xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 1142e6c7c795de7f80774325a07ed49bc95a48c9)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/Loads.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <optional>
104 #include <tuple>
105 
106 using namespace llvm;
107 using namespace PatternMatch;
108 using namespace SwitchCG;
109 
110 #define DEBUG_TYPE "isel"
111 
112 /// LimitFloatPrecision - Generate low-precision inline sequences for
113 /// some float libcalls (6, 8 or 12 bits).
114 static unsigned LimitFloatPrecision;
115 
116 static cl::opt<bool>
117     InsertAssertAlign("insert-assert-align", cl::init(true),
118                       cl::desc("Insert the experimental `assertalign` node."),
119                       cl::ReallyHidden);
120 
121 static cl::opt<unsigned, true>
122     LimitFPPrecision("limit-float-precision",
123                      cl::desc("Generate low-precision inline sequences "
124                               "for some float libcalls"),
125                      cl::location(LimitFloatPrecision), cl::Hidden,
126                      cl::init(0));
127 
128 static cl::opt<unsigned> SwitchPeelThreshold(
129     "switch-peel-threshold", cl::Hidden, cl::init(66),
130     cl::desc("Set the case probability threshold for peeling the case from a "
131              "switch statement. A value greater than 100 will void this "
132              "optimization"));
133 
134 // Limit the width of DAG chains. This is important in general to prevent
135 // DAG-based analysis from blowing up. For example, alias analysis and
136 // load clustering may not complete in reasonable time. It is difficult to
137 // recognize and avoid this situation within each individual analysis, and
138 // future analyses are likely to have the same behavior. Limiting DAG width is
139 // the safe approach and will be especially important with global DAGs.
140 //
141 // MaxParallelChains default is arbitrarily high to avoid affecting
142 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
143 // sequence over this should have been converted to llvm.memcpy by the
144 // frontend. It is easy to induce this behavior with .ll code such as:
145 // %buffer = alloca [4096 x i8]
146 // %data = load [4096 x i8]* %argPtr
147 // store [4096 x i8] %data, [4096 x i8]* %buffer
148 static const unsigned MaxParallelChains = 64;
149 
150 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
151                                       const SDValue *Parts, unsigned NumParts,
152                                       MVT PartVT, EVT ValueVT, const Value *V,
153                                       std::optional<CallingConv::ID> CC);
154 
155 /// getCopyFromParts - Create a value that contains the specified legal parts
156 /// combined into the value they represent.  If the parts combine to a type
157 /// larger than ValueVT then AssertOp can be used to specify whether the extra
158 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
159 /// (ISD::AssertSext).
160 static SDValue
161 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
162                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
163                  std::optional<CallingConv::ID> CC = std::nullopt,
164                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
165   // Let the target assemble the parts if it wants to
166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
167   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
168                                                    PartVT, ValueVT, CC))
169     return Val;
170 
171   if (ValueVT.isVector())
172     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
173                                   CC);
174 
175   assert(NumParts > 0 && "No parts to assemble!");
176   SDValue Val = Parts[0];
177 
178   if (NumParts > 1) {
179     // Assemble the value from multiple parts.
180     if (ValueVT.isInteger()) {
181       unsigned PartBits = PartVT.getSizeInBits();
182       unsigned ValueBits = ValueVT.getSizeInBits();
183 
184       // Assemble the power of 2 part.
185       unsigned RoundParts = llvm::bit_floor(NumParts);
186       unsigned RoundBits = PartBits * RoundParts;
187       EVT RoundVT = RoundBits == ValueBits ?
188         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
189       SDValue Lo, Hi;
190 
191       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
192 
193       if (RoundParts > 2) {
194         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
195                               PartVT, HalfVT, V);
196         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
197                               RoundParts / 2, PartVT, HalfVT, V);
198       } else {
199         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
200         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
201       }
202 
203       if (DAG.getDataLayout().isBigEndian())
204         std::swap(Lo, Hi);
205 
206       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
207 
208       if (RoundParts < NumParts) {
209         // Assemble the trailing non-power-of-2 part.
210         unsigned OddParts = NumParts - RoundParts;
211         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
212         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
213                               OddVT, V, CC);
214 
215         // Combine the round and odd parts.
216         Lo = Val;
217         if (DAG.getDataLayout().isBigEndian())
218           std::swap(Lo, Hi);
219         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
220         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
221         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
222                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
223                                          TLI.getShiftAmountTy(
224                                              TotalVT, DAG.getDataLayout())));
225         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
226         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
227       }
228     } else if (PartVT.isFloatingPoint()) {
229       // FP split into multiple FP parts (for ppcf128)
230       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
231              "Unexpected split");
232       SDValue Lo, Hi;
233       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
234       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
235       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
236         std::swap(Lo, Hi);
237       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
238     } else {
239       // FP split into integer parts (soft fp)
240       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
241              !PartVT.isVector() && "Unexpected split");
242       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
243       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
244     }
245   }
246 
247   // There is now one part, held in Val.  Correct it to match ValueVT.
248   // PartEVT is the type of the register class that holds the value.
249   // ValueVT is the type of the inline asm operation.
250   EVT PartEVT = Val.getValueType();
251 
252   if (PartEVT == ValueVT)
253     return Val;
254 
255   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
256       ValueVT.bitsLT(PartEVT)) {
257     // For an FP value in an integer part, we need to truncate to the right
258     // width first.
259     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
260     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
261   }
262 
263   // Handle types that have the same size.
264   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
265     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
266 
267   // Handle types with different sizes.
268   if (PartEVT.isInteger() && ValueVT.isInteger()) {
269     if (ValueVT.bitsLT(PartEVT)) {
270       // For a truncate, see if we have any information to
271       // indicate whether the truncated bits will always be
272       // zero or sign-extension.
273       if (AssertOp)
274         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
275                           DAG.getValueType(ValueVT));
276       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
277     }
278     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
279   }
280 
281   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
282     // FP_ROUND's are always exact here.
283     if (ValueVT.bitsLT(Val.getValueType()))
284       return DAG.getNode(
285           ISD::FP_ROUND, DL, ValueVT, Val,
286           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
287 
288     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
289   }
290 
291   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
292   // then truncating.
293   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
294       ValueVT.bitsLT(PartEVT)) {
295     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
296     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297   }
298 
299   report_fatal_error("Unknown mismatch in getCopyFromParts!");
300 }
301 
302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
303                                               const Twine &ErrMsg) {
304   const Instruction *I = dyn_cast_or_null<Instruction>(V);
305   if (!V)
306     return Ctx.emitError(ErrMsg);
307 
308   const char *AsmError = ", possible invalid constraint for vector type";
309   if (const CallInst *CI = dyn_cast<CallInst>(I))
310     if (CI->isInlineAsm())
311       return Ctx.emitError(I, ErrMsg + AsmError);
312 
313   return Ctx.emitError(I, ErrMsg);
314 }
315 
316 /// getCopyFromPartsVector - Create a value that contains the specified legal
317 /// parts combined into the value they represent.  If the parts combine to a
318 /// type larger than ValueVT then AssertOp can be used to specify whether the
319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
320 /// ValueVT (ISD::AssertSext).
321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
322                                       const SDValue *Parts, unsigned NumParts,
323                                       MVT PartVT, EVT ValueVT, const Value *V,
324                                       std::optional<CallingConv::ID> CallConv) {
325   assert(ValueVT.isVector() && "Not a vector value");
326   assert(NumParts > 0 && "No parts to assemble!");
327   const bool IsABIRegCopy = CallConv.has_value();
328 
329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
330   SDValue Val = Parts[0];
331 
332   // Handle a multi-element vector.
333   if (NumParts > 1) {
334     EVT IntermediateVT;
335     MVT RegisterVT;
336     unsigned NumIntermediates;
337     unsigned NumRegs;
338 
339     if (IsABIRegCopy) {
340       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
341           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
342           NumIntermediates, RegisterVT);
343     } else {
344       NumRegs =
345           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
346                                      NumIntermediates, RegisterVT);
347     }
348 
349     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
350     NumParts = NumRegs; // Silence a compiler warning.
351     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
352     assert(RegisterVT.getSizeInBits() ==
353            Parts[0].getSimpleValueType().getSizeInBits() &&
354            "Part type sizes don't match!");
355 
356     // Assemble the parts into intermediate operands.
357     SmallVector<SDValue, 8> Ops(NumIntermediates);
358     if (NumIntermediates == NumParts) {
359       // If the register was not expanded, truncate or copy the value,
360       // as appropriate.
361       for (unsigned i = 0; i != NumParts; ++i)
362         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
363                                   PartVT, IntermediateVT, V, CallConv);
364     } else if (NumParts > 0) {
365       // If the intermediate type was expanded, build the intermediate
366       // operands from the parts.
367       assert(NumParts % NumIntermediates == 0 &&
368              "Must expand into a divisible number of parts!");
369       unsigned Factor = NumParts / NumIntermediates;
370       for (unsigned i = 0; i != NumIntermediates; ++i)
371         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
372                                   PartVT, IntermediateVT, V, CallConv);
373     }
374 
375     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
376     // intermediate operands.
377     EVT BuiltVectorTy =
378         IntermediateVT.isVector()
379             ? EVT::getVectorVT(
380                   *DAG.getContext(), IntermediateVT.getScalarType(),
381                   IntermediateVT.getVectorElementCount() * NumParts)
382             : EVT::getVectorVT(*DAG.getContext(),
383                                IntermediateVT.getScalarType(),
384                                NumIntermediates);
385     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
386                                                 : ISD::BUILD_VECTOR,
387                       DL, BuiltVectorTy, Ops);
388   }
389 
390   // There is now one part, held in Val.  Correct it to match ValueVT.
391   EVT PartEVT = Val.getValueType();
392 
393   if (PartEVT == ValueVT)
394     return Val;
395 
396   if (PartEVT.isVector()) {
397     // Vector/Vector bitcast.
398     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
399       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400 
401     // If the parts vector has more elements than the value vector, then we
402     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
403     // Extract the elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
418         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419     }
420 
421     // Promoted vector extract
422     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
423   }
424 
425   // Trivial bitcast if the types are the same size and the destination
426   // vector type is legal.
427   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
428       TLI.isTypeLegal(ValueVT))
429     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
430 
431   if (ValueVT.getVectorNumElements() != 1) {
432      // Certain ABIs require that vectors are passed as integers. For vectors
433      // are the same size, this is an obvious bitcast.
434      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
435        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436      } else if (ValueVT.bitsLT(PartEVT)) {
437        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
438        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
439        // Drop the extra bits.
440        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
441        return DAG.getBitcast(ValueVT, Val);
442      }
443 
444      diagnosePossiblyInvalidConstraint(
445          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
446      return DAG.getUNDEF(ValueVT);
447   }
448 
449   // Handle cases such as i8 -> <1 x i1>
450   EVT ValueSVT = ValueVT.getVectorElementType();
451   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
452     unsigned ValueSize = ValueSVT.getSizeInBits();
453     if (ValueSize == PartEVT.getSizeInBits()) {
454       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
455     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
456       // It's possible a scalar floating point type gets softened to integer and
457       // then promoted to a larger integer. If PartEVT is the larger integer
458       // we need to truncate it and then bitcast to the FP type.
459       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
460       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
462       Val = DAG.getBitcast(ValueSVT, Val);
463     } else {
464       Val = ValueVT.isFloatingPoint()
465                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467     }
468   }
469 
470   return DAG.getBuildVector(ValueVT, DL, Val);
471 }
472 
473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
474                                  SDValue Val, SDValue *Parts, unsigned NumParts,
475                                  MVT PartVT, const Value *V,
476                                  std::optional<CallingConv::ID> CallConv);
477 
478 /// getCopyToParts - Create a series of nodes that contain the specified value
479 /// split into legal parts.  If the parts contain more bits than Val, then, for
480 /// integers, ExtendKind can be used to specify how to generate the extra bits.
481 static void
482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
483                unsigned NumParts, MVT PartVT, const Value *V,
484                std::optional<CallingConv::ID> CallConv = std::nullopt,
485                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
486   // Let the target split the parts if it wants to
487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
488   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
489                                       CallConv))
490     return;
491   EVT ValueVT = Val.getValueType();
492 
493   // Handle the vector case separately.
494   if (ValueVT.isVector())
495     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496                                 CallConv);
497 
498   unsigned PartBits = PartVT.getSizeInBits();
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515     // If the parts cover more bits than the value has, promote the value.
516     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517       assert(NumParts == 1 && "Do not know what to promote to!");
518       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519     } else {
520       if (ValueVT.isFloatingPoint()) {
521         // FP values need to be bitcast, then extended if they are being put
522         // into a larger container.
523         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
524         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
525       }
526       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527              ValueVT.isInteger() &&
528              "Unknown mismatch!");
529       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531       if (PartVT == MVT::x86mmx)
532         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533     }
534   } else if (PartBits == ValueVT.getSizeInBits()) {
535     // Different types of the same size.
536     assert(NumParts == 1 && PartEVT != ValueVT);
537     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539     // If the parts cover less bits than value has, truncate the value.
540     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541            ValueVT.isInteger() &&
542            "Unknown mismatch!");
543     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545     if (PartVT == MVT::x86mmx)
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547   }
548 
549   // The value may have changed - recompute ValueVT.
550   ValueVT = Val.getValueType();
551   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552          "Failed to tile the value with PartVT!");
553 
554   if (NumParts == 1) {
555     if (PartEVT != ValueVT) {
556       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557                                         "scalar-to-vector conversion failed");
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559     }
560 
561     Parts[0] = Val;
562     return;
563   }
564 
565   // Expand the value into multiple parts.
566   if (NumParts & (NumParts - 1)) {
567     // The number of parts is not a power of 2.  Split off and copy the tail.
568     assert(PartVT.isInteger() && ValueVT.isInteger() &&
569            "Do not know what to expand to!");
570     unsigned RoundParts = llvm::bit_floor(NumParts);
571     unsigned RoundBits = RoundParts * PartBits;
572     unsigned OddParts = NumParts - RoundParts;
573     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
575 
576     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
577                    CallConv);
578 
579     if (DAG.getDataLayout().isBigEndian())
580       // The odd parts were reversed by getCopyToParts - unreverse them.
581       std::reverse(Parts + RoundParts, Parts + NumParts);
582 
583     NumParts = RoundParts;
584     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
585     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
586   }
587 
588   // The number of parts is a power of 2.  Repeatedly bisect the value using
589   // EXTRACT_ELEMENT.
590   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
591                          EVT::getIntegerVT(*DAG.getContext(),
592                                            ValueVT.getSizeInBits()),
593                          Val);
594 
595   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
596     for (unsigned i = 0; i < NumParts; i += StepSize) {
597       unsigned ThisBits = StepSize * PartBits / 2;
598       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
599       SDValue &Part0 = Parts[i];
600       SDValue &Part1 = Parts[i+StepSize/2];
601 
602       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
603                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
604       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
606 
607       if (ThisBits == PartBits && ThisVT != PartVT) {
608         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
609         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
610       }
611     }
612   }
613 
614   if (DAG.getDataLayout().isBigEndian())
615     std::reverse(Parts, Parts + OrigNumParts);
616 }
617 
618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
619                                      const SDLoc &DL, EVT PartVT) {
620   if (!PartVT.isVector())
621     return SDValue();
622 
623   EVT ValueVT = Val.getValueType();
624   ElementCount PartNumElts = PartVT.getVectorElementCount();
625   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
626 
627   // We only support widening vectors with equivalent element types and
628   // fixed/scalable properties. If a target needs to widen a fixed-length type
629   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
630   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
631       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
632       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
633     return SDValue();
634 
635   // Widening a scalable vector to another scalable vector is done by inserting
636   // the vector into a larger undef one.
637   if (PartNumElts.isScalable())
638     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
639                        Val, DAG.getVectorIdxConstant(0, DL));
640 
641   EVT ElementVT = PartVT.getVectorElementType();
642   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
643   // undef elements.
644   SmallVector<SDValue, 16> Ops;
645   DAG.ExtractVectorElements(Val, Ops);
646   SDValue EltUndef = DAG.getUNDEF(ElementVT);
647   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
648 
649   // FIXME: Use CONCAT for 2x -> 4x.
650   return DAG.getBuildVector(PartVT, DL, Ops);
651 }
652 
653 /// getCopyToPartsVector - Create a series of nodes that contain the specified
654 /// value split into legal parts.
655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
656                                  SDValue Val, SDValue *Parts, unsigned NumParts,
657                                  MVT PartVT, const Value *V,
658                                  std::optional<CallingConv::ID> CallConv) {
659   EVT ValueVT = Val.getValueType();
660   assert(ValueVT.isVector() && "Not a vector");
661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
662   const bool IsABIRegCopy = CallConv.has_value();
663 
664   if (NumParts == 1) {
665     EVT PartEVT = PartVT;
666     if (PartEVT == ValueVT) {
667       // Nothing to do.
668     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
669       // Bitconvert vector->vector case.
670       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
671     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
672       Val = Widened;
673     } else if (PartVT.isVector() &&
674                PartEVT.getVectorElementType().bitsGE(
675                    ValueVT.getVectorElementType()) &&
676                PartEVT.getVectorElementCount() ==
677                    ValueVT.getVectorElementCount()) {
678 
679       // Promoted vector extract
680       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681     } else if (PartEVT.isVector() &&
682                PartEVT.getVectorElementType() !=
683                    ValueVT.getVectorElementType() &&
684                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
685                    TargetLowering::TypeWidenVector) {
686       // Combination of widening and promotion.
687       EVT WidenVT =
688           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
689                            PartVT.getVectorElementCount());
690       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
691       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
692     } else {
693       // Don't extract an integer from a float vector. This can happen if the
694       // FP type gets softened to integer and then promoted. The promotion
695       // prevents it from being picked up by the earlier bitcast case.
696       if (ValueVT.getVectorElementCount().isScalar() &&
697           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
698         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
699                           DAG.getVectorIdxConstant(0, DL));
700       } else {
701         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
702         assert(PartVT.getFixedSizeInBits() > ValueSize &&
703                "lossy conversion of vector to scalar type");
704         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
705         Val = DAG.getBitcast(IntermediateType, Val);
706         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
707       }
708     }
709 
710     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
711     Parts[0] = Val;
712     return;
713   }
714 
715   // Handle a multi-element vector.
716   EVT IntermediateVT;
717   MVT RegisterVT;
718   unsigned NumIntermediates;
719   unsigned NumRegs;
720   if (IsABIRegCopy) {
721     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
722         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
723         RegisterVT);
724   } else {
725     NumRegs =
726         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
727                                    NumIntermediates, RegisterVT);
728   }
729 
730   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
731   NumParts = NumRegs; // Silence a compiler warning.
732   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
733 
734   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
735          "Mixing scalable and fixed vectors when copying in parts");
736 
737   std::optional<ElementCount> DestEltCnt;
738 
739   if (IntermediateVT.isVector())
740     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
741   else
742     DestEltCnt = ElementCount::getFixed(NumIntermediates);
743 
744   EVT BuiltVectorTy = EVT::getVectorVT(
745       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
746 
747   if (ValueVT == BuiltVectorTy) {
748     // Nothing to do.
749   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
750     // Bitconvert vector->vector case.
751     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
752   } else {
753     if (BuiltVectorTy.getVectorElementType().bitsGT(
754             ValueVT.getVectorElementType())) {
755       // Integer promotion.
756       ValueVT = EVT::getVectorVT(*DAG.getContext(),
757                                  BuiltVectorTy.getVectorElementType(),
758                                  ValueVT.getVectorElementCount());
759       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
760     }
761 
762     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
763       Val = Widened;
764     }
765   }
766 
767   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
768 
769   // Split the vector into intermediate operands.
770   SmallVector<SDValue, 8> Ops(NumIntermediates);
771   for (unsigned i = 0; i != NumIntermediates; ++i) {
772     if (IntermediateVT.isVector()) {
773       // This does something sensible for scalable vectors - see the
774       // definition of EXTRACT_SUBVECTOR for further details.
775       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
776       Ops[i] =
777           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
778                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
779     } else {
780       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
781                            DAG.getVectorIdxConstant(i, DL));
782     }
783   }
784 
785   // Split the intermediate operands into legal parts.
786   if (NumParts == NumIntermediates) {
787     // If the register was not expanded, promote or copy the value,
788     // as appropriate.
789     for (unsigned i = 0; i != NumParts; ++i)
790       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
791   } else if (NumParts > 0) {
792     // If the intermediate type was expanded, split each the value into
793     // legal parts.
794     assert(NumIntermediates != 0 && "division by zero");
795     assert(NumParts % NumIntermediates == 0 &&
796            "Must expand into a divisible number of parts!");
797     unsigned Factor = NumParts / NumIntermediates;
798     for (unsigned i = 0; i != NumIntermediates; ++i)
799       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
800                      CallConv);
801   }
802 }
803 
804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
805                            EVT valuevt, std::optional<CallingConv::ID> CC)
806     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
807       RegCount(1, regs.size()), CallConv(CC) {}
808 
809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
810                            const DataLayout &DL, unsigned Reg, Type *Ty,
811                            std::optional<CallingConv::ID> CC) {
812   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
813 
814   CallConv = CC;
815 
816   for (EVT ValueVT : ValueVTs) {
817     unsigned NumRegs =
818         isABIMangled()
819             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
820             : TLI.getNumRegisters(Context, ValueVT);
821     MVT RegisterVT =
822         isABIMangled()
823             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
824             : TLI.getRegisterType(Context, ValueVT);
825     for (unsigned i = 0; i != NumRegs; ++i)
826       Regs.push_back(Reg + i);
827     RegVTs.push_back(RegisterVT);
828     RegCount.push_back(NumRegs);
829     Reg += NumRegs;
830   }
831 }
832 
833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
834                                       FunctionLoweringInfo &FuncInfo,
835                                       const SDLoc &dl, SDValue &Chain,
836                                       SDValue *Flag, const Value *V) const {
837   // A Value with type {} or [0 x %t] needs no registers.
838   if (ValueVTs.empty())
839     return SDValue();
840 
841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
842 
843   // Assemble the legal parts into the final values.
844   SmallVector<SDValue, 4> Values(ValueVTs.size());
845   SmallVector<SDValue, 8> Parts;
846   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
847     // Copy the legal parts from the registers.
848     EVT ValueVT = ValueVTs[Value];
849     unsigned NumRegs = RegCount[Value];
850     MVT RegisterVT = isABIMangled()
851                          ? TLI.getRegisterTypeForCallingConv(
852                                *DAG.getContext(), *CallConv, RegVTs[Value])
853                          : RegVTs[Value];
854 
855     Parts.resize(NumRegs);
856     for (unsigned i = 0; i != NumRegs; ++i) {
857       SDValue P;
858       if (!Flag) {
859         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
860       } else {
861         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
862         *Flag = P.getValue(2);
863       }
864 
865       Chain = P.getValue(1);
866       Parts[i] = P;
867 
868       // If the source register was virtual and if we know something about it,
869       // add an assert node.
870       if (!Register::isVirtualRegister(Regs[Part + i]) ||
871           !RegisterVT.isInteger())
872         continue;
873 
874       const FunctionLoweringInfo::LiveOutInfo *LOI =
875         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
876       if (!LOI)
877         continue;
878 
879       unsigned RegSize = RegisterVT.getScalarSizeInBits();
880       unsigned NumSignBits = LOI->NumSignBits;
881       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
882 
883       if (NumZeroBits == RegSize) {
884         // The current value is a zero.
885         // Explicitly express that as it would be easier for
886         // optimizations to kick in.
887         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
888         continue;
889       }
890 
891       // FIXME: We capture more information than the dag can represent.  For
892       // now, just use the tightest assertzext/assertsext possible.
893       bool isSExt;
894       EVT FromVT(MVT::Other);
895       if (NumZeroBits) {
896         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
897         isSExt = false;
898       } else if (NumSignBits > 1) {
899         FromVT =
900             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
901         isSExt = true;
902       } else {
903         continue;
904       }
905       // Add an assertion node.
906       assert(FromVT != MVT::Other);
907       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
908                              RegisterVT, P, DAG.getValueType(FromVT));
909     }
910 
911     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
912                                      RegisterVT, ValueVT, V, CallConv);
913     Part += NumRegs;
914     Parts.clear();
915   }
916 
917   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
918 }
919 
920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
921                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
922                                  const Value *V,
923                                  ISD::NodeType PreferredExtendType) const {
924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
925   ISD::NodeType ExtendKind = PreferredExtendType;
926 
927   // Get the list of the values's legal parts.
928   unsigned NumRegs = Regs.size();
929   SmallVector<SDValue, 8> Parts(NumRegs);
930   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
931     unsigned NumParts = RegCount[Value];
932 
933     MVT RegisterVT = isABIMangled()
934                          ? TLI.getRegisterTypeForCallingConv(
935                                *DAG.getContext(), *CallConv, RegVTs[Value])
936                          : RegVTs[Value];
937 
938     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
939       ExtendKind = ISD::ZERO_EXTEND;
940 
941     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
942                    NumParts, RegisterVT, V, CallConv, ExtendKind);
943     Part += NumParts;
944   }
945 
946   // Copy the parts into the registers.
947   SmallVector<SDValue, 8> Chains(NumRegs);
948   for (unsigned i = 0; i != NumRegs; ++i) {
949     SDValue Part;
950     if (!Flag) {
951       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
952     } else {
953       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
954       *Flag = Part.getValue(1);
955     }
956 
957     Chains[i] = Part.getValue(0);
958   }
959 
960   if (NumRegs == 1 || Flag)
961     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
962     // flagged to it. That is the CopyToReg nodes and the user are considered
963     // a single scheduling unit. If we create a TokenFactor and return it as
964     // chain, then the TokenFactor is both a predecessor (operand) of the
965     // user as well as a successor (the TF operands are flagged to the user).
966     // c1, f1 = CopyToReg
967     // c2, f2 = CopyToReg
968     // c3     = TokenFactor c1, c2
969     // ...
970     //        = op c3, ..., f2
971     Chain = Chains[NumRegs-1];
972   else
973     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
974 }
975 
976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
977                                         unsigned MatchingIdx, const SDLoc &dl,
978                                         SelectionDAG &DAG,
979                                         std::vector<SDValue> &Ops) const {
980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
981 
982   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
983   if (HasMatching)
984     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
985   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
986     // Put the register class of the virtual registers in the flag word.  That
987     // way, later passes can recompute register class constraints for inline
988     // assembly as well as normal instructions.
989     // Don't do this for tied operands that can use the regclass information
990     // from the def.
991     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
992     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
993     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
994   }
995 
996   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
997   Ops.push_back(Res);
998 
999   if (Code == InlineAsm::Kind_Clobber) {
1000     // Clobbers should always have a 1:1 mapping with registers, and may
1001     // reference registers that have illegal (e.g. vector) types. Hence, we
1002     // shouldn't try to apply any sort of splitting logic to them.
1003     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1004            "No 1:1 mapping from clobbers to regs?");
1005     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1006     (void)SP;
1007     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1008       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1009       assert(
1010           (Regs[I] != SP ||
1011            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1012           "If we clobbered the stack pointer, MFI should know about it.");
1013     }
1014     return;
1015   }
1016 
1017   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1018     MVT RegisterVT = RegVTs[Value];
1019     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1020                                            RegisterVT);
1021     for (unsigned i = 0; i != NumRegs; ++i) {
1022       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1023       unsigned TheReg = Regs[Reg++];
1024       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1025     }
1026   }
1027 }
1028 
1029 SmallVector<std::pair<unsigned, TypeSize>, 4>
1030 RegsForValue::getRegsAndSizes() const {
1031   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1032   unsigned I = 0;
1033   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1034     unsigned RegCount = std::get<0>(CountAndVT);
1035     MVT RegisterVT = std::get<1>(CountAndVT);
1036     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1037     for (unsigned E = I + RegCount; I != E; ++I)
1038       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1039   }
1040   return OutVec;
1041 }
1042 
1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1044                                AssumptionCache *ac,
1045                                const TargetLibraryInfo *li) {
1046   AA = aa;
1047   AC = ac;
1048   GFI = gfi;
1049   LibInfo = li;
1050   Context = DAG.getContext();
1051   LPadToCallSiteMap.clear();
1052   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1053 }
1054 
1055 void SelectionDAGBuilder::clear() {
1056   NodeMap.clear();
1057   UnusedArgNodeMap.clear();
1058   PendingLoads.clear();
1059   PendingExports.clear();
1060   PendingConstrainedFP.clear();
1061   PendingConstrainedFPStrict.clear();
1062   CurInst = nullptr;
1063   HasTailCall = false;
1064   SDNodeOrder = LowestSDNodeOrder;
1065   StatepointLowering.clear();
1066 }
1067 
1068 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1069   DanglingDebugInfoMap.clear();
1070 }
1071 
1072 // Update DAG root to include dependencies on Pending chains.
1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1074   SDValue Root = DAG.getRoot();
1075 
1076   if (Pending.empty())
1077     return Root;
1078 
1079   // Add current root to PendingChains, unless we already indirectly
1080   // depend on it.
1081   if (Root.getOpcode() != ISD::EntryToken) {
1082     unsigned i = 0, e = Pending.size();
1083     for (; i != e; ++i) {
1084       assert(Pending[i].getNode()->getNumOperands() > 1);
1085       if (Pending[i].getNode()->getOperand(0) == Root)
1086         break;  // Don't add the root if we already indirectly depend on it.
1087     }
1088 
1089     if (i == e)
1090       Pending.push_back(Root);
1091   }
1092 
1093   if (Pending.size() == 1)
1094     Root = Pending[0];
1095   else
1096     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1097 
1098   DAG.setRoot(Root);
1099   Pending.clear();
1100   return Root;
1101 }
1102 
1103 SDValue SelectionDAGBuilder::getMemoryRoot() {
1104   return updateRoot(PendingLoads);
1105 }
1106 
1107 SDValue SelectionDAGBuilder::getRoot() {
1108   // Chain up all pending constrained intrinsics together with all
1109   // pending loads, by simply appending them to PendingLoads and
1110   // then calling getMemoryRoot().
1111   PendingLoads.reserve(PendingLoads.size() +
1112                        PendingConstrainedFP.size() +
1113                        PendingConstrainedFPStrict.size());
1114   PendingLoads.append(PendingConstrainedFP.begin(),
1115                       PendingConstrainedFP.end());
1116   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1117                       PendingConstrainedFPStrict.end());
1118   PendingConstrainedFP.clear();
1119   PendingConstrainedFPStrict.clear();
1120   return getMemoryRoot();
1121 }
1122 
1123 SDValue SelectionDAGBuilder::getControlRoot() {
1124   // We need to emit pending fpexcept.strict constrained intrinsics,
1125   // so append them to the PendingExports list.
1126   PendingExports.append(PendingConstrainedFPStrict.begin(),
1127                         PendingConstrainedFPStrict.end());
1128   PendingConstrainedFPStrict.clear();
1129   return updateRoot(PendingExports);
1130 }
1131 
1132 void SelectionDAGBuilder::visit(const Instruction &I) {
1133   // Set up outgoing PHI node register values before emitting the terminator.
1134   if (I.isTerminator()) {
1135     HandlePHINodesInSuccessorBlocks(I.getParent());
1136   }
1137 
1138   // Add SDDbgValue nodes for any var locs here. Do so before updating
1139   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1140   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1141     // Add SDDbgValue nodes for any var locs here. Do so before updating
1142     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1143     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1144          It != End; ++It) {
1145       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1146       dropDanglingDebugInfo(Var, It->Expr);
1147       if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder,
1148                             /*IsVariadic=*/false))
1149         addDanglingDebugInfo(It, SDNodeOrder);
1150     }
1151   }
1152 
1153   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1154   if (!isa<DbgInfoIntrinsic>(I))
1155     ++SDNodeOrder;
1156 
1157   CurInst = &I;
1158 
1159   // Set inserted listener only if required.
1160   bool NodeInserted = false;
1161   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1162   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1163   if (PCSectionsMD) {
1164     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1165         DAG, [&](SDNode *) { NodeInserted = true; });
1166   }
1167 
1168   visit(I.getOpcode(), I);
1169 
1170   if (!I.isTerminator() && !HasTailCall &&
1171       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1172     CopyToExportRegsIfNeeded(&I);
1173 
1174   // Handle metadata.
1175   if (PCSectionsMD) {
1176     auto It = NodeMap.find(&I);
1177     if (It != NodeMap.end()) {
1178       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1179     } else if (NodeInserted) {
1180       // This should not happen; if it does, don't let it go unnoticed so we can
1181       // fix it. Relevant visit*() function is probably missing a setValue().
1182       errs() << "warning: loosing !pcsections metadata ["
1183              << I.getModule()->getName() << "]\n";
1184       LLVM_DEBUG(I.dump());
1185       assert(false);
1186     }
1187   }
1188 
1189   CurInst = nullptr;
1190 }
1191 
1192 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1193   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1194 }
1195 
1196 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1197   // Note: this doesn't use InstVisitor, because it has to work with
1198   // ConstantExpr's in addition to instructions.
1199   switch (Opcode) {
1200   default: llvm_unreachable("Unknown instruction type encountered!");
1201     // Build the switch statement using the Instruction.def file.
1202 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1203     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1204 #include "llvm/IR/Instruction.def"
1205   }
1206 }
1207 
1208 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1209                                                unsigned Order) {
1210   DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order);
1211 }
1212 
1213 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1214                                                unsigned Order) {
1215   // We treat variadic dbg_values differently at this stage.
1216   if (DI->hasArgList()) {
1217     // For variadic dbg_values we will now insert an undef.
1218     // FIXME: We can potentially recover these!
1219     SmallVector<SDDbgOperand, 2> Locs;
1220     for (const Value *V : DI->getValues()) {
1221       auto Undef = UndefValue::get(V->getType());
1222       Locs.push_back(SDDbgOperand::fromConst(Undef));
1223     }
1224     SDDbgValue *SDV = DAG.getDbgValueList(
1225         DI->getVariable(), DI->getExpression(), Locs, {},
1226         /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true);
1227     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1228   } else {
1229     // TODO: Dangling debug info will eventually either be resolved or produce
1230     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1231     // between the original dbg.value location and its resolved DBG_VALUE,
1232     // which we should ideally fill with an extra Undef DBG_VALUE.
1233     assert(DI->getNumVariableLocationOps() == 1 &&
1234            "DbgValueInst without an ArgList should have a single location "
1235            "operand.");
1236     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1237   }
1238 }
1239 
1240 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1241                                                 const DIExpression *Expr) {
1242   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1243     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1244     DIExpression *DanglingExpr = DDI.getExpression();
1245     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1246       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1247                         << "\n");
1248       return true;
1249     }
1250     return false;
1251   };
1252 
1253   for (auto &DDIMI : DanglingDebugInfoMap) {
1254     DanglingDebugInfoVector &DDIV = DDIMI.second;
1255 
1256     // If debug info is to be dropped, run it through final checks to see
1257     // whether it can be salvaged.
1258     for (auto &DDI : DDIV)
1259       if (isMatchingDbgValue(DDI))
1260         salvageUnresolvedDbgValue(DDI);
1261 
1262     erase_if(DDIV, isMatchingDbgValue);
1263   }
1264 }
1265 
1266 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1267 // generate the debug data structures now that we've seen its definition.
1268 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1269                                                    SDValue Val) {
1270   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1271   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1272     return;
1273 
1274   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1275   for (auto &DDI : DDIV) {
1276     DebugLoc DL = DDI.getDebugLoc();
1277     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1278     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1279     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1280     DIExpression *Expr = DDI.getExpression();
1281     assert(Variable->isValidLocationForIntrinsic(DL) &&
1282            "Expected inlined-at fields to agree");
1283     SDDbgValue *SDV;
1284     if (Val.getNode()) {
1285       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1286       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1287       // we couldn't resolve it directly when examining the DbgValue intrinsic
1288       // in the first place we should not be more successful here). Unless we
1289       // have some test case that prove this to be correct we should avoid
1290       // calling EmitFuncArgumentDbgValue here.
1291       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1292                                     FuncArgumentDbgValueKind::Value, Val)) {
1293         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1294                           << "\n");
1295         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1296         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1297         // inserted after the definition of Val when emitting the instructions
1298         // after ISel. An alternative could be to teach
1299         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1300         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1301                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1302                    << ValSDNodeOrder << "\n");
1303         SDV = getDbgValue(Val, Variable, Expr, DL,
1304                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1305         DAG.AddDbgValue(SDV, false);
1306       } else
1307         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1308                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1309     } else {
1310       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1311       auto Undef = UndefValue::get(V->getType());
1312       auto SDV =
1313           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1314       DAG.AddDbgValue(SDV, false);
1315     }
1316   }
1317   DDIV.clear();
1318 }
1319 
1320 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1321   // TODO: For the variadic implementation, instead of only checking the fail
1322   // state of `handleDebugValue`, we need know specifically which values were
1323   // invalid, so that we attempt to salvage only those values when processing
1324   // a DIArgList.
1325   Value *V = DDI.getVariableLocationOp(0);
1326   Value *OrigV = V;
1327   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1328   DIExpression *Expr = DDI.getExpression();
1329   DebugLoc DL = DDI.getDebugLoc();
1330   unsigned SDOrder = DDI.getSDNodeOrder();
1331 
1332   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1333   // that DW_OP_stack_value is desired.
1334   bool StackValue = true;
1335 
1336   // Can this Value can be encoded without any further work?
1337   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1338     return;
1339 
1340   // Attempt to salvage back through as many instructions as possible. Bail if
1341   // a non-instruction is seen, such as a constant expression or global
1342   // variable. FIXME: Further work could recover those too.
1343   while (isa<Instruction>(V)) {
1344     Instruction &VAsInst = *cast<Instruction>(V);
1345     // Temporary "0", awaiting real implementation.
1346     SmallVector<uint64_t, 16> Ops;
1347     SmallVector<Value *, 4> AdditionalValues;
1348     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1349                              AdditionalValues);
1350     // If we cannot salvage any further, and haven't yet found a suitable debug
1351     // expression, bail out.
1352     if (!V)
1353       break;
1354 
1355     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1356     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1357     // here for variadic dbg_values, remove that condition.
1358     if (!AdditionalValues.empty())
1359       break;
1360 
1361     // New value and expr now represent this debuginfo.
1362     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1363 
1364     // Some kind of simplification occurred: check whether the operand of the
1365     // salvaged debug expression can be encoded in this DAG.
1366     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1367       LLVM_DEBUG(
1368           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1369                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1370       return;
1371     }
1372   }
1373 
1374   // This was the final opportunity to salvage this debug information, and it
1375   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1376   // any earlier variable location.
1377   assert(OrigV && "V shouldn't be null");
1378   auto *Undef = UndefValue::get(OrigV->getType());
1379   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1380   DAG.AddDbgValue(SDV, false);
1381   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1382                     << "\n");
1383 }
1384 
1385 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1386                                            DILocalVariable *Var,
1387                                            DIExpression *Expr, DebugLoc DbgLoc,
1388                                            unsigned Order, bool IsVariadic) {
1389   if (Values.empty())
1390     return true;
1391   SmallVector<SDDbgOperand> LocationOps;
1392   SmallVector<SDNode *> Dependencies;
1393   for (const Value *V : Values) {
1394     // Constant value.
1395     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1396         isa<ConstantPointerNull>(V)) {
1397       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1398       continue;
1399     }
1400 
1401     // Look through IntToPtr constants.
1402     if (auto *CE = dyn_cast<ConstantExpr>(V))
1403       if (CE->getOpcode() == Instruction::IntToPtr) {
1404         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1405         continue;
1406       }
1407 
1408     // If the Value is a frame index, we can create a FrameIndex debug value
1409     // without relying on the DAG at all.
1410     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1411       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1412       if (SI != FuncInfo.StaticAllocaMap.end()) {
1413         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1414         continue;
1415       }
1416     }
1417 
1418     // Do not use getValue() in here; we don't want to generate code at
1419     // this point if it hasn't been done yet.
1420     SDValue N = NodeMap[V];
1421     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1422       N = UnusedArgNodeMap[V];
1423     if (N.getNode()) {
1424       // Only emit func arg dbg value for non-variadic dbg.values for now.
1425       if (!IsVariadic &&
1426           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1427                                    FuncArgumentDbgValueKind::Value, N))
1428         return true;
1429       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1430         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1431         // describe stack slot locations.
1432         //
1433         // Consider "int x = 0; int *px = &x;". There are two kinds of
1434         // interesting debug values here after optimization:
1435         //
1436         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1437         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1438         //
1439         // Both describe the direct values of their associated variables.
1440         Dependencies.push_back(N.getNode());
1441         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1442         continue;
1443       }
1444       LocationOps.emplace_back(
1445           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1446       continue;
1447     }
1448 
1449     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1450     // Special rules apply for the first dbg.values of parameter variables in a
1451     // function. Identify them by the fact they reference Argument Values, that
1452     // they're parameters, and they are parameters of the current function. We
1453     // need to let them dangle until they get an SDNode.
1454     bool IsParamOfFunc =
1455         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1456     if (IsParamOfFunc)
1457       return false;
1458 
1459     // The value is not used in this block yet (or it would have an SDNode).
1460     // We still want the value to appear for the user if possible -- if it has
1461     // an associated VReg, we can refer to that instead.
1462     auto VMI = FuncInfo.ValueMap.find(V);
1463     if (VMI != FuncInfo.ValueMap.end()) {
1464       unsigned Reg = VMI->second;
1465       // If this is a PHI node, it may be split up into several MI PHI nodes
1466       // (in FunctionLoweringInfo::set).
1467       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1468                        V->getType(), std::nullopt);
1469       if (RFV.occupiesMultipleRegs()) {
1470         // FIXME: We could potentially support variadic dbg_values here.
1471         if (IsVariadic)
1472           return false;
1473         unsigned Offset = 0;
1474         unsigned BitsToDescribe = 0;
1475         if (auto VarSize = Var->getSizeInBits())
1476           BitsToDescribe = *VarSize;
1477         if (auto Fragment = Expr->getFragmentInfo())
1478           BitsToDescribe = Fragment->SizeInBits;
1479         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1480           // Bail out if all bits are described already.
1481           if (Offset >= BitsToDescribe)
1482             break;
1483           // TODO: handle scalable vectors.
1484           unsigned RegisterSize = RegAndSize.second;
1485           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1486                                       ? BitsToDescribe - Offset
1487                                       : RegisterSize;
1488           auto FragmentExpr = DIExpression::createFragmentExpression(
1489               Expr, Offset, FragmentSize);
1490           if (!FragmentExpr)
1491             continue;
1492           SDDbgValue *SDV = DAG.getVRegDbgValue(
1493               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1494           DAG.AddDbgValue(SDV, false);
1495           Offset += RegisterSize;
1496         }
1497         return true;
1498       }
1499       // We can use simple vreg locations for variadic dbg_values as well.
1500       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1501       continue;
1502     }
1503     // We failed to create a SDDbgOperand for V.
1504     return false;
1505   }
1506 
1507   // We have created a SDDbgOperand for each Value in Values.
1508   // Should use Order instead of SDNodeOrder?
1509   assert(!LocationOps.empty());
1510   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1511                                         /*IsIndirect=*/false, DbgLoc,
1512                                         SDNodeOrder, IsVariadic);
1513   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1514   return true;
1515 }
1516 
1517 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1518   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1519   for (auto &Pair : DanglingDebugInfoMap)
1520     for (auto &DDI : Pair.second)
1521       salvageUnresolvedDbgValue(DDI);
1522   clearDanglingDebugInfo();
1523 }
1524 
1525 /// getCopyFromRegs - If there was virtual register allocated for the value V
1526 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1527 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1528   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1529   SDValue Result;
1530 
1531   if (It != FuncInfo.ValueMap.end()) {
1532     Register InReg = It->second;
1533 
1534     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1535                      DAG.getDataLayout(), InReg, Ty,
1536                      std::nullopt); // This is not an ABI copy.
1537     SDValue Chain = DAG.getEntryNode();
1538     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1539                                  V);
1540     resolveDanglingDebugInfo(V, Result);
1541   }
1542 
1543   return Result;
1544 }
1545 
1546 /// getValue - Return an SDValue for the given Value.
1547 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1548   // If we already have an SDValue for this value, use it. It's important
1549   // to do this first, so that we don't create a CopyFromReg if we already
1550   // have a regular SDValue.
1551   SDValue &N = NodeMap[V];
1552   if (N.getNode()) return N;
1553 
1554   // If there's a virtual register allocated and initialized for this
1555   // value, use it.
1556   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1557     return copyFromReg;
1558 
1559   // Otherwise create a new SDValue and remember it.
1560   SDValue Val = getValueImpl(V);
1561   NodeMap[V] = Val;
1562   resolveDanglingDebugInfo(V, Val);
1563   return Val;
1564 }
1565 
1566 /// getNonRegisterValue - Return an SDValue for the given Value, but
1567 /// don't look in FuncInfo.ValueMap for a virtual register.
1568 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1569   // If we already have an SDValue for this value, use it.
