1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/Loads.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/InlineAsm.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/IntrinsicsAArch64.h" 78 #include "llvm/IR/IntrinsicsWebAssembly.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Statepoint.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/Support/AtomicOrdering.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Target/TargetIntrinsicInfo.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetOptions.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <cstddef> 101 #include <iterator> 102 #include <limits> 103 #include <optional> 104 #include <tuple> 105 106 using namespace llvm; 107 using namespace PatternMatch; 108 using namespace SwitchCG; 109 110 #define DEBUG_TYPE "isel" 111 112 /// LimitFloatPrecision - Generate low-precision inline sequences for 113 /// some float libcalls (6, 8 or 12 bits). 114 static unsigned LimitFloatPrecision; 115 116 static cl::opt<bool> 117 InsertAssertAlign("insert-assert-align", cl::init(true), 118 cl::desc("Insert the experimental `assertalign` node."), 119 cl::ReallyHidden); 120 121 static cl::opt<unsigned, true> 122 LimitFPPrecision("limit-float-precision", 123 cl::desc("Generate low-precision inline sequences " 124 "for some float libcalls"), 125 cl::location(LimitFloatPrecision), cl::Hidden, 126 cl::init(0)); 127 128 static cl::opt<unsigned> SwitchPeelThreshold( 129 "switch-peel-threshold", cl::Hidden, cl::init(66), 130 cl::desc("Set the case probability threshold for peeling the case from a " 131 "switch statement. A value greater than 100 will void this " 132 "optimization")); 133 134 // Limit the width of DAG chains. This is important in general to prevent 135 // DAG-based analysis from blowing up. For example, alias analysis and 136 // load clustering may not complete in reasonable time. It is difficult to 137 // recognize and avoid this situation within each individual analysis, and 138 // future analyses are likely to have the same behavior. Limiting DAG width is 139 // the safe approach and will be especially important with global DAGs. 140 // 141 // MaxParallelChains default is arbitrarily high to avoid affecting 142 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 143 // sequence over this should have been converted to llvm.memcpy by the 144 // frontend. It is easy to induce this behavior with .ll code such as: 145 // %buffer = alloca [4096 x i8] 146 // %data = load [4096 x i8]* %argPtr 147 // store [4096 x i8] %data, [4096 x i8]* %buffer 148 static const unsigned MaxParallelChains = 64; 149 150 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 151 const SDValue *Parts, unsigned NumParts, 152 MVT PartVT, EVT ValueVT, const Value *V, 153 std::optional<CallingConv::ID> CC); 154 155 /// getCopyFromParts - Create a value that contains the specified legal parts 156 /// combined into the value they represent. If the parts combine to a type 157 /// larger than ValueVT then AssertOp can be used to specify whether the extra 158 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 159 /// (ISD::AssertSext). 160 static SDValue 161 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 162 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 163 std::optional<CallingConv::ID> CC = std::nullopt, 164 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 165 // Let the target assemble the parts if it wants to 166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 167 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 168 PartVT, ValueVT, CC)) 169 return Val; 170 171 if (ValueVT.isVector()) 172 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 173 CC); 174 175 assert(NumParts > 0 && "No parts to assemble!"); 176 SDValue Val = Parts[0]; 177 178 if (NumParts > 1) { 179 // Assemble the value from multiple parts. 180 if (ValueVT.isInteger()) { 181 unsigned PartBits = PartVT.getSizeInBits(); 182 unsigned ValueBits = ValueVT.getSizeInBits(); 183 184 // Assemble the power of 2 part. 185 unsigned RoundParts = llvm::bit_floor(NumParts); 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 std::optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the parts vector has more elements than the value vector, then we 402 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 403 // Extract the elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 421 // Promoted vector extract 422 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 423 } 424 425 // Trivial bitcast if the types are the same size and the destination 426 // vector type is legal. 427 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 428 TLI.isTypeLegal(ValueVT)) 429 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 430 431 if (ValueVT.getVectorNumElements() != 1) { 432 // Certain ABIs require that vectors are passed as integers. For vectors 433 // are the same size, this is an obvious bitcast. 434 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 } else if (ValueVT.bitsLT(PartEVT)) { 437 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 438 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 439 // Drop the extra bits. 440 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 441 return DAG.getBitcast(ValueVT, Val); 442 } 443 444 diagnosePossiblyInvalidConstraint( 445 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 446 return DAG.getUNDEF(ValueVT); 447 } 448 449 // Handle cases such as i8 -> <1 x i1> 450 EVT ValueSVT = ValueVT.getVectorElementType(); 451 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 452 unsigned ValueSize = ValueSVT.getSizeInBits(); 453 if (ValueSize == PartEVT.getSizeInBits()) { 454 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 455 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 456 // It's possible a scalar floating point type gets softened to integer and 457 // then promoted to a larger integer. If PartEVT is the larger integer 458 // we need to truncate it and then bitcast to the FP type. 459 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 Val = DAG.getBitcast(ValueSVT, Val); 463 } else { 464 Val = ValueVT.isFloatingPoint() 465 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 } 468 } 469 470 return DAG.getBuildVector(ValueVT, DL, Val); 471 } 472 473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V, 476 std::optional<CallingConv::ID> CallConv); 477 478 /// getCopyToParts - Create a series of nodes that contain the specified value 479 /// split into legal parts. If the parts contain more bits than Val, then, for 480 /// integers, ExtendKind can be used to specify how to generate the extra bits. 481 static void 482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 483 unsigned NumParts, MVT PartVT, const Value *V, 484 std::optional<CallingConv::ID> CallConv = std::nullopt, 485 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 486 // Let the target split the parts if it wants to 487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 488 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 489 CallConv)) 490 return; 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = llvm::bit_floor(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 575 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 619 const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 ElementCount PartNumElts = PartVT.getVectorElementCount(); 625 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 626 627 // We only support widening vectors with equivalent element types and 628 // fixed/scalable properties. If a target needs to widen a fixed-length type 629 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 630 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 631 PartNumElts.isScalable() != ValueNumElts.isScalable() || 632 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 633 return SDValue(); 634 635 // Widening a scalable vector to another scalable vector is done by inserting 636 // the vector into a larger undef one. 637 if (PartNumElts.isScalable()) 638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 639 Val, DAG.getVectorIdxConstant(0, DL)); 640 641 EVT ElementVT = PartVT.getVectorElementType(); 642 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 643 // undef elements. 644 SmallVector<SDValue, 16> Ops; 645 DAG.ExtractVectorElements(Val, Ops); 646 SDValue EltUndef = DAG.getUNDEF(ElementVT); 647 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 /// getCopyToPartsVector - Create a series of nodes that contain the specified 654 /// value split into legal parts. 655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 656 SDValue Val, SDValue *Parts, unsigned NumParts, 657 MVT PartVT, const Value *V, 658 std::optional<CallingConv::ID> CallConv) { 659 EVT ValueVT = Val.getValueType(); 660 assert(ValueVT.isVector() && "Not a vector"); 661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 662 const bool IsABIRegCopy = CallConv.has_value(); 663 664 if (NumParts == 1) { 665 EVT PartEVT = PartVT; 666 if (PartEVT == ValueVT) { 667 // Nothing to do. 668 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 669 // Bitconvert vector->vector case. 670 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 671 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 672 Val = Widened; 673 } else if (PartVT.isVector() && 674 PartEVT.getVectorElementType().bitsGE( 675 ValueVT.getVectorElementType()) && 676 PartEVT.getVectorElementCount() == 677 ValueVT.getVectorElementCount()) { 678 679 // Promoted vector extract 680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 681 } else if (PartEVT.isVector() && 682 PartEVT.getVectorElementType() != 683 ValueVT.getVectorElementType() && 684 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 685 TargetLowering::TypeWidenVector) { 686 // Combination of widening and promotion. 687 EVT WidenVT = 688 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 689 PartVT.getVectorElementCount()); 690 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 691 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 692 } else { 693 // Don't extract an integer from a float vector. This can happen if the 694 // FP type gets softened to integer and then promoted. The promotion 695 // prevents it from being picked up by the earlier bitcast case. 696 if (ValueVT.getVectorElementCount().isScalar() && 697 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 698 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 699 DAG.getVectorIdxConstant(0, DL)); 700 } else { 701 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 702 assert(PartVT.getFixedSizeInBits() > ValueSize && 703 "lossy conversion of vector to scalar type"); 704 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 705 Val = DAG.getBitcast(IntermediateType, Val); 706 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 707 } 708 } 709 710 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 711 Parts[0] = Val; 712 return; 713 } 714 715 // Handle a multi-element vector. 716 EVT IntermediateVT; 717 MVT RegisterVT; 718 unsigned NumIntermediates; 719 unsigned NumRegs; 720 if (IsABIRegCopy) { 721 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 722 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 723 RegisterVT); 724 } else { 725 NumRegs = 726 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 727 NumIntermediates, RegisterVT); 728 } 729 730 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 731 NumParts = NumRegs; // Silence a compiler warning. 732 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 733 734 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 735 "Mixing scalable and fixed vectors when copying in parts"); 736 737 std::optional<ElementCount> DestEltCnt; 738 739 if (IntermediateVT.isVector()) 740 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 741 else 742 DestEltCnt = ElementCount::getFixed(NumIntermediates); 743 744 EVT BuiltVectorTy = EVT::getVectorVT( 745 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 746 747 if (ValueVT == BuiltVectorTy) { 748 // Nothing to do. 749 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 750 // Bitconvert vector->vector case. 751 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 752 } else { 753 if (BuiltVectorTy.getVectorElementType().bitsGT( 754 ValueVT.getVectorElementType())) { 755 // Integer promotion. 756 ValueVT = EVT::getVectorVT(*DAG.getContext(), 757 BuiltVectorTy.getVectorElementType(), 758 ValueVT.getVectorElementCount()); 759 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 760 } 761 762 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 763 Val = Widened; 764 } 765 } 766 767 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 768 769 // Split the vector into intermediate operands. 770 SmallVector<SDValue, 8> Ops(NumIntermediates); 771 for (unsigned i = 0; i != NumIntermediates; ++i) { 772 if (IntermediateVT.isVector()) { 773 // This does something sensible for scalable vectors - see the 774 // definition of EXTRACT_SUBVECTOR for further details. 775 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 776 Ops[i] = 777 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 778 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 779 } else { 780 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 781 DAG.getVectorIdxConstant(i, DL)); 782 } 783 } 784 785 // Split the intermediate operands into legal parts. 786 if (NumParts == NumIntermediates) { 787 // If the register was not expanded, promote or copy the value, 788 // as appropriate. 789 for (unsigned i = 0; i != NumParts; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 791 } else if (NumParts > 0) { 792 // If the intermediate type was expanded, split each the value into 793 // legal parts. 794 assert(NumIntermediates != 0 && "division by zero"); 795 assert(NumParts % NumIntermediates == 0 && 796 "Must expand into a divisible number of parts!"); 797 unsigned Factor = NumParts / NumIntermediates; 798 for (unsigned i = 0; i != NumIntermediates; ++i) 799 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 800 CallConv); 801 } 802 } 803 804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 805 EVT valuevt, std::optional<CallingConv::ID> CC) 806 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 807 RegCount(1, regs.size()), CallConv(CC) {} 808 809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 810 const DataLayout &DL, unsigned Reg, Type *Ty, 811 std::optional<CallingConv::ID> CC) { 812 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 813 814 CallConv = CC; 815 816 for (EVT ValueVT : ValueVTs) { 817 unsigned NumRegs = 818 isABIMangled() 819 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 820 : TLI.getNumRegisters(Context, ValueVT); 821 MVT RegisterVT = 822 isABIMangled() 823 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 824 : TLI.getRegisterType(Context, ValueVT); 825 for (unsigned i = 0; i != NumRegs; ++i) 826 Regs.push_back(Reg + i); 827 RegVTs.push_back(RegisterVT); 828 RegCount.push_back(NumRegs); 829 Reg += NumRegs; 830 } 831 } 832 833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 834 FunctionLoweringInfo &FuncInfo, 835 const SDLoc &dl, SDValue &Chain, 836 SDValue *Flag, const Value *V) const { 837 // A Value with type {} or [0 x %t] needs no registers. 838 if (ValueVTs.empty()) 839 return SDValue(); 840 841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 842 843 // Assemble the legal parts into the final values. 844 SmallVector<SDValue, 4> Values(ValueVTs.size()); 845 SmallVector<SDValue, 8> Parts; 846 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 // Copy the legal parts from the registers. 848 EVT ValueVT = ValueVTs[Value]; 849 unsigned NumRegs = RegCount[Value]; 850 MVT RegisterVT = isABIMangled() 851 ? TLI.getRegisterTypeForCallingConv( 852 *DAG.getContext(), *CallConv, RegVTs[Value]) 853 : RegVTs[Value]; 854 855 Parts.resize(NumRegs); 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 SDValue P; 858 if (!Flag) { 859 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 860 } else { 861 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 862 *Flag = P.getValue(2); 863 } 864 865 Chain = P.getValue(1); 866 Parts[i] = P; 867 868 // If the source register was virtual and if we know something about it, 869 // add an assert node. 870 if (!Register::isVirtualRegister(Regs[Part + i]) || 871 !RegisterVT.isInteger()) 872 continue; 873 874 const FunctionLoweringInfo::LiveOutInfo *LOI = 875 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 876 if (!LOI) 877 continue; 878 879 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 880 unsigned NumSignBits = LOI->NumSignBits; 881 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 882 883 if (NumZeroBits == RegSize) { 884 // The current value is a zero. 885 // Explicitly express that as it would be easier for 886 // optimizations to kick in. 887 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 888 continue; 889 } 890 891 // FIXME: We capture more information than the dag can represent. For 892 // now, just use the tightest assertzext/assertsext possible. 893 bool isSExt; 894 EVT FromVT(MVT::Other); 895 if (NumZeroBits) { 896 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 897 isSExt = false; 898 } else if (NumSignBits > 1) { 899 FromVT = 900 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 901 isSExt = true; 902 } else { 903 continue; 904 } 905 // Add an assertion node. 906 assert(FromVT != MVT::Other); 907 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 908 RegisterVT, P, DAG.getValueType(FromVT)); 909 } 910 911 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 912 RegisterVT, ValueVT, V, CallConv); 913 Part += NumRegs; 914 Parts.clear(); 915 } 916 917 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 918 } 919 920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 921 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 922 const Value *V, 923 ISD::NodeType PreferredExtendType) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 ISD::NodeType ExtendKind = PreferredExtendType; 926 927 // Get the list of the values's legal parts. 928 unsigned NumRegs = Regs.size(); 929 SmallVector<SDValue, 8> Parts(NumRegs); 930 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 931 unsigned NumParts = RegCount[Value]; 932 933 MVT RegisterVT = isABIMangled() 934 ? TLI.getRegisterTypeForCallingConv( 935 *DAG.getContext(), *CallConv, RegVTs[Value]) 936 : RegVTs[Value]; 937 938 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 939 ExtendKind = ISD::ZERO_EXTEND; 940 941 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 942 NumParts, RegisterVT, V, CallConv, ExtendKind); 943 Part += NumParts; 944 } 945 946 // Copy the parts into the registers. 947 SmallVector<SDValue, 8> Chains(NumRegs); 948 for (unsigned i = 0; i != NumRegs; ++i) { 949 SDValue Part; 950 if (!Flag) { 951 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 952 } else { 953 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 954 *Flag = Part.getValue(1); 955 } 956 957 Chains[i] = Part.getValue(0); 958 } 959 960 if (NumRegs == 1 || Flag) 961 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 962 // flagged to it. That is the CopyToReg nodes and the user are considered 963 // a single scheduling unit. If we create a TokenFactor and return it as 964 // chain, then the TokenFactor is both a predecessor (operand) of the 965 // user as well as a successor (the TF operands are flagged to the user). 966 // c1, f1 = CopyToReg 967 // c2, f2 = CopyToReg 968 // c3 = TokenFactor c1, c2 969 // ... 970 // = op c3, ..., f2 971 Chain = Chains[NumRegs-1]; 972 else 973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 974 } 975 976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 977 unsigned MatchingIdx, const SDLoc &dl, 978 SelectionDAG &DAG, 979 std::vector<SDValue> &Ops) const { 980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 981 982 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 983 if (HasMatching) 984 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 985 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 986 // Put the register class of the virtual registers in the flag word. That 987 // way, later passes can recompute register class constraints for inline 988 // assembly as well as normal instructions. 989 // Don't do this for tied operands that can use the regclass information 990 // from the def. 991 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 992 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 993 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 994 } 995 996 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 997 Ops.push_back(Res); 998 999 if (Code == InlineAsm::Kind_Clobber) { 1000 // Clobbers should always have a 1:1 mapping with registers, and may 1001 // reference registers that have illegal (e.g. vector) types. Hence, we 1002 // shouldn't try to apply any sort of splitting logic to them. 1003 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1004 "No 1:1 mapping from clobbers to regs?"); 1005 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1006 (void)SP; 1007 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1008 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1009 assert( 1010 (Regs[I] != SP || 1011 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1012 "If we clobbered the stack pointer, MFI should know about it."); 1013 } 1014 return; 1015 } 1016 1017 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1018 MVT RegisterVT = RegVTs[Value]; 1019 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1020 RegisterVT); 1021 for (unsigned i = 0; i != NumRegs; ++i) { 1022 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1023 unsigned TheReg = Regs[Reg++]; 1024 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1025 } 1026 } 1027 } 1028 1029 SmallVector<std::pair<unsigned, TypeSize>, 4> 1030 RegsForValue::getRegsAndSizes() const { 1031 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1032 unsigned I = 0; 1033 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1034 unsigned RegCount = std::get<0>(CountAndVT); 1035 MVT RegisterVT = std::get<1>(CountAndVT); 1036 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1037 for (unsigned E = I + RegCount; I != E; ++I) 1038 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1039 } 1040 return OutVec; 1041 } 1042 1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1044 AssumptionCache *ac, 1045 const TargetLibraryInfo *li) { 1046 AA = aa; 1047 AC = ac; 1048 GFI = gfi; 1049 LibInfo = li; 1050 Context = DAG.getContext(); 1051 LPadToCallSiteMap.clear(); 1052 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1053 } 1054 1055 void SelectionDAGBuilder::clear() { 1056 NodeMap.clear(); 1057 UnusedArgNodeMap.clear(); 1058 PendingLoads.clear(); 1059 PendingExports.clear(); 1060 PendingConstrainedFP.clear(); 1061 PendingConstrainedFPStrict.clear(); 1062 CurInst = nullptr; 1063 HasTailCall = false; 1064 SDNodeOrder = LowestSDNodeOrder; 1065 StatepointLowering.clear(); 1066 } 1067 1068 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1069 DanglingDebugInfoMap.clear(); 1070 } 1071 1072 // Update DAG root to include dependencies on Pending chains. 1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1074 SDValue Root = DAG.getRoot(); 1075 1076 if (Pending.empty()) 1077 return Root; 1078 1079 // Add current root to PendingChains, unless we already indirectly 1080 // depend on it. 1081 if (Root.getOpcode() != ISD::EntryToken) { 1082 unsigned i = 0, e = Pending.size(); 1083 for (; i != e; ++i) { 1084 assert(Pending[i].getNode()->getNumOperands() > 1); 1085 if (Pending[i].getNode()->getOperand(0) == Root) 1086 break; // Don't add the root if we already indirectly depend on it. 1087 } 1088 1089 if (i == e) 1090 Pending.push_back(Root); 1091 } 1092 1093 if (Pending.size() == 1) 1094 Root = Pending[0]; 1095 else 1096 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1097 1098 DAG.setRoot(Root); 1099 Pending.clear(); 1100 return Root; 1101 } 1102 1103 SDValue SelectionDAGBuilder::getMemoryRoot() { 1104 return updateRoot(PendingLoads); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getRoot() { 1108 // Chain up all pending constrained intrinsics together with all 1109 // pending loads, by simply appending them to PendingLoads and 1110 // then calling getMemoryRoot(). 1111 PendingLoads.reserve(PendingLoads.size() + 1112 PendingConstrainedFP.size() + 1113 PendingConstrainedFPStrict.size()); 1114 PendingLoads.append(PendingConstrainedFP.begin(), 1115 PendingConstrainedFP.end()); 1116 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1117 PendingConstrainedFPStrict.end()); 1118 PendingConstrainedFP.clear(); 1119 PendingConstrainedFPStrict.clear(); 1120 return getMemoryRoot(); 1121 } 1122 1123 SDValue SelectionDAGBuilder::getControlRoot() { 1124 // We need to emit pending fpexcept.strict constrained intrinsics, 1125 // so append them to the PendingExports list. 1126 PendingExports.append(PendingConstrainedFPStrict.begin(), 1127 PendingConstrainedFPStrict.end()); 1128 PendingConstrainedFPStrict.clear(); 1129 return updateRoot(PendingExports); 1130 } 1131 1132 void SelectionDAGBuilder::visit(const Instruction &I) { 1133 // Set up outgoing PHI node register values before emitting the terminator. 1134 if (I.isTerminator()) { 1135 HandlePHINodesInSuccessorBlocks(I.getParent()); 1136 } 1137 1138 // Add SDDbgValue nodes for any var locs here. Do so before updating 1139 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1140 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1141 // Add SDDbgValue nodes for any var locs here. Do so before updating 1142 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1143 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1144 It != End; ++It) { 1145 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1146 dropDanglingDebugInfo(Var, It->Expr); 1147 if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder, 1148 /*IsVariadic=*/false)) 1149 addDanglingDebugInfo(It, SDNodeOrder); 1150 } 1151 } 1152 1153 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1154 if (!isa<DbgInfoIntrinsic>(I)) 1155 ++SDNodeOrder; 1156 1157 CurInst = &I; 1158 1159 // Set inserted listener only if required. 1160 bool NodeInserted = false; 1161 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1162 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1163 if (PCSectionsMD) { 1164 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1165 DAG, [&](SDNode *) { NodeInserted = true; }); 1166 } 1167 1168 visit(I.getOpcode(), I); 1169 1170 if (!I.isTerminator() && !HasTailCall && 1171 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1172 CopyToExportRegsIfNeeded(&I); 1173 1174 // Handle metadata. 1175 if (PCSectionsMD) { 1176 auto It = NodeMap.find(&I); 1177 if (It != NodeMap.end()) { 1178 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1179 } else if (NodeInserted) { 1180 // This should not happen; if it does, don't let it go unnoticed so we can 1181 // fix it. Relevant visit*() function is probably missing a setValue(). 1182 errs() << "warning: loosing !pcsections metadata [" 1183 << I.getModule()->getName() << "]\n"; 1184 LLVM_DEBUG(I.dump()); 1185 assert(false); 1186 } 1187 } 1188 1189 CurInst = nullptr; 1190 } 1191 1192 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1193 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1194 } 1195 1196 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1197 // Note: this doesn't use InstVisitor, because it has to work with 1198 // ConstantExpr's in addition to instructions. 