1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsAMDGPU.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/Support/AtomicOrdering.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/MathExtras.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Target/TargetIntrinsicInfo.h" 99 #include "llvm/Target/TargetMachine.h" 100 #include "llvm/Target/TargetOptions.h" 101 #include "llvm/TargetParser/Triple.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <iterator> 105 #include <limits> 106 #include <optional> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace PatternMatch; 111 using namespace SwitchCG; 112 113 #define DEBUG_TYPE "isel" 114 115 /// LimitFloatPrecision - Generate low-precision inline sequences for 116 /// some float libcalls (6, 8 or 12 bits). 117 static unsigned LimitFloatPrecision; 118 119 static cl::opt<bool> 120 InsertAssertAlign("insert-assert-align", cl::init(true), 121 cl::desc("Insert the experimental `assertalign` node."), 122 cl::ReallyHidden); 123 124 static cl::opt<unsigned, true> 125 LimitFPPrecision("limit-float-precision", 126 cl::desc("Generate low-precision inline sequences " 127 "for some float libcalls"), 128 cl::location(LimitFloatPrecision), cl::Hidden, 129 cl::init(0)); 130 131 static cl::opt<unsigned> SwitchPeelThreshold( 132 "switch-peel-threshold", cl::Hidden, cl::init(66), 133 cl::desc("Set the case probability threshold for peeling the case from a " 134 "switch statement. A value greater than 100 will void this " 135 "optimization")); 136 137 // Limit the width of DAG chains. This is important in general to prevent 138 // DAG-based analysis from blowing up. For example, alias analysis and 139 // load clustering may not complete in reasonable time. It is difficult to 140 // recognize and avoid this situation within each individual analysis, and 141 // future analyses are likely to have the same behavior. Limiting DAG width is 142 // the safe approach and will be especially important with global DAGs. 143 // 144 // MaxParallelChains default is arbitrarily high to avoid affecting 145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 146 // sequence over this should have been converted to llvm.memcpy by the 147 // frontend. It is easy to induce this behavior with .ll code such as: 148 // %buffer = alloca [4096 x i8] 149 // %data = load [4096 x i8]* %argPtr 150 // store [4096 x i8] %data, [4096 x i8]* %buffer 151 static const unsigned MaxParallelChains = 64; 152 153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 154 const SDValue *Parts, unsigned NumParts, 155 MVT PartVT, EVT ValueVT, const Value *V, 156 SDValue InChain, 157 std::optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue 165 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 166 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 167 SDValue InChain, 168 std::optional<CallingConv::ID> CC = std::nullopt, 169 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 InChain, CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = llvm::bit_floor(NumParts); 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 200 InChain); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 202 PartVT, HalfVT, V, InChain); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, InChain, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 227 DAG.getConstant(Lo.getValueSizeInBits(), DL, 228 TLI.getShiftAmountTy( 229 TotalVT, DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 249 InChain, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) { 290 291 SDValue NoChange = 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 293 294 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 295 llvm::Attribute::StrictFP)) { 296 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 297 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 298 NoChange); 299 } 300 301 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 305 } 306 307 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 308 // then truncating. 309 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 310 ValueVT.bitsLT(PartEVT)) { 311 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 315 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 316 } 317 318 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 319 const Twine &ErrMsg) { 320 const Instruction *I = dyn_cast_or_null<Instruction>(V); 321 if (!V) 322 return Ctx.emitError(ErrMsg); 323 324 const char *AsmError = ", possible invalid constraint for vector type"; 325 if (const CallInst *CI = dyn_cast<CallInst>(I)) 326 if (CI->isInlineAsm()) 327 return Ctx.emitError(I, ErrMsg + AsmError); 328 329 return Ctx.emitError(I, ErrMsg); 330 } 331 332 /// getCopyFromPartsVector - Create a value that contains the specified legal 333 /// parts combined into the value they represent. If the parts combine to a 334 /// type larger than ValueVT then AssertOp can be used to specify whether the 335 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 336 /// ValueVT (ISD::AssertSext). 337 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 338 const SDValue *Parts, unsigned NumParts, 339 MVT PartVT, EVT ValueVT, const Value *V, 340 SDValue InChain, 341 std::optional<CallingConv::ID> CallConv) { 342 assert(ValueVT.isVector() && "Not a vector value"); 343 assert(NumParts > 0 && "No parts to assemble!"); 344 const bool IsABIRegCopy = CallConv.has_value(); 345 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 359 NumIntermediates, RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 380 V, InChain, CallConv); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 389 IntermediateVT, V, InChain, CallConv); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 IntermediateVT.isVector() 396 ? EVT::getVectorVT( 397 *DAG.getContext(), IntermediateVT.getScalarType(), 398 IntermediateVT.getVectorElementCount() * NumParts) 399 : EVT::getVectorVT(*DAG.getContext(), 400 IntermediateVT.getScalarType(), 401 NumIntermediates); 402 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 403 : ISD::BUILD_VECTOR, 404 DL, BuiltVectorTy, Ops); 405 } 406 407 // There is now one part, held in Val. Correct it to match ValueVT. 408 EVT PartEVT = Val.getValueType(); 409 410 if (PartEVT == ValueVT) 411 return Val; 412 413 if (PartEVT.isVector()) { 414 // Vector/Vector bitcast. 415 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 416 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 417 418 // If the parts vector has more elements than the value vector, then we 419 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 420 // Extract the elements we want. 421 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 422 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 423 ValueVT.getVectorElementCount().getKnownMinValue()) && 424 (PartEVT.getVectorElementCount().isScalable() == 425 ValueVT.getVectorElementCount().isScalable()) && 426 "Cannot narrow, it would be a lossy transformation"); 427 PartEVT = 428 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 429 ValueVT.getVectorElementCount()); 430 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 431 DAG.getVectorIdxConstant(0, DL)); 432 if (PartEVT == ValueVT) 433 return Val; 434 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 438 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 } 441 442 // Promoted vector extract 443 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 444 } 445 446 // Trivial bitcast if the types are the same size and the destination 447 // vector type is legal. 448 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 449 TLI.isTypeLegal(ValueVT)) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 if (ValueVT.getVectorNumElements() != 1) { 453 // Certain ABIs require that vectors are passed as integers. For vectors 454 // are the same size, this is an obvious bitcast. 455 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 456 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 457 } else if (ValueVT.bitsLT(PartEVT)) { 458 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 459 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 460 // Drop the extra bits. 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 return DAG.getBitcast(ValueVT, Val); 463 } 464 465 diagnosePossiblyInvalidConstraint( 466 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 467 return DAG.getUNDEF(ValueVT); 468 } 469 470 // Handle cases such as i8 -> <1 x i1> 471 EVT ValueSVT = ValueVT.getVectorElementType(); 472 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 473 unsigned ValueSize = ValueSVT.getSizeInBits(); 474 if (ValueSize == PartEVT.getSizeInBits()) { 475 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 476 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 477 // It's possible a scalar floating point type gets softened to integer and 478 // then promoted to a larger integer. If PartEVT is the larger integer 479 // we need to truncate it and then bitcast to the FP type. 480 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 481 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 482 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 483 Val = DAG.getBitcast(ValueSVT, Val); 484 } else { 485 Val = ValueVT.isFloatingPoint() 486 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 487 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 488 } 489 } 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 std::optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void 503 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 504 unsigned NumParts, MVT PartVT, const Value *V, 505 std::optional<CallingConv::ID> CallConv = std::nullopt, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 // Let the target split the parts if it wants to 508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 509 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 510 CallConv)) 511 return; 512 EVT ValueVT = Val.getValueType(); 513 514 // Handle the vector case separately. 515 if (ValueVT.isVector()) 516 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 517 CallConv); 518 519 unsigned OrigNumParts = NumParts; 520 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 521 "Copying to an illegal type!"); 522 523 if (NumParts == 0) 524 return; 525 526 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 527 EVT PartEVT = PartVT; 528 if (PartEVT == ValueVT) { 529 assert(NumParts == 1 && "No-op copy with multiple parts!"); 530 Parts[0] = Val; 531 return; 532 } 533 534 unsigned PartBits = PartVT.getSizeInBits(); 535 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 536 // If the parts cover more bits than the value has, promote the value. 537 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 538 assert(NumParts == 1 && "Do not know what to promote to!"); 539 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 540 } else { 541 if (ValueVT.isFloatingPoint()) { 542 // FP values need to be bitcast, then extended if they are being put 543 // into a larger container. 544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 545 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 546 } 547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 548 ValueVT.isInteger() && 549 "Unknown mismatch!"); 550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 551 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 552 if (PartVT == MVT::x86mmx) 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 } else if (PartBits == ValueVT.getSizeInBits()) { 556 // Different types of the same size. 557 assert(NumParts == 1 && PartEVT != ValueVT); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 560 // If the parts cover less bits than value has, truncate the value. 561 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 562 ValueVT.isInteger() && 563 "Unknown mismatch!"); 564 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 565 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 566 if (PartVT == MVT::x86mmx) 567 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 568 } 569 570 // The value may have changed - recompute ValueVT. 571 ValueVT = Val.getValueType(); 572 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 573 "Failed to tile the value with PartVT!"); 574 575 if (NumParts == 1) { 576 if (PartEVT != ValueVT) { 577 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 578 "scalar-to-vector conversion failed"); 579 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 580 } 581 582 Parts[0] = Val; 583 return; 584 } 585 586 // Expand the value into multiple parts. 587 if (NumParts & (NumParts - 1)) { 588 // The number of parts is not a power of 2. Split off and copy the tail. 589 assert(PartVT.isInteger() && ValueVT.isInteger() && 590 "Do not know what to expand to!"); 591 unsigned RoundParts = llvm::bit_floor(NumParts); 592 unsigned RoundBits = RoundParts * PartBits; 593 unsigned OddParts = NumParts - RoundParts; 594 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 595 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 596 597 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 598 CallConv); 599 600 if (DAG.getDataLayout().isBigEndian()) 601 // The odd parts were reversed by getCopyToParts - unreverse them. 602 std::reverse(Parts + RoundParts, Parts + NumParts); 603 604 NumParts = RoundParts; 605 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 606 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 607 } 608 609 // The number of parts is a power of 2. Repeatedly bisect the value using 610 // EXTRACT_ELEMENT. 611 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 612 EVT::getIntegerVT(*DAG.getContext(), 613 ValueVT.getSizeInBits()), 614 Val); 615 616 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 617 for (unsigned i = 0; i < NumParts; i += StepSize) { 618 unsigned ThisBits = StepSize * PartBits / 2; 619 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 620 SDValue &Part0 = Parts[i]; 621 SDValue &Part1 = Parts[i+StepSize/2]; 622 623 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 625 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 627 628 if (ThisBits == PartBits && ThisVT != PartVT) { 629 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 630 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 631 } 632 } 633 } 634 635 if (DAG.getDataLayout().isBigEndian()) 636 std::reverse(Parts, Parts + OrigNumParts); 637 } 638 639 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 640 const SDLoc &DL, EVT PartVT) { 641 if (!PartVT.isVector()) 642 return SDValue(); 643 644 EVT ValueVT = Val.getValueType(); 645 EVT PartEVT = PartVT.getVectorElementType(); 646 EVT ValueEVT = ValueVT.getVectorElementType(); 647 ElementCount PartNumElts = PartVT.getVectorElementCount(); 648 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 649 650 // We only support widening vectors with equivalent element types and 651 // fixed/scalable properties. If a target needs to widen a fixed-length type 652 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 653 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 654 PartNumElts.isScalable() != ValueNumElts.isScalable()) 655 return SDValue(); 656 657 // Have a try for bf16 because some targets share its ABI with fp16. 658 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 659 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 660 "Cannot widen to illegal type"); 661 Val = DAG.getNode(ISD::BITCAST, DL, 662 ValueVT.changeVectorElementType(MVT::f16), Val); 663 } else if (PartEVT != ValueEVT) { 664 return SDValue(); 665 } 666 667 // Widening a scalable vector to another scalable vector is done by inserting 668 // the vector into a larger undef one. 669 if (PartNumElts.isScalable()) 670 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 671 Val, DAG.getVectorIdxConstant(0, DL)); 672 673 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 674 // undef elements. 675 SmallVector<SDValue, 16> Ops; 676 DAG.ExtractVectorElements(Val, Ops); 677 SDValue EltUndef = DAG.getUNDEF(PartEVT); 678 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 679 680 // FIXME: Use CONCAT for 2x -> 4x. 681 return DAG.getBuildVector(PartVT, DL, Ops); 682 } 683 684 /// getCopyToPartsVector - Create a series of nodes that contain the specified 685 /// value split into legal parts. 686 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 687 SDValue Val, SDValue *Parts, unsigned NumParts, 688 MVT PartVT, const Value *V, 689 std::optional<CallingConv::ID> CallConv) { 690 EVT ValueVT = Val.getValueType(); 691 assert(ValueVT.isVector() && "Not a vector"); 692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 693 const bool IsABIRegCopy = CallConv.has_value(); 694 695 if (NumParts == 1) { 696 EVT PartEVT = PartVT; 697 if (PartEVT == ValueVT) { 698 // Nothing to do. 699 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 700 // Bitconvert vector->vector case. 701 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 702 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 703 Val = Widened; 704 } else if (PartVT.isVector() && 705 PartEVT.getVectorElementType().bitsGE( 706 ValueVT.getVectorElementType()) && 707 PartEVT.getVectorElementCount() == 708 ValueVT.getVectorElementCount()) { 709 710 // Promoted vector extract 711 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 712 } else if (PartEVT.isVector() && 713 PartEVT.getVectorElementType() != 714 ValueVT.getVectorElementType() && 715 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 716 TargetLowering::TypeWidenVector) { 717 // Combination of widening and promotion. 718 EVT WidenVT = 719 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 720 PartVT.getVectorElementCount()); 721 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 722 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 723 } else { 724 // Don't extract an integer from a float vector. This can happen if the 725 // FP type gets softened to integer and then promoted. The promotion 726 // prevents it from being picked up by the earlier bitcast case. 727 if (ValueVT.getVectorElementCount().isScalar() && 728 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 729 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 730 DAG.getVectorIdxConstant(0, DL)); 731 } else { 732 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 733 assert(PartVT.getFixedSizeInBits() > ValueSize && 734 "lossy conversion of vector to scalar type"); 735 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 736 Val = DAG.getBitcast(IntermediateType, Val); 737 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 738 } 739 } 740 741 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 742 Parts[0] = Val; 743 return; 744 } 745 746 // Handle a multi-element vector. 747 EVT IntermediateVT; 748 MVT RegisterVT; 749 unsigned NumIntermediates; 750 unsigned NumRegs; 751 if (IsABIRegCopy) { 752 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 753 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 754 RegisterVT); 755 } else { 756 NumRegs = 757 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 758 NumIntermediates, RegisterVT); 759 } 760 761 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 762 NumParts = NumRegs; // Silence a compiler warning. 763 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 764 765 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 766 "Mixing scalable and fixed vectors when copying in parts"); 767 768 std::optional<ElementCount> DestEltCnt; 769 770 if (IntermediateVT.isVector()) 771 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 772 else 773 DestEltCnt = ElementCount::getFixed(NumIntermediates); 774 775 EVT BuiltVectorTy = EVT::getVectorVT( 776 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 777 778 if (ValueVT == BuiltVectorTy) { 779 // Nothing to do. 780 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 781 // Bitconvert vector->vector case. 782 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 783 } else { 784 if (BuiltVectorTy.getVectorElementType().bitsGT( 785 ValueVT.getVectorElementType())) { 786 // Integer promotion. 787 ValueVT = EVT::getVectorVT(*DAG.getContext(), 788 BuiltVectorTy.getVectorElementType(), 789 ValueVT.getVectorElementCount()); 790 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 791 } 792 793 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 794 Val = Widened; 795 } 796 } 797 798 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 799 800 // Split the vector into intermediate operands. 801 SmallVector<SDValue, 8> Ops(NumIntermediates); 802 for (unsigned i = 0; i != NumIntermediates; ++i) { 803 if (IntermediateVT.isVector()) { 804 // This does something sensible for scalable vectors - see the 805 // definition of EXTRACT_SUBVECTOR for further details. 806 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 807 Ops[i] = 808 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 809 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 810 } else { 811 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 812 DAG.getVectorIdxConstant(i, DL)); 813 } 814 } 815 816 // Split the intermediate operands into legal parts. 817 if (NumParts == NumIntermediates) { 818 // If the register was not expanded, promote or copy the value, 819 // as appropriate. 820 for (unsigned i = 0; i != NumParts; ++i) 821 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 822 } else if (NumParts > 0) { 823 // If the intermediate type was expanded, split each the value into 824 // legal parts. 825 assert(NumIntermediates != 0 && "division by zero"); 826 assert(NumParts % NumIntermediates == 0 && 827 "Must expand into a divisible number of parts!"); 828 unsigned Factor = NumParts / NumIntermediates; 829 for (unsigned i = 0; i != NumIntermediates; ++i) 830 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 831 CallConv); 832 } 833 } 834 835 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 836 EVT valuevt, std::optional<CallingConv::ID> CC) 837 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 838 RegCount(1, regs.size()), CallConv(CC) {} 839 840 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 841 const DataLayout &DL, unsigned Reg, Type *Ty, 842 std::optional<CallingConv::ID> CC) { 843 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 844 845 CallConv = CC; 846 847 for (EVT ValueVT : ValueVTs) { 848 unsigned NumRegs = 849 isABIMangled() 850 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 851 : TLI.getNumRegisters(Context, ValueVT); 852 MVT RegisterVT = 853 isABIMangled() 854 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 855 : TLI.getRegisterType(Context, ValueVT); 856 for (unsigned i = 0; i != NumRegs; ++i) 857 Regs.push_back(Reg + i); 858 RegVTs.push_back(RegisterVT); 859 RegCount.push_back(NumRegs); 860 Reg += NumRegs; 861 } 862 } 863 864 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 865 FunctionLoweringInfo &FuncInfo, 866 const SDLoc &dl, SDValue &Chain, 867 SDValue *Glue, const Value *V) const { 868 // A Value with type {} or [0 x %t] needs no registers. 869 if (ValueVTs.empty()) 870 return SDValue(); 871 872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 873 874 // Assemble the legal parts into the final values. 875 SmallVector<SDValue, 4> Values(ValueVTs.size()); 876 SmallVector<SDValue, 8> Parts; 877 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 878 // Copy the legal parts from the registers. 879 EVT ValueVT = ValueVTs[Value]; 880 unsigned NumRegs = RegCount[Value]; 881 MVT RegisterVT = isABIMangled() 882 ? TLI.getRegisterTypeForCallingConv( 883 *DAG.getContext(), *CallConv, RegVTs[Value]) 884 : RegVTs[Value]; 885 886 Parts.resize(NumRegs); 887 for (unsigned i = 0; i != NumRegs; ++i) { 888 SDValue P; 889 if (!Glue) { 890 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 891 } else { 892 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 893 *Glue = P.getValue(2); 894 } 895 896 Chain = P.getValue(1); 897 Parts[i] = P; 898 899 // If the source register was virtual and if we know something about it, 900 // add an assert node. 901 if (!Register::isVirtualRegister(Regs[Part + i]) || 902 !RegisterVT.isInteger()) 903 continue; 904 905 const FunctionLoweringInfo::LiveOutInfo *LOI = 906 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 907 if (!LOI) 908 continue; 909 910 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 911 unsigned NumSignBits = LOI->NumSignBits; 912 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 913 914 if (NumZeroBits == RegSize) { 915 // The current value is a zero. 916 // Explicitly express that as it would be easier for 917 // optimizations to kick in. 918 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 919 continue; 920 } 921 922 // FIXME: We capture more information than the dag can represent. For 923 // now, just use the tightest assertzext/assertsext possible. 924 bool isSExt; 925 EVT FromVT(MVT::Other); 926 if (NumZeroBits) { 927 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 928 isSExt = false; 929 } else if (NumSignBits > 1) { 930 FromVT = 931 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 932 isSExt = true; 933 } else { 934 continue; 935 } 936 // Add an assertion node. 937 assert(FromVT != MVT::Other); 938 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 939 RegisterVT, P, DAG.getValueType(FromVT)); 940 } 941 942 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 943 RegisterVT, ValueVT, V, Chain, CallConv); 944 Part += NumRegs; 945 Parts.clear(); 946 } 947 948 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 949 } 950 951 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 952 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 953 const Value *V, 954 ISD::NodeType PreferredExtendType) const { 955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 956 ISD::NodeType ExtendKind = PreferredExtendType; 957 958 // Get the list of the values's legal parts. 959 unsigned NumRegs = Regs.size(); 960 SmallVector<SDValue, 8> Parts(NumRegs); 961 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 962 unsigned NumParts = RegCount[Value]; 963 964 MVT RegisterVT = isABIMangled() 965 ? TLI.getRegisterTypeForCallingConv( 966 *DAG.getContext(), *CallConv, RegVTs[Value]) 967 : RegVTs[Value]; 968 969 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 970 ExtendKind = ISD::ZERO_EXTEND; 971 972 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 973 NumParts, RegisterVT, V, CallConv, ExtendKind); 974 Part += NumParts; 975 } 976 977 // Copy the parts into the registers. 978 SmallVector<SDValue, 8> Chains(NumRegs); 979 for (unsigned i = 0; i != NumRegs; ++i) { 980 SDValue Part; 981 if (!Glue) { 982 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 983 } else { 984 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 985 *Glue = Part.getValue(1); 986 } 987 988 Chains[i] = Part.getValue(0); 989 } 990 991 if (NumRegs == 1 || Glue) 992 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 993 // flagged to it. That is the CopyToReg nodes and the user are considered 994 // a single scheduling unit. If we create a TokenFactor and return it as 995 // chain, then the TokenFactor is both a predecessor (operand) of the 996 // user as well as a successor (the TF operands are flagged to the user). 997 // c1, f1 = CopyToReg 998 // c2, f2 = CopyToReg 999 // c3 = TokenFactor c1, c2 1000 // ... 1001 // = op c3, ..., f2 1002 Chain = Chains[NumRegs-1]; 1003 else 1004 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1005 } 1006 1007 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1008 unsigned MatchingIdx, const SDLoc &dl, 1009 SelectionDAG &DAG, 1010 std::vector<SDValue> &Ops) const { 1011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1012 1013 InlineAsm::Flag Flag(Code, Regs.size()); 1014 if (HasMatching) 1015 Flag.setMatchingOp(MatchingIdx); 1016 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1017 // Put the register class of the virtual registers in the flag word. That 1018 // way, later passes can recompute register class constraints for inline 1019 // assembly as well as normal instructions. 1020 // Don't do this for tied operands that can use the regclass information 1021 // from the def. 1022 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1023 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1024 Flag.setRegClass(RC->getID()); 1025 } 1026 1027 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1028 Ops.push_back(Res); 1029 1030 if (Code == InlineAsm::Kind::Clobber) { 1031 // Clobbers should always have a 1:1 mapping with registers, and may 1032 // reference registers that have illegal (e.g. vector) types. Hence, we 1033 // shouldn't try to apply any sort of splitting logic to them. 1034 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1035 "No 1:1 mapping from clobbers to regs?"); 1036 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1037 (void)SP; 1038 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1039 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1040 assert( 1041 (Regs[I] != SP || 1042 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1043 "If we clobbered the stack pointer, MFI should know about it."); 1044 } 1045 return; 1046 } 1047 1048 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1049 MVT RegisterVT = RegVTs[Value]; 1050 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1051 RegisterVT); 1052 for (unsigned i = 0; i != NumRegs; ++i) { 1053 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1054 unsigned TheReg = Regs[Reg++]; 1055 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1056 } 1057 } 1058 } 1059 1060 SmallVector<std::pair<unsigned, TypeSize>, 4> 1061 RegsForValue::getRegsAndSizes() const { 1062 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1063 unsigned I = 0; 1064 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1065 unsigned RegCount = std::get<0>(CountAndVT); 1066 MVT RegisterVT = std::get<1>(CountAndVT); 1067 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1068 for (unsigned E = I + RegCount; I != E; ++I) 1069 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1070 } 1071 return OutVec; 1072 } 1073 1074 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1075 AssumptionCache *ac, 1076 const TargetLibraryInfo *li) { 1077 AA = aa; 1078 AC = ac; 1079 GFI = gfi; 1080 LibInfo = li; 1081 Context = DAG.getContext(); 1082 LPadToCallSiteMap.clear(); 1083 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1084 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1085 *DAG.getMachineFunction().getFunction().getParent()); 1086 } 1087 1088 void SelectionDAGBuilder::clear() { 1089 NodeMap.clear(); 1090 UnusedArgNodeMap.clear(); 1091 PendingLoads.clear(); 1092 PendingExports.clear(); 1093 PendingConstrainedFP.clear(); 1094 PendingConstrainedFPStrict.clear(); 1095 CurInst = nullptr; 1096 HasTailCall = false; 1097 SDNodeOrder = LowestSDNodeOrder; 1098 StatepointLowering.clear(); 1099 } 1100 1101 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1102 DanglingDebugInfoMap.clear(); 1103 } 1104 1105 // Update DAG root to include dependencies on Pending chains. 1106 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1107 SDValue Root = DAG.getRoot(); 1108 1109 if (Pending.empty()) 1110 return Root; 1111 1112 // Add current root to PendingChains, unless we already indirectly 1113 // depend on it. 1114 if (Root.getOpcode() != ISD::EntryToken) { 1115 unsigned i = 0, e = Pending.size(); 1116 for (; i != e; ++i) { 1117 assert(Pending[i].getNode()->getNumOperands() > 1); 1118 if (Pending[i].getNode()->getOperand(0) == Root) 1119 break; // Don't add the root if we already indirectly depend on it. 1120 } 1121 1122 if (i == e) 1123 Pending.push_back(Root); 1124 } 1125 1126 if (Pending.size() == 1) 1127 Root = Pending[0]; 1128 else 1129 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1130 1131 DAG.setRoot(Root); 1132 Pending.clear(); 1133 return Root; 1134 } 1135 1136 SDValue SelectionDAGBuilder::getMemoryRoot() { 1137 return updateRoot(PendingLoads); 1138 } 1139 1140 SDValue SelectionDAGBuilder::getRoot() { 1141 // Chain up all pending constrained intrinsics together with all 1142 // pending loads, by simply appending them to PendingLoads and 1143 // then calling getMemoryRoot(). 1144 PendingLoads.reserve(PendingLoads.size() + 1145 PendingConstrainedFP.size() + 1146 PendingConstrainedFPStrict.size()); 1147 PendingLoads.append(PendingConstrainedFP.begin(), 1148 PendingConstrainedFP.end()); 1149 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1150 PendingConstrainedFPStrict.end()); 1151 PendingConstrainedFP.clear(); 1152 PendingConstrainedFPStrict.clear(); 1153 return getMemoryRoot(); 1154 } 1155 1156 SDValue SelectionDAGBuilder::getControlRoot() { 1157 // We need to emit pending fpexcept.strict constrained intrinsics, 1158 // so append them to the PendingExports list. 1159 PendingExports.append(PendingConstrainedFPStrict.begin(), 1160 PendingConstrainedFPStrict.end()); 1161 PendingConstrainedFPStrict.clear(); 1162 return updateRoot(PendingExports); 1163 } 1164 1165 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1166 DILocalVariable *Variable, 1167 DIExpression *Expression, 1168 DebugLoc DL) { 1169 assert(Variable && "Missing variable"); 1170 1171 // Check if address has undef value. 1172 if (!Address || isa<UndefValue>(Address) || 1173 (Address->use_empty() && !isa<Argument>(Address))) { 1174 LLVM_DEBUG( 1175 dbgs() 1176 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1177 return; 1178 } 1179 1180 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1181 1182 SDValue &N = NodeMap[Address]; 1183 if (!N.getNode() && isa<Argument>(Address)) 1184 // Check unused arguments map. 1185 N = UnusedArgNodeMap[Address]; 1186 SDDbgValue *SDV; 1187 if (N.getNode()) { 1188 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1189 Address = BCI->getOperand(0); 1190 // Parameters are handled specially. 1191 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1192 if (IsParameter && FINode) { 1193 // Byval parameter. We have a frame index at this point. 1194 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1195 /*IsIndirect*/ true, DL, SDNodeOrder); 1196 } else if (isa<Argument>(Address)) { 1197 // Address is an argument, so try to emit its dbg value using 1198 // virtual register info from the FuncInfo.ValueMap. 1199 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1200 FuncArgumentDbgValueKind::Declare, N); 1201 return; 1202 } else { 1203 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1204 true, DL, SDNodeOrder); 1205 } 1206 DAG.AddDbgValue(SDV, IsParameter); 1207 } else { 1208 // If Address is an argument then try to emit its dbg value using 1209 // virtual register info from the FuncInfo.ValueMap. 1210 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1211 FuncArgumentDbgValueKind::Declare, N)) { 1212 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1213 << " (could not emit func-arg dbg_value)\n"); 1214 } 1215 } 1216 return; 1217 } 1218 1219 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1220 // Add SDDbgValue nodes for any var locs here. Do so before updating 1221 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1222 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1223 // Add SDDbgValue nodes for any var locs here. Do so before updating 1224 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1225 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1226 It != End; ++It) { 1227 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1228 dropDanglingDebugInfo(Var, It->Expr); 1229 if (It->Values.isKillLocation(It->Expr)) { 1230 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1231 continue; 1232 } 1233 SmallVector<Value *> Values(It->Values.location_ops()); 1234 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1235 It->Values.hasArgList())) { 1236 SmallVector<Value *, 4> Vals; 1237 for (Value *V : It->Values.location_ops()) 1238 Vals.push_back(V); 1239 addDanglingDebugInfo(Vals, 1240 FnVarLocs->getDILocalVariable(It->VariableID), 1241 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1242 } 1243 } 1244 } 1245 1246 // Is there is any debug-info attached to this instruction, in the form of 1247 // DPValue non-instruction debug-info records. 1248 for (DPValue &DPV : I.getDbgValueRange()) { 1249 DILocalVariable *Variable = DPV.getVariable(); 1250 DIExpression *Expression = DPV.getExpression(); 1251 dropDanglingDebugInfo(Variable, Expression); 1252 1253 if (DPV.getType() == DPValue::LocationType::Declare) { 1254 if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV)) 1255 continue; 1256 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV 1257 << "\n"); 1258 handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression, 1259 DPV.getDebugLoc()); 1260 continue; 1261 } 1262 1263 // A DPValue with no locations is a kill location. 1264 SmallVector<Value *, 4> Values(DPV.location_ops()); 1265 if (Values.empty()) { 1266 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1267 SDNodeOrder); 1268 continue; 1269 } 1270 1271 // A DPValue with an undef or absent location is also a kill location. 1272 if (llvm::any_of(Values, 1273 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1274 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1275 SDNodeOrder); 1276 continue; 1277 } 1278 1279 bool IsVariadic = DPV.hasArgList(); 1280 if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(), 1281 SDNodeOrder, IsVariadic)) { 1282 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1283 DPV.getDebugLoc(), SDNodeOrder); 1284 } 1285 } 1286 } 1287 1288 void SelectionDAGBuilder::visit(const Instruction &I) { 1289 visitDbgInfo(I); 1290 1291 // Set up outgoing PHI node register values before emitting the terminator. 1292 if (I.isTerminator()) { 1293 HandlePHINodesInSuccessorBlocks(I.getParent()); 1294 } 1295 1296 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1297 if (!isa<DbgInfoIntrinsic>(I)) 1298 ++SDNodeOrder; 1299 1300 CurInst = &I; 1301 1302 // Set inserted listener only if required. 1303 bool NodeInserted = false; 1304 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1305 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1306 if (PCSectionsMD) { 1307 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1308 DAG, [&](SDNode *) { NodeInserted = true; }); 1309 } 1310 1311 visit(I.getOpcode(), I); 1312 1313 if (!I.isTerminator() && !HasTailCall && 1314 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1315 CopyToExportRegsIfNeeded(&I); 1316 1317 // Handle metadata. 1318 if (PCSectionsMD) { 1319 auto It = NodeMap.find(&I); 1320 if (It != NodeMap.end()) { 1321 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1322 } else if (NodeInserted) { 1323 // This should not happen; if it does, don't let it go unnoticed so we can 1324 // fix it. Relevant visit*() function is probably missing a setValue(). 1325 errs() << "warning: loosing !pcsections metadata [" 1326 << I.getModule()->getName() << "]\n"; 1327 LLVM_DEBUG(I.dump()); 1328 assert(false); 1329 } 1330 } 1331 1332 CurInst = nullptr; 1333 } 1334 1335 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1336 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1337 } 1338 1339 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1340 // Note: this doesn't use InstVisitor, because it has to work with 1341 // ConstantExpr's in addition to instructions. 1342 switch (Opcode) { 1343 default: llvm_unreachable("Unknown instruction type encountered!"); 1344 // Build the switch statement using the Instruction.def file. 1345 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1346 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1347 #include "llvm/IR/Instruction.def" 1348 } 1349 } 1350 1351 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1352 DILocalVariable *Variable, 1353 DebugLoc DL, unsigned Order, 1354 SmallVectorImpl<Value *> &Values, 1355 DIExpression *Expression) { 1356 // For variadic dbg_values we will now insert an undef. 1357 // FIXME: We can potentially recover these! 1358 SmallVector<SDDbgOperand, 2> Locs; 1359 for (const Value *V : Values) { 1360 auto *Undef = UndefValue::get(V->getType()); 1361 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1362 } 1363 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1364 /*IsIndirect=*/false, DL, Order, 1365 /*IsVariadic=*/true); 1366 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1367 return true; 1368 } 1369 1370 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1371 DILocalVariable *Var, 1372 DIExpression *Expr, 1373 bool IsVariadic, DebugLoc DL, 1374 unsigned Order) { 1375 if (IsVariadic) { 1376 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1377 return; 1378 } 1379 // TODO: Dangling debug info will eventually either be resolved or produce 1380 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1381 // between the original dbg.value location and its resolved DBG_VALUE, 1382 // which we should ideally fill with an extra Undef DBG_VALUE. 1383 assert(Values.size() == 1); 1384 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1385 } 1386 1387 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1388 const DIExpression *Expr) { 1389 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1390 DIVariable *DanglingVariable = DDI.getVariable(); 1391 DIExpression *DanglingExpr = DDI.getExpression(); 1392 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1393 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1394 << printDDI(nullptr, DDI) << "\n"); 1395 return true; 1396 } 1397 return false; 1398 }; 1399 1400 for (auto &DDIMI : DanglingDebugInfoMap) { 1401 DanglingDebugInfoVector &DDIV = DDIMI.second; 1402 1403 // If debug info is to be dropped, run it through final checks to see 1404 // whether it can be salvaged. 1405 for (auto &DDI : DDIV) 1406 if (isMatchingDbgValue(DDI)) 1407 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1408 1409 erase_if(DDIV, isMatchingDbgValue); 1410 } 1411 } 1412 1413 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1414 // generate the debug data structures now that we've seen its definition. 1415 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1416 SDValue Val) { 1417 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1418 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1419 return; 1420 1421 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1422 for (auto &DDI : DDIV) { 1423 DebugLoc DL = DDI.getDebugLoc(); 1424 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1425 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1426 DILocalVariable *Variable = DDI.getVariable(); 1427 DIExpression *Expr = DDI.getExpression(); 1428 assert(Variable->isValidLocationForIntrinsic(DL) && 1429 "Expected inlined-at fields to agree"); 1430 SDDbgValue *SDV; 1431 if (Val.getNode()) { 1432 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1433 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1434 // we couldn't resolve it directly when examining the DbgValue intrinsic 1435 // in the first place we should not be more successful here). Unless we 1436 // have some test case that prove this to be correct we should avoid 1437 // calling EmitFuncArgumentDbgValue here. 1438 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1439 FuncArgumentDbgValueKind::Value, Val)) { 1440 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1441 << printDDI(V, DDI) << "\n"); 1442 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1443 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1444 // inserted after the definition of Val when emitting the instructions 1445 // after ISel. An alternative could be to teach 1446 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1447 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1448 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1449 << ValSDNodeOrder << "\n"); 1450 SDV = getDbgValue(Val, Variable, Expr, DL, 1451 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1452 DAG.AddDbgValue(SDV, false); 1453 } else 1454 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1455 << printDDI(V, DDI) 1456 << " in EmitFuncArgumentDbgValue\n"); 1457 } else { 1458 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1459 << "\n"); 1460 auto Undef = UndefValue::get(V->getType()); 1461 auto SDV = 1462 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1463 DAG.AddDbgValue(SDV, false); 1464 } 1465 } 1466 DDIV.clear(); 1467 } 1468 1469 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1470 DanglingDebugInfo &DDI) { 1471 // TODO: For the variadic implementation, instead of only checking the fail 1472 // state of `handleDebugValue`, we need know specifically which values were 1473 // invalid, so that we attempt to salvage only those values when processing 1474 // a DIArgList. 1475 const Value *OrigV = V; 1476 DILocalVariable *Var = DDI.getVariable(); 1477 DIExpression *Expr = DDI.getExpression(); 1478 DebugLoc DL = DDI.getDebugLoc(); 1479 unsigned SDOrder = DDI.getSDNodeOrder(); 1480 1481 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1482 // that DW_OP_stack_value is desired. 1483 bool StackValue = true; 1484 1485 // Can this Value can be encoded without any further work? 1486 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1487 return; 1488 1489 // Attempt to salvage back through as many instructions as possible. Bail if 1490 // a non-instruction is seen, such as a constant expression or global 1491 // variable. FIXME: Further work could recover those too. 1492 while (isa<Instruction>(V)) { 1493 const Instruction &VAsInst = *cast<const Instruction>(V); 1494 // Temporary "0", awaiting real implementation. 1495 SmallVector<uint64_t, 16> Ops; 1496 SmallVector<Value *, 4> AdditionalValues; 1497 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1498 Expr->getNumLocationOperands(), Ops, 1499 AdditionalValues); 1500 // If we cannot salvage any further, and haven't yet found a suitable debug 1501 // expression, bail out. 1502 if (!V) 1503 break; 1504 1505 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1506 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1507 // here for variadic dbg_values, remove that condition. 1508 if (!AdditionalValues.empty()) 1509 break; 1510 1511 // New value and expr now represent this debuginfo. 1512 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1513 1514 // Some kind of simplification occurred: check whether the operand of the 1515 // salvaged debug expression can be encoded in this DAG. 1516 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1517 LLVM_DEBUG( 1518 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1519 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1520 return; 1521 } 1522 } 1523 1524 // This was the final opportunity to salvage this debug information, and it 1525 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1526 // any earlier variable location. 1527 assert(OrigV && "V shouldn't be null"); 1528 auto *Undef = UndefValue::get(OrigV->getType()); 1529 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1530 DAG.AddDbgValue(SDV, false); 1531 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1532 << printDDI(OrigV, DDI) << "\n"); 1533 } 1534 1535 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1536 DIExpression *Expr, 1537 DebugLoc DbgLoc, 1538 unsigned Order) { 1539 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1540 DIExpression *NewExpr = 1541 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1542 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1543 /*IsVariadic*/ false); 1544 } 1545 1546 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1547 DILocalVariable *Var, 1548 DIExpression *Expr, DebugLoc DbgLoc, 1549 unsigned Order, bool IsVariadic) { 1550 if (Values.empty()) 1551 return true; 1552 SmallVector<SDDbgOperand> LocationOps; 1553 SmallVector<SDNode *> Dependencies; 1554 for (const Value *V : Values) { 1555 // Constant value. 1556 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1557 isa<ConstantPointerNull>(V)) { 1558 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1559 continue; 1560 } 1561 1562 // Look through IntToPtr constants. 1563 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1564 if (CE->getOpcode() == Instruction::IntToPtr) { 1565 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1566 continue; 1567 } 1568 1569 // If the Value is a frame index, we can create a FrameIndex debug value 1570 // without relying on the DAG at all. 1571 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1572 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1573 if (SI != FuncInfo.StaticAllocaMap.end()) { 1574 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1575 continue; 1576 } 1577 } 1578 1579 // Do not use getValue() in here; we don't want to generate code at 1580 // this point if it hasn't been done yet. 1581 SDValue N = NodeMap[V]; 1582 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1583 N = UnusedArgNodeMap[V]; 1584 if (N.getNode()) { 1585 // Only emit func arg dbg value for non-variadic dbg.values for now. 1586 if (!IsVariadic && 1587 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1588 FuncArgumentDbgValueKind::Value, N)) 1589 return true; 1590 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1591 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1592 // describe stack slot locations. 1593 // 1594 // Consider "int x = 0; int *px = &x;". There are two kinds of 1595 // interesting debug values here after optimization: 1596 // 1597 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1598 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1599 // 1600 // Both describe the direct values of their associated variables. 1601 Dependencies.push_back(N.getNode()); 1602 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1603 continue; 1604 } 1605 LocationOps.emplace_back( 1606 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1607 continue; 1608 } 1609 1610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1611 // Special rules apply for the first dbg.values of parameter variables in a 1612 // function. Identify them by the fact they reference Argument Values, that 1613 // they're parameters, and they are parameters of the current function. We 1614 // need to let them dangle until they get an SDNode. 1615 bool IsParamOfFunc = 1616 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1617 if (IsParamOfFunc) 1618 return false; 1619 1620 // The value is not used in this block yet (or it would have an SDNode). 1621 // We still want the value to appear for the user if possible -- if it has 1622 // an associated VReg, we can refer to that instead. 1623 auto VMI = FuncInfo.ValueMap.find(V); 1624 if (VMI != FuncInfo.ValueMap.end()) { 1625 unsigned Reg = VMI->second; 1626 // If this is a PHI node, it may be split up into several MI PHI nodes 1627 // (in FunctionLoweringInfo::set). 1628 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1629 V->getType(), std::nullopt); 1630 if (RFV.occupiesMultipleRegs()) { 1631 // FIXME: We could potentially support variadic dbg_values here. 1632 if (IsVariadic) 1633 return false; 1634 unsigned Offset = 0; 1635 unsigned BitsToDescribe = 0; 1636 if (auto VarSize = Var->getSizeInBits()) 1637 BitsToDescribe = *VarSize; 1638 if (auto Fragment = Expr->getFragmentInfo()) 1639 BitsToDescribe = Fragment->SizeInBits; 1640 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1641 // Bail out if all bits are described already. 1642 if (Offset >= BitsToDescribe) 1643 break; 1644 // TODO: handle scalable vectors. 1645 unsigned RegisterSize = RegAndSize.second; 1646 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1647 ? BitsToDescribe - Offset 1648 : RegisterSize; 1649 auto FragmentExpr = DIExpression::createFragmentExpression( 1650 Expr, Offset, FragmentSize); 1651 if (!FragmentExpr) 1652 continue; 1653 SDDbgValue *SDV = DAG.getVRegDbgValue( 1654 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1655 DAG.AddDbgValue(SDV, false); 1656 Offset += RegisterSize; 1657 } 1658 return true; 1659 } 1660 // We can use simple vreg locations for variadic dbg_values as well. 1661 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1662 continue; 1663 } 1664 // We failed to create a SDDbgOperand for V. 1665 return false; 1666 } 1667 1668 // We have created a SDDbgOperand for each Value in Values. 1669 // Should use Order instead of SDNodeOrder? 1670 assert(!LocationOps.empty()); 1671 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1672 /*IsIndirect=*/false, DbgLoc, 1673 SDNodeOrder, IsVariadic); 1674 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1675 return true; 1676 } 1677 1678 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1679 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1680 for (auto &Pair : DanglingDebugInfoMap) 1681 for (auto &DDI : Pair.second) 1682 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1683 clearDanglingDebugInfo(); 1684 } 1685 1686 /// getCopyFromRegs - If there was virtual register allocated for the value V 1687 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1688 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1689 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1690 SDValue Result; 1691 1692 if (It != FuncInfo.ValueMap.end()) { 1693 Register InReg = It->second; 1694 1695 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1696 DAG.getDataLayout(), InReg, Ty, 1697 std::nullopt); // This is not an ABI copy. 1698 SDValue Chain = DAG.getEntryNode(); 1699 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1700 V); 1701 resolveDanglingDebugInfo(V, Result); 1702 } 1703 1704 return Result; 1705 } 1706 1707 /// getValue - Return an SDValue for the given Value. 1708 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1709 // If we already have an SDValue for this value, use it. It's important 1710 // to do this first, so that we don't create a CopyFromReg if we already 1711 // have a regular SDValue. 1712 SDValue &N = NodeMap[V]; 1713 if (N.getNode()) return N; 1714 1715 // If there's a virtual register allocated and initialized for this 1716 // value, use it. 1717 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1718 return copyFromReg; 1719 1720 // Otherwise create a new SDValue and remember it. 1721 SDValue Val = getValueImpl(V); 1722 NodeMap[V] = Val; 1723 resolveDanglingDebugInfo(V, Val); 1724 return Val; 1725 } 1726 1727 /// getNonRegisterValue - Return an SDValue for the given Value, but 1728 /// don't look in FuncInfo.ValueMap for a virtual register. 1729 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1730 // If we already have an SDValue for this value, use it. 1731 SDValue &N = NodeMap[V]; 1732 if (N.getNode()) { 1733 if (isIntOrFPConstant(N)) { 1734 // Remove the debug location from the node as the node is about to be used 1735 // in a location which may differ from the original debug location. This 1736 // is relevant to Constant and ConstantFP nodes because they can appear 1737 // as constant expressions inside PHI nodes. 1738 N->setDebugLoc(DebugLoc()); 1739 } 1740 return N; 1741 } 1742 1743 // Otherwise create a new SDValue and remember it. 1744 SDValue Val = getValueImpl(V); 1745 NodeMap[V] = Val; 1746 resolveDanglingDebugInfo(V, Val); 1747 return Val; 1748 } 1749 1750 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1751 /// Create an SDValue for the given value. 