1570   SDValue &N = NodeMap[V];
1571   if (N.getNode()) {
1572     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1573       // Remove the debug location from the node as the node is about to be used
1574       // in a location which may differ from the original debug location.  This
1575       // is relevant to Constant and ConstantFP nodes because they can appear
1576       // as constant expressions inside PHI nodes.
1577       N->setDebugLoc(DebugLoc());
1578     }
1579     return N;
1580   }
1581 
1582   // Otherwise create a new SDValue and remember it.
1583   SDValue Val = getValueImpl(V);
1584   NodeMap[V] = Val;
1585   resolveDanglingDebugInfo(V, Val);
1586   return Val;
1587 }
1588 
1589 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1590 /// Create an SDValue for the given value.
1591 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1593 
1594   if (const Constant *C = dyn_cast<Constant>(V)) {
1595     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1596 
1597     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1598       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1599 
1600     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1601       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1602 
1603     if (isa<ConstantPointerNull>(C)) {
1604       unsigned AS = V->getType()->getPointerAddressSpace();
1605       return DAG.getConstant(0, getCurSDLoc(),
1606                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1607     }
1608 
1609     if (match(C, m_VScale(DAG.getDataLayout())))
1610       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1611 
1612     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1613       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1614 
1615     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1616       return DAG.getUNDEF(VT);
1617 
1618     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1619       visit(CE->getOpcode(), *CE);
1620       SDValue N1 = NodeMap[V];
1621       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1622       return N1;
1623     }
1624 
1625     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1626       SmallVector<SDValue, 4> Constants;
1627       for (const Use &U : C->operands()) {
1628         SDNode *Val = getValue(U).getNode();
1629         // If the operand is an empty aggregate, there are no values.
1630         if (!Val) continue;
1631         // Add each leaf value from the operand to the Constants list
1632         // to form a flattened list of all the values.
1633         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1634           Constants.push_back(SDValue(Val, i));
1635       }
1636 
1637       return DAG.getMergeValues(Constants, getCurSDLoc());
1638     }
1639 
1640     if (const ConstantDataSequential *CDS =
1641           dyn_cast<ConstantDataSequential>(C)) {
1642       SmallVector<SDValue, 4> Ops;
1643       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1644         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1645         // Add each leaf value from the operand to the Constants list
1646         // to form a flattened list of all the values.
1647         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1648           Ops.push_back(SDValue(Val, i));
1649       }
1650 
1651       if (isa<ArrayType>(CDS->getType()))
1652         return DAG.getMergeValues(Ops, getCurSDLoc());
1653       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1654     }
1655 
1656     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1657       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1658              "Unknown struct or array constant!");
1659 
1660       SmallVector<EVT, 4> ValueVTs;
1661       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1662       unsigned NumElts = ValueVTs.size();
1663       if (NumElts == 0)
1664         return SDValue(); // empty struct
1665       SmallVector<SDValue, 4> Constants(NumElts);
1666       for (unsigned i = 0; i != NumElts; ++i) {
1667         EVT EltVT = ValueVTs[i];
1668         if (isa<UndefValue>(C))
1669           Constants[i] = DAG.getUNDEF(EltVT);
1670         else if (EltVT.isFloatingPoint())
1671           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1672         else
1673           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1674       }
1675 
1676       return DAG.getMergeValues(Constants, getCurSDLoc());
1677     }
1678 
1679     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1680       return DAG.getBlockAddress(BA, VT);
1681 
1682     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1683       return getValue(Equiv->getGlobalValue());
1684 
1685     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1686       return getValue(NC->getGlobalValue());
1687 
1688     VectorType *VecTy = cast<VectorType>(V->getType());
1689 
1690     // Now that we know the number and type of the elements, get that number of
1691     // elements into the Ops array based on what kind of constant it is.
1692     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1693       SmallVector<SDValue, 16> Ops;
1694       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1695       for (unsigned i = 0; i != NumElements; ++i)
1696         Ops.push_back(getValue(CV->getOperand(i)));
1697 
1698       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1699     }
1700 
1701     if (isa<ConstantAggregateZero>(C)) {
1702       EVT EltVT =
1703           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1704 
1705       SDValue Op;
1706       if (EltVT.isFloatingPoint())
1707         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1708       else
1709         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1710 
1711       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1712     }
1713 
1714     llvm_unreachable("Unknown vector constant");
1715   }
1716 
1717   // If this is a static alloca, generate it as the frameindex instead of
1718   // computation.
1719   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1720     DenseMap<const AllocaInst*, int>::iterator SI =
1721       FuncInfo.StaticAllocaMap.find(AI);
1722     if (SI != FuncInfo.StaticAllocaMap.end())
1723       return DAG.getFrameIndex(
1724           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1725   }
1726 
1727   // If this is an instruction which fast-isel has deferred, select it now.
1728   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1729     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1730 
1731     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1732                      Inst->getType(), std::nullopt);
1733     SDValue Chain = DAG.getEntryNode();
1734     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1735   }
1736 
1737   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1738     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1739 
1740   if (const auto *BB = dyn_cast<BasicBlock>(V))
1741     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1742 
1743   llvm_unreachable("Can't get register for value!");
1744 }
1745 
1746 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1747   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1748   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1749   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1750   bool IsSEH = isAsynchronousEHPersonality(Pers);
1751   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1752   if (!IsSEH)
1753     CatchPadMBB->setIsEHScopeEntry();
1754   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1755   if (IsMSVCCXX || IsCoreCLR)
1756     CatchPadMBB->setIsEHFuncletEntry();
1757 }
1758 
1759 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1760   // Update machine-CFG edge.
1761   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1762   FuncInfo.MBB->addSuccessor(TargetMBB);
1763   TargetMBB->setIsEHCatchretTarget(true);
1764   DAG.getMachineFunction().setHasEHCatchret(true);
1765 
1766   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1767   bool IsSEH = isAsynchronousEHPersonality(Pers);
1768   if (IsSEH) {
1769     // If this is not a fall-through branch or optimizations are switched off,
1770     // emit the branch.
1771     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1772         TM.getOptLevel() == CodeGenOpt::None)
1773       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1774                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1775     return;
1776   }
1777 
1778   // Figure out the funclet membership for the catchret's successor.
1779   // This will be used by the FuncletLayout pass to determine how to order the
1780   // BB's.
1781   // A 'catchret' returns to the outer scope's color.
1782   Value *ParentPad = I.getCatchSwitchParentPad();
1783   const BasicBlock *SuccessorColor;
1784   if (isa<ConstantTokenNone>(ParentPad))
1785     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1786   else
1787     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1788   assert(SuccessorColor && "No parent funclet for catchret!");
1789   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1790   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1791 
1792   // Create the terminator node.
1793   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1794                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1795                             DAG.getBasicBlock(SuccessorColorMBB));
1796   DAG.setRoot(Ret);
1797 }
1798 
1799 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1800   // Don't emit any special code for the cleanuppad instruction. It just marks
1801   // the start of an EH scope/funclet.
1802   FuncInfo.MBB->setIsEHScopeEntry();
1803   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1804   if (Pers != EHPersonality::Wasm_CXX) {
1805     FuncInfo.MBB->setIsEHFuncletEntry();
1806     FuncInfo.MBB->setIsCleanupFuncletEntry();
1807   }
1808 }
1809 
1810 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1811 // not match, it is OK to add only the first unwind destination catchpad to the
1812 // successors, because there will be at least one invoke instruction within the
1813 // catch scope that points to the next unwind destination, if one exists, so
1814 // CFGSort cannot mess up with BB sorting order.
1815 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1816 // call within them, and catchpads only consisting of 'catch (...)' have a
1817 // '__cxa_end_catch' call within them, both of which generate invokes in case
1818 // the next unwind destination exists, i.e., the next unwind destination is not
1819 // the caller.)
1820 //
1821 // Having at most one EH pad successor is also simpler and helps later
1822 // transformations.
1823 //
1824 // For example,
1825 // current:
1826 //   invoke void @foo to ... unwind label %catch.dispatch
1827 // catch.dispatch:
1828 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1829 // catch.start:
1830 //   ...
1831 //   ... in this BB or some other child BB dominated by this BB there will be an
1832 //   invoke that points to 'next' BB as an unwind destination
1833 //
1834 // next: ; We don't need to add this to 'current' BB's successor
1835 //   ...
1836 static void findWasmUnwindDestinations(
1837     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1838     BranchProbability Prob,
1839     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1840         &UnwindDests) {
1841   while (EHPadBB) {
1842     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1843     if (isa<CleanupPadInst>(Pad)) {
1844       // Stop on cleanup pads.
1845       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1846       UnwindDests.back().first->setIsEHScopeEntry();
1847       break;
1848     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1849       // Add the catchpad handlers to the possible destinations. We don't
1850       // continue to the unwind destination of the catchswitch for wasm.
1851       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1852         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1853         UnwindDests.back().first->setIsEHScopeEntry();
1854       }
1855       break;
1856     } else {
1857       continue;
1858     }
1859   }
1860 }
1861 
1862 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1863 /// many places it could ultimately go. In the IR, we have a single unwind
1864 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1865 /// This function skips over imaginary basic blocks that hold catchswitch
1866 /// instructions, and finds all the "real" machine
1867 /// basic block destinations. As those destinations may not be successors of
1868 /// EHPadBB, here we also calculate the edge probability to those destinations.
1869 /// The passed-in Prob is the edge probability to EHPadBB.
1870 static void findUnwindDestinations(
1871     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1872     BranchProbability Prob,
1873     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1874         &UnwindDests) {
1875   EHPersonality Personality =
1876     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1877   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1878   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1879   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1880   bool IsSEH = isAsynchronousEHPersonality(Personality);
1881 
1882   if (IsWasmCXX) {
1883     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1884     assert(UnwindDests.size() <= 1 &&
1885            "There should be at most one unwind destination for wasm");
1886     return;
1887   }
1888 
1889   while (EHPadBB) {
1890     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1891     BasicBlock *NewEHPadBB = nullptr;
1892     if (isa<LandingPadInst>(Pad)) {
1893       // Stop on landingpads. They are not funclets.
1894       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1895       break;
1896     } else if (isa<CleanupPadInst>(Pad)) {
1897       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1898       // personalities.
1899       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1900       UnwindDests.back().first->setIsEHScopeEntry();
1901       UnwindDests.back().first->setIsEHFuncletEntry();
1902       break;
1903     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1904       // Add the catchpad handlers to the possible destinations.
1905       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1906         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1907         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1908         if (IsMSVCCXX || IsCoreCLR)
1909           UnwindDests.back().first->setIsEHFuncletEntry();
1910         if (!IsSEH)
1911           UnwindDests.back().first->setIsEHScopeEntry();
1912       }
1913       NewEHPadBB = CatchSwitch->getUnwindDest();
1914     } else {
1915       continue;
1916     }
1917 
1918     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1919     if (BPI && NewEHPadBB)
1920       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1921     EHPadBB = NewEHPadBB;
1922   }
1923 }
1924 
1925 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1926   // Update successor info.
1927   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1928   auto UnwindDest = I.getUnwindDest();
1929   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1930   BranchProbability UnwindDestProb =
1931       (BPI && UnwindDest)
1932           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1933           : BranchProbability::getZero();
1934   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1935   for (auto &UnwindDest : UnwindDests) {
1936     UnwindDest.first->setIsEHPad();
1937     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1938   }
1939   FuncInfo.MBB->normalizeSuccProbs();
1940 
1941   // Create the terminator node.
1942   SDValue Ret =
1943       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1944   DAG.setRoot(Ret);
1945 }
1946 
1947 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1948   report_fatal_error("visitCatchSwitch not yet implemented!");
1949 }
1950 
1951 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1953   auto &DL = DAG.getDataLayout();
1954   SDValue Chain = getControlRoot();
1955   SmallVector<ISD::OutputArg, 8> Outs;
1956   SmallVector<SDValue, 8> OutVals;
1957 
1958   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1959   // lower
1960   //
1961   //   %val = call <ty> @llvm.experimental.deoptimize()
1962   //   ret <ty> %val
1963   //
1964   // differently.
1965   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1966     LowerDeoptimizingReturn();
1967     return;
1968   }
1969 
1970   if (!FuncInfo.CanLowerReturn) {
1971     unsigned DemoteReg = FuncInfo.DemoteRegister;
1972     const Function *F = I.getParent()->getParent();
1973 
1974     // Emit a store of the return value through the virtual register.
1975     // Leave Outs empty so that LowerReturn won't try to load return
1976     // registers the usual way.
1977     SmallVector<EVT, 1> PtrValueVTs;
1978     ComputeValueVTs(TLI, DL,
1979                     F->getReturnType()->getPointerTo(
1980                         DAG.getDataLayout().getAllocaAddrSpace()),
1981                     PtrValueVTs);
1982 
1983     SDValue RetPtr =
1984         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1985     SDValue RetOp = getValue(I.getOperand(0));
1986 
1987     SmallVector<EVT, 4> ValueVTs, MemVTs;
1988     SmallVector<uint64_t, 4> Offsets;
1989     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1990                     &Offsets);
1991     unsigned NumValues = ValueVTs.size();
1992 
1993     SmallVector<SDValue, 4> Chains(NumValues);
1994     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1995     for (unsigned i = 0; i != NumValues; ++i) {
1996       // An aggregate return value cannot wrap around the address space, so
1997       // offsets to its parts don't wrap either.
1998       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1999                                            TypeSize::Fixed(Offsets[i]));
2000 
2001       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2002       if (MemVTs[i] != ValueVTs[i])
2003         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2004       Chains[i] = DAG.getStore(
2005           Chain, getCurSDLoc(), Val,
2006           // FIXME: better loc info would be nice.
2007           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2008           commonAlignment(BaseAlign, Offsets[i]));
2009     }
2010 
2011     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2012                         MVT::Other, Chains);
2013   } else if (I.getNumOperands() != 0) {
2014     SmallVector<EVT, 4> ValueVTs;
2015     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2016     unsigned NumValues = ValueVTs.size();
2017     if (NumValues) {
2018       SDValue RetOp = getValue(I.getOperand(0));
2019 
2020       const Function *F = I.getParent()->getParent();
2021 
2022       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2023           I.getOperand(0)->getType(), F->getCallingConv(),
2024           /*IsVarArg*/ false, DL);
2025 
2026       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2027       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2028         ExtendKind = ISD::SIGN_EXTEND;
2029       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2030         ExtendKind = ISD::ZERO_EXTEND;
2031 
2032       LLVMContext &Context = F->getContext();
2033       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2034 
2035       for (unsigned j = 0; j != NumValues; ++j) {
2036         EVT VT = ValueVTs[j];
2037 
2038         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2039           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2040 
2041         CallingConv::ID CC = F->getCallingConv();
2042 
2043         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2044         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2045         SmallVector<SDValue, 4> Parts(NumParts);
2046         getCopyToParts(DAG, getCurSDLoc(),
2047                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2048                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2049 
2050         // 'inreg' on function refers to return value
2051         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2052         if (RetInReg)
2053           Flags.setInReg();
2054 
2055         if (I.getOperand(0)->getType()->isPointerTy()) {
2056           Flags.setPointer();
2057           Flags.setPointerAddrSpace(
2058               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2059         }
2060 
2061         if (NeedsRegBlock) {
2062           Flags.setInConsecutiveRegs();
2063           if (j == NumValues - 1)
2064             Flags.setInConsecutiveRegsLast();
2065         }
2066 
2067         // Propagate extension type if any
2068         if (ExtendKind == ISD::SIGN_EXTEND)
2069           Flags.setSExt();
2070         else if (ExtendKind == ISD::ZERO_EXTEND)
2071           Flags.setZExt();
2072 
2073         for (unsigned i = 0; i < NumParts; ++i) {
2074           Outs.push_back(ISD::OutputArg(Flags,
2075                                         Parts[i].getValueType().getSimpleVT(),
2076                                         VT, /*isfixed=*/true, 0, 0));
2077           OutVals.push_back(Parts[i]);
2078         }
2079       }
2080     }
2081   }
2082 
2083   // Push in swifterror virtual register as the last element of Outs. This makes
2084   // sure swifterror virtual register will be returned in the swifterror
2085   // physical register.
2086   const Function *F = I.getParent()->getParent();
2087   if (TLI.supportSwiftError() &&
2088       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2089     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2090     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2091     Flags.setSwiftError();
2092     Outs.push_back(ISD::OutputArg(
2093         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2094         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2095     // Create SDNode for the swifterror virtual register.
2096     OutVals.push_back(
2097         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2098                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2099                         EVT(TLI.getPointerTy(DL))));
2100   }
2101 
2102   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2103   CallingConv::ID CallConv =
2104     DAG.getMachineFunction().getFunction().getCallingConv();
2105   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2106       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2107 
2108   // Verify that the target's LowerReturn behaved as expected.
2109   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2110          "LowerReturn didn't return a valid chain!");
2111 
2112   // Update the DAG with the new chain value resulting from return lowering.
2113   DAG.setRoot(Chain);
2114 }
2115 
2116 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2117 /// created for it, emit nodes to copy the value into the virtual
2118 /// registers.
2119 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2120   // Skip empty types
2121   if (V->getType()->isEmptyTy())
2122     return;
2123 
2124   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2125   if (VMI != FuncInfo.ValueMap.end()) {
2126     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2127     CopyValueToVirtualRegister(V, VMI->second);
2128   }
2129 }
2130 
2131 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2132 /// the current basic block, add it to ValueMap now so that we'll get a
2133 /// CopyTo/FromReg.
2134 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2135   // No need to export constants.
2136   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2137 
2138   // Already exported?
2139   if (FuncInfo.isExportedInst(V)) return;
2140 
2141   Register Reg = FuncInfo.InitializeRegForValue(V);
2142   CopyValueToVirtualRegister(V, Reg);
2143 }
2144 
2145 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2146                                                      const BasicBlock *FromBB) {
2147   // The operands of the setcc have to be in this block.  We don't know
2148   // how to export them from some other block.
2149   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2150     // Can export from current BB.
2151     if (VI->getParent() == FromBB)
2152       return true;
2153 
2154     // Is already exported, noop.
2155     return FuncInfo.isExportedInst(V);
2156   }
2157 
2158   // If this is an argument, we can export it if the BB is the entry block or
2159   // if it is already exported.
2160   if (isa<Argument>(V)) {
2161     if (FromBB->isEntryBlock())
2162       return true;
2163 
2164     // Otherwise, can only export this if it is already exported.
2165     return FuncInfo.isExportedInst(V);
2166   }
2167 
2168   // Otherwise, constants can always be exported.
2169   return true;
2170 }
2171 
2172 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2173 BranchProbability
2174 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2175                                         const MachineBasicBlock *Dst) const {
2176   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2177   const BasicBlock *SrcBB = Src->getBasicBlock();
2178   const BasicBlock *DstBB = Dst->getBasicBlock();
2179   if (!BPI) {
2180     // If BPI is not available, set the default probability as 1 / N, where N is
2181     // the number of successors.
2182     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2183     return BranchProbability(1, SuccSize);
2184   }
2185   return BPI->getEdgeProbability(SrcBB, DstBB);
2186 }
2187 
2188 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2189                                                MachineBasicBlock *Dst,
2190                                                BranchProbability Prob) {
2191   if (!FuncInfo.BPI)
2192     Src->addSuccessorWithoutProb(Dst);
2193   else {
2194     if (Prob.isUnknown())
2195       Prob = getEdgeProbability(Src, Dst);
2196     Src->addSuccessor(Dst, Prob);
2197   }
2198 }
2199 
2200 static bool InBlock(const Value *V, const BasicBlock *BB) {
2201   if (const Instruction *I = dyn_cast<Instruction>(V))
2202     return I->getParent() == BB;
2203   return true;
2204 }
2205 
2206 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2207 /// This function emits a branch and is used at the leaves of an OR or an
2208 /// AND operator tree.
2209 void
2210 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2211                                                   MachineBasicBlock *TBB,
2212                                                   MachineBasicBlock *FBB,
2213                                                   MachineBasicBlock *CurBB,
2214                                                   MachineBasicBlock *SwitchBB,
2215                                                   BranchProbability TProb,
2216                                                   BranchProbability FProb,
2217                                                   bool InvertCond) {
2218   const BasicBlock *BB = CurBB->getBasicBlock();
2219 
2220   // If the leaf of the tree is a comparison, merge the condition into
2221   // the caseblock.
2222   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2223     // The operands of the cmp have to be in this block.  We don't know
2224     // how to export them from some other block.  If this is the first block
2225     // of the sequence, no exporting is needed.
2226     if (CurBB == SwitchBB ||
2227         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2228          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2229       ISD::CondCode Condition;
2230       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2231         ICmpInst::Predicate Pred =
2232             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2233         Condition = getICmpCondCode(Pred);
2234       } else {
2235         const FCmpInst *FC = cast<FCmpInst>(Cond);
2236         FCmpInst::Predicate Pred =
2237             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2238         Condition = getFCmpCondCode(Pred);
2239         if (TM.Options.NoNaNsFPMath)
2240           Condition = getFCmpCodeWithoutNaN(Condition);
2241       }
2242 
2243       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2244                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2245       SL->SwitchCases.push_back(CB);
2246       return;
2247     }
2248   }
2249 
2250   // Create a CaseBlock record representing this branch.
2251   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2252   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2253                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2254   SL->SwitchCases.push_back(CB);
2255 }
2256 
2257 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2258                                                MachineBasicBlock *TBB,
2259                                                MachineBasicBlock *FBB,
2260                                                MachineBasicBlock *CurBB,
2261                                                MachineBasicBlock *SwitchBB,
2262                                                Instruction::BinaryOps Opc,
2263                                                BranchProbability TProb,
2264                                                BranchProbability FProb,
2265                                                bool InvertCond) {
2266   // Skip over not part of the tree and remember to invert op and operands at
2267   // next level.
2268   Value *NotCond;
2269   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2270       InBlock(NotCond, CurBB->getBasicBlock())) {
2271     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2272                          !InvertCond);
2273     return;
2274   }
2275 
2276   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2277   const Value *BOpOp0, *BOpOp1;
2278   // Compute the effective opcode for Cond, taking into account whether it needs
2279   // to be inverted, e.g.
2280   //   and (not (or A, B)), C
2281   // gets lowered as
2282   //   and (and (not A, not B), C)
2283   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2284   if (BOp) {
2285     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2286                ? Instruction::And
2287                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2288                       ? Instruction::Or
2289                       : (Instruction::BinaryOps)0);
2290     if (InvertCond) {
2291       if (BOpc == Instruction::And)
2292         BOpc = Instruction::Or;
2293       else if (BOpc == Instruction::Or)
2294         BOpc = Instruction::And;
2295     }
2296   }
2297 
2298   // If this node is not part of the or/and tree, emit it as a branch.
2299   // Note that all nodes in the tree should have same opcode.
2300   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2301   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2302       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2303       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2304     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2305                                  TProb, FProb, InvertCond);
2306     return;
2307   }
2308 
2309   //  Create TmpBB after CurBB.
2310   MachineFunction::iterator BBI(CurBB);
2311   MachineFunction &MF = DAG.getMachineFunction();
2312   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2313   CurBB->getParent()->insert(++BBI, TmpBB);
2314 
2315   if (Opc == Instruction::Or) {
2316     // Codegen X | Y as:
2317     // BB1:
2318     //   jmp_if_X TBB
2319     //   jmp TmpBB
2320     // TmpBB:
2321     //   jmp_if_Y TBB
2322     //   jmp FBB
2323     //
2324 
2325     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2326     // The requirement is that
2327     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2328     //     = TrueProb for original BB.
2329     // Assuming the original probabilities are A and B, one choice is to set
2330     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2331     // A/(1+B) and 2B/(1+B). This choice assumes that
2332     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2333     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2334     // TmpBB, but the math is more complicated.
2335 
2336     auto NewTrueProb = TProb / 2;
2337     auto NewFalseProb = TProb / 2 + FProb;
2338     // Emit the LHS condition.
2339     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2340                          NewFalseProb, InvertCond);
2341 
2342     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2343     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2344     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2345     // Emit the RHS condition into TmpBB.
2346     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2347                          Probs[1], InvertCond);
2348   } else {
2349     assert(Opc == Instruction::And && "Unknown merge op!");
2350     // Codegen X & Y as:
2351     // BB1:
2352     //   jmp_if_X TmpBB
2353     //   jmp FBB
2354     // TmpBB:
2355     //   jmp_if_Y TBB
2356     //   jmp FBB
2357     //
2358     //  This requires creation of TmpBB after CurBB.
2359 
2360     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2361     // The requirement is that
2362     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2363     //     = FalseProb for original BB.
2364     // Assuming the original probabilities are A and B, one choice is to set
2365     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2366     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2367     // TrueProb for BB1 * FalseProb for TmpBB.
2368 
2369     auto NewTrueProb = TProb + FProb / 2;
2370     auto NewFalseProb = FProb / 2;
2371     // Emit the LHS condition.
2372     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2373                          NewFalseProb, InvertCond);
2374 
2375     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2376     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2377     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2378     // Emit the RHS condition into TmpBB.
2379     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2380                          Probs[1], InvertCond);
2381   }
2382 }
2383 
2384 /// If the set of cases should be emitted as a series of branches, return true.
2385 /// If we should emit this as a bunch of and/or'd together conditions, return
2386 /// false.
2387 bool
2388 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2389   if (Cases.size() != 2) return true;
2390 
2391   // If this is two comparisons of the same values or'd or and'd together, they
2392   // will get folded into a single comparison, so don't emit two blocks.
2393   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2394        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2395       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2396        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2397     return false;
2398   }
2399 
2400   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2401   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2402   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2403       Cases[0].CC == Cases[1].CC &&
2404       isa<Constant>(Cases[0].CmpRHS) &&
2405       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2406     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2407       return false;
2408     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2409       return false;
2410   }
2411 
2412   return true;
2413 }
2414 
2415 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2416   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2417 
2418   // Update machine-CFG edges.
2419   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2420 
2421   if (I.isUnconditional()) {
2422     // Update machine-CFG edges.
2423     BrMBB->addSuccessor(Succ0MBB);
2424 
2425     // If this is not a fall-through branch or optimizations are switched off,
2426     // emit the branch.
2427     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2428       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2429                               MVT::Other, getControlRoot(),
2430                               DAG.getBasicBlock(Succ0MBB)));
2431 
2432     return;
2433   }
2434 
2435   // If this condition is one of the special cases we handle, do special stuff
2436   // now.
2437   const Value *CondVal = I.getCondition();
2438   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2439 
2440   // If this is a series of conditions that are or'd or and'd together, emit
2441   // this as a sequence of branches instead of setcc's with and/or operations.
2442   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2443   // unpredictable branches, and vector extracts because those jumps are likely
2444   // expensive for any target), this should improve performance.
2445   // For example, instead of something like:
2446   //     cmp A, B
2447   //     C = seteq
2448   //     cmp D, E
2449   //     F = setle
2450   //     or C, F
2451   //     jnz foo
2452   // Emit:
2453   //     cmp A, B
2454   //     je foo
2455   //     cmp D, E
2456   //     jle foo
2457   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2458   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2459       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2460     Value *Vec;
2461     const Value *BOp0, *BOp1;
2462     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2463     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2464       Opcode = Instruction::And;
2465     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2466       Opcode = Instruction::Or;
2467 
2468     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2469                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2470       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2471                            getEdgeProbability(BrMBB, Succ0MBB),
2472                            getEdgeProbability(BrMBB, Succ1MBB),
2473                            /*InvertCond=*/false);
2474       // If the compares in later blocks need to use values not currently
2475       // exported from this block, export them now.  This block should always
2476       // be the first entry.
2477       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2478 
2479       // Allow some cases to be rejected.
2480       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2481         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2482           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2483           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2484         }
2485 
2486         // Emit the branch for this block.
2487         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2488         SL->SwitchCases.erase(SL->SwitchCases.begin());
2489         return;
2490       }
2491 
2492       // Okay, we decided not to do this, remove any inserted MBB's and clear
2493       // SwitchCases.
2494       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2495         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2496 
2497       SL->SwitchCases.clear();
2498     }
2499   }
2500 
2501   // Create a CaseBlock record representing this branch.
2502   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2503                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2504 
2505   // Use visitSwitchCase to actually insert the fast branch sequence for this
2506   // cond branch.
2507   visitSwitchCase(CB, BrMBB);
2508 }
2509 
2510 /// visitSwitchCase - Emits the necessary code to represent a single node in
2511 /// the binary search tree resulting from lowering a switch instruction.
2512 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2513                                           MachineBasicBlock *SwitchBB) {
2514   SDValue Cond;
2515   SDValue CondLHS = getValue(CB.CmpLHS);
2516   SDLoc dl = CB.DL;
2517 
2518   if (CB.CC == ISD::SETTRUE) {
2519     // Branch or fall through to TrueBB.
2520     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2521     SwitchBB->normalizeSuccProbs();
2522     if (CB.TrueBB != NextBlock(SwitchBB)) {
2523       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2524                               DAG.getBasicBlock(CB.TrueBB)));
2525     }
2526     return;
2527   }
2528 
2529   auto &TLI = DAG.getTargetLoweringInfo();
2530   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2531 
2532   // Build the setcc now.
2533   if (!CB.CmpMHS) {
2534     // Fold "(X == true)" to X and "(X == false)" to !X to
2535     // handle common cases produced by branch lowering.
2536     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2537         CB.CC == ISD::SETEQ)
2538       Cond = CondLHS;
2539     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2540              CB.CC == ISD::SETEQ) {
2541       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2542       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2543     } else {
2544       SDValue CondRHS = getValue(CB.CmpRHS);
2545 
2546       // If a pointer's DAG type is larger than its memory type then the DAG
2547       // values are zero-extended. This breaks signed comparisons so truncate
2548       // back to the underlying type before doing the compare.
2549       if (CondLHS.getValueType() != MemVT) {
2550         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2551         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2552       }
2553       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2554     }
2555   } else {
2556     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2557 
2558     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2559     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2560 
2561     SDValue CmpOp = getValue(CB.CmpMHS);
2562     EVT VT = CmpOp.getValueType();
2563 
2564     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2565       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2566                           ISD::SETLE);
2567     } else {
2568       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2569                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2570       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2571                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2572     }
2573   }
2574 
2575   // Update successor info
2576   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2577   // TrueBB and FalseBB are always different unless the incoming IR is
2578   // degenerate. This only happens when running llc on weird IR.
2579   if (CB.TrueBB != CB.FalseBB)
2580     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2581   SwitchBB->normalizeSuccProbs();
2582 
2583   // If the lhs block is the next block, invert the condition so that we can
2584   // fall through to the lhs instead of the rhs block.
2585   if (CB.TrueBB == NextBlock(SwitchBB)) {
2586     std::swap(CB.TrueBB, CB.FalseBB);
2587     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2588     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2589   }
2590 
2591   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2592                                MVT::Other, getControlRoot(), Cond,
2593                                DAG.getBasicBlock(CB.TrueBB));
2594 
2595   setValue(CurInst, BrCond);
2596 
2597   // Insert the false branch. Do this even if it's a fall through branch,
2598   // this makes it easier to do DAG optimizations which require inverting
2599   // the branch condition.
2600   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2601                        DAG.getBasicBlock(CB.FalseBB));
2602 
2603   DAG.setRoot(BrCond);
2604 }
2605 
2606 /// visitJumpTable - Emit JumpTable node in the current MBB
2607 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2608   // Emit the code for the jump table
2609   assert(JT.Reg != -1U && "Should lower JT Header first!");
2610   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2611   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2612                                      JT.Reg, PTy);
2613   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2614   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2615                                     MVT::Other, Index.getValue(1),
2616                                     Table, Index);
2617   DAG.setRoot(BrJumpTable);
2618 }
2619 
2620 /// visitJumpTableHeader - This function emits necessary code to produce index
2621 /// in the JumpTable from switch case.
2622 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2623                                                JumpTableHeader &JTH,
2624                                                MachineBasicBlock *SwitchBB) {
2625   SDLoc dl = getCurSDLoc();
2626 
2627   // Subtract the lowest switch case value from the value being switched on.
2628   SDValue SwitchOp = getValue(JTH.SValue);
2629   EVT VT = SwitchOp.getValueType();
2630   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2631                             DAG.getConstant(JTH.First, dl, VT));
2632 
2633   // The SDNode we just created, which holds the value being switched on minus
2634   // the smallest case value, needs to be copied to a virtual register so it
2635   // can be used as an index into the jump table in a subsequent basic block.
2636   // This value may be smaller or larger than the target's pointer type, and
2637   // therefore require extension or truncating.
2638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2639   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2640 
2641   unsigned JumpTableReg =
2642       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2643   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2644                                     JumpTableReg, SwitchOp);
2645   JT.Reg = JumpTableReg;
2646 
2647   if (!JTH.FallthroughUnreachable) {
2648     // Emit the range check for the jump table, and branch to the default block
2649     // for the switch statement if the value being switched on exceeds the
2650     // largest case in the switch.
2651     SDValue CMP = DAG.getSetCC(
2652         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2653                                    Sub.getValueType()),
2654         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2655 
2656     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2657                                  MVT::Other, CopyTo, CMP,
2658                                  DAG.getBasicBlock(JT.Default));
2659 
2660     // Avoid emitting unnecessary branches to the next block.
2661     if (JT.MBB != NextBlock(SwitchBB))
2662       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2663                            DAG.getBasicBlock(JT.MBB));
2664 
2665     DAG.setRoot(BrCond);
2666   } else {
2667     // Avoid emitting unnecessary branches to the next block.
2668     if (JT.MBB != NextBlock(SwitchBB))
2669       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2670                               DAG.getBasicBlock(JT.MBB)));
2671     else
2672       DAG.setRoot(CopyTo);
2673   }
2674 }
2675 
2676 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2677 /// variable if there exists one.
2678 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2679                                  SDValue &Chain) {
2680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2681   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2682   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2683   MachineFunction &MF = DAG.getMachineFunction();
2684   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2685   MachineSDNode *Node =
2686       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2687   if (Global) {
2688     MachinePointerInfo MPInfo(Global);
2689     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2690                  MachineMemOperand::MODereferenceable;
2691     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2692         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2693     DAG.setNodeMemRefs(Node, {MemRef});
2694   }
2695   if (PtrTy != PtrMemTy)
2696     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2697   return SDValue(Node, 0);
2698 }
2699 
2700 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2701 /// tail spliced into a stack protector check success bb.
2702 ///
2703 /// For a high level explanation of how this fits into the stack protector
2704 /// generation see the comment on the declaration of class
2705 /// StackProtectorDescriptor.
2706 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2707                                                   MachineBasicBlock *ParentBB) {
2708 
2709   // First create the loads to the guard/stack slot for the comparison.
2710   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2711   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2712   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2713 
2714   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2715   int FI = MFI.getStackProtectorIndex();
2716 
2717   SDValue Guard;
2718   SDLoc dl = getCurSDLoc();
2719   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2720   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2721   Align Align =
2722       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2723 
2724   // Generate code to load the content of the guard slot.
2725   SDValue GuardVal = DAG.getLoad(
2726       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2727       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2728       MachineMemOperand::MOVolatile);
2729 
2730   if (TLI.useStackGuardXorFP())
2731     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2732 
2733   // Retrieve guard check function, nullptr if instrumentation is inlined.
2734   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2735     // The target provides a guard check function to validate the guard value.
2736     // Generate a call to that function with the content of the guard slot as
2737     // argument.
2738     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2739     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2740 
2741     TargetLowering::ArgListTy Args;
2742     TargetLowering::ArgListEntry Entry;
2743     Entry.Node = GuardVal;
2744     Entry.Ty = FnTy->getParamType(0);
2745     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2746       Entry.IsInReg = true;
2747     Args.push_back(Entry);
2748 
2749     TargetLowering::CallLoweringInfo CLI(DAG);
2750     CLI.setDebugLoc(getCurSDLoc())
2751         .setChain(DAG.getEntryNode())
2752         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2753                    getValue(GuardCheckFn), std::move(Args));
2754 
2755     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2756     DAG.setRoot(Result.second);
2757     return;
2758   }
2759 
2760   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2761   // Otherwise, emit a volatile load to retrieve the stack guard value.
2762   SDValue Chain = DAG.getEntryNode();
2763   if (TLI.useLoadStackGuardNode()) {
2764     Guard = getLoadStackGuard(DAG, dl, Chain);
2765   } else {
2766     const Value *IRGuard = TLI.getSDagStackGuard(M);
2767     SDValue GuardPtr = getValue(IRGuard);
2768 
2769     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2770                         MachinePointerInfo(IRGuard, 0), Align,
2771                         MachineMemOperand::MOVolatile);
2772   }
2773 
2774   // Perform the comparison via a getsetcc.
2775   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2776                                                         *DAG.getContext(),
2777                                                         Guard.getValueType()),
2778                              Guard, GuardVal, ISD::SETNE);
2779 
2780   // If the guard/stackslot do not equal, branch to failure MBB.
2781   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2782                                MVT::Other, GuardVal.getOperand(0),
2783                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2784   // Otherwise branch to success MBB.
2785   SDValue Br = DAG.getNode(ISD::BR, dl,
2786                            MVT::Other, BrCond,
2787                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2788 
2789   DAG.setRoot(Br);
2790 }
2791 
2792 /// Codegen the failure basic block for a stack protector check.
2793 ///
2794 /// A failure stack protector machine basic block consists simply of a call to
2795 /// __stack_chk_fail().
2796 ///
2797 /// For a high level explanation of how this fits into the stack protector
2798 /// generation see the comment on the declaration of class
2799 /// StackProtectorDescriptor.
2800 void
2801 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2803   TargetLowering::MakeLibCallOptions CallOptions;
2804   CallOptions.setDiscardResult(true);
2805   SDValue Chain =
2806       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2807                       std::nullopt, CallOptions, getCurSDLoc())
2808           .second;
2809   // On PS4/PS5, the "return address" must still be within the calling
2810   // function, even if it's at the very end, so emit an explicit TRAP here.
2811   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2812   if (TM.getTargetTriple().isPS())
2813     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2814   // WebAssembly needs an unreachable instruction after a non-returning call,
2815   // because the function return type can be different from __stack_chk_fail's
2816   // return type (void).
2817   if (TM.getTargetTriple().isWasm())
2818     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2819 
2820   DAG.setRoot(Chain);
2821 }
2822 
2823 /// visitBitTestHeader - This function emits necessary code to produce value
2824 /// suitable for "bit tests"
2825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2826                                              MachineBasicBlock *SwitchBB) {
2827   SDLoc dl = getCurSDLoc();
2828 
2829   // Subtract the minimum value.
2830   SDValue SwitchOp = getValue(B.SValue);
2831   EVT VT = SwitchOp.getValueType();
2832   SDValue RangeSub =
2833       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2834 
2835   // Determine the type of the test operands.
2836   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2837   bool UsePtrType = false;
2838   if (!TLI.isTypeLegal(VT)) {
2839     UsePtrType = true;
2840   } else {
2841     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2842       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2843         // Switch table case range are encoded into series of masks.
2844         // Just use pointer type, it's guaranteed to fit.
2845         UsePtrType = true;
2846         break;
2847       }
2848   }
2849   SDValue Sub = RangeSub;
2850   if (UsePtrType) {
2851     VT = TLI.getPointerTy(DAG.getDataLayout());
2852     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2853   }
2854 
2855   B.RegVT = VT.getSimpleVT();
2856   B.Reg = FuncInfo.CreateReg(B.RegVT);
2857   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2858 
2859   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2860 
2861   if (!B.FallthroughUnreachable)
2862     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2863   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2864   SwitchBB->normalizeSuccProbs();
2865 
2866   SDValue Root = CopyTo;
2867   if (!B.FallthroughUnreachable) {
2868     // Conditional branch to the default block.
2869     SDValue RangeCmp = DAG.getSetCC(dl,
2870         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2871                                RangeSub.getValueType()),
2872         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2873         ISD::SETUGT);
2874 
2875     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2876                        DAG.getBasicBlock(B.Default));
2877   }
2878 
2879   // Avoid emitting unnecessary branches to the next block.
2880   if (MBB != NextBlock(SwitchBB))
2881     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2882 
2883   DAG.setRoot(Root);
2884 }
2885 
2886 /// visitBitTestCase - this function produces one "bit test"
2887 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2888                                            MachineBasicBlock* NextMBB,
2889                                            BranchProbability BranchProbToNext,
2890                                            unsigned Reg,
2891                                            BitTestCase &B,
2892                                            MachineBasicBlock *SwitchBB) {
2893   SDLoc dl = getCurSDLoc();
2894   MVT VT = BB.RegVT;
2895   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2896   SDValue Cmp;
2897   unsigned PopCount = llvm::popcount(B.Mask);
2898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2899   if (PopCount == 1) {
2900     // Testing for a single bit; just compare the shift count with what it
2901     // would need to be to shift a 1 bit in that position.
2902     Cmp = DAG.getSetCC(
2903         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2904         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2905         ISD::SETEQ);
2906   } else if (PopCount == BB.Range) {
2907     // There is only one zero bit in the range, test for it directly.
2908     Cmp = DAG.getSetCC(
2909         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2910         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2911         ISD::SETNE);
2912   } else {
2913     // Make desired shift
2914     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2915                                     DAG.getConstant(1, dl, VT), ShiftOp);
2916 
2917     // Emit bit tests and jumps
2918     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2919                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2920     Cmp = DAG.getSetCC(
2921         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2922         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2923   }
2924 
2925   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2926   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2927   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2928   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2929   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2930   // one as they are relative probabilities (and thus work more like weights),
2931   // and hence we need to normalize them to let the sum of them become one.
2932   SwitchBB->normalizeSuccProbs();
2933 
2934   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2935                               MVT::Other, getControlRoot(),
2936                               Cmp, DAG.getBasicBlock(B.TargetBB));
2937 
2938   // Avoid emitting unnecessary branches to the next block.
2939   if (NextMBB != NextBlock(SwitchBB))
2940     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2941                         DAG.getBasicBlock(NextMBB));
2942 
2943   DAG.setRoot(BrAnd);
2944 }
2945 
2946 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2947   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2948 
2949   // Retrieve successors. Look through artificial IR level blocks like
2950   // catchswitch for successors.
2951   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2952   const BasicBlock *EHPadBB = I.getSuccessor(1);
2953 
2954   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2955   // have to do anything here to lower funclet bundles.
2956   assert(!I.hasOperandBundlesOtherThan(
2957              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2958               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2959               LLVMContext::OB_cfguardtarget,
2960               LLVMContext::OB_clang_arc_attachedcall}) &&
2961          "Cannot lower invokes with arbitrary operand bundles yet!");
2962 
2963   const Value *Callee(I.getCalledOperand());
2964   const Function *Fn = dyn_cast<Function>(Callee);
2965   if (isa<InlineAsm>(Callee))
2966     visitInlineAsm(I, EHPadBB);
2967   else if (Fn && Fn->isIntrinsic()) {
2968     switch (Fn->getIntrinsicID()) {
2969     default:
2970       llvm_unreachable("Cannot invoke this intrinsic");
2971     case Intrinsic::donothing:
2972       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2973     case Intrinsic::seh_try_begin:
2974     case Intrinsic::seh_scope_begin:
2975     case Intrinsic::seh_try_end:
2976     case Intrinsic::seh_scope_end:
2977       break;
2978     case Intrinsic::experimental_patchpoint_void:
2979     case Intrinsic::experimental_patchpoint_i64:
2980       visitPatchpoint(I, EHPadBB);
2981       break;
2982     case Intrinsic::experimental_gc_statepoint:
2983       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2984       break;
2985     case Intrinsic::wasm_rethrow: {
2986       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2987       // special because it can be invoked, so we manually lower it to a DAG
2988       // node here.
2989       SmallVector<SDValue, 8> Ops;
2990       Ops.push_back(getRoot()); // inchain
2991       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2992       Ops.push_back(
2993           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2994                                 TLI.getPointerTy(DAG.getDataLayout())));
2995       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2996       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2997       break;
2998     }
2999     }
3000   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3001     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3002     // Eventually we will support lowering the @llvm.experimental.deoptimize
3003     // intrinsic, and right now there are no plans to support other intrinsics
3004     // with deopt state.
3005     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3006   } else {
3007     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3008   }
3009 
3010   // If the value of the invoke is used outside of its defining block, make it
3011   // available as a virtual register.
3012   // We already took care of the exported value for the statepoint instruction
3013   // during call to the LowerStatepoint.
3014   if (!isa<GCStatepointInst>(I)) {
3015     CopyToExportRegsIfNeeded(&I);
3016   }
3017 
3018   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3019   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3020   BranchProbability EHPadBBProb =
3021       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3022           : BranchProbability::getZero();
3023   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3024 
3025   // Update successor info.
3026   addSuccessorWithProb(InvokeMBB, Return);
3027   for (auto &UnwindDest : UnwindDests) {
3028     UnwindDest.first->setIsEHPad();
3029     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3030   }
3031   InvokeMBB->normalizeSuccProbs();
3032 
3033   // Drop into normal successor.
3034   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3035                           DAG.getBasicBlock(Return)));
3036 }
3037 
3038 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3039   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3040 
3041   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3042   // have to do anything here to lower funclet bundles.