1199 switch (Opcode) { 1200 default: llvm_unreachable("Unknown instruction type encountered!"); 1201 // Build the switch statement using the Instruction.def file. 1202 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1203 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1204 #include "llvm/IR/Instruction.def" 1205 } 1206 } 1207 1208 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1209 unsigned Order) { 1210 DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order); 1211 } 1212 1213 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1214 unsigned Order) { 1215 // We treat variadic dbg_values differently at this stage. 1216 if (DI->hasArgList()) { 1217 // For variadic dbg_values we will now insert an undef. 1218 // FIXME: We can potentially recover these! 1219 SmallVector<SDDbgOperand, 2> Locs; 1220 for (const Value *V : DI->getValues()) { 1221 auto Undef = UndefValue::get(V->getType()); 1222 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1223 } 1224 SDDbgValue *SDV = DAG.getDbgValueList( 1225 DI->getVariable(), DI->getExpression(), Locs, {}, 1226 /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true); 1227 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1228 } else { 1229 // TODO: Dangling debug info will eventually either be resolved or produce 1230 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1231 // between the original dbg.value location and its resolved DBG_VALUE, 1232 // which we should ideally fill with an extra Undef DBG_VALUE. 1233 assert(DI->getNumVariableLocationOps() == 1 && 1234 "DbgValueInst without an ArgList should have a single location " 1235 "operand."); 1236 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1237 } 1238 } 1239 1240 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1241 const DIExpression *Expr) { 1242 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1243 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1244 DIExpression *DanglingExpr = DDI.getExpression(); 1245 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1246 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1247 << "\n"); 1248 return true; 1249 } 1250 return false; 1251 }; 1252 1253 for (auto &DDIMI : DanglingDebugInfoMap) { 1254 DanglingDebugInfoVector &DDIV = DDIMI.second; 1255 1256 // If debug info is to be dropped, run it through final checks to see 1257 // whether it can be salvaged. 1258 for (auto &DDI : DDIV) 1259 if (isMatchingDbgValue(DDI)) 1260 salvageUnresolvedDbgValue(DDI); 1261 1262 erase_if(DDIV, isMatchingDbgValue); 1263 } 1264 } 1265 1266 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1267 // generate the debug data structures now that we've seen its definition. 1268 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1269 SDValue Val) { 1270 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1271 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1272 return; 1273 1274 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1275 for (auto &DDI : DDIV) { 1276 DebugLoc DL = DDI.getDebugLoc(); 1277 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1278 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1279 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1280 DIExpression *Expr = DDI.getExpression(); 1281 assert(Variable->isValidLocationForIntrinsic(DL) && 1282 "Expected inlined-at fields to agree"); 1283 SDDbgValue *SDV; 1284 if (Val.getNode()) { 1285 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1286 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1287 // we couldn't resolve it directly when examining the DbgValue intrinsic 1288 // in the first place we should not be more successful here). Unless we 1289 // have some test case that prove this to be correct we should avoid 1290 // calling EmitFuncArgumentDbgValue here. 1291 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1292 FuncArgumentDbgValueKind::Value, Val)) { 1293 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1294 << "\n"); 1295 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1296 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1297 // inserted after the definition of Val when emitting the instructions 1298 // after ISel. An alternative could be to teach 1299 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1300 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1301 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1302 << ValSDNodeOrder << "\n"); 1303 SDV = getDbgValue(Val, Variable, Expr, DL, 1304 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1305 DAG.AddDbgValue(SDV, false); 1306 } else 1307 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1308 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1309 } else { 1310 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1311 auto Undef = UndefValue::get(V->getType()); 1312 auto SDV = 1313 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1314 DAG.AddDbgValue(SDV, false); 1315 } 1316 } 1317 DDIV.clear(); 1318 } 1319 1320 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1321 // TODO: For the variadic implementation, instead of only checking the fail 1322 // state of `handleDebugValue`, we need know specifically which values were 1323 // invalid, so that we attempt to salvage only those values when processing 1324 // a DIArgList. 1325 Value *V = DDI.getVariableLocationOp(0); 1326 Value *OrigV = V; 1327 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1328 DIExpression *Expr = DDI.getExpression(); 1329 DebugLoc DL = DDI.getDebugLoc(); 1330 unsigned SDOrder = DDI.getSDNodeOrder(); 1331 1332 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1333 // that DW_OP_stack_value is desired. 1334 bool StackValue = true; 1335 1336 // Can this Value can be encoded without any further work? 1337 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1338 return; 1339 1340 // Attempt to salvage back through as many instructions as possible. Bail if 1341 // a non-instruction is seen, such as a constant expression or global 1342 // variable. FIXME: Further work could recover those too. 1343 while (isa<Instruction>(V)) { 1344 Instruction &VAsInst = *cast<Instruction>(V); 1345 // Temporary "0", awaiting real implementation. 1346 SmallVector<uint64_t, 16> Ops; 1347 SmallVector<Value *, 4> AdditionalValues; 1348 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1349 AdditionalValues); 1350 // If we cannot salvage any further, and haven't yet found a suitable debug 1351 // expression, bail out. 1352 if (!V) 1353 break; 1354 1355 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1356 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1357 // here for variadic dbg_values, remove that condition. 1358 if (!AdditionalValues.empty()) 1359 break; 1360 1361 // New value and expr now represent this debuginfo. 1362 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1363 1364 // Some kind of simplification occurred: check whether the operand of the 1365 // salvaged debug expression can be encoded in this DAG. 1366 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1367 LLVM_DEBUG( 1368 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1369 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1370 return; 1371 } 1372 } 1373 1374 // This was the final opportunity to salvage this debug information, and it 1375 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1376 // any earlier variable location. 1377 assert(OrigV && "V shouldn't be null"); 1378 auto *Undef = UndefValue::get(OrigV->getType()); 1379 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, false); 1381 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1382 << "\n"); 1383 } 1384 1385 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1386 DILocalVariable *Var, 1387 DIExpression *Expr, DebugLoc DbgLoc, 1388 unsigned Order, bool IsVariadic) { 1389 if (Values.empty()) 1390 return true; 1391 SmallVector<SDDbgOperand> LocationOps; 1392 SmallVector<SDNode *> Dependencies; 1393 for (const Value *V : Values) { 1394 // Constant value. 1395 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1396 isa<ConstantPointerNull>(V)) { 1397 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1398 continue; 1399 } 1400 1401 // Look through IntToPtr constants. 1402 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1403 if (CE->getOpcode() == Instruction::IntToPtr) { 1404 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1405 continue; 1406 } 1407 1408 // If the Value is a frame index, we can create a FrameIndex debug value 1409 // without relying on the DAG at all. 1410 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1411 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1412 if (SI != FuncInfo.StaticAllocaMap.end()) { 1413 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1414 continue; 1415 } 1416 } 1417 1418 // Do not use getValue() in here; we don't want to generate code at 1419 // this point if it hasn't been done yet. 1420 SDValue N = NodeMap[V]; 1421 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1422 N = UnusedArgNodeMap[V]; 1423 if (N.getNode()) { 1424 // Only emit func arg dbg value for non-variadic dbg.values for now. 1425 if (!IsVariadic && 1426 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1427 FuncArgumentDbgValueKind::Value, N)) 1428 return true; 1429 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1430 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1431 // describe stack slot locations. 1432 // 1433 // Consider "int x = 0; int *px = &x;". There are two kinds of 1434 // interesting debug values here after optimization: 1435 // 1436 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1437 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1438 // 1439 // Both describe the direct values of their associated variables. 1440 Dependencies.push_back(N.getNode()); 1441 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1442 continue; 1443 } 1444 LocationOps.emplace_back( 1445 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1446 continue; 1447 } 1448 1449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1450 // Special rules apply for the first dbg.values of parameter variables in a 1451 // function. Identify them by the fact they reference Argument Values, that 1452 // they're parameters, and they are parameters of the current function. We 1453 // need to let them dangle until they get an SDNode. 1454 bool IsParamOfFunc = 1455 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1456 if (IsParamOfFunc) 1457 return false; 1458 1459 // The value is not used in this block yet (or it would have an SDNode). 1460 // We still want the value to appear for the user if possible -- if it has 1461 // an associated VReg, we can refer to that instead. 1462 auto VMI = FuncInfo.ValueMap.find(V); 1463 if (VMI != FuncInfo.ValueMap.end()) { 1464 unsigned Reg = VMI->second; 1465 // If this is a PHI node, it may be split up into several MI PHI nodes 1466 // (in FunctionLoweringInfo::set). 1467 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1468 V->getType(), std::nullopt); 1469 if (RFV.occupiesMultipleRegs()) { 1470 // FIXME: We could potentially support variadic dbg_values here. 1471 if (IsVariadic) 1472 return false; 1473 unsigned Offset = 0; 1474 unsigned BitsToDescribe = 0; 1475 if (auto VarSize = Var->getSizeInBits()) 1476 BitsToDescribe = *VarSize; 1477 if (auto Fragment = Expr->getFragmentInfo()) 1478 BitsToDescribe = Fragment->SizeInBits; 1479 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1480 // Bail out if all bits are described already. 1481 if (Offset >= BitsToDescribe) 1482 break; 1483 // TODO: handle scalable vectors. 1484 unsigned RegisterSize = RegAndSize.second; 1485 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1486 ? BitsToDescribe - Offset 1487 : RegisterSize; 1488 auto FragmentExpr = DIExpression::createFragmentExpression( 1489 Expr, Offset, FragmentSize); 1490 if (!FragmentExpr) 1491 continue; 1492 SDDbgValue *SDV = DAG.getVRegDbgValue( 1493 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1494 DAG.AddDbgValue(SDV, false); 1495 Offset += RegisterSize; 1496 } 1497 return true; 1498 } 1499 // We can use simple vreg locations for variadic dbg_values as well. 1500 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1501 continue; 1502 } 1503 // We failed to create a SDDbgOperand for V. 1504 return false; 1505 } 1506 1507 // We have created a SDDbgOperand for each Value in Values. 1508 // Should use Order instead of SDNodeOrder? 1509 assert(!LocationOps.empty()); 1510 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1511 /*IsIndirect=*/false, DbgLoc, 1512 SDNodeOrder, IsVariadic); 1513 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1514 return true; 1515 } 1516 1517 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1518 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1519 for (auto &Pair : DanglingDebugInfoMap) 1520 for (auto &DDI : Pair.second) 1521 salvageUnresolvedDbgValue(DDI); 1522 clearDanglingDebugInfo(); 1523 } 1524 1525 /// getCopyFromRegs - If there was virtual register allocated for the value V 1526 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1527 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1528 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1529 SDValue Result; 1530 1531 if (It != FuncInfo.ValueMap.end()) { 1532 Register InReg = It->second; 1533 1534 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1535 DAG.getDataLayout(), InReg, Ty, 1536 std::nullopt); // This is not an ABI copy. 1537 SDValue Chain = DAG.getEntryNode(); 1538 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1539 V); 1540 resolveDanglingDebugInfo(V, Result); 1541 } 1542 1543 return Result; 1544 } 1545 1546 /// getValue - Return an SDValue for the given Value. 1547 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1548 // If we already have an SDValue for this value, use it. It's important 1549 // to do this first, so that we don't create a CopyFromReg if we already 1550 // have a regular SDValue. 1551 SDValue &N = NodeMap[V]; 1552 if (N.getNode()) return N; 1553 1554 // If there's a virtual register allocated and initialized for this 1555 // value, use it. 1556 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1557 return copyFromReg; 1558 1559 // Otherwise create a new SDValue and remember it. 1560 SDValue Val = getValueImpl(V); 1561 NodeMap[V] = Val; 1562 resolveDanglingDebugInfo(V, Val); 1563 return Val; 1564 } 1565 1566 /// getNonRegisterValue - Return an SDValue for the given Value, but 1567 /// don't look in FuncInfo.ValueMap for a virtual register. 1568 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1569 // If we already have an SDValue for this value, use it. 1570 SDValue &N = NodeMap[V]; 1571 if (N.getNode()) { 1572 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1573 // Remove the debug location from the node as the node is about to be used 1574 // in a location which may differ from the original debug location. This 1575 // is relevant to Constant and ConstantFP nodes because they can appear 1576 // as constant expressions inside PHI nodes. 1577 N->setDebugLoc(DebugLoc()); 1578 } 1579 return N; 1580 } 1581 1582 // Otherwise create a new SDValue and remember it. 1583 SDValue Val = getValueImpl(V); 1584 NodeMap[V] = Val; 1585 resolveDanglingDebugInfo(V, Val); 1586 return Val; 1587 } 1588 1589 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1590 /// Create an SDValue for the given value. 1591 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1592 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1593 1594 if (const Constant *C = dyn_cast<Constant>(V)) { 1595 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1596 1597 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1598 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1599 1600 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1601 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1602 1603 if (isa<ConstantPointerNull>(C)) { 1604 unsigned AS = V->getType()->getPointerAddressSpace(); 1605 return DAG.getConstant(0, getCurSDLoc(), 1606 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1607 } 1608 1609 if (match(C, m_VScale(DAG.getDataLayout()))) 1610 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1611 1612 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1613 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1614 1615 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1616 return DAG.getUNDEF(VT); 1617 1618 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1619 visit(CE->getOpcode(), *CE); 1620 SDValue N1 = NodeMap[V]; 1621 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1622 return N1; 1623 } 1624 1625 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1626 SmallVector<SDValue, 4> Constants; 1627 for (const Use &U : C->operands()) { 1628 SDNode *Val = getValue(U).getNode(); 1629 // If the operand is an empty aggregate, there are no values. 1630 if (!Val) continue; 1631 // Add each leaf value from the operand to the Constants list 1632 // to form a flattened list of all the values. 1633 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1634 Constants.push_back(SDValue(Val, i)); 1635 } 1636 1637 return DAG.getMergeValues(Constants, getCurSDLoc()); 1638 } 1639 1640 if (const ConstantDataSequential *CDS = 1641 dyn_cast<ConstantDataSequential>(C)) { 1642 SmallVector<SDValue, 4> Ops; 1643 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1644 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1645 // Add each leaf value from the operand to the Constants list 1646 // to form a flattened list of all the values. 1647 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1648 Ops.push_back(SDValue(Val, i)); 1649 } 1650 1651 if (isa<ArrayType>(CDS->getType())) 1652 return DAG.getMergeValues(Ops, getCurSDLoc()); 1653 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1654 } 1655 1656 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1657 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1658 "Unknown struct or array constant!"); 1659 1660 SmallVector<EVT, 4> ValueVTs; 1661 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1662 unsigned NumElts = ValueVTs.size(); 1663 if (NumElts == 0) 1664 return SDValue(); // empty struct 1665 SmallVector<SDValue, 4> Constants(NumElts); 1666 for (unsigned i = 0; i != NumElts; ++i) { 1667 EVT EltVT = ValueVTs[i]; 1668 if (isa<UndefValue>(C)) 1669 Constants[i] = DAG.getUNDEF(EltVT); 1670 else if (EltVT.isFloatingPoint()) 1671 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1672 else 1673 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1674 } 1675 1676 return DAG.getMergeValues(Constants, getCurSDLoc()); 1677 } 1678 1679 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1680 return DAG.getBlockAddress(BA, VT); 1681 1682 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1683 return getValue(Equiv->getGlobalValue()); 1684 1685 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1686 return getValue(NC->getGlobalValue()); 1687 1688 VectorType *VecTy = cast<VectorType>(V->getType()); 1689 1690 // Now that we know the number and type of the elements, get that number of 1691 // elements into the Ops array based on what kind of constant it is. 1692 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1693 SmallVector<SDValue, 16> Ops; 1694 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1695 for (unsigned i = 0; i != NumElements; ++i) 1696 Ops.push_back(getValue(CV->getOperand(i))); 1697 1698 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1699 } 1700 1701 if (isa<ConstantAggregateZero>(C)) { 1702 EVT EltVT = 1703 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1704 1705 SDValue Op; 1706 if (EltVT.isFloatingPoint()) 1707 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1708 else 1709 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1710 1711 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1712 } 1713 1714 llvm_unreachable("Unknown vector constant"); 1715 } 1716 1717 // If this is a static alloca, generate it as the frameindex instead of 1718 // computation. 1719 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1720 DenseMap<const AllocaInst*, int>::iterator SI = 1721 FuncInfo.StaticAllocaMap.find(AI); 1722 if (SI != FuncInfo.StaticAllocaMap.end()) 1723 return DAG.getFrameIndex( 1724 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1725 } 1726 1727 // If this is an instruction which fast-isel has deferred, select it now. 1728 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1729 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1730 1731 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1732 Inst->getType(), std::nullopt); 1733 SDValue Chain = DAG.getEntryNode(); 1734 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1735 } 1736 1737 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1738 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1739 1740 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1741 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1742 1743 llvm_unreachable("Can't get register for value!"); 1744 } 1745 1746 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1747 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1748 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1749 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1750 bool IsSEH = isAsynchronousEHPersonality(Pers); 1751 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1752 if (!IsSEH) 1753 CatchPadMBB->setIsEHScopeEntry(); 1754 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1755 if (IsMSVCCXX || IsCoreCLR) 1756 CatchPadMBB->setIsEHFuncletEntry(); 1757 } 1758 1759 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1760 // Update machine-CFG edge. 1761 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1762 FuncInfo.MBB->addSuccessor(TargetMBB); 1763 TargetMBB->setIsEHCatchretTarget(true); 1764 DAG.getMachineFunction().setHasEHCatchret(true); 1765 1766 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1767 bool IsSEH = isAsynchronousEHPersonality(Pers); 1768 if (IsSEH) { 1769 // If this is not a fall-through branch or optimizations are switched off, 1770 // emit the branch. 1771 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1772 TM.getOptLevel() == CodeGenOpt::None) 1773 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1774 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1775 return; 1776 } 1777 1778 // Figure out the funclet membership for the catchret's successor. 1779 // This will be used by the FuncletLayout pass to determine how to order the 1780 // BB's. 1781 // A 'catchret' returns to the outer scope's color. 1782 Value *ParentPad = I.getCatchSwitchParentPad(); 1783 const BasicBlock *SuccessorColor; 1784 if (isa<ConstantTokenNone>(ParentPad)) 1785 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1786 else 1787 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1788 assert(SuccessorColor && "No parent funclet for catchret!"); 1789 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1790 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1791 1792 // Create the terminator node. 1793 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1794 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1795 DAG.getBasicBlock(SuccessorColorMBB)); 1796 DAG.setRoot(Ret); 1797 } 1798 1799 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1800 // Don't emit any special code for the cleanuppad instruction. It just marks 1801 // the start of an EH scope/funclet. 1802 FuncInfo.MBB->setIsEHScopeEntry(); 1803 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1804 if (Pers != EHPersonality::Wasm_CXX) { 1805 FuncInfo.MBB->setIsEHFuncletEntry(); 1806 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1807 } 1808 } 1809 1810 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1811 // not match, it is OK to add only the first unwind destination catchpad to the 1812 // successors, because there will be at least one invoke instruction within the 1813 // catch scope that points to the next unwind destination, if one exists, so 1814 // CFGSort cannot mess up with BB sorting order. 1815 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1816 // call within them, and catchpads only consisting of 'catch (...)' have a 1817 // '__cxa_end_catch' call within them, both of which generate invokes in case 1818 // the next unwind destination exists, i.e., the next unwind destination is not 1819 // the caller.) 1820 // 1821 // Having at most one EH pad successor is also simpler and helps later 1822 // transformations. 1823 // 1824 // For example, 1825 // current: 1826 // invoke void @foo to ... unwind label %catch.dispatch 1827 // catch.dispatch: 1828 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1829 // catch.start: 1830 // ... 1831 // ... in this BB or some other child BB dominated by this BB there will be an 1832 // invoke that points to 'next' BB as an unwind destination 1833 // 1834 // next: ; We don't need to add this to 'current' BB's successor 1835 // ... 1836 static void findWasmUnwindDestinations( 1837 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1838 BranchProbability Prob, 1839 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1840 &UnwindDests) { 1841 while (EHPadBB) { 1842 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1843 if (isa<CleanupPadInst>(Pad)) { 1844 // Stop on cleanup pads. 1845 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1846 UnwindDests.back().first->setIsEHScopeEntry(); 1847 break; 1848 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1849 // Add the catchpad handlers to the possible destinations. We don't 1850 // continue to the unwind destination of the catchswitch for wasm. 1851 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1852 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1853 UnwindDests.back().first->setIsEHScopeEntry(); 1854 } 1855 break; 1856 } else { 1857 continue; 1858 } 1859 } 1860 } 1861 1862 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1863 /// many places it could ultimately go. In the IR, we have a single unwind 1864 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1865 /// This function skips over imaginary basic blocks that hold catchswitch 1866 /// instructions, and finds all the "real" machine 1867 /// basic block destinations. As those destinations may not be successors of 1868 /// EHPadBB, here we also calculate the edge probability to those destinations. 1869 /// The passed-in Prob is the edge probability to EHPadBB. 1870 static void findUnwindDestinations( 1871 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1872 BranchProbability Prob, 1873 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1874 &UnwindDests) { 1875 EHPersonality Personality = 1876 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1877 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1878 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1879 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1880 bool IsSEH = isAsynchronousEHPersonality(Personality); 1881 1882 if (IsWasmCXX) { 1883 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1884 assert(UnwindDests.size() <= 1 && 1885 "There should be at most one unwind destination for wasm"); 1886 return; 1887 } 1888 1889 while (EHPadBB) { 1890 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1891 BasicBlock *NewEHPadBB = nullptr; 1892 if (isa<LandingPadInst>(Pad)) { 1893 // Stop on landingpads. They are not funclets. 