1752 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1754 1755 if (const Constant *C = dyn_cast<Constant>(V)) { 1756 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1757 1758 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1759 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1760 1761 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1762 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1763 1764 if (isa<ConstantPointerNull>(C)) { 1765 unsigned AS = V->getType()->getPointerAddressSpace(); 1766 return DAG.getConstant(0, getCurSDLoc(), 1767 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1768 } 1769 1770 if (match(C, m_VScale())) 1771 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1772 1773 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1774 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1775 1776 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1777 return DAG.getUNDEF(VT); 1778 1779 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1780 visit(CE->getOpcode(), *CE); 1781 SDValue N1 = NodeMap[V]; 1782 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1783 return N1; 1784 } 1785 1786 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1787 SmallVector<SDValue, 4> Constants; 1788 for (const Use &U : C->operands()) { 1789 SDNode *Val = getValue(U).getNode(); 1790 // If the operand is an empty aggregate, there are no values. 1791 if (!Val) continue; 1792 // Add each leaf value from the operand to the Constants list 1793 // to form a flattened list of all the values. 1794 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1795 Constants.push_back(SDValue(Val, i)); 1796 } 1797 1798 return DAG.getMergeValues(Constants, getCurSDLoc()); 1799 } 1800 1801 if (const ConstantDataSequential *CDS = 1802 dyn_cast<ConstantDataSequential>(C)) { 1803 SmallVector<SDValue, 4> Ops; 1804 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1805 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1806 // Add each leaf value from the operand to the Constants list 1807 // to form a flattened list of all the values. 1808 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1809 Ops.push_back(SDValue(Val, i)); 1810 } 1811 1812 if (isa<ArrayType>(CDS->getType())) 1813 return DAG.getMergeValues(Ops, getCurSDLoc()); 1814 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1815 } 1816 1817 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1818 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1819 "Unknown struct or array constant!"); 1820 1821 SmallVector<EVT, 4> ValueVTs; 1822 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1823 unsigned NumElts = ValueVTs.size(); 1824 if (NumElts == 0) 1825 return SDValue(); // empty struct 1826 SmallVector<SDValue, 4> Constants(NumElts); 1827 for (unsigned i = 0; i != NumElts; ++i) { 1828 EVT EltVT = ValueVTs[i]; 1829 if (isa<UndefValue>(C)) 1830 Constants[i] = DAG.getUNDEF(EltVT); 1831 else if (EltVT.isFloatingPoint()) 1832 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1833 else 1834 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1835 } 1836 1837 return DAG.getMergeValues(Constants, getCurSDLoc()); 1838 } 1839 1840 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1841 return DAG.getBlockAddress(BA, VT); 1842 1843 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1844 return getValue(Equiv->getGlobalValue()); 1845 1846 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1847 return getValue(NC->getGlobalValue()); 1848 1849 if (VT == MVT::aarch64svcount) { 1850 assert(C->isNullValue() && "Can only zero this target type!"); 1851 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1852 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1853 } 1854 1855 VectorType *VecTy = cast<VectorType>(V->getType()); 1856 1857 // Now that we know the number and type of the elements, get that number of 1858 // elements into the Ops array based on what kind of constant it is. 1859 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1860 SmallVector<SDValue, 16> Ops; 1861 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1862 for (unsigned i = 0; i != NumElements; ++i) 1863 Ops.push_back(getValue(CV->getOperand(i))); 1864 1865 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1866 } 1867 1868 if (isa<ConstantAggregateZero>(C)) { 1869 EVT EltVT = 1870 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1871 1872 SDValue Op; 1873 if (EltVT.isFloatingPoint()) 1874 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1875 else 1876 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1877 1878 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1879 } 1880 1881 llvm_unreachable("Unknown vector constant"); 1882 } 1883 1884 // If this is a static alloca, generate it as the frameindex instead of 1885 // computation. 1886 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1887 DenseMap<const AllocaInst*, int>::iterator SI = 1888 FuncInfo.StaticAllocaMap.find(AI); 1889 if (SI != FuncInfo.StaticAllocaMap.end()) 1890 return DAG.getFrameIndex( 1891 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1892 } 1893 1894 // If this is an instruction which fast-isel has deferred, select it now. 1895 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1896 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1897 1898 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1899 Inst->getType(), std::nullopt); 1900 SDValue Chain = DAG.getEntryNode(); 1901 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1902 } 1903 1904 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1905 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1906 1907 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1908 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1909 1910 llvm_unreachable("Can't get register for value!"); 1911 } 1912 1913 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1914 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1915 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1916 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1917 bool IsSEH = isAsynchronousEHPersonality(Pers); 1918 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1919 if (!IsSEH) 1920 CatchPadMBB->setIsEHScopeEntry(); 1921 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1922 if (IsMSVCCXX || IsCoreCLR) 1923 CatchPadMBB->setIsEHFuncletEntry(); 1924 } 1925 1926 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1927 // Update machine-CFG edge. 1928 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1929 FuncInfo.MBB->addSuccessor(TargetMBB); 1930 TargetMBB->setIsEHCatchretTarget(true); 1931 DAG.getMachineFunction().setHasEHCatchret(true); 1932 1933 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1934 bool IsSEH = isAsynchronousEHPersonality(Pers); 1935 if (IsSEH) { 1936 // If this is not a fall-through branch or optimizations are switched off, 1937 // emit the branch. 1938 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1939 TM.getOptLevel() == CodeGenOptLevel::None) 1940 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1941 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1942 return; 1943 } 1944 1945 // Figure out the funclet membership for the catchret's successor. 1946 // This will be used by the FuncletLayout pass to determine how to order the 1947 // BB's. 1948 // A 'catchret' returns to the outer scope's color. 1949 Value *ParentPad = I.getCatchSwitchParentPad(); 1950 const BasicBlock *SuccessorColor; 1951 if (isa<ConstantTokenNone>(ParentPad)) 1952 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1953 else 1954 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1955 assert(SuccessorColor && "No parent funclet for catchret!"); 1956 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1957 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1958 1959 // Create the terminator node. 1960 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1961 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1962 DAG.getBasicBlock(SuccessorColorMBB)); 1963 DAG.setRoot(Ret); 1964 } 1965 1966 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1967 // Don't emit any special code for the cleanuppad instruction. It just marks 1968 // the start of an EH scope/funclet. 1969 FuncInfo.MBB->setIsEHScopeEntry(); 1970 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1971 if (Pers != EHPersonality::Wasm_CXX) { 1972 FuncInfo.MBB->setIsEHFuncletEntry(); 1973 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1974 } 1975 } 1976 1977 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1978 // not match, it is OK to add only the first unwind destination catchpad to the 1979 // successors, because there will be at least one invoke instruction within the 1980 // catch scope that points to the next unwind destination, if one exists, so 1981 // CFGSort cannot mess up with BB sorting order. 1982 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1983 // call within them, and catchpads only consisting of 'catch (...)' have a 1984 // '__cxa_end_catch' call within them, both of which generate invokes in case 1985 // the next unwind destination exists, i.e., the next unwind destination is not 1986 // the caller.) 1987 // 1988 // Having at most one EH pad successor is also simpler and helps later 1989 // transformations. 1990 // 1991 // For example, 1992 // current: 1993 // invoke void @foo to ... unwind label %catch.dispatch 1994 // catch.dispatch: 1995 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1996 // catch.start: 1997 // ... 1998 // ... in this BB or some other child BB dominated by this BB there will be an 1999 // invoke that points to 'next' BB as an unwind destination 2000 // 2001 // next: ; We don't need to add this to 'current' BB's successor 2002 // ... 2003 static void findWasmUnwindDestinations( 2004 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2005 BranchProbability Prob, 2006 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2007 &UnwindDests) { 2008 while (EHPadBB) { 2009 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2010 if (isa<CleanupPadInst>(Pad)) { 2011 // Stop on cleanup pads. 2012 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2013 UnwindDests.back().first->setIsEHScopeEntry(); 2014 break; 2015 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2016 // Add the catchpad handlers to the possible destinations. We don't 2017 // continue to the unwind destination of the catchswitch for wasm. 2018 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2019 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2020 UnwindDests.back().first->setIsEHScopeEntry(); 2021 } 2022 break; 2023 } else { 2024 continue; 2025 } 2026 } 2027 } 2028 2029 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2030 /// many places it could ultimately go. In the IR, we have a single unwind 2031 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2032 /// This function skips over imaginary basic blocks that hold catchswitch 2033 /// instructions, and finds all the "real" machine 2034 /// basic block destinations. As those destinations may not be successors of 2035 /// EHPadBB, here we also calculate the edge probability to those destinations. 2036 /// The passed-in Prob is the edge probability to EHPadBB. 2037 static void findUnwindDestinations( 2038 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2039 BranchProbability Prob, 2040 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2041 &UnwindDests) { 2042 EHPersonality Personality = 2043 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2044 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2045 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2046 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2047 bool IsSEH = isAsynchronousEHPersonality(Personality); 2048 2049 if (IsWasmCXX) { 2050 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2051 assert(UnwindDests.size() <= 1 && 2052 "There should be at most one unwind destination for wasm"); 2053 return; 2054 } 2055 2056 while (EHPadBB) { 2057 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2058 BasicBlock *NewEHPadBB = nullptr; 2059 if (isa<LandingPadInst>(Pad)) { 2060 // Stop on landingpads. They are not funclets. 2061 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2062 break; 2063 } else if (isa<CleanupPadInst>(Pad)) { 2064 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2065 // personalities. 2066 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2067 UnwindDests.back().first->setIsEHScopeEntry(); 2068 UnwindDests.back().first->setIsEHFuncletEntry(); 2069 break; 2070 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2071 // Add the catchpad handlers to the possible destinations. 2072 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2073 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2074 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2075 if (IsMSVCCXX || IsCoreCLR) 2076 UnwindDests.back().first->setIsEHFuncletEntry(); 2077 if (!IsSEH) 2078 UnwindDests.back().first->setIsEHScopeEntry(); 2079 } 2080 NewEHPadBB = CatchSwitch->getUnwindDest(); 2081 } else { 2082 continue; 2083 } 2084 2085 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2086 if (BPI && NewEHPadBB) 2087 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2088 EHPadBB = NewEHPadBB; 2089 } 2090 } 2091 2092 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2093 // Update successor info. 2094 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2095 auto UnwindDest = I.getUnwindDest(); 2096 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2097 BranchProbability UnwindDestProb = 2098 (BPI && UnwindDest) 2099 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2100 : BranchProbability::getZero(); 2101 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2102 for (auto &UnwindDest : UnwindDests) { 2103 UnwindDest.first->setIsEHPad(); 2104 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2105 } 2106 FuncInfo.MBB->normalizeSuccProbs(); 2107 2108 // Create the terminator node. 2109 SDValue Ret = 2110 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2111 DAG.setRoot(Ret); 2112 } 2113 2114 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2115 report_fatal_error("visitCatchSwitch not yet implemented!"); 2116 } 2117 2118 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2119 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2120 auto &DL = DAG.getDataLayout(); 2121 SDValue Chain = getControlRoot(); 2122 SmallVector<ISD::OutputArg, 8> Outs; 2123 SmallVector<SDValue, 8> OutVals; 2124 2125 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2126 // lower 2127 // 2128 // %val = call <ty> @llvm.experimental.deoptimize() 2129 // ret <ty> %val 2130 // 2131 // differently. 2132 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2133 LowerDeoptimizingReturn(); 2134 return; 2135 } 2136 2137 if (!FuncInfo.CanLowerReturn) { 2138 unsigned DemoteReg = FuncInfo.DemoteRegister; 2139 const Function *F = I.getParent()->getParent(); 2140 2141 // Emit a store of the return value through the virtual register. 2142 // Leave Outs empty so that LowerReturn won't try to load return 2143 // registers the usual way. 2144 SmallVector<EVT, 1> PtrValueVTs; 2145 ComputeValueVTs(TLI, DL, 2146 PointerType::get(F->getContext(), 2147 DAG.getDataLayout().getAllocaAddrSpace()), 2148 PtrValueVTs); 2149 2150 SDValue RetPtr = 2151 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2152 SDValue RetOp = getValue(I.getOperand(0)); 2153 2154 SmallVector<EVT, 4> ValueVTs, MemVTs; 2155 SmallVector<uint64_t, 4> Offsets; 2156 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2157 &Offsets, 0); 2158 unsigned NumValues = ValueVTs.size(); 2159 2160 SmallVector<SDValue, 4> Chains(NumValues); 2161 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2162 for (unsigned i = 0; i != NumValues; ++i) { 2163 // An aggregate return value cannot wrap around the address space, so 2164 // offsets to its parts don't wrap either. 2165 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2166 TypeSize::getFixed(Offsets[i])); 2167 2168 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2169 if (MemVTs[i] != ValueVTs[i]) 2170 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2171 Chains[i] = DAG.getStore( 2172 Chain, getCurSDLoc(), Val, 2173 // FIXME: better loc info would be nice. 2174 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2175 commonAlignment(BaseAlign, Offsets[i])); 2176 } 2177 2178 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2179 MVT::Other, Chains); 2180 } else if (I.getNumOperands() != 0) { 2181 SmallVector<EVT, 4> ValueVTs; 2182 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2183 unsigned NumValues = ValueVTs.size(); 2184 if (NumValues) { 2185 SDValue RetOp = getValue(I.getOperand(0)); 2186 2187 const Function *F = I.getParent()->getParent(); 2188 2189 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2190 I.getOperand(0)->getType(), F->getCallingConv(), 2191 /*IsVarArg*/ false, DL); 2192 2193 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2194 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2195 ExtendKind = ISD::SIGN_EXTEND; 2196 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2197 ExtendKind = ISD::ZERO_EXTEND; 2198 2199 LLVMContext &Context = F->getContext(); 2200 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2201 2202 for (unsigned j = 0; j != NumValues; ++j) { 2203 EVT VT = ValueVTs[j]; 2204 2205 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2206 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2207 2208 CallingConv::ID CC = F->getCallingConv(); 2209 2210 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2211 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2212 SmallVector<SDValue, 4> Parts(NumParts); 2213 getCopyToParts(DAG, getCurSDLoc(), 2214 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2215 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2216 2217 // 'inreg' on function refers to return value 2218 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2219 if (RetInReg) 2220 Flags.setInReg(); 2221 2222 if (I.getOperand(0)->getType()->isPointerTy()) { 2223 Flags.setPointer(); 2224 Flags.setPointerAddrSpace( 2225 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2226 } 2227 2228 if (NeedsRegBlock) { 2229 Flags.setInConsecutiveRegs(); 2230 if (j == NumValues - 1) 2231 Flags.setInConsecutiveRegsLast(); 2232 } 2233 2234 // Propagate extension type if any 2235 if (ExtendKind == ISD::SIGN_EXTEND) 2236 Flags.setSExt(); 2237 else if (ExtendKind == ISD::ZERO_EXTEND) 2238 Flags.setZExt(); 2239 2240 for (unsigned i = 0; i < NumParts; ++i) { 2241 Outs.push_back(ISD::OutputArg(Flags, 2242 Parts[i].getValueType().getSimpleVT(), 2243 VT, /*isfixed=*/true, 0, 0)); 2244 OutVals.push_back(Parts[i]); 2245 } 2246 } 2247 } 2248 } 2249 2250 // Push in swifterror virtual register as the last element of Outs. This makes 2251 // sure swifterror virtual register will be returned in the swifterror 2252 // physical register. 2253 const Function *F = I.getParent()->getParent(); 2254 if (TLI.supportSwiftError() && 2255 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2256 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2257 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2258 Flags.setSwiftError(); 2259 Outs.push_back(ISD::OutputArg( 2260 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2261 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2262 // Create SDNode for the swifterror virtual register. 2263 OutVals.push_back( 2264 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2265 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2266 EVT(TLI.getPointerTy(DL)))); 2267 } 2268 2269 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2270 CallingConv::ID CallConv = 2271 DAG.getMachineFunction().getFunction().getCallingConv(); 2272 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2273 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2274 2275 // Verify that the target's LowerReturn behaved as expected. 2276 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2277 "LowerReturn didn't return a valid chain!"); 2278 2279 // Update the DAG with the new chain value resulting from return lowering. 2280 DAG.setRoot(Chain); 2281 } 2282 2283 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2284 /// created for it, emit nodes to copy the value into the virtual 2285 /// registers. 2286 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2287 // Skip empty types 2288 if (V->getType()->isEmptyTy()) 2289 return; 2290 2291 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2292 if (VMI != FuncInfo.ValueMap.end()) { 2293 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2294 "Unused value assigned virtual registers!"); 2295 CopyValueToVirtualRegister(V, VMI->second); 2296 } 2297 } 2298 2299 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2300 /// the current basic block, add it to ValueMap now so that we'll get a 2301 /// CopyTo/FromReg. 2302 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2303 // No need to export constants. 2304 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2305 2306 // Already exported? 2307 if (FuncInfo.isExportedInst(V)) return; 2308 2309 Register Reg = FuncInfo.InitializeRegForValue(V); 2310 CopyValueToVirtualRegister(V, Reg); 2311 } 2312 2313 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2314 const BasicBlock *FromBB) { 2315 // The operands of the setcc have to be in this block. We don't know 2316 // how to export them from some other block. 2317 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2318 // Can export from current BB. 2319 if (VI->getParent() == FromBB) 2320 return true; 2321 2322 // Is already exported, noop. 2323 return FuncInfo.isExportedInst(V); 2324 } 2325 2326 // If this is an argument, we can export it if the BB is the entry block or 2327 // if it is already exported. 2328 if (isa<Argument>(V)) { 2329 if (FromBB->isEntryBlock()) 2330 return true; 2331 2332 // Otherwise, can only export this if it is already exported. 2333 return FuncInfo.isExportedInst(V); 2334 } 2335 2336 // Otherwise, constants can always be exported. 2337 return true; 2338 } 2339 2340 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2341 BranchProbability 2342 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2343 const MachineBasicBlock *Dst) const { 2344 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2345 const BasicBlock *SrcBB = Src->getBasicBlock(); 2346 const BasicBlock *DstBB = Dst->getBasicBlock(); 2347 if (!BPI) { 2348 // If BPI is not available, set the default probability as 1 / N, where N is 2349 // the number of successors. 2350 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2351 return BranchProbability(1, SuccSize); 2352 } 2353 return BPI->getEdgeProbability(SrcBB, DstBB); 2354 } 2355 2356 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2357 MachineBasicBlock *Dst, 2358 BranchProbability Prob) { 2359 if (!FuncInfo.BPI) 2360 Src->addSuccessorWithoutProb(Dst); 2361 else { 2362 if (Prob.isUnknown()) 2363 Prob = getEdgeProbability(Src, Dst); 2364 Src->addSuccessor(Dst, Prob); 2365 } 2366 } 2367 2368 static bool InBlock(const Value *V, const BasicBlock *BB) { 2369 if (const Instruction *I = dyn_cast<Instruction>(V)) 2370 return I->getParent() == BB; 2371 return true; 2372 } 2373 2374 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2375 /// This function emits a branch and is used at the leaves of an OR or an 2376 /// AND operator tree. 2377 void 2378 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2379 MachineBasicBlock *TBB, 2380 MachineBasicBlock *FBB, 2381 MachineBasicBlock *CurBB, 2382 MachineBasicBlock *SwitchBB, 2383 BranchProbability TProb, 2384 BranchProbability FProb, 2385 bool InvertCond) { 2386 const BasicBlock *BB = CurBB->getBasicBlock(); 2387 2388 // If the leaf of the tree is a comparison, merge the condition into 2389 // the caseblock. 2390 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2391 // The operands of the cmp have to be in this block. We don't know 2392 // how to export them from some other block. If this is the first block 2393 // of the sequence, no exporting is needed. 2394 if (CurBB == SwitchBB || 2395 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2396 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2397 ISD::CondCode Condition; 2398 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2399 ICmpInst::Predicate Pred = 2400 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2401 Condition = getICmpCondCode(Pred); 2402 } else { 2403 const FCmpInst *FC = cast<FCmpInst>(Cond); 2404 FCmpInst::Predicate Pred = 2405 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2406 Condition = getFCmpCondCode(Pred); 2407 if (TM.Options.NoNaNsFPMath) 2408 Condition = getFCmpCodeWithoutNaN(Condition); 2409 } 2410 2411 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2412 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2413 SL->SwitchCases.push_back(CB); 2414 return; 2415 } 2416 } 2417 2418 // Create a CaseBlock record representing this branch. 2419 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2420 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2421 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2422 SL->SwitchCases.push_back(CB); 2423 } 2424 2425 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2426 MachineBasicBlock *TBB, 2427 MachineBasicBlock *FBB, 2428 MachineBasicBlock *CurBB, 2429 MachineBasicBlock *SwitchBB, 2430 Instruction::BinaryOps Opc, 2431 BranchProbability TProb, 2432 BranchProbability FProb, 2433 bool InvertCond) { 2434 // Skip over not part of the tree and remember to invert op and operands at 2435 // next level. 2436 Value *NotCond; 2437 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2438 InBlock(NotCond, CurBB->getBasicBlock())) { 2439 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2440 !InvertCond); 2441 return; 2442 } 2443 2444 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2445 const Value *BOpOp0, *BOpOp1; 2446 // Compute the effective opcode for Cond, taking into account whether it needs 2447 // to be inverted, e.g. 2448 // and (not (or A, B)), C 2449 // gets lowered as 2450 // and (and (not A, not B), C) 2451 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2452 if (BOp) { 2453 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2454 ? Instruction::And 2455 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2456 ? Instruction::Or 2457 : (Instruction::BinaryOps)0); 2458 if (InvertCond) { 2459 if (BOpc == Instruction::And) 2460 BOpc = Instruction::Or; 2461 else if (BOpc == Instruction::Or) 2462 BOpc = Instruction::And; 2463 } 2464 } 2465 2466 // If this node is not part of the or/and tree, emit it as a branch. 2467 // Note that all nodes in the tree should have same opcode. 2468 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2469 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2470 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2471 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2472 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2473 TProb, FProb, InvertCond); 2474 return; 2475 } 2476 2477 // Create TmpBB after CurBB. 2478 MachineFunction::iterator BBI(CurBB); 2479 MachineFunction &MF = DAG.getMachineFunction(); 2480 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2481 CurBB->getParent()->insert(++BBI, TmpBB); 2482 2483 if (Opc == Instruction::Or) { 2484 // Codegen X | Y as: 2485 // BB1: 2486 // jmp_if_X TBB 2487 // jmp TmpBB 2488 // TmpBB: 2489 // jmp_if_Y TBB 2490 // jmp FBB 2491 // 2492 2493 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2494 // The requirement is that 2495 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2496 // = TrueProb for original BB. 2497 // Assuming the original probabilities are A and B, one choice is to set 2498 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2499 // A/(1+B) and 2B/(1+B). This choice assumes that 2500 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2501 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2502 // TmpBB, but the math is more complicated. 2503 2504 auto NewTrueProb = TProb / 2; 2505 auto NewFalseProb = TProb / 2 + FProb; 2506 // Emit the LHS condition. 2507 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2508 NewFalseProb, InvertCond); 2509 2510 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2511 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2512 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2513 // Emit the RHS condition into TmpBB. 2514 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2515 Probs[1], InvertCond); 2516 } else { 2517 assert(Opc == Instruction::And && "Unknown merge op!"); 2518 // Codegen X & Y as: 2519 // BB1: 2520 // jmp_if_X TmpBB 2521 // jmp FBB 2522 // TmpBB: 2523 // jmp_if_Y TBB 2524 // jmp FBB 2525 // 2526 // This requires creation of TmpBB after CurBB. 2527 2528 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2529 // The requirement is that 2530 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2531 // = FalseProb for original BB. 2532 // Assuming the original probabilities are A and B, one choice is to set 2533 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2534 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2535 // TrueProb for BB1 * FalseProb for TmpBB. 2536 2537 auto NewTrueProb = TProb + FProb / 2; 2538 auto NewFalseProb = FProb / 2; 2539 // Emit the LHS condition. 2540 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2541 NewFalseProb, InvertCond); 2542 2543 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2544 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2545 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2546 // Emit the RHS condition into TmpBB. 2547 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2548 Probs[1], InvertCond); 2549 } 2550 } 2551 2552 /// If the set of cases should be emitted as a series of branches, return true. 2553 /// If we should emit this as a bunch of and/or'd together conditions, return 2554 /// false. 2555 bool 2556 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2557 if (Cases.size() != 2) return true; 2558 2559 // If this is two comparisons of the same values or'd or and'd together, they 2560 // will get folded into a single comparison, so don't emit two blocks. 2561 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2562 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2563 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2564 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2565 return false; 2566 } 2567 2568 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2569 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2570 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2571 Cases[0].CC == Cases[1].CC && 2572 isa<Constant>(Cases[0].CmpRHS) && 2573 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2574 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2575 return false; 2576 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2577 return false; 2578 } 2579 2580 return true; 2581 } 2582 2583 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2584 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2585 2586 // Update machine-CFG edges. 2587 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2588 2589 if (I.isUnconditional()) { 2590 // Update machine-CFG edges. 2591 BrMBB->addSuccessor(Succ0MBB); 2592 2593 // If this is not a fall-through branch or optimizations are switched off, 2594 // emit the branch. 2595 if (Succ0MBB != NextBlock(BrMBB) || 2596 TM.getOptLevel() == CodeGenOptLevel::None) { 2597 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2598 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2599 setValue(&I, Br); 2600 DAG.setRoot(Br); 2601 } 2602 2603 return; 2604 } 2605 2606 // If this condition is one of the special cases we handle, do special stuff 2607 // now. 2608 const Value *CondVal = I.getCondition(); 2609 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2610 2611 // If this is a series of conditions that are or'd or and'd together, emit 2612 // this as a sequence of branches instead of setcc's with and/or operations. 2613 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2614 // unpredictable branches, and vector extracts because those jumps are likely 2615 // expensive for any target), this should improve performance. 2616 // For example, instead of something like: 2617 // cmp A, B 2618 // C = seteq 2619 // cmp D, E 2620 // F = setle 2621 // or C, F 2622 // jnz foo 2623 // Emit: 2624 // cmp A, B 2625 // je foo 2626 // cmp D, E 2627 // jle foo 2628 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2629 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2630 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2631 Value *Vec; 2632 const Value *BOp0, *BOp1; 2633 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2634 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2635 Opcode = Instruction::And; 2636 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2637 Opcode = Instruction::Or; 2638 2639 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2640 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2641 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2642 getEdgeProbability(BrMBB, Succ0MBB), 2643 getEdgeProbability(BrMBB, Succ1MBB), 2644 /*InvertCond=*/false); 2645 // If the compares in later blocks need to use values not currently 2646 // exported from this block, export them now. This block should always 2647 // be the first entry. 2648 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2649 2650 // Allow some cases to be rejected. 2651 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2652 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2653 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2654 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2655 } 2656 2657 // Emit the branch for this block. 2658 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2659 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2660 return; 2661 } 2662 2663 // Okay, we decided not to do this, remove any inserted MBB's and clear 2664 // SwitchCases. 2665 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2666 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2667 2668 SL->SwitchCases.clear(); 2669 } 2670 } 2671 2672 // Create a CaseBlock record representing this branch. 2673 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2674 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2675 2676 // Use visitSwitchCase to actually insert the fast branch sequence for this 2677 // cond branch. 2678 visitSwitchCase(CB, BrMBB); 2679 } 2680 2681 /// visitSwitchCase - Emits the necessary code to represent a single node in 2682 /// the binary search tree resulting from lowering a switch instruction. 2683 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2684 MachineBasicBlock *SwitchBB) { 2685 SDValue Cond; 2686 SDValue CondLHS = getValue(CB.CmpLHS); 2687 SDLoc dl = CB.DL; 2688 2689 if (CB.CC == ISD::SETTRUE) { 2690 // Branch or fall through to TrueBB. 2691 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2692 SwitchBB->normalizeSuccProbs(); 2693 if (CB.TrueBB != NextBlock(SwitchBB)) { 2694 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2695 DAG.getBasicBlock(CB.TrueBB))); 2696 } 2697 return; 2698 } 2699 2700 auto &TLI = DAG.getTargetLoweringInfo(); 2701 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2702 2703 // Build the setcc now. 2704 if (!CB.CmpMHS) { 2705 // Fold "(X == true)" to X and "(X == false)" to !X to 2706 // handle common cases produced by branch lowering. 2707 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2708 CB.CC == ISD::SETEQ) 2709 Cond = CondLHS; 2710 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2711 CB.CC == ISD::SETEQ) { 2712 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2713 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2714 } else { 2715 SDValue CondRHS = getValue(CB.CmpRHS); 2716 2717 // If a pointer's DAG type is larger than its memory type then the DAG 2718 // values are zero-extended. This breaks signed comparisons so truncate 2719 // back to the underlying type before doing the compare. 2720 if (CondLHS.getValueType() != MemVT) { 2721 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2722 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2723 } 2724 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2725 } 2726 } else { 2727 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2728 2729 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2730 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2731 2732 SDValue CmpOp = getValue(CB.CmpMHS); 2733 EVT VT = CmpOp.getValueType(); 2734 2735 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2736 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2737 ISD::SETLE); 2738 } else { 2739 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2740 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2741 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2742 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2743 } 2744 } 2745 2746 // Update successor info 2747 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2748 // TrueBB and FalseBB are always different unless the incoming IR is 2749 // degenerate. This only happens when running llc on weird IR. 2750 if (CB.TrueBB != CB.FalseBB) 2751 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2752 SwitchBB->normalizeSuccProbs(); 2753 2754 // If the lhs block is the next block, invert the condition so that we can 2755 // fall through to the lhs instead of the rhs block. 2756 if (CB.TrueBB == NextBlock(SwitchBB)) { 2757 std::swap(CB.TrueBB, CB.FalseBB); 2758 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2759 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2760 } 2761 2762 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2763 MVT::Other, getControlRoot(), Cond, 2764 DAG.getBasicBlock(CB.TrueBB)); 2765 2766 setValue(CurInst, BrCond); 2767 2768 // Insert the false branch. Do this even if it's a fall through branch, 2769 // this makes it easier to do DAG optimizations which require inverting 2770 // the branch condition. 2771 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2772 DAG.getBasicBlock(CB.FalseBB)); 2773 2774 DAG.setRoot(BrCond); 2775 } 2776 2777 /// visitJumpTable - Emit JumpTable node in the current MBB 2778 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2779 // Emit the code for the jump table 2780 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2781 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2782 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2783 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2784 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2785 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2786 Index.getValue(1), Table, Index); 2787 DAG.setRoot(BrJumpTable); 2788 } 2789 2790 /// visitJumpTableHeader - This function emits necessary code to produce index 2791 /// in the JumpTable from switch case. 2792 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2793 JumpTableHeader &JTH, 2794 MachineBasicBlock *SwitchBB) { 2795 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2796 const SDLoc &dl = *JT.SL; 2797 2798 // Subtract the lowest switch case value from the value being switched on. 2799 SDValue SwitchOp = getValue(JTH.SValue); 2800 EVT VT = SwitchOp.getValueType(); 2801 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2802 DAG.getConstant(JTH.First, dl, VT)); 2803 2804 // The SDNode we just created, which holds the value being switched on minus 2805 // the smallest case value, needs to be copied to a virtual register so it 2806 // can be used as an index into the jump table in a subsequent basic block. 2807 // This value may be smaller or larger than the target's pointer type, and 2808 // therefore require extension or truncating. 2809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2810 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2811 2812 unsigned JumpTableReg = 2813 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2814 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2815 JumpTableReg, SwitchOp); 2816 JT.Reg = JumpTableReg; 2817 2818 if (!JTH.FallthroughUnreachable) { 2819 // Emit the range check for the jump table, and branch to the default block 2820 // for the switch statement if the value being switched on exceeds the 2821 // largest case in the switch. 2822 SDValue CMP = DAG.getSetCC( 2823 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2824 Sub.getValueType()), 2825 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2826 2827 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2828 MVT::Other, CopyTo, CMP, 2829 DAG.getBasicBlock(JT.Default)); 2830 2831 // Avoid emitting unnecessary branches to the next block. 2832 if (JT.MBB != NextBlock(SwitchBB)) 2833 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2834 DAG.getBasicBlock(JT.MBB)); 2835 2836 DAG.setRoot(BrCond); 2837 } else { 2838 // Avoid emitting unnecessary branches to the next block. 2839 if (JT.MBB != NextBlock(SwitchBB)) 2840 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2841 DAG.getBasicBlock(JT.MBB))); 2842 else 2843 DAG.setRoot(CopyTo); 2844 } 2845 } 2846 2847 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2848 /// variable if there exists one. 2849 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2850 SDValue &Chain) { 2851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2852 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2853 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2854 MachineFunction &MF = DAG.getMachineFunction(); 2855 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2856 MachineSDNode *Node = 2857 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2858 if (Global) { 2859 MachinePointerInfo MPInfo(Global); 2860 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2861 MachineMemOperand::MODereferenceable; 2862 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2863 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2864 DAG.setNodeMemRefs(Node, {MemRef}); 2865 } 2866 if (PtrTy != PtrMemTy) 2867 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2868 return SDValue(Node, 0); 2869 } 2870 2871 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2872 /// tail spliced into a stack protector check success bb. 2873 /// 2874 /// For a high level explanation of how this fits into the stack protector 2875 /// generation see the comment on the declaration of class 2876 /// StackProtectorDescriptor. 2877 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2878 MachineBasicBlock *ParentBB) { 2879 2880 // First create the loads to the guard/stack slot for the comparison. 2881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2882 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2883 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2884 2885 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2886 int FI = MFI.getStackProtectorIndex(); 2887 2888 SDValue Guard; 2889 SDLoc dl = getCurSDLoc(); 2890 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2891 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2892 Align Align = 2893 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2894 2895 // Generate code to load the content of the guard slot. 2896 SDValue GuardVal = DAG.getLoad( 2897 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2898 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2899 MachineMemOperand::MOVolatile); 2900 2901 if (TLI.useStackGuardXorFP()) 2902 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2903 2904 // Retrieve guard check function, nullptr if instrumentation is inlined. 2905 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2906 // The target provides a guard check function to validate the guard value. 2907 // Generate a call to that function with the content of the guard slot as 2908 // argument. 2909 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2910 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2911 2912 TargetLowering::ArgListTy Args; 2913 TargetLowering::ArgListEntry Entry; 2914 Entry.Node = GuardVal; 2915 Entry.Ty = FnTy->getParamType(0); 2916 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2917 Entry.IsInReg = true; 2918 Args.push_back(Entry); 2919 2920 TargetLowering::CallLoweringInfo CLI(DAG); 2921 CLI.setDebugLoc(getCurSDLoc()) 2922 .setChain(DAG.getEntryNode()) 2923 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2924 getValue(GuardCheckFn), std::move(Args)); 2925 2926 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2927 DAG.setRoot(Result.second); 2928 return; 2929 } 2930 2931 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2932 // Otherwise, emit a volatile load to retrieve the stack guard value. 2933 SDValue Chain = DAG.getEntryNode(); 2934 if (TLI.useLoadStackGuardNode()) { 2935 Guard = getLoadStackGuard(DAG, dl, Chain); 2936 } else { 2937 const Value *IRGuard = TLI.getSDagStackGuard(M); 2938 SDValue GuardPtr = getValue(IRGuard); 2939 2940 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2941 MachinePointerInfo(IRGuard, 0), Align, 2942 MachineMemOperand::MOVolatile); 2943 } 2944 2945 // Perform the comparison via a getsetcc. 2946 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2947 *DAG.getContext(), 2948 Guard.getValueType()), 2949 Guard, GuardVal, ISD::SETNE); 2950 2951 // If the guard/stackslot do not equal, branch to failure MBB. 2952 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2953 MVT::Other, GuardVal.getOperand(0), 2954 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2955 // Otherwise branch to success MBB. 2956 SDValue Br = DAG.getNode(ISD::BR, dl, 2957 MVT::Other, BrCond, 2958 DAG.getBasicBlock(SPD.getSuccessMBB())); 2959 2960 DAG.setRoot(Br); 2961 } 2962 2963 /// Codegen the failure basic block for a stack protector check. 2964 /// 2965 /// A failure stack protector machine basic block consists simply of a call to 2966 /// __stack_chk_fail(). 2967 /// 2968 /// For a high level explanation of how this fits into the stack protector 2969 /// generation see the comment on the declaration of class 2970 /// StackProtectorDescriptor. 2971 void 2972 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2974 TargetLowering::MakeLibCallOptions CallOptions; 2975 CallOptions.setDiscardResult(true); 2976 SDValue Chain = 2977 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2978 std::nullopt, CallOptions, getCurSDLoc()) 2979 .second; 2980 // On PS4/PS5, the "return address" must still be within the calling 2981 // function, even if it's at the very end, so emit an explicit TRAP here. 2982 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2983 if (TM.getTargetTriple().isPS()) 2984 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2985 // WebAssembly needs an unreachable instruction after a non-returning call, 2986 // because the function return type can be different from __stack_chk_fail's 2987 // return type (void). 2988 if (TM.getTargetTriple().isWasm()) 2989 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2990 2991 DAG.setRoot(Chain); 2992 } 2993 2994 /// visitBitTestHeader - This function emits necessary code to produce value 2995 /// suitable for "bit tests" 2996 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2997 MachineBasicBlock *SwitchBB) { 2998 SDLoc dl = getCurSDLoc(); 2999 3000 // Subtract the minimum value. 3001 SDValue SwitchOp = getValue(B.SValue); 3002 EVT VT = SwitchOp.getValueType(); 3003 SDValue RangeSub = 3004 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3005 3006 // Determine the type of the test operands. 3007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3008 bool UsePtrType = false; 3009 if (!TLI.isTypeLegal(VT)) { 3010 UsePtrType = true; 3011 } else { 3012 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3013 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3014 // Switch table case range are encoded into series of masks. 3015 // Just use pointer type, it's guaranteed to fit. 3016 UsePtrType = true; 3017 break; 3018 } 3019 } 3020 SDValue Sub = RangeSub; 3021 if (UsePtrType) { 3022 VT = TLI.getPointerTy(DAG.getDataLayout()); 3023 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3024 } 3025 3026 B.RegVT = VT.getSimpleVT(); 3027 B.Reg = FuncInfo.CreateReg(B.RegVT); 3028 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3029 3030 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3031 3032 if (!B.FallthroughUnreachable) 3033 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3034 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3035 SwitchBB->normalizeSuccProbs(); 3036 3037 SDValue Root = CopyTo; 3038 if (!B.FallthroughUnreachable) { 3039 // Conditional branch to the default block. 3040 SDValue RangeCmp = DAG.getSetCC(dl, 3041 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3042 RangeSub.getValueType()), 3043 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3044 ISD::SETUGT); 3045 3046 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3047 DAG.getBasicBlock(B.Default)); 3048 } 3049 3050 // Avoid emitting unnecessary branches to the next block. 3051 if (MBB != NextBlock(SwitchBB)) 3052 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3053 3054 DAG.setRoot(Root); 3055 } 3056 3057 /// visitBitTestCase - this function produces one "bit test" 3058 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3059 MachineBasicBlock* NextMBB, 3060 BranchProbability BranchProbToNext, 3061 unsigned Reg, 3062 BitTestCase &B, 3063 MachineBasicBlock *SwitchBB) { 3064 SDLoc dl = getCurSDLoc(); 3065 MVT VT = BB.RegVT; 3066 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3067 SDValue Cmp; 3068 unsigned PopCount = llvm::popcount(B.Mask); 3069 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3070 if (PopCount == 1) { 3071 // Testing for a single bit; just compare the shift count with what it 3072 // would need to be to shift a 1 bit in that position. 3073 Cmp = DAG.getSetCC( 3074 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3075 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3076 ISD::SETEQ); 3077 } else if (PopCount == BB.Range) { 3078 // There is only one zero bit in the range, test for it directly. 3079 Cmp = DAG.getSetCC( 3080 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3081 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3082 } else { 3083 // Make desired shift 3084 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3085 DAG.getConstant(1, dl, VT), ShiftOp); 3086 3087 // Emit bit tests and jumps 3088 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3089 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3090 Cmp = DAG.getSetCC( 3091 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3092 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3093 } 3094 3095 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3096 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3097 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3098 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3099 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3100 // one as they are relative probabilities (and thus work more like weights), 3101 // and hence we need to normalize them to let the sum of them become one. 3102 SwitchBB->normalizeSuccProbs(); 3103 3104 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3105 MVT::Other, getControlRoot(), 3106 Cmp, DAG.getBasicBlock(B.TargetBB)); 3107 3108 // Avoid emitting unnecessary branches to the next block. 3109 if (NextMBB != NextBlock(SwitchBB)) 3110 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3111 DAG.getBasicBlock(NextMBB)); 3112 3113 DAG.setRoot(BrAnd); 3114 } 3115 3116 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3117 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3118 3119 // Retrieve successors. Look through artificial IR level blocks like 3120 // catchswitch for successors. 3121 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3122 const BasicBlock *EHPadBB = I.getSuccessor(1); 3123 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3124 3125 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3126 // have to do anything here to lower funclet bundles. 3127 assert(!I.hasOperandBundlesOtherThan( 3128 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3129 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3130 LLVMContext::OB_cfguardtarget, 3131 LLVMContext::OB_clang_arc_attachedcall}) && 3132 "Cannot lower invokes with arbitrary operand bundles yet!"); 3133 3134 const Value *Callee(I.getCalledOperand()); 3135 const Function *Fn = dyn_cast<Function>(Callee); 3136 if (isa<InlineAsm>(Callee)) 3137 visitInlineAsm(I, EHPadBB); 3138 else if (Fn && Fn->isIntrinsic()) { 3139 switch (Fn->getIntrinsicID()) { 3140 default: 3141 llvm_unreachable("Cannot invoke this intrinsic"); 3142 case Intrinsic::donothing: 3143 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3144 case Intrinsic::seh_try_begin: 3145 case Intrinsic::seh_scope_begin: 3146 case Intrinsic::seh_try_end: 3147 case Intrinsic::seh_scope_end: 3148 if (EHPadMBB) 3149 // a block referenced by EH table 3150 // so dtor-funclet not removed by opts 3151 EHPadMBB->setMachineBlockAddressTaken(); 3152 break; 3153 case Intrinsic::experimental_patchpoint_void: 3154 case Intrinsic::experimental_patchpoint_i64: 3155 visitPatchpoint(I, EHPadBB); 3156 break; 3157 case Intrinsic::experimental_gc_statepoint: 3158 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3159 break; 3160 case Intrinsic::wasm_rethrow: { 3161 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3162 // special because it can be invoked, so we manually lower it to a DAG 3163 // node here. 3164 SmallVector<SDValue, 8> Ops; 3165 Ops.push_back(getRoot()); // inchain 3166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3167 Ops.push_back( 3168 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3169 TLI.getPointerTy(DAG.getDataLayout()))); 3170 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3171 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3172 break; 3173 } 3174 } 3175 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3176 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3177 // Eventually we will support lowering the @llvm.experimental.deoptimize 3178 // intrinsic, and right now there are no plans to support other intrinsics 3179 // with deopt state. 3180 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3181 } else { 3182 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3183 } 3184 3185 // If the value of the invoke is used outside of its defining block, make it 3186 // available as a virtual register. 3187 // We already took care of the exported value for the statepoint instruction 3188 // during call to the LowerStatepoint. 3189 if (!isa<GCStatepointInst>(I)) { 3190 CopyToExportRegsIfNeeded(&I); 3191 } 3192 3193 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3194 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3195 BranchProbability EHPadBBProb = 3196 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3197 : BranchProbability::getZero(); 3198 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3199 3200 // Update successor info. 3201 addSuccessorWithProb(InvokeMBB, Return); 3202 for (auto &UnwindDest : UnwindDests) { 3203 UnwindDest.first->setIsEHPad(); 3204 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3205 } 3206 InvokeMBB->normalizeSuccProbs(); 3207 3208 // Drop into normal successor. 3209 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3210 DAG.getBasicBlock(Return))); 3211 } 3212 3213 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3214 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3215 3216 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3217 // have to do anything here to lower funclet bundles. 