3043   assert(!I.hasOperandBundlesOtherThan(
3044              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3045          "Cannot lower callbrs with arbitrary operand bundles yet!");
3046 
3047   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3048   visitInlineAsm(I);
3049   CopyToExportRegsIfNeeded(&I);
3050 
3051   // Retrieve successors.
3052   SmallPtrSet<BasicBlock *, 8> Dests;
3053   Dests.insert(I.getDefaultDest());
3054   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3055 
3056   // Update successor info.
3057   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3058   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3059     BasicBlock *Dest = I.getIndirectDest(i);
3060     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3061     Target->setIsInlineAsmBrIndirectTarget();
3062     Target->setMachineBlockAddressTaken();
3063     Target->setLabelMustBeEmitted();
3064     // Don't add duplicate machine successors.
3065     if (Dests.insert(Dest).second)
3066       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3067   }
3068   CallBrMBB->normalizeSuccProbs();
3069 
3070   // Drop into default successor.
3071   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3072                           MVT::Other, getControlRoot(),
3073                           DAG.getBasicBlock(Return)));
3074 }
3075 
3076 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3077   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3078 }
3079 
3080 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3081   assert(FuncInfo.MBB->isEHPad() &&
3082          "Call to landingpad not in landing pad!");
3083 
3084   // If there aren't registers to copy the values into (e.g., during SjLj
3085   // exceptions), then don't bother to create these DAG nodes.
3086   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3087   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3088   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3089       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3090     return;
3091 
3092   // If landingpad's return type is token type, we don't create DAG nodes
3093   // for its exception pointer and selector value. The extraction of exception
3094   // pointer or selector value from token type landingpads is not currently
3095   // supported.
3096   if (LP.getType()->isTokenTy())
3097     return;
3098 
3099   SmallVector<EVT, 2> ValueVTs;
3100   SDLoc dl = getCurSDLoc();
3101   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3102   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3103 
3104   // Get the two live-in registers as SDValues. The physregs have already been
3105   // copied into virtual registers.
3106   SDValue Ops[2];
3107   if (FuncInfo.ExceptionPointerVirtReg) {
3108     Ops[0] = DAG.getZExtOrTrunc(
3109         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3110                            FuncInfo.ExceptionPointerVirtReg,
3111                            TLI.getPointerTy(DAG.getDataLayout())),
3112         dl, ValueVTs[0]);
3113   } else {
3114     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3115   }
3116   Ops[1] = DAG.getZExtOrTrunc(
3117       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3118                          FuncInfo.ExceptionSelectorVirtReg,
3119                          TLI.getPointerTy(DAG.getDataLayout())),
3120       dl, ValueVTs[1]);
3121 
3122   // Merge into one.
3123   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3124                             DAG.getVTList(ValueVTs), Ops);
3125   setValue(&LP, Res);
3126 }
3127 
3128 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3129                                            MachineBasicBlock *Last) {
3130   // Update JTCases.
3131   for (JumpTableBlock &JTB : SL->JTCases)
3132     if (JTB.first.HeaderBB == First)
3133       JTB.first.HeaderBB = Last;
3134 
3135   // Update BitTestCases.
3136   for (BitTestBlock &BTB : SL->BitTestCases)
3137     if (BTB.Parent == First)
3138       BTB.Parent = Last;
3139 }
3140 
3141 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3142   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3143 
3144   // Update machine-CFG edges with unique successors.
3145   SmallSet<BasicBlock*, 32> Done;
3146   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3147     BasicBlock *BB = I.getSuccessor(i);
3148     bool Inserted = Done.insert(BB).second;
3149     if (!Inserted)
3150         continue;
3151 
3152     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3153     addSuccessorWithProb(IndirectBrMBB, Succ);
3154   }
3155   IndirectBrMBB->normalizeSuccProbs();
3156 
3157   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3158                           MVT::Other, getControlRoot(),
3159                           getValue(I.getAddress())));
3160 }
3161 
3162 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3163   if (!DAG.getTarget().Options.TrapUnreachable)
3164     return;
3165 
3166   // We may be able to ignore unreachable behind a noreturn call.
3167   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3168     const BasicBlock &BB = *I.getParent();
3169     if (&I != &BB.front()) {
3170       BasicBlock::const_iterator PredI =
3171         std::prev(BasicBlock::const_iterator(&I));
3172       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3173         if (Call->doesNotReturn())
3174           return;
3175       }
3176     }
3177   }
3178 
3179   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3180 }
3181 
3182 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3183   SDNodeFlags Flags;
3184   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3185     Flags.copyFMF(*FPOp);
3186 
3187   SDValue Op = getValue(I.getOperand(0));
3188   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3189                                     Op, Flags);
3190   setValue(&I, UnNodeValue);
3191 }
3192 
3193 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3194   SDNodeFlags Flags;
3195   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3196     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3197     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3198   }
3199   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3200     Flags.setExact(ExactOp->isExact());
3201   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3202     Flags.copyFMF(*FPOp);
3203 
3204   SDValue Op1 = getValue(I.getOperand(0));
3205   SDValue Op2 = getValue(I.getOperand(1));
3206   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3207                                      Op1, Op2, Flags);
3208   setValue(&I, BinNodeValue);
3209 }
3210 
3211 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3212   SDValue Op1 = getValue(I.getOperand(0));
3213   SDValue Op2 = getValue(I.getOperand(1));
3214 
3215   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3216       Op1.getValueType(), DAG.getDataLayout());
3217 
3218   // Coerce the shift amount to the right type if we can. This exposes the
3219   // truncate or zext to optimization early.
3220   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3221     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3222            "Unexpected shift type");
3223     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3224   }
3225 
3226   bool nuw = false;
3227   bool nsw = false;
3228   bool exact = false;
3229 
3230   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3231 
3232     if (const OverflowingBinaryOperator *OFBinOp =
3233             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3234       nuw = OFBinOp->hasNoUnsignedWrap();
3235       nsw = OFBinOp->hasNoSignedWrap();
3236     }
3237     if (const PossiblyExactOperator *ExactOp =
3238             dyn_cast<const PossiblyExactOperator>(&I))
3239       exact = ExactOp->isExact();
3240   }
3241   SDNodeFlags Flags;
3242   Flags.setExact(exact);
3243   Flags.setNoSignedWrap(nsw);
3244   Flags.setNoUnsignedWrap(nuw);
3245   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3246                             Flags);
3247   setValue(&I, Res);
3248 }
3249 
3250 void SelectionDAGBuilder::visitSDiv(const User &I) {
3251   SDValue Op1 = getValue(I.getOperand(0));
3252   SDValue Op2 = getValue(I.getOperand(1));
3253 
3254   SDNodeFlags Flags;
3255   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3256                  cast<PossiblyExactOperator>(&I)->isExact());
3257   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3258                            Op2, Flags));
3259 }
3260 
3261 void SelectionDAGBuilder::visitICmp(const User &I) {
3262   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3263   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3264     predicate = IC->getPredicate();
3265   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3266     predicate = ICmpInst::Predicate(IC->getPredicate());
3267   SDValue Op1 = getValue(I.getOperand(0));
3268   SDValue Op2 = getValue(I.getOperand(1));
3269   ISD::CondCode Opcode = getICmpCondCode(predicate);
3270 
3271   auto &TLI = DAG.getTargetLoweringInfo();
3272   EVT MemVT =
3273       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3274 
3275   // If a pointer's DAG type is larger than its memory type then the DAG values
3276   // are zero-extended. This breaks signed comparisons so truncate back to the
3277   // underlying type before doing the compare.
3278   if (Op1.getValueType() != MemVT) {
3279     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3280     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3281   }
3282 
3283   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3284                                                         I.getType());
3285   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3286 }
3287 
3288 void SelectionDAGBuilder::visitFCmp(const User &I) {
3289   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3290   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3291     predicate = FC->getPredicate();
3292   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3293     predicate = FCmpInst::Predicate(FC->getPredicate());
3294   SDValue Op1 = getValue(I.getOperand(0));
3295   SDValue Op2 = getValue(I.getOperand(1));
3296 
3297   ISD::CondCode Condition = getFCmpCondCode(predicate);
3298   auto *FPMO = cast<FPMathOperator>(&I);
3299   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3300     Condition = getFCmpCodeWithoutNaN(Condition);
3301 
3302   SDNodeFlags Flags;
3303   Flags.copyFMF(*FPMO);
3304   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3305 
3306   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3307                                                         I.getType());
3308   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3309 }
3310 
3311 // Check if the condition of the select has one use or two users that are both
3312 // selects with the same condition.
3313 static bool hasOnlySelectUsers(const Value *Cond) {
3314   return llvm::all_of(Cond->users(), [](const Value *V) {
3315     return isa<SelectInst>(V);
3316   });
3317 }
3318 
3319 void SelectionDAGBuilder::visitSelect(const User &I) {
3320   SmallVector<EVT, 4> ValueVTs;
3321   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3322                   ValueVTs);
3323   unsigned NumValues = ValueVTs.size();
3324   if (NumValues == 0) return;
3325 
3326   SmallVector<SDValue, 4> Values(NumValues);
3327   SDValue Cond     = getValue(I.getOperand(0));
3328   SDValue LHSVal   = getValue(I.getOperand(1));
3329   SDValue RHSVal   = getValue(I.getOperand(2));
3330   SmallVector<SDValue, 1> BaseOps(1, Cond);
3331   ISD::NodeType OpCode =
3332       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3333 
3334   bool IsUnaryAbs = false;
3335   bool Negate = false;
3336 
3337   SDNodeFlags Flags;
3338   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3339     Flags.copyFMF(*FPOp);
3340 
3341   // Min/max matching is only viable if all output VTs are the same.
3342   if (all_equal(ValueVTs)) {
3343     EVT VT = ValueVTs[0];
3344     LLVMContext &Ctx = *DAG.getContext();
3345     auto &TLI = DAG.getTargetLoweringInfo();
3346 
3347     // We care about the legality of the operation after it has been type
3348     // legalized.
3349     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3350       VT = TLI.getTypeToTransformTo(Ctx, VT);
3351 
3352     // If the vselect is legal, assume we want to leave this as a vector setcc +
3353     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3354     // min/max is legal on the scalar type.
3355     bool UseScalarMinMax = VT.isVector() &&
3356       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3357 
3358     Value *LHS, *RHS;
3359     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3360     ISD::NodeType Opc = ISD::DELETED_NODE;
3361     switch (SPR.Flavor) {
3362     case SPF_UMAX:    Opc = ISD::UMAX; break;
3363     case SPF_UMIN:    Opc = ISD::UMIN; break;
3364     case SPF_SMAX:    Opc = ISD::SMAX; break;
3365     case SPF_SMIN:    Opc = ISD::SMIN; break;
3366     case SPF_FMINNUM:
3367       switch (SPR.NaNBehavior) {
3368       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3369       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3370       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3371       case SPNB_RETURNS_ANY: {
3372         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3373           Opc = ISD::FMINNUM;
3374         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3375           Opc = ISD::FMINIMUM;
3376         else if (UseScalarMinMax)
3377           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3378             ISD::FMINNUM : ISD::FMINIMUM;
3379         break;
3380       }
3381       }
3382       break;
3383     case SPF_FMAXNUM:
3384       switch (SPR.NaNBehavior) {
3385       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3386       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3387       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3388       case SPNB_RETURNS_ANY:
3389 
3390         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3391           Opc = ISD::FMAXNUM;
3392         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3393           Opc = ISD::FMAXIMUM;
3394         else if (UseScalarMinMax)
3395           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3396             ISD::FMAXNUM : ISD::FMAXIMUM;
3397         break;
3398       }
3399       break;
3400     case SPF_NABS:
3401       Negate = true;
3402       [[fallthrough]];
3403     case SPF_ABS:
3404       IsUnaryAbs = true;
3405       Opc = ISD::ABS;
3406       break;
3407     default: break;
3408     }
3409 
3410     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3411         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3412          (UseScalarMinMax &&
3413           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3414         // If the underlying comparison instruction is used by any other
3415         // instruction, the consumed instructions won't be destroyed, so it is
3416         // not profitable to convert to a min/max.
3417         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3418       OpCode = Opc;
3419       LHSVal = getValue(LHS);
3420       RHSVal = getValue(RHS);
3421       BaseOps.clear();
3422     }
3423 
3424     if (IsUnaryAbs) {
3425       OpCode = Opc;
3426       LHSVal = getValue(LHS);
3427       BaseOps.clear();
3428     }
3429   }
3430 
3431   if (IsUnaryAbs) {
3432     for (unsigned i = 0; i != NumValues; ++i) {
3433       SDLoc dl = getCurSDLoc();
3434       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3435       Values[i] =
3436           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3437       if (Negate)
3438         Values[i] = DAG.getNegative(Values[i], dl, VT);
3439     }
3440   } else {
3441     for (unsigned i = 0; i != NumValues; ++i) {
3442       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3443       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3444       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3445       Values[i] = DAG.getNode(
3446           OpCode, getCurSDLoc(),
3447           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3448     }
3449   }
3450 
3451   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3452                            DAG.getVTList(ValueVTs), Values));
3453 }
3454 
3455 void SelectionDAGBuilder::visitTrunc(const User &I) {
3456   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3457   SDValue N = getValue(I.getOperand(0));
3458   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3459                                                         I.getType());
3460   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3461 }
3462 
3463 void SelectionDAGBuilder::visitZExt(const User &I) {
3464   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3465   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3466   SDValue N = getValue(I.getOperand(0));
3467   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3468                                                         I.getType());
3469   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3470 }
3471 
3472 void SelectionDAGBuilder::visitSExt(const User &I) {
3473   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3474   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3475   SDValue N = getValue(I.getOperand(0));
3476   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3477                                                         I.getType());
3478   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3479 }
3480 
3481 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3482   // FPTrunc is never a no-op cast, no need to check
3483   SDValue N = getValue(I.getOperand(0));
3484   SDLoc dl = getCurSDLoc();
3485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3486   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3487   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3488                            DAG.getTargetConstant(
3489                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3490 }
3491 
3492 void SelectionDAGBuilder::visitFPExt(const User &I) {
3493   // FPExt is never a no-op cast, no need to check
3494   SDValue N = getValue(I.getOperand(0));
3495   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3496                                                         I.getType());
3497   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3498 }
3499 
3500 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3501   // FPToUI is never a no-op cast, no need to check
3502   SDValue N = getValue(I.getOperand(0));
3503   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3504                                                         I.getType());
3505   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3506 }
3507 
3508 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3509   // FPToSI is never a no-op cast, no need to check
3510   SDValue N = getValue(I.getOperand(0));
3511   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3512                                                         I.getType());
3513   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3514 }
3515 
3516 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3517   // UIToFP is never a no-op cast, no need to check
3518   SDValue N = getValue(I.getOperand(0));
3519   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3520                                                         I.getType());
3521   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3522 }
3523 
3524 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3525   // SIToFP is never a no-op cast, no need to check
3526   SDValue N = getValue(I.getOperand(0));
3527   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3528                                                         I.getType());
3529   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3530 }
3531 
3532 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3533   // What to do depends on the size of the integer and the size of the pointer.
3534   // We can either truncate, zero extend, or no-op, accordingly.
3535   SDValue N = getValue(I.getOperand(0));
3536   auto &TLI = DAG.getTargetLoweringInfo();
3537   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3538                                                         I.getType());
3539   EVT PtrMemVT =
3540       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3541   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3542   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3543   setValue(&I, N);
3544 }
3545 
3546 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3547   // What to do depends on the size of the integer and the size of the pointer.
3548   // We can either truncate, zero extend, or no-op, accordingly.
3549   SDValue N = getValue(I.getOperand(0));
3550   auto &TLI = DAG.getTargetLoweringInfo();
3551   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3552   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3553   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3554   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3555   setValue(&I, N);
3556 }
3557 
3558 void SelectionDAGBuilder::visitBitCast(const User &I) {
3559   SDValue N = getValue(I.getOperand(0));
3560   SDLoc dl = getCurSDLoc();
3561   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3562                                                         I.getType());
3563 
3564   // BitCast assures us that source and destination are the same size so this is
3565   // either a BITCAST or a no-op.
3566   if (DestVT != N.getValueType())
3567     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3568                              DestVT, N)); // convert types.
3569   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3570   // might fold any kind of constant expression to an integer constant and that
3571   // is not what we are looking for. Only recognize a bitcast of a genuine
3572   // constant integer as an opaque constant.
3573   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3574     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3575                                  /*isOpaque*/true));
3576   else
3577     setValue(&I, N);            // noop cast.
3578 }
3579 
3580 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3581   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3582   const Value *SV = I.getOperand(0);
3583   SDValue N = getValue(SV);
3584   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3585 
3586   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3587   unsigned DestAS = I.getType()->getPointerAddressSpace();
3588 
3589   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3590     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3591 
3592   setValue(&I, N);
3593 }
3594 
3595 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3596   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3597   SDValue InVec = getValue(I.getOperand(0));
3598   SDValue InVal = getValue(I.getOperand(1));
3599   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3600                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3601   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3602                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3603                            InVec, InVal, InIdx));
3604 }
3605 
3606 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3607   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3608   SDValue InVec = getValue(I.getOperand(0));
3609   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3610                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3611   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3612                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3613                            InVec, InIdx));
3614 }
3615 
3616 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3617   SDValue Src1 = getValue(I.getOperand(0));
3618   SDValue Src2 = getValue(I.getOperand(1));
3619   ArrayRef<int> Mask;
3620   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3621     Mask = SVI->getShuffleMask();
3622   else
3623     Mask = cast<ConstantExpr>(I).getShuffleMask();
3624   SDLoc DL = getCurSDLoc();
3625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3626   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3627   EVT SrcVT = Src1.getValueType();
3628 
3629   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3630       VT.isScalableVector()) {
3631     // Canonical splat form of first element of first input vector.
3632     SDValue FirstElt =
3633         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3634                     DAG.getVectorIdxConstant(0, DL));
3635     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3636     return;
3637   }
3638 
3639   // For now, we only handle splats for scalable vectors.
3640   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3641   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3642   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3643 
3644   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3645   unsigned MaskNumElts = Mask.size();
3646 
3647   if (SrcNumElts == MaskNumElts) {
3648     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3649     return;
3650   }
3651 
3652   // Normalize the shuffle vector since mask and vector length don't match.
3653   if (SrcNumElts < MaskNumElts) {
3654     // Mask is longer than the source vectors. We can use concatenate vector to
3655     // make the mask and vectors lengths match.
3656 
3657     if (MaskNumElts % SrcNumElts == 0) {
3658       // Mask length is a multiple of the source vector length.
3659       // Check if the shuffle is some kind of concatenation of the input
3660       // vectors.
3661       unsigned NumConcat = MaskNumElts / SrcNumElts;
3662       bool IsConcat = true;
3663       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3664       for (unsigned i = 0; i != MaskNumElts; ++i) {
3665         int Idx = Mask[i];
3666         if (Idx < 0)
3667           continue;
3668         // Ensure the indices in each SrcVT sized piece are sequential and that
3669         // the same source is used for the whole piece.
3670         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3671             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3672              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3673           IsConcat = false;
3674           break;
3675         }
3676         // Remember which source this index came from.
3677         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3678       }
3679 
3680       // The shuffle is concatenating multiple vectors together. Just emit
3681       // a CONCAT_VECTORS operation.
3682       if (IsConcat) {
3683         SmallVector<SDValue, 8> ConcatOps;
3684         for (auto Src : ConcatSrcs) {
3685           if (Src < 0)
3686             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3687           else if (Src == 0)
3688             ConcatOps.push_back(Src1);
3689           else
3690             ConcatOps.push_back(Src2);
3691         }
3692         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3693         return;
3694       }
3695     }
3696 
3697     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3698     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3699     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3700                                     PaddedMaskNumElts);
3701 
3702     // Pad both vectors with undefs to make them the same length as the mask.
3703     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3704 
3705     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3706     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3707     MOps1[0] = Src1;
3708     MOps2[0] = Src2;
3709 
3710     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3711     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3712 
3713     // Readjust mask for new input vector length.
3714     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3715     for (unsigned i = 0; i != MaskNumElts; ++i) {
3716       int Idx = Mask[i];
3717       if (Idx >= (int)SrcNumElts)
3718         Idx -= SrcNumElts - PaddedMaskNumElts;
3719       MappedOps[i] = Idx;
3720     }
3721 
3722     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3723 
3724     // If the concatenated vector was padded, extract a subvector with the
3725     // correct number of elements.
3726     if (MaskNumElts != PaddedMaskNumElts)
3727       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3728                            DAG.getVectorIdxConstant(0, DL));
3729 
3730     setValue(&I, Result);
3731     return;
3732   }
3733 
3734   if (SrcNumElts > MaskNumElts) {
3735     // Analyze the access pattern of the vector to see if we can extract
3736     // two subvectors and do the shuffle.
3737     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3738     bool CanExtract = true;
3739     for (int Idx : Mask) {
3740       unsigned Input = 0;
3741       if (Idx < 0)
3742         continue;
3743 
3744       if (Idx >= (int)SrcNumElts) {
3745         Input = 1;
3746         Idx -= SrcNumElts;
3747       }
3748 
3749       // If all the indices come from the same MaskNumElts sized portion of
3750       // the sources we can use extract. Also make sure the extract wouldn't
3751       // extract past the end of the source.
3752       int NewStartIdx = alignDown(Idx, MaskNumElts);
3753       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3754           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3755         CanExtract = false;
3756       // Make sure we always update StartIdx as we use it to track if all
3757       // elements are undef.
3758       StartIdx[Input] = NewStartIdx;
3759     }
3760 
3761     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3762       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3763       return;
3764     }
3765     if (CanExtract) {
3766       // Extract appropriate subvector and generate a vector shuffle
3767       for (unsigned Input = 0; Input < 2; ++Input) {
3768         SDValue &Src = Input == 0 ? Src1 : Src2;
3769         if (StartIdx[Input] < 0)
3770           Src = DAG.getUNDEF(VT);
3771         else {
3772           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3773                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3774         }
3775       }
3776 
3777       // Calculate new mask.
3778       SmallVector<int, 8> MappedOps(Mask);
3779       for (int &Idx : MappedOps) {
3780         if (Idx >= (int)SrcNumElts)
3781           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3782         else if (Idx >= 0)
3783           Idx -= StartIdx[0];
3784       }
3785 
3786       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3787       return;
3788     }
3789   }
3790 
3791   // We can't use either concat vectors or extract subvectors so fall back to
3792   // replacing the shuffle with extract and build vector.
3793   // to insert and build vector.
3794   EVT EltVT = VT.getVectorElementType();
3795   SmallVector<SDValue,8> Ops;
3796   for (int Idx : Mask) {
3797     SDValue Res;
3798 
3799     if (Idx < 0) {
3800       Res = DAG.getUNDEF(EltVT);
3801     } else {
3802       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3803       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3804 
3805       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3806                         DAG.getVectorIdxConstant(Idx, DL));
3807     }
3808 
3809     Ops.push_back(Res);
3810   }
3811 
3812   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3813 }
3814 
3815 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3816   ArrayRef<unsigned> Indices = I.getIndices();
3817   const Value *Op0 = I.getOperand(0);
3818   const Value *Op1 = I.getOperand(1);
3819   Type *AggTy = I.getType();
3820   Type *ValTy = Op1->getType();
3821   bool IntoUndef = isa<UndefValue>(Op0);
3822   bool FromUndef = isa<UndefValue>(Op1);
3823 
3824   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3825 
3826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3827   SmallVector<EVT, 4> AggValueVTs;
3828   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3829   SmallVector<EVT, 4> ValValueVTs;
3830   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3831 
3832   unsigned NumAggValues = AggValueVTs.size();
3833   unsigned NumValValues = ValValueVTs.size();
3834   SmallVector<SDValue, 4> Values(NumAggValues);
3835 
3836   // Ignore an insertvalue that produces an empty object
3837   if (!NumAggValues) {
3838     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3839     return;
3840   }
3841 
3842   SDValue Agg = getValue(Op0);
3843   unsigned i = 0;
3844   // Copy the beginning value(s) from the original aggregate.
3845   for (; i != LinearIndex; ++i)
3846     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3847                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3848   // Copy values from the inserted value(s).
3849   if (NumValValues) {
3850     SDValue Val = getValue(Op1);
3851     for (; i != LinearIndex + NumValValues; ++i)
3852       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3853                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3854   }
3855   // Copy remaining value(s) from the original aggregate.
3856   for (; i != NumAggValues; ++i)
3857     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3858                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3859 
3860   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3861                            DAG.getVTList(AggValueVTs), Values));
3862 }
3863 
3864 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3865   ArrayRef<unsigned> Indices = I.getIndices();
3866   const Value *Op0 = I.getOperand(0);
3867   Type *AggTy = Op0->getType();
3868   Type *ValTy = I.getType();
3869   bool OutOfUndef = isa<UndefValue>(Op0);
3870 
3871   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3872 
3873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3874   SmallVector<EVT, 4> ValValueVTs;
3875   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3876 
3877   unsigned NumValValues = ValValueVTs.size();
3878 
3879   // Ignore a extractvalue that produces an empty object
3880   if (!NumValValues) {
3881     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3882     return;
3883   }
3884 
3885   SmallVector<SDValue, 4> Values(NumValValues);
3886 
3887   SDValue Agg = getValue(Op0);
3888   // Copy out the selected value(s).
3889   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3890     Values[i - LinearIndex] =
3891       OutOfUndef ?
3892         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3893         SDValue(Agg.getNode(), Agg.getResNo() + i);
3894 
3895   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3896                            DAG.getVTList(ValValueVTs), Values));
3897 }
3898 
3899 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3900   Value *Op0 = I.getOperand(0);
3901   // Note that the pointer operand may be a vector of pointers. Take the scalar
3902   // element which holds a pointer.
3903   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3904   SDValue N = getValue(Op0);
3905   SDLoc dl = getCurSDLoc();
3906   auto &TLI = DAG.getTargetLoweringInfo();
3907 
3908   // Normalize Vector GEP - all scalar operands should be converted to the
3909   // splat vector.
3910   bool IsVectorGEP = I.getType()->isVectorTy();
3911   ElementCount VectorElementCount =
3912       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3913                   : ElementCount::getFixed(0);
3914 
3915   if (IsVectorGEP && !N.getValueType().isVector()) {
3916     LLVMContext &Context = *DAG.getContext();
3917     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3918     N = DAG.getSplat(VT, dl, N);
3919   }
3920 
3921   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3922        GTI != E; ++GTI) {
3923     const Value *Idx = GTI.getOperand();
3924     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3925       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3926       if (Field) {
3927         // N = N + Offset
3928         uint64_t Offset =
3929             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3930 
3931         // In an inbounds GEP with an offset that is nonnegative even when
3932         // interpreted as signed, assume there is no unsigned overflow.
3933         SDNodeFlags Flags;
3934         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3935           Flags.setNoUnsignedWrap(true);
3936 
3937         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3938                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3939       }
3940     } else {
3941       // IdxSize is the width of the arithmetic according to IR semantics.
3942       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3943       // (and fix up the result later).
3944       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3945       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3946       TypeSize ElementSize =
3947           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3948       // We intentionally mask away the high bits here; ElementSize may not
3949       // fit in IdxTy.
3950       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
3951       bool ElementScalable = ElementSize.isScalable();
3952 
3953       // If this is a scalar constant or a splat vector of constants,
3954       // handle it quickly.
3955       const auto *C = dyn_cast<Constant>(Idx);
3956       if (C && isa<VectorType>(C->getType()))
3957         C = C->getSplatValue();
3958 
3959       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3960       if (CI && CI->isZero())
3961         continue;
3962       if (CI && !ElementScalable) {
3963         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3964         LLVMContext &Context = *DAG.getContext();
3965         SDValue OffsVal;
3966         if (IsVectorGEP)
3967           OffsVal = DAG.getConstant(
3968               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3969         else
3970           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3971 
3972         // In an inbounds GEP with an offset that is nonnegative even when
3973         // interpreted as signed, assume there is no unsigned overflow.
3974         SDNodeFlags Flags;
3975         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3976           Flags.setNoUnsignedWrap(true);
3977 
3978         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3979 
3980         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3981         continue;
3982       }
3983 
3984       // N = N + Idx * ElementMul;
3985       SDValue IdxN = getValue(Idx);
3986 
3987       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3988         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3989                                   VectorElementCount);
3990         IdxN = DAG.getSplat(VT, dl, IdxN);
3991       }
3992 
3993       // If the index is smaller or larger than intptr_t, truncate or extend
3994       // it.
3995       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3996 
3997       if (ElementScalable) {
3998         EVT VScaleTy = N.getValueType().getScalarType();
3999         SDValue VScale = DAG.getNode(
4000             ISD::VSCALE, dl, VScaleTy,
4001             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4002         if (IsVectorGEP)
4003           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4004         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4005       } else {
4006         // If this is a multiply by a power of two, turn it into a shl
4007         // immediately.  This is a very common case.
4008         if (ElementMul != 1) {
4009           if (ElementMul.isPowerOf2()) {
4010             unsigned Amt = ElementMul.logBase2();
4011             IdxN = DAG.getNode(ISD::SHL, dl,
4012                                N.getValueType(), IdxN,
4013                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4014           } else {
4015             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4016                                             IdxN.getValueType());
4017             IdxN = DAG.getNode(ISD::MUL, dl,
4018                                N.getValueType(), IdxN, Scale);
4019           }
4020         }
4021       }
4022 
4023       N = DAG.getNode(ISD::ADD, dl,
4024                       N.getValueType(), N, IdxN);
4025     }
4026   }
4027 
4028   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4029   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4030   if (IsVectorGEP) {
4031     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4032     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4033   }
4034 
4035   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4036     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4037 
4038   setValue(&I, N);
4039 }
4040 
4041 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4042   // If this is a fixed sized alloca in the entry block of the function,
4043   // allocate it statically on the stack.
4044   if (FuncInfo.StaticAllocaMap.count(&I))
4045     return;   // getValue will auto-populate this.
4046 
4047   SDLoc dl = getCurSDLoc();
4048   Type *Ty = I.getAllocatedType();
4049   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4050   auto &DL = DAG.getDataLayout();
4051   TypeSize TySize = DL.getTypeAllocSize(Ty);
4052   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4053 
4054   SDValue AllocSize = getValue(I.getArraySize());
4055 
4056   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4057   if (AllocSize.getValueType() != IntPtr)
4058     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4059 
4060   if (TySize.isScalable())
4061     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4062                             DAG.getVScale(dl, IntPtr,
4063                                           APInt(IntPtr.getScalarSizeInBits(),
4064                                                 TySize.getKnownMinValue())));
4065   else
4066     AllocSize =
4067         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4068                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4069 
4070   // Handle alignment.  If the requested alignment is less than or equal to
4071   // the stack alignment, ignore it.  If the size is greater than or equal to
4072   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4073   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4074   if (*Alignment <= StackAlign)
4075     Alignment = std::nullopt;
4076 
4077   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4078   // Round the size of the allocation up to the stack alignment size
4079   // by add SA-1 to the size. This doesn't overflow because we're computing
4080   // an address inside an alloca.
4081   SDNodeFlags Flags;
4082   Flags.setNoUnsignedWrap(true);
4083   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4084                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4085 
4086   // Mask out the low bits for alignment purposes.
4087   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4088                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4089 
4090   SDValue Ops[] = {
4091       getRoot(), AllocSize,
4092       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4093   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4094   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4095   setValue(&I, DSA);
4096   DAG.setRoot(DSA.getValue(1));
4097 
4098   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4099 }
4100 
4101 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4102   if (I.isAtomic())
4103     return visitAtomicLoad(I);
4104 
4105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4106   const Value *SV = I.getOperand(0);
4107   if (TLI.supportSwiftError()) {
4108     // Swifterror values can come from either a function parameter with
4109     // swifterror attribute or an alloca with swifterror attribute.
4110     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4111       if (Arg->hasSwiftErrorAttr())
4112         return visitLoadFromSwiftError(I);
4113     }
4114 
4115     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4116       if (Alloca->isSwiftError())
4117         return visitLoadFromSwiftError(I);
4118     }
4119   }
4120 
4121   SDValue Ptr = getValue(SV);
4122 
4123   Type *Ty = I.getType();
4124   SmallVector<EVT, 4> ValueVTs, MemVTs;
4125   SmallVector<uint64_t, 4> Offsets;
4126   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4127   unsigned NumValues = ValueVTs.size();
4128   if (NumValues == 0)
4129     return;
4130 
4131   Align Alignment = I.getAlign();
4132   AAMDNodes AAInfo = I.getAAMetadata();
4133   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4134   bool isVolatile = I.isVolatile();
4135   MachineMemOperand::Flags MMOFlags =
4136       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4137 
4138   SDValue Root;
4139   bool ConstantMemory = false;
4140   if (isVolatile)
4141     // Serialize volatile loads with other side effects.
4142     Root = getRoot();
4143   else if (NumValues > MaxParallelChains)
4144     Root = getMemoryRoot();
4145   else if (AA &&
4146            AA->pointsToConstantMemory(MemoryLocation(
4147                SV,
4148                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4149                AAInfo))) {
4150     // Do not serialize (non-volatile) loads of constant memory with anything.
4151     Root = DAG.getEntryNode();
4152     ConstantMemory = true;
4153     MMOFlags |= MachineMemOperand::MOInvariant;
4154   } else {
4155     // Do not serialize non-volatile loads against each other.
4156     Root = DAG.getRoot();
4157   }
4158 
4159   SDLoc dl = getCurSDLoc();
4160 
4161   if (isVolatile)
4162     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4163 
4164   // An aggregate load cannot wrap around the address space, so offsets to its
4165   // parts don't wrap either.
4166   SDNodeFlags Flags;
4167   Flags.setNoUnsignedWrap(true);
4168 
4169   SmallVector<SDValue, 4> Values(NumValues);
4170   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4171   EVT PtrVT = Ptr.getValueType();
4172 
4173   unsigned ChainI = 0;
4174   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4175     // Serializing loads here may result in excessive register pressure, and
4176     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4177     // could recover a bit by hoisting nodes upward in the chain by recognizing
4178     // they are side-effect free or do not alias. The optimizer should really
4179     // avoid this case by converting large object/array copies to llvm.memcpy
4180     // (MaxParallelChains should always remain as failsafe).
4181     if (ChainI == MaxParallelChains) {
4182       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4183       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4184                                   ArrayRef(Chains.data(), ChainI));
4185       Root = Chain;
4186       ChainI = 0;
4187     }
4188     SDValue A = DAG.getNode(ISD::ADD, dl,
4189                             PtrVT, Ptr,
4190                             DAG.getConstant(Offsets[i], dl, PtrVT),
4191                             Flags);
4192 
4193     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4194                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4195                             MMOFlags, AAInfo, Ranges);
4196     Chains[ChainI] = L.getValue(1);
4197 
4198     if (MemVTs[i] != ValueVTs[i])
4199       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4200 
4201     Values[i] = L;
4202   }
4203 
4204   if (!ConstantMemory) {
4205     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4206                                 ArrayRef(Chains.data(), ChainI));
4207     if (isVolatile)
4208       DAG.setRoot(Chain);
4209     else
4210       PendingLoads.push_back(Chain);
4211   }
4212 
4213   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4214                            DAG.getVTList(ValueVTs), Values));
4215 }
4216 
4217 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4218   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4219          "call visitStoreToSwiftError when backend supports swifterror");
4220 
4221   SmallVector<EVT, 4> ValueVTs;
4222   SmallVector<uint64_t, 4> Offsets;
4223   const Value *SrcV = I.getOperand(0);
4224   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4225                   SrcV->getType(), ValueVTs, &Offsets);
4226   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4227          "expect a single EVT for swifterror");
4228 
4229   SDValue Src = getValue(SrcV);
4230   // Create a virtual register, then update the virtual register.
4231   Register VReg =
4232       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4233   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4234   // Chain can be getRoot or getControlRoot.
4235   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4236                                       SDValue(Src.getNode(), Src.getResNo()));
4237   DAG.setRoot(CopyNode);
4238 }
4239 
4240 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4241   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4242          "call visitLoadFromSwiftError when backend supports swifterror");
4243 
4244   assert(!I.isVolatile() &&
4245          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4246          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4247          "Support volatile, non temporal, invariant for load_from_swift_error");
4248 
4249   const Value *SV = I.getOperand(0);
4250   Type *Ty = I.getType();
4251   assert(
4252       (!AA ||
4253        !AA->pointsToConstantMemory(MemoryLocation(
4254            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4255            I.getAAMetadata()))) &&
4256       "load_from_swift_error should not be constant memory");
4257 
4258   SmallVector<EVT, 4> ValueVTs;
4259   SmallVector<uint64_t, 4> Offsets;
4260   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4261                   ValueVTs, &Offsets);
4262   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4263          "expect a single EVT for swifterror");
4264 
4265   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4266   SDValue L = DAG.getCopyFromReg(
4267       getRoot(), getCurSDLoc(),
4268       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4269 
4270   setValue(&I, L);
4271 }
4272 
4273 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4274   if (I.isAtomic())
4275     return visitAtomicStore(I);
4276 
4277   const Value *SrcV = I.getOperand(0);
4278   const Value *PtrV = I.getOperand(1);
4279 
4280   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4281   if (TLI.supportSwiftError()) {
4282     // Swifterror values can come from either a function parameter with
4283     // swifterror attribute or an alloca with swifterror attribute.
4284     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4285       if (Arg->hasSwiftErrorAttr())
4286         return visitStoreToSwiftError(I);
4287     }
4288 
4289     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4290       if (Alloca->isSwiftError())
4291         return visitStoreToSwiftError(I);
4292     }
4293   }
4294 
4295   SmallVector<EVT, 4> ValueVTs, MemVTs;
4296   SmallVector<uint64_t, 4> Offsets;
4297   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4298                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4299   unsigned NumValues = ValueVTs.size();
4300   if (NumValues == 0)
4301     return;
4302 
4303   // Get the lowered operands. Note that we do this after
4304   // checking if NumResults is zero, because with zero results
4305   // the operands won't have values in the map.
4306   SDValue Src = getValue(SrcV);
4307   SDValue Ptr = getValue(PtrV);
4308 
4309   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4310   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4311   SDLoc dl = getCurSDLoc();
4312   Align Alignment = I.getAlign();
4313   AAMDNodes AAInfo = I.getAAMetadata();
4314 
4315   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4316 
4317   // An aggregate load cannot wrap around the address space, so offsets to its
4318   // parts don't wrap either.
4319   SDNodeFlags Flags;
4320   Flags.setNoUnsignedWrap(true);
4321 
4322   unsigned ChainI = 0;
4323   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4324     // See visitLoad comments.
4325     if (ChainI == MaxParallelChains) {
4326       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4327                                   ArrayRef(Chains.data(), ChainI));
4328       Root = Chain;
4329       ChainI = 0;
4330     }
4331     SDValue Add =
4332         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4333     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4334     if (MemVTs[i] != ValueVTs[i])
4335       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4336     SDValue St =
4337         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4338                      Alignment, MMOFlags, AAInfo);
4339     Chains[ChainI] = St;
4340   }
4341 
4342   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4343                                   ArrayRef(Chains.data(), ChainI));
4344   setValue(&I, StoreNode);
4345   DAG.setRoot(StoreNode);
4346 }
4347 
4348 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4349                                            bool IsCompressing) {
4350   SDLoc sdl = getCurSDLoc();
4351 
4352   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4353                                MaybeAlign &Alignment) {
4354     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4355     Src0 = I.getArgOperand(0);
4356     Ptr = I.getArgOperand(1);
4357     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4358     Mask = I.getArgOperand(3);
4359   };
4360   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4361                                     MaybeAlign &Alignment) {
4362     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4363     Src0 = I.getArgOperand(0);
4364     Ptr = I.getArgOperand(1);
4365     Mask = I.getArgOperand(2);
4366     Alignment = std::nullopt;
4367   };
4368 
4369   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4370   MaybeAlign Alignment;
4371   if (IsCompressing)
4372     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4373   else
4374     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4375 
4376   SDValue Ptr = getValue(PtrOperand);
4377   SDValue Src0 = getValue(Src0Operand);
4378   SDValue Mask = getValue(MaskOperand);
4379   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4380 
4381   EVT VT = Src0.getValueType();
4382   if (!Alignment)
4383     Alignment = DAG.getEVTAlign(VT);
4384 
4385   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4386       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4387       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4388   SDValue StoreNode =
4389       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4390                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4391   DAG.setRoot(StoreNode);
4392   setValue(&I, StoreNode);
4393 }
4394 
4395 // Get a uniform base for the Gather/Scatter intrinsic.
4396 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4397 // We try to represent it as a base pointer + vector of indices.
4398 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4399 // The first operand of the GEP may be a single pointer or a vector of pointers
4400 // Example:
4401 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4402 //  or
4403 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4404 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4405 //
4406 // When the first GEP operand is a single pointer - it is the uniform base we
4407 // are looking for. If first operand of the GEP is a splat vector - we
4408 // extract the splat value and use it as a uniform base.
4409 // In all other cases the function returns 'false'.
4410 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4411                            ISD::MemIndexType &IndexType, SDValue &Scale,
4412                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4413                            uint64_t ElemSize) {
4414   SelectionDAG& DAG = SDB->DAG;
4415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4416   const DataLayout &DL = DAG.getDataLayout();
4417 
4418   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4419 
4420   // Handle splat constant pointer.
4421   if (auto *C = dyn_cast<Constant>(Ptr)) {
4422     C = C->getSplatValue();
4423     if (!C)
4424       return false;
4425 
4426     Base = SDB->getValue(C);
4427 
4428     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4429     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4430     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4431     IndexType = ISD::SIGNED_SCALED;
4432     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4433     return true;
4434   }
4435 
4436   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4437   if (!GEP || GEP->getParent() != CurBB)
4438     return false;
4439 
4440   if (GEP->getNumOperands() != 2)
4441     return false;
4442 
4443   const Value *BasePtr = GEP->getPointerOperand();
4444   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4445 
4446   // Make sure the base is scalar and the index is a vector.
4447   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4448     return false;
4449 
4450   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4451 
4452   // Target may not support the required addressing mode.
4453   if (ScaleVal != 1 &&
4454       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4455     return false;
4456 
4457   Base = SDB->getValue(BasePtr);
4458   Index = SDB->getValue(IndexVal);
4459   IndexType = ISD::SIGNED_SCALED;
4460 
4461   Scale =
4462       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4463   return true;
4464 }
4465 
4466 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4467   SDLoc sdl = getCurSDLoc();
4468 
4469   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4470   const Value *Ptr = I.getArgOperand(1);
4471   SDValue Src0 = getValue(I.getArgOperand(0));
4472   SDValue Mask = getValue(I.getArgOperand(3));
4473   EVT VT = Src0.getValueType();
4474   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4475                         ->getMaybeAlignValue()
4476                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4478 
4479   SDValue Base;
4480   SDValue Index;
4481   ISD::MemIndexType IndexType;
4482   SDValue Scale;
4483   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4484                                     I.getParent(), VT.getScalarStoreSize());
4485 
4486   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4487   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4488       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4489       // TODO: Make MachineMemOperands aware of scalable
4490       // vectors.
4491       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4492   if (!UniformBase) {
4493     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4494     Index = getValue(Ptr);
4495     IndexType = ISD::SIGNED_SCALED;
4496     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4497   }
4498 
4499   EVT IdxVT = Index.getValueType();
4500   EVT EltTy = IdxVT.getVectorElementType();
4501   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4502     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4503     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4504   }
4505 
4506   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4507   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4508                                          Ops, MMO, IndexType, false);
4509   DAG.setRoot(Scatter);
4510   setValue(&I, Scatter);
4511 }
4512 
4513 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4514   SDLoc sdl = getCurSDLoc();
4515 
4516   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4517                               MaybeAlign &Alignment) {
4518     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4519     Ptr = I.getArgOperand(0);
4520     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4521     Mask = I.getArgOperand(2);
4522     Src0 = I.getArgOperand(3);
4523   };
4524   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4525                                  MaybeAlign &Alignment) {
4526     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4527     Ptr = I.getArgOperand(0);
4528     Alignment = std::nullopt;
4529     Mask = I.getArgOperand(1);
4530     Src0 = I.getArgOperand(2);
4531   };
4532 
4533   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4534   MaybeAlign Alignment;
4535   if (IsExpanding)
4536     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4537   else
4538     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4539 
4540   SDValue Ptr = getValue(PtrOperand);
4541   SDValue Src0 = getValue(Src0Operand);
4542   SDValue Mask = getValue(MaskOperand);
4543   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4544 
4545   EVT VT = Src0.getValueType();
4546   if (!Alignment)
4547     Alignment = DAG.getEVTAlign(VT);
4548 
4549   AAMDNodes AAInfo = I.getAAMetadata();
4550   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4551 
4552   // Do not serialize masked loads of constant memory with anything.