1894 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1895 break; 1896 } else if (isa<CleanupPadInst>(Pad)) { 1897 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1898 // personalities. 1899 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1900 UnwindDests.back().first->setIsEHScopeEntry(); 1901 UnwindDests.back().first->setIsEHFuncletEntry(); 1902 break; 1903 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1904 // Add the catchpad handlers to the possible destinations. 1905 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1906 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1907 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1908 if (IsMSVCCXX || IsCoreCLR) 1909 UnwindDests.back().first->setIsEHFuncletEntry(); 1910 if (!IsSEH) 1911 UnwindDests.back().first->setIsEHScopeEntry(); 1912 } 1913 NewEHPadBB = CatchSwitch->getUnwindDest(); 1914 } else { 1915 continue; 1916 } 1917 1918 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1919 if (BPI && NewEHPadBB) 1920 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1921 EHPadBB = NewEHPadBB; 1922 } 1923 } 1924 1925 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1926 // Update successor info. 1927 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1928 auto UnwindDest = I.getUnwindDest(); 1929 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1930 BranchProbability UnwindDestProb = 1931 (BPI && UnwindDest) 1932 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1933 : BranchProbability::getZero(); 1934 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1935 for (auto &UnwindDest : UnwindDests) { 1936 UnwindDest.first->setIsEHPad(); 1937 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1938 } 1939 FuncInfo.MBB->normalizeSuccProbs(); 1940 1941 // Create the terminator node. 1942 SDValue Ret = 1943 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1944 DAG.setRoot(Ret); 1945 } 1946 1947 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1948 report_fatal_error("visitCatchSwitch not yet implemented!"); 1949 } 1950 1951 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1953 auto &DL = DAG.getDataLayout(); 1954 SDValue Chain = getControlRoot(); 1955 SmallVector<ISD::OutputArg, 8> Outs; 1956 SmallVector<SDValue, 8> OutVals; 1957 1958 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1959 // lower 1960 // 1961 // %val = call <ty> @llvm.experimental.deoptimize() 1962 // ret <ty> %val 1963 // 1964 // differently. 1965 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1966 LowerDeoptimizingReturn(); 1967 return; 1968 } 1969 1970 if (!FuncInfo.CanLowerReturn) { 1971 unsigned DemoteReg = FuncInfo.DemoteRegister; 1972 const Function *F = I.getParent()->getParent(); 1973 1974 // Emit a store of the return value through the virtual register. 1975 // Leave Outs empty so that LowerReturn won't try to load return 1976 // registers the usual way. 1977 SmallVector<EVT, 1> PtrValueVTs; 1978 ComputeValueVTs(TLI, DL, 1979 F->getReturnType()->getPointerTo( 1980 DAG.getDataLayout().getAllocaAddrSpace()), 1981 PtrValueVTs); 1982 1983 SDValue RetPtr = 1984 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1985 SDValue RetOp = getValue(I.getOperand(0)); 1986 1987 SmallVector<EVT, 4> ValueVTs, MemVTs; 1988 SmallVector<uint64_t, 4> Offsets; 1989 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1990 &Offsets); 1991 unsigned NumValues = ValueVTs.size(); 1992 1993 SmallVector<SDValue, 4> Chains(NumValues); 1994 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1995 for (unsigned i = 0; i != NumValues; ++i) { 1996 // An aggregate return value cannot wrap around the address space, so 1997 // offsets to its parts don't wrap either. 1998 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1999 TypeSize::Fixed(Offsets[i])); 2000 2001 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2002 if (MemVTs[i] != ValueVTs[i]) 2003 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2004 Chains[i] = DAG.getStore( 2005 Chain, getCurSDLoc(), Val, 2006 // FIXME: better loc info would be nice. 2007 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2008 commonAlignment(BaseAlign, Offsets[i])); 2009 } 2010 2011 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2012 MVT::Other, Chains); 2013 } else if (I.getNumOperands() != 0) { 2014 SmallVector<EVT, 4> ValueVTs; 2015 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2016 unsigned NumValues = ValueVTs.size(); 2017 if (NumValues) { 2018 SDValue RetOp = getValue(I.getOperand(0)); 2019 2020 const Function *F = I.getParent()->getParent(); 2021 2022 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2023 I.getOperand(0)->getType(), F->getCallingConv(), 2024 /*IsVarArg*/ false, DL); 2025 2026 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2027 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2028 ExtendKind = ISD::SIGN_EXTEND; 2029 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2030 ExtendKind = ISD::ZERO_EXTEND; 2031 2032 LLVMContext &Context = F->getContext(); 2033 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2034 2035 for (unsigned j = 0; j != NumValues; ++j) { 2036 EVT VT = ValueVTs[j]; 2037 2038 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2039 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2040 2041 CallingConv::ID CC = F->getCallingConv(); 2042 2043 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2044 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2045 SmallVector<SDValue, 4> Parts(NumParts); 2046 getCopyToParts(DAG, getCurSDLoc(), 2047 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2048 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2049 2050 // 'inreg' on function refers to return value 2051 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2052 if (RetInReg) 2053 Flags.setInReg(); 2054 2055 if (I.getOperand(0)->getType()->isPointerTy()) { 2056 Flags.setPointer(); 2057 Flags.setPointerAddrSpace( 2058 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2059 } 2060 2061 if (NeedsRegBlock) { 2062 Flags.setInConsecutiveRegs(); 2063 if (j == NumValues - 1) 2064 Flags.setInConsecutiveRegsLast(); 2065 } 2066 2067 // Propagate extension type if any 2068 if (ExtendKind == ISD::SIGN_EXTEND) 2069 Flags.setSExt(); 2070 else if (ExtendKind == ISD::ZERO_EXTEND) 2071 Flags.setZExt(); 2072 2073 for (unsigned i = 0; i < NumParts; ++i) { 2074 Outs.push_back(ISD::OutputArg(Flags, 2075 Parts[i].getValueType().getSimpleVT(), 2076 VT, /*isfixed=*/true, 0, 0)); 2077 OutVals.push_back(Parts[i]); 2078 } 2079 } 2080 } 2081 } 2082 2083 // Push in swifterror virtual register as the last element of Outs. This makes 2084 // sure swifterror virtual register will be returned in the swifterror 2085 // physical register. 2086 const Function *F = I.getParent()->getParent(); 2087 if (TLI.supportSwiftError() && 2088 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2089 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2090 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2091 Flags.setSwiftError(); 2092 Outs.push_back(ISD::OutputArg( 2093 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2094 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2095 // Create SDNode for the swifterror virtual register. 2096 OutVals.push_back( 2097 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2098 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2099 EVT(TLI.getPointerTy(DL)))); 2100 } 2101 2102 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2103 CallingConv::ID CallConv = 2104 DAG.getMachineFunction().getFunction().getCallingConv(); 2105 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2106 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2107 2108 // Verify that the target's LowerReturn behaved as expected. 2109 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2110 "LowerReturn didn't return a valid chain!"); 2111 2112 // Update the DAG with the new chain value resulting from return lowering. 2113 DAG.setRoot(Chain); 2114 } 2115 2116 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2117 /// created for it, emit nodes to copy the value into the virtual 2118 /// registers. 2119 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2120 // Skip empty types 2121 if (V->getType()->isEmptyTy()) 2122 return; 2123 2124 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2125 if (VMI != FuncInfo.ValueMap.end()) { 2126 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2127 CopyValueToVirtualRegister(V, VMI->second); 2128 } 2129 } 2130 2131 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2132 /// the current basic block, add it to ValueMap now so that we'll get a 2133 /// CopyTo/FromReg. 2134 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2135 // No need to export constants. 2136 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2137 2138 // Already exported? 2139 if (FuncInfo.isExportedInst(V)) return; 2140 2141 Register Reg = FuncInfo.InitializeRegForValue(V); 2142 CopyValueToVirtualRegister(V, Reg); 2143 } 2144 2145 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2146 const BasicBlock *FromBB) { 2147 // The operands of the setcc have to be in this block. We don't know 2148 // how to export them from some other block. 2149 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2150 // Can export from current BB. 2151 if (VI->getParent() == FromBB) 2152 return true; 2153 2154 // Is already exported, noop. 2155 return FuncInfo.isExportedInst(V); 2156 } 2157 2158 // If this is an argument, we can export it if the BB is the entry block or 2159 // if it is already exported. 2160 if (isa<Argument>(V)) { 2161 if (FromBB->isEntryBlock()) 2162 return true; 2163 2164 // Otherwise, can only export this if it is already exported. 2165 return FuncInfo.isExportedInst(V); 2166 } 2167 2168 // Otherwise, constants can always be exported. 2169 return true; 2170 } 2171 2172 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2173 BranchProbability 2174 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2175 const MachineBasicBlock *Dst) const { 2176 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2177 const BasicBlock *SrcBB = Src->getBasicBlock(); 2178 const BasicBlock *DstBB = Dst->getBasicBlock(); 2179 if (!BPI) { 2180 // If BPI is not available, set the default probability as 1 / N, where N is 2181 // the number of successors. 2182 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2183 return BranchProbability(1, SuccSize); 2184 } 2185 return BPI->getEdgeProbability(SrcBB, DstBB); 2186 } 2187 2188 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2189 MachineBasicBlock *Dst, 2190 BranchProbability Prob) { 2191 if (!FuncInfo.BPI) 2192 Src->addSuccessorWithoutProb(Dst); 2193 else { 2194 if (Prob.isUnknown()) 2195 Prob = getEdgeProbability(Src, Dst); 2196 Src->addSuccessor(Dst, Prob); 2197 } 2198 } 2199 2200 static bool InBlock(const Value *V, const BasicBlock *BB) { 2201 if (const Instruction *I = dyn_cast<Instruction>(V)) 2202 return I->getParent() == BB; 2203 return true; 2204 } 2205 2206 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2207 /// This function emits a branch and is used at the leaves of an OR or an 2208 /// AND operator tree. 2209 void 2210 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2211 MachineBasicBlock *TBB, 2212 MachineBasicBlock *FBB, 2213 MachineBasicBlock *CurBB, 2214 MachineBasicBlock *SwitchBB, 2215 BranchProbability TProb, 2216 BranchProbability FProb, 2217 bool InvertCond) { 2218 const BasicBlock *BB = CurBB->getBasicBlock(); 2219 2220 // If the leaf of the tree is a comparison, merge the condition into 2221 // the caseblock. 2222 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2223 // The operands of the cmp have to be in this block. We don't know 2224 // how to export them from some other block. If this is the first block 2225 // of the sequence, no exporting is needed. 2226 if (CurBB == SwitchBB || 2227 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2228 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2229 ISD::CondCode Condition; 2230 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2231 ICmpInst::Predicate Pred = 2232 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2233 Condition = getICmpCondCode(Pred); 2234 } else { 2235 const FCmpInst *FC = cast<FCmpInst>(Cond); 2236 FCmpInst::Predicate Pred = 2237 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2238 Condition = getFCmpCondCode(Pred); 2239 if (TM.Options.NoNaNsFPMath) 2240 Condition = getFCmpCodeWithoutNaN(Condition); 2241 } 2242 2243 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2244 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2245 SL->SwitchCases.push_back(CB); 2246 return; 2247 } 2248 } 2249 2250 // Create a CaseBlock record representing this branch. 2251 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2252 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2253 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2254 SL->SwitchCases.push_back(CB); 2255 } 2256 2257 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2258 MachineBasicBlock *TBB, 2259 MachineBasicBlock *FBB, 2260 MachineBasicBlock *CurBB, 2261 MachineBasicBlock *SwitchBB, 2262 Instruction::BinaryOps Opc, 2263 BranchProbability TProb, 2264 BranchProbability FProb, 2265 bool InvertCond) { 2266 // Skip over not part of the tree and remember to invert op and operands at 2267 // next level. 2268 Value *NotCond; 2269 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2270 InBlock(NotCond, CurBB->getBasicBlock())) { 2271 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2272 !InvertCond); 2273 return; 2274 } 2275 2276 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2277 const Value *BOpOp0, *BOpOp1; 2278 // Compute the effective opcode for Cond, taking into account whether it needs 2279 // to be inverted, e.g. 2280 // and (not (or A, B)), C 2281 // gets lowered as 2282 // and (and (not A, not B), C) 2283 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2284 if (BOp) { 2285 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2286 ? Instruction::And 2287 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2288 ? Instruction::Or 2289 : (Instruction::BinaryOps)0); 2290 if (InvertCond) { 2291 if (BOpc == Instruction::And) 2292 BOpc = Instruction::Or; 2293 else if (BOpc == Instruction::Or) 2294 BOpc = Instruction::And; 2295 } 2296 } 2297 2298 // If this node is not part of the or/and tree, emit it as a branch. 2299 // Note that all nodes in the tree should have same opcode. 2300 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2301 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2302 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2303 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2304 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2305 TProb, FProb, InvertCond); 2306 return; 2307 } 2308 2309 // Create TmpBB after CurBB. 2310 MachineFunction::iterator BBI(CurBB); 2311 MachineFunction &MF = DAG.getMachineFunction(); 2312 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2313 CurBB->getParent()->insert(++BBI, TmpBB); 2314 2315 if (Opc == Instruction::Or) { 2316 // Codegen X | Y as: 2317 // BB1: 2318 // jmp_if_X TBB 2319 // jmp TmpBB 2320 // TmpBB: 2321 // jmp_if_Y TBB 2322 // jmp FBB 2323 // 2324 2325 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2326 // The requirement is that 2327 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2328 // = TrueProb for original BB. 2329 // Assuming the original probabilities are A and B, one choice is to set 2330 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2331 // A/(1+B) and 2B/(1+B). This choice assumes that 2332 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2333 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2334 // TmpBB, but the math is more complicated. 2335 2336 auto NewTrueProb = TProb / 2; 2337 auto NewFalseProb = TProb / 2 + FProb; 2338 // Emit the LHS condition. 2339 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2340 NewFalseProb, InvertCond); 2341 2342 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2343 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2344 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2345 // Emit the RHS condition into TmpBB. 2346 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2347 Probs[1], InvertCond); 2348 } else { 2349 assert(Opc == Instruction::And && "Unknown merge op!"); 2350 // Codegen X & Y as: 2351 // BB1: 2352 // jmp_if_X TmpBB 2353 // jmp FBB 2354 // TmpBB: 2355 // jmp_if_Y TBB 2356 // jmp FBB 2357 // 2358 // This requires creation of TmpBB after CurBB. 2359 2360 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2361 // The requirement is that 2362 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2363 // = FalseProb for original BB. 2364 // Assuming the original probabilities are A and B, one choice is to set 2365 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2366 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2367 // TrueProb for BB1 * FalseProb for TmpBB. 2368 2369 auto NewTrueProb = TProb + FProb / 2; 2370 auto NewFalseProb = FProb / 2; 2371 // Emit the LHS condition. 2372 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2373 NewFalseProb, InvertCond); 2374 2375 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2376 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2377 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2378 // Emit the RHS condition into TmpBB. 2379 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2380 Probs[1], InvertCond); 2381 } 2382 } 2383 2384 /// If the set of cases should be emitted as a series of branches, return true. 2385 /// If we should emit this as a bunch of and/or'd together conditions, return 2386 /// false. 2387 bool 2388 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2389 if (Cases.size() != 2) return true; 2390 2391 // If this is two comparisons of the same values or'd or and'd together, they 2392 // will get folded into a single comparison, so don't emit two blocks. 2393 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2394 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2395 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2396 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2397 return false; 2398 } 2399 2400 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2401 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2402 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2403 Cases[0].CC == Cases[1].CC && 2404 isa<Constant>(Cases[0].CmpRHS) && 2405 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2406 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2407 return false; 2408 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2409 return false; 2410 } 2411 2412 return true; 2413 } 2414 2415 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2416 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2417 2418 // Update machine-CFG edges. 2419 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2420 2421 if (I.isUnconditional()) { 2422 // Update machine-CFG edges. 2423 BrMBB->addSuccessor(Succ0MBB); 2424 2425 // If this is not a fall-through branch or optimizations are switched off, 2426 // emit the branch. 2427 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2428 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2429 MVT::Other, getControlRoot(), 2430 DAG.getBasicBlock(Succ0MBB))); 2431 2432 return; 2433 } 2434 2435 // If this condition is one of the special cases we handle, do special stuff 2436 // now. 2437 const Value *CondVal = I.getCondition(); 2438 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2439 2440 // If this is a series of conditions that are or'd or and'd together, emit 2441 // this as a sequence of branches instead of setcc's with and/or operations. 2442 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2443 // unpredictable branches, and vector extracts because those jumps are likely 2444 // expensive for any target), this should improve performance. 2445 // For example, instead of something like: 2446 // cmp A, B 2447 // C = seteq 2448 // cmp D, E 2449 // F = setle 2450 // or C, F 2451 // jnz foo 2452 // Emit: 2453 // cmp A, B 2454 // je foo 2455 // cmp D, E 2456 // jle foo 2457 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2458 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2459 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2460 Value *Vec; 2461 const Value *BOp0, *BOp1; 2462 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2463 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2464 Opcode = Instruction::And; 2465 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2466 Opcode = Instruction::Or; 2467 2468 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2469 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2470 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2471 getEdgeProbability(BrMBB, Succ0MBB), 2472 getEdgeProbability(BrMBB, Succ1MBB), 2473 /*InvertCond=*/false); 2474 // If the compares in later blocks need to use values not currently 2475 // exported from this block, export them now. This block should always 2476 // be the first entry. 2477 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2478 2479 // Allow some cases to be rejected. 2480 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2481 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2482 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2483 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2484 } 2485 2486 // Emit the branch for this block. 2487 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2488 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2489 return; 2490 } 2491 2492 // Okay, we decided not to do this, remove any inserted MBB's and clear 2493 // SwitchCases. 2494 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2495 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2496 2497 SL->SwitchCases.clear(); 2498 } 2499 } 2500 2501 // Create a CaseBlock record representing this branch. 2502 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2503 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2504 2505 // Use visitSwitchCase to actually insert the fast branch sequence for this 2506 // cond branch. 2507 visitSwitchCase(CB, BrMBB); 2508 } 2509 2510 /// visitSwitchCase - Emits the necessary code to represent a single node in 2511 /// the binary search tree resulting from lowering a switch instruction. 2512 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2513 MachineBasicBlock *SwitchBB) { 2514 SDValue Cond; 2515 SDValue CondLHS = getValue(CB.CmpLHS); 2516 SDLoc dl = CB.DL; 2517 2518 if (CB.CC == ISD::SETTRUE) { 2519 // Branch or fall through to TrueBB. 2520 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2521 SwitchBB->normalizeSuccProbs(); 2522 if (CB.TrueBB != NextBlock(SwitchBB)) { 2523 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2524 DAG.getBasicBlock(CB.TrueBB))); 2525 } 2526 return; 2527 } 2528 2529 auto &TLI = DAG.getTargetLoweringInfo(); 2530 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2531 2532 // Build the setcc now. 2533 if (!CB.CmpMHS) { 2534 // Fold "(X == true)" to X and "(X == false)" to !X to 2535 // handle common cases produced by branch lowering. 2536 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2537 CB.CC == ISD::SETEQ) 2538 Cond = CondLHS; 2539 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2540 CB.CC == ISD::SETEQ) { 2541 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2542 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2543 } else { 2544 SDValue CondRHS = getValue(CB.CmpRHS); 2545 2546 // If a pointer's DAG type is larger than its memory type then the DAG 2547 // values are zero-extended. This breaks signed comparisons so truncate 2548 // back to the underlying type before doing the compare. 2549 if (CondLHS.getValueType() != MemVT) { 2550 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2551 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2552 } 2553 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2554 } 2555 } else { 2556 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2557 2558 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2559 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2560 2561 SDValue CmpOp = getValue(CB.CmpMHS); 2562 EVT VT = CmpOp.getValueType(); 2563 2564 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2565 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2566 ISD::SETLE); 2567 } else { 2568 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2569 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2570 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2571 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2572 } 2573 } 2574 2575 // Update successor info 2576 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2577 // TrueBB and FalseBB are always different unless the incoming IR is 2578 // degenerate. This only happens when running llc on weird IR. 2579 if (CB.TrueBB != CB.FalseBB) 2580 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2581 SwitchBB->normalizeSuccProbs(); 2582 2583 // If the lhs block is the next block, invert the condition so that we can 2584 // fall through to the lhs instead of the rhs block. 2585 if (CB.TrueBB == NextBlock(SwitchBB)) { 2586 std::swap(CB.TrueBB, CB.FalseBB); 2587 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2588 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2589 } 2590 2591 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2592 MVT::Other, getControlRoot(), Cond, 2593 DAG.getBasicBlock(CB.TrueBB)); 2594 2595 setValue(CurInst, BrCond); 2596 2597 // Insert the false branch. Do this even if it's a fall through branch, 2598 // this makes it easier to do DAG optimizations which require inverting 2599 // the branch condition. 2600 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2601 DAG.getBasicBlock(CB.FalseBB)); 2602 2603 DAG.setRoot(BrCond); 2604 } 2605 2606 /// visitJumpTable - Emit JumpTable node in the current MBB 2607 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2608 // Emit the code for the jump table 2609 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2610 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2611 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2612 JT.Reg, PTy); 2613 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2614 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2615 MVT::Other, Index.getValue(1), 2616 Table, Index); 2617 DAG.setRoot(BrJumpTable); 2618 } 2619 2620 /// visitJumpTableHeader - This function emits necessary code to produce index 2621 /// in the JumpTable from switch case. 2622 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2623 JumpTableHeader &JTH, 2624 MachineBasicBlock *SwitchBB) { 2625 SDLoc dl = getCurSDLoc(); 2626 2627 // Subtract the lowest switch case value from the value being switched on. 2628 SDValue SwitchOp = getValue(JTH.SValue); 2629 EVT VT = SwitchOp.getValueType(); 2630 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2631 DAG.getConstant(JTH.First, dl, VT)); 2632 2633 // The SDNode we just created, which holds the value being switched on minus 2634 // the smallest case value, needs to be copied to a virtual register so it 2635 // can be used as an index into the jump table in a subsequent basic block. 