs; 6424 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6425 bool isArgValueUsed = !I->use_empty(); 6426 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6427 Value != NumValues; ++Value) { 6428 EVT VT = ValueVTs[Value]; 6429 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6430 ISD::ArgFlagsTy Flags; 6431 unsigned OriginalAlignment = 6432 TD->getABITypeAlignment(ArgTy); 6433 6434 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6435 Flags.setZExt(); 6436 if (F.paramHasAttr(Idx, Attribute::SExt)) 6437 Flags.setSExt(); 6438 if (F.paramHasAttr(Idx, Attribute::InReg)) 6439 Flags.setInReg(); 6440 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6441 Flags.setSRet(); 6442 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6443 Flags.setByVal(); 6444 const PointerType *Ty = cast<PointerType>(I->getType()); 6445 const Type *ElementTy = Ty->getElementType(); 6446 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6447 // For ByVal, alignment should be passed from FE. BE will guess if 6448 // this info is not there but there are cases it cannot get right. 6449 unsigned FrameAlign; 6450 if (F.getParamAlignment(Idx)) 6451 FrameAlign = F.getParamAlignment(Idx); 6452 else 6453 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6454 Flags.setByValAlign(FrameAlign); 6455 } 6456 if (F.paramHasAttr(Idx, Attribute::Nest)) 6457 Flags.setNest(); 6458 Flags.setOrigAlign(OriginalAlignment); 6459 6460 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6461 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6462 for (unsigned i = 0; i != NumRegs; ++i) { 6463 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6464 if (NumRegs > 1 && i == 0) 6465 MyFlags.Flags.setSplit(); 6466 // if it isn't first piece, alignment must be 1 6467 else if (i > 0) 6468 MyFlags.Flags.setOrigAlign(1); 6469 Ins.push_back(MyFlags); 6470 } 6471 } 6472 } 6473 6474 // Call the target to set up the argument values. 6475 SmallVector<SDValue, 8> InVals; 6476 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6477 F.isVarArg(), Ins, 6478 dl, DAG, InVals); 6479 6480 // Verify that the target's LowerFormalArguments behaved as expected. 6481 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6482 "LowerFormalArguments didn't return a valid chain!"); 6483 assert(InVals.size() == Ins.size() && 6484 "LowerFormalArguments didn't emit the correct number of values!"); 6485 DEBUG({ 6486 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6487 assert(InVals[i].getNode() && 6488 "LowerFormalArguments emitted a null value!"); 6489 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6490 "LowerFormalArguments emitted a value with the wrong type!"); 6491 } 6492 }); 6493 6494 // Update the DAG with the new chain value resulting from argument lowering. 6495 DAG.setRoot(NewRoot); 6496 6497 // Set up the argument values. 6498 unsigned i = 0; 6499 Idx = 1; 6500 if (!FuncInfo->CanLowerReturn) { 6501 // Create a virtual register for the sret pointer, and put in a copy 6502 // from the sret argument into it. 6503 SmallVector<EVT, 1> ValueVTs; 6504 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6505 EVT VT = ValueVTs[0]; 6506 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6507 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6508 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6509 RegVT, VT, AssertOp); 6510 6511 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6512 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6513 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6514 FuncInfo->DemoteRegister = SRetReg; 6515 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6516 SRetReg, ArgValue); 6517 DAG.setRoot(NewRoot); 6518 6519 // i indexes lowered arguments. Bump it past the hidden sret argument. 6520 // Idx indexes LLVM arguments. Don't touch it. 6521 ++i; 6522 } 6523 6524 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6525 ++I, ++Idx) { 6526 SmallVector<SDValue, 4> ArgValues; 6527 SmallVector<EVT, 4> ValueVTs; 6528 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6529 unsigned NumValues = ValueVTs.size(); 6530 6531 // If this argument is unused then remember its value. It is used to generate 6532 // debugging information. 6533 if (I->use_empty() && NumValues) 6534 SDB->setUnusedArgValue(I, InVals[i]); 6535 6536 for (unsigned Val = 0; Val != NumValues; ++Val) { 6537 EVT VT = ValueVTs[Val]; 6538 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6539 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6540 6541 if (!I->use_empty()) { 6542 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6543 if (F.paramHasAttr(Idx, Attribute::SExt)) 6544 AssertOp = ISD::AssertSext; 6545 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6546 AssertOp = ISD::AssertZext; 6547 6548 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6549 NumParts, PartVT, VT, 6550 AssertOp)); 6551 } 6552 6553 i += NumParts; 6554 } 6555 6556 // We don't need to do anything else for unused arguments. 