4553   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4554   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4555 
4556   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4557 
4558   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4559       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4560       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4561 
4562   SDValue Load =
4563       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4564                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4565   if (AddToChain)
4566     PendingLoads.push_back(Load.getValue(1));
4567   setValue(&I, Load);
4568 }
4569 
4570 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4571   SDLoc sdl = getCurSDLoc();
4572 
4573   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4574   const Value *Ptr = I.getArgOperand(0);
4575   SDValue Src0 = getValue(I.getArgOperand(3));
4576   SDValue Mask = getValue(I.getArgOperand(2));
4577 
4578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4579   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4580   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4581                         ->getMaybeAlignValue()
4582                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4583 
4584   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4585 
4586   SDValue Root = DAG.getRoot();
4587   SDValue Base;
4588   SDValue Index;
4589   ISD::MemIndexType IndexType;
4590   SDValue Scale;
4591   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4592                                     I.getParent(), VT.getScalarStoreSize());
4593   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4594   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4595       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4596       // TODO: Make MachineMemOperands aware of scalable
4597       // vectors.
4598       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4599 
4600   if (!UniformBase) {
4601     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4602     Index = getValue(Ptr);
4603     IndexType = ISD::SIGNED_SCALED;
4604     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4605   }
4606 
4607   EVT IdxVT = Index.getValueType();
4608   EVT EltTy = IdxVT.getVectorElementType();
4609   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4610     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4611     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4612   }
4613 
4614   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4615   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4616                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4617 
4618   PendingLoads.push_back(Gather.getValue(1));
4619   setValue(&I, Gather);
4620 }
4621 
4622 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4623   SDLoc dl = getCurSDLoc();
4624   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4625   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4626   SyncScope::ID SSID = I.getSyncScopeID();
4627 
4628   SDValue InChain = getRoot();
4629 
4630   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4631   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4632 
4633   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4634   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4635 
4636   MachineFunction &MF = DAG.getMachineFunction();
4637   MachineMemOperand *MMO = MF.getMachineMemOperand(
4638       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4639       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4640       FailureOrdering);
4641 
4642   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4643                                    dl, MemVT, VTs, InChain,
4644                                    getValue(I.getPointerOperand()),
4645                                    getValue(I.getCompareOperand()),
4646                                    getValue(I.getNewValOperand()), MMO);
4647 
4648   SDValue OutChain = L.getValue(2);
4649 
4650   setValue(&I, L);
4651   DAG.setRoot(OutChain);
4652 }
4653 
4654 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4655   SDLoc dl = getCurSDLoc();
4656   ISD::NodeType NT;
4657   switch (I.getOperation()) {
4658   default: llvm_unreachable("Unknown atomicrmw operation");
4659   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4660   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4661   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4662   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4663   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4664   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4665   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4666   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4667   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4668   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4669   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4670   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4671   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4672   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4673   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4674   case AtomicRMWInst::UIncWrap:
4675     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4676     break;
4677   case AtomicRMWInst::UDecWrap:
4678     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4679     break;
4680   }
4681   AtomicOrdering Ordering = I.getOrdering();
4682   SyncScope::ID SSID = I.getSyncScopeID();
4683 
4684   SDValue InChain = getRoot();
4685 
4686   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4687   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4688   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4689 
4690   MachineFunction &MF = DAG.getMachineFunction();
4691   MachineMemOperand *MMO = MF.getMachineMemOperand(
4692       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4693       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4694 
4695   SDValue L =
4696     DAG.getAtomic(NT, dl, MemVT, InChain,
4697                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4698                   MMO);
4699 
4700   SDValue OutChain = L.getValue(1);
4701 
4702   setValue(&I, L);
4703   DAG.setRoot(OutChain);
4704 }
4705 
4706 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4707   SDLoc dl = getCurSDLoc();
4708   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4709   SDValue Ops[3];
4710   Ops[0] = getRoot();
4711   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4712                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4713   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4714                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4715   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4716   setValue(&I, N);
4717   DAG.setRoot(N);
4718 }
4719 
4720 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4721   SDLoc dl = getCurSDLoc();
4722   AtomicOrdering Order = I.getOrdering();
4723   SyncScope::ID SSID = I.getSyncScopeID();
4724 
4725   SDValue InChain = getRoot();
4726 
4727   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4728   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4729   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4730 
4731   if (!TLI.supportsUnalignedAtomics() &&
4732       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4733     report_fatal_error("Cannot generate unaligned atomic load");
4734 
4735   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4736 
4737   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4738       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4739       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4740 
4741   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4742 
4743   SDValue Ptr = getValue(I.getPointerOperand());
4744 
4745   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4746     // TODO: Once this is better exercised by tests, it should be merged with
4747     // the normal path for loads to prevent future divergence.
4748     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4749     if (MemVT != VT)
4750       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4751 
4752     setValue(&I, L);
4753     SDValue OutChain = L.getValue(1);
4754     if (!I.isUnordered())
4755       DAG.setRoot(OutChain);
4756     else
4757       PendingLoads.push_back(OutChain);
4758     return;
4759   }
4760 
4761   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4762                             Ptr, MMO);
4763 
4764   SDValue OutChain = L.getValue(1);
4765   if (MemVT != VT)
4766     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4767 
4768   setValue(&I, L);
4769   DAG.setRoot(OutChain);
4770 }
4771 
4772 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4773   SDLoc dl = getCurSDLoc();
4774 
4775   AtomicOrdering Ordering = I.getOrdering();
4776   SyncScope::ID SSID = I.getSyncScopeID();
4777 
4778   SDValue InChain = getRoot();
4779 
4780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4781   EVT MemVT =
4782       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4783 
4784   if (!TLI.supportsUnalignedAtomics() &&
4785       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4786     report_fatal_error("Cannot generate unaligned atomic store");
4787 
4788   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4789 
4790   MachineFunction &MF = DAG.getMachineFunction();
4791   MachineMemOperand *MMO = MF.getMachineMemOperand(
4792       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4793       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4794 
4795   SDValue Val = getValue(I.getValueOperand());
4796   if (Val.getValueType() != MemVT)
4797     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4798   SDValue Ptr = getValue(I.getPointerOperand());
4799 
4800   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4801     // TODO: Once this is better exercised by tests, it should be merged with
4802     // the normal path for stores to prevent future divergence.
4803     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4804     setValue(&I, S);
4805     DAG.setRoot(S);
4806     return;
4807   }
4808   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4809                                    Ptr, Val, MMO);
4810 
4811   setValue(&I, OutChain);
4812   DAG.setRoot(OutChain);
4813 }
4814 
4815 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4816 /// node.
4817 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4818                                                unsigned Intrinsic) {
4819   // Ignore the callsite's attributes. A specific call site may be marked with
4820   // readnone, but the lowering code will expect the chain based on the
4821   // definition.
4822   const Function *F = I.getCalledFunction();
4823   bool HasChain = !F->doesNotAccessMemory();
4824   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4825 
4826   // Build the operand list.
4827   SmallVector<SDValue, 8> Ops;
4828   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4829     if (OnlyLoad) {
4830       // We don't need to serialize loads against other loads.
4831       Ops.push_back(DAG.getRoot());
4832     } else {
4833       Ops.push_back(getRoot());
4834     }
4835   }
4836 
4837   // Info is set by getTgtMemIntrinsic
4838   TargetLowering::IntrinsicInfo Info;
4839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4840   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4841                                                DAG.getMachineFunction(),
4842                                                Intrinsic);
4843 
4844   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4845   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4846       Info.opc == ISD::INTRINSIC_W_CHAIN)
4847     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4848                                         TLI.getPointerTy(DAG.getDataLayout())));
4849 
4850   // Add all operands of the call to the operand list.
4851   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4852     const Value *Arg = I.getArgOperand(i);
4853     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4854       Ops.push_back(getValue(Arg));
4855       continue;
4856     }
4857 
4858     // Use TargetConstant instead of a regular constant for immarg.
4859     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4860     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4861       assert(CI->getBitWidth() <= 64 &&
4862              "large intrinsic immediates not handled");
4863       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4864     } else {
4865       Ops.push_back(
4866           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4867     }
4868   }
4869 
4870   SmallVector<EVT, 4> ValueVTs;
4871   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4872 
4873   if (HasChain)
4874     ValueVTs.push_back(MVT::Other);
4875 
4876   SDVTList VTs = DAG.getVTList(ValueVTs);
4877 
4878   // Propagate fast-math-flags from IR to node(s).
4879   SDNodeFlags Flags;
4880   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4881     Flags.copyFMF(*FPMO);
4882   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4883 
4884   // Create the node.
4885   SDValue Result;
4886   // In some cases, custom collection of operands from CallInst I may be needed.
4887   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4888   if (IsTgtIntrinsic) {
4889     // This is target intrinsic that touches memory
4890     //
4891     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4892     //       didn't yield anything useful.
4893     MachinePointerInfo MPI;
4894     if (Info.ptrVal)
4895       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4896     else if (Info.fallbackAddressSpace)
4897       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4898     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4899                                      Info.memVT, MPI, Info.align, Info.flags,
4900                                      Info.size, I.getAAMetadata());
4901   } else if (!HasChain) {
4902     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4903   } else if (!I.getType()->isVoidTy()) {
4904     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4905   } else {
4906     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4907   }
4908 
4909   if (HasChain) {
4910     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4911     if (OnlyLoad)
4912       PendingLoads.push_back(Chain);
4913     else
4914       DAG.setRoot(Chain);
4915   }
4916 
4917   if (!I.getType()->isVoidTy()) {
4918     if (!isa<VectorType>(I.getType()))
4919       Result = lowerRangeToAssertZExt(DAG, I, Result);
4920 
4921     MaybeAlign Alignment = I.getRetAlign();
4922     if (!Alignment)
4923       Alignment = F->getAttributes().getRetAlignment();
4924     // Insert `assertalign` node if there's an alignment.
4925     if (InsertAssertAlign && Alignment) {
4926       Result =
4927           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4928     }
4929 
4930     setValue(&I, Result);
4931   }
4932 }
4933 
4934 /// GetSignificand - Get the significand and build it into a floating-point
4935 /// number with exponent of 1:
4936 ///
4937 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4938 ///
4939 /// where Op is the hexadecimal representation of floating point value.
4940 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4941   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4942                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4943   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4944                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4945   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4946 }
4947 
4948 /// GetExponent - Get the exponent:
4949 ///
4950 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4951 ///
4952 /// where Op is the hexadecimal representation of floating point value.
4953 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4954                            const TargetLowering &TLI, const SDLoc &dl) {
4955   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4956                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4957   SDValue t1 = DAG.getNode(
4958       ISD::SRL, dl, MVT::i32, t0,
4959       DAG.getConstant(23, dl,
4960                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4961   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4962                            DAG.getConstant(127, dl, MVT::i32));
4963   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4964 }
4965 
4966 /// getF32Constant - Get 32-bit floating point constant.
4967 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4968                               const SDLoc &dl) {
4969   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4970                            MVT::f32);
4971 }
4972 
4973 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4974                                        SelectionDAG &DAG) {
4975   // TODO: What fast-math-flags should be set on the floating-point nodes?
4976 
4977   //   IntegerPartOfX = ((int32_t)(t0);
4978   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4979 
4980   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4981   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4982   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4983 
4984   //   IntegerPartOfX <<= 23;
4985   IntegerPartOfX =
4986       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4987                   DAG.getConstant(23, dl,
4988                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4989                                       MVT::i32, DAG.getDataLayout())));
4990 
4991   SDValue TwoToFractionalPartOfX;
4992   if (LimitFloatPrecision <= 6) {
4993     // For floating-point precision of 6:
4994     //
4995     //   TwoToFractionalPartOfX =
4996     //     0.997535578f +
4997     //       (0.735607626f + 0.252464424f * x) * x;
4998     //
4999     // error 0.0144103317, which is 6 bits
5000     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5001                              getF32Constant(DAG, 0x3e814304, dl));
5002     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5003                              getF32Constant(DAG, 0x3f3c50c8, dl));
5004     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5005     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5006                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5007   } else if (LimitFloatPrecision <= 12) {
5008     // For floating-point precision of 12:
5009     //
5010     //   TwoToFractionalPartOfX =
5011     //     0.999892986f +
5012     //       (0.696457318f +
5013     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5014     //
5015     // error 0.000107046256, which is 13 to 14 bits
5016     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5017                              getF32Constant(DAG, 0x3da235e3, dl));
5018     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5019                              getF32Constant(DAG, 0x3e65b8f3, dl));
5020     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5021     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5022                              getF32Constant(DAG, 0x3f324b07, dl));
5023     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5024     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5025                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5026   } else { // LimitFloatPrecision <= 18
5027     // For floating-point precision of 18:
5028     //
5029     //   TwoToFractionalPartOfX =
5030     //     0.999999982f +
5031     //       (0.693148872f +
5032     //         (0.240227044f +
5033     //           (0.554906021e-1f +
5034     //             (0.961591928e-2f +
5035     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5036     // error 2.47208000*10^(-7), which is better than 18 bits
5037     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5038                              getF32Constant(DAG, 0x3924b03e, dl));
5039     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5040                              getF32Constant(DAG, 0x3ab24b87, dl));
5041     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5042     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5043                              getF32Constant(DAG, 0x3c1d8c17, dl));
5044     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5045     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5046                              getF32Constant(DAG, 0x3d634a1d, dl));
5047     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5048     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5049                              getF32Constant(DAG, 0x3e75fe14, dl));
5050     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5051     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5052                               getF32Constant(DAG, 0x3f317234, dl));
5053     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5054     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5055                                          getF32Constant(DAG, 0x3f800000, dl));
5056   }
5057 
5058   // Add the exponent into the result in integer domain.
5059   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5060   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5061                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5062 }
5063 
5064 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5065 /// limited-precision mode.
5066 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5067                          const TargetLowering &TLI, SDNodeFlags Flags) {
5068   if (Op.getValueType() == MVT::f32 &&
5069       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5070 
5071     // Put the exponent in the right bit position for later addition to the
5072     // final result:
5073     //
5074     // t0 = Op * log2(e)
5075 
5076     // TODO: What fast-math-flags should be set here?
5077     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5078                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5079     return getLimitedPrecisionExp2(t0, dl, DAG);
5080   }
5081 
5082   // No special expansion.
5083   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5084 }
5085 
5086 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5087 /// limited-precision mode.
5088 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5089                          const TargetLowering &TLI, SDNodeFlags Flags) {
5090   // TODO: What fast-math-flags should be set on the floating-point nodes?
5091 
5092   if (Op.getValueType() == MVT::f32 &&
5093       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5094     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5095 
5096     // Scale the exponent by log(2).
5097     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5098     SDValue LogOfExponent =
5099         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5100                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5101 
5102     // Get the significand and build it into a floating-point number with
5103     // exponent of 1.
5104     SDValue X = GetSignificand(DAG, Op1, dl);
5105 
5106     SDValue LogOfMantissa;
5107     if (LimitFloatPrecision <= 6) {
5108       // For floating-point precision of 6:
5109       //
5110       //   LogofMantissa =
5111       //     -1.1609546f +
5112       //       (1.4034025f - 0.23903021f * x) * x;
5113       //
5114       // error 0.0034276066, which is better than 8 bits
5115       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5116                                getF32Constant(DAG, 0xbe74c456, dl));
5117       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5118                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5119       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5120       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5121                                   getF32Constant(DAG, 0x3f949a29, dl));
5122     } else if (LimitFloatPrecision <= 12) {
5123       // For floating-point precision of 12:
5124       //
5125       //   LogOfMantissa =
5126       //     -1.7417939f +
5127       //       (2.8212026f +
5128       //         (-1.4699568f +
5129       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5130       //
5131       // error 0.000061011436, which is 14 bits
5132       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5133                                getF32Constant(DAG, 0xbd67b6d6, dl));
5134       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5135                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5136       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5137       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5138                                getF32Constant(DAG, 0x3fbc278b, dl));
5139       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5140       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5141                                getF32Constant(DAG, 0x40348e95, dl));
5142       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5143       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5144                                   getF32Constant(DAG, 0x3fdef31a, dl));
5145     } else { // LimitFloatPrecision <= 18
5146       // For floating-point precision of 18:
5147       //
5148       //   LogOfMantissa =
5149       //     -2.1072184f +
5150       //       (4.2372794f +
5151       //         (-3.7029485f +
5152       //           (2.2781945f +
5153       //             (-0.87823314f +
5154       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5155       //
5156       // error 0.0000023660568, which is better than 18 bits
5157       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5158                                getF32Constant(DAG, 0xbc91e5ac, dl));
5159       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5160                                getF32Constant(DAG, 0x3e4350aa, dl));
5161       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5162       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5163                                getF32Constant(DAG, 0x3f60d3e3, dl));
5164       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5165       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5166                                getF32Constant(DAG, 0x4011cdf0, dl));
5167       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5168       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5169                                getF32Constant(DAG, 0x406cfd1c, dl));
5170       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5171       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5172                                getF32Constant(DAG, 0x408797cb, dl));
5173       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5174       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5175                                   getF32Constant(DAG, 0x4006dcab, dl));
5176     }
5177 
5178     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5179   }
5180 
5181   // No special expansion.
5182   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5183 }
5184 
5185 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5186 /// limited-precision mode.
5187 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5188                           const TargetLowering &TLI, SDNodeFlags Flags) {
5189   // TODO: What fast-math-flags should be set on the floating-point nodes?
5190 
5191   if (Op.getValueType() == MVT::f32 &&
5192       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5193     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5194 
5195     // Get the exponent.
5196     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5197 
5198     // Get the significand and build it into a floating-point number with
5199     // exponent of 1.
5200     SDValue X = GetSignificand(DAG, Op1, dl);
5201 
5202     // Different possible minimax approximations of significand in
5203     // floating-point for various degrees of accuracy over [1,2].
5204     SDValue Log2ofMantissa;
5205     if (LimitFloatPrecision <= 6) {
5206       // For floating-point precision of 6:
5207       //
5208       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5209       //
5210       // error 0.0049451742, which is more than 7 bits
5211       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5212                                getF32Constant(DAG, 0xbeb08fe0, dl));
5213       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5214                                getF32Constant(DAG, 0x40019463, dl));
5215       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5216       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5217                                    getF32Constant(DAG, 0x3fd6633d, dl));
5218     } else if (LimitFloatPrecision <= 12) {
5219       // For floating-point precision of 12:
5220       //
5221       //   Log2ofMantissa =
5222       //     -2.51285454f +
5223       //       (4.07009056f +
5224       //         (-2.12067489f +
5225       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5226       //
5227       // error 0.0000876136000, which is better than 13 bits
5228       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5229                                getF32Constant(DAG, 0xbda7262e, dl));
5230       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5231                                getF32Constant(DAG, 0x3f25280b, dl));
5232       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5233       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5234                                getF32Constant(DAG, 0x4007b923, dl));
5235       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5236       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5237                                getF32Constant(DAG, 0x40823e2f, dl));
5238       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5239       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5240                                    getF32Constant(DAG, 0x4020d29c, dl));
5241     } else { // LimitFloatPrecision <= 18
5242       // For floating-point precision of 18:
5243       //
5244       //   Log2ofMantissa =
5245       //     -3.0400495f +
5246       //       (6.1129976f +
5247       //         (-5.3420409f +
5248       //           (3.2865683f +
5249       //             (-1.2669343f +
5250       //               (0.27515199f -
5251       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5252       //
5253       // error 0.0000018516, which is better than 18 bits
5254       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5255                                getF32Constant(DAG, 0xbcd2769e, dl));
5256       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5257                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5258       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5259       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5260                                getF32Constant(DAG, 0x3fa22ae7, dl));
5261       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5262       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5263                                getF32Constant(DAG, 0x40525723, dl));
5264       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5265       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5266                                getF32Constant(DAG, 0x40aaf200, dl));
5267       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5268       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5269                                getF32Constant(DAG, 0x40c39dad, dl));
5270       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5271       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5272                                    getF32Constant(DAG, 0x4042902c, dl));
5273     }
5274 
5275     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5276   }
5277 
5278   // No special expansion.
5279   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5280 }
5281 
5282 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5283 /// limited-precision mode.
5284 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5285                            const TargetLowering &TLI, SDNodeFlags Flags) {
5286   // TODO: What fast-math-flags should be set on the floating-point nodes?
5287 
5288   if (Op.getValueType() == MVT::f32 &&
5289       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5290     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5291 
5292     // Scale the exponent by log10(2) [0.30102999f].
5293     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5294     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5295                                         getF32Constant(DAG, 0x3e9a209a, dl));
5296 
5297     // Get the significand and build it into a floating-point number with
5298     // exponent of 1.
5299     SDValue X = GetSignificand(DAG, Op1, dl);
5300 
5301     SDValue Log10ofMantissa;
5302     if (LimitFloatPrecision <= 6) {
5303       // For floating-point precision of 6:
5304       //
5305       //   Log10ofMantissa =
5306       //     -0.50419619f +
5307       //       (0.60948995f - 0.10380950f * x) * x;
5308       //
5309       // error 0.0014886165, which is 6 bits
5310       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5311                                getF32Constant(DAG, 0xbdd49a13, dl));
5312       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5313                                getF32Constant(DAG, 0x3f1c0789, dl));
5314       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5315       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5316                                     getF32Constant(DAG, 0x3f011300, dl));
5317     } else if (LimitFloatPrecision <= 12) {
5318       // For floating-point precision of 12:
5319       //
5320       //   Log10ofMantissa =
5321       //     -0.64831180f +
5322       //       (0.91751397f +
5323       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5324       //
5325       // error 0.00019228036, which is better than 12 bits
5326       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5327                                getF32Constant(DAG, 0x3d431f31, dl));
5328       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5329                                getF32Constant(DAG, 0x3ea21fb2, dl));
5330       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5331       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5332                                getF32Constant(DAG, 0x3f6ae232, dl));
5333       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5334       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5335                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5336     } else { // LimitFloatPrecision <= 18
5337       // For floating-point precision of 18:
5338       //
5339       //   Log10ofMantissa =
5340       //     -0.84299375f +
5341       //       (1.5327582f +
5342       //         (-1.0688956f +
5343       //           (0.49102474f +
5344       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5345       //
5346       // error 0.0000037995730, which is better than 18 bits
5347       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5348                                getF32Constant(DAG, 0x3c5d51ce, dl));
5349       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5350                                getF32Constant(DAG, 0x3e00685a, dl));
5351       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5352       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5353                                getF32Constant(DAG, 0x3efb6798, dl));
5354       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5355       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5356                                getF32Constant(DAG, 0x3f88d192, dl));
5357       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5358       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5359                                getF32Constant(DAG, 0x3fc4316c, dl));
5360       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5361       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5362                                     getF32Constant(DAG, 0x3f57ce70, dl));
5363     }
5364 
5365     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5366   }
5367 
5368   // No special expansion.
5369   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5370 }
5371 
5372 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5373 /// limited-precision mode.
5374 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5375                           const TargetLowering &TLI, SDNodeFlags Flags) {
5376   if (Op.getValueType() == MVT::f32 &&
5377       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5378     return getLimitedPrecisionExp2(Op, dl, DAG);
5379 
5380   // No special expansion.
5381   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5382 }
5383 
5384 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5385 /// limited-precision mode with x == 10.0f.
5386 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5387                          SelectionDAG &DAG, const TargetLowering &TLI,
5388                          SDNodeFlags Flags) {
5389   bool IsExp10 = false;
5390   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5391       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5392     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5393       APFloat Ten(10.0f);
5394       IsExp10 = LHSC->isExactlyValue(Ten);
5395     }
5396   }
5397 
5398   // TODO: What fast-math-flags should be set on the FMUL node?
5399   if (IsExp10) {
5400     // Put the exponent in the right bit position for later addition to the
5401     // final result:
5402     //
5403     //   #define LOG2OF10 3.3219281f
5404     //   t0 = Op * LOG2OF10;
5405     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5406                              getF32Constant(DAG, 0x40549a78, dl));
5407     return getLimitedPrecisionExp2(t0, dl, DAG);
5408   }
5409 
5410   // No special expansion.
5411   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5412 }
5413 
5414 /// ExpandPowI - Expand a llvm.powi intrinsic.
5415 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5416                           SelectionDAG &DAG) {
5417   // If RHS is a constant, we can expand this out to a multiplication tree if
5418   // it's beneficial on the target, otherwise we end up lowering to a call to
5419   // __powidf2 (for example).
5420   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5421     unsigned Val = RHSC->getSExtValue();
5422 
5423     // powi(x, 0) -> 1.0
5424     if (Val == 0)
5425       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5426 
5427     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5428             Val, DAG.shouldOptForSize())) {
5429       // Get the exponent as a positive value.
5430       if ((int)Val < 0)
5431         Val = -Val;
5432       // We use the simple binary decomposition method to generate the multiply
5433       // sequence.  There are more optimal ways to do this (for example,
5434       // powi(x,15) generates one more multiply than it should), but this has
5435       // the benefit of being both really simple and much better than a libcall.
5436       SDValue Res; // Logically starts equal to 1.0
5437       SDValue CurSquare = LHS;
5438       // TODO: Intrinsics should have fast-math-flags that propagate to these
5439       // nodes.
5440       while (Val) {
5441         if (Val & 1) {
5442           if (Res.getNode())
5443             Res =
5444                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5445           else
5446             Res = CurSquare; // 1.0*CurSquare.
5447         }
5448 
5449         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5450                                 CurSquare, CurSquare);
5451         Val >>= 1;
5452       }
5453 
5454       // If the original was negative, invert the result, producing 1/(x*x*x).
5455       if (RHSC->getSExtValue() < 0)
5456         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5457                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5458       return Res;
5459     }
5460   }
5461 
5462   // Otherwise, expand to a libcall.
5463   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5464 }
5465 
5466 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5467                             SDValue LHS, SDValue RHS, SDValue Scale,
5468                             SelectionDAG &DAG, const TargetLowering &TLI) {
5469   EVT VT = LHS.getValueType();
5470   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5471   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5472   LLVMContext &Ctx = *DAG.getContext();
5473 
5474   // If the type is legal but the operation isn't, this node might survive all
5475   // the way to operation legalization. If we end up there and we do not have
5476   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5477   // node.
5478 
5479   // Coax the legalizer into expanding the node during type legalization instead
5480   // by bumping the size by one bit. This will force it to Promote, enabling the
5481   // early expansion and avoiding the need to expand later.
5482 
5483   // We don't have to do this if Scale is 0; that can always be expanded, unless
5484   // it's a saturating signed operation. Those can experience true integer
5485   // division overflow, a case which we must avoid.
5486 
5487   // FIXME: We wouldn't have to do this (or any of the early
5488   // expansion/promotion) if it was possible to expand a libcall of an
5489   // illegal type during operation legalization. But it's not, so things
5490   // get a bit hacky.
5491   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5492   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5493       (TLI.isTypeLegal(VT) ||
5494        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5495     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5496         Opcode, VT, ScaleInt);
5497     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5498       EVT PromVT;
5499       if (VT.isScalarInteger())
5500         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5501       else if (VT.isVector()) {
5502         PromVT = VT.getVectorElementType();
5503         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5504         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5505       } else
5506         llvm_unreachable("Wrong VT for DIVFIX?");
5507       if (Signed) {
5508         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5509         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5510       } else {
5511         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5512         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5513       }
5514       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5515       // For saturating operations, we need to shift up the LHS to get the
5516       // proper saturation width, and then shift down again afterwards.
5517       if (Saturating)
5518         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5519                           DAG.getConstant(1, DL, ShiftTy));
5520       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5521       if (Saturating)
5522         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5523                           DAG.getConstant(1, DL, ShiftTy));
5524       return DAG.getZExtOrTrunc(Res, DL, VT);
5525     }
5526   }
5527 
5528   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5529 }
5530 
5531 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5532 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5533 static void
5534 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5535                      const SDValue &N) {
5536   switch (N.getOpcode()) {
5537   case ISD::CopyFromReg: {
5538     SDValue Op = N.getOperand(1);
5539     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5540                       Op.getValueType().getSizeInBits());
5541     return;
5542   }
5543   case ISD::BITCAST:
5544   case ISD::AssertZext:
5545   case ISD::AssertSext:
5546   case ISD::TRUNCATE:
5547     getUnderlyingArgRegs(Regs, N.getOperand(0));
5548     return;
5549   case ISD::BUILD_PAIR:
5550   case ISD::BUILD_VECTOR:
5551   case ISD::CONCAT_VECTORS:
5552     for (SDValue Op : N->op_values())
5553       getUnderlyingArgRegs(Regs, Op);
5554     return;
5555   default:
5556     return;
5557   }
5558 }
5559 
5560 /// If the DbgValueInst is a dbg_value of a function argument, create the
5561 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5562 /// instruction selection, they will be inserted to the entry BB.
5563 /// We don't currently support this for variadic dbg_values, as they shouldn't
5564 /// appear for function arguments or in the prologue.
5565 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5566     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5567     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5568   const Argument *Arg = dyn_cast<Argument>(V);
5569   if (!Arg)
5570     return false;
5571 
5572   MachineFunction &MF = DAG.getMachineFunction();
5573   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5574 
5575   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5576   // we've been asked to pursue.
5577   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5578                               bool Indirect) {
5579     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5580       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5581       // pointing at the VReg, which will be patched up later.
5582       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5583       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5584           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5585           /* isKill */ false, /* isDead */ false,
5586           /* isUndef */ false, /* isEarlyClobber */ false,
5587           /* SubReg */ 0, /* isDebug */ true)});
5588 
5589       auto *NewDIExpr = FragExpr;
5590       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5591       // the DIExpression.
5592       if (Indirect)
5593         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5594       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5595       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5596       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5597     } else {
5598       // Create a completely standard DBG_VALUE.
5599       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5600       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5601     }
5602   };
5603 
5604   if (Kind == FuncArgumentDbgValueKind::Value) {
5605     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5606     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5607     // the entry block.
5608     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5609     if (!IsInEntryBlock)
5610       return false;
5611 
5612     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5613     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5614     // variable that also is a param.
5615     //
5616     // Although, if we are at the top of the entry block already, we can still
5617     // emit using ArgDbgValue. This might catch some situations when the
5618     // dbg.value refers to an argument that isn't used in the entry block, so
5619     // any CopyToReg node would be optimized out and the only way to express
5620     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5621     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5622     // we should only emit as ArgDbgValue if the Variable is an argument to the
5623     // current function, and the dbg.value intrinsic is found in the entry
5624     // block.
5625     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5626         !DL->getInlinedAt();
5627     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5628     if (!IsInPrologue && !VariableIsFunctionInputArg)
5629       return false;
5630 
5631     // Here we assume that a function argument on IR level only can be used to
5632     // describe one input parameter on source level. If we for example have
5633     // source code like this
5634     //
5635     //    struct A { long x, y; };
5636     //    void foo(struct A a, long b) {
5637     //      ...
5638     //      b = a.x;
5639     //      ...
5640     //    }
5641     //
5642     // and IR like this
5643     //
5644     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5645     //  entry:
5646     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5647     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5648     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5649     //    ...
5650     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5651     //    ...
5652     //
5653     // then the last dbg.value is describing a parameter "b" using a value that
5654     // is an argument. But since we already has used %a1 to describe a parameter
5655     // we should not handle that last dbg.value here (that would result in an
5656     // incorrect hoisting of the DBG_VALUE to the function entry).
5657     // Notice that we allow one dbg.value per IR level argument, to accommodate
5658     // for the situation with fragments above.
5659     if (VariableIsFunctionInputArg) {
5660       unsigned ArgNo = Arg->getArgNo();
5661       if (ArgNo >= FuncInfo.DescribedArgs.size())
5662         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5663       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5664         return false;
5665       FuncInfo.DescribedArgs.set(ArgNo);
5666     }
5667   }
5668 
5669   bool IsIndirect = false;
5670   std::optional<MachineOperand> Op;
5671   // Some arguments' frame index is recorded during argument lowering.
5672   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5673   if (FI != std::numeric_limits<int>::max())
5674     Op = MachineOperand::CreateFI(FI);
5675 
5676   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5677   if (!Op && N.getNode()) {
5678     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5679     Register Reg;
5680     if (ArgRegsAndSizes.size() == 1)
5681       Reg = ArgRegsAndSizes.front().first;
5682 
5683     if (Reg && Reg.isVirtual()) {
5684       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5685       Register PR = RegInfo.getLiveInPhysReg(Reg);
5686       if (PR)
5687         Reg = PR;
5688     }
5689     if (Reg) {
5690       Op = MachineOperand::CreateReg(Reg, false);
5691       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5692     }
5693   }
5694 
5695   if (!Op && N.getNode()) {
5696     // Check if frame index is available.
5697     SDValue LCandidate = peekThroughBitcasts(N);
5698     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5699       if (FrameIndexSDNode *FINode =
5700           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5701         Op = MachineOperand::CreateFI(FINode->getIndex());
5702   }
5703 
5704   if (!Op) {
5705     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5706     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5707                                          SplitRegs) {
5708       unsigned Offset = 0;
5709       for (const auto &RegAndSize : SplitRegs) {
5710         // If the expression is already a fragment, the current register
5711         // offset+size might extend beyond the fragment. In this case, only
5712         // the register bits that are inside the fragment are relevant.
5713         int RegFragmentSizeInBits = RegAndSize.second;
5714         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5715           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5716           // The register is entirely outside the expression fragment,
5717           // so is irrelevant for debug info.
5718           if (Offset >= ExprFragmentSizeInBits)
5719             break;
5720           // The register is partially outside the expression fragment, only
5721           // the low bits within the fragment are relevant for debug info.
5722           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5723             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5724           }
5725         }
5726 
5727         auto FragmentExpr = DIExpression::createFragmentExpression(
5728             Expr, Offset, RegFragmentSizeInBits);
5729         Offset += RegAndSize.second;
5730         // If a valid fragment expression cannot be created, the variable's
5731         // correct value cannot be determined and so it is set as Undef.
5732         if (!FragmentExpr) {
5733           SDDbgValue *SDV = DAG.getConstantDbgValue(
5734               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5735           DAG.AddDbgValue(SDV, false);
5736           continue;
5737         }
5738         MachineInstr *NewMI =
5739             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5740                              Kind != FuncArgumentDbgValueKind::Value);
5741         FuncInfo.ArgDbgValues.push_back(NewMI);
5742       }
5743     };
5744 
5745     // Check if ValueMap has reg number.
5746     DenseMap<const Value *, Register>::const_iterator
5747       VMI = FuncInfo.ValueMap.find(V);
5748     if (VMI != FuncInfo.ValueMap.end()) {
5749       const auto &TLI = DAG.getTargetLoweringInfo();
5750       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5751                        V->getType(), std::nullopt);
5752       if (RFV.occupiesMultipleRegs()) {
5753         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5754         return true;
5755       }
5756 
5757       Op = MachineOperand::CreateReg(VMI->second, false);
5758       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5759     } else if (ArgRegsAndSizes.size() > 1) {
5760       // This was split due to the calling convention, and no virtual register
5761       // mapping exists for the value.
5762       splitMultiRegDbgValue(ArgRegsAndSizes);
5763       return true;
5764     }
5765   }
5766 
5767   if (!Op)
5768     return false;
5769 
5770   assert(Variable->isValidLocationForIntrinsic(DL) &&
5771          "Expected inlined-at fields to agree");
5772   MachineInstr *NewMI = nullptr;
5773 
5774   if (Op->isReg())
5775     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5776   else
5777     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5778                     Variable, Expr);
5779 
5780   // Otherwise, use ArgDbgValues.
5781   FuncInfo.ArgDbgValues.push_back(NewMI);
5782   return true;
5783 }
5784 
5785 /// Return the appropriate SDDbgValue based on N.
5786 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5787                                              DILocalVariable *Variable,
5788                                              DIExpression *Expr,
5789                                              const DebugLoc &dl,
5790                                              unsigned DbgSDNodeOrder) {
5791   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5792     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5793     // stack slot locations.
5794     //
5795     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5796     // debug values here after optimization:
5797     //
5798     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5799     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5800     //
5801     // Both describe the direct values of their associated variables.
5802     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5803                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5804   }
5805   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5806                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5807 }
5808 
5809 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5810   switch (Intrinsic) {
5811   case Intrinsic::smul_fix:
5812     return ISD::SMULFIX;
5813   case Intrinsic::umul_fix:
5814     return ISD::UMULFIX;
5815   case Intrinsic::smul_fix_sat:
5816     return ISD::SMULFIXSAT;
5817   case Intrinsic::umul_fix_sat:
5818     return ISD::UMULFIXSAT;
5819   case Intrinsic::sdiv_fix:
5820     return ISD::SDIVFIX;
5821   case Intrinsic::udiv_fix:
5822     return ISD::UDIVFIX;
5823   case Intrinsic::sdiv_fix_sat:
5824     return ISD::SDIVFIXSAT;
5825   case Intrinsic::udiv_fix_sat:
5826     return ISD::UDIVFIXSAT;
5827   default:
5828     llvm_unreachable("Unhandled fixed point intrinsic");
5829   }
5830 }
5831 
5832 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5833                                            const char *FunctionName) {
5834   assert(FunctionName && "FunctionName must not be nullptr");
5835   SDValue Callee = DAG.getExternalSymbol(
5836       FunctionName,
5837       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5838   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5839 }
5840 
5841 /// Given a @llvm.call.preallocated.setup, return the corresponding
5842 /// preallocated call.
5843 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5844   assert(cast<CallBase>(PreallocatedSetup)
5845                  ->getCalledFunction()
5846                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5847          "expected call_preallocated_setup Value");
5848   for (const auto *U : PreallocatedSetup->users()) {
5849     auto *UseCall = cast<CallBase>(U);
5850     const Function *Fn = UseCall->getCalledFunction();
5851     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5852       return UseCall;
5853     }
5854   }
5855   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5856 }
5857 
5858 /// Lower the call to the specified intrinsic function.
5859 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5860                                              unsigned Intrinsic) {
5861   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5862   SDLoc sdl = getCurSDLoc();
5863   DebugLoc dl = getCurDebugLoc();
5864   SDValue Res;
5865 
5866   SDNodeFlags Flags;
5867   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5868     Flags.copyFMF(*FPOp);
5869 
5870   switch (Intrinsic) {
5871   default:
5872     // By default, turn this into a target intrinsic node.
5873     visitTargetIntrinsic(I, Intrinsic);
5874     return;
5875   case Intrinsic::vscale: {
5876     match(&I, m_VScale(DAG.getDataLayout()));
5877     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5878     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5879     return;
5880   }
5881   case Intrinsic::vastart:  visitVAStart(I); return;
5882   case Intrinsic::vaend:    visitVAEnd(I); return;
5883   case Intrinsic::vacopy:   visitVACopy(I); return;
5884   case Intrinsic::returnaddress:
5885     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5886                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5887                              getValue(I.getArgOperand(0))));
5888     return;
5889   case Intrinsic::addressofreturnaddress:
5890     setValue(&I,
5891              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5892                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5893     return;
5894   case Intrinsic::sponentry:
5895     setValue(&I,
5896              DAG.getNode(ISD::SPONENTRY, sdl,
5897                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5898     return;
5899   case Intrinsic::frameaddress:
5900     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5901                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5902                              getValue(I.getArgOperand(0))));
5903     return;
5904   case Intrinsic::read_volatile_register:
5905   case Intrinsic::read_register: {
5906     Value *Reg = I.getArgOperand(0);
5907     SDValue Chain = getRoot();
5908     SDValue RegName =
5909         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5910     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5911     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5912       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5913     setValue(&I, Res);
5914     DAG.setRoot(Res.getValue(1));
5915     return;
5916   }
5917   case Intrinsic::write_register: {
5918     Value *Reg = I.getArgOperand(0);
5919     Value *RegValue = I.getArgOperand(1);
5920     SDValue Chain = getRoot();
5921     SDValue RegName =
5922         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5923     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5924                             RegName, getValue(RegValue)));
5925     return;
5926   }
5927   case Intrinsic::memcpy: {
5928     const auto &MCI = cast<MemCpyInst>(I);
5929     SDValue Op1 = getValue(I.getArgOperand(0));
5930     SDValue Op2 = getValue(I.getArgOperand(1));
5931     SDValue Op3 = getValue(I.getArgOperand(2));
5932     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5933     Align DstAlign = MCI.getDestAlign().valueOrOne();
5934     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5935     Align Alignment = std::min(DstAlign, SrcAlign);
5936     bool isVol = MCI.isVolatile();
5937     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5938     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5939     // node.
5940     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5941     SDValue MC = DAG.getMemcpy(
5942         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5943         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5944         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5945     updateDAGForMaybeTailCall(MC);
5946     setValue(&I, MC);
5947     return;
5948   }
5949   case Intrinsic::memcpy_inline: {
5950     const auto &MCI = cast<MemCpyInlineInst>(I);
5951     SDValue Dst = getValue(I.getArgOperand(0));
5952     SDValue Src = getValue(I.getArgOperand(1));
5953     SDValue Size = getValue(I.getArgOperand(2));
5954     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5955     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5956     Align DstAlign = MCI.getDestAlign().valueOrOne();
5957     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5958     Align Alignment = std::min(DstAlign, SrcAlign);
5959     bool isVol = MCI.isVolatile();
5960     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5961     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5962     // node.
5963     SDValue MC = DAG.getMemcpy(
5964         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5965         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5966         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5967     updateDAGForMaybeTailCall(MC);
5968     setValue(&I, MC);
5969     return;
5970   }
5971   case Intrinsic::memset: {
5972     const auto &MSI = cast<MemSetInst>(I);
5973     SDValue Op1 = getValue(I.getArgOperand(0));
5974     SDValue Op2 = getValue(I.getArgOperand(1));
5975     SDValue Op3 = getValue(I.getArgOperand(2));
5976     // @llvm.memset defines 0 and 1 to both mean no alignment.
5977     Align Alignment = MSI.getDestAlign().valueOrOne();
5978     bool isVol = MSI.isVolatile();
5979     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5980     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5981     SDValue MS = DAG.getMemset(
5982         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5983         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5984     updateDAGForMaybeTailCall(MS);
5985     setValue(&I, MS);
5986     return;
5987   }
5988   case Intrinsic::memset_inline: {
5989     const auto &MSII = cast<MemSetInlineInst>(I);
5990     SDValue Dst = getValue(I.getArgOperand(0));
5991     SDValue Value = getValue(I.getArgOperand(1));
5992     SDValue Size = getValue(I.getArgOperand(2));
5993     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5994     // @llvm.memset defines 0 and 1 to both mean no alignment.
5995     Align DstAlign = MSII.getDestAlign().valueOrOne();
5996     bool isVol = MSII.isVolatile();
5997     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5998     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5999     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6000                                /* AlwaysInline */ true, isTC,
6001                                MachinePointerInfo(I.getArgOperand(0)),
6002                                I.getAAMetadata());
6003     updateDAGForMaybeTailCall(MC);
6004     setValue(&I, MC);
6005     return;
6006   }
6007   case Intrinsic::memmove: {
6008     const auto &MMI = cast<MemMoveInst>(I);
6009     SDValue Op1 = getValue(I.getArgOperand(0));
6010     SDValue Op2 = getValue(I.getArgOperand(1));
6011     SDValue Op3 = getValue(I.getArgOperand(2));
6012     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6013     Align DstAlign = MMI.getDestAlign().valueOrOne();
6014     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6015     Align Alignment = std::min(DstAlign, SrcAlign);
6016     bool isVol = MMI.isVolatile();
6017     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6018     // FIXME: Support passing different dest/src alignments to the memmove DAG
6019     // node.