2636 // This value may be smaller or larger than the target's pointer type, and 2637 // therefore require extension or truncating. 2638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2639 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2640 2641 unsigned JumpTableReg = 2642 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2643 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2644 JumpTableReg, SwitchOp); 2645 JT.Reg = JumpTableReg; 2646 2647 if (!JTH.FallthroughUnreachable) { 2648 // Emit the range check for the jump table, and branch to the default block 2649 // for the switch statement if the value being switched on exceeds the 2650 // largest case in the switch. 2651 SDValue CMP = DAG.getSetCC( 2652 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2653 Sub.getValueType()), 2654 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2655 2656 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2657 MVT::Other, CopyTo, CMP, 2658 DAG.getBasicBlock(JT.Default)); 2659 2660 // Avoid emitting unnecessary branches to the next block. 2661 if (JT.MBB != NextBlock(SwitchBB)) 2662 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2663 DAG.getBasicBlock(JT.MBB)); 2664 2665 DAG.setRoot(BrCond); 2666 } else { 2667 // Avoid emitting unnecessary branches to the next block. 2668 if (JT.MBB != NextBlock(SwitchBB)) 2669 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2670 DAG.getBasicBlock(JT.MBB))); 2671 else 2672 DAG.setRoot(CopyTo); 2673 } 2674 } 2675 2676 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2677 /// variable if there exists one. 2678 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2679 SDValue &Chain) { 2680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2681 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2682 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2683 MachineFunction &MF = DAG.getMachineFunction(); 2684 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2685 MachineSDNode *Node = 2686 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2687 if (Global) { 2688 MachinePointerInfo MPInfo(Global); 2689 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2690 MachineMemOperand::MODereferenceable; 2691 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2692 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2693 DAG.setNodeMemRefs(Node, {MemRef}); 2694 } 2695 if (PtrTy != PtrMemTy) 2696 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2697 return SDValue(Node, 0); 2698 } 2699 2700 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2701 /// tail spliced into a stack protector check success bb. 2702 /// 2703 /// For a high level explanation of how this fits into the stack protector 2704 /// generation see the comment on the declaration of class 2705 /// StackProtectorDescriptor. 2706 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2707 MachineBasicBlock *ParentBB) { 2708 2709 // First create the loads to the guard/stack slot for the comparison. 2710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2711 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2712 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2713 2714 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2715 int FI = MFI.getStackProtectorIndex(); 2716 2717 SDValue Guard; 2718 SDLoc dl = getCurSDLoc(); 2719 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2720 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2721 Align Align = 2722 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2723 2724 // Generate code to load the content of the guard slot. 2725 SDValue GuardVal = DAG.getLoad( 2726 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2727 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2728 MachineMemOperand::MOVolatile); 2729 2730 if (TLI.useStackGuardXorFP()) 2731 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2732 2733 // Retrieve guard check function, nullptr if instrumentation is inlined. 2734 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2735 // The target provides a guard check function to validate the guard value. 2736 // Generate a call to that function with the content of the guard slot as 2737 // argument. 2738 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2739 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2740 2741 TargetLowering::ArgListTy Args; 2742 TargetLowering::ArgListEntry Entry; 2743 Entry.Node = GuardVal; 2744 Entry.Ty = FnTy->getParamType(0); 2745 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2746 Entry.IsInReg = true; 2747 Args.push_back(Entry); 2748 2749 TargetLowering::CallLoweringInfo CLI(DAG); 2750 CLI.setDebugLoc(getCurSDLoc()) 2751 .setChain(DAG.getEntryNode()) 2752 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2753 getValue(GuardCheckFn), std::move(Args)); 2754 2755 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2756 DAG.setRoot(Result.second); 2757 return; 2758 } 2759 2760 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2761 // Otherwise, emit a volatile load to retrieve the stack guard value. 2762 SDValue Chain = DAG.getEntryNode(); 2763 if (TLI.useLoadStackGuardNode()) { 2764 Guard = getLoadStackGuard(DAG, dl, Chain); 2765 } else { 2766 const Value *IRGuard = TLI.getSDagStackGuard(M); 2767 SDValue GuardPtr = getValue(IRGuard); 2768 2769 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2770 MachinePointerInfo(IRGuard, 0), Align, 2771 MachineMemOperand::MOVolatile); 2772 } 2773 2774 // Perform the comparison via a getsetcc. 2775 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2776 *DAG.getContext(), 2777 Guard.getValueType()), 2778 Guard, GuardVal, ISD::SETNE); 2779 2780 // If the guard/stackslot do not equal, branch to failure MBB. 2781 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2782 MVT::Other, GuardVal.getOperand(0), 2783 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2784 // Otherwise branch to success MBB. 2785 SDValue Br = DAG.getNode(ISD::BR, dl, 2786 MVT::Other, BrCond, 2787 DAG.getBasicBlock(SPD.getSuccessMBB())); 2788 2789 DAG.setRoot(Br); 2790 } 2791 2792 /// Codegen the failure basic block for a stack protector check. 2793 /// 2794 /// A failure stack protector machine basic block consists simply of a call to 2795 /// __stack_chk_fail(). 2796 /// 2797 /// For a high level explanation of how this fits into the stack protector 2798 /// generation see the comment on the declaration of class 2799 /// StackProtectorDescriptor. 2800 void 2801 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2803 TargetLowering::MakeLibCallOptions CallOptions; 2804 CallOptions.setDiscardResult(true); 2805 SDValue Chain = 2806 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2807 std::nullopt, CallOptions, getCurSDLoc()) 2808 .second; 2809 // On PS4/PS5, the "return address" must still be within the calling 2810 // function, even if it's at the very end, so emit an explicit TRAP here. 2811 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2812 if (TM.getTargetTriple().isPS()) 2813 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2814 // WebAssembly needs an unreachable instruction after a non-returning call, 2815 // because the function return type can be different from __stack_chk_fail's 2816 // return type (void). 2817 if (TM.getTargetTriple().isWasm()) 2818 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2819 2820 DAG.setRoot(Chain); 2821 } 2822 2823 /// visitBitTestHeader - This function emits necessary code to produce value 2824 /// suitable for "bit tests" 2825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2826 MachineBasicBlock *SwitchBB) { 2827 SDLoc dl = getCurSDLoc(); 2828 2829 // Subtract the minimum value. 2830 SDValue SwitchOp = getValue(B.SValue); 2831 EVT VT = SwitchOp.getValueType(); 2832 SDValue RangeSub = 2833 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2834 2835 // Determine the type of the test operands. 2836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2837 bool UsePtrType = false; 2838 if (!TLI.isTypeLegal(VT)) { 2839 UsePtrType = true; 2840 } else { 2841 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2842 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2843 // Switch table case range are encoded into series of masks. 2844 // Just use pointer type, it's guaranteed to fit. 2845 UsePtrType = true; 2846 break; 2847 } 2848 } 2849 SDValue Sub = RangeSub; 2850 if (UsePtrType) { 2851 VT = TLI.getPointerTy(DAG.getDataLayout()); 2852 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2853 } 2854 2855 B.RegVT = VT.getSimpleVT(); 2856 B.Reg = FuncInfo.CreateReg(B.RegVT); 2857 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2858 2859 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2860 2861 if (!B.FallthroughUnreachable) 2862 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2863 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2864 SwitchBB->normalizeSuccProbs(); 2865 2866 SDValue Root = CopyTo; 2867 if (!B.FallthroughUnreachable) { 2868 // Conditional branch to the default block. 2869 SDValue RangeCmp = DAG.getSetCC(dl, 2870 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2871 RangeSub.getValueType()), 2872 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2873 ISD::SETUGT); 2874 2875 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2876 DAG.getBasicBlock(B.Default)); 2877 } 2878 2879 // Avoid emitting unnecessary branches to the next block. 2880 if (MBB != NextBlock(SwitchBB)) 2881 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2882 2883 DAG.setRoot(Root); 2884 } 2885 2886 /// visitBitTestCase - this function produces one "bit test" 2887 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2888 MachineBasicBlock* NextMBB, 2889 BranchProbability BranchProbToNext, 2890 unsigned Reg, 2891 BitTestCase &B, 2892 MachineBasicBlock *SwitchBB) { 2893 SDLoc dl = getCurSDLoc(); 2894 MVT VT = BB.RegVT; 2895 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2896 SDValue Cmp; 2897 unsigned PopCount = llvm::popcount(B.Mask); 2898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2899 if (PopCount == 1) { 2900 // Testing for a single bit; just compare the shift count with what it 2901 // would need to be to shift a 1 bit in that position. 2902 Cmp = DAG.getSetCC( 2903 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2904 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2905 ISD::SETEQ); 2906 } else if (PopCount == BB.Range) { 2907 // There is only one zero bit in the range, test for it directly. 2908 Cmp = DAG.getSetCC( 2909 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2910 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2911 ISD::SETNE); 2912 } else { 2913 // Make desired shift 2914 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2915 DAG.getConstant(1, dl, VT), ShiftOp); 2916 2917 // Emit bit tests and jumps 2918 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2919 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2920 Cmp = DAG.getSetCC( 2921 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2922 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2923 } 2924 2925 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2926 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2927 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2928 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2929 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2930 // one as they are relative probabilities (and thus work more like weights), 2931 // and hence we need to normalize them to let the sum of them become one. 2932 SwitchBB->normalizeSuccProbs(); 2933 2934 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2935 MVT::Other, getControlRoot(), 2936 Cmp, DAG.getBasicBlock(B.TargetBB)); 2937 2938 // Avoid emitting unnecessary branches to the next block. 2939 if (NextMBB != NextBlock(SwitchBB)) 2940 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2941 DAG.getBasicBlock(NextMBB)); 2942 2943 DAG.setRoot(BrAnd); 2944 } 2945 2946 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2947 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2948 2949 // Retrieve successors. Look through artificial IR level blocks like 2950 // catchswitch for successors. 2951 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2952 const BasicBlock *EHPadBB = I.getSuccessor(1); 2953 2954 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2955 // have to do anything here to lower funclet bundles. 2956 assert(!I.hasOperandBundlesOtherThan( 2957 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2958 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2959 LLVMContext::OB_cfguardtarget, 2960 LLVMContext::OB_clang_arc_attachedcall}) && 2961 "Cannot lower invokes with arbitrary operand bundles yet!"); 2962 2963 const Value *Callee(I.getCalledOperand()); 2964 const Function *Fn = dyn_cast<Function>(Callee); 2965 if (isa<InlineAsm>(Callee)) 2966 visitInlineAsm(I, EHPadBB); 2967 else if (Fn && Fn->isIntrinsic()) { 2968 switch (Fn->getIntrinsicID()) { 2969 default: 2970 llvm_unreachable("Cannot invoke this intrinsic"); 2971 case Intrinsic::donothing: 2972 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2973 case Intrinsic::seh_try_begin: 2974 case Intrinsic::seh_scope_begin: 2975 case Intrinsic::seh_try_end: 2976 case Intrinsic::seh_scope_end: 2977 break; 2978 case Intrinsic::experimental_patchpoint_void: 2979 case Intrinsic::experimental_patchpoint_i64: 2980 visitPatchpoint(I, EHPadBB); 2981 break; 2982 case Intrinsic::experimental_gc_statepoint: 2983 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2984 break; 2985 case Intrinsic::wasm_rethrow: { 2986 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2987 // special because it can be invoked, so we manually lower it to a DAG 2988 // node here. 2989 SmallVector<SDValue, 8> Ops; 2990 Ops.push_back(getRoot()); // inchain 2991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2992 Ops.push_back( 2993 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2994 TLI.getPointerTy(DAG.getDataLayout()))); 2995 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2996 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2997 break; 2998 } 2999 } 3000 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3001 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3002 // Eventually we will support lowering the @llvm.experimental.deoptimize 3003 // intrinsic, and right now there are no plans to support other intrinsics 3004 // with deopt state. 3005 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3006 } else { 3007 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3008 } 3009 3010 // If the value of the invoke is used outside of its defining block, make it 3011 // available as a virtual register. 3012 // We already took care of the exported value for the statepoint instruction 3013 // during call to the LowerStatepoint. 3014 if (!isa<GCStatepointInst>(I)) { 3015 CopyToExportRegsIfNeeded(&I); 3016 } 3017 3018 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3019 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3020 BranchProbability EHPadBBProb = 3021 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3022 : BranchProbability::getZero(); 3023 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3024 3025 // Update successor info. 3026 addSuccessorWithProb(InvokeMBB, Return); 3027 for (auto &UnwindDest : UnwindDests) { 3028 UnwindDest.first->setIsEHPad(); 3029 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3030 } 3031 InvokeMBB->normalizeSuccProbs(); 3032 3033 // Drop into normal successor. 3034 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3035 DAG.getBasicBlock(Return))); 3036 } 3037 3038 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3039 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3040 3041 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3042 // have to do anything here to lower funclet bundles. 3043 assert(!I.hasOperandBundlesOtherThan( 3044 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3045 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3046 3047 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3048 visitInlineAsm(I); 3049 CopyToExportRegsIfNeeded(&I); 3050 3051 // Retrieve successors. 3052 SmallPtrSet<BasicBlock *, 8> Dests; 3053 Dests.insert(I.getDefaultDest()); 3054 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3055 3056 // Update successor info. 3057 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3058 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3059 BasicBlock *Dest = I.getIndirectDest(i); 3060 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3061 Target->setIsInlineAsmBrIndirectTarget(); 3062 Target->setMachineBlockAddressTaken(); 3063 Target->setLabelMustBeEmitted(); 3064 // Don't add duplicate machine successors. 3065 if (Dests.insert(Dest).second) 3066 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3067 } 3068 CallBrMBB->normalizeSuccProbs(); 3069 3070 // Drop into default successor. 3071 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3072 MVT::Other, getControlRoot(), 3073 DAG.getBasicBlock(Return))); 3074 } 3075 3076 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3077 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3078 } 3079 3080 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3081 assert(FuncInfo.MBB->isEHPad() && 3082 "Call to landingpad not in landing pad!"); 3083 3084 // If there aren't registers to copy the values into (e.g., during SjLj 3085 // exceptions), then don't bother to create these DAG nodes. 3086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3087 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3088 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3089 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3090 return; 3091 3092 // If landingpad's return type is token type, we don't create DAG nodes 3093 // for its exception pointer and selector value. The extraction of exception 3094 // pointer or selector value from token type landingpads is not currently 3095 // supported. 3096 if (LP.getType()->isTokenTy()) 3097 return; 3098 3099 SmallVector<EVT, 2> ValueVTs; 3100 SDLoc dl = getCurSDLoc(); 3101 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3102 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3103 3104 // Get the two live-in registers as SDValues. The physregs have already been 3105 // copied into virtual registers. 3106 SDValue Ops[2]; 3107 if (FuncInfo.ExceptionPointerVirtReg) { 3108 Ops[0] = DAG.getZExtOrTrunc( 3109 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3110 FuncInfo.ExceptionPointerVirtReg, 3111 TLI.getPointerTy(DAG.getDataLayout())), 3112 dl, ValueVTs[0]); 3113 } else { 3114 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3115 } 3116 Ops[1] = DAG.getZExtOrTrunc( 3117 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3118 FuncInfo.ExceptionSelectorVirtReg, 3119 TLI.getPointerTy(DAG.getDataLayout())), 3120 dl, ValueVTs[1]); 3121 3122 // Merge into one. 3123 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3124 DAG.getVTList(ValueVTs), Ops); 3125 setValue(&LP, Res); 3126 } 3127 3128 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3129 MachineBasicBlock *Last) { 3130 // Update JTCases. 3131 for (JumpTableBlock &JTB : SL->JTCases) 3132 if (JTB.first.HeaderBB == First) 3133 JTB.first.HeaderBB = Last; 3134 3135 // Update BitTestCases. 3136 for (BitTestBlock &BTB : SL->BitTestCases) 3137 if (BTB.Parent == First) 3138 BTB.Parent = Last; 3139 } 3140 3141 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3142 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3143 3144 // Update machine-CFG edges with unique successors. 3145 SmallSet<BasicBlock*, 32> Done; 3146 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3147 BasicBlock *BB = I.getSuccessor(i); 3148 bool Inserted = Done.insert(BB).second; 3149 if (!Inserted) 3150 continue; 3151 3152 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3153 addSuccessorWithProb(IndirectBrMBB, Succ); 3154 } 3155 IndirectBrMBB->normalizeSuccProbs(); 3156 3157 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3158 MVT::Other, getControlRoot(), 3159 getValue(I.getAddress()))); 3160 } 3161 3162 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3163 if (!DAG.getTarget().Options.TrapUnreachable) 3164 return; 3165 3166 // We may be able to ignore unreachable behind a noreturn call. 3167 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3168 const BasicBlock &BB = *I.getParent(); 3169 if (&I != &BB.front()) { 3170 BasicBlock::const_iterator PredI = 3171 std::prev(BasicBlock::const_iterator(&I)); 3172 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3173 if (Call->doesNotReturn()) 3174 return; 3175 } 3176 } 3177 } 3178 3179 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3180 } 3181 3182 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3183 SDNodeFlags Flags; 3184 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3185 Flags.copyFMF(*FPOp); 3186 3187 SDValue Op = getValue(I.getOperand(0)); 3188 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3189 Op, Flags); 3190 setValue(&I, UnNodeValue); 3191 } 3192 3193 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3194 SDNodeFlags Flags; 3195 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3196 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3197 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3198 } 3199 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3200 Flags.setExact(ExactOp->isExact()); 3201 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3202 Flags.copyFMF(*FPOp); 3203 3204 SDValue Op1 = getValue(I.getOperand(0)); 3205 SDValue Op2 = getValue(I.getOperand(1)); 3206 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3207 Op1, Op2, Flags); 3208 setValue(&I, BinNodeValue); 3209 } 3210 3211 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3212 SDValue Op1 = getValue(I.getOperand(0)); 3213 SDValue Op2 = getValue(I.getOperand(1)); 3214 3215 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3216 Op1.getValueType(), DAG.getDataLayout()); 3217 3218 // Coerce the shift amount to the right type if we can. This exposes the 3219 // truncate or zext to optimization early. 3220 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3221 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3222 "Unexpected shift type"); 3223 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3224 } 3225 3226 bool nuw = false; 3227 bool nsw = false; 3228 bool exact = false; 3229 3230 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3231 3232 if (const OverflowingBinaryOperator *OFBinOp = 3233 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3234 nuw = OFBinOp->hasNoUnsignedWrap(); 3235 nsw = OFBinOp->hasNoSignedWrap(); 3236 } 3237 if (const PossiblyExactOperator *ExactOp = 3238 dyn_cast<const PossiblyExactOperator>(&I)) 3239 exact = ExactOp->isExact(); 3240 } 3241 SDNodeFlags Flags; 3242 Flags.setExact(exact); 3243 Flags.setNoSignedWrap(nsw); 3244 Flags.setNoUnsignedWrap(nuw); 3245 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3246 Flags); 3247 setValue(&I, Res); 3248 } 3249 3250 void SelectionDAGBuilder::visitSDiv(const User &I) { 3251 SDValue Op1 = getValue(I.getOperand(0)); 3252 SDValue Op2 = getValue(I.getOperand(1)); 3253 3254 SDNodeFlags Flags; 3255 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3256 cast<PossiblyExactOperator>(&I)->isExact()); 3257 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3258 Op2, Flags)); 3259 } 3260 3261 void SelectionDAGBuilder::visitICmp(const User &I) { 3262 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3263 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3264 predicate = IC->getPredicate(); 3265 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3266 predicate = ICmpInst::Predicate(IC->getPredicate()); 3267 SDValue Op1 = getValue(I.getOperand(0)); 3268 SDValue Op2 = getValue(I.getOperand(1)); 3269 ISD::CondCode Opcode = getICmpCondCode(predicate); 3270 3271 auto &TLI = DAG.getTargetLoweringInfo(); 3272 EVT MemVT = 3273 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3274 3275 // If a pointer's DAG type is larger than its memory type then the DAG values 3276 // are zero-extended. This breaks signed comparisons so truncate back to the 3277 // underlying type before doing the compare. 3278 if (Op1.getValueType() != MemVT) { 3279 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3280 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3281 } 3282 3283 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3284 I.getType()); 3285 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3286 } 3287 3288 void SelectionDAGBuilder::visitFCmp(const User &I) { 3289 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3290 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3291 predicate = FC->getPredicate(); 3292 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3293 predicate = FCmpInst::Predicate(FC->getPredicate()); 3294 SDValue Op1 = getValue(I.getOperand(0)); 3295 SDValue Op2 = getValue(I.getOperand(1)); 3296 3297 ISD::CondCode Condition = getFCmpCondCode(predicate); 3298 auto *FPMO = cast<FPMathOperator>(&I); 3299 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3300 Condition = getFCmpCodeWithoutNaN(Condition); 3301 3302 SDNodeFlags Flags; 3303 Flags.copyFMF(*FPMO); 3304 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3305 3306 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3307 I.getType()); 3308 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3309 } 3310 3311 // Check if the condition of the select has one use or two users that are both 3312 // selects with the same condition. 3313 static bool hasOnlySelectUsers(const Value *Cond) { 3314 return llvm::all_of(Cond->users(), [](const Value *V) { 3315 return isa<SelectInst>(V); 3316 }); 3317 } 3318 3319 void SelectionDAGBuilder::visitSelect(const User &I) { 3320 SmallVector<EVT, 4> ValueVTs; 3321 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3322 ValueVTs); 3323 unsigned NumValues = ValueVTs.size(); 3324 if (NumValues == 0) return; 3325 3326 SmallVector<SDValue, 4> Values(NumValues); 3327 SDValue Cond = getValue(I.getOperand(0)); 3328 SDValue LHSVal = getValue(I.getOperand(1)); 3329 SDValue RHSVal = getValue(I.getOperand(2)); 3330 SmallVector<SDValue, 1> BaseOps(1, Cond); 3331 ISD::NodeType OpCode = 3332 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3333 3334 bool IsUnaryAbs = false; 3335 bool Negate = false; 3336 3337 SDNodeFlags Flags; 3338 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3339 Flags.copyFMF(*FPOp); 3340 3341 // Min/max matching is only viable if all output VTs are the same. 3342 if (all_equal(ValueVTs)) { 3343 EVT VT = ValueVTs[0]; 3344 LLVMContext &Ctx = *DAG.getContext(); 3345 auto &TLI = DAG.getTargetLoweringInfo(); 3346 3347 // We care about the legality of the operation after it has been type 3348 // legalized. 