6557 if (ArgValues.empty()) 6558 continue; 6559 6560 // Note down frame index for byval arguments. 6561 if (I->hasByValAttr()) 6562 if (FrameIndexSDNode *FI = 6563 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6564 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6565 6566 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6567 SDB->getCurDebugLoc()); 6568 SDB->setValue(I, Res); 6569 6570 // If this argument is live outside of the entry block, insert a copy from 6571 // wherever we got it to the vreg that other BB's will reference it as. 6572 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6573 // If we can, though, try to skip creating an unnecessary vreg. 6574 // FIXME: This isn't very clean... it would be nice to make this more 6575 // general. It's also subtly incompatible with the hacks FastISel 6576 // uses with vregs. 6577 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6578 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6579 FuncInfo->ValueMap[I] = Reg; 6580 continue; 6581 } 6582 } 6583 if (!isOnlyUsedInEntryBlock(I)) { 6584 FuncInfo->InitializeRegForValue(I); 6585 SDB->CopyToExportRegsIfNeeded(I); 6586 } 6587 } 6588 6589 assert(i == InVals.size() && "Argument register count mismatch!"); 6590 6591 // Finally, if the target has anything special to do, allow it to do so. 6592 // FIXME: this should insert code into the DAG! 6593 EmitFunctionEntryCode(); 6594 } 6595 6596 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6597 /// ensure constants are generated when needed. Remember the virtual registers 6598 /// that need to be added to the Machine PHI nodes as input. We cannot just 6599 /// directly add them, because expansion might result in multiple MBB's for one 6600 /// BB. As such, the start of the BB might correspond to a different MBB than 6601 /// the end. 6602 /// 6603 void 6604 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6605 const TerminatorInst *TI = LLVMBB->getTerminator(); 6606 6607 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6608 6609 // Check successor nodes' PHI nodes that expect a constant to be available 6610 // from this block. 6611 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6612 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6613 if (!isa<PHINode>(SuccBB->begin())) continue; 6614 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6615 6616 // If this terminator has multiple identical successors (common for 6617 // switches), only handle each succ once. 6618 if (!SuccsHandled.insert(SuccMBB)) continue; 6619 6620 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6621 6622 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6623 // nodes and Machine PHI nodes, but the incoming operands have not been 6624 // emitted yet. 6625 for (BasicBlock::const_iterator I = SuccBB->begin(); 6626 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6627 // Ignore dead phi's. 6628 if (PN->use_empty()) continue; 6629 6630 // Skip empty types 6631 if (PN->getType()->isEmptyTy()) 6632 continue; 6633 6634 unsigned Reg; 6635 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6636 6637 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6638 unsigned &RegOut = ConstantsOut[C]; 6639 if (RegOut == 0) { 6640 RegOut = FuncInfo.CreateRegs(C->getType()); 6641 CopyValueToVirtualRegister(C, RegOut); 6642 } 6643 Reg = RegOut; 6644 } else { 6645 DenseMap<const Value *, unsigned>::iterator I = 6646 FuncInfo.ValueMap.find(PHIOp); 6647 if (I != FuncInfo.ValueMap.end()) 6648 Reg = I->second; 6649 else { 6650 assert(isa<AllocaInst>(PHIOp) && 6651 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6652 "Didn't codegen value into a register!??"); 6653 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6654 CopyValueToVirtualRegister(PHIOp, Reg); 6655 } 6656 } 6657 6658 // Remember that this register needs to added to the machine PHI node as 6659 // the input for this MBB. 6660 SmallVector<EVT, 4> ValueVTs; 6661 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6662 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6663 EVT VT = ValueVTs[vti]; 6664 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6665 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6666 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6667 Reg += NumRegisters; 6668 } 6669 } 6670 } 6671 ConstantsOut.clear(); 6672 } 6673