6020     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6021     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6022                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6023                                 MachinePointerInfo(I.getArgOperand(1)),
6024                                 I.getAAMetadata(), AA);
6025     updateDAGForMaybeTailCall(MM);
6026     setValue(&I, MM);
6027     return;
6028   }
6029   case Intrinsic::memcpy_element_unordered_atomic: {
6030     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6031     SDValue Dst = getValue(MI.getRawDest());
6032     SDValue Src = getValue(MI.getRawSource());
6033     SDValue Length = getValue(MI.getLength());
6034 
6035     Type *LengthTy = MI.getLength()->getType();
6036     unsigned ElemSz = MI.getElementSizeInBytes();
6037     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6038     SDValue MC =
6039         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6040                             isTC, MachinePointerInfo(MI.getRawDest()),
6041                             MachinePointerInfo(MI.getRawSource()));
6042     updateDAGForMaybeTailCall(MC);
6043     setValue(&I, MC);
6044     return;
6045   }
6046   case Intrinsic::memmove_element_unordered_atomic: {
6047     auto &MI = cast<AtomicMemMoveInst>(I);
6048     SDValue Dst = getValue(MI.getRawDest());
6049     SDValue Src = getValue(MI.getRawSource());
6050     SDValue Length = getValue(MI.getLength());
6051 
6052     Type *LengthTy = MI.getLength()->getType();
6053     unsigned ElemSz = MI.getElementSizeInBytes();
6054     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6055     SDValue MC =
6056         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6057                              isTC, MachinePointerInfo(MI.getRawDest()),
6058                              MachinePointerInfo(MI.getRawSource()));
6059     updateDAGForMaybeTailCall(MC);
6060     setValue(&I, MC);
6061     return;
6062   }
6063   case Intrinsic::memset_element_unordered_atomic: {
6064     auto &MI = cast<AtomicMemSetInst>(I);
6065     SDValue Dst = getValue(MI.getRawDest());
6066     SDValue Val = getValue(MI.getValue());
6067     SDValue Length = getValue(MI.getLength());
6068 
6069     Type *LengthTy = MI.getLength()->getType();
6070     unsigned ElemSz = MI.getElementSizeInBytes();
6071     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6072     SDValue MC =
6073         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6074                             isTC, MachinePointerInfo(MI.getRawDest()));
6075     updateDAGForMaybeTailCall(MC);
6076     setValue(&I, MC);
6077     return;
6078   }
6079   case Intrinsic::call_preallocated_setup: {
6080     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6081     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6082     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6083                               getRoot(), SrcValue);
6084     setValue(&I, Res);
6085     DAG.setRoot(Res);
6086     return;
6087   }
6088   case Intrinsic::call_preallocated_arg: {
6089     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6090     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6091     SDValue Ops[3];
6092     Ops[0] = getRoot();
6093     Ops[1] = SrcValue;
6094     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6095                                    MVT::i32); // arg index
6096     SDValue Res = DAG.getNode(
6097         ISD::PREALLOCATED_ARG, sdl,
6098         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6099     setValue(&I, Res);
6100     DAG.setRoot(Res.getValue(1));
6101     return;
6102   }
6103   case Intrinsic::dbg_addr:
6104   case Intrinsic::dbg_declare: {
6105     // Debug intrinsics are handled seperately in assignment tracking mode.
6106     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6107       return;
6108     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6109     // they are non-variadic.
6110     const auto &DI = cast<DbgVariableIntrinsic>(I);
6111     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6112     DILocalVariable *Variable = DI.getVariable();
6113     DIExpression *Expression = DI.getExpression();
6114     dropDanglingDebugInfo(Variable, Expression);
6115     assert(Variable && "Missing variable");
6116     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6117                       << "\n");
6118     // Check if address has undef value.
6119     const Value *Address = DI.getVariableLocationOp(0);
6120     if (!Address || isa<UndefValue>(Address) ||
6121         (Address->use_empty() && !isa<Argument>(Address))) {
6122       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6123                         << " (bad/undef/unused-arg address)\n");
6124       return;
6125     }
6126 
6127     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6128 
6129     // Check if this variable can be described by a frame index, typically
6130     // either as a static alloca or a byval parameter.
6131     int FI = std::numeric_limits<int>::max();
6132     if (const auto *AI =
6133             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6134       if (AI->isStaticAlloca()) {
6135         auto I = FuncInfo.StaticAllocaMap.find(AI);
6136         if (I != FuncInfo.StaticAllocaMap.end())
6137           FI = I->second;
6138       }
6139     } else if (const auto *Arg = dyn_cast<Argument>(
6140                    Address->stripInBoundsConstantOffsets())) {
6141       FI = FuncInfo.getArgumentFrameIndex(Arg);
6142     }
6143 
6144     // llvm.dbg.addr is control dependent and always generates indirect
6145     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6146     // the MachineFunction variable table.
6147     if (FI != std::numeric_limits<int>::max()) {
6148       if (Intrinsic == Intrinsic::dbg_addr) {
6149         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6150             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6151             dl, SDNodeOrder);
6152         DAG.AddDbgValue(SDV, isParameter);
6153       } else {
6154         LLVM_DEBUG(dbgs() << "Skipping " << DI
6155                           << " (variable info stashed in MF side table)\n");
6156       }
6157       return;
6158     }
6159 
6160     SDValue &N = NodeMap[Address];
6161     if (!N.getNode() && isa<Argument>(Address))
6162       // Check unused arguments map.
6163       N = UnusedArgNodeMap[Address];
6164     SDDbgValue *SDV;
6165     if (N.getNode()) {
6166       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6167         Address = BCI->getOperand(0);
6168       // Parameters are handled specially.
6169       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6170       if (isParameter && FINode) {
6171         // Byval parameter. We have a frame index at this point.
6172         SDV =
6173             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6174                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6175       } else if (isa<Argument>(Address)) {
6176         // Address is an argument, so try to emit its dbg value using
6177         // virtual register info from the FuncInfo.ValueMap.
6178         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6179                                  FuncArgumentDbgValueKind::Declare, N);
6180         return;
6181       } else {
6182         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6183                               true, dl, SDNodeOrder);
6184       }
6185       DAG.AddDbgValue(SDV, isParameter);
6186     } else {
6187       // If Address is an argument then try to emit its dbg value using
6188       // virtual register info from the FuncInfo.ValueMap.
6189       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6190                                     FuncArgumentDbgValueKind::Declare, N)) {
6191         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6192                           << " (could not emit func-arg dbg_value)\n");
6193       }
6194     }
6195     return;
6196   }
6197   case Intrinsic::dbg_label: {
6198     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6199     DILabel *Label = DI.getLabel();
6200     assert(Label && "Missing label");
6201 
6202     SDDbgLabel *SDV;
6203     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6204     DAG.AddDbgLabel(SDV);
6205     return;
6206   }
6207   case Intrinsic::dbg_assign: {
6208     // Debug intrinsics are handled seperately in assignment tracking mode.
6209     assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) &&
6210            "expected assignment tracking to be enabled");
6211     return;
6212   }
6213   case Intrinsic::dbg_value: {
6214     // Debug intrinsics are handled seperately in assignment tracking mode.
6215     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6216       return;
6217     const DbgValueInst &DI = cast<DbgValueInst>(I);
6218     assert(DI.getVariable() && "Missing variable");
6219 
6220     DILocalVariable *Variable = DI.getVariable();
6221     DIExpression *Expression = DI.getExpression();
6222     dropDanglingDebugInfo(Variable, Expression);
6223     SmallVector<Value *, 4> Values(DI.getValues());
6224     if (Values.empty())
6225       return;
6226 
6227     if (llvm::is_contained(Values, nullptr))
6228       return;
6229 
6230     bool IsVariadic = DI.hasArgList();
6231     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6232                           SDNodeOrder, IsVariadic))
6233       addDanglingDebugInfo(&DI, SDNodeOrder);
6234     return;
6235   }
6236 
6237   case Intrinsic::eh_typeid_for: {
6238     // Find the type id for the given typeinfo.
6239     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6240     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6241     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6242     setValue(&I, Res);
6243     return;
6244   }
6245 
6246   case Intrinsic::eh_return_i32:
6247   case Intrinsic::eh_return_i64:
6248     DAG.getMachineFunction().setCallsEHReturn(true);
6249     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6250                             MVT::Other,
6251                             getControlRoot(),
6252                             getValue(I.getArgOperand(0)),
6253                             getValue(I.getArgOperand(1))));
6254     return;
6255   case Intrinsic::eh_unwind_init:
6256     DAG.getMachineFunction().setCallsUnwindInit(true);
6257     return;
6258   case Intrinsic::eh_dwarf_cfa:
6259     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6260                              TLI.getPointerTy(DAG.getDataLayout()),
6261                              getValue(I.getArgOperand(0))));
6262     return;
6263   case Intrinsic::eh_sjlj_callsite: {
6264     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6265     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6266     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6267 
6268     MMI.setCurrentCallSite(CI->getZExtValue());
6269     return;
6270   }
6271   case Intrinsic::eh_sjlj_functioncontext: {
6272     // Get and store the index of the function context.
6273     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6274     AllocaInst *FnCtx =
6275       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6276     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6277     MFI.setFunctionContextIndex(FI);
6278     return;
6279   }
6280   case Intrinsic::eh_sjlj_setjmp: {
6281     SDValue Ops[2];
6282     Ops[0] = getRoot();
6283     Ops[1] = getValue(I.getArgOperand(0));
6284     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6285                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6286     setValue(&I, Op.getValue(0));
6287     DAG.setRoot(Op.getValue(1));
6288     return;
6289   }
6290   case Intrinsic::eh_sjlj_longjmp:
6291     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6292                             getRoot(), getValue(I.getArgOperand(0))));
6293     return;
6294   case Intrinsic::eh_sjlj_setup_dispatch:
6295     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6296                             getRoot()));
6297     return;
6298   case Intrinsic::masked_gather:
6299     visitMaskedGather(I);
6300     return;
6301   case Intrinsic::masked_load:
6302     visitMaskedLoad(I);
6303     return;
6304   case Intrinsic::masked_scatter:
6305     visitMaskedScatter(I);
6306     return;
6307   case Intrinsic::masked_store:
6308     visitMaskedStore(I);
6309     return;
6310   case Intrinsic::masked_expandload:
6311     visitMaskedLoad(I, true /* IsExpanding */);
6312     return;
6313   case Intrinsic::masked_compressstore:
6314     visitMaskedStore(I, true /* IsCompressing */);
6315     return;
6316   case Intrinsic::powi:
6317     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6318                             getValue(I.getArgOperand(1)), DAG));
6319     return;
6320   case Intrinsic::log:
6321     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6322     return;
6323   case Intrinsic::log2:
6324     setValue(&I,
6325              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6326     return;
6327   case Intrinsic::log10:
6328     setValue(&I,
6329              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6330     return;
6331   case Intrinsic::exp:
6332     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6333     return;
6334   case Intrinsic::exp2:
6335     setValue(&I,
6336              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6337     return;
6338   case Intrinsic::pow:
6339     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6340                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6341     return;
6342   case Intrinsic::sqrt:
6343   case Intrinsic::fabs:
6344   case Intrinsic::sin:
6345   case Intrinsic::cos:
6346   case Intrinsic::floor:
6347   case Intrinsic::ceil:
6348   case Intrinsic::trunc:
6349   case Intrinsic::rint:
6350   case Intrinsic::nearbyint:
6351   case Intrinsic::round:
6352   case Intrinsic::roundeven:
6353   case Intrinsic::canonicalize: {
6354     unsigned Opcode;
6355     switch (Intrinsic) {
6356     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6357     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6358     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6359     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6360     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6361     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6362     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6363     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6364     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6365     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6366     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6367     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6368     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6369     }
6370 
6371     setValue(&I, DAG.getNode(Opcode, sdl,
6372                              getValue(I.getArgOperand(0)).getValueType(),
6373                              getValue(I.getArgOperand(0)), Flags));
6374     return;
6375   }
6376   case Intrinsic::lround:
6377   case Intrinsic::llround:
6378   case Intrinsic::lrint:
6379   case Intrinsic::llrint: {
6380     unsigned Opcode;
6381     switch (Intrinsic) {
6382     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6383     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6384     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6385     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6386     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6387     }
6388 
6389     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6390     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6391                              getValue(I.getArgOperand(0))));
6392     return;
6393   }
6394   case Intrinsic::minnum:
6395     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6396                              getValue(I.getArgOperand(0)).getValueType(),
6397                              getValue(I.getArgOperand(0)),
6398                              getValue(I.getArgOperand(1)), Flags));
6399     return;
6400   case Intrinsic::maxnum:
6401     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6402                              getValue(I.getArgOperand(0)).getValueType(),
6403                              getValue(I.getArgOperand(0)),
6404                              getValue(I.getArgOperand(1)), Flags));
6405     return;
6406   case Intrinsic::minimum:
6407     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6408                              getValue(I.getArgOperand(0)).getValueType(),
6409                              getValue(I.getArgOperand(0)),
6410                              getValue(I.getArgOperand(1)), Flags));
6411     return;
6412   case Intrinsic::maximum:
6413     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6414                              getValue(I.getArgOperand(0)).getValueType(),
6415                              getValue(I.getArgOperand(0)),
6416                              getValue(I.getArgOperand(1)), Flags));
6417     return;
6418   case Intrinsic::copysign:
6419     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6420                              getValue(I.getArgOperand(0)).getValueType(),
6421                              getValue(I.getArgOperand(0)),
6422                              getValue(I.getArgOperand(1)), Flags));
6423     return;
6424   case Intrinsic::arithmetic_fence: {
6425     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6426                              getValue(I.getArgOperand(0)).getValueType(),
6427                              getValue(I.getArgOperand(0)), Flags));
6428     return;
6429   }
6430   case Intrinsic::fma:
6431     setValue(&I, DAG.getNode(
6432                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6433                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6434                      getValue(I.getArgOperand(2)), Flags));
6435     return;
6436 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6437   case Intrinsic::INTRINSIC:
6438 #include "llvm/IR/ConstrainedOps.def"
6439     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6440     return;
6441 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6442 #include "llvm/IR/VPIntrinsics.def"
6443     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6444     return;
6445   case Intrinsic::fptrunc_round: {
6446     // Get the last argument, the metadata and convert it to an integer in the
6447     // call
6448     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6449     std::optional<RoundingMode> RoundMode =
6450         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6451 
6452     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6453 
6454     // Propagate fast-math-flags from IR to node(s).
6455     SDNodeFlags Flags;
6456     Flags.copyFMF(*cast<FPMathOperator>(&I));
6457     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6458 
6459     SDValue Result;
6460     Result = DAG.getNode(
6461         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6462         DAG.getTargetConstant((int)*RoundMode, sdl,
6463                               TLI.getPointerTy(DAG.getDataLayout())));
6464     setValue(&I, Result);
6465 
6466     return;
6467   }
6468   case Intrinsic::fmuladd: {
6469     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6470     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6471         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6472       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6473                                getValue(I.getArgOperand(0)).getValueType(),
6474                                getValue(I.getArgOperand(0)),
6475                                getValue(I.getArgOperand(1)),
6476                                getValue(I.getArgOperand(2)), Flags));
6477     } else {
6478       // TODO: Intrinsic calls should have fast-math-flags.
6479       SDValue Mul = DAG.getNode(
6480           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6481           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6482       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6483                                 getValue(I.getArgOperand(0)).getValueType(),
6484                                 Mul, getValue(I.getArgOperand(2)), Flags);
6485       setValue(&I, Add);
6486     }
6487     return;
6488   }
6489   case Intrinsic::convert_to_fp16:
6490     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6491                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6492                                          getValue(I.getArgOperand(0)),
6493                                          DAG.getTargetConstant(0, sdl,
6494                                                                MVT::i32))));
6495     return;
6496   case Intrinsic::convert_from_fp16:
6497     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6498                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6499                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6500                                          getValue(I.getArgOperand(0)))));
6501     return;
6502   case Intrinsic::fptosi_sat: {
6503     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6504     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6505                              getValue(I.getArgOperand(0)),
6506                              DAG.getValueType(VT.getScalarType())));
6507     return;
6508   }
6509   case Intrinsic::fptoui_sat: {
6510     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6511     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6512                              getValue(I.getArgOperand(0)),
6513                              DAG.getValueType(VT.getScalarType())));
6514     return;
6515   }
6516   case Intrinsic::set_rounding:
6517     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6518                       {getRoot(), getValue(I.getArgOperand(0))});
6519     setValue(&I, Res);
6520     DAG.setRoot(Res.getValue(0));
6521     return;
6522   case Intrinsic::is_fpclass: {
6523     const DataLayout DLayout = DAG.getDataLayout();
6524     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6525     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6526     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6527     MachineFunction &MF = DAG.getMachineFunction();
6528     const Function &F = MF.getFunction();
6529     SDValue Op = getValue(I.getArgOperand(0));
6530     SDNodeFlags Flags;
6531     Flags.setNoFPExcept(
6532         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6533     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6534     // expansion can use illegal types. Making expansion early allows
6535     // legalizing these types prior to selection.
6536     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6537       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6538       setValue(&I, Result);
6539       return;
6540     }
6541 
6542     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6543     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6544     setValue(&I, V);
6545     return;
6546   }
6547   case Intrinsic::pcmarker: {
6548     SDValue Tmp = getValue(I.getArgOperand(0));
6549     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6550     return;
6551   }
6552   case Intrinsic::readcyclecounter: {
6553     SDValue Op = getRoot();
6554     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6555                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6556     setValue(&I, Res);
6557     DAG.setRoot(Res.getValue(1));
6558     return;
6559   }
6560   case Intrinsic::bitreverse:
6561     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6562                              getValue(I.getArgOperand(0)).getValueType(),
6563                              getValue(I.getArgOperand(0))));
6564     return;
6565   case Intrinsic::bswap:
6566     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6567                              getValue(I.getArgOperand(0)).getValueType(),
6568                              getValue(I.getArgOperand(0))));
6569     return;
6570   case Intrinsic::cttz: {
6571     SDValue Arg = getValue(I.getArgOperand(0));
6572     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6573     EVT Ty = Arg.getValueType();
6574     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6575                              sdl, Ty, Arg));
6576     return;
6577   }
6578   case Intrinsic::ctlz: {
6579     SDValue Arg = getValue(I.getArgOperand(0));
6580     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6581     EVT Ty = Arg.getValueType();
6582     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6583                              sdl, Ty, Arg));
6584     return;
6585   }
6586   case Intrinsic::ctpop: {
6587     SDValue Arg = getValue(I.getArgOperand(0));
6588     EVT Ty = Arg.getValueType();
6589     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6590     return;
6591   }
6592   case Intrinsic::fshl:
6593   case Intrinsic::fshr: {
6594     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6595     SDValue X = getValue(I.getArgOperand(0));
6596     SDValue Y = getValue(I.getArgOperand(1));
6597     SDValue Z = getValue(I.getArgOperand(2));
6598     EVT VT = X.getValueType();
6599 
6600     if (X == Y) {
6601       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6602       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6603     } else {
6604       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6605       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6606     }
6607     return;
6608   }
6609   case Intrinsic::sadd_sat: {
6610     SDValue Op1 = getValue(I.getArgOperand(0));
6611     SDValue Op2 = getValue(I.getArgOperand(1));
6612     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6613     return;
6614   }
6615   case Intrinsic::uadd_sat: {
6616     SDValue Op1 = getValue(I.getArgOperand(0));
6617     SDValue Op2 = getValue(I.getArgOperand(1));
6618     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6619     return;
6620   }
6621   case Intrinsic::ssub_sat: {
6622     SDValue Op1 = getValue(I.getArgOperand(0));
6623     SDValue Op2 = getValue(I.getArgOperand(1));
6624     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6625     return;
6626   }
6627   case Intrinsic::usub_sat: {
6628     SDValue Op1 = getValue(I.getArgOperand(0));
6629     SDValue Op2 = getValue(I.getArgOperand(1));
6630     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6631     return;
6632   }
6633   case Intrinsic::sshl_sat: {
6634     SDValue Op1 = getValue(I.getArgOperand(0));
6635     SDValue Op2 = getValue(I.getArgOperand(1));
6636     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6637     return;
6638   }
6639   case Intrinsic::ushl_sat: {
6640     SDValue Op1 = getValue(I.getArgOperand(0));
6641     SDValue Op2 = getValue(I.getArgOperand(1));
6642     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6643     return;
6644   }
6645   case Intrinsic::smul_fix:
6646   case Intrinsic::umul_fix:
6647   case Intrinsic::smul_fix_sat:
6648   case Intrinsic::umul_fix_sat: {
6649     SDValue Op1 = getValue(I.getArgOperand(0));
6650     SDValue Op2 = getValue(I.getArgOperand(1));
6651     SDValue Op3 = getValue(I.getArgOperand(2));
6652     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6653                              Op1.getValueType(), Op1, Op2, Op3));
6654     return;
6655   }
6656   case Intrinsic::sdiv_fix:
6657   case Intrinsic::udiv_fix:
6658   case Intrinsic::sdiv_fix_sat:
6659   case Intrinsic::udiv_fix_sat: {
6660     SDValue Op1 = getValue(I.getArgOperand(0));
6661     SDValue Op2 = getValue(I.getArgOperand(1));
6662     SDValue Op3 = getValue(I.getArgOperand(2));
6663     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6664                               Op1, Op2, Op3, DAG, TLI));
6665     return;
6666   }
6667   case Intrinsic::smax: {
6668     SDValue Op1 = getValue(I.getArgOperand(0));
6669     SDValue Op2 = getValue(I.getArgOperand(1));
6670     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6671     return;
6672   }
6673   case Intrinsic::smin: {
6674     SDValue Op1 = getValue(I.getArgOperand(0));
6675     SDValue Op2 = getValue(I.getArgOperand(1));
6676     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6677     return;
6678   }
6679   case Intrinsic::umax: {
6680     SDValue Op1 = getValue(I.getArgOperand(0));
6681     SDValue Op2 = getValue(I.getArgOperand(1));
6682     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6683     return;
6684   }
6685   case Intrinsic::umin: {
6686     SDValue Op1 = getValue(I.getArgOperand(0));
6687     SDValue Op2 = getValue(I.getArgOperand(1));
6688     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6689     return;
6690   }
6691   case Intrinsic::abs: {
6692     // TODO: Preserve "int min is poison" arg in SDAG?
6693     SDValue Op1 = getValue(I.getArgOperand(0));
6694     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6695     return;
6696   }
6697   case Intrinsic::stacksave: {
6698     SDValue Op = getRoot();
6699     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6700     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6701     setValue(&I, Res);
6702     DAG.setRoot(Res.getValue(1));
6703     return;
6704   }
6705   case Intrinsic::stackrestore:
6706     Res = getValue(I.getArgOperand(0));
6707     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6708     return;
6709   case Intrinsic::get_dynamic_area_offset: {
6710     SDValue Op = getRoot();
6711     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6712     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6713     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6714     // target.
6715     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6716       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6717                          " intrinsic!");
6718     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6719                       Op);
6720     DAG.setRoot(Op);
6721     setValue(&I, Res);
6722     return;
6723   }
6724   case Intrinsic::stackguard: {
6725     MachineFunction &MF = DAG.getMachineFunction();
6726     const Module &M = *MF.getFunction().getParent();
6727     SDValue Chain = getRoot();
6728     if (TLI.useLoadStackGuardNode()) {
6729       Res = getLoadStackGuard(DAG, sdl, Chain);
6730     } else {
6731       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6732       const Value *Global = TLI.getSDagStackGuard(M);
6733       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6734       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6735                         MachinePointerInfo(Global, 0), Align,
6736                         MachineMemOperand::MOVolatile);
6737     }
6738     if (TLI.useStackGuardXorFP())
6739       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6740     DAG.setRoot(Chain);
6741     setValue(&I, Res);
6742     return;
6743   }
6744   case Intrinsic::stackprotector: {
6745     // Emit code into the DAG to store the stack guard onto the stack.
6746     MachineFunction &MF = DAG.getMachineFunction();
6747     MachineFrameInfo &MFI = MF.getFrameInfo();
6748     SDValue Src, Chain = getRoot();
6749 
6750     if (TLI.useLoadStackGuardNode())
6751       Src = getLoadStackGuard(DAG, sdl, Chain);
6752     else
6753       Src = getValue(I.getArgOperand(0));   // The guard's value.
6754 
6755     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6756 
6757     int FI = FuncInfo.StaticAllocaMap[Slot];
6758     MFI.setStackProtectorIndex(FI);
6759     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6760 
6761     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6762 
6763     // Store the stack protector onto the stack.
6764     Res = DAG.getStore(
6765         Chain, sdl, Src, FIN,
6766         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6767         MaybeAlign(), MachineMemOperand::MOVolatile);
6768     setValue(&I, Res);
6769     DAG.setRoot(Res);
6770     return;
6771   }
6772   case Intrinsic::objectsize:
6773     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6774 
6775   case Intrinsic::is_constant:
6776     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6777 
6778   case Intrinsic::annotation:
6779   case Intrinsic::ptr_annotation:
6780   case Intrinsic::launder_invariant_group:
6781   case Intrinsic::strip_invariant_group:
6782     // Drop the intrinsic, but forward the value
6783     setValue(&I, getValue(I.getOperand(0)));
6784     return;
6785 
6786   case Intrinsic::assume:
6787   case Intrinsic::experimental_noalias_scope_decl:
6788   case Intrinsic::var_annotation:
6789   case Intrinsic::sideeffect:
6790     // Discard annotate attributes, noalias scope declarations, assumptions, and
6791     // artificial side-effects.
6792     return;
6793 
6794   case Intrinsic::codeview_annotation: {
6795     // Emit a label associated with this metadata.
6796     MachineFunction &MF = DAG.getMachineFunction();
6797     MCSymbol *Label =
6798         MF.getMMI().getContext().createTempSymbol("annotation", true);
6799     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6800     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6801     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6802     DAG.setRoot(Res);
6803     return;
6804   }
6805 
6806   case Intrinsic::init_trampoline: {
6807     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6808 
6809     SDValue Ops[6];
6810     Ops[0] = getRoot();
6811     Ops[1] = getValue(I.getArgOperand(0));
6812     Ops[2] = getValue(I.getArgOperand(1));
6813     Ops[3] = getValue(I.getArgOperand(2));
6814     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6815     Ops[5] = DAG.getSrcValue(F);
6816 
6817     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6818 
6819     DAG.setRoot(Res);
6820     return;
6821   }
6822   case Intrinsic::adjust_trampoline:
6823     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6824                              TLI.getPointerTy(DAG.getDataLayout()),
6825                              getValue(I.getArgOperand(0))));
6826     return;
6827   case Intrinsic::gcroot: {
6828     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6829            "only valid in functions with gc specified, enforced by Verifier");
6830     assert(GFI && "implied by previous");
6831     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6832     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6833 
6834     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6835     GFI->addStackRoot(FI->getIndex(), TypeMap);
6836     return;
6837   }
6838   case Intrinsic::gcread:
6839   case Intrinsic::gcwrite:
6840     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6841   case Intrinsic::get_rounding:
6842     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6843     setValue(&I, Res);
6844     DAG.setRoot(Res.getValue(1));
6845     return;
6846 
6847   case Intrinsic::expect:
6848     // Just replace __builtin_expect(exp, c) with EXP.
6849     setValue(&I, getValue(I.getArgOperand(0)));
6850     return;
6851 
6852   case Intrinsic::ubsantrap:
6853   case Intrinsic::debugtrap:
6854   case Intrinsic::trap: {
6855     StringRef TrapFuncName =
6856         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6857     if (TrapFuncName.empty()) {
6858       switch (Intrinsic) {
6859       case Intrinsic::trap:
6860         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6861         break;
6862       case Intrinsic::debugtrap:
6863         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6864         break;
6865       case Intrinsic::ubsantrap:
6866         DAG.setRoot(DAG.getNode(
6867             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6868             DAG.getTargetConstant(
6869                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6870                 MVT::i32)));
6871         break;
6872       default: llvm_unreachable("unknown trap intrinsic");
6873       }
6874       return;
6875     }
6876     TargetLowering::ArgListTy Args;
6877     if (Intrinsic == Intrinsic::ubsantrap) {
6878       Args.push_back(TargetLoweringBase::ArgListEntry());
6879       Args[0].Val = I.getArgOperand(0);
6880       Args[0].Node = getValue(Args[0].Val);
6881       Args[0].Ty = Args[0].Val->getType();
6882     }
6883 
6884     TargetLowering::CallLoweringInfo CLI(DAG);
6885     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6886         CallingConv::C, I.getType(),
6887         DAG.getExternalSymbol(TrapFuncName.data(),
6888                               TLI.getPointerTy(DAG.getDataLayout())),
6889         std::move(Args));
6890 
6891     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6892     DAG.setRoot(Result.second);
6893     return;
6894   }
6895 
6896   case Intrinsic::uadd_with_overflow:
6897   case Intrinsic::sadd_with_overflow:
6898   case Intrinsic::usub_with_overflow:
6899   case Intrinsic::ssub_with_overflow:
6900   case Intrinsic::umul_with_overflow:
6901   case Intrinsic::smul_with_overflow: {
6902     ISD::NodeType Op;
6903     switch (Intrinsic) {
6904     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6905     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6906     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6907     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6908     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6909     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6910     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6911     }
6912     SDValue Op1 = getValue(I.getArgOperand(0));
6913     SDValue Op2 = getValue(I.getArgOperand(1));
6914 
6915     EVT ResultVT = Op1.getValueType();
6916     EVT OverflowVT = MVT::i1;
6917     if (ResultVT.isVector())
6918       OverflowVT = EVT::getVectorVT(
6919           *Context, OverflowVT, ResultVT.getVectorElementCount());
6920 
6921     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6922     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6923     return;
6924   }
6925   case Intrinsic::prefetch: {
6926     SDValue Ops[5];
6927     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6928     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6929     Ops[0] = DAG.getRoot();
6930     Ops[1] = getValue(I.getArgOperand(0));
6931     Ops[2] = getValue(I.getArgOperand(1));
6932     Ops[3] = getValue(I.getArgOperand(2));
6933     Ops[4] = getValue(I.getArgOperand(3));
6934     SDValue Result = DAG.getMemIntrinsicNode(
6935         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6936         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6937         /* align */ std::nullopt, Flags);
6938 
6939     // Chain the prefetch in parallell with any pending loads, to stay out of
6940     // the way of later optimizations.
6941     PendingLoads.push_back(Result);
6942     Result = getRoot();
6943     DAG.setRoot(Result);
6944     return;
6945   }
6946   case Intrinsic::lifetime_start:
6947   case Intrinsic::lifetime_end: {
6948     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6949     // Stack coloring is not enabled in O0, discard region information.
6950     if (TM.getOptLevel() == CodeGenOpt::None)
6951       return;
6952 
6953     const int64_t ObjectSize =
6954         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6955     Value *const ObjectPtr = I.getArgOperand(1);
6956     SmallVector<const Value *, 4> Allocas;
6957     getUnderlyingObjects(ObjectPtr, Allocas);
6958 
6959     for (const Value *Alloca : Allocas) {
6960       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6961 
6962       // Could not find an Alloca.
6963       if (!LifetimeObject)
6964         continue;
6965 
6966       // First check that the Alloca is static, otherwise it won't have a
6967       // valid frame index.
6968       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6969       if (SI == FuncInfo.StaticAllocaMap.end())
6970         return;
6971 
6972       const int FrameIndex = SI->second;
6973       int64_t Offset;
6974       if (GetPointerBaseWithConstantOffset(
6975               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6976         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6977       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6978                                 Offset);
6979       DAG.setRoot(Res);
6980     }
6981     return;
6982   }
6983   case Intrinsic::pseudoprobe: {
6984     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6985     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6986     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6987     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6988     DAG.setRoot(Res);
6989     return;
6990   }
6991   case Intrinsic::invariant_start:
6992     // Discard region information.
6993     setValue(&I,
6994              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6995     return;
6996   case Intrinsic::invariant_end:
6997     // Discard region information.
6998     return;
6999   case Intrinsic::clear_cache:
7000     /// FunctionName may be null.
7001     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7002       lowerCallToExternalSymbol(I, FunctionName);
7003     return;
7004   case Intrinsic::donothing:
7005   case Intrinsic::seh_try_begin:
7006   case Intrinsic::seh_scope_begin:
7007   case Intrinsic::seh_try_end:
7008   case Intrinsic::seh_scope_end:
7009     // ignore
7010     return;
7011   case Intrinsic::experimental_stackmap:
7012     visitStackmap(I);
7013     return;
7014   case Intrinsic::experimental_patchpoint_void:
7015   case Intrinsic::experimental_patchpoint_i64:
7016     visitPatchpoint(I);
7017     return;
7018   case Intrinsic::experimental_gc_statepoint:
7019     LowerStatepoint(cast<GCStatepointInst>(I));
7020     return;
7021   case Intrinsic::experimental_gc_result:
7022     visitGCResult(cast<GCResultInst>(I));
7023     return;
7024   case Intrinsic::experimental_gc_relocate:
7025     visitGCRelocate(cast<GCRelocateInst>(I));
7026     return;
7027   case Intrinsic::instrprof_cover:
7028     llvm_unreachable("instrprof failed to lower a cover");
7029   case Intrinsic::instrprof_increment:
7030     llvm_unreachable("instrprof failed to lower an increment");
7031   case Intrinsic::instrprof_value_profile:
7032     llvm_unreachable("instrprof failed to lower a value profiling call");
7033   case Intrinsic::localescape: {
7034     MachineFunction &MF = DAG.getMachineFunction();
7035     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7036 
7037     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7038     // is the same on all targets.
7039     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7040       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7041       if (isa<ConstantPointerNull>(Arg))
7042         continue; // Skip null pointers. They represent a hole in index space.
7043       AllocaInst *Slot = cast<AllocaInst>(Arg);
7044       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7045              "can only escape static allocas");
7046       int FI = FuncInfo.StaticAllocaMap[Slot];
7047       MCSymbol *FrameAllocSym =
7048           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7049               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7050       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7051               TII->get(TargetOpcode::LOCAL_ESCAPE))
7052           .addSym(FrameAllocSym)
7053           .addFrameIndex(FI);
7054     }
7055 
7056     return;
7057   }
7058 
7059   case Intrinsic::localrecover: {
7060     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7061     MachineFunction &MF = DAG.getMachineFunction();
7062 
7063     // Get the symbol that defines the frame offset.
7064     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7065     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7066     unsigned IdxVal =
7067         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7068     MCSymbol *FrameAllocSym =
7069         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7070             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7071 
7072     Value *FP = I.getArgOperand(1);
7073     SDValue FPVal = getValue(FP);
7074     EVT PtrVT = FPVal.getValueType();
7075 
7076     // Create a MCSymbol for the label to avoid any target lowering
7077     // that would make this PC relative.
7078     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7079     SDValue OffsetVal =
7080         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7081 
7082     // Add the offset to the FP.
7083     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7084     setValue(&I, Add);
7085 
7086     return;
7087   }
7088 
7089   case Intrinsic::eh_exceptionpointer:
7090   case Intrinsic::eh_exceptioncode: {
7091     // Get the exception pointer vreg, copy from it, and resize it to fit.
7092     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7093     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7094     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7095     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7096     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7097     if (Intrinsic == Intrinsic::eh_exceptioncode)
7098       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7099     setValue(&I, N);
7100     return;
7101   }
7102   case Intrinsic::xray_customevent: {
7103     // Here we want to make sure that the intrinsic behaves as if it has a
7104     // specific calling convention, and only for x86_64.
7105     // FIXME: Support other platforms later.
7106     const auto &Triple = DAG.getTarget().getTargetTriple();
7107     if (Triple.getArch() != Triple::x86_64)
7108       return;
7109 
7110     SmallVector<SDValue, 8> Ops;
7111 
7112     // We want to say that we always want the arguments in registers.
7113     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7114     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7115     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7116     SDValue Chain = getRoot();
7117     Ops.push_back(LogEntryVal);
7118     Ops.push_back(StrSizeVal);
7119     Ops.push_back(Chain);
7120 
7121     // We need to enforce the calling convention for the callsite, so that
7122     // argument ordering is enforced correctly, and that register allocation can
7123     // see that some registers may be assumed clobbered and have to preserve
7124     // them across calls to the intrinsic.
7125     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7126                                            sdl, NodeTys, Ops);
7127     SDValue patchableNode = SDValue(MN, 0);
7128     DAG.setRoot(patchableNode);
7129     setValue(&I, patchableNode);
7130     return;
7131   }
7132   case Intrinsic::xray_typedevent: {
7133     // Here we want to make sure that the intrinsic behaves as if it has a
7134     // specific calling convention, and only for x86_64.
7135     // FIXME: Support other platforms later.
7136     const auto &Triple = DAG.getTarget().getTargetTriple();
7137     if (Triple.getArch() != Triple::x86_64)
7138       return;
7139 
7140     SmallVector<SDValue, 8> Ops;
7141 
7142     // We want to say that we always want the arguments in registers.
7143     // It's unclear to me how manipulating the selection DAG here forces callers
7144     // to provide arguments in registers instead of on the stack.
7145     SDValue LogTypeId = getValue(I.getArgOperand(0));
7146     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7147     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7148     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7149     SDValue Chain = getRoot();
7150     Ops.push_back(LogTypeId);
7151     Ops.push_back(LogEntryVal);
7152     Ops.push_back(StrSizeVal);
7153     Ops.push_back(Chain);
7154 
7155     // We need to enforce the calling convention for the callsite, so that
7156     // argument ordering is enforced correctly, and that register allocation can
7157     // see that some registers may be assumed clobbered and have to preserve
7158     // them across calls to the intrinsic.
7159     MachineSDNode *MN = DAG.getMachineNode(
7160         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7161     SDValue patchableNode = SDValue(MN, 0);
7162     DAG.setRoot(patchableNode);
7163     setValue(&I, patchableNode);
7164     return;
7165   }
7166   case Intrinsic::experimental_deoptimize:
7167     LowerDeoptimizeCall(&I);
7168     return;
7169   case Intrinsic::experimental_stepvector:
7170     visitStepVector(I);
7171     return;
7172   case Intrinsic::vector_reduce_fadd:
7173   case Intrinsic::vector_reduce_fmul:
7174   case Intrinsic::vector_reduce_add:
7175   case Intrinsic::vector_reduce_mul:
7176   case Intrinsic::vector_reduce_and:
7177   case Intrinsic::vector_reduce_or:
7178   case Intrinsic::vector_reduce_xor:
7179   case Intrinsic::vector_reduce_smax:
7180   case Intrinsic::vector_reduce_smin:
7181   case Intrinsic::vector_reduce_umax:
7182   case Intrinsic::vector_reduce_umin:
7183   case Intrinsic::vector_reduce_fmax:
7184   case Intrinsic::vector_reduce_fmin:
7185     visitVectorReduce(I, Intrinsic);
7186     return;
7187 
7188   case Intrinsic::icall_branch_funnel: {
7189     SmallVector<SDValue, 16> Ops;
7190     Ops.push_back(getValue(I.getArgOperand(0)));
7191 
7192     int64_t Offset;
7193     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7194         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7195     if (!Base)
7196       report_fatal_error(
7197           "llvm.icall.branch.funnel operand must be a GlobalValue");
7198     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7199 
7200     struct BranchFunnelTarget {
7201       int64_t Offset;
7202       SDValue Target;
7203     };
7204     SmallVector<BranchFunnelTarget, 8> Targets;
7205 
7206     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7207       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7208           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7209       if (ElemBase != Base)
7210         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7211                            "to the same GlobalValue");
7212 
7213       SDValue Val = getValue(I.getArgOperand(Op + 1));
7214       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7215       if (!GA)
7216         report_fatal_error(
7217             "llvm.icall.branch.funnel operand must be a GlobalValue");
7218       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7219                                      GA->getGlobal(), sdl, Val.getValueType(),
7220                                      GA->getOffset())});
7221     }
7222     llvm::sort(Targets,
7223                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7224                  return T1.Offset < T2.Offset;
7225                });
7226 
7227     for (auto &T : Targets) {
7228       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7229       Ops.push_back(T.Target);
7230     }
7231 
7232     Ops.push_back(DAG.getRoot()); // Chain
7233     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7234                                  MVT::Other, Ops),
7235               0);
7236     DAG.setRoot(N);
7237     setValue(&I, N);
7238     HasTailCall = true;
7239     return;
7240   }
7241 
7242   case Intrinsic::wasm_landingpad_index:
7243     // Information this intrinsic contained has been transferred to
7244     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7245     // delete it now.
7246     return;
7247 
7248   case Intrinsic::aarch64_settag:
7249   case Intrinsic::aarch64_settag_zero: {
7250     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7251     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7252     SDValue Val = TSI.EmitTargetCodeForSetTag(
7253         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7254         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7255         ZeroMemory);
7256     DAG.setRoot(Val);
7257     setValue(&I, Val);
7258     return;
7259   }
7260   case Intrinsic::ptrmask: {
7261     SDValue Ptr = getValue(I.getOperand(0));
7262     SDValue Const = getValue(I.getOperand(1));
7263 
7264     EVT PtrVT = Ptr.getValueType();
7265     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7266                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7267     return;
7268   }
7269   case Intrinsic::threadlocal_address: {
7270     setValue(&I, getValue(I.getOperand(0)));
7271     return;
7272   }
7273   case Intrinsic::get_active_lane_mask: {
7274     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7275     SDValue Index = getValue(I.getOperand(0));
7276     EVT ElementVT = Index.getValueType();
7277 
7278     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7279       visitTargetIntrinsic(I, Intrinsic);
7280       return;
7281     }
7282 
7283     SDValue TripCount = getValue(I.getOperand(1));
7284     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7285 
7286     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7287     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7288     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7289     SDValue VectorInduction = DAG.getNode(
7290         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7291     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7292                                  VectorTripCount, ISD::CondCode::SETULT);
7293     setValue(&I, SetCC);
7294     return;
7295   }
7296   case Intrinsic::vector_insert: {
7297     SDValue Vec = getValue(I.getOperand(0));
7298     SDValue SubVec = getValue(I.getOperand(1));
7299     SDValue Index = getValue(I.getOperand(2));
7300 
7301     // The intrinsic's index type is i64, but the SDNode requires an index type
7302     // suitable for the target. Convert the index as required.
7303     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7304     if (Index.getValueType() != VectorIdxTy)
7305       Index = DAG.getVectorIdxConstant(
7306           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7307 
7308     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7309     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7310                              Index));
7311     return;
7312   }
7313   case Intrinsic::vector_extract: {
7314     SDValue Vec = getValue(I.getOperand(0));
7315     SDValue Index = getValue(I.getOperand(1));
7316     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7317 
7318     // The intrinsic's index type is i64, but the SDNode requires an index type
7319     // suitable for the target. Convert the index as required.
7320     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7321     if (Index.getValueType() != VectorIdxTy)
7322       Index = DAG.getVectorIdxConstant(
7323           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7324 
7325     setValue(&I,
7326              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7327     return;
7328   }
7329   case Intrinsic::experimental_vector_reverse:
7330     visitVectorReverse(I);
7331     return;
7332   case Intrinsic::experimental_vector_splice:
7333     visitVectorSplice(I);
7334     return;
7335   }
7336 }
7337 
7338 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7339     const ConstrainedFPIntrinsic &FPI) {
7340   SDLoc sdl = getCurSDLoc();
7341 
7342   // We do not need to serialize constrained FP intrinsics against
7343   // each other or against (nonvolatile) loads, so they can be
7344   // chained like loads.
7345   SDValue Chain = DAG.getRoot();
7346   SmallVector<SDValue, 4> Opers;
7347   Opers.push_back(Chain);
7348   if (FPI.isUnaryOp()) {
7349     Opers.push_back(getValue(FPI.getArgOperand(0)));
7350   } else if (FPI.isTernaryOp()) {
7351     Opers.push_back(getValue(FPI.getArgOperand(0)));
7352     Opers.push_back(getValue(FPI.getArgOperand(1)));
7353     Opers.push_back(getValue(FPI.getArgOperand(2)));
7354   } else {
7355     Opers.push_back(getValue(FPI.getArgOperand(0)));
7356     Opers.push_back(getValue(FPI.getArgOperand(1)));
7357   }
7358 
7359   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7360     assert(Result.getNode()->getNumValues() == 2);
7361 
7362     // Push node to the appropriate list so that future instructions can be
7363     // chained up correctly.
7364     SDValue OutChain = Result.getValue(1);
7365     switch (EB) {
7366     case fp::ExceptionBehavior::ebIgnore:
7367       // The only reason why ebIgnore nodes still need to be chained is that
7368       // they might depend on the current rounding mode, and therefore must
7369       // not be moved across instruction that may change that mode.
7370       [[fallthrough]];
7371     case fp::ExceptionBehavior::ebMayTrap:
7372       // These must not be moved across calls or instructions that may change
7373       // floating-point exception masks.
7374       PendingConstrainedFP.push_back(OutChain);
7375       break;
7376     case fp::ExceptionBehavior::ebStrict:
7377       // These must not be moved across calls or instructions that may change
7378       // floating-point exception masks or read floating-point exception flags.
7379       // In addition, they cannot be optimized out even if unused.
7380       PendingConstrainedFPStrict.push_back(OutChain);
7381       break;
7382     }
7383   };
7384 
7385   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7386   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7387   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7388   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7389 
7390   SDNodeFlags Flags;
7391   if (EB == fp::ExceptionBehavior::ebIgnore)
7392     Flags.setNoFPExcept(true);
7393 
7394   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7395     Flags.copyFMF(*FPOp);
7396 
7397   unsigned Opcode;
7398   switch (FPI.getIntrinsicID()) {
7399   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7400 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7401   case Intrinsic::INTRINSIC:                                                   \
7402     Opcode = ISD::STRICT_##DAGN;                                               \
7403     break;
7404 #include "llvm/IR/ConstrainedOps.def"
7405   case Intrinsic::experimental_constrained_fmuladd: {
7406     Opcode = ISD::STRICT_FMA;
7407     // Break fmuladd into fmul and fadd.
7408     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7409         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7410       Opers.pop_back();
7411       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7412       pushOutChain(Mul, EB);
7413       Opcode = ISD::STRICT_FADD;
7414       Opers.clear();
7415       Opers.push_back(Mul.getValue(1));
7416       Opers.push_back(Mul.getValue(0));
7417       Opers.push_back(getValue(FPI.getArgOperand(2)));
7418     }
7419     break;
7420   }
7421   }
7422 
7423   // A few strict DAG nodes carry additional operands that are not
7424   // set up by the default code above.