3349 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3350 VT = TLI.getTypeToTransformTo(Ctx, VT); 3351 3352 // If the vselect is legal, assume we want to leave this as a vector setcc + 3353 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3354 // min/max is legal on the scalar type. 3355 bool UseScalarMinMax = VT.isVector() && 3356 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3357 3358 Value *LHS, *RHS; 3359 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3360 ISD::NodeType Opc = ISD::DELETED_NODE; 3361 switch (SPR.Flavor) { 3362 case SPF_UMAX: Opc = ISD::UMAX; break; 3363 case SPF_UMIN: Opc = ISD::UMIN; break; 3364 case SPF_SMAX: Opc = ISD::SMAX; break; 3365 case SPF_SMIN: Opc = ISD::SMIN; break; 3366 case SPF_FMINNUM: 3367 switch (SPR.NaNBehavior) { 3368 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3369 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3370 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3371 case SPNB_RETURNS_ANY: { 3372 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3373 Opc = ISD::FMINNUM; 3374 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3375 Opc = ISD::FMINIMUM; 3376 else if (UseScalarMinMax) 3377 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3378 ISD::FMINNUM : ISD::FMINIMUM; 3379 break; 3380 } 3381 } 3382 break; 3383 case SPF_FMAXNUM: 3384 switch (SPR.NaNBehavior) { 3385 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3386 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3387 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3388 case SPNB_RETURNS_ANY: 3389 3390 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3391 Opc = ISD::FMAXNUM; 3392 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3393 Opc = ISD::FMAXIMUM; 3394 else if (UseScalarMinMax) 3395 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3396 ISD::FMAXNUM : ISD::FMAXIMUM; 3397 break; 3398 } 3399 break; 3400 case SPF_NABS: 3401 Negate = true; 3402 [[fallthrough]]; 3403 case SPF_ABS: 3404 IsUnaryAbs = true; 3405 Opc = ISD::ABS; 3406 break; 3407 default: break; 3408 } 3409 3410 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3411 (TLI.isOperationLegalOrCustom(Opc, VT) || 3412 (UseScalarMinMax && 3413 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3414 // If the underlying comparison instruction is used by any other 3415 // instruction, the consumed instructions won't be destroyed, so it is 3416 // not profitable to convert to a min/max. 3417 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3418 OpCode = Opc; 3419 LHSVal = getValue(LHS); 3420 RHSVal = getValue(RHS); 3421 BaseOps.clear(); 3422 } 3423 3424 if (IsUnaryAbs) { 3425 OpCode = Opc; 3426 LHSVal = getValue(LHS); 3427 BaseOps.clear(); 3428 } 3429 } 3430 3431 if (IsUnaryAbs) { 3432 for (unsigned i = 0; i != NumValues; ++i) { 3433 SDLoc dl = getCurSDLoc(); 3434 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3435 Values[i] = 3436 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3437 if (Negate) 3438 Values[i] = DAG.getNegative(Values[i], dl, VT); 3439 } 3440 } else { 3441 for (unsigned i = 0; i != NumValues; ++i) { 3442 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3443 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3444 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3445 Values[i] = DAG.getNode( 3446 OpCode, getCurSDLoc(), 3447 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3448 } 3449 } 3450 3451 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3452 DAG.getVTList(ValueVTs), Values)); 3453 } 3454 3455 void SelectionDAGBuilder::visitTrunc(const User &I) { 3456 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3457 SDValue N = getValue(I.getOperand(0)); 3458 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3459 I.getType()); 3460 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3461 } 3462 3463 void SelectionDAGBuilder::visitZExt(const User &I) { 3464 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3465 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3466 SDValue N = getValue(I.getOperand(0)); 3467 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3468 I.getType()); 3469 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3470 } 3471 3472 void SelectionDAGBuilder::visitSExt(const User &I) { 3473 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3474 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3475 SDValue N = getValue(I.getOperand(0)); 3476 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3477 I.getType()); 3478 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3479 } 3480 3481 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3482 // FPTrunc is never a no-op cast, no need to check 3483 SDValue N = getValue(I.getOperand(0)); 3484 SDLoc dl = getCurSDLoc(); 3485 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3486 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3487 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3488 DAG.getTargetConstant( 3489 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3490 } 3491 3492 void SelectionDAGBuilder::visitFPExt(const User &I) { 3493 // FPExt is never a no-op cast, no need to check 3494 SDValue N = getValue(I.getOperand(0)); 3495 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3496 I.getType()); 3497 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3498 } 3499 3500 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3501 // FPToUI is never a no-op cast, no need to check 3502 SDValue N = getValue(I.getOperand(0)); 3503 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3504 I.getType()); 3505 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3506 } 3507 3508 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3509 // FPToSI is never a no-op cast, no need to check 3510 SDValue N = getValue(I.getOperand(0)); 3511 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3512 I.getType()); 3513 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3514 } 3515 3516 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3517 // UIToFP is never a no-op cast, no need to check 3518 SDValue N = getValue(I.getOperand(0)); 3519 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3520 I.getType()); 3521 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3522 } 3523 3524 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3525 // SIToFP is never a no-op cast, no need to check 3526 SDValue N = getValue(I.getOperand(0)); 3527 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3528 I.getType()); 3529 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3530 } 3531 3532 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3533 // What to do depends on the size of the integer and the size of the pointer. 3534 // We can either truncate, zero extend, or no-op, accordingly. 3535 SDValue N = getValue(I.getOperand(0)); 3536 auto &TLI = DAG.getTargetLoweringInfo(); 3537 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3538 I.getType()); 3539 EVT PtrMemVT = 3540 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3541 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3542 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3543 setValue(&I, N); 3544 } 3545 3546 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3547 // What to do depends on the size of the integer and the size of the pointer. 3548 // We can either truncate, zero extend, or no-op, accordingly. 3549 SDValue N = getValue(I.getOperand(0)); 3550 auto &TLI = DAG.getTargetLoweringInfo(); 3551 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3552 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3553 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3554 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3555 setValue(&I, N); 3556 } 3557 3558 void SelectionDAGBuilder::visitBitCast(const User &I) { 3559 SDValue N = getValue(I.getOperand(0)); 3560 SDLoc dl = getCurSDLoc(); 3561 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3562 I.getType()); 3563 3564 // BitCast assures us that source and destination are the same size so this is 3565 // either a BITCAST or a no-op. 3566 if (DestVT != N.getValueType()) 3567 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3568 DestVT, N)); // convert types. 3569 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3570 // might fold any kind of constant expression to an integer constant and that 3571 // is not what we are looking for. Only recognize a bitcast of a genuine 3572 // constant integer as an opaque constant. 3573 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3574 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3575 /*isOpaque*/true)); 3576 else 3577 setValue(&I, N); // noop cast. 3578 } 3579 3580 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3582 const Value *SV = I.getOperand(0); 3583 SDValue N = getValue(SV); 3584 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3585 3586 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3587 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3588 3589 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3590 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3591 3592 setValue(&I, N); 3593 } 3594 3595 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3596 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3597 SDValue InVec = getValue(I.getOperand(0)); 3598 SDValue InVal = getValue(I.getOperand(1)); 3599 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3600 TLI.getVectorIdxTy(DAG.getDataLayout())); 3601 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3602 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3603 InVec, InVal, InIdx)); 3604 } 3605 3606 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3607 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3608 SDValue InVec = getValue(I.getOperand(0)); 3609 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3610 TLI.getVectorIdxTy(DAG.getDataLayout())); 3611 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3612 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3613 InVec, InIdx)); 3614 } 3615 3616 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3617 SDValue Src1 = getValue(I.getOperand(0)); 3618 SDValue Src2 = getValue(I.getOperand(1)); 3619 ArrayRef<int> Mask; 3620 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3621 Mask = SVI->getShuffleMask(); 3622 else 3623 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3624 SDLoc DL = getCurSDLoc(); 3625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3626 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3627 EVT SrcVT = Src1.getValueType(); 3628 3629 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3630 VT.isScalableVector()) { 3631 // Canonical splat form of first element of first input vector. 3632 SDValue FirstElt = 3633 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3634 DAG.getVectorIdxConstant(0, DL)); 3635 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3636 return; 3637 } 3638 3639 // For now, we only handle splats for scalable vectors. 3640 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3641 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3642 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3643 3644 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3645 unsigned MaskNumElts = Mask.size(); 3646 3647 if (SrcNumElts == MaskNumElts) { 3648 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3649 return; 3650 } 3651 3652 // Normalize the shuffle vector since mask and vector length don't match. 3653 if (SrcNumElts < MaskNumElts) { 3654 // Mask is longer than the source vectors. We can use concatenate vector to 3655 // make the mask and vectors lengths match. 3656 3657 if (MaskNumElts % SrcNumElts == 0) { 3658 // Mask length is a multiple of the source vector length. 3659 // Check if the shuffle is some kind of concatenation of the input 3660 // vectors. 3661 unsigned NumConcat = MaskNumElts / SrcNumElts; 3662 bool IsConcat = true; 3663 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3664 for (unsigned i = 0; i != MaskNumElts; ++i) { 3665 int Idx = Mask[i]; 3666 if (Idx < 0) 3667 continue; 3668 // Ensure the indices in each SrcVT sized piece are sequential and that 3669 // the same source is used for the whole piece. 3670 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3671 (ConcatSrcs[i / SrcNumElts] >= 0 && 3672 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3673 IsConcat = false; 3674 break; 3675 } 3676 // Remember which source this index came from. 3677 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3678 } 3679 3680 // The shuffle is concatenating multiple vectors together. Just emit 3681 // a CONCAT_VECTORS operation. 3682 if (IsConcat) { 3683 SmallVector<SDValue, 8> ConcatOps; 3684 for (auto Src : ConcatSrcs) { 3685 if (Src < 0) 3686 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3687 else if (Src == 0) 3688 ConcatOps.push_back(Src1); 3689 else 3690 ConcatOps.push_back(Src2); 3691 } 3692 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3693 return; 3694 } 3695 } 3696 3697 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3698 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3699 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3700 PaddedMaskNumElts); 3701 3702 // Pad both vectors with undefs to make them the same length as the mask. 3703 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3704 3705 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3706 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3707 MOps1[0] = Src1; 3708 MOps2[0] = Src2; 3709 3710 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3711 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3712 3713 // Readjust mask for new input vector length. 3714 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3715 for (unsigned i = 0; i != MaskNumElts; ++i) { 3716 int Idx = Mask[i]; 3717 if (Idx >= (int)SrcNumElts) 3718 Idx -= SrcNumElts - PaddedMaskNumElts; 3719 MappedOps[i] = Idx; 3720 } 3721 3722 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3723 3724 // If the concatenated vector was padded, extract a subvector with the 3725 // correct number of elements. 3726 if (MaskNumElts != PaddedMaskNumElts) 3727 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3728 DAG.getVectorIdxConstant(0, DL)); 3729 3730 setValue(&I, Result); 3731 return; 3732 } 3733 3734 if (SrcNumElts > MaskNumElts) { 3735 // Analyze the access pattern of the vector to see if we can extract 3736 // two subvectors and do the shuffle. 3737 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3738 bool CanExtract = true; 3739 for (int Idx : Mask) { 3740 unsigned Input = 0; 3741 if (Idx < 0) 3742 continue; 3743 3744 if (Idx >= (int)SrcNumElts) { 3745 Input = 1; 3746 Idx -= SrcNumElts; 3747 } 3748 3749 // If all the indices come from the same MaskNumElts sized portion of 3750 // the sources we can use extract. Also make sure the extract wouldn't 3751 // extract past the end of the source. 3752 int NewStartIdx = alignDown(Idx, MaskNumElts); 3753 if (NewStartIdx + MaskNumElts > SrcNumElts || 3754 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3755 CanExtract = false; 3756 // Make sure we always update StartIdx as we use it to track if all 3757 // elements are undef. 3758 StartIdx[Input] = NewStartIdx; 3759 } 3760 3761 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3762 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3763 return; 3764 } 3765 if (CanExtract) { 3766 // Extract appropriate subvector and generate a vector shuffle 3767 for (unsigned Input = 0; Input < 2; ++Input) { 3768 SDValue &Src = Input == 0 ? Src1 : Src2; 3769 if (StartIdx[Input] < 0) 3770 Src = DAG.getUNDEF(VT); 3771 else { 3772 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3773 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3774 } 3775 } 3776 3777 // Calculate new mask. 3778 SmallVector<int, 8> MappedOps(Mask); 3779 for (int &Idx : MappedOps) { 3780 if (Idx >= (int)SrcNumElts) 3781 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3782 else if (Idx >= 0) 3783 Idx -= StartIdx[0]; 3784 } 3785 3786 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3787 return; 3788 } 3789 } 3790 3791 // We can't use either concat vectors or extract subvectors so fall back to 3792 // replacing the shuffle with extract and build vector. 3793 // to insert and build vector. 3794 EVT EltVT = VT.getVectorElementType(); 3795 SmallVector<SDValue,8> Ops; 3796 for (int Idx : Mask) { 3797 SDValue Res; 3798 3799 if (Idx < 0) { 3800 Res = DAG.getUNDEF(EltVT); 3801 } else { 3802 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3803 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3804 3805 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3806 DAG.getVectorIdxConstant(Idx, DL)); 3807 } 3808 3809 Ops.push_back(Res); 3810 } 3811 3812 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3813 } 3814 3815 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3816 ArrayRef<unsigned> Indices = I.getIndices(); 3817 const Value *Op0 = I.getOperand(0); 3818 const Value *Op1 = I.getOperand(1); 3819 Type *AggTy = I.getType(); 3820 Type *ValTy = Op1->getType(); 3821 bool IntoUndef = isa<UndefValue>(Op0); 3822 bool FromUndef = isa<UndefValue>(Op1); 3823 3824 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3825 3826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3827 SmallVector<EVT, 4> AggValueVTs; 3828 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3829 SmallVector<EVT, 4> ValValueVTs; 3830 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3831 3832 unsigned NumAggValues = AggValueVTs.size(); 3833 unsigned NumValValues = ValValueVTs.size(); 3834 SmallVector<SDValue, 4> Values(NumAggValues); 3835 3836 // Ignore an insertvalue that produces an empty object 3837 if (!NumAggValues) { 3838 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3839 return; 3840 } 3841 3842 SDValue Agg = getValue(Op0); 3843 unsigned i = 0; 3844 // Copy the beginning value(s) from the original aggregate. 3845 for (; i != LinearIndex; ++i) 3846 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3847 SDValue(Agg.getNode(), Agg.getResNo() + i); 3848 // Copy values from the inserted value(s). 3849 if (NumValValues) { 3850 SDValue Val = getValue(Op1); 3851 for (; i != LinearIndex + NumValValues; ++i) 3852 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3853 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3854 } 3855 // Copy remaining value(s) from the original aggregate. 3856 for (; i != NumAggValues; ++i) 3857 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3858 SDValue(Agg.getNode(), Agg.getResNo() + i); 3859 3860 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3861 DAG.getVTList(AggValueVTs), Values)); 3862 } 3863 3864 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3865 ArrayRef<unsigned> Indices = I.getIndices(); 3866 const Value *Op0 = I.getOperand(0); 3867 Type *AggTy = Op0->getType(); 3868 Type *ValTy = I.getType(); 3869 bool OutOfUndef = isa<UndefValue>(Op0); 3870 3871 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3872 3873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3874 SmallVector<EVT, 4> ValValueVTs; 3875 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3876 3877 unsigned NumValValues = ValValueVTs.size(); 3878 3879 // Ignore a extractvalue that produces an empty object 3880 if (!NumValValues) { 3881 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3882 return; 3883 } 3884 3885 SmallVector<SDValue, 4> Values(NumValValues); 3886 3887 SDValue Agg = getValue(Op0); 3888 // Copy out the selected value(s). 3889 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3890 Values[i - LinearIndex] = 3891 OutOfUndef ? 3892 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3893 SDValue(Agg.getNode(), Agg.getResNo() + i); 3894 3895 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3896 DAG.getVTList(ValValueVTs), Values)); 3897 } 3898 3899 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3900 Value *Op0 = I.getOperand(0); 3901 // Note that the pointer operand may be a vector of pointers. Take the scalar 3902 // element which holds a pointer. 3903 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3904 SDValue N = getValue(Op0); 3905 SDLoc dl = getCurSDLoc(); 3906 auto &TLI = DAG.getTargetLoweringInfo(); 3907 3908 // Normalize Vector GEP - all scalar operands should be converted to the 3909 // splat vector. 3910 bool IsVectorGEP = I.getType()->isVectorTy(); 3911 ElementCount VectorElementCount = 3912 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3913 : ElementCount::getFixed(0); 3914 3915 if (IsVectorGEP && !N.getValueType().isVector()) { 3916 LLVMContext &Context = *DAG.getContext(); 3917 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3918 N = DAG.getSplat(VT, dl, N); 3919 } 3920 3921 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3922 GTI != E; ++GTI) { 3923 const Value *Idx = GTI.getOperand(); 3924 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3925 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3926 if (Field) { 3927 // N = N + Offset 3928 uint64_t Offset = 3929 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3930 3931 // In an inbounds GEP with an offset that is nonnegative even when 3932 // interpreted as signed, assume there is no unsigned overflow. 3933 SDNodeFlags Flags; 3934 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3935 Flags.setNoUnsignedWrap(true); 3936 3937 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3938 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3939 } 3940 } else { 3941 // IdxSize is the width of the arithmetic according to IR semantics. 3942 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3943 // (and fix up the result later). 3944 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3945 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3946 TypeSize ElementSize = 3947 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3948 // We intentionally mask away the high bits here; ElementSize may not 3949 // fit in IdxTy. 3950 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 3951 bool ElementScalable = ElementSize.isScalable(); 3952 3953 // If this is a scalar constant or a splat vector of constants, 3954 // handle it quickly. 3955 const auto *C = dyn_cast<Constant>(Idx); 3956 if (C && isa<VectorType>(C->getType())) 3957 C = C->getSplatValue(); 3958 3959 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3960 if (CI && CI->isZero()) 3961 continue; 3962 if (CI && !ElementScalable) { 3963 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3964 LLVMContext &Context = *DAG.getContext(); 3965 SDValue OffsVal; 3966 if (IsVectorGEP) 3967 OffsVal = DAG.getConstant( 3968 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3969 else 3970 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3971 3972 // In an inbounds GEP with an offset that is nonnegative even when 3973 // interpreted as signed, assume there is no unsigned overflow. 3974 SDNodeFlags Flags; 3975 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3976 Flags.setNoUnsignedWrap(true); 3977 3978 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3979 3980 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3981 continue; 3982 } 3983 3984 // N = N + Idx * ElementMul; 3985 SDValue IdxN = getValue(Idx); 3986 3987 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3988 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3989 VectorElementCount); 3990 IdxN = DAG.getSplat(VT, dl, IdxN); 3991 } 3992 3993 // If the index is smaller or larger than intptr_t, truncate or extend 3994 // it. 3995 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3996 3997 if (ElementScalable) { 3998 EVT VScaleTy = N.getValueType().getScalarType(); 3999 SDValue VScale = DAG.getNode( 4000 ISD::VSCALE, dl, VScaleTy, 4001 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4002 if (IsVectorGEP) 4003 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4004 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4005 } else { 4006 // If this is a multiply by a power of two, turn it into a shl 4007 // immediately. This is a very common case. 4008 if (ElementMul != 1) { 4009 if (ElementMul.isPowerOf2()) { 4010 unsigned Amt = ElementMul.logBase2(); 4011 IdxN = DAG.getNode(ISD::SHL, dl, 4012 N.getValueType(), IdxN, 4013 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4014 } else { 4015 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4016 IdxN.getValueType()); 4017 IdxN = DAG.getNode(ISD::MUL, dl, 4018 N.getValueType(), IdxN, Scale); 4019 } 4020 } 4021 } 4022 4023 N = DAG.getNode(ISD::ADD, dl, 4024 N.getValueType(), N, IdxN); 4025 } 4026 } 4027 4028 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4029 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4030 if (IsVectorGEP) { 4031 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4032 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4033 } 4034 4035 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4036 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4037 4038 setValue(&I, N); 4039 } 4040 4041 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4042 // If this is a fixed sized alloca in the entry block of the function, 4043 // allocate it statically on the stack. 4044 if (FuncInfo.StaticAllocaMap.count(&I)) 4045 return; // getValue will auto-populate this. 4046 4047 SDLoc dl = getCurSDLoc(); 4048 Type *Ty = I.getAllocatedType(); 4049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4050 auto &DL = DAG.getDataLayout(); 4051 TypeSize TySize = DL.getTypeAllocSize(Ty); 4052 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4053 4054 SDValue AllocSize = getValue(I.getArraySize()); 4055 4056 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4057 if (AllocSize.getValueType() != IntPtr) 4058 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4059 4060 if (TySize.isScalable()) 4061 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4062 DAG.getVScale(dl, IntPtr, 4063 APInt(IntPtr.getScalarSizeInBits(), 4064 TySize.getKnownMinValue()))); 4065 else 4066 AllocSize = 4067 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4068 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4069 4070 // Handle alignment. If the requested alignment is less than or equal to 4071 // the stack alignment, ignore it. If the size is greater than or equal to 4072 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4073 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4074 if (*Alignment <= StackAlign) 4075 Alignment = std::nullopt; 4076 4077 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4078 // Round the size of the allocation up to the stack alignment size 4079 // by add SA-1 to the size. This doesn't overflow because we're computing 4080 // an address inside an alloca. 4081 SDNodeFlags Flags; 4082 Flags.setNoUnsignedWrap(true); 4083 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4084 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4085 4086 // Mask out the low bits for alignment purposes. 