3218 assert(!I.hasOperandBundlesOtherThan( 3219 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3220 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3221 3222 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3223 visitInlineAsm(I); 3224 CopyToExportRegsIfNeeded(&I); 3225 3226 // Retrieve successors. 3227 SmallPtrSet<BasicBlock *, 8> Dests; 3228 Dests.insert(I.getDefaultDest()); 3229 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3230 3231 // Update successor info. 3232 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3233 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3234 BasicBlock *Dest = I.getIndirectDest(i); 3235 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3236 Target->setIsInlineAsmBrIndirectTarget(); 3237 Target->setMachineBlockAddressTaken(); 3238 Target->setLabelMustBeEmitted(); 3239 // Don't add duplicate machine successors. 3240 if (Dests.insert(Dest).second) 3241 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3242 } 3243 CallBrMBB->normalizeSuccProbs(); 3244 3245 // Drop into default successor. 3246 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3247 MVT::Other, getControlRoot(), 3248 DAG.getBasicBlock(Return))); 3249 } 3250 3251 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3252 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3253 } 3254 3255 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3256 assert(FuncInfo.MBB->isEHPad() && 3257 "Call to landingpad not in landing pad!"); 3258 3259 // If there aren't registers to copy the values into (e.g., during SjLj 3260 // exceptions), then don't bother to create these DAG nodes. 3261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3262 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3263 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3264 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3265 return; 3266 3267 // If landingpad's return type is token type, we don't create DAG nodes 3268 // for its exception pointer and selector value. The extraction of exception 3269 // pointer or selector value from token type landingpads is not currently 3270 // supported. 3271 if (LP.getType()->isTokenTy()) 3272 return; 3273 3274 SmallVector<EVT, 2> ValueVTs; 3275 SDLoc dl = getCurSDLoc(); 3276 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3277 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3278 3279 // Get the two live-in registers as SDValues. The physregs have already been 3280 // copied into virtual registers. 3281 SDValue Ops[2]; 3282 if (FuncInfo.ExceptionPointerVirtReg) { 3283 Ops[0] = DAG.getZExtOrTrunc( 3284 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3285 FuncInfo.ExceptionPointerVirtReg, 3286 TLI.getPointerTy(DAG.getDataLayout())), 3287 dl, ValueVTs[0]); 3288 } else { 3289 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3290 } 3291 Ops[1] = DAG.getZExtOrTrunc( 3292 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3293 FuncInfo.ExceptionSelectorVirtReg, 3294 TLI.getPointerTy(DAG.getDataLayout())), 3295 dl, ValueVTs[1]); 3296 3297 // Merge into one. 3298 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3299 DAG.getVTList(ValueVTs), Ops); 3300 setValue(&LP, Res); 3301 } 3302 3303 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3304 MachineBasicBlock *Last) { 3305 // Update JTCases. 3306 for (JumpTableBlock &JTB : SL->JTCases) 3307 if (JTB.first.HeaderBB == First) 3308 JTB.first.HeaderBB = Last; 3309 3310 // Update BitTestCases. 3311 for (BitTestBlock &BTB : SL->BitTestCases) 3312 if (BTB.Parent == First) 3313 BTB.Parent = Last; 3314 } 3315 3316 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3317 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3318 3319 // Update machine-CFG edges with unique successors. 3320 SmallSet<BasicBlock*, 32> Done; 3321 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3322 BasicBlock *BB = I.getSuccessor(i); 3323 bool Inserted = Done.insert(BB).second; 3324 if (!Inserted) 3325 continue; 3326 3327 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3328 addSuccessorWithProb(IndirectBrMBB, Succ); 3329 } 3330 IndirectBrMBB->normalizeSuccProbs(); 3331 3332 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3333 MVT::Other, getControlRoot(), 3334 getValue(I.getAddress()))); 3335 } 3336 3337 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3338 if (!DAG.getTarget().Options.TrapUnreachable) 3339 return; 3340 3341 // We may be able to ignore unreachable behind a noreturn call. 3342 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3343 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3344 if (Call->doesNotReturn()) 3345 return; 3346 } 3347 } 3348 3349 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3350 } 3351 3352 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3353 SDNodeFlags Flags; 3354 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3355 Flags.copyFMF(*FPOp); 3356 3357 SDValue Op = getValue(I.getOperand(0)); 3358 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3359 Op, Flags); 3360 setValue(&I, UnNodeValue); 3361 } 3362 3363 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3364 SDNodeFlags Flags; 3365 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3366 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3367 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3368 } 3369 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3370 Flags.setExact(ExactOp->isExact()); 3371 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3372 Flags.setDisjoint(DisjointOp->isDisjoint()); 3373 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3374 Flags.copyFMF(*FPOp); 3375 3376 SDValue Op1 = getValue(I.getOperand(0)); 3377 SDValue Op2 = getValue(I.getOperand(1)); 3378 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3379 Op1, Op2, Flags); 3380 setValue(&I, BinNodeValue); 3381 } 3382 3383 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3384 SDValue Op1 = getValue(I.getOperand(0)); 3385 SDValue Op2 = getValue(I.getOperand(1)); 3386 3387 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3388 Op1.getValueType(), DAG.getDataLayout()); 3389 3390 // Coerce the shift amount to the right type if we can. This exposes the 3391 // truncate or zext to optimization early. 3392 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3393 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3394 "Unexpected shift type"); 3395 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3396 } 3397 3398 bool nuw = false; 3399 bool nsw = false; 3400 bool exact = false; 3401 3402 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3403 3404 if (const OverflowingBinaryOperator *OFBinOp = 3405 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3406 nuw = OFBinOp->hasNoUnsignedWrap(); 3407 nsw = OFBinOp->hasNoSignedWrap(); 3408 } 3409 if (const PossiblyExactOperator *ExactOp = 3410 dyn_cast<const PossiblyExactOperator>(&I)) 3411 exact = ExactOp->isExact(); 3412 } 3413 SDNodeFlags Flags; 3414 Flags.setExact(exact); 3415 Flags.setNoSignedWrap(nsw); 3416 Flags.setNoUnsignedWrap(nuw); 3417 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3418 Flags); 3419 setValue(&I, Res); 3420 } 3421 3422 void SelectionDAGBuilder::visitSDiv(const User &I) { 3423 SDValue Op1 = getValue(I.getOperand(0)); 3424 SDValue Op2 = getValue(I.getOperand(1)); 3425 3426 SDNodeFlags Flags; 3427 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3428 cast<PossiblyExactOperator>(&I)->isExact()); 3429 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3430 Op2, Flags)); 3431 } 3432 3433 void SelectionDAGBuilder::visitICmp(const User &I) { 3434 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3435 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3436 predicate = IC->getPredicate(); 3437 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3438 predicate = ICmpInst::Predicate(IC->getPredicate()); 3439 SDValue Op1 = getValue(I.getOperand(0)); 3440 SDValue Op2 = getValue(I.getOperand(1)); 3441 ISD::CondCode Opcode = getICmpCondCode(predicate); 3442 3443 auto &TLI = DAG.getTargetLoweringInfo(); 3444 EVT MemVT = 3445 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3446 3447 // If a pointer's DAG type is larger than its memory type then the DAG values 3448 // are zero-extended. This breaks signed comparisons so truncate back to the 3449 // underlying type before doing the compare. 3450 if (Op1.getValueType() != MemVT) { 3451 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3452 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3453 } 3454 3455 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3456 I.getType()); 3457 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3458 } 3459 3460 void SelectionDAGBuilder::visitFCmp(const User &I) { 3461 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3462 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3463 predicate = FC->getPredicate(); 3464 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3465 predicate = FCmpInst::Predicate(FC->getPredicate()); 3466 SDValue Op1 = getValue(I.getOperand(0)); 3467 SDValue Op2 = getValue(I.getOperand(1)); 3468 3469 ISD::CondCode Condition = getFCmpCondCode(predicate); 3470 auto *FPMO = cast<FPMathOperator>(&I); 3471 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3472 Condition = getFCmpCodeWithoutNaN(Condition); 3473 3474 SDNodeFlags Flags; 3475 Flags.copyFMF(*FPMO); 3476 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3477 3478 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3479 I.getType()); 3480 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3481 } 3482 3483 // Check if the condition of the select has one use or two users that are both 3484 // selects with the same condition. 3485 static bool hasOnlySelectUsers(const Value *Cond) { 3486 return llvm::all_of(Cond->users(), [](const Value *V) { 3487 return isa<SelectInst>(V); 3488 }); 3489 } 3490 3491 void SelectionDAGBuilder::visitSelect(const User &I) { 3492 SmallVector<EVT, 4> ValueVTs; 3493 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3494 ValueVTs); 3495 unsigned NumValues = ValueVTs.size(); 3496 if (NumValues == 0) return; 3497 3498 SmallVector<SDValue, 4> Values(NumValues); 3499 SDValue Cond = getValue(I.getOperand(0)); 3500 SDValue LHSVal = getValue(I.getOperand(1)); 3501 SDValue RHSVal = getValue(I.getOperand(2)); 3502 SmallVector<SDValue, 1> BaseOps(1, Cond); 3503 ISD::NodeType OpCode = 3504 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3505 3506 bool IsUnaryAbs = false; 3507 bool Negate = false; 3508 3509 SDNodeFlags Flags; 3510 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3511 Flags.copyFMF(*FPOp); 3512 3513 Flags.setUnpredictable( 3514 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3515 3516 // Min/max matching is only viable if all output VTs are the same. 3517 if (all_equal(ValueVTs)) { 3518 EVT VT = ValueVTs[0]; 3519 LLVMContext &Ctx = *DAG.getContext(); 3520 auto &TLI = DAG.getTargetLoweringInfo(); 3521 3522 // We care about the legality of the operation after it has been type 3523 // legalized. 3524 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3525 VT = TLI.getTypeToTransformTo(Ctx, VT); 3526 3527 // If the vselect is legal, assume we want to leave this as a vector setcc + 3528 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3529 // min/max is legal on the scalar type. 3530 bool UseScalarMinMax = VT.isVector() && 3531 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3532 3533 // ValueTracking's select pattern matching does not account for -0.0, 3534 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3535 // -0.0 is less than +0.0. 3536 Value *LHS, *RHS; 3537 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3538 ISD::NodeType Opc = ISD::DELETED_NODE; 3539 switch (SPR.Flavor) { 3540 case SPF_UMAX: Opc = ISD::UMAX; break; 3541 case SPF_UMIN: Opc = ISD::UMIN; break; 3542 case SPF_SMAX: Opc = ISD::SMAX; break; 3543 case SPF_SMIN: Opc = ISD::SMIN; break; 3544 case SPF_FMINNUM: 3545 switch (SPR.NaNBehavior) { 3546 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3547 case SPNB_RETURNS_NAN: break; 3548 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3549 case SPNB_RETURNS_ANY: 3550 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3551 (UseScalarMinMax && 3552 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3553 Opc = ISD::FMINNUM; 3554 break; 3555 } 3556 break; 3557 case SPF_FMAXNUM: 3558 switch (SPR.NaNBehavior) { 3559 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3560 case SPNB_RETURNS_NAN: break; 3561 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3562 case SPNB_RETURNS_ANY: 3563 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3564 (UseScalarMinMax && 3565 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3566 Opc = ISD::FMAXNUM; 3567 break; 3568 } 3569 break; 3570 case SPF_NABS: 3571 Negate = true; 3572 [[fallthrough]]; 3573 case SPF_ABS: 3574 IsUnaryAbs = true; 3575 Opc = ISD::ABS; 3576 break; 3577 default: break; 3578 } 3579 3580 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3581 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3582 (UseScalarMinMax && 3583 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3584 // If the underlying comparison instruction is used by any other 3585 // instruction, the consumed instructions won't be destroyed, so it is 3586 // not profitable to convert to a min/max. 3587 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3588 OpCode = Opc; 3589 LHSVal = getValue(LHS); 3590 RHSVal = getValue(RHS); 3591 BaseOps.clear(); 3592 } 3593 3594 if (IsUnaryAbs) { 3595 OpCode = Opc; 3596 LHSVal = getValue(LHS); 3597 BaseOps.clear(); 3598 } 3599 } 3600 3601 if (IsUnaryAbs) { 3602 for (unsigned i = 0; i != NumValues; ++i) { 3603 SDLoc dl = getCurSDLoc(); 3604 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3605 Values[i] = 3606 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3607 if (Negate) 3608 Values[i] = DAG.getNegative(Values[i], dl, VT); 3609 } 3610 } else { 3611 for (unsigned i = 0; i != NumValues; ++i) { 3612 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3613 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3614 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3615 Values[i] = DAG.getNode( 3616 OpCode, getCurSDLoc(), 3617 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3618 } 3619 } 3620 3621 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3622 DAG.getVTList(ValueVTs), Values)); 3623 } 3624 3625 void SelectionDAGBuilder::visitTrunc(const User &I) { 3626 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3627 SDValue N = getValue(I.getOperand(0)); 3628 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3629 I.getType()); 3630 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3631 } 3632 3633 void SelectionDAGBuilder::visitZExt(const User &I) { 3634 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3635 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3636 SDValue N = getValue(I.getOperand(0)); 3637 auto &TLI = DAG.getTargetLoweringInfo(); 3638 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3639 3640 SDNodeFlags Flags; 3641 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3642 Flags.setNonNeg(PNI->hasNonNeg()); 3643 3644 // Eagerly use nonneg information to canonicalize towards sign_extend if 3645 // that is the target's preference. 3646 // TODO: Let the target do this later. 3647 if (Flags.hasNonNeg() && 3648 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3649 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3650 return; 3651 } 3652 3653 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3654 } 3655 3656 void SelectionDAGBuilder::visitSExt(const User &I) { 3657 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3658 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3659 SDValue N = getValue(I.getOperand(0)); 3660 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3661 I.getType()); 3662 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3663 } 3664 3665 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3666 // FPTrunc is never a no-op cast, no need to check 3667 SDValue N = getValue(I.getOperand(0)); 3668 SDLoc dl = getCurSDLoc(); 3669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3670 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3671 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3672 DAG.getTargetConstant( 3673 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3674 } 3675 3676 void SelectionDAGBuilder::visitFPExt(const User &I) { 3677 // FPExt is never a no-op cast, no need to check 3678 SDValue N = getValue(I.getOperand(0)); 3679 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3680 I.getType()); 3681 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3682 } 3683 3684 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3685 // FPToUI is never a no-op cast, no need to check 3686 SDValue N = getValue(I.getOperand(0)); 3687 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3688 I.getType()); 3689 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3690 } 3691 3692 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3693 // FPToSI is never a no-op cast, no need to check 3694 SDValue N = getValue(I.getOperand(0)); 3695 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3696 I.getType()); 3697 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3698 } 3699 3700 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3701 // UIToFP is never a no-op cast, no need to check 3702 SDValue N = getValue(I.getOperand(0)); 3703 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3704 I.getType()); 3705 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3706 } 3707 3708 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3709 // SIToFP is never a no-op cast, no need to check 3710 SDValue N = getValue(I.getOperand(0)); 3711 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3712 I.getType()); 3713 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3714 } 3715 3716 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3717 // What to do depends on the size of the integer and the size of the pointer. 3718 // We can either truncate, zero extend, or no-op, accordingly. 3719 SDValue N = getValue(I.getOperand(0)); 3720 auto &TLI = DAG.getTargetLoweringInfo(); 3721 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3722 I.getType()); 3723 EVT PtrMemVT = 3724 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3725 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3726 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3727 setValue(&I, N); 3728 } 3729 3730 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3731 // What to do depends on the size of the integer and the size of the pointer. 3732 // We can either truncate, zero extend, or no-op, accordingly. 3733 SDValue N = getValue(I.getOperand(0)); 3734 auto &TLI = DAG.getTargetLoweringInfo(); 3735 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3736 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3737 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3738 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3739 setValue(&I, N); 3740 } 3741 3742 void SelectionDAGBuilder::visitBitCast(const User &I) { 3743 SDValue N = getValue(I.getOperand(0)); 3744 SDLoc dl = getCurSDLoc(); 3745 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3746 I.getType()); 3747 3748 // BitCast assures us that source and destination are the same size so this is 3749 // either a BITCAST or a no-op. 3750 if (DestVT != N.getValueType()) 3751 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3752 DestVT, N)); // convert types. 3753 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3754 // might fold any kind of constant expression to an integer constant and that 3755 // is not what we are looking for. Only recognize a bitcast of a genuine 3756 // constant integer as an opaque constant. 3757 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3758 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3759 /*isOpaque*/true)); 3760 else 3761 setValue(&I, N); // noop cast. 3762 } 3763 3764 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3766 const Value *SV = I.getOperand(0); 3767 SDValue N = getValue(SV); 3768 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3769 3770 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3771 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3772 3773 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3774 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3775 3776 setValue(&I, N); 3777 } 3778 3779 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3781 SDValue InVec = getValue(I.getOperand(0)); 3782 SDValue InVal = getValue(I.getOperand(1)); 3783 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3784 TLI.getVectorIdxTy(DAG.getDataLayout())); 3785 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3786 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3787 InVec, InVal, InIdx)); 3788 } 3789 3790 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3792 SDValue InVec = getValue(I.getOperand(0)); 3793 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3794 TLI.getVectorIdxTy(DAG.getDataLayout())); 3795 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3796 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3797 InVec, InIdx)); 3798 } 3799 3800 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3801 SDValue Src1 = getValue(I.getOperand(0)); 3802 SDValue Src2 = getValue(I.getOperand(1)); 3803 ArrayRef<int> Mask; 3804 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3805 Mask = SVI->getShuffleMask(); 3806 else 3807 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3808 SDLoc DL = getCurSDLoc(); 3809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3810 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3811 EVT SrcVT = Src1.getValueType(); 3812 3813 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3814 VT.isScalableVector()) { 3815 // Canonical splat form of first element of first input vector. 3816 SDValue FirstElt = 3817 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3818 DAG.getVectorIdxConstant(0, DL)); 3819 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3820 return; 3821 } 3822 3823 // For now, we only handle splats for scalable vectors. 3824 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3825 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3826 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3827 3828 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3829 unsigned MaskNumElts = Mask.size(); 3830 3831 if (SrcNumElts == MaskNumElts) { 3832 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3833 return; 3834 } 3835 3836 // Normalize the shuffle vector since mask and vector length don't match. 3837 if (SrcNumElts < MaskNumElts) { 3838 // Mask is longer than the source vectors. We can use concatenate vector to 3839 // make the mask and vectors lengths match. 3840 3841 if (MaskNumElts % SrcNumElts == 0) { 3842 // Mask length is a multiple of the source vector length. 3843 // Check if the shuffle is some kind of concatenation of the input 3844 // vectors. 3845 unsigned NumConcat = MaskNumElts / SrcNumElts; 3846 bool IsConcat = true; 3847 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3848 for (unsigned i = 0; i != MaskNumElts; ++i) { 3849 int Idx = Mask[i]; 3850 if (Idx < 0) 3851 continue; 3852 // Ensure the indices in each SrcVT sized piece are sequential and that 3853 // the same source is used for the whole piece. 3854 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3855 (ConcatSrcs[i / SrcNumElts] >= 0 && 3856 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3857 IsConcat = false; 3858 break; 3859 } 3860 // Remember which source this index came from. 3861 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3862 } 3863 3864 // The shuffle is concatenating multiple vectors together. Just emit 3865 // a CONCAT_VECTORS operation. 3866 if (IsConcat) { 3867 SmallVector<SDValue, 8> ConcatOps; 3868 for (auto Src : ConcatSrcs) { 3869 if (Src < 0) 3870 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3871 else if (Src == 0) 3872 ConcatOps.push_back(Src1); 3873 else 3874 ConcatOps.push_back(Src2); 3875 } 3876 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3877 return; 3878 } 3879 } 3880 3881 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3882 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3883 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3884 PaddedMaskNumElts); 3885 3886 // Pad both vectors with undefs to make them the same length as the mask. 3887 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3888 3889 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3890 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3891 MOps1[0] = Src1; 3892 MOps2[0] = Src2; 3893 3894 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3895 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3896 3897 // Readjust mask for new input vector length. 3898 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3899 for (unsigned i = 0; i != MaskNumElts; ++i) { 3900 int Idx = Mask[i]; 3901 if (Idx >= (int)SrcNumElts) 3902 Idx -= SrcNumElts - PaddedMaskNumElts; 3903 MappedOps[i] = Idx; 3904 } 3905 3906 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3907 3908 // If the concatenated vector was padded, extract a subvector with the 3909 // correct number of elements. 3910 if (MaskNumElts != PaddedMaskNumElts) 3911 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3912 DAG.getVectorIdxConstant(0, DL)); 3913 3914 setValue(&I, Result); 3915 return; 3916 } 3917 3918 if (SrcNumElts > MaskNumElts) { 3919 // Analyze the access pattern of the vector to see if we can extract 3920 // two subvectors and do the shuffle. 3921 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3922 bool CanExtract = true; 3923 for (int Idx : Mask) { 3924 unsigned Input = 0; 3925 if (Idx < 0) 3926 continue; 3927 3928 if (Idx >= (int)SrcNumElts) { 3929 Input = 1; 3930 Idx -= SrcNumElts; 3931 } 3932 3933 // If all the indices come from the same MaskNumElts sized portion of 3934 // the sources we can use extract. Also make sure the extract wouldn't 3935 // extract past the end of the source. 3936 int NewStartIdx = alignDown(Idx, MaskNumElts); 3937 if (NewStartIdx + MaskNumElts > SrcNumElts || 3938 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3939 CanExtract = false; 3940 // Make sure we always update StartIdx as we use it to track if all 3941 // elements are undef. 3942 StartIdx[Input] = NewStartIdx; 3943 } 3944 3945 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3946 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3947 return; 3948 } 3949 if (CanExtract) { 3950 // Extract appropriate subvector and generate a vector shuffle 3951 for (unsigned Input = 0; Input < 2; ++Input) { 3952 SDValue &Src = Input == 0 ? Src1 : Src2; 3953 if (StartIdx[Input] < 0) 3954 Src = DAG.getUNDEF(VT); 3955 else { 3956 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3957 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3958 } 3959 } 3960 3961 // Calculate new mask. 3962 SmallVector<int, 8> MappedOps(Mask); 3963 for (int &Idx : MappedOps) { 3964 if (Idx >= (int)SrcNumElts) 3965 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3966 else if (Idx >= 0) 3967 Idx -= StartIdx[0]; 3968 } 3969 3970 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3971 return; 3972 } 3973 } 3974 3975 // We can't use either concat vectors or extract subvectors so fall back to 3976 // replacing the shuffle with extract and build vector. 3977 // to insert and build vector. 3978 EVT EltVT = VT.getVectorElementType(); 3979 SmallVector<SDValue,8> Ops; 3980 for (int Idx : Mask) { 3981 SDValue Res; 3982 3983 if (Idx < 0) { 3984 Res = DAG.getUNDEF(EltVT); 3985 } else { 3986 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3987 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3988 3989 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3990 DAG.getVectorIdxConstant(Idx, DL)); 3991 } 3992 3993 Ops.push_back(Res); 3994 } 3995 3996 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3997 } 3998 3999 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4000 ArrayRef<unsigned> Indices = I.getIndices(); 4001 const Value *Op0 = I.getOperand(0); 4002 const Value *Op1 = I.getOperand(1); 4003 Type *AggTy = I.getType(); 4004 Type *ValTy = Op1->getType(); 4005 bool IntoUndef = isa<UndefValue>(Op0); 4006 bool FromUndef = isa<UndefValue>(Op1); 4007 4008 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4009 4010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4011 SmallVector<EVT, 4> AggValueVTs; 4012 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4013 SmallVector<EVT, 4> ValValueVTs; 4014 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4015 4016 unsigned NumAggValues = AggValueVTs.size(); 4017 unsigned NumValValues = ValValueVTs.size(); 4018 SmallVector<SDValue, 4> Values(NumAggValues); 4019 4020 // Ignore an insertvalue that produces an empty object 4021 if (!NumAggValues) { 4022 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4023 return; 4024 } 4025 4026 SDValue Agg = getValue(Op0); 4027 unsigned i = 0; 4028 // Copy the beginning value(s) from the original aggregate. 4029 for (; i != LinearIndex; ++i) 4030 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4031 SDValue(Agg.getNode(), Agg.getResNo() + i); 4032 // Copy values from the inserted value(s). 4033 if (NumValValues) { 4034 SDValue Val = getValue(Op1); 4035 for (; i != LinearIndex + NumValValues; ++i) 4036 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4037 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4038 } 4039 // Copy remaining value(s) from the original aggregate. 4040 for (; i != NumAggValues; ++i) 4041 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4042 SDValue(Agg.getNode(), Agg.getResNo() + i); 4043 4044 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4045 DAG.getVTList(AggValueVTs), Values)); 4046 } 4047 4048 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4049 ArrayRef<unsigned> Indices = I.getIndices(); 4050 const Value *Op0 = I.getOperand(0); 4051 Type *AggTy = Op0->getType(); 4052 Type *ValTy = I.getType(); 4053 bool OutOfUndef = isa<UndefValue>(Op0); 4054 4055 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4056 4057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4058 SmallVector<EVT, 4> ValValueVTs; 4059 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4060 4061 unsigned NumValValues = ValValueVTs.size(); 4062 4063 // Ignore a extractvalue that produces an empty object 4064 if (!NumValValues) { 4065 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4066 return; 4067 } 4068 4069 SmallVector<SDValue, 4> Values(NumValValues); 4070 4071 SDValue Agg = getValue(Op0); 4072 // Copy out the selected value(s). 4073 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4074 Values[i - LinearIndex] = 4075 OutOfUndef ? 4076 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4077 SDValue(Agg.getNode(), Agg.getResNo() + i); 4078 4079 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4080 DAG.getVTList(ValValueVTs), Values)); 4081 } 4082 4083 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4084 Value *Op0 = I.getOperand(0); 4085 // Note that the pointer operand may be a vector of pointers. Take the scalar 4086 // element which holds a pointer. 4087 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4088 SDValue N = getValue(Op0); 4089 SDLoc dl = getCurSDLoc(); 4090 auto &TLI = DAG.getTargetLoweringInfo(); 4091 4092 // Normalize Vector GEP - all scalar operands should be converted to the 4093 // splat vector. 4094 bool IsVectorGEP = I.getType()->isVectorTy(); 4095 ElementCount VectorElementCount = 4096 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4097 : ElementCount::getFixed(0); 4098 4099 if (IsVectorGEP && !N.getValueType().isVector()) { 4100 LLVMContext &Context = *DAG.getContext(); 4101 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4102 N = DAG.getSplat(VT, dl, N); 4103 } 4104 4105 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4106 GTI != E; ++GTI) { 4107 const Value *Idx = GTI.getOperand(); 4108 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4109 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4110 if (Field) { 4111 // N = N + Offset 4112 uint64_t Offset = 4113 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4114 4115 // In an inbounds GEP with an offset that is nonnegative even when 4116 // interpreted as signed, assume there is no unsigned overflow. 4117 SDNodeFlags Flags; 4118 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4119 Flags.setNoUnsignedWrap(true); 4120 4121 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4122 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4123 } 4124 } else { 4125 // IdxSize is the width of the arithmetic according to IR semantics. 4126 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4127 // (and fix up the result later). 4128 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4129 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4130 TypeSize ElementSize = 4131 GTI.getSequentialElementStride(DAG.getDataLayout()); 4132 // We intentionally mask away the high bits here; ElementSize may not 4133 // fit in IdxTy. 4134 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4135 bool ElementScalable = ElementSize.isScalable(); 4136 4137 // If this is a scalar constant or a splat vector of constants, 4138 // handle it quickly. 4139 const auto *C = dyn_cast<Constant>(Idx); 4140 if (C && isa<VectorType>(C->getType())) 4141 C = C->getSplatValue(); 4142 4143 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4144 if (CI && CI->isZero()) 4145 continue; 4146 if (CI && !ElementScalable) { 4147 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4148 LLVMContext &Context = *DAG.getContext(); 4149 SDValue OffsVal; 4150 if (IsVectorGEP) 4151 OffsVal = DAG.getConstant( 4152 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4153 else 4154 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4155 4156 // In an inbounds GEP with an offset that is nonnegative even when 4157 // interpreted as signed, assume there is no unsigned overflow. 4158 SDNodeFlags Flags; 4159 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4160 Flags.setNoUnsignedWrap(true); 4161 4162 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4163 4164 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4165 continue; 4166 } 4167 4168 // N = N + Idx * ElementMul; 4169 SDValue IdxN = getValue(Idx); 4170 4171 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4172 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4173 VectorElementCount); 4174 IdxN = DAG.getSplat(VT, dl, IdxN); 4175 } 4176 4177 // If the index is smaller or larger than intptr_t, truncate or extend 4178 // it. 4179 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4180 4181 if (ElementScalable) { 4182 EVT VScaleTy = N.getValueType().getScalarType(); 4183 SDValue VScale = DAG.getNode( 4184 ISD::VSCALE, dl, VScaleTy, 4185 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4186 if (IsVectorGEP) 4187 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4188 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4189 } else { 4190 // If this is a multiply by a power of two, turn it into a shl 4191 // immediately. This is a very common case. 4192 if (ElementMul != 1) { 4193 if (ElementMul.isPowerOf2()) { 4194 unsigned Amt = ElementMul.logBase2(); 4195 IdxN = DAG.getNode(ISD::SHL, dl, 4196 N.getValueType(), IdxN, 4197 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4198 } else { 4199 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4200 IdxN.getValueType()); 4201 IdxN = DAG.getNode(ISD::MUL, dl, 4202 N.getValueType(), IdxN, Scale); 4203 } 4204 } 4205 } 4206 4207 N = DAG.getNode(ISD::ADD, dl, 4208 N.getValueType(), N, IdxN); 4209 } 4210 } 4211 4212 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4213 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4214 if (IsVectorGEP) { 4215 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4216 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4217 } 4218 4219 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4220 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4221 4222 setValue(&I, N); 4223 } 4224 4225 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4226 // If this is a fixed sized alloca in the entry block of the function, 4227 // allocate it statically on the stack. 4228 if (FuncInfo.StaticAllocaMap.count(&I)) 4229 return; // getValue will auto-populate this. 4230 4231 SDLoc dl = getCurSDLoc(); 4232 Type *Ty = I.getAllocatedType(); 4233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4234 auto &DL = DAG.getDataLayout(); 4235 TypeSize TySize = DL.getTypeAllocSize(Ty); 4236 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4237 4238 SDValue AllocSize = getValue(I.getArraySize()); 4239 4240 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4241 if (AllocSize.getValueType() != IntPtr) 4242 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4243 4244 if (TySize.isScalable()) 4245 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4246 DAG.getVScale(dl, IntPtr, 4247 APInt(IntPtr.getScalarSizeInBits(), 4248 TySize.getKnownMinValue()))); 4249 else { 4250 SDValue TySizeValue = 4251 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4252 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4253 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4254 } 4255 4256 // Handle alignment. If the requested alignment is less than or equal to 4257 // the stack alignment, ignore it. If the size is greater than or equal to 4258 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4259 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4260 if (*Alignment <= StackAlign) 4261 Alignment = std::nullopt; 4262 4263 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4264 // Round the size of the allocation up to the stack alignment size 4265 // by add SA-1 to the size. This doesn't overflow because we're computing 4266 // an address inside an alloca. 4267 SDNodeFlags Flags; 4268 Flags.setNoUnsignedWrap(true); 4269 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4270 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4271 4272 // Mask out the low bits for alignment purposes. 4273 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4274 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4275 4276 SDValue Ops[] = { 4277 getRoot(), AllocSize, 4278 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4279 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4280 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4281 setValue(&I, DSA); 4282 DAG.setRoot(DSA.getValue(1)); 4283 4284 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4285 } 4286 4287 static const MDNode *getRangeMetadata(const Instruction &I) { 4288 // If !noundef is not present, then !range violation results in a poison 4289 // value rather than immediate undefined behavior. In theory, transferring 4290 // these annotations to SDAG is fine, but in practice there are key SDAG 4291 // transforms that are known not to be poison-safe, such as folding logical 4292 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4293 // also present. 4294 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4295 return nullptr; 4296 return I.getMetadata(LLVMContext::MD_range); 4297 } 4298 4299 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4300 if (I.isAtomic()) 4301 return visitAtomicLoad(I); 4302 4303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4304 const Value *SV = I.getOperand(0); 4305 if (TLI.supportSwiftError()) { 4306 // Swifterror values can come from either a function parameter with 4307 // swifterror attribute or an alloca with swifterror attribute. 4308 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4309 if (Arg->hasSwiftErrorAttr()) 4310 return visitLoadFromSwiftError(I); 4311 } 4312 4313 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4314 if (Alloca->isSwiftError()) 4315 return visitLoadFromSwiftError(I); 4316 } 4317 } 4318 4319 SDValue Ptr = getValue(SV); 4320 4321 Type *Ty = I.getType(); 4322 SmallVector<EVT, 4> ValueVTs, MemVTs; 4323 SmallVector<TypeSize, 4> Offsets; 4324 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4325 unsigned NumValues = ValueVTs.size(); 4326 if (NumValues == 0) 4327 return; 4328 4329 Align Alignment = I.getAlign(); 4330 AAMDNodes AAInfo = I.getAAMetadata(); 4331 const MDNode *Ranges = getRangeMetadata(I); 4332 bool isVolatile = I.isVolatile(); 4333 MachineMemOperand::Flags MMOFlags = 4334 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4335 4336 SDValue Root; 4337 bool ConstantMemory = false; 4338 if (isVolatile) 4339 // Serialize volatile loads with other side effects. 4340 Root = getRoot(); 4341 else if (NumValues > MaxParallelChains) 4342 Root = getMemoryRoot(); 4343 else if (AA && 4344 AA->pointsToConstantMemory(MemoryLocation( 4345 SV, 4346 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4347 AAInfo))) { 4348 // Do not serialize (non-volatile) loads of constant memory with anything. 4349 Root = DAG.getEntryNode(); 4350 ConstantMemory = true; 4351 MMOFlags |= MachineMemOperand::MOInvariant; 4352 } else { 4353 // Do not serialize non-volatile loads against each other. 4354 Root = DAG.getRoot(); 4355 } 4356 4357 SDLoc dl = getCurSDLoc(); 4358 4359 if (isVolatile) 4360 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4361 4362 SmallVector<SDValue, 4> Values(NumValues); 4363 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4364 4365 unsigned ChainI = 0; 4366 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4367 // Serializing loads here may result in excessive register pressure, and 4368 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4369 // could recover a bit by hoisting nodes upward in the chain by recognizing 4370 // they are side-effect free or do not alias. The optimizer should really 4371 // avoid this case by converting large object/array copies to llvm.memcpy 4372 // (MaxParallelChains should always remain as failsafe). 4373 if (ChainI == MaxParallelChains) { 4374 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4375 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4376 ArrayRef(Chains.data(), ChainI)); 4377 Root = Chain; 4378 ChainI = 0; 4379 } 4380 4381 // TODO: MachinePointerInfo only supports a fixed length offset. 4382 MachinePointerInfo PtrInfo = 4383 !Offsets[i].isScalable() || Offsets[i].isZero() 4384 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4385 : MachinePointerInfo(); 4386 4387 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4388 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4389 MMOFlags, AAInfo, Ranges); 4390 Chains[ChainI] = L.getValue(1); 4391 4392 if (MemVTs[i] != ValueVTs[i]) 4393 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4394 4395 Values[i] = L; 4396 } 4397 4398 if (!ConstantMemory) { 4399 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4400 ArrayRef(Chains.data(), ChainI)); 4401 if (isVolatile) 4402 DAG.setRoot(Chain); 4403 else 4404 PendingLoads.push_back(Chain); 4405 } 4406 4407 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4408 DAG.getVTList(ValueVTs), Values)); 4409 } 4410 4411 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4412 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4413 "call visitStoreToSwiftError when backend supports swifterror"); 4414 4415 SmallVector<EVT, 4> ValueVTs; 4416 SmallVector<uint64_t, 4> Offsets; 4417 const Value *SrcV = I.getOperand(0); 4418 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4419 SrcV->getType(), ValueVTs, &Offsets, 0); 4420 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4421 "expect a single EVT for swifterror"); 4422 4423 SDValue Src = getValue(SrcV); 4424 // Create a virtual register, then update the virtual register. 4425 Register VReg = 4426 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4427 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4428 // Chain can be getRoot or getControlRoot. 4429 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4430 SDValue(Src.getNode(), Src.getResNo())); 4431 DAG.setRoot(CopyNode); 4432 } 4433 4434 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4435 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4436 "call visitLoadFromSwiftError when backend supports swifterror"); 4437 4438 assert(!I.isVolatile() && 4439 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4440 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4441 "Support volatile, non temporal, invariant for load_from_swift_error"); 4442 4443 const Value *SV = I.getOperand(0); 4444 Type *Ty = I.getType(); 4445 assert( 4446 (!AA || 4447 !AA->pointsToConstantMemory(MemoryLocation( 4448 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4449 I.getAAMetadata()))) && 4450 "load_from_swift_error should not be constant memory"); 4451 4452 SmallVector<EVT, 4> ValueVTs; 4453 SmallVector<uint64_t, 4> Offsets; 4454 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4455 ValueVTs, &Offsets, 0); 4456 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4457 "expect a single EVT for swifterror"); 4458 4459 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4460 SDValue L = DAG.getCopyFromReg( 4461 getRoot(), getCurSDLoc(), 4462 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4463 4464 setValue(&I, L); 4465 } 4466 4467 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4468 if (I.isAtomic()) 4469 return visitAtomicStore(I); 4470 4471 const Value *SrcV = I.getOperand(0); 4472 const Value *PtrV = I.getOperand(1); 4473 4474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4475 if (TLI.supportSwiftError()) { 4476 // Swifterror values can come from either a function parameter with 4477 // swifterror attribute or an alloca with swifterror attribute. 4478 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4479 if (Arg->hasSwiftErrorAttr()) 4480 return visitStoreToSwiftError(I); 4481 } 4482 4483 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4484 if (Alloca->isSwiftError()) 4485 return visitStoreToSwiftError(I); 4486 } 4487 } 4488 4489 SmallVector<EVT, 4> ValueVTs, MemVTs; 4490 SmallVector<TypeSize, 4> Offsets; 4491 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4492 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4493 unsigned NumValues = ValueVTs.size(); 4494 if (NumValues == 0) 4495 return; 4496 4497 // Get the lowered operands. Note that we do this after 4498 // checking if NumResults is zero, because with zero results 4499 // the operands won't have values in the map. 4500 SDValue Src = getValue(SrcV); 4501 SDValue Ptr = getValue(PtrV); 4502 4503 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4504 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4505 SDLoc dl = getCurSDLoc(); 4506 Align Alignment = I.getAlign(); 4507 AAMDNodes AAInfo = I.getAAMetadata(); 4508 4509 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4510 4511 unsigned ChainI = 0; 4512 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4513 // See visitLoad comments. 4514 if (ChainI == MaxParallelChains) { 4515 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4516 ArrayRef(Chains.data(), ChainI)); 4517 Root = Chain; 4518 ChainI = 0; 4519 } 4520 4521 // TODO: MachinePointerInfo only supports a fixed length offset. 4522 MachinePointerInfo PtrInfo = 4523 !Offsets[i].isScalable() || Offsets[i].isZero() 4524 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4525 : MachinePointerInfo(); 4526 4527 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4528 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4529 if (MemVTs[i] != ValueVTs[i]) 4530 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4531 SDValue St = 4532 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4533 Chains[ChainI] = St; 4534 } 4535 4536 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4537 ArrayRef(Chains.data(), ChainI)); 4538 setValue(&I, StoreNode); 4539 DAG.setRoot(StoreNode); 4540 } 4541 4542 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4543 bool IsCompressing) { 4544 SDLoc sdl = getCurSDLoc(); 4545 4546 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4547 MaybeAlign &Alignment) { 4548 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4549 Src0 = I.getArgOperand(0); 4550 Ptr = I.getArgOperand(1); 4551 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4552 Mask = I.getArgOperand(3); 4553 }; 4554 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4555 MaybeAlign &Alignment) { 4556 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4557 Src0 = I.getArgOperand(0); 4558 Ptr = I.getArgOperand(1); 4559 Mask = I.getArgOperand(2); 4560 Alignment = std::nullopt; 4561 }; 4562 4563 Value *PtrOperand, *MaskOperand, *Src0Operand; 4564 MaybeAlign Alignment; 4565 if (IsCompressing) 4566 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4567 else 4568 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4569 4570 SDValue Ptr = getValue(PtrOperand); 4571 SDValue Src0 = getValue(Src0Operand); 4572 SDValue Mask = getValue(MaskOperand); 4573 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4574 4575 EVT VT = Src0.getValueType(); 4576 if (!Alignment) 4577 Alignment = DAG.getEVTAlign(VT); 4578 4579 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4580 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4581 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4582 SDValue StoreNode = 4583 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4584 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4585 DAG.setRoot(StoreNode); 4586 setValue(&I, StoreNode); 4587 } 4588 4589 // Get a uniform base for the Gather/Scatter intrinsic. 4590 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4591 // We try to represent it as a base pointer + vector of indices. 4592 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4593 // The first operand of the GEP may be a single pointer or a vector of pointers 4594 // Example: 4595 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4596 // or 4597 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4598 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4599 // 4600 // When the first GEP operand is a single pointer - it is the uniform base we 4601 // are looking for. If first operand of the GEP is a splat vector - we 4602 // extract the splat value and use it as a uniform base. 4603 // In all other cases the function returns 'false'. 4604 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4605 ISD::MemIndexType &IndexType, SDValue &Scale, 4606 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4607 uint64_t ElemSize) { 4608 SelectionDAG& DAG = SDB->DAG; 4609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4610 const DataLayout &DL = DAG.getDataLayout(); 4611 4612 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4613 4614 // Handle splat constant pointer. 4615 if (auto *C = dyn_cast<Constant>(Ptr)) { 4616 C = C->getSplatValue(); 4617 if (!C) 4618 return false; 4619 4620 Base = SDB->getValue(C); 4621 4622 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4623 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4624 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4625 IndexType = ISD::SIGNED_SCALED; 4626 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4627 return true; 4628 } 4629 4630 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4631 if (!GEP || GEP->getParent() != CurBB) 4632 return false; 4633 4634 if (GEP->getNumOperands() != 2) 4635 return false; 4636 4637 const Value *BasePtr = GEP->getPointerOperand(); 4638 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4639 4640 // Make sure the base is scalar and the index is a vector. 4641 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4642 return false; 4643 4644 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4645 if (ScaleVal.isScalable()) 4646 return false; 4647 4648 // Target may not support the required addressing mode. 4649 if (ScaleVal != 1 && 4650 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4651 return false; 4652 4653 Base = SDB->getValue(BasePtr); 4654 Index = SDB->getValue(IndexVal); 4655 IndexType = ISD::SIGNED_SCALED; 4656 4657 Scale = 4658 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4659 return true; 4660 } 4661 4662 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4663 SDLoc sdl = getCurSDLoc(); 4664 4665 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4666 const Value *Ptr = I.getArgOperand(1); 4667 SDValue Src0 = getValue(I.getArgOperand(0)); 4668 SDValue Mask = getValue(I.getArgOperand(3)); 4669 EVT VT = Src0.getValueType(); 4670 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4671 ->getMaybeAlignValue() 4672 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4674 4675 SDValue Base; 4676 SDValue Index; 4677 ISD::MemIndexType IndexType; 4678 SDValue Scale; 4679 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4680 I.getParent(), VT.getScalarStoreSize()); 4681 4682 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4683 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4684 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4685 // TODO: Make MachineMemOperands aware of scalable 4686 // vectors. 4687 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4688 if (!UniformBase) { 4689 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4690 Index = getValue(Ptr); 4691 IndexType = ISD::SIGNED_SCALED; 4692 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4693 } 4694 4695 EVT IdxVT = Index.getValueType(); 4696 EVT EltTy = IdxVT.getVectorElementType(); 4697 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4698 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4699 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4700 } 4701 4702 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4703 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4704 Ops, MMO, IndexType, false); 4705 DAG.setRoot(Scatter); 4706 setValue(&I, Scatter); 4707 } 4708 4709 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4710 SDLoc sdl = getCurSDLoc(); 4711 4712 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4713 MaybeAlign &Alignment) { 4714 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4715 Ptr = I.getArgOperand(0); 4716 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4717 Mask = I.getArgOperand(2); 4718 Src0 = I.getArgOperand(3); 4719 }; 4720 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4721 MaybeAlign &Alignment) { 4722 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4723 Ptr = I.getArgOperand(0); 4724 Alignment = std::nullopt; 4725 Mask = I.getArgOperand(1); 4726 Src0 = I.getArgOperand(2); 4727 }; 4728 4729 Value *PtrOperand, *MaskOperand, *Src0Operand; 4730 MaybeAlign Alignment; 4731 if (IsExpanding) 4732 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4733 else 4734 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4735 4736 SDValue Ptr = getValue(PtrOperand); 4737 SDValue Src0 = getValue(Src0Operand); 4738 SDValue Mask = getValue(MaskOperand); 4739 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4740 4741 EVT VT = Src0.getValueType(); 4742 if (!Alignment) 4743 Alignment = DAG.getEVTAlign(VT); 4744 4745 AAMDNodes AAInfo = I.getAAMetadata(); 4746 const MDNode *Ranges = getRangeMetadata(I); 4747 4748 // Do not serialize masked loads of constant memory with anything. 