7425   switch (Opcode) {
7426   default: break;
7427   case ISD::STRICT_FP_ROUND:
7428     Opers.push_back(
7429         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7430     break;
7431   case ISD::STRICT_FSETCC:
7432   case ISD::STRICT_FSETCCS: {
7433     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7434     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7435     if (TM.Options.NoNaNsFPMath)
7436       Condition = getFCmpCodeWithoutNaN(Condition);
7437     Opers.push_back(DAG.getCondCode(Condition));
7438     break;
7439   }
7440   }
7441 
7442   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7443   pushOutChain(Result, EB);
7444 
7445   SDValue FPResult = Result.getValue(0);
7446   setValue(&FPI, FPResult);
7447 }
7448 
7449 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7450   std::optional<unsigned> ResOPC;
7451   switch (VPIntrin.getIntrinsicID()) {
7452   case Intrinsic::vp_ctlz: {
7453     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7454     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7455     break;
7456   }
7457   case Intrinsic::vp_cttz: {
7458     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7459     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7460     break;
7461   }
7462 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7463   case Intrinsic::VPID:                                                        \
7464     ResOPC = ISD::VPSD;                                                        \
7465     break;
7466 #include "llvm/IR/VPIntrinsics.def"
7467   }
7468 
7469   if (!ResOPC)
7470     llvm_unreachable(
7471         "Inconsistency: no SDNode available for this VPIntrinsic!");
7472 
7473   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7474       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7475     if (VPIntrin.getFastMathFlags().allowReassoc())
7476       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7477                                                 : ISD::VP_REDUCE_FMUL;
7478   }
7479 
7480   return *ResOPC;
7481 }
7482 
7483 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7484                                       SmallVector<SDValue, 7> &OpValues) {
7485   SDLoc DL = getCurSDLoc();
7486   Value *PtrOperand = VPIntrin.getArgOperand(0);
7487   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7488   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7489   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7490   SDValue LD;
7491   bool AddToChain = true;
7492   // Do not serialize variable-length loads of constant memory with
7493   // anything.
7494   if (!Alignment)
7495     Alignment = DAG.getEVTAlign(VT);
7496   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7497   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7498   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7499   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7500       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7501       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7502   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7503                      MMO, false /*IsExpanding */);
7504   if (AddToChain)
7505     PendingLoads.push_back(LD.getValue(1));
7506   setValue(&VPIntrin, LD);
7507 }
7508 
7509 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7510                                         SmallVector<SDValue, 7> &OpValues) {
7511   SDLoc DL = getCurSDLoc();
7512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7513   Value *PtrOperand = VPIntrin.getArgOperand(0);
7514   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7515   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7516   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7517   SDValue LD;
7518   if (!Alignment)
7519     Alignment = DAG.getEVTAlign(VT.getScalarType());
7520   unsigned AS =
7521     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7522   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7523      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7524      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7525   SDValue Base, Index, Scale;
7526   ISD::MemIndexType IndexType;
7527   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7528                                     this, VPIntrin.getParent(),
7529                                     VT.getScalarStoreSize());
7530   if (!UniformBase) {
7531     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7532     Index = getValue(PtrOperand);
7533     IndexType = ISD::SIGNED_SCALED;
7534     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7535   }
7536   EVT IdxVT = Index.getValueType();
7537   EVT EltTy = IdxVT.getVectorElementType();
7538   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7539     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7540     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7541   }
7542   LD = DAG.getGatherVP(
7543       DAG.getVTList(VT, MVT::Other), VT, DL,
7544       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7545       IndexType);
7546   PendingLoads.push_back(LD.getValue(1));
7547   setValue(&VPIntrin, LD);
7548 }
7549 
7550 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7551                                        SmallVector<SDValue, 7> &OpValues) {
7552   SDLoc DL = getCurSDLoc();
7553   Value *PtrOperand = VPIntrin.getArgOperand(1);
7554   EVT VT = OpValues[0].getValueType();
7555   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7556   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7557   SDValue ST;
7558   if (!Alignment)
7559     Alignment = DAG.getEVTAlign(VT);
7560   SDValue Ptr = OpValues[1];
7561   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7562   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7563       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7564       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7565   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7566                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7567                       /* IsTruncating */ false, /*IsCompressing*/ false);
7568   DAG.setRoot(ST);
7569   setValue(&VPIntrin, ST);
7570 }
7571 
7572 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7573                                               SmallVector<SDValue, 7> &OpValues) {
7574   SDLoc DL = getCurSDLoc();
7575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7576   Value *PtrOperand = VPIntrin.getArgOperand(1);
7577   EVT VT = OpValues[0].getValueType();
7578   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7579   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7580   SDValue ST;
7581   if (!Alignment)
7582     Alignment = DAG.getEVTAlign(VT.getScalarType());
7583   unsigned AS =
7584       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7585   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7586       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7587       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7588   SDValue Base, Index, Scale;
7589   ISD::MemIndexType IndexType;
7590   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7591                                     this, VPIntrin.getParent(),
7592                                     VT.getScalarStoreSize());
7593   if (!UniformBase) {
7594     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7595     Index = getValue(PtrOperand);
7596     IndexType = ISD::SIGNED_SCALED;
7597     Scale =
7598       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7599   }
7600   EVT IdxVT = Index.getValueType();
7601   EVT EltTy = IdxVT.getVectorElementType();
7602   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7603     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7604     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7605   }
7606   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7607                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7608                          OpValues[2], OpValues[3]},
7609                         MMO, IndexType);
7610   DAG.setRoot(ST);
7611   setValue(&VPIntrin, ST);
7612 }
7613 
7614 void SelectionDAGBuilder::visitVPStridedLoad(
7615     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7616   SDLoc DL = getCurSDLoc();
7617   Value *PtrOperand = VPIntrin.getArgOperand(0);
7618   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7619   if (!Alignment)
7620     Alignment = DAG.getEVTAlign(VT.getScalarType());
7621   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7622   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7623   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7624   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7625   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7626   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7627       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7628       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7629 
7630   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7631                                     OpValues[2], OpValues[3], MMO,
7632                                     false /*IsExpanding*/);
7633 
7634   if (AddToChain)
7635     PendingLoads.push_back(LD.getValue(1));
7636   setValue(&VPIntrin, LD);
7637 }
7638 
7639 void SelectionDAGBuilder::visitVPStridedStore(
7640     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7641   SDLoc DL = getCurSDLoc();
7642   Value *PtrOperand = VPIntrin.getArgOperand(1);
7643   EVT VT = OpValues[0].getValueType();
7644   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7645   if (!Alignment)
7646     Alignment = DAG.getEVTAlign(VT.getScalarType());
7647   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7648   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7649       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7650       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7651 
7652   SDValue ST = DAG.getStridedStoreVP(
7653       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7654       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7655       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7656       /*IsCompressing*/ false);
7657 
7658   DAG.setRoot(ST);
7659   setValue(&VPIntrin, ST);
7660 }
7661 
7662 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7664   SDLoc DL = getCurSDLoc();
7665 
7666   ISD::CondCode Condition;
7667   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7668   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7669   if (IsFP) {
7670     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7671     // flags, but calls that don't return floating-point types can't be
7672     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7673     Condition = getFCmpCondCode(CondCode);
7674     if (TM.Options.NoNaNsFPMath)
7675       Condition = getFCmpCodeWithoutNaN(Condition);
7676   } else {
7677     Condition = getICmpCondCode(CondCode);
7678   }
7679 
7680   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7681   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7682   // #2 is the condition code
7683   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7684   SDValue EVL = getValue(VPIntrin.getOperand(4));
7685   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7686   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7687          "Unexpected target EVL type");
7688   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7689 
7690   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7691                                                         VPIntrin.getType());
7692   setValue(&VPIntrin,
7693            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7694 }
7695 
7696 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7697     const VPIntrinsic &VPIntrin) {
7698   SDLoc DL = getCurSDLoc();
7699   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7700 
7701   auto IID = VPIntrin.getIntrinsicID();
7702 
7703   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7704     return visitVPCmp(*CmpI);
7705 
7706   SmallVector<EVT, 4> ValueVTs;
7707   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7708   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7709   SDVTList VTs = DAG.getVTList(ValueVTs);
7710 
7711   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7712 
7713   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7714   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7715          "Unexpected target EVL type");
7716 
7717   // Request operands.
7718   SmallVector<SDValue, 7> OpValues;
7719   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7720     auto Op = getValue(VPIntrin.getArgOperand(I));
7721     if (I == EVLParamPos)
7722       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7723     OpValues.push_back(Op);
7724   }
7725 
7726   switch (Opcode) {
7727   default: {
7728     SDNodeFlags SDFlags;
7729     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7730       SDFlags.copyFMF(*FPMO);
7731     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7732     setValue(&VPIntrin, Result);
7733     break;
7734   }
7735   case ISD::VP_LOAD:
7736     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7737     break;
7738   case ISD::VP_GATHER:
7739     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7740     break;
7741   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7742     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7743     break;
7744   case ISD::VP_STORE:
7745     visitVPStore(VPIntrin, OpValues);
7746     break;
7747   case ISD::VP_SCATTER:
7748     visitVPScatter(VPIntrin, OpValues);
7749     break;
7750   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7751     visitVPStridedStore(VPIntrin, OpValues);
7752     break;
7753   case ISD::VP_FMULADD: {
7754     assert(OpValues.size() == 5 && "Unexpected number of operands");
7755     SDNodeFlags SDFlags;
7756     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7757       SDFlags.copyFMF(*FPMO);
7758     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7759         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7760       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7761     } else {
7762       SDValue Mul = DAG.getNode(
7763           ISD::VP_FMUL, DL, VTs,
7764           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7765       SDValue Add =
7766           DAG.getNode(ISD::VP_FADD, DL, VTs,
7767                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7768       setValue(&VPIntrin, Add);
7769     }
7770     break;
7771   }
7772   case ISD::VP_INTTOPTR: {
7773     SDValue N = OpValues[0];
7774     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7775     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7776     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7777                                OpValues[2]);
7778     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7779                              OpValues[2]);
7780     setValue(&VPIntrin, N);
7781     break;
7782   }
7783   case ISD::VP_PTRTOINT: {
7784     SDValue N = OpValues[0];
7785     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7786                                                           VPIntrin.getType());
7787     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7788                                        VPIntrin.getOperand(0)->getType());
7789     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7790                                OpValues[2]);
7791     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7792                              OpValues[2]);
7793     setValue(&VPIntrin, N);
7794     break;
7795   }
7796   case ISD::VP_ABS:
7797   case ISD::VP_CTLZ:
7798   case ISD::VP_CTLZ_ZERO_UNDEF:
7799   case ISD::VP_CTTZ:
7800   case ISD::VP_CTTZ_ZERO_UNDEF: {
7801     // Pop is_zero_poison operand for cp.ctlz/cttz or
7802     // is_int_min_poison operand for vp.abs.
7803     OpValues.pop_back();
7804     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7805     setValue(&VPIntrin, Result);
7806     break;
7807   }
7808   }
7809 }
7810 
7811 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7812                                           const BasicBlock *EHPadBB,
7813                                           MCSymbol *&BeginLabel) {
7814   MachineFunction &MF = DAG.getMachineFunction();
7815   MachineModuleInfo &MMI = MF.getMMI();
7816 
7817   // Insert a label before the invoke call to mark the try range.  This can be
7818   // used to detect deletion of the invoke via the MachineModuleInfo.
7819   BeginLabel = MMI.getContext().createTempSymbol();
7820 
7821   // For SjLj, keep track of which landing pads go with which invokes
7822   // so as to maintain the ordering of pads in the LSDA.
7823   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7824   if (CallSiteIndex) {
7825     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7826     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7827 
7828     // Now that the call site is handled, stop tracking it.
7829     MMI.setCurrentCallSite(0);
7830   }
7831 
7832   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7833 }
7834 
7835 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7836                                         const BasicBlock *EHPadBB,
7837                                         MCSymbol *BeginLabel) {
7838   assert(BeginLabel && "BeginLabel should've been set");
7839 
7840   MachineFunction &MF = DAG.getMachineFunction();
7841   MachineModuleInfo &MMI = MF.getMMI();
7842 
7843   // Insert a label at the end of the invoke call to mark the try range.  This
7844   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7845   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7846   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7847 
7848   // Inform MachineModuleInfo of range.
7849   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7850   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7851   // actually use outlined funclets and their LSDA info style.
7852   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7853     assert(II && "II should've been set");
7854     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7855     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7856   } else if (!isScopedEHPersonality(Pers)) {
7857     assert(EHPadBB);
7858     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7859   }
7860 
7861   return Chain;
7862 }
7863 
7864 std::pair<SDValue, SDValue>
7865 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7866                                     const BasicBlock *EHPadBB) {
7867   MCSymbol *BeginLabel = nullptr;
7868 
7869   if (EHPadBB) {
7870     // Both PendingLoads and PendingExports must be flushed here;
7871     // this call might not return.
7872     (void)getRoot();
7873     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7874     CLI.setChain(getRoot());
7875   }
7876 
7877   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7878   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7879 
7880   assert((CLI.IsTailCall || Result.second.getNode()) &&
7881          "Non-null chain expected with non-tail call!");
7882   assert((Result.second.getNode() || !Result.first.getNode()) &&
7883          "Null value expected with tail call!");
7884 
7885   if (!Result.second.getNode()) {
7886     // As a special case, a null chain means that a tail call has been emitted
7887     // and the DAG root is already updated.
7888     HasTailCall = true;
7889 
7890     // Since there's no actual continuation from this block, nothing can be
7891     // relying on us setting vregs for them.
7892     PendingExports.clear();
7893   } else {
7894     DAG.setRoot(Result.second);
7895   }
7896 
7897   if (EHPadBB) {
7898     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7899                            BeginLabel));
7900   }
7901 
7902   return Result;
7903 }
7904 
7905 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7906                                       bool isTailCall,
7907                                       bool isMustTailCall,
7908                                       const BasicBlock *EHPadBB) {
7909   auto &DL = DAG.getDataLayout();
7910   FunctionType *FTy = CB.getFunctionType();
7911   Type *RetTy = CB.getType();
7912 
7913   TargetLowering::ArgListTy Args;
7914   Args.reserve(CB.arg_size());
7915 
7916   const Value *SwiftErrorVal = nullptr;
7917   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7918 
7919   if (isTailCall) {
7920     // Avoid emitting tail calls in functions with the disable-tail-calls
7921     // attribute.
7922     auto *Caller = CB.getParent()->getParent();
7923     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7924         "true" && !isMustTailCall)
7925       isTailCall = false;
7926 
7927     // We can't tail call inside a function with a swifterror argument. Lowering
7928     // does not support this yet. It would have to move into the swifterror
7929     // register before the call.
7930     if (TLI.supportSwiftError() &&
7931         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7932       isTailCall = false;
7933   }
7934 
7935   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7936     TargetLowering::ArgListEntry Entry;
7937     const Value *V = *I;
7938 
7939     // Skip empty types
7940     if (V->getType()->isEmptyTy())
7941       continue;
7942 
7943     SDValue ArgNode = getValue(V);
7944     Entry.Node = ArgNode; Entry.Ty = V->getType();
7945 
7946     Entry.setAttributes(&CB, I - CB.arg_begin());
7947 
7948     // Use swifterror virtual register as input to the call.
7949     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7950       SwiftErrorVal = V;
7951       // We find the virtual register for the actual swifterror argument.
7952       // Instead of using the Value, we use the virtual register instead.
7953       Entry.Node =
7954           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7955                           EVT(TLI.getPointerTy(DL)));
7956     }
7957 
7958     Args.push_back(Entry);
7959 
7960     // If we have an explicit sret argument that is an Instruction, (i.e., it
7961     // might point to function-local memory), we can't meaningfully tail-call.
7962     if (Entry.IsSRet && isa<Instruction>(V))
7963       isTailCall = false;
7964   }
7965 
7966   // If call site has a cfguardtarget operand bundle, create and add an
7967   // additional ArgListEntry.
7968   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7969     TargetLowering::ArgListEntry Entry;
7970     Value *V = Bundle->Inputs[0];
7971     SDValue ArgNode = getValue(V);
7972     Entry.Node = ArgNode;
7973     Entry.Ty = V->getType();
7974     Entry.IsCFGuardTarget = true;
7975     Args.push_back(Entry);
7976   }
7977 
7978   // Check if target-independent constraints permit a tail call here.
7979   // Target-dependent constraints are checked within TLI->LowerCallTo.
7980   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7981     isTailCall = false;
7982 
7983   // Disable tail calls if there is an swifterror argument. Targets have not
7984   // been updated to support tail calls.
7985   if (TLI.supportSwiftError() && SwiftErrorVal)
7986     isTailCall = false;
7987 
7988   ConstantInt *CFIType = nullptr;
7989   if (CB.isIndirectCall()) {
7990     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7991       if (!TLI.supportKCFIBundles())
7992         report_fatal_error(
7993             "Target doesn't support calls with kcfi operand bundles.");
7994       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7995       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7996     }
7997   }
7998 
7999   TargetLowering::CallLoweringInfo CLI(DAG);
8000   CLI.setDebugLoc(getCurSDLoc())
8001       .setChain(getRoot())
8002       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8003       .setTailCall(isTailCall)
8004       .setConvergent(CB.isConvergent())
8005       .setIsPreallocated(
8006           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8007       .setCFIType(CFIType);
8008   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8009 
8010   if (Result.first.getNode()) {
8011     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8012     setValue(&CB, Result.first);
8013   }
8014 
8015   // The last element of CLI.InVals has the SDValue for swifterror return.
8016   // Here we copy it to a virtual register and update SwiftErrorMap for
8017   // book-keeping.
8018   if (SwiftErrorVal && TLI.supportSwiftError()) {
8019     // Get the last element of InVals.
8020     SDValue Src = CLI.InVals.back();
8021     Register VReg =
8022         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8023     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8024     DAG.setRoot(CopyNode);
8025   }
8026 }
8027 
8028 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8029                              SelectionDAGBuilder &Builder) {
8030   // Check to see if this load can be trivially constant folded, e.g. if the
8031   // input is from a string literal.
8032   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8033     // Cast pointer to the type we really want to load.
8034     Type *LoadTy =
8035         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8036     if (LoadVT.isVector())
8037       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8038 
8039     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8040                                          PointerType::getUnqual(LoadTy));
8041 
8042     if (const Constant *LoadCst =
8043             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8044                                          LoadTy, Builder.DAG.getDataLayout()))
8045       return Builder.getValue(LoadCst);
8046   }
8047 
8048   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8049   // still constant memory, the input chain can be the entry node.
8050   SDValue Root;
8051   bool ConstantMemory = false;
8052 
8053   // Do not serialize (non-volatile) loads of constant memory with anything.
8054   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8055     Root = Builder.DAG.getEntryNode();
8056     ConstantMemory = true;
8057   } else {
8058     // Do not serialize non-volatile loads against each other.
8059     Root = Builder.DAG.getRoot();
8060   }
8061 
8062   SDValue Ptr = Builder.getValue(PtrVal);
8063   SDValue LoadVal =
8064       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8065                           MachinePointerInfo(PtrVal), Align(1));
8066 
8067   if (!ConstantMemory)
8068     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8069   return LoadVal;
8070 }
8071 
8072 /// Record the value for an instruction that produces an integer result,
8073 /// converting the type where necessary.
8074 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8075                                                   SDValue Value,
8076                                                   bool IsSigned) {
8077   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8078                                                     I.getType(), true);
8079   if (IsSigned)
8080     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8081   else
8082     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8083   setValue(&I, Value);
8084 }
8085 
8086 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8087 /// true and lower it. Otherwise return false, and it will be lowered like a
8088 /// normal call.
8089 /// The caller already checked that \p I calls the appropriate LibFunc with a
8090 /// correct prototype.
8091 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8092   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8093   const Value *Size = I.getArgOperand(2);
8094   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8095   if (CSize && CSize->getZExtValue() == 0) {
8096     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8097                                                           I.getType(), true);
8098     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8099     return true;
8100   }
8101 
8102   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8103   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8104       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8105       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8106   if (Res.first.getNode()) {
8107     processIntegerCallValue(I, Res.first, true);
8108     PendingLoads.push_back(Res.second);
8109     return true;
8110   }
8111 
8112   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8113   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8114   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8115     return false;
8116 
8117   // If the target has a fast compare for the given size, it will return a
8118   // preferred load type for that size. Require that the load VT is legal and
8119   // that the target supports unaligned loads of that type. Otherwise, return
8120   // INVALID.
8121   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8122     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8123     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8124     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8125       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8126       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8127       // TODO: Check alignment of src and dest ptrs.
8128       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8129       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8130       if (!TLI.isTypeLegal(LVT) ||
8131           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8132           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8133         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8134     }
8135 
8136     return LVT;
8137   };
8138 
8139   // This turns into unaligned loads. We only do this if the target natively
8140   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8141   // we'll only produce a small number of byte loads.
8142   MVT LoadVT;
8143   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8144   switch (NumBitsToCompare) {
8145   default:
8146     return false;
8147   case 16:
8148     LoadVT = MVT::i16;
8149     break;
8150   case 32:
8151     LoadVT = MVT::i32;
8152     break;
8153   case 64:
8154   case 128:
8155   case 256:
8156     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8157     break;
8158   }
8159 
8160   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8161     return false;
8162 
8163   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8164   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8165 
8166   // Bitcast to a wide integer type if the loads are vectors.
8167   if (LoadVT.isVector()) {
8168     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8169     LoadL = DAG.getBitcast(CmpVT, LoadL);
8170     LoadR = DAG.getBitcast(CmpVT, LoadR);
8171   }
8172 
8173   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8174   processIntegerCallValue(I, Cmp, false);
8175   return true;
8176 }
8177 
8178 /// See if we can lower a memchr call into an optimized form. If so, return
8179 /// true and lower it. Otherwise return false, and it will be lowered like a
8180 /// normal call.
8181 /// The caller already checked that \p I calls the appropriate LibFunc with a
8182 /// correct prototype.
8183 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8184   const Value *Src = I.getArgOperand(0);
8185   const Value *Char = I.getArgOperand(1);
8186   const Value *Length = I.getArgOperand(2);
8187 
8188   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8189   std::pair<SDValue, SDValue> Res =
8190     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8191                                 getValue(Src), getValue(Char), getValue(Length),
8192                                 MachinePointerInfo(Src));
8193   if (Res.first.getNode()) {
8194     setValue(&I, Res.first);
8195     PendingLoads.push_back(Res.second);
8196     return true;
8197   }
8198 
8199   return false;
8200 }
8201 
8202 /// See if we can lower a mempcpy call into an optimized form. If so, return
8203 /// true and lower it. Otherwise return false, and it will be lowered like a
8204 /// normal call.
8205 /// The caller already checked that \p I calls the appropriate LibFunc with a
8206 /// correct prototype.
8207 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8208   SDValue Dst = getValue(I.getArgOperand(0));
8209   SDValue Src = getValue(I.getArgOperand(1));
8210   SDValue Size = getValue(I.getArgOperand(2));
8211 
8212   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8213   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8214   // DAG::getMemcpy needs Alignment to be defined.
8215   Align Alignment = std::min(DstAlign, SrcAlign);
8216 
8217   bool isVol = false;
8218   SDLoc sdl = getCurSDLoc();
8219 
8220   // In the mempcpy context we need to pass in a false value for isTailCall
8221   // because the return pointer needs to be adjusted by the size of
8222   // the copied memory.
8223   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8224   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8225                              /*isTailCall=*/false,
8226                              MachinePointerInfo(I.getArgOperand(0)),
8227                              MachinePointerInfo(I.getArgOperand(1)),
8228                              I.getAAMetadata());
8229   assert(MC.getNode() != nullptr &&
8230          "** memcpy should not be lowered as TailCall in mempcpy context **");
8231   DAG.setRoot(MC);
8232 
8233   // Check if Size needs to be truncated or extended.
8234   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8235 
8236   // Adjust return pointer to point just past the last dst byte.
8237   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8238                                     Dst, Size);
8239   setValue(&I, DstPlusSize);
8240   return true;
8241 }
8242 
8243 /// See if we can lower a strcpy call into an optimized form.  If so, return
8244 /// true and lower it, otherwise return false and it will be lowered like a
8245 /// normal call.
8246 /// The caller already checked that \p I calls the appropriate LibFunc with a
8247 /// correct prototype.
8248 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8249   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8250 
8251   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8252   std::pair<SDValue, SDValue> Res =
8253     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8254                                 getValue(Arg0), getValue(Arg1),
8255                                 MachinePointerInfo(Arg0),
8256                                 MachinePointerInfo(Arg1), isStpcpy);
8257   if (Res.first.getNode()) {
8258     setValue(&I, Res.first);
8259     DAG.setRoot(Res.second);
8260     return true;
8261   }
8262 
8263   return false;
8264 }
8265 
8266 /// See if we can lower a strcmp call into an optimized form.  If so, return
8267 /// true and lower it, otherwise return false and it will be lowered like a
8268 /// normal call.
8269 /// The caller already checked that \p I calls the appropriate LibFunc with a
8270 /// correct prototype.
8271 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8272   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8273 
8274   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8275   std::pair<SDValue, SDValue> Res =
8276     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8277                                 getValue(Arg0), getValue(Arg1),
8278                                 MachinePointerInfo(Arg0),
8279                                 MachinePointerInfo(Arg1));
8280   if (Res.first.getNode()) {
8281     processIntegerCallValue(I, Res.first, true);
8282     PendingLoads.push_back(Res.second);
8283     return true;
8284   }
8285 
8286   return false;
8287 }
8288 
8289 /// See if we can lower a strlen call into an optimized form.  If so, return
8290 /// true and lower it, otherwise return false and it will be lowered like a
8291 /// normal call.
8292 /// The caller already checked that \p I calls the appropriate LibFunc with a
8293 /// correct prototype.
8294 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8295   const Value *Arg0 = I.getArgOperand(0);
8296 
8297   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8298   std::pair<SDValue, SDValue> Res =
8299     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8300                                 getValue(Arg0), MachinePointerInfo(Arg0));
8301   if (Res.first.getNode()) {
8302     processIntegerCallValue(I, Res.first, false);
8303     PendingLoads.push_back(Res.second);
8304     return true;
8305   }
8306 
8307   return false;
8308 }
8309 
8310 /// See if we can lower a strnlen call into an optimized form.  If so, return
8311 /// true and lower it, otherwise return false and it will be lowered like a
8312 /// normal call.
8313 /// The caller already checked that \p I calls the appropriate LibFunc with a
8314 /// correct prototype.
8315 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8316   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8317 
8318   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8319   std::pair<SDValue, SDValue> Res =
8320     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8321                                  getValue(Arg0), getValue(Arg1),
8322                                  MachinePointerInfo(Arg0));
8323   if (Res.first.getNode()) {
8324     processIntegerCallValue(I, Res.first, false);
8325     PendingLoads.push_back(Res.second);
8326     return true;
8327   }
8328 
8329   return false;
8330 }
8331 
8332 /// See if we can lower a unary floating-point operation into an SDNode with
8333 /// the specified Opcode.  If so, return true and lower it, otherwise return
8334 /// false and it will be lowered like a normal call.
8335 /// The caller already checked that \p I calls the appropriate LibFunc with a
8336 /// correct prototype.
8337 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8338                                               unsigned Opcode) {
8339   // We already checked this call's prototype; verify it doesn't modify errno.
8340   if (!I.onlyReadsMemory())
8341     return false;
8342 
8343   SDNodeFlags Flags;
8344   Flags.copyFMF(cast<FPMathOperator>(I));
8345 
8346   SDValue Tmp = getValue(I.getArgOperand(0));
8347   setValue(&I,
8348            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8349   return true;
8350 }
8351 
8352 /// See if we can lower a binary floating-point operation into an SDNode with
8353 /// the specified Opcode. If so, return true and lower it. Otherwise return
8354 /// false, and it will be lowered like a normal call.
8355 /// The caller already checked that \p I calls the appropriate LibFunc with a
8356 /// correct prototype.
8357 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8358                                                unsigned Opcode) {
8359   // We already checked this call's prototype; verify it doesn't modify errno.
8360   if (!I.onlyReadsMemory())
8361     return false;
8362 
8363   SDNodeFlags Flags;
8364   Flags.copyFMF(cast<FPMathOperator>(I));
8365 
8366   SDValue Tmp0 = getValue(I.getArgOperand(0));
8367   SDValue Tmp1 = getValue(I.getArgOperand(1));
8368   EVT VT = Tmp0.getValueType();
8369   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8370   return true;
8371 }
8372 
8373 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8374   // Handle inline assembly differently.
8375   if (I.isInlineAsm()) {
8376     visitInlineAsm(I);
8377     return;
8378   }
8379 
8380   diagnoseDontCall(I);
8381 
8382   if (Function *F = I.getCalledFunction()) {
8383     if (F->isDeclaration()) {
8384       // Is this an LLVM intrinsic or a target-specific intrinsic?
8385       unsigned IID = F->getIntrinsicID();
8386       if (!IID)
8387         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8388           IID = II->getIntrinsicID(F);
8389 
8390       if (IID) {
8391         visitIntrinsicCall(I, IID);
8392         return;
8393       }
8394     }
8395 
8396     // Check for well-known libc/libm calls.  If the function is internal, it
8397     // can't be a library call.  Don't do the check if marked as nobuiltin for
8398     // some reason or the call site requires strict floating point semantics.
8399     LibFunc Func;
8400     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8401         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8402         LibInfo->hasOptimizedCodeGen(Func)) {
8403       switch (Func) {
8404       default: break;
8405       case LibFunc_bcmp:
8406         if (visitMemCmpBCmpCall(I))
8407           return;
8408         break;
8409       case LibFunc_copysign:
8410       case LibFunc_copysignf:
8411       case LibFunc_copysignl:
8412         // We already checked this call's prototype; verify it doesn't modify
8413         // errno.
8414         if (I.onlyReadsMemory()) {
8415           SDValue LHS = getValue(I.getArgOperand(0));
8416           SDValue RHS = getValue(I.getArgOperand(1));
8417           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8418                                    LHS.getValueType(), LHS, RHS));
8419           return;
8420         }
8421         break;
8422       case LibFunc_fabs:
8423       case LibFunc_fabsf:
8424       case LibFunc_fabsl:
8425         if (visitUnaryFloatCall(I, ISD::FABS))
8426           return;
8427         break;
8428       case LibFunc_fmin:
8429       case LibFunc_fminf:
8430       case LibFunc_fminl:
8431         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8432           return;
8433         break;
8434       case LibFunc_fmax:
8435       case LibFunc_fmaxf:
8436       case LibFunc_fmaxl:
8437         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8438           return;
8439         break;
8440       case LibFunc_sin:
8441       case LibFunc_sinf:
8442       case LibFunc_sinl:
8443         if (visitUnaryFloatCall(I, ISD::FSIN))
8444           return;
8445         break;
8446       case LibFunc_cos:
8447       case LibFunc_cosf:
8448       case LibFunc_cosl:
8449         if (visitUnaryFloatCall(I, ISD::FCOS))
8450           return;
8451         break;
8452       case LibFunc_sqrt:
8453       case LibFunc_sqrtf:
8454       case LibFunc_sqrtl:
8455       case LibFunc_sqrt_finite:
8456       case LibFunc_sqrtf_finite:
8457       case LibFunc_sqrtl_finite:
8458         if (visitUnaryFloatCall(I, ISD::FSQRT))
8459           return;
8460         break;
8461       case LibFunc_floor:
8462       case LibFunc_floorf:
8463       case LibFunc_floorl:
8464         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8465           return;
8466         break;
8467       case LibFunc_nearbyint:
8468       case LibFunc_nearbyintf:
8469       case LibFunc_nearbyintl:
8470         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8471           return;
8472         break;
8473       case LibFunc_ceil:
8474       case LibFunc_ceilf:
8475       case LibFunc_ceill:
8476         if (visitUnaryFloatCall(I, ISD::FCEIL))
8477           return;
8478         break;
8479       case LibFunc_rint:
8480       case LibFunc_rintf:
8481       case LibFunc_rintl:
8482         if (visitUnaryFloatCall(I, ISD::FRINT))
8483           return;
8484         break;
8485       case LibFunc_round:
8486       case LibFunc_roundf:
8487       case LibFunc_roundl:
8488         if (visitUnaryFloatCall(I, ISD::FROUND))
8489           return;
8490         break;
8491       case LibFunc_trunc:
8492       case LibFunc_truncf:
8493       case LibFunc_truncl:
8494         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8495           return;
8496         break;
8497       case LibFunc_log2:
8498       case LibFunc_log2f:
8499       case LibFunc_log2l:
8500         if (visitUnaryFloatCall(I, ISD::FLOG2))
8501           return;
8502         break;
8503       case LibFunc_exp2:
8504       case LibFunc_exp2f:
8505       case LibFunc_exp2l:
8506         if (visitUnaryFloatCall(I, ISD::FEXP2))
8507           return;
8508         break;
8509       case LibFunc_memcmp:
8510         if (visitMemCmpBCmpCall(I))
8511           return;
8512         break;
8513       case LibFunc_mempcpy:
8514         if (visitMemPCpyCall(I))
8515           return;
8516         break;
8517       case LibFunc_memchr:
8518         if (visitMemChrCall(I))
8519           return;
8520         break;
8521       case LibFunc_strcpy:
8522         if (visitStrCpyCall(I, false))
8523           return;
8524         break;
8525       case LibFunc_stpcpy:
8526         if (visitStrCpyCall(I, true))
8527           return;
8528         break;
8529       case LibFunc_strcmp:
8530         if (visitStrCmpCall(I))
8531           return;
8532         break;
8533       case LibFunc_strlen:
8534         if (visitStrLenCall(I))
8535           return;
8536         break;
8537       case LibFunc_strnlen:
8538         if (visitStrNLenCall(I))
8539           return;
8540         break;
8541       }
8542     }
8543   }
8544 
8545   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8546   // have to do anything here to lower funclet bundles.
8547   // CFGuardTarget bundles are lowered in LowerCallTo.
8548   assert(!I.hasOperandBundlesOtherThan(
8549              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8550               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8551               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8552          "Cannot lower calls with arbitrary operand bundles!");
8553 
8554   SDValue Callee = getValue(I.getCalledOperand());
8555 
8556   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8557     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8558   else
8559     // Check if we can potentially perform a tail call. More detailed checking
8560     // is be done within LowerCallTo, after more information about the call is
8561     // known.
8562     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8563 }
8564 
8565 namespace {
8566 
8567 /// AsmOperandInfo - This contains information for each constraint that we are
8568 /// lowering.
8569 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8570 public:
8571   /// CallOperand - If this is the result output operand or a clobber
8572   /// this is null, otherwise it is the incoming operand to the CallInst.
8573   /// This gets modified as the asm is processed.
8574   SDValue CallOperand;
8575 
8576   /// AssignedRegs - If this is a register or register class operand, this
8577   /// contains the set of register corresponding to the operand.
8578   RegsForValue AssignedRegs;
8579 
8580   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8581     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8582   }
8583 
8584   /// Whether or not this operand accesses memory
8585   bool hasMemory(const TargetLowering &TLI) const {
8586     // Indirect operand accesses access memory.
8587     if (isIndirect)
8588       return true;
8589 
8590     for (const auto &Code : Codes)
8591       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8592         return true;
8593 
8594     return false;
8595   }
8596 };
8597 
8598 
8599 } // end anonymous namespace
8600 
8601 /// Make sure that the output operand \p OpInfo and its corresponding input
8602 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8603 /// out).
8604 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8605                                SDISelAsmOperandInfo &MatchingOpInfo,
8606                                SelectionDAG &DAG) {
8607   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8608     return;
8609 
8610   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8611   const auto &TLI = DAG.getTargetLoweringInfo();
8612 
8613   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8614       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8615                                        OpInfo.ConstraintVT);
8616   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8617       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8618                                        MatchingOpInfo.ConstraintVT);
8619   if ((OpInfo.ConstraintVT.isInteger() !=
8620        MatchingOpInfo.ConstraintVT.isInteger()) ||
8621       (MatchRC.second != InputRC.second)) {
8622     // FIXME: error out in a more elegant fashion
8623     report_fatal_error("Unsupported asm: input constraint"
8624                        " with a matching output constraint of"
8625                        " incompatible type!");
8626   }
8627   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8628 }
8629 
8630 /// Get a direct memory input to behave well as an indirect operand.
8631 /// This may introduce stores, hence the need for a \p Chain.
8632 /// \return The (possibly updated) chain.
8633 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8634                                         SDISelAsmOperandInfo &OpInfo,
8635                                         SelectionDAG &DAG) {
8636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8637 
8638   // If we don't have an indirect input, put it in the constpool if we can,
8639   // otherwise spill it to a stack slot.
8640   // TODO: This isn't quite right. We need to handle these according to
8641   // the addressing mode that the constraint wants. Also, this may take
8642   // an additional register for the computation and we don't want that
8643   // either.
8644 
8645   // If the operand is a float, integer, or vector constant, spill to a
8646   // constant pool entry to get its address.
8647   const Value *OpVal = OpInfo.CallOperandVal;
8648   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8649       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8650     OpInfo.CallOperand = DAG.getConstantPool(
8651         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8652     return Chain;
8653   }
8654 
8655   // Otherwise, create a stack slot and emit a store to it before the asm.
8656   Type *Ty = OpVal->getType();
8657   auto &DL = DAG.getDataLayout();
8658   uint64_t TySize = DL.getTypeAllocSize(Ty);
8659   MachineFunction &MF = DAG.getMachineFunction();
8660   int SSFI = MF.getFrameInfo().CreateStackObject(
8661       TySize, DL.getPrefTypeAlign(Ty), false);
8662   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8663   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8664                             MachinePointerInfo::getFixedStack(MF, SSFI),
8665                             TLI.getMemValueType(DL, Ty));
8666   OpInfo.CallOperand = StackSlot;
8667 
8668   return Chain;
8669 }
8670 
8671 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8672 /// specified operand.  We prefer to assign virtual registers, to allow the
8673 /// register allocator to handle the assignment process.  However, if the asm
8674 /// uses features that we can't model on machineinstrs, we have SDISel do the
8675 /// allocation.  This produces generally horrible, but correct, code.
8676 ///
8677 ///   OpInfo describes the operand
8678 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8679 static std::optional<unsigned>
8680 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8681                      SDISelAsmOperandInfo &OpInfo,
8682                      SDISelAsmOperandInfo &RefOpInfo) {
8683   LLVMContext &Context = *DAG.getContext();
8684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8685 
8686   MachineFunction &MF = DAG.getMachineFunction();
8687   SmallVector<unsigned, 4> Regs;
8688   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8689 
8690   // No work to do for memory/address operands.
8691   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8692       OpInfo.ConstraintType == TargetLowering::C_Address)
8693     return std::nullopt;
8694 
8695   // If this is a constraint for a single physreg, or a constraint for a
8696   // register class, find it.
8697   unsigned AssignedReg;
8698   const TargetRegisterClass *RC;
8699   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8700       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8701   // RC is unset only on failure. Return immediately.
8702   if (!RC)
8703     return std::nullopt;
8704 
8705   // Get the actual register value type.  This is important, because the user
8706   // may have asked for (e.g.) the AX register in i32 type.  We need to
8707   // remember that AX is actually i16 to get the right extension.
8708   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8709 
8710   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8711     // If this is an FP operand in an integer register (or visa versa), or more
8712     // generally if the operand value disagrees with the register class we plan
8713     // to stick it in, fix the operand type.
8714     //
8715     // If this is an input value, the bitcast to the new type is done now.
8716     // Bitcast for output value is done at the end of visitInlineAsm().
8717     if ((OpInfo.Type == InlineAsm::isOutput ||
8718          OpInfo.Type == InlineAsm::isInput) &&
8719         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8720       // Try to convert to the first EVT that the reg class contains.  If the
8721       // types are identical size, use a bitcast to convert (e.g. two differing
8722       // vector types).  Note: output bitcast is done at the end of
8723       // visitInlineAsm().
8724       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8725         // Exclude indirect inputs while they are unsupported because the code
8726         // to perform the load is missing and thus OpInfo.CallOperand still
8727         // refers to the input address rather than the pointed-to value.
8728         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8729           OpInfo.CallOperand =
8730               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8731         OpInfo.ConstraintVT = RegVT;
8732         // If the operand is an FP value and we want it in integer registers,
8733         // use the corresponding integer type. This turns an f64 value into
8734         // i64, which can be passed with two i32 values on a 32-bit machine.
8735       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8736         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8737         if (OpInfo.Type == InlineAsm::isInput)
8738           OpInfo.CallOperand =
8739               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8740         OpInfo.ConstraintVT = VT;
8741       }
8742     }
8743   }
8744 
8745   // No need to allocate a matching input constraint since the constraint it's
8746   // matching to has already been allocated.
8747   if (OpInfo.isMatchingInputConstraint())
8748     return std::nullopt;
8749 
8750   EVT ValueVT = OpInfo.ConstraintVT;
8751   if (OpInfo.ConstraintVT == MVT::Other)
8752     ValueVT = RegVT;
8753 
8754   // Initialize NumRegs.
8755   unsigned NumRegs = 1;
8756   if (OpInfo.ConstraintVT != MVT::Other)
8757     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8758 
8759   // If this is a constraint for a specific physical register, like {r17},
8760   // assign it now.
8761 
8762   // If this associated to a specific register, initialize iterator to correct
8763   // place. If virtual, make sure we have enough registers
8764 
8765   // Initialize iterator if necessary
8766   TargetRegisterClass::iterator I = RC->begin();
8767   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8768 
8769   // Do not check for single registers.
8770   if (AssignedReg) {
8771     I = std::find(I, RC->end(), AssignedReg);
8772     if (I == RC->end()) {
8773       // RC does not contain the selected register, which indicates a
8774       // mismatch between the register and the required type/bitwidth.
8775       return {AssignedReg};
8776     }
8777   }
8778 
8779   for (; NumRegs; --NumRegs, ++I) {
8780     assert(I != RC->end() && "Ran out of registers to allocate!");
8781     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8782     Regs.push_back(R);
8783   }
8784 
8785   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8786   return std::nullopt;
8787 }
8788 
8789 static unsigned
8790 findMatchingInlineAsmOperand(unsigned OperandNo,
8791                              const std::vector<SDValue> &AsmNodeOperands) {
8792   // Scan until we find the definition we already emitted of this operand.
8793   unsigned CurOp = InlineAsm::Op_FirstOperand;
8794   for (; OperandNo; --OperandNo) {
8795     // Advance to the next operand.
8796     unsigned OpFlag =
8797         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8798     assert((InlineAsm::isRegDefKind(OpFlag) ||
8799             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8800             InlineAsm::isMemKind(OpFlag)) &&
8801            "Skipped past definitions?");
8802     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8803   }
8804   return CurOp;
8805 }
8806 
8807 namespace {
8808 
8809 class ExtraFlags {
8810   unsigned Flags = 0;
8811 
8812 public:
8813   explicit ExtraFlags(const CallBase &Call) {
8814     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8815     if (IA->hasSideEffects())
8816       Flags |= InlineAsm::Extra_HasSideEffects;
8817     if (IA->isAlignStack())
8818       Flags |= InlineAsm::Extra_IsAlignStack;
8819     if (Call.isConvergent())
8820       Flags |= InlineAsm::Extra_IsConvergent;
8821     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8822   }
8823 
8824   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8825     // Ideally, we would only check against memory constraints.  However, the
8826     // meaning of an Other constraint can be target-specific and we can't easily
8827     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8828     // for Other constraints as well.
8829     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8830         OpInfo.ConstraintType == TargetLowering::C_Other) {
8831       if (OpInfo.Type == InlineAsm::isInput)
8832         Flags |= InlineAsm::Extra_MayLoad;
8833       else if (OpInfo.Type == InlineAsm::isOutput)
8834         Flags |= InlineAsm::Extra_MayStore;
8835       else if (OpInfo.Type == InlineAsm::isClobber)
8836         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8837     }
8838   }
8839 
8840   unsigned get() const { return Flags; }
8841 };
8842 
8843 } // end anonymous namespace
8844 
8845 static bool isFunction(SDValue Op) {
8846   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8847     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8848       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8849 
8850       // In normal "call dllimport func" instruction (non-inlineasm) it force
8851       // indirect access by specifing call opcode. And usually specially print
8852       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8853       // not do in this way now. (In fact, this is similar with "Data Access"
8854       // action). So here we ignore dllimport function.
8855       if (Fn && !Fn->hasDLLImportStorageClass())
8856         return true;
8857     }
8858   }
8859   return false;
8860 }
8861 
8862 /// visitInlineAsm - Handle a call to an InlineAsm object.
8863 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8864                                          const BasicBlock *EHPadBB) {
8865   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8866 
8867   /// ConstraintOperands - Information about all of the constraints.
8868   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8869 
8870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8871   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8872       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8873 
8874   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8875   // AsmDialect, MayLoad, MayStore).