4087 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4088 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4089 4090 SDValue Ops[] = { 4091 getRoot(), AllocSize, 4092 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4093 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4094 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4095 setValue(&I, DSA); 4096 DAG.setRoot(DSA.getValue(1)); 4097 4098 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4099 } 4100 4101 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4102 if (I.isAtomic()) 4103 return visitAtomicLoad(I); 4104 4105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4106 const Value *SV = I.getOperand(0); 4107 if (TLI.supportSwiftError()) { 4108 // Swifterror values can come from either a function parameter with 4109 // swifterror attribute or an alloca with swifterror attribute. 4110 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4111 if (Arg->hasSwiftErrorAttr()) 4112 return visitLoadFromSwiftError(I); 4113 } 4114 4115 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4116 if (Alloca->isSwiftError()) 4117 return visitLoadFromSwiftError(I); 4118 } 4119 } 4120 4121 SDValue Ptr = getValue(SV); 4122 4123 Type *Ty = I.getType(); 4124 SmallVector<EVT, 4> ValueVTs, MemVTs; 4125 SmallVector<uint64_t, 4> Offsets; 4126 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4127 unsigned NumValues = ValueVTs.size(); 4128 if (NumValues == 0) 4129 return; 4130 4131 Align Alignment = I.getAlign(); 4132 AAMDNodes AAInfo = I.getAAMetadata(); 4133 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4134 bool isVolatile = I.isVolatile(); 4135 MachineMemOperand::Flags MMOFlags = 4136 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4137 4138 SDValue Root; 4139 bool ConstantMemory = false; 4140 if (isVolatile) 4141 // Serialize volatile loads with other side effects. 4142 Root = getRoot(); 4143 else if (NumValues > MaxParallelChains) 4144 Root = getMemoryRoot(); 4145 else if (AA && 4146 AA->pointsToConstantMemory(MemoryLocation( 4147 SV, 4148 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4149 AAInfo))) { 4150 // Do not serialize (non-volatile) loads of constant memory with anything. 4151 Root = DAG.getEntryNode(); 4152 ConstantMemory = true; 4153 MMOFlags |= MachineMemOperand::MOInvariant; 4154 } else { 4155 // Do not serialize non-volatile loads against each other. 4156 Root = DAG.getRoot(); 4157 } 4158 4159 SDLoc dl = getCurSDLoc(); 4160 4161 if (isVolatile) 4162 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4163 4164 // An aggregate load cannot wrap around the address space, so offsets to its 4165 // parts don't wrap either. 4166 SDNodeFlags Flags; 4167 Flags.setNoUnsignedWrap(true); 4168 4169 SmallVector<SDValue, 4> Values(NumValues); 4170 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4171 EVT PtrVT = Ptr.getValueType(); 4172 4173 unsigned ChainI = 0; 4174 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4175 // Serializing loads here may result in excessive register pressure, and 4176 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4177 // could recover a bit by hoisting nodes upward in the chain by recognizing 4178 // they are side-effect free or do not alias. The optimizer should really 4179 // avoid this case by converting large object/array copies to llvm.memcpy 4180 // (MaxParallelChains should always remain as failsafe). 4181 if (ChainI == MaxParallelChains) { 4182 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4183 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4184 ArrayRef(Chains.data(), ChainI)); 4185 Root = Chain; 4186 ChainI = 0; 4187 } 4188 SDValue A = DAG.getNode(ISD::ADD, dl, 4189 PtrVT, Ptr, 4190 DAG.getConstant(Offsets[i], dl, PtrVT), 4191 Flags); 4192 4193 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4194 MachinePointerInfo(SV, Offsets[i]), Alignment, 4195 MMOFlags, AAInfo, Ranges); 4196 Chains[ChainI] = L.getValue(1); 4197 4198 if (MemVTs[i] != ValueVTs[i]) 4199 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4200 4201 Values[i] = L; 4202 } 4203 4204 if (!ConstantMemory) { 4205 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4206 ArrayRef(Chains.data(), ChainI)); 4207 if (isVolatile) 4208 DAG.setRoot(Chain); 4209 else 4210 PendingLoads.push_back(Chain); 4211 } 4212 4213 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4214 DAG.getVTList(ValueVTs), Values)); 4215 } 4216 4217 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4218 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4219 "call visitStoreToSwiftError when backend supports swifterror"); 4220 4221 SmallVector<EVT, 4> ValueVTs; 4222 SmallVector<uint64_t, 4> Offsets; 4223 const Value *SrcV = I.getOperand(0); 4224 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4225 SrcV->getType(), ValueVTs, &Offsets); 4226 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4227 "expect a single EVT for swifterror"); 4228 4229 SDValue Src = getValue(SrcV); 4230 // Create a virtual register, then update the virtual register. 4231 Register VReg = 4232 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4233 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4234 // Chain can be getRoot or getControlRoot. 4235 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4236 SDValue(Src.getNode(), Src.getResNo())); 4237 DAG.setRoot(CopyNode); 4238 } 4239 4240 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4241 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4242 "call visitLoadFromSwiftError when backend supports swifterror"); 4243 4244 assert(!I.isVolatile() && 4245 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4246 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4247 "Support volatile, non temporal, invariant for load_from_swift_error"); 4248 4249 const Value *SV = I.getOperand(0); 4250 Type *Ty = I.getType(); 4251 assert( 4252 (!AA || 4253 !AA->pointsToConstantMemory(MemoryLocation( 4254 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4255 I.getAAMetadata()))) && 4256 "load_from_swift_error should not be constant memory"); 4257 4258 SmallVector<EVT, 4> ValueVTs; 4259 SmallVector<uint64_t, 4> Offsets; 4260 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4261 ValueVTs, &Offsets); 4262 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4263 "expect a single EVT for swifterror"); 4264 4265 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4266 SDValue L = DAG.getCopyFromReg( 4267 getRoot(), getCurSDLoc(), 4268 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4269 4270 setValue(&I, L); 4271 } 4272 4273 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4274 if (I.isAtomic()) 4275 return visitAtomicStore(I); 4276 4277 const Value *SrcV = I.getOperand(0); 4278 const Value *PtrV = I.getOperand(1); 4279 4280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4281 if (TLI.supportSwiftError()) { 4282 // Swifterror values can come from either a function parameter with 4283 // swifterror attribute or an alloca with swifterror attribute. 4284 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4285 if (Arg->hasSwiftErrorAttr()) 4286 return visitStoreToSwiftError(I); 4287 } 4288 4289 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4290 if (Alloca->isSwiftError()) 4291 return visitStoreToSwiftError(I); 4292 } 4293 } 4294 4295 SmallVector<EVT, 4> ValueVTs, MemVTs; 4296 SmallVector<uint64_t, 4> Offsets; 4297 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4298 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4299 unsigned NumValues = ValueVTs.size(); 4300 if (NumValues == 0) 4301 return; 4302 4303 // Get the lowered operands. Note that we do this after 4304 // checking if NumResults is zero, because with zero results 4305 // the operands won't have values in the map. 4306 SDValue Src = getValue(SrcV); 4307 SDValue Ptr = getValue(PtrV); 4308 4309 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4310 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4311 SDLoc dl = getCurSDLoc(); 4312 Align Alignment = I.getAlign(); 4313 AAMDNodes AAInfo = I.getAAMetadata(); 4314 4315 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4316 4317 // An aggregate load cannot wrap around the address space, so offsets to its 4318 // parts don't wrap either. 4319 SDNodeFlags Flags; 4320 Flags.setNoUnsignedWrap(true); 4321 4322 unsigned ChainI = 0; 4323 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4324 // See visitLoad comments. 4325 if (ChainI == MaxParallelChains) { 4326 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4327 ArrayRef(Chains.data(), ChainI)); 4328 Root = Chain; 4329 ChainI = 0; 4330 } 4331 SDValue Add = 4332 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4333 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4334 if (MemVTs[i] != ValueVTs[i]) 4335 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4336 SDValue St = 4337 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4338 Alignment, MMOFlags, AAInfo); 4339 Chains[ChainI] = St; 4340 } 4341 4342 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4343 ArrayRef(Chains.data(), ChainI)); 4344 setValue(&I, StoreNode); 4345 DAG.setRoot(StoreNode); 4346 } 4347 4348 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4349 bool IsCompressing) { 4350 SDLoc sdl = getCurSDLoc(); 4351 4352 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4353 MaybeAlign &Alignment) { 4354 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4355 Src0 = I.getArgOperand(0); 4356 Ptr = I.getArgOperand(1); 4357 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4358 Mask = I.getArgOperand(3); 4359 }; 4360 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4361 MaybeAlign &Alignment) { 4362 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4363 Src0 = I.getArgOperand(0); 4364 Ptr = I.getArgOperand(1); 4365 Mask = I.getArgOperand(2); 4366 Alignment = std::nullopt; 4367 }; 4368 4369 Value *PtrOperand, *MaskOperand, *Src0Operand; 4370 MaybeAlign Alignment; 4371 if (IsCompressing) 4372 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4373 else 4374 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4375 4376 SDValue Ptr = getValue(PtrOperand); 4377 SDValue Src0 = getValue(Src0Operand); 4378 SDValue Mask = getValue(MaskOperand); 4379 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4380 4381 EVT VT = Src0.getValueType(); 4382 if (!Alignment) 4383 Alignment = DAG.getEVTAlign(VT); 4384 4385 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4386 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4387 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4388 SDValue StoreNode = 4389 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4390 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4391 DAG.setRoot(StoreNode); 4392 setValue(&I, StoreNode); 4393 } 4394 4395 // Get a uniform base for the Gather/Scatter intrinsic. 4396 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4397 // We try to represent it as a base pointer + vector of indices. 4398 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4399 // The first operand of the GEP may be a single pointer or a vector of pointers 4400 // Example: 4401 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4402 // or 4403 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4404 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4405 // 4406 // When the first GEP operand is a single pointer - it is the uniform base we 4407 // are looking for. If first operand of the GEP is a splat vector - we 4408 // extract the splat value and use it as a uniform base. 4409 // In all other cases the function returns 'false'. 4410 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4411 ISD::MemIndexType &IndexType, SDValue &Scale, 4412 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4413 uint64_t ElemSize) { 4414 SelectionDAG& DAG = SDB->DAG; 4415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4416 const DataLayout &DL = DAG.getDataLayout(); 4417 4418 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4419 4420 // Handle splat constant pointer. 4421 if (auto *C = dyn_cast<Constant>(Ptr)) { 4422 C = C->getSplatValue(); 4423 if (!C) 4424 return false; 4425 4426 Base = SDB->getValue(C); 4427 4428 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4429 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4430 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4431 IndexType = ISD::SIGNED_SCALED; 4432 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4433 return true; 4434 } 4435 4436 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4437 if (!GEP || GEP->getParent() != CurBB) 4438 return false; 4439 4440 if (GEP->getNumOperands() != 2) 4441 return false; 4442 4443 const Value *BasePtr = GEP->getPointerOperand(); 4444 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4445 4446 // Make sure the base is scalar and the index is a vector. 4447 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4448 return false; 4449 4450 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4451 4452 // Target may not support the required addressing mode. 4453 if (ScaleVal != 1 && 4454 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4455 return false; 4456 4457 Base = SDB->getValue(BasePtr); 4458 Index = SDB->getValue(IndexVal); 4459 IndexType = ISD::SIGNED_SCALED; 4460 4461 Scale = 4462 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4463 return true; 4464 } 4465 4466 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4467 SDLoc sdl = getCurSDLoc(); 4468 4469 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4470 const Value *Ptr = I.getArgOperand(1); 4471 SDValue Src0 = getValue(I.getArgOperand(0)); 4472 SDValue Mask = getValue(I.getArgOperand(3)); 4473 EVT VT = Src0.getValueType(); 4474 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4475 ->getMaybeAlignValue() 4476 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4478 4479 SDValue Base; 4480 SDValue Index; 4481 ISD::MemIndexType IndexType; 4482 SDValue Scale; 4483 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4484 I.getParent(), VT.getScalarStoreSize()); 4485 4486 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4487 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4488 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4489 // TODO: Make MachineMemOperands aware of scalable 4490 // vectors. 4491 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4492 if (!UniformBase) { 4493 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4494 Index = getValue(Ptr); 4495 IndexType = ISD::SIGNED_SCALED; 4496 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4497 } 4498 4499 EVT IdxVT = Index.getValueType(); 4500 EVT EltTy = IdxVT.getVectorElementType(); 4501 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4502 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4503 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4504 } 4505 4506 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4507 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4508 Ops, MMO, IndexType, false); 4509 DAG.setRoot(Scatter); 4510 setValue(&I, Scatter); 4511 } 4512 4513 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4514 SDLoc sdl = getCurSDLoc(); 4515 4516 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4517 MaybeAlign &Alignment) { 4518 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4519 Ptr = I.getArgOperand(0); 4520 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4521 Mask = I.getArgOperand(2); 4522 Src0 = I.getArgOperand(3); 4523 }; 4524 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4525 MaybeAlign &Alignment) { 4526 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4527 Ptr = I.getArgOperand(0); 4528 Alignment = std::nullopt; 4529 Mask = I.getArgOperand(1); 4530 Src0 = I.getArgOperand(2); 4531 }; 4532 4533 Value *PtrOperand, *MaskOperand, *Src0Operand; 4534 MaybeAlign Alignment; 4535 if (IsExpanding) 4536 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4537 else 4538 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4539 4540 SDValue Ptr = getValue(PtrOperand); 4541 SDValue Src0 = getValue(Src0Operand); 4542 SDValue Mask = getValue(MaskOperand); 4543 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4544 4545 EVT VT = Src0.getValueType(); 4546 if (!Alignment) 4547 Alignment = DAG.getEVTAlign(VT); 4548 4549 AAMDNodes AAInfo = I.getAAMetadata(); 4550 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4551 4552 // Do not serialize masked loads of constant memory with anything. 4553 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4554 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4555 4556 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4557 4558 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4559 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4560 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4561 4562 SDValue Load = 4563 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4564 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4565 if (AddToChain) 4566 PendingLoads.push_back(Load.getValue(1)); 4567 setValue(&I, Load); 4568 } 4569 4570 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4571 SDLoc sdl = getCurSDLoc(); 4572 4573 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4574 const Value *Ptr = I.getArgOperand(0); 4575 SDValue Src0 = getValue(I.getArgOperand(3)); 4576 SDValue Mask = getValue(I.getArgOperand(2)); 4577 4578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4579 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4580 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4581 ->getMaybeAlignValue() 4582 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4583 4584 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4585 4586 SDValue Root = DAG.getRoot(); 4587 SDValue Base; 4588 SDValue Index; 4589 ISD::MemIndexType IndexType; 4590 SDValue Scale; 4591 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4592 I.getParent(), VT.getScalarStoreSize()); 4593 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4594 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4595 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4596 // TODO: Make MachineMemOperands aware of scalable 4597 // vectors. 4598 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4599 4600 if (!UniformBase) { 4601 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4602 Index = getValue(Ptr); 4603 IndexType = ISD::SIGNED_SCALED; 4604 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4605 } 4606 4607 EVT IdxVT = Index.getValueType(); 4608 EVT EltTy = IdxVT.getVectorElementType(); 4609 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4610 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4611 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4612 } 4613 4614 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4615 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4616 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4617 4618 PendingLoads.push_back(Gather.getValue(1)); 4619 setValue(&I, Gather); 4620 } 4621 4622 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4623 SDLoc dl = getCurSDLoc(); 4624 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4625 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4626 SyncScope::ID SSID = I.getSyncScopeID(); 4627 4628 SDValue InChain = getRoot(); 4629 4630 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4631 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4632 4633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4634 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4635 4636 MachineFunction &MF = DAG.getMachineFunction(); 4637 MachineMemOperand *MMO = MF.getMachineMemOperand( 4638 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4639 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4640 FailureOrdering); 4641 4642 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4643 dl, MemVT, VTs, InChain, 4644 getValue(I.getPointerOperand()), 4645 getValue(I.getCompareOperand()), 4646 getValue(I.getNewValOperand()), MMO); 4647 4648 SDValue OutChain = L.getValue(2); 4649 4650 setValue(&I, L); 4651 DAG.setRoot(OutChain); 4652 } 4653 4654 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4655 SDLoc dl = getCurSDLoc(); 4656 ISD::NodeType NT; 4657 switch (I.getOperation()) { 4658 default: llvm_unreachable("Unknown atomicrmw operation"); 4659 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4660 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4661 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4662 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4663 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4664 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4665 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4666 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4667 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4668 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4669 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4670 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4671 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4672 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4673 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4674 case AtomicRMWInst::UIncWrap: 4675 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4676 break; 4677 case AtomicRMWInst::UDecWrap: 4678 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4679 break; 4680 } 4681 AtomicOrdering Ordering = I.getOrdering(); 4682 SyncScope::ID SSID = I.getSyncScopeID(); 4683 4684 SDValue InChain = getRoot(); 4685 4686 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4688 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4689 4690 MachineFunction &MF = DAG.getMachineFunction(); 4691 MachineMemOperand *MMO = MF.getMachineMemOperand( 4692 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4693 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4694 4695 SDValue L = 4696 DAG.getAtomic(NT, dl, MemVT, InChain, 4697 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4698 MMO); 4699 4700 SDValue OutChain = L.getValue(1); 4701 4702 setValue(&I, L); 4703 DAG.setRoot(OutChain); 4704 } 4705 4706 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4707 SDLoc dl = getCurSDLoc(); 4708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4709 SDValue Ops[3]; 4710 Ops[0] = getRoot(); 4711 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4712 TLI.getFenceOperandTy(DAG.getDataLayout())); 4713 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4714 TLI.getFenceOperandTy(DAG.getDataLayout())); 4715 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4716 setValue(&I, N); 4717 DAG.setRoot(N); 4718 } 4719 4720 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4721 SDLoc dl = getCurSDLoc(); 4722 AtomicOrdering Order = I.getOrdering(); 4723 SyncScope::ID SSID = I.getSyncScopeID(); 4724 4725 SDValue InChain = getRoot(); 4726 4727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4728 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4729 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4730 4731 if (!TLI.supportsUnalignedAtomics() && 4732 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4733 report_fatal_error("Cannot generate unaligned atomic load"); 4734 4735 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4736 4737 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4738 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4739 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4740 4741 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4742 4743 SDValue Ptr = getValue(I.getPointerOperand()); 4744 4745 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4746 // TODO: Once this is better exercised by tests, it should be merged with 4747 // the normal path for loads to prevent future divergence. 4748 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4749 if (MemVT != VT) 4750 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4751 4752 setValue(&I, L); 4753 SDValue OutChain = L.getValue(1); 4754 if (!I.isUnordered()) 4755 DAG.setRoot(OutChain); 4756 else 4757 PendingLoads.push_back(OutChain); 4758 return; 4759 } 4760 4761 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4762 Ptr, MMO); 4763 4764 SDValue OutChain = L.getValue(1); 4765 if (MemVT != VT) 4766 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4767 4768 setValue(&I, L); 4769 DAG.setRoot(OutChain); 4770 } 4771 4772 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4773 SDLoc dl = getCurSDLoc(); 4774 4775 AtomicOrdering Ordering = I.getOrdering(); 4776 SyncScope::ID SSID = I.getSyncScopeID(); 4777 4778 SDValue InChain = getRoot(); 4779 4780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4781 EVT MemVT = 4782 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4783 4784 if (!TLI.supportsUnalignedAtomics() && 4785 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4786 report_fatal_error("Cannot generate unaligned atomic store"); 4787 4788 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4789 4790 MachineFunction &MF = DAG.getMachineFunction(); 4791 MachineMemOperand *MMO = MF.getMachineMemOperand( 4792 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4793 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4794 4795 SDValue Val = getValue(I.getValueOperand()); 4796 if (Val.getValueType() != MemVT) 4797 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4798 SDValue Ptr = getValue(I.getPointerOperand()); 4799 4800 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4801 // TODO: Once this is better exercised by tests, it should be merged with 4802 // the normal path for stores to prevent future divergence. 4803 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4804 setValue(&I, S); 4805 DAG.setRoot(S); 4806 return; 4807 } 4808 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4809 Ptr, Val, MMO); 4810 4811 setValue(&I, OutChain); 4812 DAG.setRoot(OutChain); 4813 } 4814 4815 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4816 /// node. 4817 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4818 unsigned Intrinsic) { 4819 // Ignore the callsite's attributes. A specific call site may be marked with 4820 // readnone, but the lowering code will expect the chain based on the 4821 // definition. 4822 const Function *F = I.getCalledFunction(); 4823 bool HasChain = !F->doesNotAccessMemory(); 4824 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4825 4826 // Build the operand list. 4827 SmallVector<SDValue, 8> Ops; 4828 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4829 if (OnlyLoad) { 4830 // We don't need to serialize loads against other loads. 4831 Ops.push_back(DAG.getRoot()); 4832 } else { 4833 Ops.push_back(getRoot()); 4834 } 4835 } 4836 4837 // Info is set by getTgtMemIntrinsic 4838 TargetLowering::IntrinsicInfo Info; 4839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4840 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4841 DAG.getMachineFunction(), 4842 Intrinsic); 4843 4844 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4845 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4846 Info.opc == ISD::INTRINSIC_W_CHAIN) 4847 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4848 TLI.getPointerTy(DAG.getDataLayout()))); 4849 4850 // Add all operands of the call to the operand list. 4851 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4852 const Value *Arg = I.getArgOperand(i); 4853 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4854 Ops.push_back(getValue(Arg)); 4855 continue; 4856 } 4857 4858 // Use TargetConstant instead of a regular constant for immarg. 