4749 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4750 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4751 4752 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4753 4754 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4755 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4756 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4757 4758 SDValue Load = 4759 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4760 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4761 if (AddToChain) 4762 PendingLoads.push_back(Load.getValue(1)); 4763 setValue(&I, Load); 4764 } 4765 4766 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4767 SDLoc sdl = getCurSDLoc(); 4768 4769 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4770 const Value *Ptr = I.getArgOperand(0); 4771 SDValue Src0 = getValue(I.getArgOperand(3)); 4772 SDValue Mask = getValue(I.getArgOperand(2)); 4773 4774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4775 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4776 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4777 ->getMaybeAlignValue() 4778 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4779 4780 const MDNode *Ranges = getRangeMetadata(I); 4781 4782 SDValue Root = DAG.getRoot(); 4783 SDValue Base; 4784 SDValue Index; 4785 ISD::MemIndexType IndexType; 4786 SDValue Scale; 4787 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4788 I.getParent(), VT.getScalarStoreSize()); 4789 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4790 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4791 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4792 // TODO: Make MachineMemOperands aware of scalable 4793 // vectors. 4794 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4795 4796 if (!UniformBase) { 4797 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4798 Index = getValue(Ptr); 4799 IndexType = ISD::SIGNED_SCALED; 4800 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4801 } 4802 4803 EVT IdxVT = Index.getValueType(); 4804 EVT EltTy = IdxVT.getVectorElementType(); 4805 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4806 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4807 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4808 } 4809 4810 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4811 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4812 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4813 4814 PendingLoads.push_back(Gather.getValue(1)); 4815 setValue(&I, Gather); 4816 } 4817 4818 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4819 SDLoc dl = getCurSDLoc(); 4820 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4821 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4822 SyncScope::ID SSID = I.getSyncScopeID(); 4823 4824 SDValue InChain = getRoot(); 4825 4826 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4827 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4828 4829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4830 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4831 4832 MachineFunction &MF = DAG.getMachineFunction(); 4833 MachineMemOperand *MMO = MF.getMachineMemOperand( 4834 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4835 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4836 FailureOrdering); 4837 4838 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4839 dl, MemVT, VTs, InChain, 4840 getValue(I.getPointerOperand()), 4841 getValue(I.getCompareOperand()), 4842 getValue(I.getNewValOperand()), MMO); 4843 4844 SDValue OutChain = L.getValue(2); 4845 4846 setValue(&I, L); 4847 DAG.setRoot(OutChain); 4848 } 4849 4850 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4851 SDLoc dl = getCurSDLoc(); 4852 ISD::NodeType NT; 4853 switch (I.getOperation()) { 4854 default: llvm_unreachable("Unknown atomicrmw operation"); 4855 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4856 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4857 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4858 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4859 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4860 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4861 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4862 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4863 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4864 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4865 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4866 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4867 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4868 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4869 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4870 case AtomicRMWInst::UIncWrap: 4871 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4872 break; 4873 case AtomicRMWInst::UDecWrap: 4874 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4875 break; 4876 } 4877 AtomicOrdering Ordering = I.getOrdering(); 4878 SyncScope::ID SSID = I.getSyncScopeID(); 4879 4880 SDValue InChain = getRoot(); 4881 4882 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4884 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4885 4886 MachineFunction &MF = DAG.getMachineFunction(); 4887 MachineMemOperand *MMO = MF.getMachineMemOperand( 4888 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4889 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4890 4891 SDValue L = 4892 DAG.getAtomic(NT, dl, MemVT, InChain, 4893 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4894 MMO); 4895 4896 SDValue OutChain = L.getValue(1); 4897 4898 setValue(&I, L); 4899 DAG.setRoot(OutChain); 4900 } 4901 4902 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4903 SDLoc dl = getCurSDLoc(); 4904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4905 SDValue Ops[3]; 4906 Ops[0] = getRoot(); 4907 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4908 TLI.getFenceOperandTy(DAG.getDataLayout())); 4909 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4910 TLI.getFenceOperandTy(DAG.getDataLayout())); 4911 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4912 setValue(&I, N); 4913 DAG.setRoot(N); 4914 } 4915 4916 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4917 SDLoc dl = getCurSDLoc(); 4918 AtomicOrdering Order = I.getOrdering(); 4919 SyncScope::ID SSID = I.getSyncScopeID(); 4920 4921 SDValue InChain = getRoot(); 4922 4923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4924 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4925 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4926 4927 if (!TLI.supportsUnalignedAtomics() && 4928 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4929 report_fatal_error("Cannot generate unaligned atomic load"); 4930 4931 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4932 4933 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4934 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4935 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4936 4937 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4938 4939 SDValue Ptr = getValue(I.getPointerOperand()); 4940 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4941 Ptr, MMO); 4942 4943 SDValue OutChain = L.getValue(1); 4944 if (MemVT != VT) 4945 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4946 4947 setValue(&I, L); 4948 DAG.setRoot(OutChain); 4949 } 4950 4951 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4952 SDLoc dl = getCurSDLoc(); 4953 4954 AtomicOrdering Ordering = I.getOrdering(); 4955 SyncScope::ID SSID = I.getSyncScopeID(); 4956 4957 SDValue InChain = getRoot(); 4958 4959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4960 EVT MemVT = 4961 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4962 4963 if (!TLI.supportsUnalignedAtomics() && 4964 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4965 report_fatal_error("Cannot generate unaligned atomic store"); 4966 4967 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4968 4969 MachineFunction &MF = DAG.getMachineFunction(); 4970 MachineMemOperand *MMO = MF.getMachineMemOperand( 4971 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4972 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4973 4974 SDValue Val = getValue(I.getValueOperand()); 4975 if (Val.getValueType() != MemVT) 4976 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4977 SDValue Ptr = getValue(I.getPointerOperand()); 4978 4979 SDValue OutChain = 4980 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4981 4982 setValue(&I, OutChain); 4983 DAG.setRoot(OutChain); 4984 } 4985 4986 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4987 /// node. 4988 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4989 unsigned Intrinsic) { 4990 // Ignore the callsite's attributes. A specific call site may be marked with 4991 // readnone, but the lowering code will expect the chain based on the 4992 // definition. 4993 const Function *F = I.getCalledFunction(); 4994 bool HasChain = !F->doesNotAccessMemory(); 4995 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4996 4997 // Build the operand list. 4998 SmallVector<SDValue, 8> Ops; 4999 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5000 if (OnlyLoad) { 5001 // We don't need to serialize loads against other loads. 5002 Ops.push_back(DAG.getRoot()); 5003 } else { 5004 Ops.push_back(getRoot()); 5005 } 5006 } 5007 5008 // Info is set by getTgtMemIntrinsic 5009 TargetLowering::IntrinsicInfo Info; 5010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5011 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5012 DAG.getMachineFunction(), 5013 Intrinsic); 5014 5015 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5016 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5017 Info.opc == ISD::INTRINSIC_W_CHAIN) 5018 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5019 TLI.getPointerTy(DAG.getDataLayout()))); 5020 5021 // Add all operands of the call to the operand list. 5022 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5023 const Value *Arg = I.getArgOperand(i); 5024 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5025 Ops.push_back(getValue(Arg)); 5026 continue; 5027 } 5028 5029 // Use TargetConstant instead of a regular constant for immarg. 5030 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5031 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5032 assert(CI->getBitWidth() <= 64 && 5033 "large intrinsic immediates not handled"); 5034 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5035 } else { 5036 Ops.push_back( 5037 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5038 } 5039 } 5040 5041 SmallVector<EVT, 4> ValueVTs; 5042 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5043 5044 if (HasChain) 5045 ValueVTs.push_back(MVT::Other); 5046 5047 SDVTList VTs = DAG.getVTList(ValueVTs); 5048 5049 // Propagate fast-math-flags from IR to node(s). 5050 SDNodeFlags Flags; 5051 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5052 Flags.copyFMF(*FPMO); 5053 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5054 5055 // Create the node. 5056 SDValue Result; 5057 // In some cases, custom collection of operands from CallInst I may be needed. 5058 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5059 if (IsTgtIntrinsic) { 5060 // This is target intrinsic that touches memory 5061 // 5062 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5063 // didn't yield anything useful. 5064 MachinePointerInfo MPI; 5065 if (Info.ptrVal) 5066 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5067 else if (Info.fallbackAddressSpace) 5068 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5069 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5070 Info.memVT, MPI, Info.align, Info.flags, 5071 Info.size, I.getAAMetadata()); 5072 } else if (!HasChain) { 5073 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5074 } else if (!I.getType()->isVoidTy()) { 5075 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5076 } else { 5077 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5078 } 5079 5080 if (HasChain) { 5081 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5082 if (OnlyLoad) 5083 PendingLoads.push_back(Chain); 5084 else 5085 DAG.setRoot(Chain); 5086 } 5087 5088 if (!I.getType()->isVoidTy()) { 5089 if (!isa<VectorType>(I.getType())) 5090 Result = lowerRangeToAssertZExt(DAG, I, Result); 5091 5092 MaybeAlign Alignment = I.getRetAlign(); 5093 5094 // Insert `assertalign` node if there's an alignment. 5095 if (InsertAssertAlign && Alignment) { 5096 Result = 5097 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5098 } 5099 5100 setValue(&I, Result); 5101 } 5102 } 5103 5104 /// GetSignificand - Get the significand and build it into a floating-point 5105 /// number with exponent of 1: 5106 /// 5107 /// Op = (Op & 0x007fffff) | 0x3f800000; 5108 /// 5109 /// where Op is the hexadecimal representation of floating point value. 5110 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5111 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5112 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5113 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5114 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5115 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5116 } 5117 5118 /// GetExponent - Get the exponent: 5119 /// 5120 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5121 /// 5122 /// where Op is the hexadecimal representation of floating point value. 5123 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5124 const TargetLowering &TLI, const SDLoc &dl) { 5125 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5126 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5127 SDValue t1 = DAG.getNode( 5128 ISD::SRL, dl, MVT::i32, t0, 5129 DAG.getConstant(23, dl, 5130 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5131 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5132 DAG.getConstant(127, dl, MVT::i32)); 5133 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5134 } 5135 5136 /// getF32Constant - Get 32-bit floating point constant. 5137 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5138 const SDLoc &dl) { 5139 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5140 MVT::f32); 5141 } 5142 5143 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5144 SelectionDAG &DAG) { 5145 // TODO: What fast-math-flags should be set on the floating-point nodes? 5146 5147 // IntegerPartOfX = ((int32_t)(t0); 5148 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5149 5150 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5151 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5152 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5153 5154 // IntegerPartOfX <<= 23; 5155 IntegerPartOfX = 5156 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5157 DAG.getConstant(23, dl, 5158 DAG.getTargetLoweringInfo().getShiftAmountTy( 5159 MVT::i32, DAG.getDataLayout()))); 5160 5161 SDValue TwoToFractionalPartOfX; 5162 if (LimitFloatPrecision <= 6) { 5163 // For floating-point precision of 6: 5164 // 5165 // TwoToFractionalPartOfX = 5166 // 0.997535578f + 5167 // (0.735607626f + 0.252464424f * x) * x; 5168 // 5169 // error 0.0144103317, which is 6 bits 5170 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5171 getF32Constant(DAG, 0x3e814304, dl)); 5172 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5173 getF32Constant(DAG, 0x3f3c50c8, dl)); 5174 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5175 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5176 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5177 } else if (LimitFloatPrecision <= 12) { 5178 // For floating-point precision of 12: 5179 // 5180 // TwoToFractionalPartOfX = 5181 // 0.999892986f + 5182 // (0.696457318f + 5183 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5184 // 5185 // error 0.000107046256, which is 13 to 14 bits 5186 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5187 getF32Constant(DAG, 0x3da235e3, dl)); 5188 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5189 getF32Constant(DAG, 0x3e65b8f3, dl)); 5190 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5191 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5192 getF32Constant(DAG, 0x3f324b07, dl)); 5193 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5194 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5195 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5196 } else { // LimitFloatPrecision <= 18 5197 // For floating-point precision of 18: 5198 // 5199 // TwoToFractionalPartOfX = 5200 // 0.999999982f + 5201 // (0.693148872f + 5202 // (0.240227044f + 5203 // (0.554906021e-1f + 5204 // (0.961591928e-2f + 5205 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5206 // error 2.47208000*10^(-7), which is better than 18 bits 5207 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5208 getF32Constant(DAG, 0x3924b03e, dl)); 5209 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5210 getF32Constant(DAG, 0x3ab24b87, dl)); 5211 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5212 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5213 getF32Constant(DAG, 0x3c1d8c17, dl)); 5214 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5215 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5216 getF32Constant(DAG, 0x3d634a1d, dl)); 5217 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5218 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5219 getF32Constant(DAG, 0x3e75fe14, dl)); 5220 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5221 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5222 getF32Constant(DAG, 0x3f317234, dl)); 5223 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5224 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5225 getF32Constant(DAG, 0x3f800000, dl)); 5226 } 5227 5228 // Add the exponent into the result in integer domain. 5229 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5230 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5231 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5232 } 5233 5234 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5235 /// limited-precision mode. 5236 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5237 const TargetLowering &TLI, SDNodeFlags Flags) { 5238 if (Op.getValueType() == MVT::f32 && 5239 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5240 5241 // Put the exponent in the right bit position for later addition to the 5242 // final result: 5243 // 5244 // t0 = Op * log2(e) 5245 5246 // TODO: What fast-math-flags should be set here? 5247 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5248 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5249 return getLimitedPrecisionExp2(t0, dl, DAG); 5250 } 5251 5252 // No special expansion. 5253 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5254 } 5255 5256 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5257 /// limited-precision mode. 5258 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5259 const TargetLowering &TLI, SDNodeFlags Flags) { 5260 // TODO: What fast-math-flags should be set on the floating-point nodes? 5261 5262 if (Op.getValueType() == MVT::f32 && 5263 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5264 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5265 5266 // Scale the exponent by log(2). 5267 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5268 SDValue LogOfExponent = 5269 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5270 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5271 5272 // Get the significand and build it into a floating-point number with 5273 // exponent of 1. 5274 SDValue X = GetSignificand(DAG, Op1, dl); 5275 5276 SDValue LogOfMantissa; 5277 if (LimitFloatPrecision <= 6) { 5278 // For floating-point precision of 6: 5279 // 5280 // LogofMantissa = 5281 // -1.1609546f + 5282 // (1.4034025f - 0.23903021f * x) * x; 5283 // 5284 // error 0.0034276066, which is better than 8 bits 5285 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5286 getF32Constant(DAG, 0xbe74c456, dl)); 5287 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5288 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5289 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5290 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5291 getF32Constant(DAG, 0x3f949a29, dl)); 5292 } else if (LimitFloatPrecision <= 12) { 5293 // For floating-point precision of 12: 5294 // 5295 // LogOfMantissa = 5296 // -1.7417939f + 5297 // (2.8212026f + 5298 // (-1.4699568f + 5299 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5300 // 5301 // error 0.000061011436, which is 14 bits 5302 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5303 getF32Constant(DAG, 0xbd67b6d6, dl)); 5304 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5305 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5306 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5307 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5308 getF32Constant(DAG, 0x3fbc278b, dl)); 5309 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5310 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5311 getF32Constant(DAG, 0x40348e95, dl)); 5312 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5313 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5314 getF32Constant(DAG, 0x3fdef31a, dl)); 5315 } else { // LimitFloatPrecision <= 18 5316 // For floating-point precision of 18: 5317 // 5318 // LogOfMantissa = 5319 // -2.1072184f + 5320 // (4.2372794f + 5321 // (-3.7029485f + 5322 // (2.2781945f + 5323 // (-0.87823314f + 5324 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5325 // 5326 // error 0.0000023660568, which is better than 18 bits 5327 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5328 getF32Constant(DAG, 0xbc91e5ac, dl)); 5329 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5330 getF32Constant(DAG, 0x3e4350aa, dl)); 5331 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5332 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5333 getF32Constant(DAG, 0x3f60d3e3, dl)); 5334 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5335 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5336 getF32Constant(DAG, 0x4011cdf0, dl)); 5337 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5338 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5339 getF32Constant(DAG, 0x406cfd1c, dl)); 5340 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5341 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5342 getF32Constant(DAG, 0x408797cb, dl)); 5343 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5344 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5345 getF32Constant(DAG, 0x4006dcab, dl)); 5346 } 5347 5348 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5349 } 5350 5351 // No special expansion. 5352 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5353 } 5354 5355 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5356 /// limited-precision mode. 5357 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5358 const TargetLowering &TLI, SDNodeFlags Flags) { 5359 // TODO: What fast-math-flags should be set on the floating-point nodes? 5360 5361 if (Op.getValueType() == MVT::f32 && 5362 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5363 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5364 5365 // Get the exponent. 5366 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5367 5368 // Get the significand and build it into a floating-point number with 5369 // exponent of 1. 5370 SDValue X = GetSignificand(DAG, Op1, dl); 5371 5372 // Different possible minimax approximations of significand in 5373 // floating-point for various degrees of accuracy over [1,2]. 5374 SDValue Log2ofMantissa; 5375 if (LimitFloatPrecision <= 6) { 5376 // For floating-point precision of 6: 5377 // 5378 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5379 // 5380 // error 0.0049451742, which is more than 7 bits 5381 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5382 getF32Constant(DAG, 0xbeb08fe0, dl)); 5383 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5384 getF32Constant(DAG, 0x40019463, dl)); 5385 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5386 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5387 getF32Constant(DAG, 0x3fd6633d, dl)); 5388 } else if (LimitFloatPrecision <= 12) { 5389 // For floating-point precision of 12: 5390 // 5391 // Log2ofMantissa = 5392 // -2.51285454f + 5393 // (4.07009056f + 5394 // (-2.12067489f + 5395 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5396 // 5397 // error 0.0000876136000, which is better than 13 bits 5398 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5399 getF32Constant(DAG, 0xbda7262e, dl)); 5400 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5401 getF32Constant(DAG, 0x3f25280b, dl)); 5402 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5403 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5404 getF32Constant(DAG, 0x4007b923, dl)); 5405 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5406 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5407 getF32Constant(DAG, 0x40823e2f, dl)); 5408 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5409 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5410 getF32Constant(DAG, 0x4020d29c, dl)); 5411 } else { // LimitFloatPrecision <= 18 5412 // For floating-point precision of 18: 5413 // 5414 // Log2ofMantissa = 5415 // -3.0400495f + 5416 // (6.1129976f + 5417 // (-5.3420409f + 5418 // (3.2865683f + 5419 // (-1.2669343f + 5420 // (0.27515199f - 5421 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5422 // 5423 // error 0.0000018516, which is better than 18 bits 5424 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5425 getF32Constant(DAG, 0xbcd2769e, dl)); 5426 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5427 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5428 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5429 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5430 getF32Constant(DAG, 0x3fa22ae7, dl)); 5431 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5432 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5433 getF32Constant(DAG, 0x40525723, dl)); 5434 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5435 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5436 getF32Constant(DAG, 0x40aaf200, dl)); 5437 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5438 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5439 getF32Constant(DAG, 0x40c39dad, dl)); 5440 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5441 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5442 getF32Constant(DAG, 0x4042902c, dl)); 5443 } 5444 5445 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5446 } 5447 5448 // No special expansion. 5449 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5450 } 5451 5452 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5453 /// limited-precision mode. 5454 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5455 const TargetLowering &TLI, SDNodeFlags Flags) { 5456 // TODO: What fast-math-flags should be set on the floating-point nodes? 5457 5458 if (Op.getValueType() == MVT::f32 && 5459 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5460 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5461 5462 // Scale the exponent by log10(2) [0.30102999f]. 5463 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5464 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5465 getF32Constant(DAG, 0x3e9a209a, dl)); 5466 5467 // Get the significand and build it into a floating-point number with 5468 // exponent of 1. 5469 SDValue X = GetSignificand(DAG, Op1, dl); 5470 5471 SDValue Log10ofMantissa; 5472 if (LimitFloatPrecision <= 6) { 5473 // For floating-point precision of 6: 5474 // 5475 // Log10ofMantissa = 5476 // -0.50419619f + 5477 // (0.60948995f - 0.10380950f * x) * x; 5478 // 5479 // error 0.0014886165, which is 6 bits 5480 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5481 getF32Constant(DAG, 0xbdd49a13, dl)); 5482 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5483 getF32Constant(DAG, 0x3f1c0789, dl)); 5484 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5485 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5486 getF32Constant(DAG, 0x3f011300, dl)); 5487 } else if (LimitFloatPrecision <= 12) { 5488 // For floating-point precision of 12: 5489 // 5490 // Log10ofMantissa = 5491 // -0.64831180f + 5492 // (0.91751397f + 5493 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5494 // 5495 // error 0.00019228036, which is better than 12 bits 5496 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5497 getF32Constant(DAG, 0x3d431f31, dl)); 5498 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5499 getF32Constant(DAG, 0x3ea21fb2, dl)); 5500 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5501 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5502 getF32Constant(DAG, 0x3f6ae232, dl)); 5503 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5504 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5505 getF32Constant(DAG, 0x3f25f7c3, dl)); 5506 } else { // LimitFloatPrecision <= 18 5507 // For floating-point precision of 18: 5508 // 5509 // Log10ofMantissa = 5510 // -0.84299375f + 5511 // (1.5327582f + 5512 // (-1.0688956f + 5513 // (0.49102474f + 5514 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5515 // 5516 // error 0.0000037995730, which is better than 18 bits 5517 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5518 getF32Constant(DAG, 0x3c5d51ce, dl)); 5519 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5520 getF32Constant(DAG, 0x3e00685a, dl)); 5521 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5522 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5523 getF32Constant(DAG, 0x3efb6798, dl)); 5524 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5525 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5526 getF32Constant(DAG, 0x3f88d192, dl)); 5527 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5528 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5529 getF32Constant(DAG, 0x3fc4316c, dl)); 5530 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5531 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5532 getF32Constant(DAG, 0x3f57ce70, dl)); 5533 } 5534 5535 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5536 } 5537 5538 // No special expansion. 5539 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5540 } 5541 5542 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5543 /// limited-precision mode. 5544 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5545 const TargetLowering &TLI, SDNodeFlags Flags) { 5546 if (Op.getValueType() == MVT::f32 && 5547 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5548 return getLimitedPrecisionExp2(Op, dl, DAG); 5549 5550 // No special expansion. 5551 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5552 } 5553 5554 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5555 /// limited-precision mode with x == 10.0f. 5556 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5557 SelectionDAG &DAG, const TargetLowering &TLI, 5558 SDNodeFlags Flags) { 5559 bool IsExp10 = false; 5560 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5561 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5562 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5563 APFloat Ten(10.0f); 5564 IsExp10 = LHSC->isExactlyValue(Ten); 5565 } 5566 } 5567 5568 // TODO: What fast-math-flags should be set on the FMUL node? 5569 if (IsExp10) { 5570 // Put the exponent in the right bit position for later addition to the 5571 // final result: 5572 // 5573 // #define LOG2OF10 3.3219281f 5574 // t0 = Op * LOG2OF10; 5575 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5576 getF32Constant(DAG, 0x40549a78, dl)); 5577 return getLimitedPrecisionExp2(t0, dl, DAG); 5578 } 5579 5580 // No special expansion. 5581 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5582 } 5583 5584 /// ExpandPowI - Expand a llvm.powi intrinsic. 5585 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5586 SelectionDAG &DAG) { 5587 // If RHS is a constant, we can expand this out to a multiplication tree if 5588 // it's beneficial on the target, otherwise we end up lowering to a call to 5589 // __powidf2 (for example). 5590 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5591 unsigned Val = RHSC->getSExtValue(); 5592 5593 // powi(x, 0) -> 1.0 5594 if (Val == 0) 5595 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5596 5597 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5598 Val, DAG.shouldOptForSize())) { 5599 // Get the exponent as a positive value. 5600 if ((int)Val < 0) 5601 Val = -Val; 5602 // We use the simple binary decomposition method to generate the multiply 5603 // sequence. There are more optimal ways to do this (for example, 5604 // powi(x,15) generates one more multiply than it should), but this has 5605 // the benefit of being both really simple and much better than a libcall. 5606 SDValue Res; // Logically starts equal to 1.0 5607 SDValue CurSquare = LHS; 5608 // TODO: Intrinsics should have fast-math-flags that propagate to these 5609 // nodes. 5610 while (Val) { 5611 if (Val & 1) { 5612 if (Res.getNode()) 5613 Res = 5614 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5615 else 5616 Res = CurSquare; // 1.0*CurSquare. 5617 } 5618 5619 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5620 CurSquare, CurSquare); 5621 Val >>= 1; 5622 } 5623 5624 // If the original was negative, invert the result, producing 1/(x*x*x). 5625 if (RHSC->getSExtValue() < 0) 5626 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5627 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5628 return Res; 5629 } 5630 } 5631 5632 // Otherwise, expand to a libcall. 5633 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5634 } 5635 5636 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5637 SDValue LHS, SDValue RHS, SDValue Scale, 5638 SelectionDAG &DAG, const TargetLowering &TLI) { 5639 EVT VT = LHS.getValueType(); 5640 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5641 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5642 LLVMContext &Ctx = *DAG.getContext(); 5643 5644 // If the type is legal but the operation isn't, this node might survive all 5645 // the way to operation legalization. If we end up there and we do not have 5646 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5647 // node. 5648 5649 // Coax the legalizer into expanding the node during type legalization instead 5650 // by bumping the size by one bit. This will force it to Promote, enabling the 5651 // early expansion and avoiding the need to expand later. 5652 5653 // We don't have to do this if Scale is 0; that can always be expanded, unless 5654 // it's a saturating signed operation. Those can experience true integer 5655 // division overflow, a case which we must avoid. 5656 5657 // FIXME: We wouldn't have to do this (or any of the early 5658 // expansion/promotion) if it was possible to expand a libcall of an 5659 // illegal type during operation legalization. But it's not, so things 5660 // get a bit hacky. 5661 unsigned ScaleInt = Scale->getAsZExtVal(); 5662 if ((ScaleInt > 0 || (Saturating && Signed)) && 5663 (TLI.isTypeLegal(VT) || 5664 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5665 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5666 Opcode, VT, ScaleInt); 5667 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5668 EVT PromVT; 5669 if (VT.isScalarInteger()) 5670 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5671 else if (VT.isVector()) { 5672 PromVT = VT.getVectorElementType(); 5673 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5674 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5675 } else 5676 llvm_unreachable("Wrong VT for DIVFIX?"); 5677 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5678 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5679 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5680 // For saturating operations, we need to shift up the LHS to get the 5681 // proper saturation width, and then shift down again afterwards. 5682 if (Saturating) 5683 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5684 DAG.getConstant(1, DL, ShiftTy)); 5685 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5686 if (Saturating) 5687 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5688 DAG.getConstant(1, DL, ShiftTy)); 5689 return DAG.getZExtOrTrunc(Res, DL, VT); 5690 } 5691 } 5692 5693 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5694 } 5695 5696 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5697 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5698 static void 5699 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5700 const SDValue &N) { 5701 switch (N.getOpcode()) { 5702 case ISD::CopyFromReg: { 5703 SDValue Op = N.getOperand(1); 5704 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5705 Op.getValueType().getSizeInBits()); 5706 return; 5707 } 5708 case ISD::BITCAST: 5709 case ISD::AssertZext: 5710 case ISD::AssertSext: 5711 case ISD::TRUNCATE: 5712 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5713 return; 5714 case ISD::BUILD_PAIR: 5715 case ISD::BUILD_VECTOR: 5716 case ISD::CONCAT_VECTORS: 5717 for (SDValue Op : N->op_values()) 5718 getUnderlyingArgRegs(Regs, Op); 5719 return; 5720 default: 5721 return; 5722 } 5723 } 5724 5725 /// If the DbgValueInst is a dbg_value of a function argument, create the 5726 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5727 /// instruction selection, they will be inserted to the entry BB. 5728 /// We don't currently support this for variadic dbg_values, as they shouldn't 5729 /// appear for function arguments or in the prologue. 5730 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5731 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5732 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5733 const Argument *Arg = dyn_cast<Argument>(V); 5734 if (!Arg) 5735 return false; 5736 5737 MachineFunction &MF = DAG.getMachineFunction(); 5738 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5739 5740 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5741 // we've been asked to pursue. 5742 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5743 bool Indirect) { 5744 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5745 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5746 // pointing at the VReg, which will be patched up later. 5747 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5748 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5749 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5750 /* isKill */ false, /* isDead */ false, 5751 /* isUndef */ false, /* isEarlyClobber */ false, 5752 /* SubReg */ 0, /* isDebug */ true)}); 5753 5754 auto *NewDIExpr = FragExpr; 5755 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5756 // the DIExpression. 5757 if (Indirect) 5758 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5759 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5760 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5761 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5762 } else { 5763 // Create a completely standard DBG_VALUE. 5764 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5765 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5766 } 5767 }; 5768 5769 if (Kind == FuncArgumentDbgValueKind::Value) { 5770 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5771 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5772 // the entry block. 5773 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5774 if (!IsInEntryBlock) 5775 return false; 5776 5777 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5778 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5779 // variable that also is a param. 5780 // 5781 // Although, if we are at the top of the entry block already, we can still 5782 // emit using ArgDbgValue. This might catch some situations when the 5783 // dbg.value refers to an argument that isn't used in the entry block, so 5784 // any CopyToReg node would be optimized out and the only way to express 5785 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5786 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5787 // we should only emit as ArgDbgValue if the Variable is an argument to the 5788 // current function, and the dbg.value intrinsic is found in the entry 5789 // block. 5790 bool VariableIsFunctionInputArg = Variable->isParameter() && 5791 !DL->getInlinedAt(); 5792 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5793 if (!IsInPrologue && !VariableIsFunctionInputArg) 5794 return false; 5795 5796 // Here we assume that a function argument on IR level only can be used to 5797 // describe one input parameter on source level. If we for example have 5798 // source code like this 5799 // 5800 // struct A { long x, y; }; 5801 // void foo(struct A a, long b) { 5802 // ... 5803 // b = a.x; 5804 // ... 5805 // } 5806 // 5807 // and IR like this 5808 // 5809 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5810 // entry: 5811 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5812 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5813 // call void @llvm.dbg.value(metadata i32 %b, "b", 5814 // ... 5815 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5816 // ... 5817 // 5818 // then the last dbg.value is describing a parameter "b" using a value that 5819 // is an argument. But since we already has used %a1 to describe a parameter 5820 // we should not handle that last dbg.value here (that would result in an 5821 // incorrect hoisting of the DBG_VALUE to the function entry). 5822 // Notice that we allow one dbg.value per IR level argument, to accommodate 5823 // for the situation with fragments above. 5824 if (VariableIsFunctionInputArg) { 5825 unsigned ArgNo = Arg->getArgNo(); 5826 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5827 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5828 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5829 return false; 5830 FuncInfo.DescribedArgs.set(ArgNo); 5831 } 5832 } 5833 5834 bool IsIndirect = false; 5835 std::optional<MachineOperand> Op; 5836 // Some arguments' frame index is recorded during argument lowering. 5837 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5838 if (FI != std::numeric_limits<int>::max()) 5839 Op = MachineOperand::CreateFI(FI); 5840 5841 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5842 if (!Op && N.getNode()) { 5843 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5844 Register Reg; 5845 if (ArgRegsAndSizes.size() == 1) 5846 Reg = ArgRegsAndSizes.front().first; 5847 5848 if (Reg && Reg.isVirtual()) { 5849 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5850 Register PR = RegInfo.getLiveInPhysReg(Reg); 5851 if (PR) 5852 Reg = PR; 5853 } 5854 if (Reg) { 5855 Op = MachineOperand::CreateReg(Reg, false); 5856 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5857 } 5858 } 5859 5860 if (!Op && N.getNode()) { 5861 // Check if frame index is available. 5862 SDValue LCandidate = peekThroughBitcasts(N); 5863 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5864 if (FrameIndexSDNode *FINode = 5865 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5866 Op = MachineOperand::CreateFI(FINode->getIndex()); 5867 } 5868 5869 if (!Op) { 5870 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5871 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5872 SplitRegs) { 5873 unsigned Offset = 0; 5874 for (const auto &RegAndSize : SplitRegs) { 5875 // If the expression is already a fragment, the current register 5876 // offset+size might extend beyond the fragment. In this case, only 5877 // the register bits that are inside the fragment are relevant. 5878 int RegFragmentSizeInBits = RegAndSize.second; 5879 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5880 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5881 // The register is entirely outside the expression fragment, 5882 // so is irrelevant for debug info. 5883 if (Offset >= ExprFragmentSizeInBits) 5884 break; 5885 // The register is partially outside the expression fragment, only 5886 // the low bits within the fragment are relevant for debug info. 5887 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5888 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5889 } 5890 } 5891 5892 auto FragmentExpr = DIExpression::createFragmentExpression( 5893 Expr, Offset, RegFragmentSizeInBits); 5894 Offset += RegAndSize.second; 5895 // If a valid fragment expression cannot be created, the variable's 5896 // correct value cannot be determined and so it is set as Undef. 5897 if (!FragmentExpr) { 5898 SDDbgValue *SDV = DAG.getConstantDbgValue( 5899 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5900 DAG.AddDbgValue(SDV, false); 5901 continue; 5902 } 5903 MachineInstr *NewMI = 5904 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5905 Kind != FuncArgumentDbgValueKind::Value); 5906 FuncInfo.ArgDbgValues.push_back(NewMI); 5907 } 5908 }; 5909 5910 // Check if ValueMap has reg number. 5911 DenseMap<const Value *, Register>::const_iterator 5912 VMI = FuncInfo.ValueMap.find(V); 5913 if (VMI != FuncInfo.ValueMap.end()) { 5914 const auto &TLI = DAG.getTargetLoweringInfo(); 5915 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5916 V->getType(), std::nullopt); 5917 if (RFV.occupiesMultipleRegs()) { 5918 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5919 return true; 5920 } 5921 5922 Op = MachineOperand::CreateReg(VMI->second, false); 5923 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5924 } else if (ArgRegsAndSizes.size() > 1) { 5925 // This was split due to the calling convention, and no virtual register 5926 // mapping exists for the value. 5927 splitMultiRegDbgValue(ArgRegsAndSizes); 5928 return true; 5929 } 5930 } 5931 5932 if (!Op) 5933 return false; 5934 5935 assert(Variable->isValidLocationForIntrinsic(DL) && 5936 "Expected inlined-at fields to agree"); 5937 MachineInstr *NewMI = nullptr; 5938 5939 if (Op->isReg()) 5940 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5941 else 5942 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5943 Variable, Expr); 5944 5945 // Otherwise, use ArgDbgValues. 5946 FuncInfo.ArgDbgValues.push_back(NewMI); 5947 return true; 5948 } 5949 5950 /// Return the appropriate SDDbgValue based on N. 5951 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5952 DILocalVariable *Variable, 5953 DIExpression *Expr, 5954 const DebugLoc &dl, 5955 unsigned DbgSDNodeOrder) { 5956 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5957 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5958 // stack slot locations. 5959 // 5960 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5961 // debug values here after optimization: 5962 // 5963 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5964 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5965 // 5966 // Both describe the direct values of their associated variables. 5967 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5968 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5969 } 5970 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5971 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5972 } 5973 5974 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5975 switch (Intrinsic) { 5976 case Intrinsic::smul_fix: 5977 return ISD::SMULFIX; 5978 case Intrinsic::umul_fix: 5979 return ISD::UMULFIX; 5980 case Intrinsic::smul_fix_sat: 5981 return ISD::SMULFIXSAT; 5982 case Intrinsic::umul_fix_sat: 5983 return ISD::UMULFIXSAT; 5984 case Intrinsic::sdiv_fix: 5985 return ISD::SDIVFIX; 5986 case Intrinsic::udiv_fix: 5987 return ISD::UDIVFIX; 5988 case Intrinsic::sdiv_fix_sat: 5989 return ISD::SDIVFIXSAT; 5990 case Intrinsic::udiv_fix_sat: 5991 return ISD::UDIVFIXSAT; 5992 default: 5993 llvm_unreachable("Unhandled fixed point intrinsic"); 5994 } 5995 } 5996 5997 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5998 const char *FunctionName) { 5999 assert(FunctionName && "FunctionName must not be nullptr"); 6000 SDValue Callee = DAG.getExternalSymbol( 6001 FunctionName, 6002 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6003 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6004 } 6005 6006 /// Given a @llvm.call.preallocated.setup, return the corresponding 6007 /// preallocated call. 6008 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6009 assert(cast<CallBase>(PreallocatedSetup) 6010 ->getCalledFunction() 6011 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6012 "expected call_preallocated_setup Value"); 6013 for (const auto *U : PreallocatedSetup->users()) { 6014 auto *UseCall = cast<CallBase>(U); 6015 const Function *Fn = UseCall->getCalledFunction(); 6016 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6017 return UseCall; 6018 } 6019 } 6020 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6021 } 6022 6023 /// If DI is a debug value with an EntryValue expression, lower it using the 6024 /// corresponding physical register of the associated Argument value 6025 /// (guaranteed to exist by the verifier). 6026 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) { 6027 DILocalVariable *Variable = DI.getVariable(); 6028 DIExpression *Expr = DI.getExpression(); 6029 if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues())) 6030 return false; 6031 6032 // These properties are guaranteed by the verifier. 6033 Argument *Arg = cast<Argument>(DI.getValue(0)); 6034 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6035 6036 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6037 if (ArgIt == FuncInfo.ValueMap.end()) { 6038 LLVM_DEBUG( 6039 dbgs() << "Dropping dbg.value: expression is entry_value but " 6040 "couldn't find an associated register for the Argument\n"); 6041 return true; 6042 } 6043 Register ArgVReg = ArgIt->getSecond(); 6044 6045 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6046 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6047 SDDbgValue *SDV = 6048 DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/, 6049 DI.getDebugLoc(), SDNodeOrder); 6050 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6051 return true; 6052 } 6053 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6054 "couldn't find a physical register\n"); 6055 return true; 6056 } 6057 6058 /// Lower the call to the specified intrinsic function. 6059 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6060 unsigned Intrinsic) { 6061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6062 SDLoc sdl = getCurSDLoc(); 6063 DebugLoc dl = getCurDebugLoc(); 6064 SDValue Res; 6065 6066 SDNodeFlags Flags; 6067 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6068 Flags.copyFMF(*FPOp); 6069 6070 switch (Intrinsic) { 6071 default: 6072 // By default, turn this into a target intrinsic node. 6073 visitTargetIntrinsic(I, Intrinsic); 6074 return; 6075 case Intrinsic::vscale: { 6076 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6077 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6078 return; 6079 } 6080 case Intrinsic::vastart: visitVAStart(I); return; 6081 case Intrinsic::vaend: visitVAEnd(I); return; 6082 case Intrinsic::vacopy: visitVACopy(I); return; 6083 case Intrinsic::returnaddress: 6084 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6085 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6086 getValue(I.getArgOperand(0)))); 6087 return; 6088 case Intrinsic::addressofreturnaddress: 6089 setValue(&I, 6090 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6091 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6092 return; 6093 case Intrinsic::sponentry: 6094 setValue(&I, 6095 DAG.getNode(ISD::SPONENTRY, sdl, 6096 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6097 return; 6098 case Intrinsic::frameaddress: 6099 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6100 TLI.getFrameIndexTy(DAG.getDataLayout()), 6101 getValue(I.getArgOperand(0)))); 6102 return; 6103 case Intrinsic::read_volatile_register: 6104 case Intrinsic::read_register: { 6105 Value *Reg = I.getArgOperand(0); 6106 SDValue Chain = getRoot(); 6107 SDValue RegName = 6108 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6109 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6110 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6111 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6112 setValue(&I, Res); 6113 DAG.setRoot(Res.getValue(1)); 6114 return; 6115 } 6116 case Intrinsic::write_register: { 6117 Value *Reg = I.getArgOperand(0); 6118 Value *RegValue = I.getArgOperand(1); 6119 SDValue Chain = getRoot(); 6120 SDValue RegName = 6121 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6122 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6123 RegName, getValue(RegValue))); 6124 return; 6125 } 6126 case Intrinsic::memcpy: { 6127 const auto &MCI = cast<MemCpyInst>(I); 6128 SDValue Op1 = getValue(I.getArgOperand(0)); 6129 SDValue Op2 = getValue(I.getArgOperand(1)); 6130 SDValue Op3 = getValue(I.getArgOperand(2)); 6131 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6132 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6133 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6134 Align Alignment = std::min(DstAlign, SrcAlign); 6135 bool isVol = MCI.isVolatile(); 6136 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6137 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6138 // node. 6139 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6140 SDValue MC = DAG.getMemcpy( 6141 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6142 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6143 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6144 updateDAGForMaybeTailCall(MC); 6145 return; 6146 } 6147 case Intrinsic::memcpy_inline: { 6148 const auto &MCI = cast<MemCpyInlineInst>(I); 6149 SDValue Dst = getValue(I.getArgOperand(0)); 6150 SDValue Src = getValue(I.getArgOperand(1)); 6151 SDValue Size = getValue(I.getArgOperand(2)); 6152 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6153 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6154 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6155 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6156 Align Alignment = std::min(DstAlign, SrcAlign); 6157 bool isVol = MCI.isVolatile(); 6158 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6159 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6160 // node. 6161 SDValue MC = DAG.getMemcpy( 6162 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6163 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6164 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6165 updateDAGForMaybeTailCall(MC); 6166 return; 6167 } 6168 case Intrinsic::memset: { 6169 const auto &MSI = cast<MemSetInst>(I); 6170 SDValue Op1 = getValue(I.getArgOperand(0)); 6171 SDValue Op2 = getValue(I.getArgOperand(1)); 6172 SDValue Op3 = getValue(I.getArgOperand(2)); 6173 // @llvm.memset defines 0 and 1 to both mean no alignment. 6174 Align Alignment = MSI.getDestAlign().valueOrOne(); 6175 bool isVol = MSI.isVolatile(); 6176 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6177 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6178 SDValue MS = DAG.getMemset( 6179 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6180 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6181 updateDAGForMaybeTailCall(MS); 6182 return; 6183 } 6184 case Intrinsic::memset_inline: { 6185 const auto &MSII = cast<MemSetInlineInst>(I); 6186 SDValue Dst = getValue(I.getArgOperand(0)); 6187 SDValue Value = getValue(I.getArgOperand(1)); 6188 SDValue Size = getValue(I.getArgOperand(2)); 6189 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6190 // @llvm.memset defines 0 and 1 to both mean no alignment. 