8876   bool HasSideEffect = IA->hasSideEffects();
8877   ExtraFlags ExtraInfo(Call);
8878 
8879   for (auto &T : TargetConstraints) {
8880     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8881     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8882 
8883     if (OpInfo.CallOperandVal)
8884       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8885 
8886     if (!HasSideEffect)
8887       HasSideEffect = OpInfo.hasMemory(TLI);
8888 
8889     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8890     // FIXME: Could we compute this on OpInfo rather than T?
8891 
8892     // Compute the constraint code and ConstraintType to use.
8893     TLI.ComputeConstraintToUse(T, SDValue());
8894 
8895     if (T.ConstraintType == TargetLowering::C_Immediate &&
8896         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8897       // We've delayed emitting a diagnostic like the "n" constraint because
8898       // inlining could cause an integer showing up.
8899       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8900                                           "' expects an integer constant "
8901                                           "expression");
8902 
8903     ExtraInfo.update(T);
8904   }
8905 
8906   // We won't need to flush pending loads if this asm doesn't touch
8907   // memory and is nonvolatile.
8908   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8909 
8910   bool EmitEHLabels = isa<InvokeInst>(Call);
8911   if (EmitEHLabels) {
8912     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8913   }
8914   bool IsCallBr = isa<CallBrInst>(Call);
8915 
8916   if (IsCallBr || EmitEHLabels) {
8917     // If this is a callbr or invoke we need to flush pending exports since
8918     // inlineasm_br and invoke are terminators.
8919     // We need to do this before nodes are glued to the inlineasm_br node.
8920     Chain = getControlRoot();
8921   }
8922 
8923   MCSymbol *BeginLabel = nullptr;
8924   if (EmitEHLabels) {
8925     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8926   }
8927 
8928   int OpNo = -1;
8929   SmallVector<StringRef> AsmStrs;
8930   IA->collectAsmStrs(AsmStrs);
8931 
8932   // Second pass over the constraints: compute which constraint option to use.
8933   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8934     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8935       OpNo++;
8936 
8937     // If this is an output operand with a matching input operand, look up the
8938     // matching input. If their types mismatch, e.g. one is an integer, the
8939     // other is floating point, or their sizes are different, flag it as an
8940     // error.
8941     if (OpInfo.hasMatchingInput()) {
8942       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8943       patchMatchingInput(OpInfo, Input, DAG);
8944     }
8945 
8946     // Compute the constraint code and ConstraintType to use.
8947     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8948 
8949     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8950          OpInfo.Type == InlineAsm::isClobber) ||
8951         OpInfo.ConstraintType == TargetLowering::C_Address)
8952       continue;
8953 
8954     // In Linux PIC model, there are 4 cases about value/label addressing:
8955     //
8956     // 1: Function call or Label jmp inside the module.
8957     // 2: Data access (such as global variable, static variable) inside module.
8958     // 3: Function call or Label jmp outside the module.
8959     // 4: Data access (such as global variable) outside the module.
8960     //
8961     // Due to current llvm inline asm architecture designed to not "recognize"
8962     // the asm code, there are quite troubles for us to treat mem addressing
8963     // differently for same value/adress used in different instuctions.
8964     // For example, in pic model, call a func may in plt way or direclty
8965     // pc-related, but lea/mov a function adress may use got.
8966     //
8967     // Here we try to "recognize" function call for the case 1 and case 3 in
8968     // inline asm. And try to adjust the constraint for them.
8969     //
8970     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8971     // label, so here we don't handle jmp function label now, but we need to
8972     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8973     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8974         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8975         TM.getCodeModel() != CodeModel::Large) {
8976       OpInfo.isIndirect = false;
8977       OpInfo.ConstraintType = TargetLowering::C_Address;
8978     }
8979 
8980     // If this is a memory input, and if the operand is not indirect, do what we
8981     // need to provide an address for the memory input.
8982     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8983         !OpInfo.isIndirect) {
8984       assert((OpInfo.isMultipleAlternative ||
8985               (OpInfo.Type == InlineAsm::isInput)) &&
8986              "Can only indirectify direct input operands!");
8987 
8988       // Memory operands really want the address of the value.
8989       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8990 
8991       // There is no longer a Value* corresponding to this operand.
8992       OpInfo.CallOperandVal = nullptr;
8993 
8994       // It is now an indirect operand.
8995       OpInfo.isIndirect = true;
8996     }
8997 
8998   }
8999 
9000   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9001   std::vector<SDValue> AsmNodeOperands;
9002   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9003   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9004       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9005 
9006   // If we have a !srcloc metadata node associated with it, we want to attach
9007   // this to the ultimately generated inline asm machineinstr.  To do this, we
9008   // pass in the third operand as this (potentially null) inline asm MDNode.
9009   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9010   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9011 
9012   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9013   // bits as operand 3.
9014   AsmNodeOperands.push_back(DAG.getTargetConstant(
9015       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9016 
9017   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9018   // this, assign virtual and physical registers for inputs and otput.
9019   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9020     // Assign Registers.
9021     SDISelAsmOperandInfo &RefOpInfo =
9022         OpInfo.isMatchingInputConstraint()
9023             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9024             : OpInfo;
9025     const auto RegError =
9026         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9027     if (RegError) {
9028       const MachineFunction &MF = DAG.getMachineFunction();
9029       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9030       const char *RegName = TRI.getName(*RegError);
9031       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9032                                    "' allocated for constraint '" +
9033                                    Twine(OpInfo.ConstraintCode) +
9034                                    "' does not match required type");
9035       return;
9036     }
9037 
9038     auto DetectWriteToReservedRegister = [&]() {
9039       const MachineFunction &MF = DAG.getMachineFunction();
9040       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9041       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9042         if (Register::isPhysicalRegister(Reg) &&
9043             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9044           const char *RegName = TRI.getName(Reg);
9045           emitInlineAsmError(Call, "write to reserved register '" +
9046                                        Twine(RegName) + "'");
9047           return true;
9048         }
9049       }
9050       return false;
9051     };
9052     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9053             (OpInfo.Type == InlineAsm::isInput &&
9054              !OpInfo.isMatchingInputConstraint())) &&
9055            "Only address as input operand is allowed.");
9056 
9057     switch (OpInfo.Type) {
9058     case InlineAsm::isOutput:
9059       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9060         unsigned ConstraintID =
9061             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9062         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9063                "Failed to convert memory constraint code to constraint id.");
9064 
9065         // Add information to the INLINEASM node to know about this output.
9066         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9067         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9068         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9069                                                         MVT::i32));
9070         AsmNodeOperands.push_back(OpInfo.CallOperand);
9071       } else {
9072         // Otherwise, this outputs to a register (directly for C_Register /
9073         // C_RegisterClass, and a target-defined fashion for
9074         // C_Immediate/C_Other). Find a register that we can use.
9075         if (OpInfo.AssignedRegs.Regs.empty()) {
9076           emitInlineAsmError(
9077               Call, "couldn't allocate output register for constraint '" +
9078                         Twine(OpInfo.ConstraintCode) + "'");
9079           return;
9080         }
9081 
9082         if (DetectWriteToReservedRegister())
9083           return;
9084 
9085         // Add information to the INLINEASM node to know that this register is
9086         // set.
9087         OpInfo.AssignedRegs.AddInlineAsmOperands(
9088             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9089                                   : InlineAsm::Kind_RegDef,
9090             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9091       }
9092       break;
9093 
9094     case InlineAsm::isInput:
9095     case InlineAsm::isLabel: {
9096       SDValue InOperandVal = OpInfo.CallOperand;
9097 
9098       if (OpInfo.isMatchingInputConstraint()) {
9099         // If this is required to match an output register we have already set,
9100         // just use its register.
9101         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9102                                                   AsmNodeOperands);
9103         unsigned OpFlag =
9104           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9105         if (InlineAsm::isRegDefKind(OpFlag) ||
9106             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9107           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9108           if (OpInfo.isIndirect) {
9109             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9110             emitInlineAsmError(Call, "inline asm not supported yet: "
9111                                      "don't know how to handle tied "
9112                                      "indirect register inputs");
9113             return;
9114           }
9115 
9116           SmallVector<unsigned, 4> Regs;
9117           MachineFunction &MF = DAG.getMachineFunction();
9118           MachineRegisterInfo &MRI = MF.getRegInfo();
9119           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9120           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9121           Register TiedReg = R->getReg();
9122           MVT RegVT = R->getSimpleValueType(0);
9123           const TargetRegisterClass *RC =
9124               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9125               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9126                                       : TRI.getMinimalPhysRegClass(TiedReg);
9127           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9128           for (unsigned i = 0; i != NumRegs; ++i)
9129             Regs.push_back(MRI.createVirtualRegister(RC));
9130 
9131           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9132 
9133           SDLoc dl = getCurSDLoc();
9134           // Use the produced MatchedRegs object to
9135           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
9136           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9137                                            true, OpInfo.getMatchedOperand(), dl,
9138                                            DAG, AsmNodeOperands);
9139           break;
9140         }
9141 
9142         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9143         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9144                "Unexpected number of operands");
9145         // Add information to the INLINEASM node to know about this input.
9146         // See InlineAsm.h isUseOperandTiedToDef.
9147         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9148         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9149                                                     OpInfo.getMatchedOperand());
9150         AsmNodeOperands.push_back(DAG.getTargetConstant(
9151             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9152         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9153         break;
9154       }
9155 
9156       // Treat indirect 'X' constraint as memory.
9157       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9158           OpInfo.isIndirect)
9159         OpInfo.ConstraintType = TargetLowering::C_Memory;
9160 
9161       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9162           OpInfo.ConstraintType == TargetLowering::C_Other) {
9163         std::vector<SDValue> Ops;
9164         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9165                                           Ops, DAG);
9166         if (Ops.empty()) {
9167           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9168             if (isa<ConstantSDNode>(InOperandVal)) {
9169               emitInlineAsmError(Call, "value out of range for constraint '" +
9170                                            Twine(OpInfo.ConstraintCode) + "'");
9171               return;
9172             }
9173 
9174           emitInlineAsmError(Call,
9175                              "invalid operand for inline asm constraint '" +
9176                                  Twine(OpInfo.ConstraintCode) + "'");
9177           return;
9178         }
9179 
9180         // Add information to the INLINEASM node to know about this input.
9181         unsigned ResOpType =
9182           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9183         AsmNodeOperands.push_back(DAG.getTargetConstant(
9184             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9185         llvm::append_range(AsmNodeOperands, Ops);
9186         break;
9187       }
9188 
9189       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9190         assert((OpInfo.isIndirect ||
9191                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9192                "Operand must be indirect to be a mem!");
9193         assert(InOperandVal.getValueType() ==
9194                    TLI.getPointerTy(DAG.getDataLayout()) &&
9195                "Memory operands expect pointer values");
9196 
9197         unsigned ConstraintID =
9198             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9199         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9200                "Failed to convert memory constraint code to constraint id.");
9201 
9202         // Add information to the INLINEASM node to know about this input.
9203         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9204         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9205         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9206                                                         getCurSDLoc(),
9207                                                         MVT::i32));
9208         AsmNodeOperands.push_back(InOperandVal);
9209         break;
9210       }
9211 
9212       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9213         assert(InOperandVal.getValueType() ==
9214                    TLI.getPointerTy(DAG.getDataLayout()) &&
9215                "Address operands expect pointer values");
9216 
9217         unsigned ConstraintID =
9218             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9219         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9220                "Failed to convert memory constraint code to constraint id.");
9221 
9222         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9223 
9224         SDValue AsmOp = InOperandVal;
9225         if (isFunction(InOperandVal)) {
9226           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9227           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9228           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9229                                              InOperandVal.getValueType(),
9230                                              GA->getOffset());
9231         }
9232 
9233         // Add information to the INLINEASM node to know about this input.
9234         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9235 
9236         AsmNodeOperands.push_back(
9237             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9238 
9239         AsmNodeOperands.push_back(AsmOp);
9240         break;
9241       }
9242 
9243       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9244               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9245              "Unknown constraint type!");
9246 
9247       // TODO: Support this.
9248       if (OpInfo.isIndirect) {
9249         emitInlineAsmError(
9250             Call, "Don't know how to handle indirect register inputs yet "
9251                   "for constraint '" +
9252                       Twine(OpInfo.ConstraintCode) + "'");
9253         return;
9254       }
9255 
9256       // Copy the input into the appropriate registers.
9257       if (OpInfo.AssignedRegs.Regs.empty()) {
9258         emitInlineAsmError(Call,
9259                            "couldn't allocate input reg for constraint '" +
9260                                Twine(OpInfo.ConstraintCode) + "'");
9261         return;
9262       }
9263 
9264       if (DetectWriteToReservedRegister())
9265         return;
9266 
9267       SDLoc dl = getCurSDLoc();
9268 
9269       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9270                                         &Call);
9271 
9272       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9273                                                dl, DAG, AsmNodeOperands);
9274       break;
9275     }
9276     case InlineAsm::isClobber:
9277       // Add the clobbered value to the operand list, so that the register
9278       // allocator is aware that the physreg got clobbered.
9279       if (!OpInfo.AssignedRegs.Regs.empty())
9280         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9281                                                  false, 0, getCurSDLoc(), DAG,
9282                                                  AsmNodeOperands);
9283       break;
9284     }
9285   }
9286 
9287   // Finish up input operands.  Set the input chain and add the flag last.
9288   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9289   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9290 
9291   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9292   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9293                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9294   Flag = Chain.getValue(1);
9295 
9296   // Do additional work to generate outputs.
9297 
9298   SmallVector<EVT, 1> ResultVTs;
9299   SmallVector<SDValue, 1> ResultValues;
9300   SmallVector<SDValue, 8> OutChains;
9301 
9302   llvm::Type *CallResultType = Call.getType();
9303   ArrayRef<Type *> ResultTypes;
9304   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9305     ResultTypes = StructResult->elements();
9306   else if (!CallResultType->isVoidTy())
9307     ResultTypes = ArrayRef(CallResultType);
9308 
9309   auto CurResultType = ResultTypes.begin();
9310   auto handleRegAssign = [&](SDValue V) {
9311     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9312     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9313     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9314     ++CurResultType;
9315     // If the type of the inline asm call site return value is different but has
9316     // same size as the type of the asm output bitcast it.  One example of this
9317     // is for vectors with different width / number of elements.  This can
9318     // happen for register classes that can contain multiple different value
9319     // types.  The preg or vreg allocated may not have the same VT as was
9320     // expected.
9321     //
9322     // This can also happen for a return value that disagrees with the register
9323     // class it is put in, eg. a double in a general-purpose register on a
9324     // 32-bit machine.
9325     if (ResultVT != V.getValueType() &&
9326         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9327       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9328     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9329              V.getValueType().isInteger()) {
9330       // If a result value was tied to an input value, the computed result
9331       // may have a wider width than the expected result.  Extract the
9332       // relevant portion.
9333       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9334     }
9335     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9336     ResultVTs.push_back(ResultVT);
9337     ResultValues.push_back(V);
9338   };
9339 
9340   // Deal with output operands.
9341   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9342     if (OpInfo.Type == InlineAsm::isOutput) {
9343       SDValue Val;
9344       // Skip trivial output operands.
9345       if (OpInfo.AssignedRegs.Regs.empty())
9346         continue;
9347 
9348       switch (OpInfo.ConstraintType) {
9349       case TargetLowering::C_Register:
9350       case TargetLowering::C_RegisterClass:
9351         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9352                                                   Chain, &Flag, &Call);
9353         break;
9354       case TargetLowering::C_Immediate:
9355       case TargetLowering::C_Other:
9356         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9357                                               OpInfo, DAG);
9358         break;
9359       case TargetLowering::C_Memory:
9360         break; // Already handled.
9361       case TargetLowering::C_Address:
9362         break; // Silence warning.
9363       case TargetLowering::C_Unknown:
9364         assert(false && "Unexpected unknown constraint");
9365       }
9366 
9367       // Indirect output manifest as stores. Record output chains.
9368       if (OpInfo.isIndirect) {
9369         const Value *Ptr = OpInfo.CallOperandVal;
9370         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9371         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9372                                      MachinePointerInfo(Ptr));
9373         OutChains.push_back(Store);
9374       } else {
9375         // generate CopyFromRegs to associated registers.
9376         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9377         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9378           for (const SDValue &V : Val->op_values())
9379             handleRegAssign(V);
9380         } else
9381           handleRegAssign(Val);
9382       }
9383     }
9384   }
9385 
9386   // Set results.
9387   if (!ResultValues.empty()) {
9388     assert(CurResultType == ResultTypes.end() &&
9389            "Mismatch in number of ResultTypes");
9390     assert(ResultValues.size() == ResultTypes.size() &&
9391            "Mismatch in number of output operands in asm result");
9392 
9393     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9394                             DAG.getVTList(ResultVTs), ResultValues);
9395     setValue(&Call, V);
9396   }
9397 
9398   // Collect store chains.
9399   if (!OutChains.empty())
9400     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9401 
9402   if (EmitEHLabels) {
9403     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9404   }
9405 
9406   // Only Update Root if inline assembly has a memory effect.
9407   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9408       EmitEHLabels)
9409     DAG.setRoot(Chain);
9410 }
9411 
9412 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9413                                              const Twine &Message) {
9414   LLVMContext &Ctx = *DAG.getContext();
9415   Ctx.emitError(&Call, Message);
9416 
9417   // Make sure we leave the DAG in a valid state
9418   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9419   SmallVector<EVT, 1> ValueVTs;
9420   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9421 
9422   if (ValueVTs.empty())
9423     return;
9424 
9425   SmallVector<SDValue, 1> Ops;
9426   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9427     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9428 
9429   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9430 }
9431 
9432 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9433   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9434                           MVT::Other, getRoot(),
9435                           getValue(I.getArgOperand(0)),
9436                           DAG.getSrcValue(I.getArgOperand(0))));
9437 }
9438 
9439 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9441   const DataLayout &DL = DAG.getDataLayout();
9442   SDValue V = DAG.getVAArg(
9443       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9444       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9445       DL.getABITypeAlign(I.getType()).value());
9446   DAG.setRoot(V.getValue(1));
9447 
9448   if (I.getType()->isPointerTy())
9449     V = DAG.getPtrExtOrTrunc(
9450         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9451   setValue(&I, V);
9452 }
9453 
9454 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9455   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9456                           MVT::Other, getRoot(),
9457                           getValue(I.getArgOperand(0)),
9458                           DAG.getSrcValue(I.getArgOperand(0))));
9459 }
9460 
9461 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9462   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9463                           MVT::Other, getRoot(),
9464                           getValue(I.getArgOperand(0)),
9465                           getValue(I.getArgOperand(1)),
9466                           DAG.getSrcValue(I.getArgOperand(0)),
9467                           DAG.getSrcValue(I.getArgOperand(1))));
9468 }
9469 
9470 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9471                                                     const Instruction &I,
9472                                                     SDValue Op) {
9473   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9474   if (!Range)
9475     return Op;
9476 
9477   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9478   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9479     return Op;
9480 
9481   APInt Lo = CR.getUnsignedMin();
9482   if (!Lo.isMinValue())
9483     return Op;
9484 
9485   APInt Hi = CR.getUnsignedMax();
9486   unsigned Bits = std::max(Hi.getActiveBits(),
9487                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9488 
9489   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9490 
9491   SDLoc SL = getCurSDLoc();
9492 
9493   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9494                              DAG.getValueType(SmallVT));
9495   unsigned NumVals = Op.getNode()->getNumValues();
9496   if (NumVals == 1)
9497     return ZExt;
9498 
9499   SmallVector<SDValue, 4> Ops;
9500 
9501   Ops.push_back(ZExt);
9502   for (unsigned I = 1; I != NumVals; ++I)
9503     Ops.push_back(Op.getValue(I));
9504 
9505   return DAG.getMergeValues(Ops, SL);
9506 }
9507 
9508 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9509 /// the call being lowered.
9510 ///
9511 /// This is a helper for lowering intrinsics that follow a target calling
9512 /// convention or require stack pointer adjustment. Only a subset of the
9513 /// intrinsic's operands need to participate in the calling convention.
9514 void SelectionDAGBuilder::populateCallLoweringInfo(
9515     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9516     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9517     bool IsPatchPoint) {
9518   TargetLowering::ArgListTy Args;
9519   Args.reserve(NumArgs);
9520 
9521   // Populate the argument list.
9522   // Attributes for args start at offset 1, after the return attribute.
9523   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9524        ArgI != ArgE; ++ArgI) {
9525     const Value *V = Call->getOperand(ArgI);
9526 
9527     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9528 
9529     TargetLowering::ArgListEntry Entry;
9530     Entry.Node = getValue(V);
9531     Entry.Ty = V->getType();
9532     Entry.setAttributes(Call, ArgI);
9533     Args.push_back(Entry);
9534   }
9535 
9536   CLI.setDebugLoc(getCurSDLoc())
9537       .setChain(getRoot())
9538       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9539       .setDiscardResult(Call->use_empty())
9540       .setIsPatchPoint(IsPatchPoint)
9541       .setIsPreallocated(
9542           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9543 }
9544 
9545 /// Add a stack map intrinsic call's live variable operands to a stackmap
9546 /// or patchpoint target node's operand list.
9547 ///
9548 /// Constants are converted to TargetConstants purely as an optimization to
9549 /// avoid constant materialization and register allocation.
9550 ///
9551 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9552 /// generate addess computation nodes, and so FinalizeISel can convert the
9553 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9554 /// address materialization and register allocation, but may also be required
9555 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9556 /// alloca in the entry block, then the runtime may assume that the alloca's
9557 /// StackMap location can be read immediately after compilation and that the
9558 /// location is valid at any point during execution (this is similar to the
9559 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9560 /// only available in a register, then the runtime would need to trap when
9561 /// execution reaches the StackMap in order to read the alloca's location.
9562 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9563                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9564                                 SelectionDAGBuilder &Builder) {
9565   SelectionDAG &DAG = Builder.DAG;
9566   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9567     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9568 
9569     // Things on the stack are pointer-typed, meaning that they are already
9570     // legal and can be emitted directly to target nodes.
9571     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9572       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9573     } else {
9574       // Otherwise emit a target independent node to be legalised.
9575       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9576     }
9577   }
9578 }
9579 
9580 /// Lower llvm.experimental.stackmap.
9581 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9582   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9583   //                                  [live variables...])
9584 
9585   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9586 
9587   SDValue Chain, InFlag, Callee;
9588   SmallVector<SDValue, 32> Ops;
9589 
9590   SDLoc DL = getCurSDLoc();
9591   Callee = getValue(CI.getCalledOperand());
9592 
9593   // The stackmap intrinsic only records the live variables (the arguments
9594   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9595   // intrinsic, this won't be lowered to a function call. This means we don't
9596   // have to worry about calling conventions and target specific lowering code.
9597   // Instead we perform the call lowering right here.
9598   //
9599   // chain, flag = CALLSEQ_START(chain, 0, 0)
9600   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9601   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9602   //
9603   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9604   InFlag = Chain.getValue(1);
9605 
9606   // Add the STACKMAP operands, starting with DAG house-keeping.
9607   Ops.push_back(Chain);
9608   Ops.push_back(InFlag);
9609 
9610   // Add the <id>, <numShadowBytes> operands.
9611   //
9612   // These do not require legalisation, and can be emitted directly to target
9613   // constant nodes.
9614   SDValue ID = getValue(CI.getArgOperand(0));
9615   assert(ID.getValueType() == MVT::i64);
9616   SDValue IDConst = DAG.getTargetConstant(
9617       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9618   Ops.push_back(IDConst);
9619 
9620   SDValue Shad = getValue(CI.getArgOperand(1));
9621   assert(Shad.getValueType() == MVT::i32);
9622   SDValue ShadConst = DAG.getTargetConstant(
9623       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9624   Ops.push_back(ShadConst);
9625 
9626   // Add the live variables.
9627   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9628 
9629   // Create the STACKMAP node.
9630   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9631   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9632   InFlag = Chain.getValue(1);
9633 
9634   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9635 
9636   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9637 
9638   // Set the root to the target-lowered call chain.
9639   DAG.setRoot(Chain);
9640 
9641   // Inform the Frame Information that we have a stackmap in this function.
9642   FuncInfo.MF->getFrameInfo().setHasStackMap();
9643 }
9644 
9645 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9646 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9647                                           const BasicBlock *EHPadBB) {
9648   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9649   //                                                 i32 <numBytes>,
9650   //                                                 i8* <target>,
9651   //                                                 i32 <numArgs>,
9652   //                                                 [Args...],
9653   //                                                 [live variables...])
9654 
9655   CallingConv::ID CC = CB.getCallingConv();
9656   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9657   bool HasDef = !CB.getType()->isVoidTy();
9658   SDLoc dl = getCurSDLoc();
9659   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9660 
9661   // Handle immediate and symbolic callees.
9662   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9663     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9664                                    /*isTarget=*/true);
9665   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9666     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9667                                          SDLoc(SymbolicCallee),
9668                                          SymbolicCallee->getValueType(0));
9669 
9670   // Get the real number of arguments participating in the call <numArgs>
9671   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9672   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9673 
9674   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9675   // Intrinsics include all meta-operands up to but not including CC.
9676   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9677   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9678          "Not enough arguments provided to the patchpoint intrinsic");
9679 
9680   // For AnyRegCC the arguments are lowered later on manually.
9681   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9682   Type *ReturnTy =
9683       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9684 
9685   TargetLowering::CallLoweringInfo CLI(DAG);
9686   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9687                            ReturnTy, true);
9688   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9689 
9690   SDNode *CallEnd = Result.second.getNode();
9691   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9692     CallEnd = CallEnd->getOperand(0).getNode();
9693 
9694   /// Get a call instruction from the call sequence chain.
9695   /// Tail calls are not allowed.
9696   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9697          "Expected a callseq node.");
9698   SDNode *Call = CallEnd->getOperand(0).getNode();
9699   bool HasGlue = Call->getGluedNode();
9700 
9701   // Replace the target specific call node with the patchable intrinsic.
9702   SmallVector<SDValue, 8> Ops;
9703 
9704   // Push the chain.
9705   Ops.push_back(*(Call->op_begin()));
9706 
9707   // Optionally, push the glue (if any).
9708   if (HasGlue)
9709     Ops.push_back(*(Call->op_end() - 1));
9710 
9711   // Push the register mask info.
9712   if (HasGlue)
9713     Ops.push_back(*(Call->op_end() - 2));
9714   else
9715     Ops.push_back(*(Call->op_end() - 1));
9716 
9717   // Add the <id> and <numBytes> constants.
9718   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9719   Ops.push_back(DAG.getTargetConstant(
9720                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9721   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9722   Ops.push_back(DAG.getTargetConstant(
9723                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9724                   MVT::i32));
9725 
9726   // Add the callee.
9727   Ops.push_back(Callee);
9728 
9729   // Adjust <numArgs> to account for any arguments that have been passed on the
9730   // stack instead.
9731   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9732   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9733   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9734   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9735 
9736   // Add the calling convention
9737   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9738 
9739   // Add the arguments we omitted previously. The register allocator should
9740   // place these in any free register.
9741   if (IsAnyRegCC)
9742     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9743       Ops.push_back(getValue(CB.getArgOperand(i)));
9744 
9745   // Push the arguments from the call instruction.
9746   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9747   Ops.append(Call->op_begin() + 2, e);
9748 
9749   // Push live variables for the stack map.
9750   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9751 
9752   SDVTList NodeTys;
9753   if (IsAnyRegCC && HasDef) {
9754     // Create the return types based on the intrinsic definition
9755     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9756     SmallVector<EVT, 3> ValueVTs;
9757     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9758     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9759 
9760     // There is always a chain and a glue type at the end
9761     ValueVTs.push_back(MVT::Other);
9762     ValueVTs.push_back(MVT::Glue);
9763     NodeTys = DAG.getVTList(ValueVTs);
9764   } else
9765     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9766 
9767   // Replace the target specific call node with a PATCHPOINT node.
9768   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9769 
9770   // Update the NodeMap.
9771   if (HasDef) {
9772     if (IsAnyRegCC)
9773       setValue(&CB, SDValue(PPV.getNode(), 0));
9774     else
9775       setValue(&CB, Result.first);
9776   }
9777 
9778   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9779   // call sequence. Furthermore the location of the chain and glue can change
9780   // when the AnyReg calling convention is used and the intrinsic returns a
9781   // value.
9782   if (IsAnyRegCC && HasDef) {
9783     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9784     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9785     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9786   } else
9787     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9788   DAG.DeleteNode(Call);
9789 
9790   // Inform the Frame Information that we have a patchpoint in this function.
9791   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9792 }
9793 
9794 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9795                                             unsigned Intrinsic) {
9796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9797   SDValue Op1 = getValue(I.getArgOperand(0));
9798   SDValue Op2;
9799   if (I.arg_size() > 1)
9800     Op2 = getValue(I.getArgOperand(1));
9801   SDLoc dl = getCurSDLoc();
9802   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9803   SDValue Res;
9804   SDNodeFlags SDFlags;
9805   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9806     SDFlags.copyFMF(*FPMO);
9807 
9808   switch (Intrinsic) {
9809   case Intrinsic::vector_reduce_fadd:
9810     if (SDFlags.hasAllowReassociation())
9811       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9812                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9813                         SDFlags);
9814     else
9815       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9816     break;
9817   case Intrinsic::vector_reduce_fmul:
9818     if (SDFlags.hasAllowReassociation())
9819       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9820                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9821                         SDFlags);
9822     else
9823       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9824     break;
9825   case Intrinsic::vector_reduce_add:
9826     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9827     break;
9828   case Intrinsic::vector_reduce_mul:
9829     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9830     break;
9831   case Intrinsic::vector_reduce_and:
9832     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9833     break;
9834   case Intrinsic::vector_reduce_or:
9835     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9836     break;
9837   case Intrinsic::vector_reduce_xor:
9838     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9839     break;
9840   case Intrinsic::vector_reduce_smax:
9841     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9842     break;
9843   case Intrinsic::vector_reduce_smin:
9844     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9845     break;
9846   case Intrinsic::vector_reduce_umax:
9847     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9848     break;
9849   case Intrinsic::vector_reduce_umin:
9850     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9851     break;
9852   case Intrinsic::vector_reduce_fmax:
9853     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9854     break;
9855   case Intrinsic::vector_reduce_fmin:
9856     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9857     break;
9858   default:
9859     llvm_unreachable("Unhandled vector reduce intrinsic");
9860   }
9861   setValue(&I, Res);
9862 }
9863 
9864 /// Returns an AttributeList representing the attributes applied to the return
9865 /// value of the given call.
9866 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9867   SmallVector<Attribute::AttrKind, 2> Attrs;
9868   if (CLI.RetSExt)
9869     Attrs.push_back(Attribute::SExt);
9870   if (CLI.RetZExt)
9871     Attrs.push_back(Attribute::ZExt);
9872   if (CLI.IsInReg)
9873     Attrs.push_back(Attribute::InReg);
9874 
9875   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9876                             Attrs);
9877 }
9878 
9879 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9880 /// implementation, which just calls LowerCall.
9881 /// FIXME: When all targets are
9882 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9883 std::pair<SDValue, SDValue>
9884 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9885   // Handle the incoming return values from the call.
9886   CLI.Ins.clear();
9887   Type *OrigRetTy = CLI.RetTy;
9888   SmallVector<EVT, 4> RetTys;
9889   SmallVector<uint64_t, 4> Offsets;
9890   auto &DL = CLI.DAG.getDataLayout();
9891   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9892 
9893   if (CLI.IsPostTypeLegalization) {
9894     // If we are lowering a libcall after legalization, split the return type.
9895     SmallVector<EVT, 4> OldRetTys;
9896     SmallVector<uint64_t, 4> OldOffsets;
9897     RetTys.swap(OldRetTys);
9898     Offsets.swap(OldOffsets);
9899 
9900     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9901       EVT RetVT = OldRetTys[i];
9902       uint64_t Offset = OldOffsets[i];
9903       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9904       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9905       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9906       RetTys.append(NumRegs, RegisterVT);
9907       for (unsigned j = 0; j != NumRegs; ++j)
9908         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9909     }
9910   }
9911 
9912   SmallVector<ISD::OutputArg, 4> Outs;
9913   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9914 
9915   bool CanLowerReturn =
9916       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9917                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9918 
9919   SDValue DemoteStackSlot;
9920   int DemoteStackIdx = -100;
9921   if (!CanLowerReturn) {
9922     // FIXME: equivalent assert?
9923     // assert(!CS.hasInAllocaArgument() &&
9924     //        "sret demotion is incompatible with inalloca");
9925     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9926     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9927     MachineFunction &MF = CLI.DAG.getMachineFunction();
9928     DemoteStackIdx =
9929         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9930     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9931                                               DL.getAllocaAddrSpace());
9932 
9933     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9934     ArgListEntry Entry;
9935     Entry.Node = DemoteStackSlot;
9936     Entry.Ty = StackSlotPtrType;
9937     Entry.IsSExt = false;
9938     Entry.IsZExt = false;
9939     Entry.IsInReg = false;
9940     Entry.IsSRet = true;
9941     Entry.IsNest = false;
9942     Entry.IsByVal = false;
9943     Entry.IsByRef = false;
9944     Entry.IsReturned = false;
9945     Entry.IsSwiftSelf = false;
9946     Entry.IsSwiftAsync = false;
9947     Entry.IsSwiftError = false;
9948     Entry.IsCFGuardTarget = false;
9949     Entry.Alignment = Alignment;
9950     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9951     CLI.NumFixedArgs += 1;
9952     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9953     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9954 
9955     // sret demotion isn't compatible with tail-calls, since the sret argument
9956     // points into the callers stack frame.
9957     CLI.IsTailCall = false;
9958   } else {
9959     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9960         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9961     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9962       ISD::ArgFlagsTy Flags;
9963       if (NeedsRegBlock) {
9964         Flags.setInConsecutiveRegs();
9965         if (I == RetTys.size() - 1)
9966           Flags.setInConsecutiveRegsLast();
9967       }
9968       EVT VT = RetTys[I];
9969       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9970                                                      CLI.CallConv, VT);
9971       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9972                                                        CLI.CallConv, VT);
9973       for (unsigned i = 0; i != NumRegs; ++i) {
9974         ISD::InputArg MyFlags;
9975         MyFlags.Flags = Flags;
9976         MyFlags.VT = RegisterVT;
9977         MyFlags.ArgVT = VT;
9978         MyFlags.Used = CLI.IsReturnValueUsed;
9979         if (CLI.RetTy->isPointerTy()) {
9980           MyFlags.Flags.setPointer();
9981           MyFlags.Flags.setPointerAddrSpace(
9982               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9983         }
9984         if (CLI.RetSExt)
9985           MyFlags.Flags.setSExt();
9986         if (CLI.RetZExt)
9987           MyFlags.Flags.setZExt();
9988         if (CLI.IsInReg)
9989           MyFlags.Flags.setInReg();
9990         CLI.Ins.push_back(MyFlags);
9991       }
9992     }
9993   }
9994 
9995   // We push in swifterror return as the last element of CLI.Ins.
9996   ArgListTy &Args = CLI.getArgs();
9997   if (supportSwiftError()) {
9998     for (const ArgListEntry &Arg : Args) {
9999       if (Arg.IsSwiftError) {
10000         ISD::InputArg MyFlags;
10001         MyFlags.VT = getPointerTy(DL);
10002         MyFlags.ArgVT = EVT(getPointerTy(DL));
10003         MyFlags.Flags.setSwiftError();
10004         CLI.Ins.push_back(MyFlags);
10005       }
10006     }
10007   }
10008 
10009   // Handle all of the outgoing arguments.
10010   CLI.Outs.clear();
10011   CLI.OutVals.clear();
10012   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10013     SmallVector<EVT, 4> ValueVTs;
10014     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10015     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10016     Type *FinalType = Args[i].Ty;
10017     if (Args[i].IsByVal)
10018       FinalType = Args[i].IndirectType;
10019     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10020         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10021     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10022          ++Value) {
10023       EVT VT = ValueVTs[Value];
10024       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10025       SDValue Op = SDValue(Args[i].Node.getNode(),
10026                            Args[i].Node.getResNo() + Value);
10027       ISD::ArgFlagsTy Flags;
10028 
10029       // Certain targets (such as MIPS), may have a different ABI alignment
10030       // for a type depending on the context. Give the target a chance to
10031       // specify the alignment it wants.
10032       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10033       Flags.setOrigAlign(OriginalAlignment);
10034 
10035       if (Args[i].Ty->isPointerTy()) {
10036         Flags.setPointer();
10037         Flags.setPointerAddrSpace(
10038             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10039       }
10040       if (Args[i].IsZExt)
10041         Flags.setZExt();
10042       if (Args[i].IsSExt)
10043         Flags.setSExt();
10044       if (Args[i].IsInReg) {
10045         // If we are using vectorcall calling convention, a structure that is
10046         // passed InReg - is surely an HVA
10047         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10048             isa<StructType>(FinalType)) {
10049           // The first value of a structure is marked
10050           if (0 == Value)
10051             Flags.setHvaStart();
10052           Flags.setHva();
10053         }
10054         // Set InReg Flag
10055         Flags.setInReg();
10056       }
10057       if (Args[i].IsSRet)
10058         Flags.setSRet();
10059       if (Args[i].IsSwiftSelf)
10060         Flags.setSwiftSelf();
10061       if (Args[i].IsSwiftAsync)
10062         Flags.setSwiftAsync();
10063       if (Args[i].IsSwiftError)
10064         Flags.setSwiftError();
10065       if (Args[i].IsCFGuardTarget)
10066         Flags.setCFGuardTarget();
10067       if (Args[i].IsByVal)
10068         Flags.setByVal();
10069       if (Args[i].IsByRef)
10070         Flags.setByRef();
10071       if (Args[i].IsPreallocated) {
10072         Flags.setPreallocated();
10073         // Set the byval flag for CCAssignFn callbacks that don't know about
10074         // preallocated.  This way we can know how many bytes we should've
10075         // allocated and how many bytes a callee cleanup function will pop.  If
10076         // we port preallocated to more targets, we'll have to add custom
10077         // preallocated handling in the various CC lowering callbacks.
10078         Flags.setByVal();
10079       }
10080       if (Args[i].IsInAlloca) {
10081         Flags.setInAlloca();
10082         // Set the byval flag for CCAssignFn callbacks that don't know about
10083         // inalloca.  This way we can know how many bytes we should've allocated
10084         // and how many bytes a callee cleanup function will pop.  If we port
10085         // inalloca to more targets, we'll have to add custom inalloca handling
10086         // in the various CC lowering callbacks.
10087         Flags.setByVal();
10088       }
10089       Align MemAlign;
10090       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10091         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10092         Flags.setByValSize(FrameSize);
10093 
10094         // info is not there but there are cases it cannot get right.
10095         if (auto MA = Args[i].Alignment)
10096           MemAlign = *MA;
10097         else
10098           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10099       } else if (auto MA = Args[i].Alignment) {
10100         MemAlign = *MA;
10101       } else {
10102         MemAlign = OriginalAlignment;
10103       }
10104       Flags.setMemAlign(MemAlign);
10105       if (Args[i].IsNest)
10106         Flags.setNest();
10107       if (NeedsRegBlock)
10108         Flags.setInConsecutiveRegs();
10109 
10110       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10111                                                  CLI.CallConv, VT);
10112       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10113                                                         CLI.CallConv, VT);
10114       SmallVector<SDValue, 4> Parts(NumParts);
10115       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10116 
10117       if (Args[i].IsSExt)
10118         ExtendKind = ISD::SIGN_EXTEND;
10119       else if (Args[i].IsZExt)
10120         ExtendKind = ISD::ZERO_EXTEND;
10121 
10122       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10123       // for now.
10124       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10125           CanLowerReturn) {
10126         assert((CLI.RetTy == Args[i].Ty ||
10127                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10128                  CLI.RetTy->getPointerAddressSpace() ==
10129                      Args[i].Ty->getPointerAddressSpace())) &&
10130                RetTys.size() == NumValues && "unexpected use of 'returned'");
10131         // Before passing 'returned' to the target lowering code, ensure that
10132         // either the register MVT and the actual EVT are the same size or that
10133         // the return value and argument are extended in the same way; in these
10134         // cases it's safe to pass the argument register value unchanged as the
10135         // return register value (although it's at the target's option whether
10136         // to do so)
10137         // TODO: allow code generation to take advantage of partially preserved
10138         // registers rather than clobbering the entire register when the
10139         // parameter extension method is not compatible with the return
10140         // extension method
10141         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10142             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10143              CLI.RetZExt == Args[i].IsZExt))
10144           Flags.setReturned();
10145       }
10146 
10147       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10148                      CLI.CallConv, ExtendKind);
10149 
10150       for (unsigned j = 0; j != NumParts; ++j) {
10151         // if it isn't first piece, alignment must be 1
10152         // For scalable vectors the scalable part is currently handled
10153         // by individual targets, so we just use the known minimum size here.
10154         ISD::OutputArg MyFlags(
10155             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10156             i < CLI.NumFixedArgs, i,
10157             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10158         if (NumParts > 1 && j == 0)
10159           MyFlags.Flags.setSplit();
10160         else if (j != 0) {
10161           MyFlags.Flags.setOrigAlign(Align(1));
10162           if (j == NumParts - 1)
10163             MyFlags.Flags.setSplitEnd();
10164         }
10165 
10166         CLI.Outs.push_back(MyFlags);
10167         CLI.OutVals.push_back(Parts[j]);
10168       }
10169 
10170       if (NeedsRegBlock && Value == NumValues - 1)
10171         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10172     }
10173   }
10174 
10175   SmallVector<SDValue, 4> InVals;
10176   CLI.Chain = LowerCall(CLI, InVals);
10177 
10178   // Update CLI.InVals to use outside of this function.
10179   CLI.InVals = InVals;
10180 
10181   // Verify that the target's LowerCall behaved as expected.
10182   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10183          "LowerCall didn't return a valid chain!");
10184   assert((!CLI.IsTailCall || InVals.empty()) &&
10185          "LowerCall emitted a return value for a tail call!");
10186   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10187          "LowerCall didn't emit the correct number of values!");
10188 
10189   // For a tail call, the return value is merely live-out and there aren't
10190   // any nodes in the DAG representing it. Return a special value to
10191   // indicate that a tail call has been emitted and no more Instructions
10192   // should be processed in the current block.
10193   if (CLI.IsTailCall) {
10194     CLI.DAG.setRoot(CLI.Chain);
10195     return std::make_pair(SDValue(), SDValue());
10196   }
10197 
10198 #ifndef NDEBUG
10199   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10200     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10201     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10202            "LowerCall emitted a value with the wrong type!");
10203   }
10204 #endif
10205 
10206   SmallVector<SDValue, 4> ReturnValues;
10207   if (!CanLowerReturn) {
10208     // The instruction result is the result of loading from the
10209     // hidden sret parameter.
10210     SmallVector<EVT, 1> PVTs;
10211     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10212 
10213     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10214     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10215     EVT PtrVT = PVTs[0];
10216 
10217     unsigned NumValues = RetTys.size();
10218     ReturnValues.resize(NumValues);
10219     SmallVector<SDValue, 4> Chains(NumValues);
10220 
10221     // An aggregate return value cannot wrap around the address space, so
10222     // offsets to its parts don't wrap either.
10223     SDNodeFlags Flags;
10224     Flags.setNoUnsignedWrap(true);
10225 
10226     MachineFunction &MF = CLI.DAG.getMachineFunction();
10227     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10228     for (unsigned i = 0; i < NumValues; ++i) {
10229       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10230                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10231                                                         PtrVT), Flags);
10232       SDValue L = CLI.DAG.getLoad(
10233           RetTys[i], CLI.DL, CLI.Chain, Add,
10234           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10235                                             DemoteStackIdx, Offsets[i]),
10236           HiddenSRetAlign);
10237       ReturnValues[i] = L;
10238       Chains[i] = L.getValue(1);
10239     }
10240 
10241     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10242   } else {
10243     // Collect the legal value parts into potentially illegal values
10244     // that correspond to the original function's return values.
10245     std::optional<ISD::NodeType> AssertOp;
10246     if (CLI.RetSExt)
10247       AssertOp = ISD::AssertSext;
10248     else if (CLI.RetZExt)
10249       AssertOp = ISD::AssertZext;
10250     unsigned CurReg = 0;
10251     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10252       EVT VT = RetTys[I];
10253       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10254                                                      CLI.CallConv, VT);
10255       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10256                                                        CLI.CallConv, VT);
10257 
10258       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10259                                               NumRegs, RegisterVT, VT, nullptr,
10260                                               CLI.CallConv, AssertOp));
10261       CurReg += NumRegs;
10262     }
10263 
10264     // For a function returning void, there is no return value. We can't create
10265     // such a node, so we just return a null return value in that case. In
10266     // that case, nothing will actually look at the value.
10267     if (ReturnValues.empty())
10268       return std::make_pair(SDValue(), CLI.Chain);
10269   }
10270 
10271   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10272                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10273   return std::make_pair(Res, CLI.Chain);
10274 }
10275 
10276 /// Places new result values for the node in Results (their number
10277 /// and types must exactly match those of the original return values of
10278 /// the node), or leaves Results empty, which indicates that the node is not
10279 /// to be custom lowered after all.