4859 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4860 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4861 assert(CI->getBitWidth() <= 64 && 4862 "large intrinsic immediates not handled"); 4863 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4864 } else { 4865 Ops.push_back( 4866 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4867 } 4868 } 4869 4870 SmallVector<EVT, 4> ValueVTs; 4871 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4872 4873 if (HasChain) 4874 ValueVTs.push_back(MVT::Other); 4875 4876 SDVTList VTs = DAG.getVTList(ValueVTs); 4877 4878 // Propagate fast-math-flags from IR to node(s). 4879 SDNodeFlags Flags; 4880 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4881 Flags.copyFMF(*FPMO); 4882 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4883 4884 // Create the node. 4885 SDValue Result; 4886 // In some cases, custom collection of operands from CallInst I may be needed. 4887 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4888 if (IsTgtIntrinsic) { 4889 // This is target intrinsic that touches memory 4890 // 4891 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4892 // didn't yield anything useful. 4893 MachinePointerInfo MPI; 4894 if (Info.ptrVal) 4895 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4896 else if (Info.fallbackAddressSpace) 4897 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4898 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4899 Info.memVT, MPI, Info.align, Info.flags, 4900 Info.size, I.getAAMetadata()); 4901 } else if (!HasChain) { 4902 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4903 } else if (!I.getType()->isVoidTy()) { 4904 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4905 } else { 4906 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4907 } 4908 4909 if (HasChain) { 4910 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4911 if (OnlyLoad) 4912 PendingLoads.push_back(Chain); 4913 else 4914 DAG.setRoot(Chain); 4915 } 4916 4917 if (!I.getType()->isVoidTy()) { 4918 if (!isa<VectorType>(I.getType())) 4919 Result = lowerRangeToAssertZExt(DAG, I, Result); 4920 4921 MaybeAlign Alignment = I.getRetAlign(); 4922 if (!Alignment) 4923 Alignment = F->getAttributes().getRetAlignment(); 4924 // Insert `assertalign` node if there's an alignment. 4925 if (InsertAssertAlign && Alignment) { 4926 Result = 4927 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4928 } 4929 4930 setValue(&I, Result); 4931 } 4932 } 4933 4934 /// GetSignificand - Get the significand and build it into a floating-point 4935 /// number with exponent of 1: 4936 /// 4937 /// Op = (Op & 0x007fffff) | 0x3f800000; 4938 /// 4939 /// where Op is the hexadecimal representation of floating point value. 4940 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4941 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4942 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4943 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4944 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4945 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4946 } 4947 4948 /// GetExponent - Get the exponent: 4949 /// 4950 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4951 /// 4952 /// where Op is the hexadecimal representation of floating point value. 4953 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4954 const TargetLowering &TLI, const SDLoc &dl) { 4955 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4956 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4957 SDValue t1 = DAG.getNode( 4958 ISD::SRL, dl, MVT::i32, t0, 4959 DAG.getConstant(23, dl, 4960 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4961 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4962 DAG.getConstant(127, dl, MVT::i32)); 4963 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4964 } 4965 4966 /// getF32Constant - Get 32-bit floating point constant. 4967 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4968 const SDLoc &dl) { 4969 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4970 MVT::f32); 4971 } 4972 4973 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4974 SelectionDAG &DAG) { 4975 // TODO: What fast-math-flags should be set on the floating-point nodes? 4976 4977 // IntegerPartOfX = ((int32_t)(t0); 4978 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4979 4980 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4981 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4982 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4983 4984 // IntegerPartOfX <<= 23; 4985 IntegerPartOfX = 4986 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4987 DAG.getConstant(23, dl, 4988 DAG.getTargetLoweringInfo().getShiftAmountTy( 4989 MVT::i32, DAG.getDataLayout()))); 4990 4991 SDValue TwoToFractionalPartOfX; 4992 if (LimitFloatPrecision <= 6) { 4993 // For floating-point precision of 6: 4994 // 4995 // TwoToFractionalPartOfX = 4996 // 0.997535578f + 4997 // (0.735607626f + 0.252464424f * x) * x; 4998 // 4999 // error 0.0144103317, which is 6 bits 5000 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5001 getF32Constant(DAG, 0x3e814304, dl)); 5002 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5003 getF32Constant(DAG, 0x3f3c50c8, dl)); 5004 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5005 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5006 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5007 } else if (LimitFloatPrecision <= 12) { 5008 // For floating-point precision of 12: 5009 // 5010 // TwoToFractionalPartOfX = 5011 // 0.999892986f + 5012 // (0.696457318f + 5013 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5014 // 5015 // error 0.000107046256, which is 13 to 14 bits 5016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5017 getF32Constant(DAG, 0x3da235e3, dl)); 5018 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5019 getF32Constant(DAG, 0x3e65b8f3, dl)); 5020 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5021 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5022 getF32Constant(DAG, 0x3f324b07, dl)); 5023 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5024 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5025 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5026 } else { // LimitFloatPrecision <= 18 5027 // For floating-point precision of 18: 5028 // 5029 // TwoToFractionalPartOfX = 5030 // 0.999999982f + 5031 // (0.693148872f + 5032 // (0.240227044f + 5033 // (0.554906021e-1f + 5034 // (0.961591928e-2f + 5035 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5036 // error 2.47208000*10^(-7), which is better than 18 bits 5037 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5038 getF32Constant(DAG, 0x3924b03e, dl)); 5039 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5040 getF32Constant(DAG, 0x3ab24b87, dl)); 5041 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5042 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5043 getF32Constant(DAG, 0x3c1d8c17, dl)); 5044 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5045 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5046 getF32Constant(DAG, 0x3d634a1d, dl)); 5047 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5048 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5049 getF32Constant(DAG, 0x3e75fe14, dl)); 5050 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5051 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5052 getF32Constant(DAG, 0x3f317234, dl)); 5053 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5054 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5055 getF32Constant(DAG, 0x3f800000, dl)); 5056 } 5057 5058 // Add the exponent into the result in integer domain. 5059 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5060 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5061 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5062 } 5063 5064 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5065 /// limited-precision mode. 5066 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5067 const TargetLowering &TLI, SDNodeFlags Flags) { 5068 if (Op.getValueType() == MVT::f32 && 5069 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5070 5071 // Put the exponent in the right bit position for later addition to the 5072 // final result: 5073 // 5074 // t0 = Op * log2(e) 5075 5076 // TODO: What fast-math-flags should be set here? 5077 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5078 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5079 return getLimitedPrecisionExp2(t0, dl, DAG); 5080 } 5081 5082 // No special expansion. 5083 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5084 } 5085 5086 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5087 /// limited-precision mode. 5088 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5089 const TargetLowering &TLI, SDNodeFlags Flags) { 5090 // TODO: What fast-math-flags should be set on the floating-point nodes? 5091 5092 if (Op.getValueType() == MVT::f32 && 5093 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5094 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5095 5096 // Scale the exponent by log(2). 5097 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5098 SDValue LogOfExponent = 5099 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5100 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5101 5102 // Get the significand and build it into a floating-point number with 5103 // exponent of 1. 5104 SDValue X = GetSignificand(DAG, Op1, dl); 5105 5106 SDValue LogOfMantissa; 5107 if (LimitFloatPrecision <= 6) { 5108 // For floating-point precision of 6: 5109 // 5110 // LogofMantissa = 5111 // -1.1609546f + 5112 // (1.4034025f - 0.23903021f * x) * x; 5113 // 5114 // error 0.0034276066, which is better than 8 bits 5115 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5116 getF32Constant(DAG, 0xbe74c456, dl)); 5117 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5118 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5120 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5121 getF32Constant(DAG, 0x3f949a29, dl)); 5122 } else if (LimitFloatPrecision <= 12) { 5123 // For floating-point precision of 12: 5124 // 5125 // LogOfMantissa = 5126 // -1.7417939f + 5127 // (2.8212026f + 5128 // (-1.4699568f + 5129 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5130 // 5131 // error 0.000061011436, which is 14 bits 5132 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5133 getF32Constant(DAG, 0xbd67b6d6, dl)); 5134 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5135 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5137 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5138 getF32Constant(DAG, 0x3fbc278b, dl)); 5139 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5140 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5141 getF32Constant(DAG, 0x40348e95, dl)); 5142 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5143 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5144 getF32Constant(DAG, 0x3fdef31a, dl)); 5145 } else { // LimitFloatPrecision <= 18 5146 // For floating-point precision of 18: 5147 // 5148 // LogOfMantissa = 5149 // -2.1072184f + 5150 // (4.2372794f + 5151 // (-3.7029485f + 5152 // (2.2781945f + 5153 // (-0.87823314f + 5154 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5155 // 5156 // error 0.0000023660568, which is better than 18 bits 5157 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5158 getF32Constant(DAG, 0xbc91e5ac, dl)); 5159 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5160 getF32Constant(DAG, 0x3e4350aa, dl)); 5161 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5162 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5163 getF32Constant(DAG, 0x3f60d3e3, dl)); 5164 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5165 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5166 getF32Constant(DAG, 0x4011cdf0, dl)); 5167 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5168 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5169 getF32Constant(DAG, 0x406cfd1c, dl)); 5170 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5171 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5172 getF32Constant(DAG, 0x408797cb, dl)); 5173 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5174 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5175 getF32Constant(DAG, 0x4006dcab, dl)); 5176 } 5177 5178 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5179 } 5180 5181 // No special expansion. 5182 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5183 } 5184 5185 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5186 /// limited-precision mode. 5187 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5188 const TargetLowering &TLI, SDNodeFlags Flags) { 5189 // TODO: What fast-math-flags should be set on the floating-point nodes? 5190 5191 if (Op.getValueType() == MVT::f32 && 5192 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5193 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5194 5195 // Get the exponent. 5196 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5197 5198 // Get the significand and build it into a floating-point number with 5199 // exponent of 1. 5200 SDValue X = GetSignificand(DAG, Op1, dl); 5201 5202 // Different possible minimax approximations of significand in 5203 // floating-point for various degrees of accuracy over [1,2]. 5204 SDValue Log2ofMantissa; 5205 if (LimitFloatPrecision <= 6) { 5206 // For floating-point precision of 6: 5207 // 5208 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5209 // 5210 // error 0.0049451742, which is more than 7 bits 5211 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5212 getF32Constant(DAG, 0xbeb08fe0, dl)); 5213 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5214 getF32Constant(DAG, 0x40019463, dl)); 5215 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5216 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5217 getF32Constant(DAG, 0x3fd6633d, dl)); 5218 } else if (LimitFloatPrecision <= 12) { 5219 // For floating-point precision of 12: 5220 // 5221 // Log2ofMantissa = 5222 // -2.51285454f + 5223 // (4.07009056f + 5224 // (-2.12067489f + 5225 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5226 // 5227 // error 0.0000876136000, which is better than 13 bits 5228 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5229 getF32Constant(DAG, 0xbda7262e, dl)); 5230 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5231 getF32Constant(DAG, 0x3f25280b, dl)); 5232 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5233 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5234 getF32Constant(DAG, 0x4007b923, dl)); 5235 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5236 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5237 getF32Constant(DAG, 0x40823e2f, dl)); 5238 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5239 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5240 getF32Constant(DAG, 0x4020d29c, dl)); 5241 } else { // LimitFloatPrecision <= 18 5242 // For floating-point precision of 18: 5243 // 5244 // Log2ofMantissa = 5245 // -3.0400495f + 5246 // (6.1129976f + 5247 // (-5.3420409f + 5248 // (3.2865683f + 5249 // (-1.2669343f + 5250 // (0.27515199f - 5251 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5252 // 5253 // error 0.0000018516, which is better than 18 bits 5254 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5255 getF32Constant(DAG, 0xbcd2769e, dl)); 5256 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5257 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5259 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5260 getF32Constant(DAG, 0x3fa22ae7, dl)); 5261 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5262 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5263 getF32Constant(DAG, 0x40525723, dl)); 5264 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5265 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5266 getF32Constant(DAG, 0x40aaf200, dl)); 5267 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5268 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5269 getF32Constant(DAG, 0x40c39dad, dl)); 5270 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5271 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5272 getF32Constant(DAG, 0x4042902c, dl)); 5273 } 5274 5275 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5276 } 5277 5278 // No special expansion. 5279 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5280 } 5281 5282 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5283 /// limited-precision mode. 5284 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5285 const TargetLowering &TLI, SDNodeFlags Flags) { 5286 // TODO: What fast-math-flags should be set on the floating-point nodes? 5287 5288 if (Op.getValueType() == MVT::f32 && 5289 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5290 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5291 5292 // Scale the exponent by log10(2) [0.30102999f]. 5293 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5294 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5295 getF32Constant(DAG, 0x3e9a209a, dl)); 5296 5297 // Get the significand and build it into a floating-point number with 5298 // exponent of 1. 5299 SDValue X = GetSignificand(DAG, Op1, dl); 5300 5301 SDValue Log10ofMantissa; 5302 if (LimitFloatPrecision <= 6) { 5303 // For floating-point precision of 6: 5304 // 5305 // Log10ofMantissa = 5306 // -0.50419619f + 5307 // (0.60948995f - 0.10380950f * x) * x; 5308 // 5309 // error 0.0014886165, which is 6 bits 5310 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5311 getF32Constant(DAG, 0xbdd49a13, dl)); 5312 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5313 getF32Constant(DAG, 0x3f1c0789, dl)); 5314 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5315 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5316 getF32Constant(DAG, 0x3f011300, dl)); 5317 } else if (LimitFloatPrecision <= 12) { 5318 // For floating-point precision of 12: 5319 // 5320 // Log10ofMantissa = 5321 // -0.64831180f + 5322 // (0.91751397f + 5323 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5324 // 5325 // error 0.00019228036, which is better than 12 bits 5326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5327 getF32Constant(DAG, 0x3d431f31, dl)); 5328 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5329 getF32Constant(DAG, 0x3ea21fb2, dl)); 5330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5331 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5332 getF32Constant(DAG, 0x3f6ae232, dl)); 5333 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5334 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5335 getF32Constant(DAG, 0x3f25f7c3, dl)); 5336 } else { // LimitFloatPrecision <= 18 5337 // For floating-point precision of 18: 5338 // 5339 // Log10ofMantissa = 5340 // -0.84299375f + 5341 // (1.5327582f + 5342 // (-1.0688956f + 5343 // (0.49102474f + 5344 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5345 // 5346 // error 0.0000037995730, which is better than 18 bits 5347 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5348 getF32Constant(DAG, 0x3c5d51ce, dl)); 5349 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5350 getF32Constant(DAG, 0x3e00685a, dl)); 5351 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5352 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5353 getF32Constant(DAG, 0x3efb6798, dl)); 5354 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5355 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5356 getF32Constant(DAG, 0x3f88d192, dl)); 5357 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5358 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5359 getF32Constant(DAG, 0x3fc4316c, dl)); 5360 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5361 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5362 getF32Constant(DAG, 0x3f57ce70, dl)); 5363 } 5364 5365 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5366 } 5367 5368 // No special expansion. 5369 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5370 } 5371 5372 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5373 /// limited-precision mode. 5374 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5375 const TargetLowering &TLI, SDNodeFlags Flags) { 5376 if (Op.getValueType() == MVT::f32 && 5377 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5378 return getLimitedPrecisionExp2(Op, dl, DAG); 5379 5380 // No special expansion. 5381 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5382 } 5383 5384 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5385 /// limited-precision mode with x == 10.0f. 5386 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5387 SelectionDAG &DAG, const TargetLowering &TLI, 5388 SDNodeFlags Flags) { 5389 bool IsExp10 = false; 5390 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5391 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5392 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5393 APFloat Ten(10.0f); 5394 IsExp10 = LHSC->isExactlyValue(Ten); 5395 } 5396 } 5397 5398 // TODO: What fast-math-flags should be set on the FMUL node? 5399 if (IsExp10) { 5400 // Put the exponent in the right bit position for later addition to the 5401 // final result: 5402 // 5403 // #define LOG2OF10 3.3219281f 5404 // t0 = Op * LOG2OF10; 5405 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5406 getF32Constant(DAG, 0x40549a78, dl)); 5407 return getLimitedPrecisionExp2(t0, dl, DAG); 5408 } 5409 5410 // No special expansion. 5411 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5412 } 5413 5414 /// ExpandPowI - Expand a llvm.powi intrinsic. 5415 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5416 SelectionDAG &DAG) { 5417 // If RHS is a constant, we can expand this out to a multiplication tree if 5418 // it's beneficial on the target, otherwise we end up lowering to a call to 5419 // __powidf2 (for example). 5420 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5421 unsigned Val = RHSC->getSExtValue(); 5422 5423 // powi(x, 0) -> 1.0 5424 if (Val == 0) 5425 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5426 5427 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5428 Val, DAG.shouldOptForSize())) { 5429 // Get the exponent as a positive value. 5430 if ((int)Val < 0) 5431 Val = -Val; 5432 // We use the simple binary decomposition method to generate the multiply 5433 // sequence. There are more optimal ways to do this (for example, 5434 // powi(x,15) generates one more multiply than it should), but this has 5435 // the benefit of being both really simple and much better than a libcall. 5436 SDValue Res; // Logically starts equal to 1.0 5437 SDValue CurSquare = LHS; 5438 // TODO: Intrinsics should have fast-math-flags that propagate to these 5439 // nodes. 5440 while (Val) { 5441 if (Val & 1) { 5442 if (Res.getNode()) 5443 Res = 5444 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5445 else 5446 Res = CurSquare; // 1.0*CurSquare. 5447 } 5448 5449 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5450 CurSquare, CurSquare); 5451 Val >>= 1; 5452 } 5453 5454 // If the original was negative, invert the result, producing 1/(x*x*x). 5455 if (RHSC->getSExtValue() < 0) 5456 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5457 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5458 return Res; 5459 } 5460 } 5461 5462 // Otherwise, expand to a libcall. 5463 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5464 } 5465 5466 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5467 SDValue LHS, SDValue RHS, SDValue Scale, 5468 SelectionDAG &DAG, const TargetLowering &TLI) { 5469 EVT VT = LHS.getValueType(); 5470 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5471 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5472 LLVMContext &Ctx = *DAG.getContext(); 5473 5474 // If the type is legal but the operation isn't, this node might survive all 5475 // the way to operation legalization. If we end up there and we do not have 5476 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5477 // node. 5478 5479 // Coax the legalizer into expanding the node during type legalization instead 5480 // by bumping the size by one bit. This will force it to Promote, enabling the 5481 // early expansion and avoiding the need to expand later. 5482 5483 // We don't have to do this if Scale is 0; that can always be expanded, unless 5484 // it's a saturating signed operation. Those can experience true integer 5485 // division overflow, a case which we must avoid. 5486 5487 // FIXME: We wouldn't have to do this (or any of the early 5488 // expansion/promotion) if it was possible to expand a libcall of an 5489 // illegal type during operation legalization. But it's not, so things 5490 // get a bit hacky. 5491 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5492 if ((ScaleInt > 0 || (Saturating && Signed)) && 5493 (TLI.isTypeLegal(VT) || 5494 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5495 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5496 Opcode, VT, ScaleInt); 5497 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5498 EVT PromVT; 5499 if (VT.isScalarInteger()) 5500 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5501 else if (VT.isVector()) { 5502 PromVT = VT.getVectorElementType(); 5503 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5504 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5505 } else 5506 llvm_unreachable("Wrong VT for DIVFIX?"); 5507 if (Signed) { 5508 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5509 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5510 } else { 5511 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5512 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5513 } 5514 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5515 // For saturating operations, we need to shift up the LHS to get the 5516 // proper saturation width, and then shift down again afterwards. 5517 if (Saturating) 5518 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5519 DAG.getConstant(1, DL, ShiftTy)); 5520 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5521 if (Saturating) 5522 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5523 DAG.getConstant(1, DL, ShiftTy)); 5524 return DAG.getZExtOrTrunc(Res, DL, VT); 5525 } 5526 } 5527 5528 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5529 } 5530 5531 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5532 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5533 static void 5534 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5535 const SDValue &N) { 5536 switch (N.getOpcode()) { 5537 case ISD::CopyFromReg: { 5538 SDValue Op = N.getOperand(1); 5539 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5540 Op.getValueType().getSizeInBits()); 5541 return; 5542 } 5543 case ISD::BITCAST: 5544 case ISD::AssertZext: 5545 case ISD::AssertSext: 5546 case ISD::TRUNCATE: 5547 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5548 return; 5549 case ISD::BUILD_PAIR: 5550 case ISD::BUILD_VECTOR: 5551 case ISD::CONCAT_VECTORS: 5552 for (SDValue Op : N->op_values()) 5553 getUnderlyingArgRegs(Regs, Op); 5554 return; 5555 default: 5556 return; 5557 } 5558 } 5559 5560 /// If the DbgValueInst is a dbg_value of a function argument, create the 5561 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5562 /// instruction selection, they will be inserted to the entry BB. 5563 /// We don't currently support this for variadic dbg_values, as they shouldn't 5564 /// appear for function arguments or in the prologue. 