6191 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6192 bool isVol = MSII.isVolatile(); 6193 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6194 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6195 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6196 /* AlwaysInline */ true, isTC, 6197 MachinePointerInfo(I.getArgOperand(0)), 6198 I.getAAMetadata()); 6199 updateDAGForMaybeTailCall(MC); 6200 return; 6201 } 6202 case Intrinsic::memmove: { 6203 const auto &MMI = cast<MemMoveInst>(I); 6204 SDValue Op1 = getValue(I.getArgOperand(0)); 6205 SDValue Op2 = getValue(I.getArgOperand(1)); 6206 SDValue Op3 = getValue(I.getArgOperand(2)); 6207 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6208 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6209 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6210 Align Alignment = std::min(DstAlign, SrcAlign); 6211 bool isVol = MMI.isVolatile(); 6212 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6213 // FIXME: Support passing different dest/src alignments to the memmove DAG 6214 // node. 6215 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6216 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6217 isTC, MachinePointerInfo(I.getArgOperand(0)), 6218 MachinePointerInfo(I.getArgOperand(1)), 6219 I.getAAMetadata(), AA); 6220 updateDAGForMaybeTailCall(MM); 6221 return; 6222 } 6223 case Intrinsic::memcpy_element_unordered_atomic: { 6224 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6225 SDValue Dst = getValue(MI.getRawDest()); 6226 SDValue Src = getValue(MI.getRawSource()); 6227 SDValue Length = getValue(MI.getLength()); 6228 6229 Type *LengthTy = MI.getLength()->getType(); 6230 unsigned ElemSz = MI.getElementSizeInBytes(); 6231 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6232 SDValue MC = 6233 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6234 isTC, MachinePointerInfo(MI.getRawDest()), 6235 MachinePointerInfo(MI.getRawSource())); 6236 updateDAGForMaybeTailCall(MC); 6237 return; 6238 } 6239 case Intrinsic::memmove_element_unordered_atomic: { 6240 auto &MI = cast<AtomicMemMoveInst>(I); 6241 SDValue Dst = getValue(MI.getRawDest()); 6242 SDValue Src = getValue(MI.getRawSource()); 6243 SDValue Length = getValue(MI.getLength()); 6244 6245 Type *LengthTy = MI.getLength()->getType(); 6246 unsigned ElemSz = MI.getElementSizeInBytes(); 6247 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6248 SDValue MC = 6249 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6250 isTC, MachinePointerInfo(MI.getRawDest()), 6251 MachinePointerInfo(MI.getRawSource())); 6252 updateDAGForMaybeTailCall(MC); 6253 return; 6254 } 6255 case Intrinsic::memset_element_unordered_atomic: { 6256 auto &MI = cast<AtomicMemSetInst>(I); 6257 SDValue Dst = getValue(MI.getRawDest()); 6258 SDValue Val = getValue(MI.getValue()); 6259 SDValue Length = getValue(MI.getLength()); 6260 6261 Type *LengthTy = MI.getLength()->getType(); 6262 unsigned ElemSz = MI.getElementSizeInBytes(); 6263 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6264 SDValue MC = 6265 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6266 isTC, MachinePointerInfo(MI.getRawDest())); 6267 updateDAGForMaybeTailCall(MC); 6268 return; 6269 } 6270 case Intrinsic::call_preallocated_setup: { 6271 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6272 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6273 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6274 getRoot(), SrcValue); 6275 setValue(&I, Res); 6276 DAG.setRoot(Res); 6277 return; 6278 } 6279 case Intrinsic::call_preallocated_arg: { 6280 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6281 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6282 SDValue Ops[3]; 6283 Ops[0] = getRoot(); 6284 Ops[1] = SrcValue; 6285 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6286 MVT::i32); // arg index 6287 SDValue Res = DAG.getNode( 6288 ISD::PREALLOCATED_ARG, sdl, 6289 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6290 setValue(&I, Res); 6291 DAG.setRoot(Res.getValue(1)); 6292 return; 6293 } 6294 case Intrinsic::dbg_declare: { 6295 const auto &DI = cast<DbgDeclareInst>(I); 6296 // Debug intrinsics are handled separately in assignment tracking mode. 6297 // Some intrinsics are handled right after Argument lowering. 6298 if (AssignmentTrackingEnabled || 6299 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6300 return; 6301 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6302 DILocalVariable *Variable = DI.getVariable(); 6303 DIExpression *Expression = DI.getExpression(); 6304 dropDanglingDebugInfo(Variable, Expression); 6305 // Assume dbg.declare can not currently use DIArgList, i.e. 6306 // it is non-variadic. 6307 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6308 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6309 DI.getDebugLoc()); 6310 return; 6311 } 6312 case Intrinsic::dbg_label: { 6313 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6314 DILabel *Label = DI.getLabel(); 6315 assert(Label && "Missing label"); 6316 6317 SDDbgLabel *SDV; 6318 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6319 DAG.AddDbgLabel(SDV); 6320 return; 6321 } 6322 case Intrinsic::dbg_assign: { 6323 // Debug intrinsics are handled seperately in assignment tracking mode. 6324 if (AssignmentTrackingEnabled) 6325 return; 6326 // If assignment tracking hasn't been enabled then fall through and treat 6327 // the dbg.assign as a dbg.value. 6328 [[fallthrough]]; 6329 } 6330 case Intrinsic::dbg_value: { 6331 // Debug intrinsics are handled seperately in assignment tracking mode. 6332 if (AssignmentTrackingEnabled) 6333 return; 6334 const DbgValueInst &DI = cast<DbgValueInst>(I); 6335 assert(DI.getVariable() && "Missing variable"); 6336 6337 DILocalVariable *Variable = DI.getVariable(); 6338 DIExpression *Expression = DI.getExpression(); 6339 dropDanglingDebugInfo(Variable, Expression); 6340 6341 if (visitEntryValueDbgValue(DI)) 6342 return; 6343 6344 if (DI.isKillLocation()) { 6345 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6346 return; 6347 } 6348 6349 SmallVector<Value *, 4> Values(DI.getValues()); 6350 if (Values.empty()) 6351 return; 6352 6353 bool IsVariadic = DI.hasArgList(); 6354 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6355 SDNodeOrder, IsVariadic)) 6356 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6357 DI.getDebugLoc(), SDNodeOrder); 6358 return; 6359 } 6360 6361 case Intrinsic::eh_typeid_for: { 6362 // Find the type id for the given typeinfo. 6363 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6364 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6365 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6366 setValue(&I, Res); 6367 return; 6368 } 6369 6370 case Intrinsic::eh_return_i32: 6371 case Intrinsic::eh_return_i64: 6372 DAG.getMachineFunction().setCallsEHReturn(true); 6373 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6374 MVT::Other, 6375 getControlRoot(), 6376 getValue(I.getArgOperand(0)), 6377 getValue(I.getArgOperand(1)))); 6378 return; 6379 case Intrinsic::eh_unwind_init: 6380 DAG.getMachineFunction().setCallsUnwindInit(true); 6381 return; 6382 case Intrinsic::eh_dwarf_cfa: 6383 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6384 TLI.getPointerTy(DAG.getDataLayout()), 6385 getValue(I.getArgOperand(0)))); 6386 return; 6387 case Intrinsic::eh_sjlj_callsite: { 6388 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6389 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6390 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6391 6392 MMI.setCurrentCallSite(CI->getZExtValue()); 6393 return; 6394 } 6395 case Intrinsic::eh_sjlj_functioncontext: { 6396 // Get and store the index of the function context. 6397 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6398 AllocaInst *FnCtx = 6399 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6400 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6401 MFI.setFunctionContextIndex(FI); 6402 return; 6403 } 6404 case Intrinsic::eh_sjlj_setjmp: { 6405 SDValue Ops[2]; 6406 Ops[0] = getRoot(); 6407 Ops[1] = getValue(I.getArgOperand(0)); 6408 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6409 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6410 setValue(&I, Op.getValue(0)); 6411 DAG.setRoot(Op.getValue(1)); 6412 return; 6413 } 6414 case Intrinsic::eh_sjlj_longjmp: 6415 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6416 getRoot(), getValue(I.getArgOperand(0)))); 6417 return; 6418 case Intrinsic::eh_sjlj_setup_dispatch: 6419 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6420 getRoot())); 6421 return; 6422 case Intrinsic::masked_gather: 6423 visitMaskedGather(I); 6424 return; 6425 case Intrinsic::masked_load: 6426 visitMaskedLoad(I); 6427 return; 6428 case Intrinsic::masked_scatter: 6429 visitMaskedScatter(I); 6430 return; 6431 case Intrinsic::masked_store: 6432 visitMaskedStore(I); 6433 return; 6434 case Intrinsic::masked_expandload: 6435 visitMaskedLoad(I, true /* IsExpanding */); 6436 return; 6437 case Intrinsic::masked_compressstore: 6438 visitMaskedStore(I, true /* IsCompressing */); 6439 return; 6440 case Intrinsic::powi: 6441 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6442 getValue(I.getArgOperand(1)), DAG)); 6443 return; 6444 case Intrinsic::log: 6445 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6446 return; 6447 case Intrinsic::log2: 6448 setValue(&I, 6449 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6450 return; 6451 case Intrinsic::log10: 6452 setValue(&I, 6453 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6454 return; 6455 case Intrinsic::exp: 6456 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6457 return; 6458 case Intrinsic::exp2: 6459 setValue(&I, 6460 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6461 return; 6462 case Intrinsic::pow: 6463 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6464 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6465 return; 6466 case Intrinsic::sqrt: 6467 case Intrinsic::fabs: 6468 case Intrinsic::sin: 6469 case Intrinsic::cos: 6470 case Intrinsic::exp10: 6471 case Intrinsic::floor: 6472 case Intrinsic::ceil: 6473 case Intrinsic::trunc: 6474 case Intrinsic::rint: 6475 case Intrinsic::nearbyint: 6476 case Intrinsic::round: 6477 case Intrinsic::roundeven: 6478 case Intrinsic::canonicalize: { 6479 unsigned Opcode; 6480 switch (Intrinsic) { 6481 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6482 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6483 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6484 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6485 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6486 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6487 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6488 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6489 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6490 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6491 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6492 case Intrinsic::round: Opcode = ISD::FROUND; break; 6493 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6494 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6495 } 6496 6497 setValue(&I, DAG.getNode(Opcode, sdl, 6498 getValue(I.getArgOperand(0)).getValueType(), 6499 getValue(I.getArgOperand(0)), Flags)); 6500 return; 6501 } 6502 case Intrinsic::lround: 6503 case Intrinsic::llround: 6504 case Intrinsic::lrint: 6505 case Intrinsic::llrint: { 6506 unsigned Opcode; 6507 switch (Intrinsic) { 6508 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6509 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6510 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6511 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6512 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6513 } 6514 6515 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6516 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6517 getValue(I.getArgOperand(0)))); 6518 return; 6519 } 6520 case Intrinsic::minnum: 6521 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6522 getValue(I.getArgOperand(0)).getValueType(), 6523 getValue(I.getArgOperand(0)), 6524 getValue(I.getArgOperand(1)), Flags)); 6525 return; 6526 case Intrinsic::maxnum: 6527 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6528 getValue(I.getArgOperand(0)).getValueType(), 6529 getValue(I.getArgOperand(0)), 6530 getValue(I.getArgOperand(1)), Flags)); 6531 return; 6532 case Intrinsic::minimum: 6533 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6534 getValue(I.getArgOperand(0)).getValueType(), 6535 getValue(I.getArgOperand(0)), 6536 getValue(I.getArgOperand(1)), Flags)); 6537 return; 6538 case Intrinsic::maximum: 6539 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6540 getValue(I.getArgOperand(0)).getValueType(), 6541 getValue(I.getArgOperand(0)), 6542 getValue(I.getArgOperand(1)), Flags)); 6543 return; 6544 case Intrinsic::copysign: 6545 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6546 getValue(I.getArgOperand(0)).getValueType(), 6547 getValue(I.getArgOperand(0)), 6548 getValue(I.getArgOperand(1)), Flags)); 6549 return; 6550 case Intrinsic::ldexp: 6551 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6552 getValue(I.getArgOperand(0)).getValueType(), 6553 getValue(I.getArgOperand(0)), 6554 getValue(I.getArgOperand(1)), Flags)); 6555 return; 6556 case Intrinsic::frexp: { 6557 SmallVector<EVT, 2> ValueVTs; 6558 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6559 SDVTList VTs = DAG.getVTList(ValueVTs); 6560 setValue(&I, 6561 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6562 return; 6563 } 6564 case Intrinsic::arithmetic_fence: { 6565 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6566 getValue(I.getArgOperand(0)).getValueType(), 6567 getValue(I.getArgOperand(0)), Flags)); 6568 return; 6569 } 6570 case Intrinsic::fma: 6571 setValue(&I, DAG.getNode( 6572 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6573 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6574 getValue(I.getArgOperand(2)), Flags)); 6575 return; 6576 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6577 case Intrinsic::INTRINSIC: 6578 #include "llvm/IR/ConstrainedOps.def" 6579 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6580 return; 6581 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6582 #include "llvm/IR/VPIntrinsics.def" 6583 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6584 return; 6585 case Intrinsic::fptrunc_round: { 6586 // Get the last argument, the metadata and convert it to an integer in the 6587 // call 6588 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6589 std::optional<RoundingMode> RoundMode = 6590 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6591 6592 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6593 6594 // Propagate fast-math-flags from IR to node(s). 6595 SDNodeFlags Flags; 6596 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6597 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6598 6599 SDValue Result; 6600 Result = DAG.getNode( 6601 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6602 DAG.getTargetConstant((int)*RoundMode, sdl, 6603 TLI.getPointerTy(DAG.getDataLayout()))); 6604 setValue(&I, Result); 6605 6606 return; 6607 } 6608 case Intrinsic::fmuladd: { 6609 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6610 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6611 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6612 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6613 getValue(I.getArgOperand(0)).getValueType(), 6614 getValue(I.getArgOperand(0)), 6615 getValue(I.getArgOperand(1)), 6616 getValue(I.getArgOperand(2)), Flags)); 6617 } else { 6618 // TODO: Intrinsic calls should have fast-math-flags. 6619 SDValue Mul = DAG.getNode( 6620 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6621 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6622 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6623 getValue(I.getArgOperand(0)).getValueType(), 6624 Mul, getValue(I.getArgOperand(2)), Flags); 6625 setValue(&I, Add); 6626 } 6627 return; 6628 } 6629 case Intrinsic::convert_to_fp16: 6630 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6631 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6632 getValue(I.getArgOperand(0)), 6633 DAG.getTargetConstant(0, sdl, 6634 MVT::i32)))); 6635 return; 6636 case Intrinsic::convert_from_fp16: 6637 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6638 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6639 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6640 getValue(I.getArgOperand(0))))); 6641 return; 6642 case Intrinsic::fptosi_sat: { 6643 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6644 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6645 getValue(I.getArgOperand(0)), 6646 DAG.getValueType(VT.getScalarType()))); 6647 return; 6648 } 6649 case Intrinsic::fptoui_sat: { 6650 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6651 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6652 getValue(I.getArgOperand(0)), 6653 DAG.getValueType(VT.getScalarType()))); 6654 return; 6655 } 6656 case Intrinsic::set_rounding: 6657 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6658 {getRoot(), getValue(I.getArgOperand(0))}); 6659 setValue(&I, Res); 6660 DAG.setRoot(Res.getValue(0)); 6661 return; 6662 case Intrinsic::is_fpclass: { 6663 const DataLayout DLayout = DAG.getDataLayout(); 6664 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6665 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6666 FPClassTest Test = static_cast<FPClassTest>( 6667 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6668 MachineFunction &MF = DAG.getMachineFunction(); 6669 const Function &F = MF.getFunction(); 6670 SDValue Op = getValue(I.getArgOperand(0)); 6671 SDNodeFlags Flags; 6672 Flags.setNoFPExcept( 6673 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6674 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6675 // expansion can use illegal types. Making expansion early allows 6676 // legalizing these types prior to selection. 6677 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6678 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6679 setValue(&I, Result); 6680 return; 6681 } 6682 6683 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6684 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6685 setValue(&I, V); 6686 return; 6687 } 6688 case Intrinsic::get_fpenv: { 6689 const DataLayout DLayout = DAG.getDataLayout(); 6690 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6691 Align TempAlign = DAG.getEVTAlign(EnvVT); 6692 SDValue Chain = getRoot(); 6693 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6694 // and temporary storage in stack. 6695 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6696 Res = DAG.getNode( 6697 ISD::GET_FPENV, sdl, 6698 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6699 MVT::Other), 6700 Chain); 6701 } else { 6702 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6703 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6704 auto MPI = 6705 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6706 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6707 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6708 TempAlign); 6709 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6710 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6711 } 6712 setValue(&I, Res); 6713 DAG.setRoot(Res.getValue(1)); 6714 return; 6715 } 6716 case Intrinsic::set_fpenv: { 6717 const DataLayout DLayout = DAG.getDataLayout(); 6718 SDValue Env = getValue(I.getArgOperand(0)); 6719 EVT EnvVT = Env.getValueType(); 6720 Align TempAlign = DAG.getEVTAlign(EnvVT); 6721 SDValue Chain = getRoot(); 6722 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6723 // environment from memory. 6724 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6725 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6726 } else { 6727 // Allocate space in stack, copy environment bits into it and use this 6728 // memory in SET_FPENV_MEM. 6729 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6730 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6731 auto MPI = 6732 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6733 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6734 MachineMemOperand::MOStore); 6735 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6736 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6737 TempAlign); 6738 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6739 } 6740 DAG.setRoot(Chain); 6741 return; 6742 } 6743 case Intrinsic::reset_fpenv: 6744 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6745 return; 6746 case Intrinsic::get_fpmode: 6747 Res = DAG.getNode( 6748 ISD::GET_FPMODE, sdl, 6749 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6750 MVT::Other), 6751 DAG.getRoot()); 6752 setValue(&I, Res); 6753 DAG.setRoot(Res.getValue(1)); 6754 return; 6755 case Intrinsic::set_fpmode: 6756 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6757 getValue(I.getArgOperand(0))); 6758 DAG.setRoot(Res); 6759 return; 6760 case Intrinsic::reset_fpmode: { 6761 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6762 DAG.setRoot(Res); 6763 return; 6764 } 6765 case Intrinsic::pcmarker: { 6766 SDValue Tmp = getValue(I.getArgOperand(0)); 6767 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6768 return; 6769 } 6770 case Intrinsic::readcyclecounter: { 6771 SDValue Op = getRoot(); 6772 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6773 DAG.getVTList(MVT::i64, MVT::Other), Op); 6774 setValue(&I, Res); 6775 DAG.setRoot(Res.getValue(1)); 6776 return; 6777 } 6778 case Intrinsic::bitreverse: 6779 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6780 getValue(I.getArgOperand(0)).getValueType(), 6781 getValue(I.getArgOperand(0)))); 6782 return; 6783 case Intrinsic::bswap: 6784 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6785 getValue(I.getArgOperand(0)).getValueType(), 6786 getValue(I.getArgOperand(0)))); 6787 return; 6788 case Intrinsic::cttz: { 6789 SDValue Arg = getValue(I.getArgOperand(0)); 6790 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6791 EVT Ty = Arg.getValueType(); 6792 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6793 sdl, Ty, Arg)); 6794 return; 6795 } 6796 case Intrinsic::ctlz: { 6797 SDValue Arg = getValue(I.getArgOperand(0)); 6798 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6799 EVT Ty = Arg.getValueType(); 6800 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6801 sdl, Ty, Arg)); 6802 return; 6803 } 6804 case Intrinsic::ctpop: { 6805 SDValue Arg = getValue(I.getArgOperand(0)); 6806 EVT Ty = Arg.getValueType(); 6807 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6808 return; 6809 } 6810 case Intrinsic::fshl: 6811 case Intrinsic::fshr: { 6812 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6813 SDValue X = getValue(I.getArgOperand(0)); 6814 SDValue Y = getValue(I.getArgOperand(1)); 6815 SDValue Z = getValue(I.getArgOperand(2)); 6816 EVT VT = X.getValueType(); 6817 6818 if (X == Y) { 6819 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6820 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6821 } else { 6822 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6823 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6824 } 6825 return; 6826 } 6827 case Intrinsic::sadd_sat: { 6828 SDValue Op1 = getValue(I.getArgOperand(0)); 6829 SDValue Op2 = getValue(I.getArgOperand(1)); 6830 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6831 return; 6832 } 6833 case Intrinsic::uadd_sat: { 6834 SDValue Op1 = getValue(I.getArgOperand(0)); 6835 SDValue Op2 = getValue(I.getArgOperand(1)); 6836 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6837 return; 6838 } 6839 case Intrinsic::ssub_sat: { 6840 SDValue Op1 = getValue(I.getArgOperand(0)); 6841 SDValue Op2 = getValue(I.getArgOperand(1)); 6842 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6843 return; 6844 } 6845 case Intrinsic::usub_sat: { 6846 SDValue Op1 = getValue(I.getArgOperand(0)); 6847 SDValue Op2 = getValue(I.getArgOperand(1)); 6848 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6849 return; 6850 } 6851 case Intrinsic::sshl_sat: { 6852 SDValue Op1 = getValue(I.getArgOperand(0)); 6853 SDValue Op2 = getValue(I.getArgOperand(1)); 6854 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6855 return; 6856 } 6857 case Intrinsic::ushl_sat: { 6858 SDValue Op1 = getValue(I.getArgOperand(0)); 6859 SDValue Op2 = getValue(I.getArgOperand(1)); 6860 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6861 return; 6862 } 6863 case Intrinsic::smul_fix: 6864 case Intrinsic::umul_fix: 6865 case Intrinsic::smul_fix_sat: 6866 case Intrinsic::umul_fix_sat: { 6867 SDValue Op1 = getValue(I.getArgOperand(0)); 6868 SDValue Op2 = getValue(I.getArgOperand(1)); 6869 SDValue Op3 = getValue(I.getArgOperand(2)); 6870 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6871 Op1.getValueType(), Op1, Op2, Op3)); 6872 return; 6873 } 6874 case Intrinsic::sdiv_fix: 6875 case Intrinsic::udiv_fix: 6876 case Intrinsic::sdiv_fix_sat: 6877 case Intrinsic::udiv_fix_sat: { 6878 SDValue Op1 = getValue(I.getArgOperand(0)); 6879 SDValue Op2 = getValue(I.getArgOperand(1)); 6880 SDValue Op3 = getValue(I.getArgOperand(2)); 6881 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6882 Op1, Op2, Op3, DAG, TLI)); 6883 return; 6884 } 6885 case Intrinsic::smax: { 6886 SDValue Op1 = getValue(I.getArgOperand(0)); 6887 SDValue Op2 = getValue(I.getArgOperand(1)); 6888 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6889 return; 6890 } 6891 case Intrinsic::smin: { 6892 SDValue Op1 = getValue(I.getArgOperand(0)); 6893 SDValue Op2 = getValue(I.getArgOperand(1)); 6894 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6895 return; 6896 } 6897 case Intrinsic::umax: { 6898 SDValue Op1 = getValue(I.getArgOperand(0)); 6899 SDValue Op2 = getValue(I.getArgOperand(1)); 6900 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6901 return; 6902 } 6903 case Intrinsic::umin: { 6904 SDValue Op1 = getValue(I.getArgOperand(0)); 6905 SDValue Op2 = getValue(I.getArgOperand(1)); 6906 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6907 return; 6908 } 6909 case Intrinsic::abs: { 6910 // TODO: Preserve "int min is poison" arg in SDAG? 6911 SDValue Op1 = getValue(I.getArgOperand(0)); 6912 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6913 return; 6914 } 6915 case Intrinsic::stacksave: { 6916 SDValue Op = getRoot(); 6917 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6918 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6919 setValue(&I, Res); 6920 DAG.setRoot(Res.getValue(1)); 6921 return; 6922 } 6923 case Intrinsic::stackrestore: 6924 Res = getValue(I.getArgOperand(0)); 6925 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6926 return; 6927 case Intrinsic::get_dynamic_area_offset: { 6928 SDValue Op = getRoot(); 6929 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6930 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6931 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6932 // target. 6933 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6934 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6935 " intrinsic!"); 6936 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6937 Op); 6938 DAG.setRoot(Op); 6939 setValue(&I, Res); 6940 return; 6941 } 6942 case Intrinsic::stackguard: { 6943 MachineFunction &MF = DAG.getMachineFunction(); 6944 const Module &M = *MF.getFunction().getParent(); 6945 SDValue Chain = getRoot(); 6946 if (TLI.useLoadStackGuardNode()) { 6947 Res = getLoadStackGuard(DAG, sdl, Chain); 6948 } else { 6949 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6950 const Value *Global = TLI.getSDagStackGuard(M); 6951 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6952 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6953 MachinePointerInfo(Global, 0), Align, 6954 MachineMemOperand::MOVolatile); 6955 } 6956 if (TLI.useStackGuardXorFP()) 6957 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6958 DAG.setRoot(Chain); 6959 setValue(&I, Res); 6960 return; 6961 } 6962 case Intrinsic::stackprotector: { 6963 // Emit code into the DAG to store the stack guard onto the stack. 6964 MachineFunction &MF = DAG.getMachineFunction(); 6965 MachineFrameInfo &MFI = MF.getFrameInfo(); 6966 SDValue Src, Chain = getRoot(); 6967 6968 if (TLI.useLoadStackGuardNode()) 6969 Src = getLoadStackGuard(DAG, sdl, Chain); 6970 else 6971 Src = getValue(I.getArgOperand(0)); // The guard's value. 6972 6973 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6974 6975 int FI = FuncInfo.StaticAllocaMap[Slot]; 6976 MFI.setStackProtectorIndex(FI); 6977 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6978 6979 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6980 6981 // Store the stack protector onto the stack. 6982 Res = DAG.getStore( 6983 Chain, sdl, Src, FIN, 6984 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6985 MaybeAlign(), MachineMemOperand::MOVolatile); 6986 setValue(&I, Res); 6987 DAG.setRoot(Res); 6988 return; 6989 } 6990 case Intrinsic::objectsize: 6991 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6992 6993 case Intrinsic::is_constant: 6994 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6995 6996 case Intrinsic::annotation: 6997 case Intrinsic::ptr_annotation: 6998 case Intrinsic::launder_invariant_group: 6999 case Intrinsic::strip_invariant_group: 7000 // Drop the intrinsic, but forward the value 7001 setValue(&I, getValue(I.getOperand(0))); 7002 return; 7003 7004 case Intrinsic::assume: 7005 case Intrinsic::experimental_noalias_scope_decl: 7006 case Intrinsic::var_annotation: 7007 case Intrinsic::sideeffect: 7008 // Discard annotate attributes, noalias scope declarations, assumptions, and 7009 // artificial side-effects. 7010 return; 7011 7012 case Intrinsic::codeview_annotation: { 7013 // Emit a label associated with this metadata. 7014 MachineFunction &MF = DAG.getMachineFunction(); 7015 MCSymbol *Label = 7016 MF.getMMI().getContext().createTempSymbol("annotation", true); 7017 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7018 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7019 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7020 DAG.setRoot(Res); 7021 return; 7022 } 7023 7024 case Intrinsic::init_trampoline: { 7025 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7026 7027 SDValue Ops[6]; 7028 Ops[0] = getRoot(); 7029 Ops[1] = getValue(I.getArgOperand(0)); 7030 Ops[2] = getValue(I.getArgOperand(1)); 7031 Ops[3] = getValue(I.getArgOperand(2)); 7032 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7033 Ops[5] = DAG.getSrcValue(F); 7034 7035 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7036 7037 DAG.setRoot(Res); 7038 return; 7039 } 7040 case Intrinsic::adjust_trampoline: 7041 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7042 TLI.getPointerTy(DAG.getDataLayout()), 7043 getValue(I.getArgOperand(0)))); 7044 return; 7045 case Intrinsic::gcroot: { 7046 assert(DAG.getMachineFunction().getFunction().hasGC() && 7047 "only valid in functions with gc specified, enforced by Verifier"); 7048 assert(GFI && "implied by previous"); 7049 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7050 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7051 7052 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7053 GFI->addStackRoot(FI->getIndex(), TypeMap); 7054 return; 7055 } 7056 case Intrinsic::gcread: 7057 case Intrinsic::gcwrite: 7058 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7059 case Intrinsic::get_rounding: 7060 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7061 setValue(&I, Res); 7062 DAG.setRoot(Res.getValue(1)); 7063 return; 7064 7065 case Intrinsic::expect: 7066 // Just replace __builtin_expect(exp, c) with EXP. 7067 setValue(&I, getValue(I.getArgOperand(0))); 7068 return; 7069 7070 case Intrinsic::ubsantrap: 7071 case Intrinsic::debugtrap: 7072 case Intrinsic::trap: { 7073 StringRef TrapFuncName = 7074 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7075 if (TrapFuncName.empty()) { 7076 switch (Intrinsic) { 7077 case Intrinsic::trap: 7078 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7079 break; 7080 case Intrinsic::debugtrap: 7081 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7082 break; 7083 case Intrinsic::ubsantrap: 7084 DAG.setRoot(DAG.getNode( 7085 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7086 DAG.getTargetConstant( 7087 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7088 MVT::i32))); 7089 break; 7090 default: llvm_unreachable("unknown trap intrinsic"); 7091 } 7092 return; 7093 } 7094 TargetLowering::ArgListTy Args; 7095 if (Intrinsic == Intrinsic::ubsantrap) { 7096 Args.push_back(TargetLoweringBase::ArgListEntry()); 7097 Args[0].Val = I.getArgOperand(0); 7098 Args[0].Node = getValue(Args[0].Val); 7099 Args[0].Ty = Args[0].Val->getType(); 7100 } 7101 7102 TargetLowering::CallLoweringInfo CLI(DAG); 7103 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7104 CallingConv::C, I.getType(), 7105 DAG.getExternalSymbol(TrapFuncName.data(), 7106 TLI.getPointerTy(DAG.getDataLayout())), 7107 std::move(Args)); 7108 7109 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7110 DAG.setRoot(Result.second); 7111 return; 7112 } 7113 7114 case Intrinsic::uadd_with_overflow: 7115 case Intrinsic::sadd_with_overflow: 7116 case Intrinsic::usub_with_overflow: 7117 case Intrinsic::ssub_with_overflow: 7118 case Intrinsic::umul_with_overflow: 7119 case Intrinsic::smul_with_overflow: { 7120 ISD::NodeType Op; 7121 switch (Intrinsic) { 7122 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7123 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7124 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7125 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7126 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7127 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7128 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7129 } 7130 SDValue Op1 = getValue(I.getArgOperand(0)); 7131 SDValue Op2 = getValue(I.getArgOperand(1)); 7132 7133 EVT ResultVT = Op1.getValueType(); 7134 EVT OverflowVT = MVT::i1; 7135 if (ResultVT.isVector()) 7136 OverflowVT = EVT::getVectorVT( 7137 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7138 7139 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7140 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7141 return; 7142 } 7143 case Intrinsic::prefetch: { 7144 SDValue Ops[5]; 7145 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7146 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7147 Ops[0] = DAG.getRoot(); 7148 Ops[1] = getValue(I.getArgOperand(0)); 7149 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7150 MVT::i32); 7151 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7152 MVT::i32); 7153 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7154 MVT::i32); 7155 SDValue Result = DAG.getMemIntrinsicNode( 7156 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7157 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7158 /* align */ std::nullopt, Flags); 7159 7160 // Chain the prefetch in parallel with any pending loads, to stay out of 7161 // the way of later optimizations. 7162 PendingLoads.push_back(Result); 7163 Result = getRoot(); 7164 DAG.setRoot(Result); 7165 return; 7166 } 7167 case Intrinsic::lifetime_start: 7168 case Intrinsic::lifetime_end: { 7169 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7170 // Stack coloring is not enabled in O0, discard region information. 7171 if (TM.getOptLevel() == CodeGenOptLevel::None) 7172 return; 7173 7174 const int64_t ObjectSize = 7175 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7176 Value *const ObjectPtr = I.getArgOperand(1); 7177 SmallVector<const Value *, 4> Allocas; 7178 getUnderlyingObjects(ObjectPtr, Allocas); 7179 7180 for (const Value *Alloca : Allocas) { 7181 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7182 7183 // Could not find an Alloca. 7184 if (!LifetimeObject) 7185 continue; 7186 7187 // First check that the Alloca is static, otherwise it won't have a 7188 // valid frame index. 7189 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7190 if (SI == FuncInfo.StaticAllocaMap.end()) 7191 return; 7192 7193 const int FrameIndex = SI->second; 7194 int64_t Offset; 7195 if (GetPointerBaseWithConstantOffset( 7196 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7197 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7198 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7199 Offset); 7200 DAG.setRoot(Res); 7201 } 7202 return; 7203 } 7204 case Intrinsic::pseudoprobe: { 7205 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7206 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7207 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7208 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7209 DAG.setRoot(Res); 7210 return; 7211 } 7212 case Intrinsic::invariant_start: 7213 // Discard region information. 7214 setValue(&I, 7215 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7216 return; 7217 case Intrinsic::invariant_end: 7218 // Discard region information. 7219 return; 7220 case Intrinsic::clear_cache: 7221 /// FunctionName may be null. 7222 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7223 lowerCallToExternalSymbol(I, FunctionName); 7224 return; 7225 case Intrinsic::donothing: 7226 case Intrinsic::seh_try_begin: 7227 case Intrinsic::seh_scope_begin: 7228 case Intrinsic::seh_try_end: 7229 case Intrinsic::seh_scope_end: 7230 // ignore 7231 return; 7232 case Intrinsic::experimental_stackmap: 7233 visitStackmap(I); 7234 return; 7235 case Intrinsic::experimental_patchpoint_void: 7236 case Intrinsic::experimental_patchpoint_i64: 7237 visitPatchpoint(I); 7238 return; 7239 case Intrinsic::experimental_gc_statepoint: 7240 LowerStatepoint(cast<GCStatepointInst>(I)); 7241 return; 7242 case Intrinsic::experimental_gc_result: 7243 visitGCResult(cast<GCResultInst>(I)); 7244 return; 7245 case Intrinsic::experimental_gc_relocate: 7246 visitGCRelocate(cast<GCRelocateInst>(I)); 7247 return; 7248 case Intrinsic::instrprof_cover: 7249 llvm_unreachable("instrprof failed to lower a cover"); 7250 case Intrinsic::instrprof_increment: 7251 llvm_unreachable("instrprof failed to lower an increment"); 7252 case Intrinsic::instrprof_timestamp: 7253 llvm_unreachable("instrprof failed to lower a timestamp"); 7254 case Intrinsic::instrprof_value_profile: 7255 llvm_unreachable("instrprof failed to lower a value profiling call"); 7256 case Intrinsic::instrprof_mcdc_parameters: 7257 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7258 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7259 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7260 case Intrinsic::instrprof_mcdc_condbitmap_update: 7261 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7262 case Intrinsic::localescape: { 7263 MachineFunction &MF = DAG.getMachineFunction(); 7264 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7265 7266 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7267 // is the same on all targets. 7268 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7269 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7270 if (isa<ConstantPointerNull>(Arg)) 7271 continue; // Skip null pointers. They represent a hole in index space. 7272 AllocaInst *Slot = cast<AllocaInst>(Arg); 7273 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7274 "can only escape static allocas"); 7275 int FI = FuncInfo.StaticAllocaMap[Slot]; 7276 MCSymbol *FrameAllocSym = 7277 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7278 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7280 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7281 .addSym(FrameAllocSym) 7282 .addFrameIndex(FI); 7283 } 7284 7285 return; 7286 } 7287 7288 case Intrinsic::localrecover: { 7289 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7290 MachineFunction &MF = DAG.getMachineFunction(); 7291 7292 // Get the symbol that defines the frame offset. 7293 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7294 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7295 unsigned IdxVal = 7296 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7297 MCSymbol *FrameAllocSym = 7298 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7299 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7300 7301 Value *FP = I.getArgOperand(1); 7302 SDValue FPVal = getValue(FP); 7303 EVT PtrVT = FPVal.getValueType(); 7304 7305 // Create a MCSymbol for the label to avoid any target lowering 7306 // that would make this PC relative. 7307 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7308 SDValue OffsetVal = 7309 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7310 7311 // Add the offset to the FP. 7312 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7313 setValue(&I, Add); 7314 7315 return; 7316 } 7317 7318 case Intrinsic::eh_exceptionpointer: 7319 case Intrinsic::eh_exceptioncode: { 7320 // Get the exception pointer vreg, copy from it, and resize it to fit. 7321 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7322 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7323 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7324 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7325 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7326 if (Intrinsic == Intrinsic::eh_exceptioncode) 7327 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7328 setValue(&I, N); 7329 return; 7330 } 7331 case Intrinsic::xray_customevent: { 7332 // Here we want to make sure that the intrinsic behaves as if it has a 7333 // specific calling convention. 7334 const auto &Triple = DAG.getTarget().getTargetTriple(); 7335 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7336 return; 7337 7338 SmallVector<SDValue, 8> Ops; 7339 7340 // We want to say that we always want the arguments in registers. 7341 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7342 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7343 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7344 SDValue Chain = getRoot(); 7345 Ops.push_back(LogEntryVal); 7346 Ops.push_back(StrSizeVal); 7347 Ops.push_back(Chain); 7348 7349 // We need to enforce the calling convention for the callsite, so that 7350 // argument ordering is enforced correctly, and that register allocation can 7351 // see that some registers may be assumed clobbered and have to preserve 7352 // them across calls to the intrinsic. 7353 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7354 sdl, NodeTys, Ops); 7355 SDValue patchableNode = SDValue(MN, 0); 7356 DAG.setRoot(patchableNode); 7357 setValue(&I, patchableNode); 7358 return; 7359 } 7360 case Intrinsic::xray_typedevent: { 7361 // Here we want to make sure that the intrinsic behaves as if it has a 7362 // specific calling convention. 7363 const auto &Triple = DAG.getTarget().getTargetTriple(); 7364 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7365 return; 7366 7367 SmallVector<SDValue, 8> Ops; 7368 7369 // We want to say that we always want the arguments in registers. 7370 // It's unclear to me how manipulating the selection DAG here forces callers 7371 // to provide arguments in registers instead of on the stack. 7372 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7373 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7374 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7375 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7376 SDValue Chain = getRoot(); 7377 Ops.push_back(LogTypeId); 7378 Ops.push_back(LogEntryVal); 7379 Ops.push_back(StrSizeVal); 7380 Ops.push_back(Chain); 7381 7382 // We need to enforce the calling convention for the callsite, so that 7383 // argument ordering is enforced correctly, and that register allocation can 7384 // see that some registers may be assumed clobbered and have to preserve 7385 // them across calls to the intrinsic. 7386 MachineSDNode *MN = DAG.getMachineNode( 7387 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7388 SDValue patchableNode = SDValue(MN, 0); 7389 DAG.setRoot(patchableNode); 7390 setValue(&I, patchableNode); 7391 return; 7392 } 7393 case Intrinsic::experimental_deoptimize: 7394 LowerDeoptimizeCall(&I); 7395 return; 7396 case Intrinsic::experimental_stepvector: 7397 visitStepVector(I); 7398 return; 7399 case Intrinsic::vector_reduce_fadd: 7400 case Intrinsic::vector_reduce_fmul: 7401 case Intrinsic::vector_reduce_add: 7402 case Intrinsic::vector_reduce_mul: 7403 case Intrinsic::vector_reduce_and: 7404 case Intrinsic::vector_reduce_or: 7405 case Intrinsic::vector_reduce_xor: 7406 case Intrinsic::vector_reduce_smax: 7407 case Intrinsic::vector_reduce_smin: 7408 case Intrinsic::vector_reduce_umax: 7409 case Intrinsic::vector_reduce_umin: 7410 case Intrinsic::vector_reduce_fmax: 7411 case Intrinsic::vector_reduce_fmin: 7412 case Intrinsic::vector_reduce_fmaximum: 7413 case Intrinsic::vector_reduce_fminimum: 7414 visitVectorReduce(I, Intrinsic); 7415 return; 7416 7417 case Intrinsic::icall_branch_funnel: { 7418 SmallVector<SDValue, 16> Ops; 7419 Ops.push_back(getValue(I.getArgOperand(0))); 7420 7421 int64_t Offset; 7422 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7423 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7424 if (!Base) 7425 report_fatal_error( 7426 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7427 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7428 7429 struct BranchFunnelTarget { 7430 int64_t Offset; 7431 SDValue Target; 7432 }; 7433 SmallVector<BranchFunnelTarget, 8> Targets; 7434 7435 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7436 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7437 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7438 if (ElemBase != Base) 7439 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7440 "to the same GlobalValue"); 7441 7442 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7443 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7444 if (!GA) 7445 report_fatal_error( 7446 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7447 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7448 GA->getGlobal(), sdl, Val.getValueType(), 7449 GA->getOffset())}); 7450 } 7451 llvm::sort(Targets, 7452 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7453 return T1.Offset < T2.Offset; 7454 }); 7455 7456 for (auto &T : Targets) { 7457 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7458 Ops.push_back(T.Target); 7459 } 7460 7461 Ops.push_back(DAG.getRoot()); // Chain 7462 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7463 MVT::Other, Ops), 7464 0); 7465 DAG.setRoot(N); 7466 setValue(&I, N); 7467 HasTailCall = true; 7468 return; 7469 } 7470 7471 case Intrinsic::wasm_landingpad_index: 7472 // Information this intrinsic contained has been transferred to 7473 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7474 // delete it now. 7475 return; 7476 7477 case Intrinsic::aarch64_settag: 7478 case Intrinsic::aarch64_settag_zero: { 7479 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7480 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7481 SDValue Val = TSI.EmitTargetCodeForSetTag( 7482 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7483 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7484 ZeroMemory); 7485 DAG.setRoot(Val); 7486 setValue(&I, Val); 7487 return; 7488 } 7489 case Intrinsic::amdgcn_cs_chain: { 7490 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7491 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7492 "Non-zero flags not supported yet"); 7493 7494 // At this point we don't care if it's amdgpu_cs_chain or 7495 // amdgpu_cs_chain_preserve. 7496 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7497 7498 Type *RetTy = I.getType(); 7499 assert(RetTy->isVoidTy() && "Should not return"); 7500 7501 SDValue Callee = getValue(I.getOperand(0)); 7502 7503 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7504 // We'll also tack the value of the EXEC mask at the end. 7505 TargetLowering::ArgListTy Args; 7506 Args.reserve(3); 7507 7508 for (unsigned Idx : {2, 3, 1}) { 7509 TargetLowering::ArgListEntry Arg; 7510 Arg.Node = getValue(I.getOperand(Idx)); 7511 Arg.Ty = I.getOperand(Idx)->getType(); 7512 Arg.setAttributes(&I, Idx); 7513 Args.push_back(Arg); 7514 } 7515 7516 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7517 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7518 Args[2].IsInReg = true; // EXEC should be inreg 7519 7520 TargetLowering::CallLoweringInfo CLI(DAG); 7521 CLI.setDebugLoc(getCurSDLoc()) 7522 .setChain(getRoot()) 7523 .setCallee(CC, RetTy, Callee, std::move(Args)) 7524 .setNoReturn(true) 7525 .setTailCall(true) 7526 .setConvergent(I.isConvergent()); 7527 CLI.CB = &I; 7528 std::pair<SDValue, SDValue> Result = 7529 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7530 (void)Result; 7531 assert(!Result.first.getNode() && !Result.second.getNode() && 7532 "Should've lowered as tail call"); 7533 7534 HasTailCall = true; 7535 return; 7536 } 7537 case Intrinsic::ptrmask: { 7538 SDValue Ptr = getValue(I.getOperand(0)); 7539 SDValue Mask = getValue(I.getOperand(1)); 7540 7541 EVT PtrVT = Ptr.getValueType(); 7542 assert(PtrVT == Mask.getValueType() && 7543 "Pointers with different index type are not supported by SDAG"); 7544 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7545 return; 7546 } 7547 case Intrinsic::threadlocal_address: { 7548 setValue(&I, getValue(I.getOperand(0))); 7549 return; 7550 } 7551 case Intrinsic::get_active_lane_mask: { 7552 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7553 SDValue Index = getValue(I.getOperand(0)); 7554 EVT ElementVT = Index.getValueType(); 7555 7556 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7557 visitTargetIntrinsic(I, Intrinsic); 7558 return; 7559 } 7560 7561 SDValue TripCount = getValue(I.getOperand(1)); 7562 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7563 CCVT.getVectorElementCount()); 7564 7565 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7566 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7567 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7568 SDValue VectorInduction = DAG.getNode( 7569 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7570 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7571 VectorTripCount, ISD::CondCode::SETULT); 7572 setValue(&I, SetCC); 7573 return; 7574 } 7575 case Intrinsic::experimental_get_vector_length: { 7576 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7577 "Expected positive VF"); 7578 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7579 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7580 7581 SDValue Count = getValue(I.getOperand(0)); 7582 EVT CountVT = Count.getValueType(); 7583 7584 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7585 visitTargetIntrinsic(I, Intrinsic); 7586 return; 7587 } 7588 7589 // Expand to a umin between the trip count and the maximum elements the type 7590 // can hold. 7591 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7592 7593 // Extend the trip count to at least the result VT. 7594 if (CountVT.bitsLT(VT)) { 7595 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7596 CountVT = VT; 7597 } 7598 7599 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7600 ElementCount::get(VF, IsScalable)); 7601 7602 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7603 // Clip to the result type if needed. 7604 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7605 7606 setValue(&I, Trunc); 7607 return; 7608 } 7609 case Intrinsic::experimental_cttz_elts: { 7610 auto DL = getCurSDLoc(); 7611 SDValue Op = getValue(I.getOperand(0)); 7612 EVT OpVT = Op.getValueType(); 7613 7614 if (!TLI.shouldExpandCttzElements(OpVT)) { 7615 visitTargetIntrinsic(I, Intrinsic); 7616 return; 7617 } 7618 7619 if (OpVT.getScalarType() != MVT::i1) { 7620 // Compare the input vector elements to zero & use to count trailing zeros 7621 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7622 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7623 OpVT.getVectorElementCount()); 7624 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7625 } 7626 7627 // Find the smallest "sensible" element type to use for the expansion. 7628 ConstantRange CR( 7629 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7630 if (OpVT.isScalableVT()) 7631 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7632 7633 // If the zero-is-poison flag is set, we can assume the upper limit 7634 // of the result is VF-1. 7635 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7636 CR = CR.subtract(APInt(64, 1)); 7637 7638 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7639 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7640 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7641 7642 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7643 7644 // Create the new vector type & get the vector length 7645 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7646 OpVT.getVectorElementCount()); 7647 7648 SDValue VL = 7649 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7650 7651 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7652 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7653 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7654 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7655 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7656 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7657 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7658 7659 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7660 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7661 7662 setValue(&I, Ret); 7663 return; 7664 } 7665 case Intrinsic::vector_insert: { 7666 SDValue Vec = getValue(I.getOperand(0)); 7667 SDValue SubVec = getValue(I.getOperand(1)); 7668 SDValue Index = getValue(I.getOperand(2)); 7669 7670 // The intrinsic's index type is i64, but the SDNode requires an index type 7671 // suitable for the target. Convert the index as required. 7672 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7673 if (Index.getValueType() != VectorIdxTy) 7674 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7675 7676 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7677 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7678 Index)); 7679 return; 7680 } 7681 case Intrinsic::vector_extract: { 7682 SDValue Vec = getValue(I.getOperand(0)); 7683 SDValue Index = getValue(I.getOperand(1)); 7684 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7685 7686 // The intrinsic's index type is i64, but the SDNode requires an index type 7687 // suitable for the target. Convert the index as required. 