10280 void TargetLowering::LowerOperationWrapper(SDNode *N,
10281                                            SmallVectorImpl<SDValue> &Results,
10282                                            SelectionDAG &DAG) const {
10283   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10284 
10285   if (!Res.getNode())
10286     return;
10287 
10288   // If the original node has one result, take the return value from
10289   // LowerOperation as is. It might not be result number 0.
10290   if (N->getNumValues() == 1) {
10291     Results.push_back(Res);
10292     return;
10293   }
10294 
10295   // If the original node has multiple results, then the return node should
10296   // have the same number of results.
10297   assert((N->getNumValues() == Res->getNumValues()) &&
10298       "Lowering returned the wrong number of results!");
10299 
10300   // Places new result values base on N result number.
10301   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10302     Results.push_back(Res.getValue(I));
10303 }
10304 
10305 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10306   llvm_unreachable("LowerOperation not implemented for this target!");
10307 }
10308 
10309 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10310                                                      unsigned Reg,
10311                                                      ISD::NodeType ExtendType) {
10312   SDValue Op = getNonRegisterValue(V);
10313   assert((Op.getOpcode() != ISD::CopyFromReg ||
10314           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10315          "Copy from a reg to the same reg!");
10316   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10317 
10318   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10319   // If this is an InlineAsm we have to match the registers required, not the
10320   // notional registers required by the type.
10321 
10322   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10323                    std::nullopt); // This is not an ABI copy.
10324   SDValue Chain = DAG.getEntryNode();
10325 
10326   if (ExtendType == ISD::ANY_EXTEND) {
10327     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10328     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10329       ExtendType = PreferredExtendIt->second;
10330   }
10331   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10332   PendingExports.push_back(Chain);
10333 }
10334 
10335 #include "llvm/CodeGen/SelectionDAGISel.h"
10336 
10337 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10338 /// entry block, return true.  This includes arguments used by switches, since
10339 /// the switch may expand into multiple basic blocks.
10340 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10341   // With FastISel active, we may be splitting blocks, so force creation
10342   // of virtual registers for all non-dead arguments.
10343   if (FastISel)
10344     return A->use_empty();
10345 
10346   const BasicBlock &Entry = A->getParent()->front();
10347   for (const User *U : A->users())
10348     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10349       return false;  // Use not in entry block.
10350 
10351   return true;
10352 }
10353 
10354 using ArgCopyElisionMapTy =
10355     DenseMap<const Argument *,
10356              std::pair<const AllocaInst *, const StoreInst *>>;
10357 
10358 /// Scan the entry block of the function in FuncInfo for arguments that look
10359 /// like copies into a local alloca. Record any copied arguments in
10360 /// ArgCopyElisionCandidates.
10361 static void
10362 findArgumentCopyElisionCandidates(const DataLayout &DL,
10363                                   FunctionLoweringInfo *FuncInfo,
10364                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10365   // Record the state of every static alloca used in the entry block. Argument
10366   // allocas are all used in the entry block, so we need approximately as many
10367   // entries as we have arguments.
10368   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10369   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10370   unsigned NumArgs = FuncInfo->Fn->arg_size();
10371   StaticAllocas.reserve(NumArgs * 2);
10372 
10373   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10374     if (!V)
10375       return nullptr;
10376     V = V->stripPointerCasts();
10377     const auto *AI = dyn_cast<AllocaInst>(V);
10378     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10379       return nullptr;
10380     auto Iter = StaticAllocas.insert({AI, Unknown});
10381     return &Iter.first->second;
10382   };
10383 
10384   // Look for stores of arguments to static allocas. Look through bitcasts and
10385   // GEPs to handle type coercions, as long as the alloca is fully initialized
10386   // by the store. Any non-store use of an alloca escapes it and any subsequent
10387   // unanalyzed store might write it.
10388   // FIXME: Handle structs initialized with multiple stores.
10389   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10390     // Look for stores, and handle non-store uses conservatively.
10391     const auto *SI = dyn_cast<StoreInst>(&I);
10392     if (!SI) {
10393       // We will look through cast uses, so ignore them completely.
10394       if (I.isCast())
10395         continue;
10396       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10397       // to allocas.
10398       if (I.isDebugOrPseudoInst())
10399         continue;
10400       // This is an unknown instruction. Assume it escapes or writes to all
10401       // static alloca operands.
10402       for (const Use &U : I.operands()) {
10403         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10404           *Info = StaticAllocaInfo::Clobbered;
10405       }
10406       continue;
10407     }
10408 
10409     // If the stored value is a static alloca, mark it as escaped.
10410     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10411       *Info = StaticAllocaInfo::Clobbered;
10412 
10413     // Check if the destination is a static alloca.
10414     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10415     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10416     if (!Info)
10417       continue;
10418     const AllocaInst *AI = cast<AllocaInst>(Dst);
10419 
10420     // Skip allocas that have been initialized or clobbered.
10421     if (*Info != StaticAllocaInfo::Unknown)
10422       continue;
10423 
10424     // Check if the stored value is an argument, and that this store fully
10425     // initializes the alloca.
10426     // If the argument type has padding bits we can't directly forward a pointer
10427     // as the upper bits may contain garbage.
10428     // Don't elide copies from the same argument twice.
10429     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10430     const auto *Arg = dyn_cast<Argument>(Val);
10431     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10432         Arg->getType()->isEmptyTy() ||
10433         DL.getTypeStoreSize(Arg->getType()) !=
10434             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10435         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10436         ArgCopyElisionCandidates.count(Arg)) {
10437       *Info = StaticAllocaInfo::Clobbered;
10438       continue;
10439     }
10440 
10441     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10442                       << '\n');
10443 
10444     // Mark this alloca and store for argument copy elision.
10445     *Info = StaticAllocaInfo::Elidable;
10446     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10447 
10448     // Stop scanning if we've seen all arguments. This will happen early in -O0
10449     // builds, which is useful, because -O0 builds have large entry blocks and
10450     // many allocas.
10451     if (ArgCopyElisionCandidates.size() == NumArgs)
10452       break;
10453   }
10454 }
10455 
10456 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10457 /// ArgVal is a load from a suitable fixed stack object.
10458 static void tryToElideArgumentCopy(
10459     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10460     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10461     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10462     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10463     SDValue ArgVal, bool &ArgHasUses) {
10464   // Check if this is a load from a fixed stack object.
10465   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10466   if (!LNode)
10467     return;
10468   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10469   if (!FINode)
10470     return;
10471 
10472   // Check that the fixed stack object is the right size and alignment.
10473   // Look at the alignment that the user wrote on the alloca instead of looking
10474   // at the stack object.
10475   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10476   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10477   const AllocaInst *AI = ArgCopyIter->second.first;
10478   int FixedIndex = FINode->getIndex();
10479   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10480   int OldIndex = AllocaIndex;
10481   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10482   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10483     LLVM_DEBUG(
10484         dbgs() << "  argument copy elision failed due to bad fixed stack "
10485                   "object size\n");
10486     return;
10487   }
10488   Align RequiredAlignment = AI->getAlign();
10489   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10490     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10491                          "greater than stack argument alignment ("
10492                       << DebugStr(RequiredAlignment) << " vs "
10493                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10494     return;
10495   }
10496 
10497   // Perform the elision. Delete the old stack object and replace its only use
10498   // in the variable info map. Mark the stack object as mutable.
10499   LLVM_DEBUG({
10500     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10501            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10502            << '\n';
10503   });
10504   MFI.RemoveStackObject(OldIndex);
10505   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10506   AllocaIndex = FixedIndex;
10507   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10508   Chains.push_back(ArgVal.getValue(1));
10509 
10510   // Avoid emitting code for the store implementing the copy.
10511   const StoreInst *SI = ArgCopyIter->second.second;
10512   ElidedArgCopyInstrs.insert(SI);
10513 
10514   // Check for uses of the argument again so that we can avoid exporting ArgVal
10515   // if it is't used by anything other than the store.
10516   for (const Value *U : Arg.users()) {
10517     if (U != SI) {
10518       ArgHasUses = true;
10519       break;
10520     }
10521   }
10522 }
10523 
10524 void SelectionDAGISel::LowerArguments(const Function &F) {
10525   SelectionDAG &DAG = SDB->DAG;
10526   SDLoc dl = SDB->getCurSDLoc();
10527   const DataLayout &DL = DAG.getDataLayout();
10528   SmallVector<ISD::InputArg, 16> Ins;
10529 
10530   // In Naked functions we aren't going to save any registers.
10531   if (F.hasFnAttribute(Attribute::Naked))
10532     return;
10533 
10534   if (!FuncInfo->CanLowerReturn) {
10535     // Put in an sret pointer parameter before all the other parameters.
10536     SmallVector<EVT, 1> ValueVTs;
10537     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10538                     F.getReturnType()->getPointerTo(
10539                         DAG.getDataLayout().getAllocaAddrSpace()),
10540                     ValueVTs);
10541 
10542     // NOTE: Assuming that a pointer will never break down to more than one VT
10543     // or one register.
10544     ISD::ArgFlagsTy Flags;
10545     Flags.setSRet();
10546     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10547     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10548                          ISD::InputArg::NoArgIndex, 0);
10549     Ins.push_back(RetArg);
10550   }
10551 
10552   // Look for stores of arguments to static allocas. Mark such arguments with a
10553   // flag to ask the target to give us the memory location of that argument if
10554   // available.
10555   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10556   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10557                                     ArgCopyElisionCandidates);
10558 
10559   // Set up the incoming argument description vector.
10560   for (const Argument &Arg : F.args()) {
10561     unsigned ArgNo = Arg.getArgNo();
10562     SmallVector<EVT, 4> ValueVTs;
10563     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10564     bool isArgValueUsed = !Arg.use_empty();
10565     unsigned PartBase = 0;
10566     Type *FinalType = Arg.getType();
10567     if (Arg.hasAttribute(Attribute::ByVal))
10568       FinalType = Arg.getParamByValType();
10569     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10570         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10571     for (unsigned Value = 0, NumValues = ValueVTs.size();
10572          Value != NumValues; ++Value) {
10573       EVT VT = ValueVTs[Value];
10574       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10575       ISD::ArgFlagsTy Flags;
10576 
10577 
10578       if (Arg.getType()->isPointerTy()) {
10579         Flags.setPointer();
10580         Flags.setPointerAddrSpace(
10581             cast<PointerType>(Arg.getType())->getAddressSpace());
10582       }
10583       if (Arg.hasAttribute(Attribute::ZExt))
10584         Flags.setZExt();
10585       if (Arg.hasAttribute(Attribute::SExt))
10586         Flags.setSExt();
10587       if (Arg.hasAttribute(Attribute::InReg)) {
10588         // If we are using vectorcall calling convention, a structure that is
10589         // passed InReg - is surely an HVA
10590         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10591             isa<StructType>(Arg.getType())) {
10592           // The first value of a structure is marked
10593           if (0 == Value)
10594             Flags.setHvaStart();
10595           Flags.setHva();
10596         }
10597         // Set InReg Flag
10598         Flags.setInReg();
10599       }
10600       if (Arg.hasAttribute(Attribute::StructRet))
10601         Flags.setSRet();
10602       if (Arg.hasAttribute(Attribute::SwiftSelf))
10603         Flags.setSwiftSelf();
10604       if (Arg.hasAttribute(Attribute::SwiftAsync))
10605         Flags.setSwiftAsync();
10606       if (Arg.hasAttribute(Attribute::SwiftError))
10607         Flags.setSwiftError();
10608       if (Arg.hasAttribute(Attribute::ByVal))
10609         Flags.setByVal();
10610       if (Arg.hasAttribute(Attribute::ByRef))
10611         Flags.setByRef();
10612       if (Arg.hasAttribute(Attribute::InAlloca)) {
10613         Flags.setInAlloca();
10614         // Set the byval flag for CCAssignFn callbacks that don't know about
10615         // inalloca.  This way we can know how many bytes we should've allocated
10616         // and how many bytes a callee cleanup function will pop.  If we port
10617         // inalloca to more targets, we'll have to add custom inalloca handling
10618         // in the various CC lowering callbacks.
10619         Flags.setByVal();
10620       }
10621       if (Arg.hasAttribute(Attribute::Preallocated)) {
10622         Flags.setPreallocated();
10623         // Set the byval flag for CCAssignFn callbacks that don't know about
10624         // preallocated.  This way we can know how many bytes we should've
10625         // allocated and how many bytes a callee cleanup function will pop.  If
10626         // we port preallocated to more targets, we'll have to add custom
10627         // preallocated handling in the various CC lowering callbacks.
10628         Flags.setByVal();
10629       }
10630 
10631       // Certain targets (such as MIPS), may have a different ABI alignment
10632       // for a type depending on the context. Give the target a chance to
10633       // specify the alignment it wants.
10634       const Align OriginalAlignment(
10635           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10636       Flags.setOrigAlign(OriginalAlignment);
10637 
10638       Align MemAlign;
10639       Type *ArgMemTy = nullptr;
10640       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10641           Flags.isByRef()) {
10642         if (!ArgMemTy)
10643           ArgMemTy = Arg.getPointeeInMemoryValueType();
10644 
10645         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10646 
10647         // For in-memory arguments, size and alignment should be passed from FE.
10648         // BE will guess if this info is not there but there are cases it cannot
10649         // get right.
10650         if (auto ParamAlign = Arg.getParamStackAlign())
10651           MemAlign = *ParamAlign;
10652         else if ((ParamAlign = Arg.getParamAlign()))
10653           MemAlign = *ParamAlign;
10654         else
10655           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10656         if (Flags.isByRef())
10657           Flags.setByRefSize(MemSize);
10658         else
10659           Flags.setByValSize(MemSize);
10660       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10661         MemAlign = *ParamAlign;
10662       } else {
10663         MemAlign = OriginalAlignment;
10664       }
10665       Flags.setMemAlign(MemAlign);
10666 
10667       if (Arg.hasAttribute(Attribute::Nest))
10668         Flags.setNest();
10669       if (NeedsRegBlock)
10670         Flags.setInConsecutiveRegs();
10671       if (ArgCopyElisionCandidates.count(&Arg))
10672         Flags.setCopyElisionCandidate();
10673       if (Arg.hasAttribute(Attribute::Returned))
10674         Flags.setReturned();
10675 
10676       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10677           *CurDAG->getContext(), F.getCallingConv(), VT);
10678       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10679           *CurDAG->getContext(), F.getCallingConv(), VT);
10680       for (unsigned i = 0; i != NumRegs; ++i) {
10681         // For scalable vectors, use the minimum size; individual targets
10682         // are responsible for handling scalable vector arguments and
10683         // return values.
10684         ISD::InputArg MyFlags(
10685             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10686             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10687         if (NumRegs > 1 && i == 0)
10688           MyFlags.Flags.setSplit();
10689         // if it isn't first piece, alignment must be 1
10690         else if (i > 0) {
10691           MyFlags.Flags.setOrigAlign(Align(1));
10692           if (i == NumRegs - 1)
10693             MyFlags.Flags.setSplitEnd();
10694         }
10695         Ins.push_back(MyFlags);
10696       }
10697       if (NeedsRegBlock && Value == NumValues - 1)
10698         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10699       PartBase += VT.getStoreSize().getKnownMinValue();
10700     }
10701   }
10702 
10703   // Call the target to set up the argument values.
10704   SmallVector<SDValue, 8> InVals;
10705   SDValue NewRoot = TLI->LowerFormalArguments(
10706       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10707 
10708   // Verify that the target's LowerFormalArguments behaved as expected.
10709   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10710          "LowerFormalArguments didn't return a valid chain!");
10711   assert(InVals.size() == Ins.size() &&
10712          "LowerFormalArguments didn't emit the correct number of values!");
10713   LLVM_DEBUG({
10714     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10715       assert(InVals[i].getNode() &&
10716              "LowerFormalArguments emitted a null value!");
10717       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10718              "LowerFormalArguments emitted a value with the wrong type!");
10719     }
10720   });
10721 
10722   // Update the DAG with the new chain value resulting from argument lowering.
10723   DAG.setRoot(NewRoot);
10724 
10725   // Set up the argument values.
10726   unsigned i = 0;
10727   if (!FuncInfo->CanLowerReturn) {
10728     // Create a virtual register for the sret pointer, and put in a copy
10729     // from the sret argument into it.
10730     SmallVector<EVT, 1> ValueVTs;
10731     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10732                     F.getReturnType()->getPointerTo(
10733                         DAG.getDataLayout().getAllocaAddrSpace()),
10734                     ValueVTs);
10735     MVT VT = ValueVTs[0].getSimpleVT();
10736     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10737     std::optional<ISD::NodeType> AssertOp;
10738     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10739                                         nullptr, F.getCallingConv(), AssertOp);
10740 
10741     MachineFunction& MF = SDB->DAG.getMachineFunction();
10742     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10743     Register SRetReg =
10744         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10745     FuncInfo->DemoteRegister = SRetReg;
10746     NewRoot =
10747         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10748     DAG.setRoot(NewRoot);
10749 
10750     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10751     ++i;
10752   }
10753 
10754   SmallVector<SDValue, 4> Chains;
10755   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10756   for (const Argument &Arg : F.args()) {
10757     SmallVector<SDValue, 4> ArgValues;
10758     SmallVector<EVT, 4> ValueVTs;
10759     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10760     unsigned NumValues = ValueVTs.size();
10761     if (NumValues == 0)
10762       continue;
10763 
10764     bool ArgHasUses = !Arg.use_empty();
10765 
10766     // Elide the copying store if the target loaded this argument from a
10767     // suitable fixed stack object.
10768     if (Ins[i].Flags.isCopyElisionCandidate()) {
10769       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10770                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10771                              InVals[i], ArgHasUses);
10772     }
10773 
10774     // If this argument is unused then remember its value. It is used to generate
10775     // debugging information.
10776     bool isSwiftErrorArg =
10777         TLI->supportSwiftError() &&
10778         Arg.hasAttribute(Attribute::SwiftError);
10779     if (!ArgHasUses && !isSwiftErrorArg) {
10780       SDB->setUnusedArgValue(&Arg, InVals[i]);
10781 
10782       // Also remember any frame index for use in FastISel.
10783       if (FrameIndexSDNode *FI =
10784           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10785         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10786     }
10787 
10788     for (unsigned Val = 0; Val != NumValues; ++Val) {
10789       EVT VT = ValueVTs[Val];
10790       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10791                                                       F.getCallingConv(), VT);
10792       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10793           *CurDAG->getContext(), F.getCallingConv(), VT);
10794 
10795       // Even an apparent 'unused' swifterror argument needs to be returned. So
10796       // we do generate a copy for it that can be used on return from the
10797       // function.
10798       if (ArgHasUses || isSwiftErrorArg) {
10799         std::optional<ISD::NodeType> AssertOp;
10800         if (Arg.hasAttribute(Attribute::SExt))
10801           AssertOp = ISD::AssertSext;
10802         else if (Arg.hasAttribute(Attribute::ZExt))
10803           AssertOp = ISD::AssertZext;
10804 
10805         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10806                                              PartVT, VT, nullptr,
10807                                              F.getCallingConv(), AssertOp));
10808       }
10809 
10810       i += NumParts;
10811     }
10812 
10813     // We don't need to do anything else for unused arguments.
10814     if (ArgValues.empty())
10815       continue;
10816 
10817     // Note down frame index.
10818     if (FrameIndexSDNode *FI =
10819         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10820       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10821 
10822     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10823                                      SDB->getCurSDLoc());
10824 
10825     SDB->setValue(&Arg, Res);
10826     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10827       // We want to associate the argument with the frame index, among
10828       // involved operands, that correspond to the lowest address. The
10829       // getCopyFromParts function, called earlier, is swapping the order of
10830       // the operands to BUILD_PAIR depending on endianness. The result of
10831       // that swapping is that the least significant bits of the argument will
10832       // be in the first operand of the BUILD_PAIR node, and the most
10833       // significant bits will be in the second operand.
10834       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10835       if (LoadSDNode *LNode =
10836           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10837         if (FrameIndexSDNode *FI =
10838             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10839           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10840     }
10841 
10842     // Analyses past this point are naive and don't expect an assertion.
10843     if (Res.getOpcode() == ISD::AssertZext)
10844       Res = Res.getOperand(0);
10845 
10846     // Update the SwiftErrorVRegDefMap.
10847     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10848       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10849       if (Register::isVirtualRegister(Reg))
10850         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10851                                    Reg);
10852     }
10853 
10854     // If this argument is live outside of the entry block, insert a copy from
10855     // wherever we got it to the vreg that other BB's will reference it as.
10856     if (Res.getOpcode() == ISD::CopyFromReg) {
10857       // If we can, though, try to skip creating an unnecessary vreg.
10858       // FIXME: This isn't very clean... it would be nice to make this more
10859       // general.
10860       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10861       if (Register::isVirtualRegister(Reg)) {
10862         FuncInfo->ValueMap[&Arg] = Reg;
10863         continue;
10864       }
10865     }
10866     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10867       FuncInfo->InitializeRegForValue(&Arg);
10868       SDB->CopyToExportRegsIfNeeded(&Arg);
10869     }
10870   }
10871 
10872   if (!Chains.empty()) {
10873     Chains.push_back(NewRoot);
10874     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10875   }
10876 
10877   DAG.setRoot(NewRoot);
10878 
10879   assert(i == InVals.size() && "Argument register count mismatch!");
10880 
10881   // If any argument copy elisions occurred and we have debug info, update the
10882   // stale frame indices used in the dbg.declare variable info table.
10883   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10884   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10885     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10886       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10887       if (I != ArgCopyElisionFrameIndexMap.end())
10888         VI.Slot = I->second;
10889     }
10890   }
10891 
10892   // Finally, if the target has anything special to do, allow it to do so.
10893   emitFunctionEntryCode();
10894 }
10895 
10896 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10897 /// ensure constants are generated when needed.  Remember the virtual registers
10898 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10899 /// directly add them, because expansion might result in multiple MBB's for one
10900 /// BB.  As such, the start of the BB might correspond to a different MBB than
10901 /// the end.
10902 void
10903 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10904   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10905 
10906   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10907 
10908   // Check PHI nodes in successors that expect a value to be available from this
10909   // block.
10910   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10911     if (!isa<PHINode>(SuccBB->begin())) continue;
10912     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10913 
10914     // If this terminator has multiple identical successors (common for
10915     // switches), only handle each succ once.
10916     if (!SuccsHandled.insert(SuccMBB).second)
10917       continue;
10918 
10919     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10920 
10921     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10922     // nodes and Machine PHI nodes, but the incoming operands have not been
10923     // emitted yet.
10924     for (const PHINode &PN : SuccBB->phis()) {
10925       // Ignore dead phi's.
10926       if (PN.use_empty())
10927         continue;
10928 
10929       // Skip empty types
10930       if (PN.getType()->isEmptyTy())
10931         continue;
10932 
10933       unsigned Reg;
10934       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10935 
10936       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10937         unsigned &RegOut = ConstantsOut[C];
10938         if (RegOut == 0) {
10939           RegOut = FuncInfo.CreateRegs(C);
10940           // We need to zero/sign extend ConstantInt phi operands to match
10941           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10942           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10943           if (auto *CI = dyn_cast<ConstantInt>(C))
10944             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10945                                                     : ISD::ZERO_EXTEND;
10946           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10947         }
10948         Reg = RegOut;
10949       } else {
10950         DenseMap<const Value *, Register>::iterator I =
10951           FuncInfo.ValueMap.find(PHIOp);
10952         if (I != FuncInfo.ValueMap.end())
10953           Reg = I->second;
10954         else {
10955           assert(isa<AllocaInst>(PHIOp) &&
10956                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10957                  "Didn't codegen value into a register!??");
10958           Reg = FuncInfo.CreateRegs(PHIOp);
10959           CopyValueToVirtualRegister(PHIOp, Reg);
10960         }
10961       }
10962 
10963       // Remember that this register needs to added to the machine PHI node as
10964       // the input for this MBB.
10965       SmallVector<EVT, 4> ValueVTs;
10966       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10967       for (EVT VT : ValueVTs) {
10968         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10969         for (unsigned i = 0; i != NumRegisters; ++i)
10970           FuncInfo.PHINodesToUpdate.push_back(
10971               std::make_pair(&*MBBI++, Reg + i));
10972         Reg += NumRegisters;
10973       }
10974     }
10975   }
10976 
10977   ConstantsOut.clear();
10978 }
10979 
10980 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10981   MachineFunction::iterator I(MBB);
10982   if (++I == FuncInfo.MF->end())
10983     return nullptr;
10984   return &*I;
10985 }
10986 
10987 /// During lowering new call nodes can be created (such as memset, etc.).
10988 /// Those will become new roots of the current DAG, but complications arise
10989 /// when they are tail calls. In such cases, the call lowering will update
10990 /// the root, but the builder still needs to know that a tail call has been
10991 /// lowered in order to avoid generating an additional return.
10992 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10993   // If the node is null, we do have a tail call.
10994   if (MaybeTC.getNode() != nullptr)
10995     DAG.setRoot(MaybeTC);
10996   else
10997     HasTailCall = true;
10998 }
10999 
11000 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11001                                         MachineBasicBlock *SwitchMBB,
11002                                         MachineBasicBlock *DefaultMBB) {
11003   MachineFunction *CurMF = FuncInfo.MF;
11004   MachineBasicBlock *NextMBB = nullptr;
11005   MachineFunction::iterator BBI(W.MBB);
11006   if (++BBI != FuncInfo.MF->end())
11007     NextMBB = &*BBI;
11008 
11009   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11010 
11011   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11012 
11013   if (Size == 2 && W.MBB == SwitchMBB) {
11014     // If any two of the cases has the same destination, and if one value
11015     // is the same as the other, but has one bit unset that the other has set,
11016     // use bit manipulation to do two compares at once.  For example:
11017     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11018     // TODO: This could be extended to merge any 2 cases in switches with 3
11019     // cases.
11020     // TODO: Handle cases where W.CaseBB != SwitchBB.
11021     CaseCluster &Small = *W.FirstCluster;
11022     CaseCluster &Big = *W.LastCluster;
11023 
11024     if (Small.Low == Small.High && Big.Low == Big.High &&
11025         Small.MBB == Big.MBB) {
11026       const APInt &SmallValue = Small.Low->getValue();
11027       const APInt &BigValue = Big.Low->getValue();
11028 
11029       // Check that there is only one bit different.
11030       APInt CommonBit = BigValue ^ SmallValue;
11031       if (CommonBit.isPowerOf2()) {
11032         SDValue CondLHS = getValue(Cond);
11033         EVT VT = CondLHS.getValueType();
11034         SDLoc DL = getCurSDLoc();
11035 
11036         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11037                                  DAG.getConstant(CommonBit, DL, VT));
11038         SDValue Cond = DAG.getSetCC(
11039             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11040             ISD::SETEQ);
11041 
11042         // Update successor info.
11043         // Both Small and Big will jump to Small.BB, so we sum up the
11044         // probabilities.
11045         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11046         if (BPI)
11047           addSuccessorWithProb(
11048               SwitchMBB, DefaultMBB,
11049               // The default destination is the first successor in IR.
11050               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11051         else
11052           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11053 
11054         // Insert the true branch.
11055         SDValue BrCond =
11056             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11057                         DAG.getBasicBlock(Small.MBB));
11058         // Insert the false branch.
11059         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11060                              DAG.getBasicBlock(DefaultMBB));
11061 
11062         DAG.setRoot(BrCond);
11063         return;
11064       }
11065     }
11066   }
11067 
11068   if (TM.getOptLevel() != CodeGenOpt::None) {
11069     // Here, we order cases by probability so the most likely case will be
11070     // checked first. However, two clusters can have the same probability in
11071     // which case their relative ordering is non-deterministic. So we use Low
11072     // as a tie-breaker as clusters are guaranteed to never overlap.
11073     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11074                [](const CaseCluster &a, const CaseCluster &b) {
11075       return a.Prob != b.Prob ?
11076              a.Prob > b.Prob :
11077              a.Low->getValue().slt(b.Low->getValue());
11078     });
11079 
11080     // Rearrange the case blocks so that the last one falls through if possible
11081     // without changing the order of probabilities.
11082     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11083       --I;
11084       if (I->Prob > W.LastCluster->Prob)
11085         break;
11086       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11087         std::swap(*I, *W.LastCluster);
11088         break;
11089       }
11090     }
11091   }
11092 
11093   // Compute total probability.
11094   BranchProbability DefaultProb = W.DefaultProb;
11095   BranchProbability UnhandledProbs = DefaultProb;
11096   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11097     UnhandledProbs += I->Prob;
11098 
11099   MachineBasicBlock *CurMBB = W.MBB;
11100   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11101     bool FallthroughUnreachable = false;
11102     MachineBasicBlock *Fallthrough;
11103     if (I == W.LastCluster) {
11104       // For the last cluster, fall through to the default destination.
11105       Fallthrough = DefaultMBB;
11106       FallthroughUnreachable = isa<UnreachableInst>(
11107           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11108     } else {
11109       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11110       CurMF->insert(BBI, Fallthrough);
11111       // Put Cond in a virtual register to make it available from the new blocks.
11112       ExportFromCurrentBlock(Cond);
11113     }
11114     UnhandledProbs -= I->Prob;
11115 
11116     switch (I->Kind) {
11117       case CC_JumpTable: {
11118         // FIXME: Optimize away range check based on pivot comparisons.
11119         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11120         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11121 
11122         // The jump block hasn't been inserted yet; insert it here.
11123         MachineBasicBlock *JumpMBB = JT->MBB;
11124         CurMF->insert(BBI, JumpMBB);
11125 
11126         auto JumpProb = I->Prob;
11127         auto FallthroughProb = UnhandledProbs;
11128 
11129         // If the default statement is a target of the jump table, we evenly
11130         // distribute the default probability to successors of CurMBB. Also
11131         // update the probability on the edge from JumpMBB to Fallthrough.
11132         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11133                                               SE = JumpMBB->succ_end();
11134              SI != SE; ++SI) {
11135           if (*SI == DefaultMBB) {
11136             JumpProb += DefaultProb / 2;
11137             FallthroughProb -= DefaultProb / 2;
11138             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11139             JumpMBB->normalizeSuccProbs();
11140             break;
11141           }
11142         }
11143 
11144         if (FallthroughUnreachable)
11145           JTH->FallthroughUnreachable = true;
11146 
11147         if (!JTH->FallthroughUnreachable)
11148           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11149         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11150         CurMBB->normalizeSuccProbs();
11151 
11152         // The jump table header will be inserted in our current block, do the
11153         // range check, and fall through to our fallthrough block.
11154         JTH->HeaderBB = CurMBB;
11155         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11156 
11157         // If we're in the right place, emit the jump table header right now.
11158         if (CurMBB == SwitchMBB) {
11159           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11160           JTH->Emitted = true;
11161         }
11162         break;
11163       }
11164       case CC_BitTests: {
11165         // FIXME: Optimize away range check based on pivot comparisons.
11166         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11167 
11168         // The bit test blocks haven't been inserted yet; insert them here.
11169         for (BitTestCase &BTC : BTB->Cases)
11170           CurMF->insert(BBI, BTC.ThisBB);
11171 
11172         // Fill in fields of the BitTestBlock.
11173         BTB->Parent = CurMBB;
11174         BTB->Default = Fallthrough;
11175 
11176         BTB->DefaultProb = UnhandledProbs;
11177         // If the cases in bit test don't form a contiguous range, we evenly
11178         // distribute the probability on the edge to Fallthrough to two
11179         // successors of CurMBB.
11180         if (!BTB->ContiguousRange) {
11181           BTB->Prob += DefaultProb / 2;
11182           BTB->DefaultProb -= DefaultProb / 2;
11183         }
11184 
11185         if (FallthroughUnreachable)
11186           BTB->FallthroughUnreachable = true;
11187 
11188         // If we're in the right place, emit the bit test header right now.
11189         if (CurMBB == SwitchMBB) {
11190           visitBitTestHeader(*BTB, SwitchMBB);
11191           BTB->Emitted = true;
11192         }
11193         break;
11194       }
11195       case CC_Range: {
11196         const Value *RHS, *LHS, *MHS;
11197         ISD::CondCode CC;
11198         if (I->Low == I->High) {
11199           // Check Cond == I->Low.
11200           CC = ISD::SETEQ;
11201           LHS = Cond;
11202           RHS=I->Low;
11203           MHS = nullptr;
11204         } else {
11205           // Check I->Low <= Cond <= I->High.
11206           CC = ISD::SETLE;
11207           LHS = I->Low;
11208           MHS = Cond;
11209           RHS = I->High;
11210         }
11211 
11212         // If Fallthrough is unreachable, fold away the comparison.
11213         if (FallthroughUnreachable)
11214           CC = ISD::SETTRUE;
11215 
11216         // The false probability is the sum of all unhandled cases.
11217         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11218                      getCurSDLoc(), I->Prob, UnhandledProbs);
11219 
11220         if (CurMBB == SwitchMBB)
11221           visitSwitchCase(CB, SwitchMBB);
11222         else
11223           SL->SwitchCases.push_back(CB);
11224 
11225         break;
11226       }
11227     }
11228     CurMBB = Fallthrough;
11229   }
11230 }
11231 
11232 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11233                                               CaseClusterIt First,
11234                                               CaseClusterIt Last) {
11235   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11236     if (X.Prob != CC.Prob)
11237       return X.Prob > CC.Prob;
11238 
11239     // Ties are broken by comparing the case value.
11240     return X.Low->getValue().slt(CC.Low->getValue());
11241   });
11242 }
11243 
11244 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11245                                         const SwitchWorkListItem &W,
11246                                         Value *Cond,
11247                                         MachineBasicBlock *SwitchMBB) {
11248   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11249          "Clusters not sorted?");
11250 
11251   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11252 
11253   // Balance the tree based on branch probabilities to create a near-optimal (in
11254   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11255   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11256   CaseClusterIt LastLeft = W.FirstCluster;
11257   CaseClusterIt FirstRight = W.LastCluster;
11258   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11259   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11260 
11261   // Move LastLeft and FirstRight towards each other from opposite directions to
11262   // find a partitioning of the clusters which balances the probability on both
11263   // sides. If LeftProb and RightProb are equal, alternate which side is
11264   // taken to ensure 0-probability nodes are distributed evenly.
11265   unsigned I = 0;
11266   while (LastLeft + 1 < FirstRight) {
11267     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11268       LeftProb += (++LastLeft)->Prob;
11269     else
11270       RightProb += (--FirstRight)->Prob;
11271     I++;
11272   }
11273 
11274   while (true) {
11275     // Our binary search tree differs from a typical BST in that ours can have up
11276     // to three values in each leaf. The pivot selection above doesn't take that
11277     // into account, which means the tree might require more nodes and be less
11278     // efficient. We compensate for this here.
11279 
11280     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11281     unsigned NumRight = W.LastCluster - FirstRight + 1;
11282 
11283     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11284       // If one side has less than 3 clusters, and the other has more than 3,
11285       // consider taking a cluster from the other side.
11286 
11287       if (NumLeft < NumRight) {
11288         // Consider moving the first cluster on the right to the left side.
11289         CaseCluster &CC = *FirstRight;
11290         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11291         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11292         if (LeftSideRank <= RightSideRank) {
11293           // Moving the cluster to the left does not demote it.
11294           ++LastLeft;
11295           ++FirstRight;
11296           continue;
11297         }
11298       } else {
11299         assert(NumRight < NumLeft);
11300         // Consider moving the last element on the left to the right side.
11301         CaseCluster &CC = *LastLeft;
11302         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11303         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11304         if (RightSideRank <= LeftSideRank) {
11305           // Moving the cluster to the right does not demot it.
11306           --LastLeft;
11307           --FirstRight;
11308           continue;
11309         }
11310       }
11311     }
11312     break;
11313   }
11314 
11315   assert(LastLeft + 1 == FirstRight);
11316   assert(LastLeft >= W.FirstCluster);
11317   assert(FirstRight <= W.LastCluster);
11318 
11319   // Use the first element on the right as pivot since we will make less-than
11320   // comparisons against it.
11321   CaseClusterIt PivotCluster = FirstRight;
11322   assert(PivotCluster > W.FirstCluster);
11323   assert(PivotCluster <= W.LastCluster);
11324 
11325   CaseClusterIt FirstLeft = W.FirstCluster;
11326   CaseClusterIt LastRight = W.LastCluster;
11327 
11328   const ConstantInt *Pivot = PivotCluster->Low;
11329 
11330   // New blocks will be inserted immediately after the current one.
11331   MachineFunction::iterator BBI(W.MBB);
11332   ++BBI;
11333 
11334   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11335   // we can branch to its destination directly if it's squeezed exactly in
11336   // between the known lower bound and Pivot - 1.
11337   MachineBasicBlock *LeftMBB;
11338   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11339       FirstLeft->Low == W.GE &&
11340       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11341     LeftMBB = FirstLeft->MBB;
11342   } else {
11343     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11344     FuncInfo.MF->insert(BBI, LeftMBB);
11345     WorkList.push_back(
11346         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11347     // Put Cond in a virtual register to make it available from the new blocks.
11348     ExportFromCurrentBlock(Cond);
11349   }
11350 
11351   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11352   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11353   // directly if RHS.High equals the current upper bound.
11354   MachineBasicBlock *RightMBB;
11355   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11356       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11357     RightMBB = FirstRight->MBB;
11358   } else {
11359     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11360     FuncInfo.MF->insert(BBI, RightMBB);
11361     WorkList.push_back(
11362         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11363     // Put Cond in a virtual register to make it available from the new blocks.
11364     ExportFromCurrentBlock(Cond);
11365   }
11366 
11367   // Create the CaseBlock record that will be used to lower the branch.
11368   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11369                getCurSDLoc(), LeftProb, RightProb);
11370 
11371   if (W.MBB == SwitchMBB)
11372     visitSwitchCase(CB, SwitchMBB);
11373   else
11374     SL->SwitchCases.push_back(CB);
11375 }
11376 
11377 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11378 // from the swith statement.
11379 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11380                                             BranchProbability PeeledCaseProb) {
11381   if (PeeledCaseProb == BranchProbability::getOne())
11382     return BranchProbability::getZero();
11383   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11384 
11385   uint32_t Numerator = CaseProb.getNumerator();
11386   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11387   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11388 }
11389 
11390 // Try to peel the top probability case if it exceeds the threshold.
11391 // Return current MachineBasicBlock for the switch statement if the peeling
11392 // does not occur.
11393 // If the peeling is performed, return the newly created MachineBasicBlock
11394 // for the peeled switch statement. Also update Clusters to remove the peeled
11395 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11396 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11397     const SwitchInst &SI, CaseClusterVector &Clusters,
11398     BranchProbability &PeeledCaseProb) {
11399   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11400   // Don't perform if there is only one cluster or optimizing for size.
11401   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11402       TM.getOptLevel() == CodeGenOpt::None ||
11403       SwitchMBB->getParent()->getFunction().hasMinSize())
11404     return SwitchMBB;
11405 
11406   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11407   unsigned PeeledCaseIndex = 0;
11408   bool SwitchPeeled = false;
11409   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11410     CaseCluster &CC = Clusters[Index];
11411     if (CC.Prob < TopCaseProb)
11412       continue;
11413     TopCaseProb = CC.Prob;
11414     PeeledCaseIndex = Index;
11415     SwitchPeeled = true;
11416   }
11417   if (!SwitchPeeled)
11418     return SwitchMBB;
11419 
11420   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11421                     << TopCaseProb << "\n");
11422 
11423   // Record the MBB for the peeled switch statement.
11424   MachineFunction::iterator BBI(SwitchMBB);
11425   ++BBI;
11426   MachineBasicBlock *PeeledSwitchMBB =
11427       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11428   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11429 
11430   ExportFromCurrentBlock(SI.getCondition());
11431   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11432   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11433                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11434   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11435 
11436   Clusters.erase(PeeledCaseIt);
11437   for (CaseCluster &CC : Clusters) {
11438     LLVM_DEBUG(
11439         dbgs() << "Scale the probablity for one cluster, before scaling: "
11440                << CC.Prob << "\n");
11441     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11442     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11443   }
11444   PeeledCaseProb = TopCaseProb;
11445   return PeeledSwitchMBB;
11446 }
11447 
11448 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11449   // Extract cases from the switch.
11450   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11451   CaseClusterVector Clusters;
11452   Clusters.reserve(SI.getNumCases());
11453   for (auto I : SI.cases()) {
11454     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11455     const ConstantInt *CaseVal = I.getCaseValue();
11456     BranchProbability Prob =
11457         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11458             : BranchProbability(1, SI.getNumCases() + 1);
11459     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11460   }
11461 
11462   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11463 
11464   // Cluster adjacent cases with the same destination. We do this at all
11465   // optimization levels because it's cheap to do and will make codegen faster
11466   // if there are many clusters.
11467   sortAndRangeify(Clusters);
11468 
11469   // The branch probablity of the peeled case.
11470   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11471   MachineBasicBlock *PeeledSwitchMBB =
11472       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11473 
11474   // If there is only the default destination, jump there directly.
11475   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11476   if (Clusters.empty()) {
11477     assert(PeeledSwitchMBB == SwitchMBB);
11478     SwitchMBB->addSuccessor(DefaultMBB);
11479     if (DefaultMBB != NextBlock(SwitchMBB)) {
11480       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11481                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11482     }
11483     return;
11484   }
11485 
11486   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11487   SL->findBitTestClusters(Clusters, &SI);
11488 
11489   LLVM_DEBUG({
11490     dbgs() << "Case clusters: ";
11491     for (const CaseCluster &C : Clusters) {
11492       if (C.Kind == CC_JumpTable)
11493         dbgs() << "JT:";
11494       if (C.Kind == CC_BitTests)
11495         dbgs() << "BT:";
11496 
11497       C.Low->getValue().print(dbgs(), true);
11498       if (C.Low != C.High) {
11499         dbgs() << '-';
11500         C.High->getValue().print(dbgs(), true);
11501       }
11502       dbgs() << ' ';
11503     }
11504     dbgs() << '\n';
11505   });
11506 
11507   assert(!Clusters.empty());
11508   SwitchWorkList WorkList;
11509   CaseClusterIt First = Clusters.begin();
11510   CaseClusterIt Last = Clusters.end() - 1;
11511   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11512   // Scale the branchprobability for DefaultMBB if the peel occurs and
11513   // DefaultMBB is not replaced.
11514   if (PeeledCaseProb != BranchProbability::getZero() &&
11515       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11516     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11517   WorkList.push_back(
11518       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11519 
11520   while (!WorkList.empty()) {
11521     SwitchWorkListItem W = WorkList.pop_back_val();
11522     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11523 
11524     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11525         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11526       // For optimized builds, lower large range as a balanced binary tree.
11527       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11528       continue;
11529     }
11530 
11531     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11532   }
11533 }
11534 
11535 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11537   auto DL = getCurSDLoc();
11538   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11539   setValue(&I, DAG.getStepVector(DL, ResultVT));
11540 }
11541 
11542 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11544   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11545 
11546   SDLoc DL = getCurSDLoc();
11547   SDValue V = getValue(I.getOperand(0));
11548   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11549 
11550   if (VT.isScalableVector()) {
11551     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11552     return;
11553   }
11554 
11555   // Use VECTOR_SHUFFLE for the fixed-length vector
11556   // to maintain existing behavior.
11557   SmallVector<int, 8> Mask;
11558   unsigned NumElts = VT.getVectorMinNumElements();
11559   for (unsigned i = 0; i != NumElts; ++i)
11560     Mask.push_back(NumElts - 1 - i);
11561 
11562   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11563 }
11564 
11565 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11566   SmallVector<EVT, 4> ValueVTs;
11567   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11568                   ValueVTs);
11569   unsigned NumValues = ValueVTs.size();
11570   if (NumValues == 0) return;
11571 
11572   SmallVector<SDValue, 4> Values(NumValues);
11573   SDValue Op = getValue(I.getOperand(0));
11574 
11575   for (unsigned i = 0; i != NumValues; ++i)
11576     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11577                             SDValue(Op.getNode(), Op.getResNo() + i));
11578 
11579   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11580                            DAG.getVTList(ValueVTs), Values));
11581 }
11582 
11583 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11584   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11585   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11586 
11587   SDLoc DL = getCurSDLoc();
11588   SDValue V1 = getValue(I.getOperand(0));
11589   SDValue V2 = getValue(I.getOperand(1));
11590   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11591 
11592   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11593   if (VT.isScalableVector()) {
11594     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11595     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11596                              DAG.getConstant(Imm, DL, IdxVT)));
11597     return;
11598   }
11599 
11600   unsigned NumElts = VT.getVectorNumElements();
11601 
11602   uint64_t Idx = (NumElts + Imm) % NumElts;
11603 
11604   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11605   SmallVector<int, 8> Mask;
11606   for (unsigned i = 0; i < NumElts; ++i)
11607     Mask.push_back(Idx + i);
11608   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11609 }
11610