7688 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7689 if (Index.getValueType() != VectorIdxTy) 7690 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7691 7692 setValue(&I, 7693 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7694 return; 7695 } 7696 case Intrinsic::experimental_vector_reverse: 7697 visitVectorReverse(I); 7698 return; 7699 case Intrinsic::experimental_vector_splice: 7700 visitVectorSplice(I); 7701 return; 7702 case Intrinsic::callbr_landingpad: 7703 visitCallBrLandingPad(I); 7704 return; 7705 case Intrinsic::experimental_vector_interleave2: 7706 visitVectorInterleave(I); 7707 return; 7708 case Intrinsic::experimental_vector_deinterleave2: 7709 visitVectorDeinterleave(I); 7710 return; 7711 } 7712 } 7713 7714 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7715 const ConstrainedFPIntrinsic &FPI) { 7716 SDLoc sdl = getCurSDLoc(); 7717 7718 // We do not need to serialize constrained FP intrinsics against 7719 // each other or against (nonvolatile) loads, so they can be 7720 // chained like loads. 7721 SDValue Chain = DAG.getRoot(); 7722 SmallVector<SDValue, 4> Opers; 7723 Opers.push_back(Chain); 7724 if (FPI.isUnaryOp()) { 7725 Opers.push_back(getValue(FPI.getArgOperand(0))); 7726 } else if (FPI.isTernaryOp()) { 7727 Opers.push_back(getValue(FPI.getArgOperand(0))); 7728 Opers.push_back(getValue(FPI.getArgOperand(1))); 7729 Opers.push_back(getValue(FPI.getArgOperand(2))); 7730 } else { 7731 Opers.push_back(getValue(FPI.getArgOperand(0))); 7732 Opers.push_back(getValue(FPI.getArgOperand(1))); 7733 } 7734 7735 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7736 assert(Result.getNode()->getNumValues() == 2); 7737 7738 // Push node to the appropriate list so that future instructions can be 7739 // chained up correctly. 7740 SDValue OutChain = Result.getValue(1); 7741 switch (EB) { 7742 case fp::ExceptionBehavior::ebIgnore: 7743 // The only reason why ebIgnore nodes still need to be chained is that 7744 // they might depend on the current rounding mode, and therefore must 7745 // not be moved across instruction that may change that mode. 7746 [[fallthrough]]; 7747 case fp::ExceptionBehavior::ebMayTrap: 7748 // These must not be moved across calls or instructions that may change 7749 // floating-point exception masks. 7750 PendingConstrainedFP.push_back(OutChain); 7751 break; 7752 case fp::ExceptionBehavior::ebStrict: 7753 // These must not be moved across calls or instructions that may change 7754 // floating-point exception masks or read floating-point exception flags. 7755 // In addition, they cannot be optimized out even if unused. 7756 PendingConstrainedFPStrict.push_back(OutChain); 7757 break; 7758 } 7759 }; 7760 7761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7762 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7763 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7764 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7765 7766 SDNodeFlags Flags; 7767 if (EB == fp::ExceptionBehavior::ebIgnore) 7768 Flags.setNoFPExcept(true); 7769 7770 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7771 Flags.copyFMF(*FPOp); 7772 7773 unsigned Opcode; 7774 switch (FPI.getIntrinsicID()) { 7775 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7776 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7777 case Intrinsic::INTRINSIC: \ 7778 Opcode = ISD::STRICT_##DAGN; \ 7779 break; 7780 #include "llvm/IR/ConstrainedOps.def" 7781 case Intrinsic::experimental_constrained_fmuladd: { 7782 Opcode = ISD::STRICT_FMA; 7783 // Break fmuladd into fmul and fadd. 7784 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7785 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7786 Opers.pop_back(); 7787 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7788 pushOutChain(Mul, EB); 7789 Opcode = ISD::STRICT_FADD; 7790 Opers.clear(); 7791 Opers.push_back(Mul.getValue(1)); 7792 Opers.push_back(Mul.getValue(0)); 7793 Opers.push_back(getValue(FPI.getArgOperand(2))); 7794 } 7795 break; 7796 } 7797 } 7798 7799 // A few strict DAG nodes carry additional operands that are not 7800 // set up by the default code above. 7801 switch (Opcode) { 7802 default: break; 7803 case ISD::STRICT_FP_ROUND: 7804 Opers.push_back( 7805 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7806 break; 7807 case ISD::STRICT_FSETCC: 7808 case ISD::STRICT_FSETCCS: { 7809 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7810 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7811 if (TM.Options.NoNaNsFPMath) 7812 Condition = getFCmpCodeWithoutNaN(Condition); 7813 Opers.push_back(DAG.getCondCode(Condition)); 7814 break; 7815 } 7816 } 7817 7818 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7819 pushOutChain(Result, EB); 7820 7821 SDValue FPResult = Result.getValue(0); 7822 setValue(&FPI, FPResult); 7823 } 7824 7825 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7826 std::optional<unsigned> ResOPC; 7827 switch (VPIntrin.getIntrinsicID()) { 7828 case Intrinsic::vp_ctlz: { 7829 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7830 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7831 break; 7832 } 7833 case Intrinsic::vp_cttz: { 7834 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7835 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7836 break; 7837 } 7838 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7839 case Intrinsic::VPID: \ 7840 ResOPC = ISD::VPSD; \ 7841 break; 7842 #include "llvm/IR/VPIntrinsics.def" 7843 } 7844 7845 if (!ResOPC) 7846 llvm_unreachable( 7847 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7848 7849 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7850 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7851 if (VPIntrin.getFastMathFlags().allowReassoc()) 7852 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7853 : ISD::VP_REDUCE_FMUL; 7854 } 7855 7856 return *ResOPC; 7857 } 7858 7859 void SelectionDAGBuilder::visitVPLoad( 7860 const VPIntrinsic &VPIntrin, EVT VT, 7861 const SmallVectorImpl<SDValue> &OpValues) { 7862 SDLoc DL = getCurSDLoc(); 7863 Value *PtrOperand = VPIntrin.getArgOperand(0); 7864 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7865 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7866 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7867 SDValue LD; 7868 // Do not serialize variable-length loads of constant memory with 7869 // anything. 7870 if (!Alignment) 7871 Alignment = DAG.getEVTAlign(VT); 7872 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7873 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7874 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7875 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7876 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7877 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7878 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7879 MMO, false /*IsExpanding */); 7880 if (AddToChain) 7881 PendingLoads.push_back(LD.getValue(1)); 7882 setValue(&VPIntrin, LD); 7883 } 7884 7885 void SelectionDAGBuilder::visitVPGather( 7886 const VPIntrinsic &VPIntrin, EVT VT, 7887 const SmallVectorImpl<SDValue> &OpValues) { 7888 SDLoc DL = getCurSDLoc(); 7889 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7890 Value *PtrOperand = VPIntrin.getArgOperand(0); 7891 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7892 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7893 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7894 SDValue LD; 7895 if (!Alignment) 7896 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7897 unsigned AS = 7898 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7899 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7900 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7901 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7902 SDValue Base, Index, Scale; 7903 ISD::MemIndexType IndexType; 7904 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7905 this, VPIntrin.getParent(), 7906 VT.getScalarStoreSize()); 7907 if (!UniformBase) { 7908 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7909 Index = getValue(PtrOperand); 7910 IndexType = ISD::SIGNED_SCALED; 7911 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7912 } 7913 EVT IdxVT = Index.getValueType(); 7914 EVT EltTy = IdxVT.getVectorElementType(); 7915 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7916 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7917 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7918 } 7919 LD = DAG.getGatherVP( 7920 DAG.getVTList(VT, MVT::Other), VT, DL, 7921 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7922 IndexType); 7923 PendingLoads.push_back(LD.getValue(1)); 7924 setValue(&VPIntrin, LD); 7925 } 7926 7927 void SelectionDAGBuilder::visitVPStore( 7928 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7929 SDLoc DL = getCurSDLoc(); 7930 Value *PtrOperand = VPIntrin.getArgOperand(1); 7931 EVT VT = OpValues[0].getValueType(); 7932 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7933 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7934 SDValue ST; 7935 if (!Alignment) 7936 Alignment = DAG.getEVTAlign(VT); 7937 SDValue Ptr = OpValues[1]; 7938 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7939 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7940 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7941 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7942 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7943 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7944 /* IsTruncating */ false, /*IsCompressing*/ false); 7945 DAG.setRoot(ST); 7946 setValue(&VPIntrin, ST); 7947 } 7948 7949 void SelectionDAGBuilder::visitVPScatter( 7950 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7951 SDLoc DL = getCurSDLoc(); 7952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7953 Value *PtrOperand = VPIntrin.getArgOperand(1); 7954 EVT VT = OpValues[0].getValueType(); 7955 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7956 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7957 SDValue ST; 7958 if (!Alignment) 7959 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7960 unsigned AS = 7961 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7962 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7963 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7964 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7965 SDValue Base, Index, Scale; 7966 ISD::MemIndexType IndexType; 7967 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7968 this, VPIntrin.getParent(), 7969 VT.getScalarStoreSize()); 7970 if (!UniformBase) { 7971 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7972 Index = getValue(PtrOperand); 7973 IndexType = ISD::SIGNED_SCALED; 7974 Scale = 7975 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7976 } 7977 EVT IdxVT = Index.getValueType(); 7978 EVT EltTy = IdxVT.getVectorElementType(); 7979 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7980 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7981 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7982 } 7983 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7984 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7985 OpValues[2], OpValues[3]}, 7986 MMO, IndexType); 7987 DAG.setRoot(ST); 7988 setValue(&VPIntrin, ST); 7989 } 7990 7991 void SelectionDAGBuilder::visitVPStridedLoad( 7992 const VPIntrinsic &VPIntrin, EVT VT, 7993 const SmallVectorImpl<SDValue> &OpValues) { 7994 SDLoc DL = getCurSDLoc(); 7995 Value *PtrOperand = VPIntrin.getArgOperand(0); 7996 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7997 if (!Alignment) 7998 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7999 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8000 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8001 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8002 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8003 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8004 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8005 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8006 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 8007 8008 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8009 OpValues[2], OpValues[3], MMO, 8010 false /*IsExpanding*/); 8011 8012 if (AddToChain) 8013 PendingLoads.push_back(LD.getValue(1)); 8014 setValue(&VPIntrin, LD); 8015 } 8016 8017 void SelectionDAGBuilder::visitVPStridedStore( 8018 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8019 SDLoc DL = getCurSDLoc(); 8020 Value *PtrOperand = VPIntrin.getArgOperand(1); 8021 EVT VT = OpValues[0].getValueType(); 8022 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8023 if (!Alignment) 8024 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8025 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8026 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8027 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8028 MemoryLocation::UnknownSize, *Alignment, AAInfo); 8029 8030 SDValue ST = DAG.getStridedStoreVP( 8031 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8032 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8033 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8034 /*IsCompressing*/ false); 8035 8036 DAG.setRoot(ST); 8037 setValue(&VPIntrin, ST); 8038 } 8039 8040 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8042 SDLoc DL = getCurSDLoc(); 8043 8044 ISD::CondCode Condition; 8045 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8046 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8047 if (IsFP) { 8048 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8049 // flags, but calls that don't return floating-point types can't be 8050 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8051 Condition = getFCmpCondCode(CondCode); 8052 if (TM.Options.NoNaNsFPMath) 8053 Condition = getFCmpCodeWithoutNaN(Condition); 8054 } else { 8055 Condition = getICmpCondCode(CondCode); 8056 } 8057 8058 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8059 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8060 // #2 is the condition code 8061 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8062 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8063 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8064 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8065 "Unexpected target EVL type"); 8066 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8067 8068 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8069 VPIntrin.getType()); 8070 setValue(&VPIntrin, 8071 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8072 } 8073 8074 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8075 const VPIntrinsic &VPIntrin) { 8076 SDLoc DL = getCurSDLoc(); 8077 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8078 8079 auto IID = VPIntrin.getIntrinsicID(); 8080 8081 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8082 return visitVPCmp(*CmpI); 8083 8084 SmallVector<EVT, 4> ValueVTs; 8085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8086 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8087 SDVTList VTs = DAG.getVTList(ValueVTs); 8088 8089 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8090 8091 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8092 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8093 "Unexpected target EVL type"); 8094 8095 // Request operands. 8096 SmallVector<SDValue, 7> OpValues; 8097 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8098 auto Op = getValue(VPIntrin.getArgOperand(I)); 8099 if (I == EVLParamPos) 8100 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8101 OpValues.push_back(Op); 8102 } 8103 8104 switch (Opcode) { 8105 default: { 8106 SDNodeFlags SDFlags; 8107 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8108 SDFlags.copyFMF(*FPMO); 8109 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8110 setValue(&VPIntrin, Result); 8111 break; 8112 } 8113 case ISD::VP_LOAD: 8114 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8115 break; 8116 case ISD::VP_GATHER: 8117 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8118 break; 8119 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8120 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8121 break; 8122 case ISD::VP_STORE: 8123 visitVPStore(VPIntrin, OpValues); 8124 break; 8125 case ISD::VP_SCATTER: 8126 visitVPScatter(VPIntrin, OpValues); 8127 break; 8128 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8129 visitVPStridedStore(VPIntrin, OpValues); 8130 break; 8131 case ISD::VP_FMULADD: { 8132 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8133 SDNodeFlags SDFlags; 8134 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8135 SDFlags.copyFMF(*FPMO); 8136 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8137 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8138 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8139 } else { 8140 SDValue Mul = DAG.getNode( 8141 ISD::VP_FMUL, DL, VTs, 8142 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8143 SDValue Add = 8144 DAG.getNode(ISD::VP_FADD, DL, VTs, 8145 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8146 setValue(&VPIntrin, Add); 8147 } 8148 break; 8149 } 8150 case ISD::VP_IS_FPCLASS: { 8151 const DataLayout DLayout = DAG.getDataLayout(); 8152 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8153 auto Constant = OpValues[1]->getAsZExtVal(); 8154 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8155 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8156 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8157 setValue(&VPIntrin, V); 8158 return; 8159 } 8160 case ISD::VP_INTTOPTR: { 8161 SDValue N = OpValues[0]; 8162 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8163 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8164 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8165 OpValues[2]); 8166 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8167 OpValues[2]); 8168 setValue(&VPIntrin, N); 8169 break; 8170 } 8171 case ISD::VP_PTRTOINT: { 8172 SDValue N = OpValues[0]; 8173 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8174 VPIntrin.getType()); 8175 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8176 VPIntrin.getOperand(0)->getType()); 8177 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8178 OpValues[2]); 8179 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8180 OpValues[2]); 8181 setValue(&VPIntrin, N); 8182 break; 8183 } 8184 case ISD::VP_ABS: 8185 case ISD::VP_CTLZ: 8186 case ISD::VP_CTLZ_ZERO_UNDEF: 8187 case ISD::VP_CTTZ: 8188 case ISD::VP_CTTZ_ZERO_UNDEF: { 8189 SDValue Result = 8190 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8191 setValue(&VPIntrin, Result); 8192 break; 8193 } 8194 } 8195 } 8196 8197 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8198 const BasicBlock *EHPadBB, 8199 MCSymbol *&BeginLabel) { 8200 MachineFunction &MF = DAG.getMachineFunction(); 8201 MachineModuleInfo &MMI = MF.getMMI(); 8202 8203 // Insert a label before the invoke call to mark the try range. This can be 8204 // used to detect deletion of the invoke via the MachineModuleInfo. 8205 BeginLabel = MMI.getContext().createTempSymbol(); 8206 8207 // For SjLj, keep track of which landing pads go with which invokes 8208 // so as to maintain the ordering of pads in the LSDA. 8209 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8210 if (CallSiteIndex) { 8211 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8212 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8213 8214 // Now that the call site is handled, stop tracking it. 8215 MMI.setCurrentCallSite(0); 8216 } 8217 8218 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8219 } 8220 8221 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8222 const BasicBlock *EHPadBB, 8223 MCSymbol *BeginLabel) { 8224 assert(BeginLabel && "BeginLabel should've been set"); 8225 8226 MachineFunction &MF = DAG.getMachineFunction(); 8227 MachineModuleInfo &MMI = MF.getMMI(); 8228 8229 // Insert a label at the end of the invoke call to mark the try range. This 8230 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8231 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8232 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8233 8234 // Inform MachineModuleInfo of range. 8235 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8236 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8237 // actually use outlined funclets and their LSDA info style. 8238 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8239 assert(II && "II should've been set"); 8240 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8241 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8242 } else if (!isScopedEHPersonality(Pers)) { 8243 assert(EHPadBB); 8244 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8245 } 8246 8247 return Chain; 8248 } 8249 8250 std::pair<SDValue, SDValue> 8251 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8252 const BasicBlock *EHPadBB) { 8253 MCSymbol *BeginLabel = nullptr; 8254 8255 if (EHPadBB) { 8256 // Both PendingLoads and PendingExports must be flushed here; 8257 // this call might not return. 8258 (void)getRoot(); 8259 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8260 CLI.setChain(getRoot()); 8261 } 8262 8263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8264 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8265 8266 assert((CLI.IsTailCall || Result.second.getNode()) && 8267 "Non-null chain expected with non-tail call!"); 8268 assert((Result.second.getNode() || !Result.first.getNode()) && 8269 "Null value expected with tail call!"); 8270 8271 if (!Result.second.getNode()) { 8272 // As a special case, a null chain means that a tail call has been emitted 8273 // and the DAG root is already updated. 8274 HasTailCall = true; 8275 8276 // Since there's no actual continuation from this block, nothing can be 8277 // relying on us setting vregs for them. 8278 PendingExports.clear(); 8279 } else { 8280 DAG.setRoot(Result.second); 8281 } 8282 8283 if (EHPadBB) { 8284 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8285 BeginLabel)); 8286 } 8287 8288 return Result; 8289 } 8290 8291 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8292 bool isTailCall, 8293 bool isMustTailCall, 8294 const BasicBlock *EHPadBB) { 8295 auto &DL = DAG.getDataLayout(); 8296 FunctionType *FTy = CB.getFunctionType(); 8297 Type *RetTy = CB.getType(); 8298 8299 TargetLowering::ArgListTy Args; 8300 Args.reserve(CB.arg_size()); 8301 8302 const Value *SwiftErrorVal = nullptr; 8303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8304 8305 if (isTailCall) { 8306 // Avoid emitting tail calls in functions with the disable-tail-calls 8307 // attribute. 8308 auto *Caller = CB.getParent()->getParent(); 8309 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8310 "true" && !isMustTailCall) 8311 isTailCall = false; 8312 8313 // We can't tail call inside a function with a swifterror argument. Lowering 8314 // does not support this yet. It would have to move into the swifterror 8315 // register before the call. 8316 if (TLI.supportSwiftError() && 8317 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8318 isTailCall = false; 8319 } 8320 8321 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8322 TargetLowering::ArgListEntry Entry; 8323 const Value *V = *I; 8324 8325 // Skip empty types 8326 if (V->getType()->isEmptyTy()) 8327 continue; 8328 8329 SDValue ArgNode = getValue(V); 8330 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8331 8332 Entry.setAttributes(&CB, I - CB.arg_begin()); 8333 8334 // Use swifterror virtual register as input to the call. 8335 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8336 SwiftErrorVal = V; 8337 // We find the virtual register for the actual swifterror argument. 8338 // Instead of using the Value, we use the virtual register instead. 8339 Entry.Node = 8340 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8341 EVT(TLI.getPointerTy(DL))); 8342 } 8343 8344 Args.push_back(Entry); 8345 8346 // If we have an explicit sret argument that is an Instruction, (i.e., it 8347 // might point to function-local memory), we can't meaningfully tail-call. 8348 if (Entry.IsSRet && isa<Instruction>(V)) 8349 isTailCall = false; 8350 } 8351 8352 // If call site has a cfguardtarget operand bundle, create and add an 8353 // additional ArgListEntry. 8354 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8355 TargetLowering::ArgListEntry Entry; 8356 Value *V = Bundle->Inputs[0]; 8357 SDValue ArgNode = getValue(V); 8358 Entry.Node = ArgNode; 8359 Entry.Ty = V->getType(); 8360 Entry.IsCFGuardTarget = true; 8361 Args.push_back(Entry); 8362 } 8363 8364 // Check if target-independent constraints permit a tail call here. 8365 // Target-dependent constraints are checked within TLI->LowerCallTo. 8366 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8367 isTailCall = false; 8368 8369 // Disable tail calls if there is an swifterror argument. Targets have not 8370 // been updated to support tail calls. 8371 if (TLI.supportSwiftError() && SwiftErrorVal) 8372 isTailCall = false; 8373 8374 ConstantInt *CFIType = nullptr; 8375 if (CB.isIndirectCall()) { 8376 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8377 if (!TLI.supportKCFIBundles()) 8378 report_fatal_error( 8379 "Target doesn't support calls with kcfi operand bundles."); 8380 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8381 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8382 } 8383 } 8384 8385 TargetLowering::CallLoweringInfo CLI(DAG); 8386 CLI.setDebugLoc(getCurSDLoc()) 8387 .setChain(getRoot()) 8388 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8389 .setTailCall(isTailCall) 8390 .setConvergent(CB.isConvergent()) 8391 .setIsPreallocated( 8392 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8393 .setCFIType(CFIType); 8394 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8395 8396 if (Result.first.getNode()) { 8397 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8398 setValue(&CB, Result.first); 8399 } 8400 8401 // The last element of CLI.InVals has the SDValue for swifterror return. 8402 // Here we copy it to a virtual register and update SwiftErrorMap for 8403 // book-keeping. 8404 if (SwiftErrorVal && TLI.supportSwiftError()) { 8405 // Get the last element of InVals. 8406 SDValue Src = CLI.InVals.back(); 8407 Register VReg = 8408 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8409 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8410 DAG.setRoot(CopyNode); 8411 } 8412 } 8413 8414 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8415 SelectionDAGBuilder &Builder) { 8416 // Check to see if this load can be trivially constant folded, e.g. if the 8417 // input is from a string literal. 8418 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8419 // Cast pointer to the type we really want to load. 8420 Type *LoadTy = 8421 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8422 if (LoadVT.isVector()) 8423 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8424 8425 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8426 PointerType::getUnqual(LoadTy)); 8427 8428 if (const Constant *LoadCst = 8429 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8430 LoadTy, Builder.DAG.getDataLayout())) 8431 return Builder.getValue(LoadCst); 8432 } 8433 8434 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8435 // still constant memory, the input chain can be the entry node. 8436 SDValue Root; 8437 bool ConstantMemory = false; 8438 8439 // Do not serialize (non-volatile) loads of constant memory with anything. 8440 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8441 Root = Builder.DAG.getEntryNode(); 8442 ConstantMemory = true; 8443 } else { 8444 // Do not serialize non-volatile loads against each other. 8445 Root = Builder.DAG.getRoot(); 8446 } 8447 8448 SDValue Ptr = Builder.getValue(PtrVal); 8449 SDValue LoadVal = 8450 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8451 MachinePointerInfo(PtrVal), Align(1)); 8452 8453 if (!ConstantMemory) 8454 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8455 return LoadVal; 8456 } 8457 8458 /// Record the value for an instruction that produces an integer result, 8459 /// converting the type where necessary. 8460 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8461 SDValue Value, 8462 bool IsSigned) { 8463 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8464 I.getType(), true); 8465 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8466 setValue(&I, Value); 8467 } 8468 8469 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8470 /// true and lower it. Otherwise return false, and it will be lowered like a 8471 /// normal call. 8472 /// The caller already checked that \p I calls the appropriate LibFunc with a 8473 /// correct prototype. 8474 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8475 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8476 const Value *Size = I.getArgOperand(2); 8477 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8478 if (CSize && CSize->getZExtValue() == 0) { 8479 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8480 I.getType(), true); 8481 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8482 return true; 8483 } 8484 8485 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8486 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8487 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8488 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8489 if (Res.first.getNode()) { 8490 processIntegerCallValue(I, Res.first, true); 8491 PendingLoads.push_back(Res.second); 8492 return true; 8493 } 8494 8495 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8496 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8497 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8498 return false; 8499 8500 // If the target has a fast compare for the given size, it will return a 8501 // preferred load type for that size. Require that the load VT is legal and 8502 // that the target supports unaligned loads of that type. Otherwise, return 8503 // INVALID. 8504 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8506 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8507 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8508 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8509 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8510 // TODO: Check alignment of src and dest ptrs. 8511 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8512 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8513 if (!TLI.isTypeLegal(LVT) || 8514 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8515 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8516 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8517 } 8518 8519 return LVT; 8520 }; 8521 8522 // This turns into unaligned loads. We only do this if the target natively 8523 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8524 // we'll only produce a small number of byte loads. 8525 MVT LoadVT; 8526 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8527 switch (NumBitsToCompare) { 8528 default: 8529 return false; 8530 case 16: 8531 LoadVT = MVT::i16; 8532 break; 8533 case 32: 8534 LoadVT = MVT::i32; 8535 break; 8536 case 64: 8537 case 128: 8538 case 256: 8539 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8540 break; 8541 } 8542 8543 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8544 return false; 8545 8546 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8547 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8548 8549 // Bitcast to a wide integer type if the loads are vectors. 8550 if (LoadVT.isVector()) { 8551 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8552 LoadL = DAG.getBitcast(CmpVT, LoadL); 8553 LoadR = DAG.getBitcast(CmpVT, LoadR); 8554 } 8555 8556 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8557 processIntegerCallValue(I, Cmp, false); 8558 return true; 8559 } 8560 8561 /// See if we can lower a memchr call into an optimized form. If so, return 8562 /// true and lower it. Otherwise return false, and it will be lowered like a 8563 /// normal call. 8564 /// The caller already checked that \p I calls the appropriate LibFunc with a 8565 /// correct prototype. 8566 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8567 const Value *Src = I.getArgOperand(0); 8568 const Value *Char = I.getArgOperand(1); 8569 const Value *Length = I.getArgOperand(2); 8570 8571 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8572 std::pair<SDValue, SDValue> Res = 8573 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8574 getValue(Src), getValue(Char), getValue(Length), 8575 MachinePointerInfo(Src)); 8576 if (Res.first.getNode()) { 8577 setValue(&I, Res.first); 8578 PendingLoads.push_back(Res.second); 8579 return true; 8580 } 8581 8582 return false; 8583 } 8584 8585 /// See if we can lower a mempcpy call into an optimized form. If so, return 8586 /// true and lower it. Otherwise return false, and it will be lowered like a 8587 /// normal call. 8588 /// The caller already checked that \p I calls the appropriate LibFunc with a 8589 /// correct prototype. 8590 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8591 SDValue Dst = getValue(I.getArgOperand(0)); 8592 SDValue Src = getValue(I.getArgOperand(1)); 8593 SDValue Size = getValue(I.getArgOperand(2)); 8594 8595 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8596 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8597 // DAG::getMemcpy needs Alignment to be defined. 8598 Align Alignment = std::min(DstAlign, SrcAlign); 8599 8600 SDLoc sdl = getCurSDLoc(); 8601 8602 // In the mempcpy context we need to pass in a false value for isTailCall 8603 // because the return pointer needs to be adjusted by the size of 8604 // the copied memory. 8605 SDValue Root = getMemoryRoot(); 8606 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8607 /*isTailCall=*/false, 8608 MachinePointerInfo(I.getArgOperand(0)), 8609 MachinePointerInfo(I.getArgOperand(1)), 8610 I.getAAMetadata()); 8611 assert(MC.getNode() != nullptr && 8612 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8613 DAG.setRoot(MC); 8614 8615 // Check if Size needs to be truncated or extended. 8616 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8617 8618 // Adjust return pointer to point just past the last dst byte. 8619 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8620 Dst, Size); 8621 setValue(&I, DstPlusSize); 8622 return true; 8623 } 8624 8625 /// See if we can lower a strcpy call into an optimized form. If so, return 8626 /// true and lower it, otherwise return false and it will be lowered like a 8627 /// normal call. 8628 /// The caller already checked that \p I calls the appropriate LibFunc with a 8629 /// correct prototype. 8630 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8631 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8632 8633 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8634 std::pair<SDValue, SDValue> Res = 8635 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8636 getValue(Arg0), getValue(Arg1), 8637 MachinePointerInfo(Arg0), 8638 MachinePointerInfo(Arg1), isStpcpy); 8639 if (Res.first.getNode()) { 8640 setValue(&I, Res.first); 8641 DAG.setRoot(Res.second); 8642 return true; 8643 } 8644 8645 return false; 8646 } 8647 8648 /// See if we can lower a strcmp call into an optimized form. If so, return 8649 /// true and lower it, otherwise return false and it will be lowered like a 8650 /// normal call. 8651 /// The caller already checked that \p I calls the appropriate LibFunc with a 8652 /// correct prototype. 8653 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8654 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8655 8656 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8657 std::pair<SDValue, SDValue> Res = 8658 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8659 getValue(Arg0), getValue(Arg1), 8660 MachinePointerInfo(Arg0), 8661 MachinePointerInfo(Arg1)); 8662 if (Res.first.getNode()) { 8663 processIntegerCallValue(I, Res.first, true); 8664 PendingLoads.push_back(Res.second); 8665 return true; 8666 } 8667 8668 return false; 8669 } 8670 8671 /// See if we can lower a strlen call into an optimized form. If so, return 8672 /// true and lower it, otherwise return false and it will be lowered like a 8673 /// normal call. 8674 /// The caller already checked that \p I calls the appropriate LibFunc with a 8675 /// correct prototype. 8676 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8677 const Value *Arg0 = I.getArgOperand(0); 8678 8679 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8680 std::pair<SDValue, SDValue> Res = 8681 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8682 getValue(Arg0), MachinePointerInfo(Arg0)); 8683 if (Res.first.getNode()) { 8684 processIntegerCallValue(I, Res.first, false); 8685 PendingLoads.push_back(Res.second); 8686 return true; 8687 } 8688 8689 return false; 8690 } 8691 8692 /// See if we can lower a strnlen call into an optimized form. If so, return 8693 /// true and lower it, otherwise return false and it will be lowered like a 8694 /// normal call. 8695 /// The caller already checked that \p I calls the appropriate LibFunc with a 8696 /// correct prototype. 8697 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8698 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8699 8700 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8701 std::pair<SDValue, SDValue> Res = 8702 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8703 getValue(Arg0), getValue(Arg1), 8704 MachinePointerInfo(Arg0)); 8705 if (Res.first.getNode()) { 8706 processIntegerCallValue(I, Res.first, false); 8707 PendingLoads.push_back(Res.second); 8708 return true; 8709 } 8710 8711 return false; 8712 } 8713 8714 /// See if we can lower a unary floating-point operation into an SDNode with 8715 /// the specified Opcode. If so, return true and lower it, otherwise return 8716 /// false and it will be lowered like a normal call. 8717 /// The caller already checked that \p I calls the appropriate LibFunc with a 8718 /// correct prototype. 8719 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8720 unsigned Opcode) { 8721 // We already checked this call's prototype; verify it doesn't modify errno. 8722 if (!I.onlyReadsMemory()) 8723 return false; 8724 8725 SDNodeFlags Flags; 8726 Flags.copyFMF(cast<FPMathOperator>(I)); 8727 8728 SDValue Tmp = getValue(I.getArgOperand(0)); 8729 setValue(&I, 8730 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8731 return true; 8732 } 8733 8734 /// See if we can lower a binary floating-point operation into an SDNode with 8735 /// the specified Opcode. If so, return true and lower it. Otherwise return 8736 /// false, and it will be lowered like a normal call. 8737 /// The caller already checked that \p I calls the appropriate LibFunc with a 8738 /// correct prototype. 8739 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8740 unsigned Opcode) { 8741 // We already checked this call's prototype; verify it doesn't modify errno. 8742 if (!I.onlyReadsMemory()) 8743 return false; 8744 8745 SDNodeFlags Flags; 8746 Flags.copyFMF(cast<FPMathOperator>(I)); 8747 8748 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8749 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8750 EVT VT = Tmp0.getValueType(); 8751 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8752 return true; 8753 } 8754 8755 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8756 // Handle inline assembly differently. 8757 if (I.isInlineAsm()) { 8758 visitInlineAsm(I); 8759 return; 8760 } 8761 8762 diagnoseDontCall(I); 8763 8764 if (Function *F = I.getCalledFunction()) { 8765 if (F->isDeclaration()) { 8766 // Is this an LLVM intrinsic or a target-specific intrinsic? 8767 unsigned IID = F->getIntrinsicID(); 8768 if (!IID) 8769 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8770 IID = II->getIntrinsicID(F); 8771 8772 if (IID) { 8773 visitIntrinsicCall(I, IID); 8774 return; 8775 } 8776 } 8777 8778 // Check for well-known libc/libm calls. If the function is internal, it 8779 // can't be a library call. Don't do the check if marked as nobuiltin for 8780 // some reason or the call site requires strict floating point semantics. 8781 LibFunc Func; 8782 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8783 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8784 LibInfo->hasOptimizedCodeGen(Func)) { 8785 switch (Func) { 8786 default: break; 8787 case LibFunc_bcmp: 8788 if (visitMemCmpBCmpCall(I)) 8789 return; 8790 break; 8791 case LibFunc_copysign: 8792 case LibFunc_copysignf: 8793 case LibFunc_copysignl: 8794 // We already checked this call's prototype; verify it doesn't modify 8795 // errno. 8796 if (I.onlyReadsMemory()) { 8797 SDValue LHS = getValue(I.getArgOperand(0)); 8798 SDValue RHS = getValue(I.getArgOperand(1)); 8799 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8800 LHS.getValueType(), LHS, RHS)); 8801 return; 8802 } 8803 break; 8804 case LibFunc_fabs: 8805 case LibFunc_fabsf: 8806 case LibFunc_fabsl: 8807 if (visitUnaryFloatCall(I, ISD::FABS)) 8808 return; 8809 break; 8810 case LibFunc_fmin: 8811 case LibFunc_fminf: 8812 case LibFunc_fminl: 8813 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8814 return; 8815 break; 8816 case LibFunc_fmax: 8817 case LibFunc_fmaxf: 8818 case LibFunc_fmaxl: 8819 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8820 return; 8821 break; 8822 case LibFunc_sin: 8823 case LibFunc_sinf: 8824 case LibFunc_sinl: 8825 if (visitUnaryFloatCall(I, ISD::FSIN)) 8826 return; 8827 break; 8828 case LibFunc_cos: 8829 case LibFunc_cosf: 8830 case LibFunc_cosl: 8831 if (visitUnaryFloatCall(I, ISD::FCOS)) 8832 return; 8833 break; 8834 case LibFunc_sqrt: 8835 case LibFunc_sqrtf: 8836 case LibFunc_sqrtl: 8837 case LibFunc_sqrt_finite: 8838 case LibFunc_sqrtf_finite: 8839 case LibFunc_sqrtl_finite: 8840 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8841 return; 8842 break; 8843 case LibFunc_floor: 8844 case LibFunc_floorf: 8845 case LibFunc_floorl: 8846 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8847 return; 8848 break; 8849 case LibFunc_nearbyint: 8850 case LibFunc_nearbyintf: 8851 case LibFunc_nearbyintl: 8852 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8853 return; 8854 break; 8855 case LibFunc_ceil: 8856 case LibFunc_ceilf: 8857 case LibFunc_ceill: 8858 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8859 return; 8860 break; 8861 case LibFunc_rint: 8862 case LibFunc_rintf: 8863 case LibFunc_rintl: 8864 if (visitUnaryFloatCall(I, ISD::FRINT)) 8865 return; 8866 break; 8867 case LibFunc_round: 8868 case LibFunc_roundf: 8869 case LibFunc_roundl: 8870 if (visitUnaryFloatCall(I, ISD::FROUND)) 8871 return; 8872 break; 8873 case LibFunc_trunc: 8874 case LibFunc_truncf: 8875 case LibFunc_truncl: 8876 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8877 return; 8878 break; 8879 case LibFunc_log2: 8880 case LibFunc_log2f: 8881 case LibFunc_log2l: 8882 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8883 return; 8884 break; 8885 case LibFunc_exp2: 8886 case LibFunc_exp2f: 8887 case LibFunc_exp2l: 8888 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8889 return; 8890 break; 8891 case LibFunc_exp10: 8892 case LibFunc_exp10f: 8893 case LibFunc_exp10l: 8894 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8895 return; 8896 break; 8897 case LibFunc_ldexp: 8898 case LibFunc_ldexpf: 8899 case LibFunc_ldexpl: 8900 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8901 return; 8902 break; 8903 case LibFunc_memcmp: 8904 if (visitMemCmpBCmpCall(I)) 8905 return; 8906 break; 8907 case LibFunc_mempcpy: 8908 if (visitMemPCpyCall(I)) 8909 return; 8910 break; 8911 case LibFunc_memchr: 8912 if (visitMemChrCall(I)) 8913 return; 8914 break; 8915 case LibFunc_strcpy: 8916 if (visitStrCpyCall(I, false)) 8917 return; 8918 break; 8919 case LibFunc_stpcpy: 8920 if (visitStrCpyCall(I, true)) 8921 return; 8922 break; 8923 case LibFunc_strcmp: 8924 if (visitStrCmpCall(I)) 8925 return; 8926 break; 8927 case LibFunc_strlen: 8928 if (visitStrLenCall(I)) 8929 return; 8930 break; 8931 case LibFunc_strnlen: 8932 if (visitStrNLenCall(I)) 8933 return; 8934 break; 8935 } 8936 } 8937 } 8938 8939 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8940 // have to do anything here to lower funclet bundles. 8941 // CFGuardTarget bundles are lowered in LowerCallTo. 8942 assert(!I.hasOperandBundlesOtherThan( 8943 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8944 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8945 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8946 "Cannot lower calls with arbitrary operand bundles!"); 8947 8948 SDValue Callee = getValue(I.getCalledOperand()); 8949 8950 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8951 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8952 else 8953 // Check if we can potentially perform a tail call. More detailed checking 8954 // is be done within LowerCallTo, after more information about the call is 8955 // known. 8956 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8957 } 8958 8959 namespace { 8960 8961 /// AsmOperandInfo - This contains information for each constraint that we are 8962 /// lowering. 8963 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8964 public: 8965 /// CallOperand - If this is the result output operand or a clobber 8966 /// this is null, otherwise it is the incoming operand to the CallInst. 8967 /// This gets modified as the asm is processed. 8968 SDValue CallOperand; 8969 8970 /// AssignedRegs - If this is a register or register class operand, this 8971 /// contains the set of register corresponding to the operand. 8972 RegsForValue AssignedRegs; 8973 8974 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8975 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8976 } 8977 8978 /// Whether or not this operand accesses memory 8979 bool hasMemory(const TargetLowering &TLI) const { 8980 // Indirect operand accesses access memory. 8981 if (isIndirect) 8982 return true; 8983 8984 for (const auto &Code : Codes) 8985 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8986 return true; 8987 8988 return false; 8989 } 8990 }; 8991 8992 8993 } // end anonymous namespace 8994 8995 /// Make sure that the output operand \p OpInfo and its corresponding input 8996 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8997 /// out). 8998 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8999 SDISelAsmOperandInfo &MatchingOpInfo, 9000 SelectionDAG &DAG) { 9001 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9002 return; 9003 9004 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9005 const auto &TLI = DAG.getTargetLoweringInfo(); 9006 9007 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9008 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9009 OpInfo.ConstraintVT); 9010 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9011 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9012 MatchingOpInfo.ConstraintVT); 9013 if ((OpInfo.ConstraintVT.isInteger() != 9014 MatchingOpInfo.ConstraintVT.isInteger()) || 9015 (MatchRC.second != InputRC.second)) { 9016 // FIXME: error out in a more elegant fashion 9017 report_fatal_error("Unsupported asm: input constraint" 9018 " with a matching output constraint of" 9019 " incompatible type!"); 9020 } 9021 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9022 } 9023 9024 /// Get a direct memory input to behave well as an indirect operand. 9025 /// This may introduce stores, hence the need for a \p Chain. 9026 /// \return The (possibly updated) chain. 9027 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9028 SDISelAsmOperandInfo &OpInfo, 9029 SelectionDAG &DAG) { 9030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9031 9032 // If we don't have an indirect input, put it in the constpool if we can, 9033 // otherwise spill it to a stack slot. 9034 // TODO: This isn't quite right. We need to handle these according to 9035 // the addressing mode that the constraint wants. Also, this may take 9036 // an additional register for the computation and we don't want that 9037 // either. 9038 9039 // If the operand is a float, integer, or vector constant, spill to a 9040 // constant pool entry to get its address. 9041 const Value *OpVal = OpInfo.CallOperandVal; 9042 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9043 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9044 OpInfo.CallOperand = DAG.getConstantPool( 9045 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9046 return Chain; 9047 } 9048 9049 // Otherwise, create a stack slot and emit a store to it before the asm. 9050 Type *Ty = OpVal->getType(); 9051 auto &DL = DAG.getDataLayout(); 9052 uint64_t TySize = DL.getTypeAllocSize(Ty); 9053 MachineFunction &MF = DAG.getMachineFunction(); 9054 int SSFI = MF.getFrameInfo().CreateStackObject( 9055 TySize, DL.getPrefTypeAlign(Ty), false); 9056 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9057 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9058 MachinePointerInfo::getFixedStack(MF, SSFI), 9059 TLI.getMemValueType(DL, Ty)); 9060 OpInfo.CallOperand = StackSlot; 9061 9062 return Chain; 9063 } 9064 9065 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9066 /// specified operand. We prefer to assign virtual registers, to allow the 9067 /// register allocator to handle the assignment process. However, if the asm 9068 /// uses features that we can't model on machineinstrs, we have SDISel do the 9069 /// allocation. This produces generally horrible, but correct, code. 9070 /// 9071 /// OpInfo describes the operand 9072 /// RefOpInfo describes the matching operand if any, the operand otherwise 9073 static std::optional<unsigned> 9074 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9075 SDISelAsmOperandInfo &OpInfo, 9076 SDISelAsmOperandInfo &RefOpInfo) { 9077 LLVMContext &Context = *DAG.getContext(); 9078 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9079 9080 MachineFunction &MF = DAG.getMachineFunction(); 9081 SmallVector<unsigned, 4> Regs; 9082 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9083 9084 // No work to do for memory/address operands. 9085 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9086 OpInfo.ConstraintType == TargetLowering::C_Address) 9087 return std::nullopt; 9088 9089 // If this is a constraint for a single physreg, or a constraint for a 9090 // register class, find it. 9091 unsigned AssignedReg; 9092 const TargetRegisterClass *RC; 9093 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9094 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9095 // RC is unset only on failure. Return immediately. 9096 if (!RC) 9097 return std::nullopt; 9098 9099 // Get the actual register value type. This is important, because the user 9100 // may have asked for (e.g.) the AX register in i32 type. We need to 9101 // remember that AX is actually i16 to get the right extension. 9102 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9103 9104 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9105 // If this is an FP operand in an integer register (or visa versa), or more 9106 // generally if the operand value disagrees with the register class we plan 9107 // to stick it in, fix the operand type. 9108 // 9109 // If this is an input value, the bitcast to the new type is done now. 9110 // Bitcast for output value is done at the end of visitInlineAsm(). 9111 if ((OpInfo.Type == InlineAsm::isOutput || 9112 OpInfo.Type == InlineAsm::isInput) && 9113 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9114 // Try to convert to the first EVT that the reg class contains. If the 9115 // types are identical size, use a bitcast to convert (e.g. two differing 9116 // vector types). Note: output bitcast is done at the end of 9117 // visitInlineAsm(). 9118 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9119 // Exclude indirect inputs while they are unsupported because the code 9120 // to perform the load is missing and thus OpInfo.CallOperand still 9121 // refers to the input address rather than the pointed-to value. 9122 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9123 OpInfo.CallOperand = 9124 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9125 OpInfo.ConstraintVT = RegVT; 9126 // If the operand is an FP value and we want it in integer registers, 9127 // use the corresponding integer type. This turns an f64 value into 9128 // i64, which can be passed with two i32 values on a 32-bit machine. 9129 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9130 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9131 if (OpInfo.Type == InlineAsm::isInput) 9132 OpInfo.CallOperand = 9133 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9134 OpInfo.ConstraintVT = VT; 9135 } 9136 } 9137 } 9138 9139 // No need to allocate a matching input constraint since the constraint it's 9140 // matching to has already been allocated. 9141 if (OpInfo.isMatchingInputConstraint()) 9142 return std::nullopt; 9143 9144 EVT ValueVT = OpInfo.ConstraintVT; 9145 if (OpInfo.ConstraintVT == MVT::Other) 9146 ValueVT = RegVT; 9147 9148 // Initialize NumRegs. 9149 unsigned NumRegs = 1; 9150 if (OpInfo.ConstraintVT != MVT::Other) 9151 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9152 9153 // If this is a constraint for a specific physical register, like {r17}, 9154 // assign it now. 9155 9156 // If this associated to a specific register, initialize iterator to correct 9157 // place. If virtual, make sure we have enough registers 9158 9159 // Initialize iterator if necessary 9160 TargetRegisterClass::iterator I = RC->begin(); 9161 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9162 9163 // Do not check for single registers. 9164 if (AssignedReg) { 9165 I = std::find(I, RC->end(), AssignedReg); 9166 if (I == RC->end()) { 9167 // RC does not contain the selected register, which indicates a 9168 // mismatch between the register and the required type/bitwidth. 9169 return {AssignedReg}; 9170 } 9171 } 9172 9173 for (; NumRegs; --NumRegs, ++I) { 9174 assert(I != RC->end() && "Ran out of registers to allocate!"); 9175 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9176 Regs.push_back(R); 9177 } 9178 9179 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9180 return std::nullopt; 9181 } 9182 9183 static unsigned 9184 findMatchingInlineAsmOperand(unsigned OperandNo, 9185 const std::vector<SDValue> &AsmNodeOperands) { 9186 // Scan until we find the definition we already emitted of this operand. 9187 unsigned CurOp = InlineAsm::Op_FirstOperand; 9188 for (; OperandNo; --OperandNo) { 9189 // Advance to the next operand. 9190 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9191 const InlineAsm::Flag F(OpFlag); 9192 assert( 9193 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9194 "Skipped past definitions?"); 9195 CurOp += F.getNumOperandRegisters() + 1; 9196 } 9197 return CurOp; 9198 } 9199 9200 namespace { 9201 9202 class ExtraFlags { 9203 unsigned Flags = 0; 9204 9205 public: 9206 explicit ExtraFlags(const CallBase &Call) { 9207 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9208 if (IA->hasSideEffects()) 9209 Flags |= InlineAsm::Extra_HasSideEffects; 9210 if (IA->isAlignStack()) 9211 Flags |= InlineAsm::Extra_IsAlignStack; 9212 if (Call.isConvergent()) 9213 Flags |= InlineAsm::Extra_IsConvergent; 9214 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9215 } 9216 9217 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9218 // Ideally, we would only check against memory constraints. However, the 9219 // meaning of an Other constraint can be target-specific and we can't easily 9220 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9221 // for Other constraints as well. 9222 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9223 OpInfo.ConstraintType == TargetLowering::C_Other) { 9224 if (OpInfo.Type == InlineAsm::isInput) 9225 Flags |= InlineAsm::Extra_MayLoad; 9226 else if (OpInfo.Type == InlineAsm::isOutput) 9227 Flags |= InlineAsm::Extra_MayStore; 9228 else if (OpInfo.Type == InlineAsm::isClobber) 9229 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9230 } 9231 } 9232 9233 unsigned get() const { return Flags; } 9234 }; 9235 9236 } // end anonymous namespace 9237 9238 static bool isFunction(SDValue Op) { 9239 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9240 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9241 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9242 9243 // In normal "call dllimport func" instruction (non-inlineasm) it force 9244 // indirect access by specifing call opcode. And usually specially print 9245 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9246 // not do in this way now. (In fact, this is similar with "Data Access" 9247 // action). So here we ignore dllimport function. 9248 if (Fn && !Fn->hasDLLImportStorageClass()) 9249 return true; 9250 } 9251 } 9252 return false; 9253 } 9254 9255 /// visitInlineAsm - Handle a call to an InlineAsm object. 9256 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9257 const BasicBlock *EHPadBB) { 9258 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9259 9260 /// ConstraintOperands - Information about all of the constraints. 9261 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9262 9263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9264 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9265 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9266 9267 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9268 // AsmDialect, MayLoad, MayStore). 9269 bool HasSideEffect = IA->hasSideEffects(); 9270 ExtraFlags ExtraInfo(Call); 9271 9272 for (auto &T : TargetConstraints) { 9273 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9274 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9275 9276 if (OpInfo.CallOperandVal) 9277 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9278 9279 if (!HasSideEffect) 9280 HasSideEffect = OpInfo.hasMemory(TLI); 9281 9282 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9283 // FIXME: Could we compute this on OpInfo rather than T? 9284 9285 // Compute the constraint code and ConstraintType to use. 9286 TLI.ComputeConstraintToUse(T, SDValue()); 9287 9288 if (T.ConstraintType == TargetLowering::C_Immediate && 9289 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9290 // We've delayed emitting a diagnostic like the "n" constraint because 9291 // inlining could cause an integer showing up. 9292 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9293 "' expects an integer constant " 9294 "expression"); 9295 9296 ExtraInfo.update(T); 9297 } 9298 9299 // We won't need to flush pending loads if this asm doesn't touch 9300 // memory and is nonvolatile. 9301 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9302 9303 bool EmitEHLabels = isa<InvokeInst>(Call); 9304 if (EmitEHLabels) { 9305 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9306 } 9307 bool IsCallBr = isa<CallBrInst>(Call); 9308 9309 if (IsCallBr || EmitEHLabels) { 9310 // If this is a callbr or invoke we need to flush pending exports since 9311 // inlineasm_br and invoke are terminators. 9312 // We need to do this before nodes are glued to the inlineasm_br node. 9313 Chain = getControlRoot(); 9314 } 9315 9316 MCSymbol *BeginLabel = nullptr; 9317 if (EmitEHLabels) { 9318 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9319 } 9320 9321 int OpNo = -1; 9322 SmallVector<StringRef> AsmStrs; 9323 IA->collectAsmStrs(AsmStrs); 9324 9325 // Second pass over the constraints: compute which constraint option to use. 9326 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9327 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9328 OpNo++; 9329 9330 // If this is an output operand with a matching input operand, look up the 9331 // matching input. If their types mismatch, e.g. one is an integer, the 9332 // other is floating point, or their sizes are different, flag it as an 9333 // error. 9334 if (OpInfo.hasMatchingInput()) { 9335 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9336 patchMatchingInput(OpInfo, Input, DAG); 9337 } 9338 9339 // Compute the constraint code and ConstraintType to use. 9340 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9341 9342 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9343 OpInfo.Type == InlineAsm::isClobber) || 9344 OpInfo.ConstraintType == TargetLowering::C_Address) 9345 continue; 9346 9347 // In Linux PIC model, there are 4 cases about value/label addressing: 9348 // 9349 // 1: Function call or Label jmp inside the module. 9350 // 2: Data access (such as global variable, static variable) inside module. 9351 // 3: Function call or Label jmp outside the module. 9352 // 4: Data access (such as global variable) outside the module. 9353 // 9354 // Due to current llvm inline asm architecture designed to not "recognize" 9355 // the asm code, there are quite troubles for us to treat mem addressing 9356 // differently for same value/adress used in different instuctions. 9357 // For example, in pic model, call a func may in plt way or direclty 9358 // pc-related, but lea/mov a function adress may use got. 9359 // 9360 // Here we try to "recognize" function call for the case 1 and case 3 in 9361 // inline asm. And try to adjust the constraint for them. 9362 // 9363 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9364 // label, so here we don't handle jmp function label now, but we need to 9365 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9366 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9367 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9368 TM.getCodeModel() != CodeModel::Large) { 9369 OpInfo.isIndirect = false; 9370 OpInfo.ConstraintType = TargetLowering::C_Address; 9371 } 9372 9373 // If this is a memory input, and if the operand is not indirect, do what we 9374 // need to provide an address for the memory input. 9375 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9376 !OpInfo.isIndirect) { 9377 assert((OpInfo.isMultipleAlternative || 9378 (OpInfo.Type == InlineAsm::isInput)) && 9379 "Can only indirectify direct input operands!"); 9380 9381 // Memory operands really want the address of the value. 9382 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9383 9384 // There is no longer a Value* corresponding to this operand. 9385 OpInfo.CallOperandVal = nullptr; 9386 9387 // It is now an indirect operand. 9388 OpInfo.isIndirect = true; 9389 } 9390 9391 } 9392 9393 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9394 std::vector<SDValue> AsmNodeOperands; 9395 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9396 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9397 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9398 9399 // If we have a !srcloc metadata node associated with it, we want to attach 9400 // this to the ultimately generated inline asm machineinstr. To do this, we 9401 // pass in the third operand as this (potentially null) inline asm MDNode. 9402 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9403 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9404 9405 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9406 // bits as operand 3. 9407 AsmNodeOperands.push_back(DAG.getTargetConstant( 9408 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9409 9410 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9411 // this, assign virtual and physical registers for inputs and otput. 9412 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9413 // Assign Registers. 9414 SDISelAsmOperandInfo &RefOpInfo = 9415 OpInfo.isMatchingInputConstraint() 9416 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9417 : OpInfo; 9418 const auto RegError = 9419 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9420 if (RegError) { 9421 const MachineFunction &MF = DAG.getMachineFunction(); 9422 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9423 const char *RegName = TRI.getName(*RegError); 9424 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9425 "' allocated for constraint '" + 9426 Twine(OpInfo.ConstraintCode) + 9427 "' does not match required type"); 9428 return; 9429 } 9430 9431 auto DetectWriteToReservedRegister = [&]() { 9432 const MachineFunction &MF = DAG.getMachineFunction(); 9433 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9434 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9435 if (Register::isPhysicalRegister(Reg) && 9436 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9437 const char *RegName = TRI.getName(Reg); 9438 emitInlineAsmError(Call, "write to reserved register '" + 9439 Twine(RegName) + "'"); 9440 return true; 9441 } 9442 } 9443 return false; 9444 }; 9445 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9446 (OpInfo.Type == InlineAsm::isInput && 9447 !OpInfo.isMatchingInputConstraint())) && 9448 "Only address as input operand is allowed."); 9449 9450 switch (OpInfo.Type) { 9451 case InlineAsm::isOutput: 9452 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9453 const InlineAsm::ConstraintCode ConstraintID = 9454 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9455 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9456 "Failed to convert memory constraint code to constraint id."); 9457 9458 // Add information to the INLINEASM node to know about this output. 9459 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9460 OpFlags.setMemConstraint(ConstraintID); 9461 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9462 MVT::i32)); 9463 AsmNodeOperands.push_back(OpInfo.CallOperand); 9464 } else { 9465 // Otherwise, this outputs to a register (directly for C_Register / 9466 // C_RegisterClass, and a target-defined fashion for 9467 // C_Immediate/C_Other). Find a register that we can use. 9468 if (OpInfo.AssignedRegs.Regs.empty()) { 9469 emitInlineAsmError( 9470 Call, "couldn't allocate output register for constraint '" + 9471 Twine(OpInfo.ConstraintCode) + "'"); 9472 return; 9473 } 9474 9475 if (DetectWriteToReservedRegister()) 9476 return; 9477 9478 // Add information to the INLINEASM node to know that this register is 9479 // set. 9480 OpInfo.AssignedRegs.AddInlineAsmOperands( 9481 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9482 : InlineAsm::Kind::RegDef, 9483 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9484 } 9485 break; 9486 9487 case InlineAsm::isInput: 9488 case InlineAsm::isLabel: { 9489 SDValue InOperandVal = OpInfo.CallOperand; 9490 9491 if (OpInfo.isMatchingInputConstraint()) { 9492 // If this is required to match an output register we have already set, 9493 // just use its register. 9494 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9495 AsmNodeOperands); 9496 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9497 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9498 if (OpInfo.isIndirect) { 9499 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9500 emitInlineAsmError(Call, "inline asm not supported yet: " 9501 "don't know how to handle tied " 9502 "indirect register inputs"); 9503 return; 9504 } 9505 9506 SmallVector<unsigned, 4> Regs; 9507 MachineFunction &MF = DAG.getMachineFunction(); 9508 MachineRegisterInfo &MRI = MF.getRegInfo(); 9509 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9510 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9511 Register TiedReg = R->getReg(); 9512 MVT RegVT = R->getSimpleValueType(0); 9513 const TargetRegisterClass *RC = 9514 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9515 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9516 : TRI.getMinimalPhysRegClass(TiedReg); 9517 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9518 Regs.push_back(MRI.createVirtualRegister(RC)); 9519 9520 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9521 9522 SDLoc dl = getCurSDLoc(); 9523 // Use the produced MatchedRegs object to 9524 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9525 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9526 OpInfo.getMatchedOperand(), dl, DAG, 9527 AsmNodeOperands); 9528 break; 9529 } 9530 9531 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9532 assert(Flag.getNumOperandRegisters() == 1 && 9533 "Unexpected number of operands"); 9534 // Add information to the INLINEASM node to know about this input. 9535 // See InlineAsm.h isUseOperandTiedToDef. 9536 Flag.clearMemConstraint(); 9537 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9538 AsmNodeOperands.push_back(DAG.getTargetConstant( 9539 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9540 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9541 break; 9542 } 9543 9544 // Treat indirect 'X' constraint as memory. 9545 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9546 OpInfo.isIndirect) 9547 OpInfo.ConstraintType = TargetLowering::C_Memory; 9548 9549 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9550 OpInfo.ConstraintType == TargetLowering::C_Other) { 9551 std::vector<SDValue> Ops; 9552 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9553 Ops, DAG); 9554 if (Ops.empty()) { 9555 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9556 if (isa<ConstantSDNode>(InOperandVal)) { 9557 emitInlineAsmError(Call, "value out of range for constraint '" + 9558 Twine(OpInfo.ConstraintCode) + "'"); 9559 return; 9560 } 9561 9562 emitInlineAsmError(Call, 9563 "invalid operand for inline asm constraint '" + 9564 Twine(OpInfo.ConstraintCode) + "'"); 9565 return; 9566 } 9567 9568 // Add information to the INLINEASM node to know about this input. 9569 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9570 AsmNodeOperands.push_back(DAG.getTargetConstant( 9571 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9572 llvm::append_range(AsmNodeOperands, Ops); 9573 break; 9574 } 9575 9576 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9577 assert((OpInfo.isIndirect || 9578 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9579 "Operand must be indirect to be a mem!"); 9580 assert(InOperandVal.getValueType() == 9581 TLI.getPointerTy(DAG.getDataLayout()) && 9582 "Memory operands expect pointer values"); 9583 9584 const InlineAsm::ConstraintCode ConstraintID = 9585 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9586 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9587 "Failed to convert memory constraint code to constraint id."); 9588 9589 // Add information to the INLINEASM node to know about this input. 9590 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9591 ResOpType.setMemConstraint(ConstraintID); 9592 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9593 getCurSDLoc(), 9594 MVT::i32)); 9595 AsmNodeOperands.push_back(InOperandVal); 9596 break; 9597 } 9598 9599 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9600 const InlineAsm::ConstraintCode ConstraintID = 9601 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9602 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9603 "Failed to convert memory constraint code to constraint id."); 9604 9605 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9606 9607 SDValue AsmOp = InOperandVal; 9608 if (isFunction(InOperandVal)) { 9609 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9610 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9611 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9612 InOperandVal.getValueType(), 9613 GA->getOffset()); 9614 } 9615 9616 // Add information to the INLINEASM node to know about this input. 9617 ResOpType.setMemConstraint(ConstraintID); 9618 9619 AsmNodeOperands.push_back( 9620 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9621 9622 AsmNodeOperands.push_back(AsmOp); 9623 break; 9624 } 9625 9626 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9627 OpInfo.ConstraintType == TargetLowering::C_Register) && 9628 "Unknown constraint type!"); 9629 9630 // TODO: Support this. 9631 if (OpInfo.isIndirect) { 9632 emitInlineAsmError( 9633 Call, "Don't know how to handle indirect register inputs yet " 9634 "for constraint '" + 9635 Twine(OpInfo.ConstraintCode) + "'"); 9636 return; 9637 } 9638 9639 // Copy the input into the appropriate registers. 9640 if (OpInfo.AssignedRegs.Regs.empty()) { 9641 emitInlineAsmError(Call, 9642 "couldn't allocate input reg for constraint '" + 9643 Twine(OpInfo.ConstraintCode) + "'"); 9644 return; 9645 } 9646 9647 if (DetectWriteToReservedRegister()) 9648 return; 9649 9650 SDLoc dl = getCurSDLoc(); 9651 9652 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9653 &Call); 9654 9655 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9656 0, dl, DAG, AsmNodeOperands); 9657 break; 9658 } 9659 case InlineAsm::isClobber: 9660 // Add the clobbered value to the operand list, so that the register 9661 // allocator is aware that the physreg got clobbered. 9662 if (!OpInfo.AssignedRegs.Regs.empty()) 9663 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9664 false, 0, getCurSDLoc(), DAG, 9665 AsmNodeOperands); 9666 break; 9667 } 9668 } 9669 9670 // Finish up input operands. Set the input chain and add the flag last. 9671 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9672 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9673 9674 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9675 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9676 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9677 Glue = Chain.getValue(1); 9678 9679 // Do additional work to generate outputs. 9680 9681 SmallVector<EVT, 1> ResultVTs; 9682 SmallVector<SDValue, 1> ResultValues; 9683 SmallVector<SDValue, 8> OutChains; 9684 9685 llvm::Type *CallResultType = Call.getType(); 9686 ArrayRef<Type *> ResultTypes; 9687 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9688 ResultTypes = StructResult->elements(); 9689 else if (!CallResultType->isVoidTy()) 9690 ResultTypes = ArrayRef(CallResultType); 9691 9692 auto CurResultType = ResultTypes.begin(); 9693 auto handleRegAssign = [&](SDValue V) { 9694 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9695 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9696 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9697 ++CurResultType; 9698 // If the type of the inline asm call site return value is different but has 9699 // same size as the type of the asm output bitcast it. One example of this 9700 // is for vectors with different width / number of elements. This can 9701 // happen for register classes that can contain multiple different value 9702 // types. The preg or vreg allocated may not have the same VT as was 9703 // expected. 9704 // 9705 // This can also happen for a return value that disagrees with the register 9706 // class it is put in, eg. a double in a general-purpose register on a 9707 // 32-bit machine. 9708 if (ResultVT != V.getValueType() && 9709 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9710 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9711 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9712 V.getValueType().isInteger()) { 9713 // If a result value was tied to an input value, the computed result 9714 // may have a wider width than the expected result. Extract the 9715 // relevant portion. 9716 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9717 } 9718 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9719 ResultVTs.push_back(ResultVT); 9720 ResultValues.push_back(V); 9721 }; 9722 9723 // Deal with output operands. 9724 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9725 if (OpInfo.Type == InlineAsm::isOutput) { 9726 SDValue Val; 9727 // Skip trivial output operands. 9728 if (OpInfo.AssignedRegs.Regs.empty()) 9729 continue; 9730 9731 switch (OpInfo.ConstraintType) { 9732 case TargetLowering::C_Register: 9733 case TargetLowering::C_RegisterClass: 9734 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9735 Chain, &Glue, &Call); 9736 break; 9737 case TargetLowering::C_Immediate: 9738 case TargetLowering::C_Other: 9739 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9740 OpInfo, DAG); 9741 break; 9742 case TargetLowering::C_Memory: 9743 break; // Already handled. 9744 case TargetLowering::C_Address: 9745 break; // Silence warning. 9746 case TargetLowering::C_Unknown: 9747 assert(false && "Unexpected unknown constraint"); 9748 } 9749 9750 // Indirect output manifest as stores. Record output chains. 9751 if (OpInfo.isIndirect) { 9752 const Value *Ptr = OpInfo.CallOperandVal; 9753 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9754 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9755 MachinePointerInfo(Ptr)); 9756 OutChains.push_back(Store); 9757 } else { 9758 // generate CopyFromRegs to associated registers. 9759 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9760 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9761 for (const SDValue &V : Val->op_values()) 9762 handleRegAssign(V); 9763 } else 9764 handleRegAssign(Val); 9765 } 9766 } 9767 } 9768 9769 // Set results. 9770 if (!ResultValues.empty()) { 9771 assert(CurResultType == ResultTypes.end() && 9772 "Mismatch in number of ResultTypes"); 9773 assert(ResultValues.size() == ResultTypes.size() && 9774 "Mismatch in number of output operands in asm result"); 9775 9776 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9777 DAG.getVTList(ResultVTs), ResultValues); 9778 setValue(&Call, V); 9779 } 9780 9781 // Collect store chains. 9782 if (!OutChains.empty()) 9783 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9784 9785 if (EmitEHLabels) { 9786 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9787 } 9788 9789 // Only Update Root if inline assembly has a memory effect. 9790 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9791 EmitEHLabels) 9792 DAG.setRoot(Chain); 9793 } 9794 9795 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9796 const Twine &Message) { 9797 LLVMContext &Ctx = *DAG.getContext(); 9798 Ctx.emitError(&Call, Message); 9799 9800 // Make sure we leave the DAG in a valid state 9801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9802 SmallVector<EVT, 1> ValueVTs; 9803 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9804 9805 if (ValueVTs.empty()) 9806 return; 9807 9808 SmallVector<SDValue, 1> Ops; 9809 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9810 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9811 9812 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9813 } 9814 9815 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9816 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9817 MVT::Other, getRoot(), 9818 getValue(I.getArgOperand(0)), 9819 DAG.getSrcValue(I.getArgOperand(0)))); 9820 } 9821 9822 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9823 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9824 const DataLayout &DL = DAG.getDataLayout(); 9825 SDValue V = DAG.getVAArg( 9826 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9827 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9828 DL.getABITypeAlign(I.getType()).value()); 9829 DAG.setRoot(V.getValue(1)); 9830 9831 if (I.getType()->isPointerTy()) 9832 V = DAG.getPtrExtOrTrunc( 9833 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9834 setValue(&I, V); 9835 } 9836 9837 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9838 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9839 MVT::Other, getRoot(), 9840 getValue(I.getArgOperand(0)), 9841 DAG.getSrcValue(I.getArgOperand(0)))); 9842 } 9843 9844 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9845 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9846 MVT::Other, getRoot(), 9847 getValue(I.getArgOperand(0)), 9848 getValue(I.getArgOperand(1)), 9849 DAG.getSrcValue(I.getArgOperand(0)), 9850 DAG.getSrcValue(I.getArgOperand(1)))); 9851 } 9852 9853 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9854 const Instruction &I, 9855 SDValue Op) { 9856 const MDNode *Range = getRangeMetadata(I); 9857 if (!Range) 9858 return Op; 9859 9860 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9861 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9862 return Op; 9863 9864 APInt Lo = CR.getUnsignedMin(); 9865 if (!Lo.isMinValue()) 9866 return Op; 9867 9868 APInt Hi = CR.getUnsignedMax(); 9869 unsigned Bits = std::max(Hi.getActiveBits(), 9870 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9871 9872 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9873 9874 SDLoc SL = getCurSDLoc(); 9875 9876 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9877 DAG.getValueType(SmallVT)); 9878 unsigned NumVals = Op.getNode()->getNumValues(); 9879 if (NumVals == 1) 9880 return ZExt; 9881 9882 SmallVector<SDValue, 4> Ops; 9883 9884 Ops.push_back(ZExt); 9885 for (unsigned I = 1; I != NumVals; ++I) 9886 Ops.push_back(Op.getValue(I)); 9887 9888 return DAG.getMergeValues(Ops, SL); 9889 } 9890 9891 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9892 /// the call being lowered. 9893 /// 9894 /// This is a helper for lowering intrinsics that follow a target calling 9895 /// convention or require stack pointer adjustment. Only a subset of the 9896 /// intrinsic's operands need to participate in the calling convention. 9897 void SelectionDAGBuilder::populateCallLoweringInfo( 9898 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9899 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9900 AttributeSet RetAttrs, bool IsPatchPoint) { 9901 TargetLowering::ArgListTy Args; 9902 Args.reserve(NumArgs); 9903 9904 // Populate the argument list. 9905 // Attributes for args start at offset 1, after the return attribute. 9906 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9907 ArgI != ArgE; ++ArgI) { 9908 const Value *V = Call->getOperand(ArgI); 9909 9910 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9911 9912 TargetLowering::ArgListEntry Entry; 9913 Entry.Node = getValue(V); 9914 Entry.Ty = V->getType(); 9915 Entry.setAttributes(Call, ArgI); 9916 Args.push_back(Entry); 9917 } 9918 9919 CLI.setDebugLoc(getCurSDLoc()) 9920 .setChain(getRoot()) 9921 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9922 RetAttrs) 9923 .setDiscardResult(Call->use_empty()) 9924 .setIsPatchPoint(IsPatchPoint) 9925 .setIsPreallocated( 9926 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9927 } 9928 9929 /// Add a stack map intrinsic call's live variable operands to a stackmap 9930 /// or patchpoint target node's operand list. 9931 /// 9932 /// Constants are converted to TargetConstants purely as an optimization to 9933 /// avoid constant materialization and register allocation. 9934 /// 9935 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9936 /// generate addess computation nodes, and so FinalizeISel can convert the 9937 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9938 /// address materialization and register allocation, but may also be required 9939 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9940 /// alloca in the entry block, then the runtime may assume that the alloca's 9941 /// StackMap location can be read immediately after compilation and that the 9942 /// location is valid at any point during execution (this is similar to the 9943 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9944 /// only available in a register, then the runtime would need to trap when 9945 /// execution reaches the StackMap in order to read the alloca's location. 9946 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9947 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9948 SelectionDAGBuilder &Builder) { 9949 SelectionDAG &DAG = Builder.DAG; 9950 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9951 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9952 9953 // Things on the stack are pointer-typed, meaning that they are already 9954 // legal and can be emitted directly to target nodes. 9955 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9956 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9957 } else { 9958 // Otherwise emit a target independent node to be legalised. 9959 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9960 } 9961 } 9962 } 9963 9964 /// Lower llvm.experimental.stackmap. 9965 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9966 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9967 // [live variables...]) 9968 9969 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9970 9971 SDValue Chain, InGlue, Callee; 9972 SmallVector<SDValue, 32> Ops; 9973 9974 SDLoc DL = getCurSDLoc(); 9975 Callee = getValue(CI.getCalledOperand()); 9976 9977 // The stackmap intrinsic only records the live variables (the arguments 9978 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9979 // intrinsic, this won't be lowered to a function call. This means we don't 9980 // have to worry about calling conventions and target specific lowering code. 9981 // Instead we perform the call lowering right here. 9982 // 9983 // chain, flag = CALLSEQ_START(chain, 0, 0) 9984 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9985 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9986 // 9987 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9988 InGlue = Chain.getValue(1); 9989 9990 // Add the STACKMAP operands, starting with DAG house-keeping. 9991 Ops.push_back(Chain); 9992 Ops.push_back(InGlue); 9993 9994 // Add the <id>, <numShadowBytes> operands. 9995 // 9996 // These do not require legalisation, and can be emitted directly to target 9997 // constant nodes. 9998 SDValue ID = getValue(CI.getArgOperand(0)); 9999 assert(ID.getValueType() == MVT::i64); 10000 SDValue IDConst = 10001 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10002 Ops.push_back(IDConst); 10003 10004 SDValue Shad = getValue(CI.getArgOperand(1)); 10005 assert(Shad.getValueType() == MVT::i32); 10006 SDValue ShadConst = 10007 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10008 Ops.push_back(ShadConst); 10009 10010 // Add the live variables. 10011 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10012 10013 // Create the STACKMAP node. 10014 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10015 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10016 InGlue = Chain.getValue(1); 10017 10018 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10019 10020 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10021 10022 // Set the root to the target-lowered call chain. 10023 DAG.setRoot(Chain); 10024 10025 // Inform the Frame Information that we have a stackmap in this function. 10026 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10027 } 10028 10029 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10030 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10031 const BasicBlock *EHPadBB) { 10032 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 10033 // i32 <numBytes>, 10034 // i8* <target>, 10035 // i32 <numArgs>, 10036 // [Args...], 10037 // [live variables...]) 10038 10039 CallingConv::ID CC = CB.getCallingConv(); 10040 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10041 bool HasDef = !CB.getType()->isVoidTy(); 10042 SDLoc dl = getCurSDLoc(); 10043 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10044 10045 // Handle immediate and symbolic callees. 10046 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10047 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10048 /*isTarget=*/true); 10049 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10050 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10051 SDLoc(SymbolicCallee), 10052 SymbolicCallee->getValueType(0)); 10053 10054 // Get the real number of arguments participating in the call <numArgs> 10055 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10056 unsigned NumArgs = NArgVal->getAsZExtVal(); 10057 10058 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10059 // Intrinsics include all meta-operands up to but not including CC. 10060 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10061 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10062 "Not enough arguments provided to the patchpoint intrinsic"); 10063 10064 // For AnyRegCC the arguments are lowered later on manually. 10065 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10066 Type *ReturnTy = 10067 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10068 10069 TargetLowering::CallLoweringInfo CLI(DAG); 10070 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10071 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10072 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10073 10074 SDNode *CallEnd = Result.second.getNode(); 10075 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10076 CallEnd = CallEnd->getOperand(0).getNode(); 10077 10078 /// Get a call instruction from the call sequence chain. 10079 /// Tail calls are not allowed. 10080 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10081 "Expected a callseq node."); 10082 SDNode *Call = CallEnd->getOperand(0).getNode(); 10083 bool HasGlue = Call->getGluedNode(); 10084 10085 // Replace the target specific call node with the patchable intrinsic. 10086 SmallVector<SDValue, 8> Ops; 10087 10088 // Push the chain. 10089 Ops.push_back(*(Call->op_begin())); 10090 10091 // Optionally, push the glue (if any). 10092 if (HasGlue) 10093 Ops.push_back(*(Call->op_end() - 1)); 10094 10095 // Push the register mask info. 10096 if (HasGlue) 10097 Ops.push_back(*(Call->op_end() - 2)); 10098 else 10099 Ops.push_back(*(Call->op_end() - 1)); 10100 10101 // Add the <id> and <numBytes> constants. 10102 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10103 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10104 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10105 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10106 10107 // Add the callee. 10108 Ops.push_back(Callee); 10109 10110 // Adjust <numArgs> to account for any arguments that have been passed on the 10111 // stack instead. 10112 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10113 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10114 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10115 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10116 10117 // Add the calling convention 10118 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10119 10120 // Add the arguments we omitted previously. The register allocator should 10121 // place these in any free register. 10122 if (IsAnyRegCC) 10123 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10124 Ops.push_back(getValue(CB.getArgOperand(i))); 10125 10126 // Push the arguments from the call instruction. 10127 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10128 Ops.append(Call->op_begin() + 2, e); 10129 10130 // Push live variables for the stack map. 10131 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10132 10133 SDVTList NodeTys; 10134 if (IsAnyRegCC && HasDef) { 10135 // Create the return types based on the intrinsic definition 10136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10137 SmallVector<EVT, 3> ValueVTs; 10138 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10139 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10140 10141 // There is always a chain and a glue type at the end 10142 ValueVTs.push_back(MVT::Other); 10143 ValueVTs.push_back(MVT::Glue); 10144 NodeTys = DAG.getVTList(ValueVTs); 10145 } else 10146 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10147 10148 // Replace the target specific call node with a PATCHPOINT node. 10149 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10150 10151 // Update the NodeMap. 10152 if (HasDef) { 10153 if (IsAnyRegCC) 10154 setValue(&CB, SDValue(PPV.getNode(), 0)); 10155 else 10156 setValue(&CB, Result.first); 10157 } 10158 10159 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10160 // call sequence. Furthermore the location of the chain and glue can change 10161 // when the AnyReg calling convention is used and the intrinsic returns a 10162 // value. 10163 if (IsAnyRegCC && HasDef) { 10164 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10165 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10166 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10167 } else 10168 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10169 DAG.DeleteNode(Call); 10170 10171 // Inform the Frame Information that we have a patchpoint in this function. 10172 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10173 } 10174 10175 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10176 unsigned Intrinsic) { 10177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10178 SDValue Op1 = getValue(I.getArgOperand(0)); 10179 SDValue Op2; 10180 if (I.arg_size() > 1) 10181 Op2 = getValue(I.getArgOperand(1)); 10182 SDLoc dl = getCurSDLoc(); 10183 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10184 SDValue Res; 10185 SDNodeFlags SDFlags; 10186 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10187 SDFlags.copyFMF(*FPMO); 10188 10189 switch (Intrinsic) { 10190 case Intrinsic::vector_reduce_fadd: 10191 if (SDFlags.hasAllowReassociation()) 10192 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10193 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10194 SDFlags); 10195 else 10196 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10197 break; 10198 case Intrinsic::vector_reduce_fmul: 10199 if (SDFlags.hasAllowReassociation()) 10200 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10201 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10202 SDFlags); 10203 else 10204 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10205 break; 10206 case Intrinsic::vector_reduce_add: 10207 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10208 break; 10209 case Intrinsic::vector_reduce_mul: 10210 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10211 break; 10212 case Intrinsic::vector_reduce_and: 10213 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10214 break; 10215 case Intrinsic::vector_reduce_or: 10216 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10217 break; 10218 case Intrinsic::vector_reduce_xor: 10219 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10220 break; 10221 case Intrinsic::vector_reduce_smax: 10222 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10223 break; 10224 case Intrinsic::vector_reduce_smin: 10225 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10226 break; 10227 case Intrinsic::vector_reduce_umax: 10228 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10229 break; 10230 case Intrinsic::vector_reduce_umin: 10231 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10232 break; 10233 case Intrinsic::vector_reduce_fmax: 10234 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10235 break; 10236 case Intrinsic::vector_reduce_fmin: 10237 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10238 break; 10239 case Intrinsic::vector_reduce_fmaximum: 10240 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10241 break; 10242 case Intrinsic::vector_reduce_fminimum: 10243 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10244 break; 10245 default: 10246 llvm_unreachable("Unhandled vector reduce intrinsic"); 10247 } 10248 setValue(&I, Res); 10249 } 10250 10251 /// Returns an AttributeList representing the attributes applied to the return 10252 /// value of the given call. 10253 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10254 SmallVector<Attribute::AttrKind, 2> Attrs; 10255 if (CLI.RetSExt) 10256 Attrs.push_back(Attribute::SExt); 10257 if (CLI.RetZExt) 10258 Attrs.push_back(Attribute::ZExt); 10259 if (CLI.IsInReg) 10260 Attrs.push_back(Attribute::InReg); 10261 10262 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10263 Attrs); 10264 } 10265 10266 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10267 /// implementation, which just calls LowerCall. 10268 /// FIXME: When all targets are 10269 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10270 std::pair<SDValue, SDValue> 10271 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10272 // Handle the incoming return values from the call. 10273 CLI.Ins.clear(); 10274 Type *OrigRetTy = CLI.RetTy; 10275 SmallVector<EVT, 4> RetTys; 10276 SmallVector<uint64_t, 4> Offsets; 10277 auto &DL = CLI.DAG.getDataLayout(); 10278 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10279 10280 if (CLI.IsPostTypeLegalization) { 10281 // If we are lowering a libcall after legalization, split the return type. 10282 SmallVector<EVT, 4> OldRetTys; 10283 SmallVector<uint64_t, 4> OldOffsets; 10284 RetTys.swap(OldRetTys); 10285 Offsets.swap(OldOffsets); 10286 10287 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10288 EVT RetVT = OldRetTys[i]; 10289 uint64_t Offset = OldOffsets[i]; 10290 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10291 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10292 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10293 RetTys.append(NumRegs, RegisterVT); 10294 for (unsigned j = 0; j != NumRegs; ++j) 10295 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10296 } 10297 } 10298 10299 SmallVector<ISD::OutputArg, 4> Outs; 10300 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10301 10302 bool CanLowerReturn = 10303 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10304 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10305 10306 SDValue DemoteStackSlot; 10307 int DemoteStackIdx = -100; 10308 if (!CanLowerReturn) { 10309 // FIXME: equivalent assert? 10310 // assert(!CS.hasInAllocaArgument() && 10311 // "sret demotion is incompatible with inalloca"); 10312 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10313 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10314 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10315 DemoteStackIdx = 10316 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10317 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10318 DL.getAllocaAddrSpace()); 10319 10320 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10321 ArgListEntry Entry; 10322 Entry.Node = DemoteStackSlot; 10323 Entry.Ty = StackSlotPtrType; 10324 Entry.IsSExt = false; 10325 Entry.IsZExt = false; 10326 Entry.IsInReg = false; 10327 Entry.IsSRet = true; 10328 Entry.IsNest = false; 10329 Entry.IsByVal = false; 10330 Entry.IsByRef = false; 10331 Entry.IsReturned = false; 10332 Entry.IsSwiftSelf = false; 10333 Entry.IsSwiftAsync = false; 10334 Entry.IsSwiftError = false; 10335 Entry.IsCFGuardTarget = false; 10336 Entry.Alignment = Alignment; 10337 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10338 CLI.NumFixedArgs += 1; 10339 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10340 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10341 10342 // sret demotion isn't compatible with tail-calls, since the sret argument 10343 // points into the callers stack frame. 10344 CLI.IsTailCall = false; 10345 } else { 10346 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10347 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10348 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10349 ISD::ArgFlagsTy Flags; 10350 if (NeedsRegBlock) { 10351 Flags.setInConsecutiveRegs(); 10352 if (I == RetTys.size() - 1) 10353 Flags.setInConsecutiveRegsLast(); 10354 } 10355 EVT VT = RetTys[I]; 10356 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10357 CLI.CallConv, VT); 10358 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10359 CLI.CallConv, VT); 10360 for (unsigned i = 0; i != NumRegs; ++i) { 10361 ISD::InputArg MyFlags; 10362 MyFlags.Flags = Flags; 10363 MyFlags.VT = RegisterVT; 10364 MyFlags.ArgVT = VT; 10365 MyFlags.Used = CLI.IsReturnValueUsed; 10366 if (CLI.RetTy->isPointerTy()) { 10367 MyFlags.Flags.setPointer(); 10368 MyFlags.Flags.setPointerAddrSpace( 10369 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10370 } 10371 if (CLI.RetSExt) 10372 MyFlags.Flags.setSExt(); 10373 if (CLI.RetZExt) 10374 MyFlags.Flags.setZExt(); 10375 if (CLI.IsInReg) 10376 MyFlags.Flags.setInReg(); 10377 CLI.Ins.push_back(MyFlags); 10378 } 10379 } 10380 } 10381 10382 // We push in swifterror return as the last element of CLI.Ins. 10383 ArgListTy &Args = CLI.getArgs(); 10384 if (supportSwiftError()) { 10385 for (const ArgListEntry &Arg : Args) { 10386 if (Arg.IsSwiftError) { 10387 ISD::InputArg MyFlags; 10388 MyFlags.VT = getPointerTy(DL); 10389 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10390 MyFlags.Flags.setSwiftError(); 10391 CLI.Ins.push_back(MyFlags); 10392 } 10393 } 10394 } 10395 10396 // Handle all of the outgoing arguments. 10397 CLI.Outs.clear(); 10398 CLI.OutVals.clear(); 10399 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10400 SmallVector<EVT, 4> ValueVTs; 10401 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10402 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10403 Type *FinalType = Args[i].Ty; 10404 if (Args[i].IsByVal) 10405 FinalType = Args[i].IndirectType; 10406 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10407 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10408 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10409 ++Value) { 10410 EVT VT = ValueVTs[Value]; 10411 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10412 SDValue Op = SDValue(Args[i].Node.getNode(), 10413 Args[i].Node.getResNo() + Value); 10414 ISD::ArgFlagsTy Flags; 10415 10416 // Certain targets (such as MIPS), may have a different ABI alignment 10417 // for a type depending on the context. Give the target a chance to 10418 // specify the alignment it wants. 10419 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10420 Flags.setOrigAlign(OriginalAlignment); 10421 10422 if (Args[i].Ty->isPointerTy()) { 10423 Flags.setPointer(); 10424 Flags.setPointerAddrSpace( 10425 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10426 } 10427 if (Args[i].IsZExt) 10428 Flags.setZExt(); 10429 if (Args[i].IsSExt) 10430 Flags.setSExt(); 10431 if (Args[i].IsInReg) { 10432 // If we are using vectorcall calling convention, a structure that is 10433 // passed InReg - is surely an HVA 10434 if (CLI.CallConv == CallingConv::X86_VectorCall && 10435 isa<StructType>(FinalType)) { 10436 // The first value of a structure is marked 10437 if (0 == Value) 10438 Flags.setHvaStart(); 10439 Flags.setHva(); 10440 } 10441 // Set InReg Flag 10442 Flags.setInReg(); 10443 } 10444 if (Args[i].IsSRet) 10445 Flags.setSRet(); 10446 if (Args[i].IsSwiftSelf) 10447 Flags.setSwiftSelf(); 10448 if (Args[i].IsSwiftAsync) 10449 Flags.setSwiftAsync(); 10450 if (Args[i].IsSwiftError) 10451 Flags.setSwiftError(); 10452 if (Args[i].IsCFGuardTarget) 10453 Flags.setCFGuardTarget(); 10454 if (Args[i].IsByVal) 10455 Flags.setByVal(); 10456 if (Args[i].IsByRef) 10457 Flags.setByRef(); 10458 if (Args[i].IsPreallocated) { 10459 Flags.setPreallocated(); 10460 // Set the byval flag for CCAssignFn callbacks that don't know about 10461 // preallocated. This way we can know how many bytes we should've 10462 // allocated and how many bytes a callee cleanup function will pop. If 10463 // we port preallocated to more targets, we'll have to add custom 10464 // preallocated handling in the various CC lowering callbacks. 10465 Flags.setByVal(); 10466 } 10467 if (Args[i].IsInAlloca) { 10468 Flags.setInAlloca(); 10469 // Set the byval flag for CCAssignFn callbacks that don't know about 10470 // inalloca. This way we can know how many bytes we should've allocated 10471 // and how many bytes a callee cleanup function will pop. If we port 10472 // inalloca to more targets, we'll have to add custom inalloca handling 10473 // in the various CC lowering callbacks. 10474 Flags.setByVal(); 10475 } 10476 Align MemAlign; 10477 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10478 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10479 Flags.setByValSize(FrameSize); 10480 10481 // info is not there but there are cases it cannot get right. 10482 if (auto MA = Args[i].Alignment) 10483 MemAlign = *MA; 10484 else 10485 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10486 } else if (auto MA = Args[i].Alignment) { 10487 MemAlign = *MA; 10488 } else { 10489 MemAlign = OriginalAlignment; 10490 } 10491 Flags.setMemAlign(MemAlign); 10492 if (Args[i].IsNest) 10493 Flags.setNest(); 10494 if (NeedsRegBlock) 10495 Flags.setInConsecutiveRegs(); 10496 10497 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10498 CLI.CallConv, VT); 10499 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10500 CLI.CallConv, VT); 10501 SmallVector<SDValue, 4> Parts(NumParts); 10502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10503 10504 if (Args[i].IsSExt) 10505 ExtendKind = ISD::SIGN_EXTEND; 10506 else if (Args[i].IsZExt) 10507 ExtendKind = ISD::ZERO_EXTEND; 10508 10509 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10510 // for now. 10511 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10512 CanLowerReturn) { 10513 assert((CLI.RetTy == Args[i].Ty || 10514 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10515 CLI.RetTy->getPointerAddressSpace() == 10516 Args[i].Ty->getPointerAddressSpace())) && 10517 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10518 // Before passing 'returned' to the target lowering code, ensure that 10519 // either the register MVT and the actual EVT are the same size or that 10520 // the return value and argument are extended in the same way; in these 10521 // cases it's safe to pass the argument register value unchanged as the 10522 // return register value (although it's at the target's option whether 10523 // to do so) 10524 // TODO: allow code generation to take advantage of partially preserved 10525 // registers rather than clobbering the entire register when the 10526 // parameter extension method is not compatible with the return 10527 // extension method 10528 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10529 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10530 CLI.RetZExt == Args[i].IsZExt)) 10531 Flags.setReturned(); 10532 } 10533 10534 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10535 CLI.CallConv, ExtendKind); 10536 10537 for (unsigned j = 0; j != NumParts; ++j) { 10538 // if it isn't first piece, alignment must be 1 10539 // For scalable vectors the scalable part is currently handled 10540 // by individual targets, so we just use the known minimum size here. 10541 ISD::OutputArg MyFlags( 10542 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10543 i < CLI.NumFixedArgs, i, 10544 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10545 if (NumParts > 1 && j == 0) 10546 MyFlags.Flags.setSplit(); 10547 else if (j != 0) { 10548 MyFlags.Flags.setOrigAlign(Align(1)); 10549 if (j == NumParts - 1) 10550 MyFlags.Flags.setSplitEnd(); 10551 } 10552 10553 CLI.Outs.push_back(MyFlags); 10554 CLI.OutVals.push_back(Parts[j]); 10555 } 10556 10557 if (NeedsRegBlock && Value == NumValues - 1) 10558 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10559 } 10560 } 10561 10562 SmallVector<SDValue, 4> InVals; 10563 CLI.Chain = LowerCall(CLI, InVals); 10564 10565 // Update CLI.InVals to use outside of this function. 10566 CLI.InVals = InVals; 10567 10568 // Verify that the target's LowerCall behaved as expected. 10569 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10570 "LowerCall didn't return a valid chain!"); 10571 assert((!CLI.IsTailCall || InVals.empty()) && 10572 "LowerCall emitted a return value for a tail call!"); 10573 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10574 "LowerCall didn't emit the correct number of values!"); 10575 10576 // For a tail call, the return value is merely live-out and there aren't 10577 // any nodes in the DAG representing it. Return a special value to 10578 // indicate that a tail call has been emitted and no more Instructions 10579 // should be processed in the current block. 10580 if (CLI.IsTailCall) { 10581 CLI.DAG.setRoot(CLI.Chain); 10582 return std::make_pair(SDValue(), SDValue()); 10583 } 10584 10585 #ifndef NDEBUG 10586 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10587 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10588 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10589 "LowerCall emitted a value with the wrong type!"); 10590 } 10591 #endif 10592 10593 SmallVector<SDValue, 4> ReturnValues; 10594 if (!CanLowerReturn) { 10595 // The instruction result is the result of loading from the 10596 // hidden sret parameter. 10597 SmallVector<EVT, 1> PVTs; 10598 Type *PtrRetTy = 10599 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10600 10601 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10602 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10603 EVT PtrVT = PVTs[0]; 10604 10605 unsigned NumValues = RetTys.size(); 10606 ReturnValues.resize(NumValues); 10607 SmallVector<SDValue, 4> Chains(NumValues); 10608 10609 // An aggregate return value cannot wrap around the address space, so 10610 // offsets to its parts don't wrap either. 10611 SDNodeFlags Flags; 10612 Flags.setNoUnsignedWrap(true); 10613 10614 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10615 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10616 for (unsigned i = 0; i < NumValues; ++i) { 10617 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10618 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10619 PtrVT), Flags); 10620 SDValue L = CLI.DAG.getLoad( 10621 RetTys[i], CLI.DL, CLI.Chain, Add, 10622 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10623 DemoteStackIdx, Offsets[i]), 10624 HiddenSRetAlign); 10625 ReturnValues[i] = L; 10626 Chains[i] = L.getValue(1); 10627 } 10628 10629 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10630 } else { 10631 // Collect the legal value parts into potentially illegal values 10632 // that correspond to the original function's return values. 10633 std::optional<ISD::NodeType> AssertOp; 10634 if (CLI.RetSExt) 10635 AssertOp = ISD::AssertSext; 10636 else if (CLI.RetZExt) 10637 AssertOp = ISD::AssertZext; 10638 unsigned CurReg = 0; 10639 for (EVT VT : RetTys) { 10640 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10641 CLI.CallConv, VT); 10642 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10643 CLI.CallConv, VT); 10644 10645 ReturnValues.push_back(getCopyFromParts( 10646 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 10647 CLI.Chain, CLI.CallConv, AssertOp)); 10648 CurReg += NumRegs; 10649 } 10650 10651 // For a function returning void, there is no return value. We can't create 10652 // such a node, so we just return a null return value in that case. In 10653 // that case, nothing will actually look at the value. 10654 if (ReturnValues.empty()) 10655 return std::make_pair(SDValue(), CLI.Chain); 10656 } 10657 10658 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10659 CLI.DAG.getVTList(RetTys), ReturnValues); 10660 return std::make_pair(Res, CLI.Chain); 10661 } 10662 10663 /// Places new result values for the node in Results (their number 10664 /// and types must exactly match those of the original return values of 10665 /// the node), or leaves Results empty, which indicates that the node is not 10666 /// to be custom lowered after all. 10667 void TargetLowering::LowerOperationWrapper(SDNode *N, 10668 SmallVectorImpl<SDValue> &Results, 10669 SelectionDAG &DAG) const { 10670 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10671 10672 if (!Res.getNode()) 10673 return; 10674 10675 // If the original node has one result, take the return value from 10676 // LowerOperation as is. It might not be result number 0. 10677 if (N->getNumValues() == 1) { 10678 Results.push_back(Res); 10679 return; 10680 } 10681 10682 // If the original node has multiple results, then the return node should 10683 // have the same number of results. 10684 assert((N->getNumValues() == Res->getNumValues()) && 10685 "Lowering returned the wrong number of results!"); 10686 10687 // Places new result values base on N result number. 10688 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10689 Results.push_back(Res.getValue(I)); 10690 } 10691 10692 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10693 llvm_unreachable("LowerOperation not implemented for this target!"); 10694 } 10695 10696 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10697 unsigned Reg, 10698 ISD::NodeType ExtendType) { 10699 SDValue Op = getNonRegisterValue(V); 10700 assert((Op.getOpcode() != ISD::CopyFromReg || 10701 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10702 "Copy from a reg to the same reg!"); 10703 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10704 10705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10706 // If this is an InlineAsm we have to match the registers required, not the 10707 // notional registers required by the type. 10708 10709 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10710 std::nullopt); // This is not an ABI copy. 10711 SDValue Chain = DAG.getEntryNode(); 10712 10713 if (ExtendType == ISD::ANY_EXTEND) { 10714 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10715 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10716 ExtendType = PreferredExtendIt->second; 10717 } 10718 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10719 PendingExports.push_back(Chain); 10720 } 10721 10722 #include "llvm/CodeGen/SelectionDAGISel.h" 10723 10724 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10725 /// entry block, return true. This includes arguments used by switches, since 10726 /// the switch may expand into multiple basic blocks. 10727 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10728 // With FastISel active, we may be splitting blocks, so force creation 10729 // of virtual registers for all non-dead arguments. 10730 if (FastISel) 10731 return A->use_empty(); 10732 10733 const BasicBlock &Entry = A->getParent()->front(); 10734 for (const User *U : A->users()) 10735 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10736 return false; // Use not in entry block. 10737 10738 return true; 10739 } 10740 10741 using ArgCopyElisionMapTy = 10742 DenseMap<const Argument *, 10743 std::pair<const AllocaInst *, const StoreInst *>>; 10744 10745 /// Scan the entry block of the function in FuncInfo for arguments that look 10746 /// like copies into a local alloca. Record any copied arguments in 10747 /// ArgCopyElisionCandidates. 10748 static void 10749 findArgumentCopyElisionCandidates(const DataLayout &DL, 10750 FunctionLoweringInfo *FuncInfo, 10751 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10752 // Record the state of every static alloca used in the entry block. Argument 10753 // allocas are all used in the entry block, so we need approximately as many 10754 // entries as we have arguments. 10755 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10756 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10757 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10758 StaticAllocas.reserve(NumArgs * 2); 10759 10760 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10761 if (!V) 10762 return nullptr; 10763 V = V->stripPointerCasts(); 10764 const auto *AI = dyn_cast<AllocaInst>(V); 10765 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10766 return nullptr; 10767 auto Iter = StaticAllocas.insert({AI, Unknown}); 10768 return &Iter.first->second; 10769 }; 10770 10771 // Look for stores of arguments to static allocas. Look through bitcasts and 10772 // GEPs to handle type coercions, as long as the alloca is fully initialized 10773 // by the store. Any non-store use of an alloca escapes it and any subsequent 10774 // unanalyzed store might write it. 10775 // FIXME: Handle structs initialized with multiple stores. 10776 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10777 // Look for stores, and handle non-store uses conservatively. 10778 const auto *SI = dyn_cast<StoreInst>(&I); 10779 if (!SI) { 10780 // We will look through cast uses, so ignore them completely. 10781 if (I.isCast()) 10782 continue; 10783 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10784 // to allocas. 10785 if (I.isDebugOrPseudoInst()) 10786 continue; 10787 // This is an unknown instruction. Assume it escapes or writes to all 10788 // static alloca operands. 10789 for (const Use &U : I.operands()) { 10790 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10791 *Info = StaticAllocaInfo::Clobbered; 10792 } 10793 continue; 10794 } 10795 10796 // If the stored value is a static alloca, mark it as escaped. 10797 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10798 *Info = StaticAllocaInfo::Clobbered; 10799 10800 // Check if the destination is a static alloca. 10801 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10802 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10803 if (!Info) 10804 continue; 10805 const AllocaInst *AI = cast<AllocaInst>(Dst); 10806 10807 // Skip allocas that have been initialized or clobbered. 10808 if (*Info != StaticAllocaInfo::Unknown) 10809 continue; 10810 10811 // Check if the stored value is an argument, and that this store fully 10812 // initializes the alloca. 10813 // If the argument type has padding bits we can't directly forward a pointer 10814 // as the upper bits may contain garbage. 10815 // Don't elide copies from the same argument twice. 10816 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10817 const auto *Arg = dyn_cast<Argument>(Val); 10818 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10819 Arg->getType()->isEmptyTy() || 10820 DL.getTypeStoreSize(Arg->getType()) != 10821 DL.getTypeAllocSize(AI->getAllocatedType()) || 10822 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10823 ArgCopyElisionCandidates.count(Arg)) { 10824 *Info = StaticAllocaInfo::Clobbered; 10825 continue; 10826 } 10827 10828 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10829 << '\n'); 10830 10831 // Mark this alloca and store for argument copy elision. 10832 *Info = StaticAllocaInfo::Elidable; 10833 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10834 10835 // Stop scanning if we've seen all arguments. This will happen early in -O0 10836 // builds, which is useful, because -O0 builds have large entry blocks and 10837 // many allocas. 10838 if (ArgCopyElisionCandidates.size() == NumArgs) 10839 break; 10840 } 10841 } 10842 10843 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10844 /// ArgVal is a load from a suitable fixed stack object. 10845 static void tryToElideArgumentCopy( 10846 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10847 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10848 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10849 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10850 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10851 // Check if this is a load from a fixed stack object. 10852 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10853 if (!LNode) 10854 return; 10855 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10856 if (!FINode) 10857 return; 10858 10859 // Check that the fixed stack object is the right size and alignment. 10860 // Look at the alignment that the user wrote on the alloca instead of looking 10861 // at the stack object. 10862 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10863 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10864 const AllocaInst *AI = ArgCopyIter->second.first; 10865 int FixedIndex = FINode->getIndex(); 10866 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10867 int OldIndex = AllocaIndex; 10868 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10869 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10870 LLVM_DEBUG( 10871 dbgs() << " argument copy elision failed due to bad fixed stack " 10872 "object size\n"); 10873 return; 10874 } 10875 Align RequiredAlignment = AI->getAlign(); 10876 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10877 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10878 "greater than stack argument alignment (" 10879 << DebugStr(RequiredAlignment) << " vs " 10880 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10881 return; 10882 } 10883 10884 // Perform the elision. Delete the old stack object and replace its only use 10885 // in the variable info map. Mark the stack object as mutable. 10886 LLVM_DEBUG({ 10887 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10888 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10889 << '\n'; 10890 }); 10891 MFI.RemoveStackObject(OldIndex); 10892 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10893 AllocaIndex = FixedIndex; 10894 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10895 for (SDValue ArgVal : ArgVals) 10896 Chains.push_back(ArgVal.getValue(1)); 10897 10898 // Avoid emitting code for the store implementing the copy. 10899 const StoreInst *SI = ArgCopyIter->second.second; 10900 ElidedArgCopyInstrs.insert(SI); 10901 10902 // Check for uses of the argument again so that we can avoid exporting ArgVal 10903 // if it is't used by anything other than the store. 10904 for (const Value *U : Arg.users()) { 10905 if (U != SI) { 10906 ArgHasUses = true; 10907 break; 10908 } 10909 } 10910 } 10911 10912 void SelectionDAGISel::LowerArguments(const Function &F) { 10913 SelectionDAG &DAG = SDB->DAG; 10914 SDLoc dl = SDB->getCurSDLoc(); 10915 const DataLayout &DL = DAG.getDataLayout(); 10916 SmallVector<ISD::InputArg, 16> Ins; 10917 10918 // In Naked functions we aren't going to save any registers. 10919 if (F.hasFnAttribute(Attribute::Naked)) 10920 return; 10921 10922 if (!FuncInfo->CanLowerReturn) { 10923 // Put in an sret pointer parameter before all the other parameters. 10924 SmallVector<EVT, 1> ValueVTs; 10925 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10926 PointerType::get(F.getContext(), 10927 DAG.getDataLayout().getAllocaAddrSpace()), 10928 ValueVTs); 10929 10930 // NOTE: Assuming that a pointer will never break down to more than one VT 10931 // or one register. 10932 ISD::ArgFlagsTy Flags; 10933 Flags.setSRet(); 10934 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10935 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10936 ISD::InputArg::NoArgIndex, 0); 10937 Ins.push_back(RetArg); 10938 } 10939 10940 // Look for stores of arguments to static allocas. Mark such arguments with a 10941 // flag to ask the target to give us the memory location of that argument if 10942 // available. 10943 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10944 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10945 ArgCopyElisionCandidates); 10946 10947 // Set up the incoming argument description vector. 10948 for (const Argument &Arg : F.args()) { 10949 unsigned ArgNo = Arg.getArgNo(); 10950 SmallVector<EVT, 4> ValueVTs; 10951 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10952 bool isArgValueUsed = !Arg.use_empty(); 10953 unsigned PartBase = 0; 10954 Type *FinalType = Arg.getType(); 10955 if (Arg.hasAttribute(Attribute::ByVal)) 10956 FinalType = Arg.getParamByValType(); 10957 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10958 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10959 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10960 Value != NumValues; ++Value) { 10961 EVT VT = ValueVTs[Value]; 10962 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10963 ISD::ArgFlagsTy Flags; 10964 10965 10966 if (Arg.getType()->isPointerTy()) { 10967 Flags.setPointer(); 10968 Flags.setPointerAddrSpace( 10969 cast<PointerType>(Arg.getType())->getAddressSpace()); 10970 } 10971 if (Arg.hasAttribute(Attribute::ZExt)) 10972 Flags.setZExt(); 10973 if (Arg.hasAttribute(Attribute::SExt)) 10974 Flags.setSExt(); 10975 if (Arg.hasAttribute(Attribute::InReg)) { 10976 // If we are using vectorcall calling convention, a structure that is 10977 // passed InReg - is surely an HVA 10978 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10979 isa<StructType>(Arg.getType())) { 10980 // The first value of a structure is marked 10981 if (0 == Value) 10982 Flags.setHvaStart(); 10983 Flags.setHva(); 10984 } 10985 // Set InReg Flag 10986 Flags.setInReg(); 10987 } 10988 if (Arg.hasAttribute(Attribute::StructRet)) 10989 Flags.setSRet(); 10990 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10991 Flags.setSwiftSelf(); 10992 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10993 Flags.setSwiftAsync(); 10994 if (Arg.hasAttribute(Attribute::SwiftError)) 10995 Flags.setSwiftError(); 10996 if (Arg.hasAttribute(Attribute::ByVal)) 10997 Flags.setByVal(); 10998 if (Arg.hasAttribute(Attribute::ByRef)) 10999 Flags.setByRef(); 11000 if (Arg.hasAttribute(Attribute::InAlloca)) { 11001 Flags.setInAlloca(); 11002 // Set the byval flag for CCAssignFn callbacks that don't know about 11003 // inalloca. This way we can know how many bytes we should've allocated 11004 // and how many bytes a callee cleanup function will pop. If we port 11005 // inalloca to more targets, we'll have to add custom inalloca handling 11006 // in the various CC lowering callbacks. 11007 Flags.setByVal(); 11008 } 11009 if (Arg.hasAttribute(Attribute::Preallocated)) { 11010 Flags.setPreallocated(); 11011 // Set the byval flag for CCAssignFn callbacks that don't know about 11012 // preallocated. This way we can know how many bytes we should've 11013 // allocated and how many bytes a callee cleanup function will pop. If 11014 // we port preallocated to more targets, we'll have to add custom 11015 // preallocated handling in the various CC lowering callbacks. 11016 Flags.setByVal(); 11017 } 11018 11019 // Certain targets (such as MIPS), may have a different ABI alignment 11020 // for a type depending on the context. Give the target a chance to 11021 // specify the alignment it wants. 11022 const Align OriginalAlignment( 11023 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11024 Flags.setOrigAlign(OriginalAlignment); 11025 11026 Align MemAlign; 11027 Type *ArgMemTy = nullptr; 11028 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11029 Flags.isByRef()) { 11030 if (!ArgMemTy) 11031 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11032 11033 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11034 11035 // For in-memory arguments, size and alignment should be passed from FE. 11036 // BE will guess if this info is not there but there are cases it cannot 11037 // get right. 11038 if (auto ParamAlign = Arg.getParamStackAlign()) 11039 MemAlign = *ParamAlign; 11040 else if ((ParamAlign = Arg.getParamAlign())) 11041 MemAlign = *ParamAlign; 11042 else 11043 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11044 if (Flags.isByRef()) 11045 Flags.setByRefSize(MemSize); 11046 else 11047 Flags.setByValSize(MemSize); 11048 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11049 MemAlign = *ParamAlign; 11050 } else { 11051 MemAlign = OriginalAlignment; 11052 } 11053 Flags.setMemAlign(MemAlign); 11054 11055 if (Arg.hasAttribute(Attribute::Nest)) 11056 Flags.setNest(); 11057 if (NeedsRegBlock) 11058 Flags.setInConsecutiveRegs(); 11059 if (ArgCopyElisionCandidates.count(&Arg)) 11060 Flags.setCopyElisionCandidate(); 11061 if (Arg.hasAttribute(Attribute::Returned)) 11062 Flags.setReturned(); 11063 11064 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11065 *CurDAG->getContext(), F.getCallingConv(), VT); 11066 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11067 *CurDAG->getContext(), F.getCallingConv(), VT); 11068 for (unsigned i = 0; i != NumRegs; ++i) { 11069 // For scalable vectors, use the minimum size; individual targets 11070 // are responsible for handling scalable vector arguments and 11071 // return values. 11072 ISD::InputArg MyFlags( 11073 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11074 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11075 if (NumRegs > 1 && i == 0) 11076 MyFlags.Flags.setSplit(); 11077 // if it isn't first piece, alignment must be 1 11078 else if (i > 0) { 11079 MyFlags.Flags.setOrigAlign(Align(1)); 11080 if (i == NumRegs - 1) 11081 MyFlags.Flags.setSplitEnd(); 11082 } 11083 Ins.push_back(MyFlags); 11084 } 11085 if (NeedsRegBlock && Value == NumValues - 1) 11086 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11087 PartBase += VT.getStoreSize().getKnownMinValue(); 11088 } 11089 } 11090 11091 // Call the target to set up the argument values. 11092 SmallVector<SDValue, 8> InVals; 11093 SDValue NewRoot = TLI->LowerFormalArguments( 11094 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11095 11096 // Verify that the target's LowerFormalArguments behaved as expected. 11097 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11098 "LowerFormalArguments didn't return a valid chain!"); 11099 assert(InVals.size() == Ins.size() && 11100 "LowerFormalArguments didn't emit the correct number of values!"); 11101 LLVM_DEBUG({ 11102 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11103 assert(InVals[i].getNode() && 11104 "LowerFormalArguments emitted a null value!"); 11105 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11106 "LowerFormalArguments emitted a value with the wrong type!"); 11107 } 11108 }); 11109 11110 // Update the DAG with the new chain value resulting from argument lowering. 11111 DAG.setRoot(NewRoot); 11112 11113 // Set up the argument values. 11114 unsigned i = 0; 11115 if (!FuncInfo->CanLowerReturn) { 11116 // Create a virtual register for the sret pointer, and put in a copy 11117 // from the sret argument into it. 11118 SmallVector<EVT, 1> ValueVTs; 11119 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11120 PointerType::get(F.getContext(), 11121 DAG.getDataLayout().getAllocaAddrSpace()), 11122 ValueVTs); 11123 MVT VT = ValueVTs[0].getSimpleVT(); 11124 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11125 std::optional<ISD::NodeType> AssertOp; 11126 SDValue ArgValue = 11127 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11128 F.getCallingConv(), AssertOp); 11129 11130 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11131 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11132 Register SRetReg = 11133 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11134 FuncInfo->DemoteRegister = SRetReg; 11135 NewRoot = 11136 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11137 DAG.setRoot(NewRoot); 11138 11139 // i indexes lowered arguments. Bump it past the hidden sret argument. 11140 ++i; 11141 } 11142 11143 SmallVector<SDValue, 4> Chains; 11144 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11145 for (const Argument &Arg : F.args()) { 11146 SmallVector<SDValue, 4> ArgValues; 11147 SmallVector<EVT, 4> ValueVTs; 11148 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11149 unsigned NumValues = ValueVTs.size(); 11150 if (NumValues == 0) 11151 continue; 11152 11153 bool ArgHasUses = !Arg.use_empty(); 11154 11155 // Elide the copying store if the target loaded this argument from a 11156 // suitable fixed stack object. 11157 if (Ins[i].Flags.isCopyElisionCandidate()) { 11158 unsigned NumParts = 0; 11159 for (EVT VT : ValueVTs) 11160 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11161 F.getCallingConv(), VT); 11162 11163 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11164 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11165 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11166 } 11167 11168 // If this argument is unused then remember its value. It is used to generate 11169 // debugging information. 11170 bool isSwiftErrorArg = 11171 TLI->supportSwiftError() && 11172 Arg.hasAttribute(Attribute::SwiftError); 11173 if (!ArgHasUses && !isSwiftErrorArg) { 11174 SDB->setUnusedArgValue(&Arg, InVals[i]); 11175 11176 // Also remember any frame index for use in FastISel. 11177 if (FrameIndexSDNode *FI = 11178 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11179 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11180 } 11181 11182 for (unsigned Val = 0; Val != NumValues; ++Val) { 11183 EVT VT = ValueVTs[Val]; 11184 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11185 F.getCallingConv(), VT); 11186 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11187 *CurDAG->getContext(), F.getCallingConv(), VT); 11188 11189 // Even an apparent 'unused' swifterror argument needs to be returned. So 11190 // we do generate a copy for it that can be used on return from the 11191 // function. 11192 if (ArgHasUses || isSwiftErrorArg) { 11193 std::optional<ISD::NodeType> AssertOp; 11194 if (Arg.hasAttribute(Attribute::SExt)) 11195 AssertOp = ISD::AssertSext; 11196 else if (Arg.hasAttribute(Attribute::ZExt)) 11197 AssertOp = ISD::AssertZext; 11198 11199 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11200 PartVT, VT, nullptr, NewRoot, 11201 F.getCallingConv(), AssertOp)); 11202 } 11203 11204 i += NumParts; 11205 } 11206 11207 // We don't need to do anything else for unused arguments. 11208 if (ArgValues.empty()) 11209 continue; 11210 11211 // Note down frame index. 11212 if (FrameIndexSDNode *FI = 11213 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11214 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11215 11216 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11217 SDB->getCurSDLoc()); 11218 11219 SDB->setValue(&Arg, Res); 11220 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11221 // We want to associate the argument with the frame index, among 11222 // involved operands, that correspond to the lowest address. The 11223 // getCopyFromParts function, called earlier, is swapping the order of 11224 // the operands to BUILD_PAIR depending on endianness. The result of 11225 // that swapping is that the least significant bits of the argument will 11226 // be in the first operand of the BUILD_PAIR node, and the most 11227 // significant bits will be in the second operand. 11228 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11229 if (LoadSDNode *LNode = 11230 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11231 if (FrameIndexSDNode *FI = 11232 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11233 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11234 } 11235 11236 // Analyses past this point are naive and don't expect an assertion. 11237 if (Res.getOpcode() == ISD::AssertZext) 11238 Res = Res.getOperand(0); 11239 11240 // Update the SwiftErrorVRegDefMap. 11241 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11242 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11243 if (Register::isVirtualRegister(Reg)) 11244 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11245 Reg); 11246 } 11247 11248 // If this argument is live outside of the entry block, insert a copy from 11249 // wherever we got it to the vreg that other BB's will reference it as. 11250 if (Res.getOpcode() == ISD::CopyFromReg) { 11251 // If we can, though, try to skip creating an unnecessary vreg. 11252 // FIXME: This isn't very clean... it would be nice to make this more 11253 // general. 11254 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11255 if (Register::isVirtualRegister(Reg)) { 11256 FuncInfo->ValueMap[&Arg] = Reg; 11257 continue; 11258 } 11259 } 11260 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11261 FuncInfo->InitializeRegForValue(&Arg); 11262 SDB->CopyToExportRegsIfNeeded(&Arg); 11263 } 11264 } 11265 11266 if (!Chains.empty()) { 11267 Chains.push_back(NewRoot); 11268 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11269 } 11270 11271 DAG.setRoot(NewRoot); 11272 11273 assert(i == InVals.size() && "Argument register count mismatch!"); 11274 11275 // If any argument copy elisions occurred and we have debug info, update the 11276 // stale frame indices used in the dbg.declare variable info table. 11277 if (!ArgCopyElisionFrameIndexMap.empty()) { 11278 for (MachineFunction::VariableDbgInfo &VI : 11279 MF->getInStackSlotVariableDbgInfo()) { 11280 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11281 if (I != ArgCopyElisionFrameIndexMap.end()) 11282 VI.updateStackSlot(I->second); 11283 } 11284 } 11285 11286 // Finally, if the target has anything special to do, allow it to do so. 11287 emitFunctionEntryCode(); 11288 } 11289 11290 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11291 /// ensure constants are generated when needed. Remember the virtual registers 11292 /// that need to be added to the Machine PHI nodes as input. We cannot just 11293 /// directly add them, because expansion might result in multiple MBB's for one 11294 /// BB. As such, the start of the BB might correspond to a different MBB than 11295 /// the end. 11296 void 11297 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11299 11300 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11301 11302 // Check PHI nodes in successors that expect a value to be available from this 11303 // block. 11304 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11305 if (!isa<PHINode>(SuccBB->begin())) continue; 11306 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11307 11308 // If this terminator has multiple identical successors (common for 11309 // switches), only handle each succ once. 11310 if (!SuccsHandled.insert(SuccMBB).second) 11311 continue; 11312 11313 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11314 11315 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11316 // nodes and Machine PHI nodes, but the incoming operands have not been 11317 // emitted yet. 11318 for (const PHINode &PN : SuccBB->phis()) { 11319 // Ignore dead phi's. 11320 if (PN.use_empty()) 11321 continue; 11322 11323 // Skip empty types 11324 if (PN.getType()->isEmptyTy()) 11325 continue; 11326 11327 unsigned Reg; 11328 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11329 11330 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11331 unsigned &RegOut = ConstantsOut[C]; 11332 if (RegOut == 0) { 11333 RegOut = FuncInfo.CreateRegs(C); 11334 // We need to zero/sign extend ConstantInt phi operands to match 11335 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11336 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11337 if (auto *CI = dyn_cast<ConstantInt>(C)) 11338 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11339 : ISD::ZERO_EXTEND; 11340 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11341 } 11342 Reg = RegOut; 11343 } else { 11344 DenseMap<const Value *, Register>::iterator I = 11345 FuncInfo.ValueMap.find(PHIOp); 11346 if (I != FuncInfo.ValueMap.end()) 11347 Reg = I->second; 11348 else { 11349 assert(isa<AllocaInst>(PHIOp) && 11350 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11351 "Didn't codegen value into a register!??"); 11352 Reg = FuncInfo.CreateRegs(PHIOp); 11353 CopyValueToVirtualRegister(PHIOp, Reg); 11354 } 11355 } 11356 11357 // Remember that this register needs to added to the machine PHI node as 11358 // the input for this MBB. 11359 SmallVector<EVT, 4> ValueVTs; 11360 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11361 for (EVT VT : ValueVTs) { 11362 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11363 for (unsigned i = 0; i != NumRegisters; ++i) 11364 FuncInfo.PHINodesToUpdate.push_back( 11365 std::make_pair(&*MBBI++, Reg + i)); 11366 Reg += NumRegisters; 11367 } 11368 } 11369 } 11370 11371 ConstantsOut.clear(); 11372 } 11373 11374 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11375 MachineFunction::iterator I(MBB); 11376 if (++I == FuncInfo.MF->end()) 11377 return nullptr; 11378 return &*I; 11379 } 11380 11381 /// During lowering new call nodes can be created (such as memset, etc.). 11382 /// Those will become new roots of the current DAG, but complications arise 11383 /// when they are tail calls. In such cases, the call lowering will update 11384 /// the root, but the builder still needs to know that a tail call has been 11385 /// lowered in order to avoid generating an additional return. 11386 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11387 // If the node is null, we do have a tail call. 11388 if (MaybeTC.getNode() != nullptr) 11389 DAG.setRoot(MaybeTC); 11390 else 11391 HasTailCall = true; 11392 } 11393 11394 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11395 MachineBasicBlock *SwitchMBB, 11396 MachineBasicBlock *DefaultMBB) { 11397 MachineFunction *CurMF = FuncInfo.MF; 11398 MachineBasicBlock *NextMBB = nullptr; 11399 MachineFunction::iterator BBI(W.MBB); 11400 if (++BBI != FuncInfo.MF->end()) 11401 NextMBB = &*BBI; 11402 11403 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11404 11405 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11406 11407 if (Size == 2 && W.MBB == SwitchMBB) { 11408 // If any two of the cases has the same destination, and if one value 11409 // is the same as the other, but has one bit unset that the other has set, 11410 // use bit manipulation to do two compares at once. For example: 11411 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11412 // TODO: This could be extended to merge any 2 cases in switches with 3 11413 // cases. 11414 // TODO: Handle cases where W.CaseBB != SwitchBB. 11415 CaseCluster &Small = *W.FirstCluster; 11416 CaseCluster &Big = *W.LastCluster; 11417 11418 if (Small.Low == Small.High && Big.Low == Big.High && 11419 Small.MBB == Big.MBB) { 11420 const APInt &SmallValue = Small.Low->getValue(); 11421 const APInt &BigValue = Big.Low->getValue(); 11422 11423 // Check that there is only one bit different. 11424 APInt CommonBit = BigValue ^ SmallValue; 11425 if (CommonBit.isPowerOf2()) { 11426 SDValue CondLHS = getValue(Cond); 11427 EVT VT = CondLHS.getValueType(); 11428 SDLoc DL = getCurSDLoc(); 11429 11430 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11431 DAG.getConstant(CommonBit, DL, VT)); 11432 SDValue Cond = DAG.getSetCC( 11433 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11434 ISD::SETEQ); 11435 11436 // Update successor info. 11437 // Both Small and Big will jump to Small.BB, so we sum up the 11438 // probabilities. 11439 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11440 if (BPI) 11441 addSuccessorWithProb( 11442 SwitchMBB, DefaultMBB, 11443 // The default destination is the first successor in IR. 11444 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11445 else 11446 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11447 11448 // Insert the true branch. 11449 SDValue BrCond = 11450 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11451 DAG.getBasicBlock(Small.MBB)); 11452 // Insert the false branch. 11453 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11454 DAG.getBasicBlock(DefaultMBB)); 11455 11456 DAG.setRoot(BrCond); 11457 return; 11458 } 11459 } 11460 } 11461 11462 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11463 // Here, we order cases by probability so the most likely case will be 11464 // checked first. However, two clusters can have the same probability in 11465 // which case their relative ordering is non-deterministic. So we use Low 11466 // as a tie-breaker as clusters are guaranteed to never overlap. 11467 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11468 [](const CaseCluster &a, const CaseCluster &b) { 11469 return a.Prob != b.Prob ? 11470 a.Prob > b.Prob : 11471 a.Low->getValue().slt(b.Low->getValue()); 11472 }); 11473 11474 // Rearrange the case blocks so that the last one falls through if possible 11475 // without changing the order of probabilities. 11476 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11477 --I; 11478 if (I->Prob > W.LastCluster->Prob) 11479 break; 11480 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11481 std::swap(*I, *W.LastCluster); 11482 break; 11483 } 11484 } 11485 } 11486 11487 // Compute total probability. 11488 BranchProbability DefaultProb = W.DefaultProb; 11489 BranchProbability UnhandledProbs = DefaultProb; 11490 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11491 UnhandledProbs += I->Prob; 11492 11493 MachineBasicBlock *CurMBB = W.MBB; 11494 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11495 bool FallthroughUnreachable = false; 11496 MachineBasicBlock *Fallthrough; 11497 if (I == W.LastCluster) { 11498 // For the last cluster, fall through to the default destination. 11499 Fallthrough = DefaultMBB; 11500 FallthroughUnreachable = isa<UnreachableInst>( 11501 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11502 } else { 11503 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11504 CurMF->insert(BBI, Fallthrough); 11505 // Put Cond in a virtual register to make it available from the new blocks. 11506 ExportFromCurrentBlock(Cond); 11507 } 11508 UnhandledProbs -= I->Prob; 11509 11510 switch (I->Kind) { 11511 case CC_JumpTable: { 11512 // FIXME: Optimize away range check based on pivot comparisons. 11513 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11514 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11515 11516 // The jump block hasn't been inserted yet; insert it here. 11517 MachineBasicBlock *JumpMBB = JT->MBB; 11518 CurMF->insert(BBI, JumpMBB); 11519 11520 auto JumpProb = I->Prob; 11521 auto FallthroughProb = UnhandledProbs; 11522 11523 // If the default statement is a target of the jump table, we evenly 11524 // distribute the default probability to successors of CurMBB. Also 11525 // update the probability on the edge from JumpMBB to Fallthrough. 11526 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11527 SE = JumpMBB->succ_end(); 11528 SI != SE; ++SI) { 11529 if (*SI == DefaultMBB) { 11530 JumpProb += DefaultProb / 2; 11531 FallthroughProb -= DefaultProb / 2; 11532 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11533 JumpMBB->normalizeSuccProbs(); 11534 break; 11535 } 11536 } 11537 11538 // If the default clause is unreachable, propagate that knowledge into 11539 // JTH->FallthroughUnreachable which will use it to suppress the range 11540 // check. 11541 // 11542 // However, don't do this if we're doing branch target enforcement, 11543 // because a table branch _without_ a range check can be a tempting JOP 11544 // gadget - out-of-bounds inputs that are impossible in correct 11545 // execution become possible again if an attacker can influence the 11546 // control flow. So if an attacker doesn't already have a BTI bypass 11547 // available, we don't want them to be able to get one out of this 11548 // table branch. 11549 if (FallthroughUnreachable) { 11550 Function &CurFunc = CurMF->getFunction(); 11551 bool HasBranchTargetEnforcement = false; 11552 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11553 HasBranchTargetEnforcement = 11554 CurFunc.getFnAttribute("branch-target-enforcement") 11555 .getValueAsBool(); 11556 } else { 11557 HasBranchTargetEnforcement = 11558 CurMF->getMMI().getModule()->getModuleFlag( 11559 "branch-target-enforcement"); 11560 } 11561 if (!HasBranchTargetEnforcement) 11562 JTH->FallthroughUnreachable = true; 11563 } 11564 11565 if (!JTH->FallthroughUnreachable) 11566 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11567 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11568 CurMBB->normalizeSuccProbs(); 11569 11570 // The jump table header will be inserted in our current block, do the 11571 // range check, and fall through to our fallthrough block. 11572 JTH->HeaderBB = CurMBB; 11573 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11574 11575 // If we're in the right place, emit the jump table header right now. 11576 if (CurMBB == SwitchMBB) { 11577 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11578 JTH->Emitted = true; 11579 } 11580 break; 11581 } 11582 case CC_BitTests: { 11583 // FIXME: Optimize away range check based on pivot comparisons. 11584 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11585 11586 // The bit test blocks haven't been inserted yet; insert them here. 11587 for (BitTestCase &BTC : BTB->Cases) 11588 CurMF->insert(BBI, BTC.ThisBB); 11589 11590 // Fill in fields of the BitTestBlock. 11591 BTB->Parent = CurMBB; 11592 BTB->Default = Fallthrough; 11593 11594 BTB->DefaultProb = UnhandledProbs; 11595 // If the cases in bit test don't form a contiguous range, we evenly 11596 // distribute the probability on the edge to Fallthrough to two 11597 // successors of CurMBB. 11598 if (!BTB->ContiguousRange) { 11599 BTB->Prob += DefaultProb / 2; 11600 BTB->DefaultProb -= DefaultProb / 2; 11601 } 11602 11603 if (FallthroughUnreachable) 11604 BTB->FallthroughUnreachable = true; 11605 11606 // If we're in the right place, emit the bit test header right now. 11607 if (CurMBB == SwitchMBB) { 11608 visitBitTestHeader(*BTB, SwitchMBB); 11609 BTB->Emitted = true; 11610 } 11611 break; 11612 } 11613 case CC_Range: { 11614 const Value *RHS, *LHS, *MHS; 11615 ISD::CondCode CC; 11616 if (I->Low == I->High) { 11617 // Check Cond == I->Low. 11618 CC = ISD::SETEQ; 11619 LHS = Cond; 11620 RHS=I->Low; 11621 MHS = nullptr; 11622 } else { 11623 // Check I->Low <= Cond <= I->High. 11624 CC = ISD::SETLE; 11625 LHS = I->Low; 11626 MHS = Cond; 11627 RHS = I->High; 11628 } 11629 11630 // If Fallthrough is unreachable, fold away the comparison. 11631 if (FallthroughUnreachable) 11632 CC = ISD::SETTRUE; 11633 11634 // The false probability is the sum of all unhandled cases. 11635 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11636 getCurSDLoc(), I->Prob, UnhandledProbs); 11637 11638 if (CurMBB == SwitchMBB) 11639 visitSwitchCase(CB, SwitchMBB); 11640 else 11641 SL->SwitchCases.push_back(CB); 11642 11643 break; 11644 } 11645 } 11646 CurMBB = Fallthrough; 11647 } 11648 } 11649 11650 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11651 const SwitchWorkListItem &W, 11652 Value *Cond, 11653 MachineBasicBlock *SwitchMBB) { 11654 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11655 "Clusters not sorted?"); 11656 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11657 11658 auto [LastLeft, FirstRight, LeftProb, RightProb] = 11659 SL->computeSplitWorkItemInfo(W); 11660 11661 // Use the first element on the right as pivot since we will make less-than 11662 // comparisons against it. 11663 CaseClusterIt PivotCluster = FirstRight; 11664 assert(PivotCluster > W.FirstCluster); 11665 assert(PivotCluster <= W.LastCluster); 11666 11667 CaseClusterIt FirstLeft = W.FirstCluster; 11668 CaseClusterIt LastRight = W.LastCluster; 11669 11670 const ConstantInt *Pivot = PivotCluster->Low; 11671 11672 // New blocks will be inserted immediately after the current one. 11673 MachineFunction::iterator BBI(W.MBB); 11674 ++BBI; 11675 11676 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11677 // we can branch to its destination directly if it's squeezed exactly in 11678 // between the known lower bound and Pivot - 1. 11679 MachineBasicBlock *LeftMBB; 11680 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11681 FirstLeft->Low == W.GE && 11682 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11683 LeftMBB = FirstLeft->MBB; 11684 } else { 11685 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11686 FuncInfo.MF->insert(BBI, LeftMBB); 11687 WorkList.push_back( 11688 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11689 // Put Cond in a virtual register to make it available from the new blocks. 11690 ExportFromCurrentBlock(Cond); 11691 } 11692 11693 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11694 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11695 // directly if RHS.High equals the current upper bound. 11696 MachineBasicBlock *RightMBB; 11697 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11698 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11699 RightMBB = FirstRight->MBB; 11700 } else { 11701 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11702 FuncInfo.MF->insert(BBI, RightMBB); 11703 WorkList.push_back( 11704 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11705 // Put Cond in a virtual register to make it available from the new blocks. 11706 ExportFromCurrentBlock(Cond); 11707 } 11708 11709 // Create the CaseBlock record that will be used to lower the branch. 11710 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11711 getCurSDLoc(), LeftProb, RightProb); 11712 11713 if (W.MBB == SwitchMBB) 11714 visitSwitchCase(CB, SwitchMBB); 11715 else 11716 SL->SwitchCases.push_back(CB); 11717 } 11718 11719 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11720 // from the swith statement. 11721 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11722 BranchProbability PeeledCaseProb) { 11723 if (PeeledCaseProb == BranchProbability::getOne()) 11724 return BranchProbability::getZero(); 11725 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11726 11727 uint32_t Numerator = CaseProb.getNumerator(); 11728 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11729 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11730 } 11731 11732 // Try to peel the top probability case if it exceeds the threshold. 11733 // Return current MachineBasicBlock for the switch statement if the peeling 11734 // does not occur. 11735 // If the peeling is performed, return the newly created MachineBasicBlock 11736 // for the peeled switch statement. Also update Clusters to remove the peeled 11737 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11738 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11739 const SwitchInst &SI, CaseClusterVector &Clusters, 11740 BranchProbability &PeeledCaseProb) { 11741 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11742 // Don't perform if there is only one cluster or optimizing for size. 11743 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11744 TM.getOptLevel() == CodeGenOptLevel::None || 11745 SwitchMBB->getParent()->getFunction().hasMinSize()) 11746 return SwitchMBB; 11747 11748 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11749 unsigned PeeledCaseIndex = 0; 11750 bool SwitchPeeled = false; 11751 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11752 CaseCluster &CC = Clusters[Index]; 11753 if (CC.Prob < TopCaseProb) 11754 continue; 11755 TopCaseProb = CC.Prob; 11756 PeeledCaseIndex = Index; 11757 SwitchPeeled = true; 11758 } 11759 if (!SwitchPeeled) 11760 return SwitchMBB; 11761 11762 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11763 << TopCaseProb << "\n"); 11764 11765 // Record the MBB for the peeled switch statement. 11766 MachineFunction::iterator BBI(SwitchMBB); 11767 ++BBI; 11768 MachineBasicBlock *PeeledSwitchMBB = 11769 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11770 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11771 11772 ExportFromCurrentBlock(SI.getCondition()); 11773 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11774 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11775 nullptr, nullptr, TopCaseProb.getCompl()}; 11776 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11777 11778 Clusters.erase(PeeledCaseIt); 11779 for (CaseCluster &CC : Clusters) { 11780 LLVM_DEBUG( 11781 dbgs() << "Scale the probablity for one cluster, before scaling: " 11782 << CC.Prob << "\n"); 11783 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11784 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11785 } 11786 PeeledCaseProb = TopCaseProb; 11787 return PeeledSwitchMBB; 11788 } 11789 11790 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11791 // Extract cases from the switch. 11792 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11793 CaseClusterVector Clusters; 11794 Clusters.reserve(SI.getNumCases()); 11795 for (auto I : SI.cases()) { 11796 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11797 const ConstantInt *CaseVal = I.getCaseValue(); 11798 BranchProbability Prob = 11799 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11800 : BranchProbability(1, SI.getNumCases() + 1); 11801 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11802 } 11803 11804 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11805 11806 // Cluster adjacent cases with the same destination. We do this at all 11807 // optimization levels because it's cheap to do and will make codegen faster 11808 // if there are many clusters. 11809 sortAndRangeify(Clusters); 11810 11811 // The branch probablity of the peeled case. 11812 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11813 MachineBasicBlock *PeeledSwitchMBB = 11814 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11815 11816 // If there is only the default destination, jump there directly. 11817 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11818 if (Clusters.empty()) { 11819 assert(PeeledSwitchMBB == SwitchMBB); 11820 SwitchMBB->addSuccessor(DefaultMBB); 11821 if (DefaultMBB != NextBlock(SwitchMBB)) { 11822 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11823 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11824 } 11825 return; 11826 } 11827 11828 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 11829 DAG.getBFI()); 11830 SL->findBitTestClusters(Clusters, &SI); 11831 11832 LLVM_DEBUG({ 11833 dbgs() << "Case clusters: "; 11834 for (const CaseCluster &C : Clusters) { 11835 if (C.Kind == CC_JumpTable) 11836 dbgs() << "JT:"; 11837 if (C.Kind == CC_BitTests) 11838 dbgs() << "BT:"; 11839 11840 C.Low->getValue().print(dbgs(), true); 11841 if (C.Low != C.High) { 11842 dbgs() << '-'; 11843 C.High->getValue().print(dbgs(), true); 11844 } 11845 dbgs() << ' '; 11846 } 11847 dbgs() << '\n'; 11848 }); 11849 11850 assert(!Clusters.empty()); 11851 SwitchWorkList WorkList; 11852 CaseClusterIt First = Clusters.begin(); 11853 CaseClusterIt Last = Clusters.end() - 1; 11854 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11855 // Scale the branchprobability for DefaultMBB if the peel occurs and 11856 // DefaultMBB is not replaced. 11857 if (PeeledCaseProb != BranchProbability::getZero() && 11858 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11859 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11860 WorkList.push_back( 11861 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11862 11863 while (!WorkList.empty()) { 11864 SwitchWorkListItem W = WorkList.pop_back_val(); 11865 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11866 11867 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11868 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11869 // For optimized builds, lower large range as a balanced binary tree. 11870 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11871 continue; 11872 } 11873 11874 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11875 } 11876 } 11877 11878 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11880 auto DL = getCurSDLoc(); 11881 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11882 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11883 } 11884 11885 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11887 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11888 11889 SDLoc DL = getCurSDLoc(); 11890 SDValue V = getValue(I.getOperand(0)); 11891 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11892 11893 if (VT.isScalableVector()) { 11894 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11895 return; 11896 } 11897 11898 // Use VECTOR_SHUFFLE for the fixed-length vector 11899 // to maintain existing behavior. 11900 SmallVector<int, 8> Mask; 11901 unsigned NumElts = VT.getVectorMinNumElements(); 11902 for (unsigned i = 0; i != NumElts; ++i) 11903 Mask.push_back(NumElts - 1 - i); 11904 11905 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11906 } 11907 11908 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11909 auto DL = getCurSDLoc(); 11910 SDValue InVec = getValue(I.getOperand(0)); 11911 EVT OutVT = 11912 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11913 11914 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11915 11916 // ISD Node needs the input vectors split into two equal parts 11917 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11918 DAG.getVectorIdxConstant(0, DL)); 11919 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11920 DAG.getVectorIdxConstant(OutNumElts, DL)); 11921 11922 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11923 // legalisation and combines. 11924 if (OutVT.isFixedLengthVector()) { 11925 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11926 createStrideMask(0, 2, OutNumElts)); 11927 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11928 createStrideMask(1, 2, OutNumElts)); 11929 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11930 setValue(&I, Res); 11931 return; 11932 } 11933 11934 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11935 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11936 setValue(&I, Res); 11937 } 11938 11939 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11940 auto DL = getCurSDLoc(); 11941 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11942 SDValue InVec0 = getValue(I.getOperand(0)); 11943 SDValue InVec1 = getValue(I.getOperand(1)); 11944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11945 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11946 11947 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11948 // legalisation and combines. 11949 if (OutVT.isFixedLengthVector()) { 11950 unsigned NumElts = InVT.getVectorMinNumElements(); 11951 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11952 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11953 createInterleaveMask(NumElts, 2))); 11954 return; 11955 } 11956 11957 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11958 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11959 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11960 Res.getValue(1)); 11961 setValue(&I, Res); 11962 } 11963 11964 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11965 SmallVector<EVT, 4> ValueVTs; 11966 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11967 ValueVTs); 11968 unsigned NumValues = ValueVTs.size(); 11969 if (NumValues == 0) return; 11970 11971 SmallVector<SDValue, 4> Values(NumValues); 11972 SDValue Op = getValue(I.getOperand(0)); 11973 11974 for (unsigned i = 0; i != NumValues; ++i) 11975 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11976 SDValue(Op.getNode(), Op.getResNo() + i)); 11977 11978 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11979 DAG.getVTList(ValueVTs), Values)); 11980 } 11981 11982 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11984 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11985 11986 SDLoc DL = getCurSDLoc(); 11987 SDValue V1 = getValue(I.getOperand(0)); 11988 SDValue V2 = getValue(I.getOperand(1)); 11989 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11990 11991 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11992 if (VT.isScalableVector()) { 11993 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11994 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11995 DAG.getConstant(Imm, DL, IdxVT))); 11996 return; 11997 } 11998 11999 unsigned NumElts = VT.getVectorNumElements(); 12000 12001 uint64_t Idx = (NumElts + Imm) % NumElts; 12002 12003 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12004 SmallVector<int, 8> Mask; 12005 for (unsigned i = 0; i < NumElts; ++i) 12006 Mask.push_back(Idx + i); 12007 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12008 } 12009 12010 // Consider the following MIR after SelectionDAG, which produces output in 12011 // phyregs in the first case or virtregs in the second case. 12012 // 12013 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12014 // %5:gr32 = COPY $ebx 12015 // %6:gr32 = COPY $edx 12016 // %1:gr32 = COPY %6:gr32 12017 // %0:gr32 = COPY %5:gr32 12018 // 12019 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12020 // %1:gr32 = COPY %6:gr32 12021 // %0:gr32 = COPY %5:gr32 12022 // 12023 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12024 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12025 // 12026 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12027 // to a single virtreg (such as %0). The remaining outputs monotonically 12028 // increase in virtreg number from there. If a callbr has no outputs, then it 12029 // should not have a corresponding callbr landingpad; in fact, the callbr 12030 // landingpad would not even be able to refer to such a callbr. 12031 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12032 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12033 // There is definitely at least one copy. 12034 assert(MI->getOpcode() == TargetOpcode::COPY && 12035 "start of copy chain MUST be COPY"); 12036 Reg = MI->getOperand(1).getReg(); 12037 MI = MRI.def_begin(Reg)->getParent(); 12038 // There may be an optional second copy. 12039 if (MI->getOpcode() == TargetOpcode::COPY) { 12040 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12041 Reg = MI->getOperand(1).getReg(); 12042 assert(Reg.isPhysical() && "expected COPY of physical register"); 12043 MI = MRI.def_begin(Reg)->getParent(); 12044 } 12045 // The start of the chain must be an INLINEASM_BR. 12046 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12047 "end of copy chain MUST be INLINEASM_BR"); 12048 return Reg; 12049 } 12050 12051 // We must do this walk rather than the simpler 12052 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12053 // otherwise we will end up with copies of virtregs only valid along direct 12054 // edges. 12055 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12056 SmallVector<EVT, 8> ResultVTs; 12057 SmallVector<SDValue, 8> ResultValues; 12058 const auto *CBR = 12059 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12060 12061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12062 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12063 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12064 12065 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12066 SDValue Chain = DAG.getRoot(); 12067 12068 // Re-parse the asm constraints string. 12069 TargetLowering::AsmOperandInfoVector TargetConstraints = 12070 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12071 for (auto &T : TargetConstraints) { 12072 SDISelAsmOperandInfo OpInfo(T); 12073 if (OpInfo.Type != InlineAsm::isOutput) 12074 continue; 12075 12076 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12077 // individual constraint. 12078 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12079 12080 switch (OpInfo.ConstraintType) { 12081 case TargetLowering::C_Register: 12082 case TargetLowering::C_RegisterClass: { 12083 // Fill in OpInfo.AssignedRegs.Regs. 12084 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12085 12086 // getRegistersForValue may produce 1 to many registers based on whether 12087 // the OpInfo.ConstraintVT is legal on the target or not. 12088 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12089 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12090 if (Register::isPhysicalRegister(OriginalDef)) 12091 FuncInfo.MBB->addLiveIn(OriginalDef); 12092 // Update the assigned registers to use the original defs. 12093 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12094 } 12095 12096 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12097 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12098 ResultValues.push_back(V); 12099 ResultVTs.push_back(OpInfo.ConstraintVT); 12100 break; 12101 } 12102 case TargetLowering::C_Other: { 12103 SDValue Flag; 12104 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12105 OpInfo, DAG); 12106 ++InitialDef; 12107 ResultValues.push_back(V); 12108 ResultVTs.push_back(OpInfo.ConstraintVT); 12109 break; 12110 } 12111 default: 12112 break; 12113 } 12114 } 12115 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12116 DAG.getVTList(ResultVTs), ResultValues); 12117 setValue(&I, V); 12118 } 12119