5565 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5566 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5567 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5568 const Argument *Arg = dyn_cast<Argument>(V); 5569 if (!Arg) 5570 return false; 5571 5572 MachineFunction &MF = DAG.getMachineFunction(); 5573 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5574 5575 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5576 // we've been asked to pursue. 5577 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5578 bool Indirect) { 5579 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5580 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5581 // pointing at the VReg, which will be patched up later. 5582 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5583 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5584 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5585 /* isKill */ false, /* isDead */ false, 5586 /* isUndef */ false, /* isEarlyClobber */ false, 5587 /* SubReg */ 0, /* isDebug */ true)}); 5588 5589 auto *NewDIExpr = FragExpr; 5590 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5591 // the DIExpression. 5592 if (Indirect) 5593 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5594 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5595 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5596 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5597 } else { 5598 // Create a completely standard DBG_VALUE. 5599 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5600 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5601 } 5602 }; 5603 5604 if (Kind == FuncArgumentDbgValueKind::Value) { 5605 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5606 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5607 // the entry block. 5608 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5609 if (!IsInEntryBlock) 5610 return false; 5611 5612 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5613 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5614 // variable that also is a param. 5615 // 5616 // Although, if we are at the top of the entry block already, we can still 5617 // emit using ArgDbgValue. This might catch some situations when the 5618 // dbg.value refers to an argument that isn't used in the entry block, so 5619 // any CopyToReg node would be optimized out and the only way to express 5620 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5621 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5622 // we should only emit as ArgDbgValue if the Variable is an argument to the 5623 // current function, and the dbg.value intrinsic is found in the entry 5624 // block. 5625 bool VariableIsFunctionInputArg = Variable->isParameter() && 5626 !DL->getInlinedAt(); 5627 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5628 if (!IsInPrologue && !VariableIsFunctionInputArg) 5629 return false; 5630 5631 // Here we assume that a function argument on IR level only can be used to 5632 // describe one input parameter on source level. If we for example have 5633 // source code like this 5634 // 5635 // struct A { long x, y; }; 5636 // void foo(struct A a, long b) { 5637 // ... 5638 // b = a.x; 5639 // ... 5640 // } 5641 // 5642 // and IR like this 5643 // 5644 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5645 // entry: 5646 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5647 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5648 // call void @llvm.dbg.value(metadata i32 %b, "b", 5649 // ... 5650 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5651 // ... 5652 // 5653 // then the last dbg.value is describing a parameter "b" using a value that 5654 // is an argument. But since we already has used %a1 to describe a parameter 5655 // we should not handle that last dbg.value here (that would result in an 5656 // incorrect hoisting of the DBG_VALUE to the function entry). 5657 // Notice that we allow one dbg.value per IR level argument, to accommodate 5658 // for the situation with fragments above. 5659 if (VariableIsFunctionInputArg) { 5660 unsigned ArgNo = Arg->getArgNo(); 5661 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5662 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5663 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5664 return false; 5665 FuncInfo.DescribedArgs.set(ArgNo); 5666 } 5667 } 5668 5669 bool IsIndirect = false; 5670 std::optional<MachineOperand> Op; 5671 // Some arguments' frame index is recorded during argument lowering. 5672 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5673 if (FI != std::numeric_limits<int>::max()) 5674 Op = MachineOperand::CreateFI(FI); 5675 5676 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5677 if (!Op && N.getNode()) { 5678 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5679 Register Reg; 5680 if (ArgRegsAndSizes.size() == 1) 5681 Reg = ArgRegsAndSizes.front().first; 5682 5683 if (Reg && Reg.isVirtual()) { 5684 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5685 Register PR = RegInfo.getLiveInPhysReg(Reg); 5686 if (PR) 5687 Reg = PR; 5688 } 5689 if (Reg) { 5690 Op = MachineOperand::CreateReg(Reg, false); 5691 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5692 } 5693 } 5694 5695 if (!Op && N.getNode()) { 5696 // Check if frame index is available. 5697 SDValue LCandidate = peekThroughBitcasts(N); 5698 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5699 if (FrameIndexSDNode *FINode = 5700 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5701 Op = MachineOperand::CreateFI(FINode->getIndex()); 5702 } 5703 5704 if (!Op) { 5705 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5706 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5707 SplitRegs) { 5708 unsigned Offset = 0; 5709 for (const auto &RegAndSize : SplitRegs) { 5710 // If the expression is already a fragment, the current register 5711 // offset+size might extend beyond the fragment. In this case, only 5712 // the register bits that are inside the fragment are relevant. 5713 int RegFragmentSizeInBits = RegAndSize.second; 5714 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5715 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5716 // The register is entirely outside the expression fragment, 5717 // so is irrelevant for debug info. 5718 if (Offset >= ExprFragmentSizeInBits) 5719 break; 5720 // The register is partially outside the expression fragment, only 5721 // the low bits within the fragment are relevant for debug info. 5722 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5723 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5724 } 5725 } 5726 5727 auto FragmentExpr = DIExpression::createFragmentExpression( 5728 Expr, Offset, RegFragmentSizeInBits); 5729 Offset += RegAndSize.second; 5730 // If a valid fragment expression cannot be created, the variable's 5731 // correct value cannot be determined and so it is set as Undef. 5732 if (!FragmentExpr) { 5733 SDDbgValue *SDV = DAG.getConstantDbgValue( 5734 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5735 DAG.AddDbgValue(SDV, false); 5736 continue; 5737 } 5738 MachineInstr *NewMI = 5739 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5740 Kind != FuncArgumentDbgValueKind::Value); 5741 FuncInfo.ArgDbgValues.push_back(NewMI); 5742 } 5743 }; 5744 5745 // Check if ValueMap has reg number. 5746 DenseMap<const Value *, Register>::const_iterator 5747 VMI = FuncInfo.ValueMap.find(V); 5748 if (VMI != FuncInfo.ValueMap.end()) { 5749 const auto &TLI = DAG.getTargetLoweringInfo(); 5750 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5751 V->getType(), std::nullopt); 5752 if (RFV.occupiesMultipleRegs()) { 5753 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5754 return true; 5755 } 5756 5757 Op = MachineOperand::CreateReg(VMI->second, false); 5758 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5759 } else if (ArgRegsAndSizes.size() > 1) { 5760 // This was split due to the calling convention, and no virtual register 5761 // mapping exists for the value. 5762 splitMultiRegDbgValue(ArgRegsAndSizes); 5763 return true; 5764 } 5765 } 5766 5767 if (!Op) 5768 return false; 5769 5770 assert(Variable->isValidLocationForIntrinsic(DL) && 5771 "Expected inlined-at fields to agree"); 5772 MachineInstr *NewMI = nullptr; 5773 5774 if (Op->isReg()) 5775 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5776 else 5777 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5778 Variable, Expr); 5779 5780 // Otherwise, use ArgDbgValues. 5781 FuncInfo.ArgDbgValues.push_back(NewMI); 5782 return true; 5783 } 5784 5785 /// Return the appropriate SDDbgValue based on N. 5786 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5787 DILocalVariable *Variable, 5788 DIExpression *Expr, 5789 const DebugLoc &dl, 5790 unsigned DbgSDNodeOrder) { 5791 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5792 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5793 // stack slot locations. 5794 // 5795 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5796 // debug values here after optimization: 5797 // 5798 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5799 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5800 // 5801 // Both describe the direct values of their associated variables. 5802 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5803 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5804 } 5805 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5806 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5807 } 5808 5809 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5810 switch (Intrinsic) { 5811 case Intrinsic::smul_fix: 5812 return ISD::SMULFIX; 5813 case Intrinsic::umul_fix: 5814 return ISD::UMULFIX; 5815 case Intrinsic::smul_fix_sat: 5816 return ISD::SMULFIXSAT; 5817 case Intrinsic::umul_fix_sat: 5818 return ISD::UMULFIXSAT; 5819 case Intrinsic::sdiv_fix: 5820 return ISD::SDIVFIX; 5821 case Intrinsic::udiv_fix: 5822 return ISD::UDIVFIX; 5823 case Intrinsic::sdiv_fix_sat: 5824 return ISD::SDIVFIXSAT; 5825 case Intrinsic::udiv_fix_sat: 5826 return ISD::UDIVFIXSAT; 5827 default: 5828 llvm_unreachable("Unhandled fixed point intrinsic"); 5829 } 5830 } 5831 5832 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5833 const char *FunctionName) { 5834 assert(FunctionName && "FunctionName must not be nullptr"); 5835 SDValue Callee = DAG.getExternalSymbol( 5836 FunctionName, 5837 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5838 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5839 } 5840 5841 /// Given a @llvm.call.preallocated.setup, return the corresponding 5842 /// preallocated call. 5843 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5844 assert(cast<CallBase>(PreallocatedSetup) 5845 ->getCalledFunction() 5846 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5847 "expected call_preallocated_setup Value"); 5848 for (const auto *U : PreallocatedSetup->users()) { 5849 auto *UseCall = cast<CallBase>(U); 5850 const Function *Fn = UseCall->getCalledFunction(); 5851 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5852 return UseCall; 5853 } 5854 } 5855 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5856 } 5857 5858 /// Lower the call to the specified intrinsic function. 5859 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5860 unsigned Intrinsic) { 5861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5862 SDLoc sdl = getCurSDLoc(); 5863 DebugLoc dl = getCurDebugLoc(); 5864 SDValue Res; 5865 5866 SDNodeFlags Flags; 5867 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5868 Flags.copyFMF(*FPOp); 5869 5870 switch (Intrinsic) { 5871 default: 5872 // By default, turn this into a target intrinsic node. 5873 visitTargetIntrinsic(I, Intrinsic); 5874 return; 5875 case Intrinsic::vscale: { 5876 match(&I, m_VScale(DAG.getDataLayout())); 5877 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5878 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5879 return; 5880 } 5881 case Intrinsic::vastart: visitVAStart(I); return; 5882 case Intrinsic::vaend: visitVAEnd(I); return; 5883 case Intrinsic::vacopy: visitVACopy(I); return; 5884 case Intrinsic::returnaddress: 5885 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5886 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5887 getValue(I.getArgOperand(0)))); 5888 return; 5889 case Intrinsic::addressofreturnaddress: 5890 setValue(&I, 5891 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5892 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5893 return; 5894 case Intrinsic::sponentry: 5895 setValue(&I, 5896 DAG.getNode(ISD::SPONENTRY, sdl, 5897 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5898 return; 5899 case Intrinsic::frameaddress: 5900 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5901 TLI.getFrameIndexTy(DAG.getDataLayout()), 5902 getValue(I.getArgOperand(0)))); 5903 return; 5904 case Intrinsic::read_volatile_register: 5905 case Intrinsic::read_register: { 5906 Value *Reg = I.getArgOperand(0); 5907 SDValue Chain = getRoot(); 5908 SDValue RegName = 5909 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5910 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5911 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5912 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5913 setValue(&I, Res); 5914 DAG.setRoot(Res.getValue(1)); 5915 return; 5916 } 5917 case Intrinsic::write_register: { 5918 Value *Reg = I.getArgOperand(0); 5919 Value *RegValue = I.getArgOperand(1); 5920 SDValue Chain = getRoot(); 5921 SDValue RegName = 5922 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5923 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5924 RegName, getValue(RegValue))); 5925 return; 5926 } 5927 case Intrinsic::memcpy: { 5928 const auto &MCI = cast<MemCpyInst>(I); 5929 SDValue Op1 = getValue(I.getArgOperand(0)); 5930 SDValue Op2 = getValue(I.getArgOperand(1)); 5931 SDValue Op3 = getValue(I.getArgOperand(2)); 5932 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5933 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5934 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5935 Align Alignment = std::min(DstAlign, SrcAlign); 5936 bool isVol = MCI.isVolatile(); 5937 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5938 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5939 // node. 5940 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5941 SDValue MC = DAG.getMemcpy( 5942 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5943 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5944 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5945 updateDAGForMaybeTailCall(MC); 5946 setValue(&I, MC); 5947 return; 5948 } 5949 case Intrinsic::memcpy_inline: { 5950 const auto &MCI = cast<MemCpyInlineInst>(I); 5951 SDValue Dst = getValue(I.getArgOperand(0)); 5952 SDValue Src = getValue(I.getArgOperand(1)); 5953 SDValue Size = getValue(I.getArgOperand(2)); 5954 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5955 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5956 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5957 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5958 Align Alignment = std::min(DstAlign, SrcAlign); 5959 bool isVol = MCI.isVolatile(); 5960 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5961 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5962 // node. 5963 SDValue MC = DAG.getMemcpy( 5964 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5965 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5966 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5967 updateDAGForMaybeTailCall(MC); 5968 setValue(&I, MC); 5969 return; 5970 } 5971 case Intrinsic::memset: { 5972 const auto &MSI = cast<MemSetInst>(I); 5973 SDValue Op1 = getValue(I.getArgOperand(0)); 5974 SDValue Op2 = getValue(I.getArgOperand(1)); 5975 SDValue Op3 = getValue(I.getArgOperand(2)); 5976 // @llvm.memset defines 0 and 1 to both mean no alignment. 5977 Align Alignment = MSI.getDestAlign().valueOrOne(); 5978 bool isVol = MSI.isVolatile(); 5979 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5980 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5981 SDValue MS = DAG.getMemset( 5982 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5983 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5984 updateDAGForMaybeTailCall(MS); 5985 setValue(&I, MS); 5986 return; 5987 } 5988 case Intrinsic::memset_inline: { 5989 const auto &MSII = cast<MemSetInlineInst>(I); 5990 SDValue Dst = getValue(I.getArgOperand(0)); 5991 SDValue Value = getValue(I.getArgOperand(1)); 5992 SDValue Size = getValue(I.getArgOperand(2)); 5993 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5994 // @llvm.memset defines 0 and 1 to both mean no alignment. 5995 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5996 bool isVol = MSII.isVolatile(); 5997 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5998 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5999 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6000 /* AlwaysInline */ true, isTC, 6001 MachinePointerInfo(I.getArgOperand(0)), 6002 I.getAAMetadata()); 6003 updateDAGForMaybeTailCall(MC); 6004 setValue(&I, MC); 6005 return; 6006 } 6007 case Intrinsic::memmove: { 6008 const auto &MMI = cast<MemMoveInst>(I); 6009 SDValue Op1 = getValue(I.getArgOperand(0)); 6010 SDValue Op2 = getValue(I.getArgOperand(1)); 6011 SDValue Op3 = getValue(I.getArgOperand(2)); 6012 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6013 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6014 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6015 Align Alignment = std::min(DstAlign, SrcAlign); 6016 bool isVol = MMI.isVolatile(); 6017 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6018 // FIXME: Support passing different dest/src alignments to the memmove DAG 6019 // node. 6020 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6021 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6022 isTC, MachinePointerInfo(I.getArgOperand(0)), 6023 MachinePointerInfo(I.getArgOperand(1)), 6024 I.getAAMetadata(), AA); 6025 updateDAGForMaybeTailCall(MM); 6026 setValue(&I, MM); 6027 return; 6028 } 6029 case Intrinsic::memcpy_element_unordered_atomic: { 6030 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6031 SDValue Dst = getValue(MI.getRawDest()); 6032 SDValue Src = getValue(MI.getRawSource()); 6033 SDValue Length = getValue(MI.getLength()); 6034 6035 Type *LengthTy = MI.getLength()->getType(); 6036 unsigned ElemSz = MI.getElementSizeInBytes(); 6037 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6038 SDValue MC = 6039 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6040 isTC, MachinePointerInfo(MI.getRawDest()), 6041 MachinePointerInfo(MI.getRawSource())); 6042 updateDAGForMaybeTailCall(MC); 6043 setValue(&I, MC); 6044 return; 6045 } 6046 case Intrinsic::memmove_element_unordered_atomic: { 6047 auto &MI = cast<AtomicMemMoveInst>(I); 6048 SDValue Dst = getValue(MI.getRawDest()); 6049 SDValue Src = getValue(MI.getRawSource()); 6050 SDValue Length = getValue(MI.getLength()); 6051 6052 Type *LengthTy = MI.getLength()->getType(); 6053 unsigned ElemSz = MI.getElementSizeInBytes(); 6054 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6055 SDValue MC = 6056 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6057 isTC, MachinePointerInfo(MI.getRawDest()), 6058 MachinePointerInfo(MI.getRawSource())); 6059 updateDAGForMaybeTailCall(MC); 6060 setValue(&I, MC); 6061 return; 6062 } 6063 case Intrinsic::memset_element_unordered_atomic: { 6064 auto &MI = cast<AtomicMemSetInst>(I); 6065 SDValue Dst = getValue(MI.getRawDest()); 6066 SDValue Val = getValue(MI.getValue()); 6067 SDValue Length = getValue(MI.getLength()); 6068 6069 Type *LengthTy = MI.getLength()->getType(); 6070 unsigned ElemSz = MI.getElementSizeInBytes(); 6071 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6072 SDValue MC = 6073 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6074 isTC, MachinePointerInfo(MI.getRawDest())); 6075 updateDAGForMaybeTailCall(MC); 6076 setValue(&I, MC); 6077 return; 6078 } 6079 case Intrinsic::call_preallocated_setup: { 6080 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6081 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6082 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6083 getRoot(), SrcValue); 6084 setValue(&I, Res); 6085 DAG.setRoot(Res); 6086 return; 6087 } 6088 case Intrinsic::call_preallocated_arg: { 6089 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6090 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6091 SDValue Ops[3]; 6092 Ops[0] = getRoot(); 6093 Ops[1] = SrcValue; 6094 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6095 MVT::i32); // arg index 6096 SDValue Res = DAG.getNode( 6097 ISD::PREALLOCATED_ARG, sdl, 6098 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6099 setValue(&I, Res); 6100 DAG.setRoot(Res.getValue(1)); 6101 return; 6102 } 6103 case Intrinsic::dbg_addr: 6104 case Intrinsic::dbg_declare: { 6105 // Debug intrinsics are handled seperately in assignment tracking mode. 6106 if (isAssignmentTrackingEnabled(*I.getFunction()->getParent())) 6107 return; 6108 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6109 // they are non-variadic. 6110 const auto &DI = cast<DbgVariableIntrinsic>(I); 6111 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6112 DILocalVariable *Variable = DI.getVariable(); 6113 DIExpression *Expression = DI.getExpression(); 6114 dropDanglingDebugInfo(Variable, Expression); 6115 assert(Variable && "Missing variable"); 6116 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6117 << "\n"); 6118 // Check if address has undef value. 6119 const Value *Address = DI.getVariableLocationOp(0); 6120 if (!Address || isa<UndefValue>(Address) || 6121 (Address->use_empty() && !isa<Argument>(Address))) { 6122 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6123 << " (bad/undef/unused-arg address)\n"); 6124 return; 6125 } 6126 6127 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6128 6129 // Check if this variable can be described by a frame index, typically 6130 // either as a static alloca or a byval parameter. 6131 int FI = std::numeric_limits<int>::max(); 6132 if (const auto *AI = 6133 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6134 if (AI->isStaticAlloca()) { 6135 auto I = FuncInfo.StaticAllocaMap.find(AI); 6136 if (I != FuncInfo.StaticAllocaMap.end()) 6137 FI = I->second; 6138 } 6139 } else if (const auto *Arg = dyn_cast<Argument>( 6140 Address->stripInBoundsConstantOffsets())) { 6141 FI = FuncInfo.getArgumentFrameIndex(Arg); 6142 } 6143 6144 // llvm.dbg.addr is control dependent and always generates indirect 6145 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6146 // the MachineFunction variable table. 6147 if (FI != std::numeric_limits<int>::max()) { 6148 if (Intrinsic == Intrinsic::dbg_addr) { 6149 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6150 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6151 dl, SDNodeOrder); 6152 DAG.AddDbgValue(SDV, isParameter); 6153 } else { 6154 LLVM_DEBUG(dbgs() << "Skipping " << DI 6155 << " (variable info stashed in MF side table)\n"); 6156 } 6157 return; 6158 } 6159 6160 SDValue &N = NodeMap[Address]; 6161 if (!N.getNode() && isa<Argument>(Address)) 6162 // Check unused arguments map. 6163 N = UnusedArgNodeMap[Address]; 6164 SDDbgValue *SDV; 6165 if (N.getNode()) { 6166 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6167 Address = BCI->getOperand(0); 6168 // Parameters are handled specially. 6169 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6170 if (isParameter && FINode) { 6171 // Byval parameter. We have a frame index at this point. 6172 SDV = 6173 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6174 /*IsIndirect*/ true, dl, SDNodeOrder); 6175 } else if (isa<Argument>(Address)) { 6176 // Address is an argument, so try to emit its dbg value using 6177 // virtual register info from the FuncInfo.ValueMap. 6178 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6179 FuncArgumentDbgValueKind::Declare, N); 6180 return; 6181 } else { 6182 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6183 true, dl, SDNodeOrder); 6184 } 6185 DAG.AddDbgValue(SDV, isParameter); 6186 } else { 6187 // If Address is an argument then try to emit its dbg value using 6188 // virtual register info from the FuncInfo.ValueMap. 6189 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6190 FuncArgumentDbgValueKind::Declare, N)) { 6191 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6192 << " (could not emit func-arg dbg_value)\n"); 6193 } 6194 } 6195 return; 6196 } 6197 case Intrinsic::dbg_label: { 6198 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6199 DILabel *Label = DI.getLabel(); 6200 assert(Label && "Missing label"); 6201 6202 SDDbgLabel *SDV; 6203 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6204 DAG.AddDbgLabel(SDV); 6205 return; 6206 } 6207 case Intrinsic::dbg_assign: { 6208 // Debug intrinsics are handled seperately in assignment tracking mode. 6209 assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) && 6210 "expected assignment tracking to be enabled"); 6211 return; 6212 } 6213 case Intrinsic::dbg_value: { 6214 // Debug intrinsics are handled seperately in assignment tracking mode. 6215 if (isAssignmentTrackingEnabled(*I.getFunction()->getParent())) 6216 return; 6217 const DbgValueInst &DI = cast<DbgValueInst>(I); 6218 assert(DI.getVariable() && "Missing variable"); 6219 6220 DILocalVariable *Variable = DI.getVariable(); 6221 DIExpression *Expression = DI.getExpression(); 6222 dropDanglingDebugInfo(Variable, Expression); 6223 SmallVector<Value *, 4> Values(DI.getValues()); 6224 if (Values.empty()) 6225 return; 6226 6227 if (llvm::is_contained(Values, nullptr)) 6228 return; 6229 6230 bool IsVariadic = DI.hasArgList(); 6231 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6232 SDNodeOrder, IsVariadic)) 6233 addDanglingDebugInfo(&DI, SDNodeOrder); 6234 return; 6235 } 6236 6237 case Intrinsic::eh_typeid_for: { 6238 // Find the type id for the given typeinfo. 6239 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6240 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6241 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6242 setValue(&I, Res); 6243 return; 6244 } 6245 6246 case Intrinsic::eh_return_i32: 6247 case Intrinsic::eh_return_i64: 6248 DAG.getMachineFunction().setCallsEHReturn(true); 6249 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6250 MVT::Other, 6251 getControlRoot(), 6252 getValue(I.getArgOperand(0)), 6253 getValue(I.getArgOperand(1)))); 6254 return; 6255 case Intrinsic::eh_unwind_init: 6256 DAG.getMachineFunction().setCallsUnwindInit(true); 6257 return; 6258 case Intrinsic::eh_dwarf_cfa: 6259 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6260 TLI.getPointerTy(DAG.getDataLayout()), 6261 getValue(I.getArgOperand(0)))); 6262 return; 6263 case Intrinsic::eh_sjlj_callsite: { 6264 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6265 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6266 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6267 6268 MMI.setCurrentCallSite(CI->getZExtValue()); 6269 return; 6270 } 6271 case Intrinsic::eh_sjlj_functioncontext: { 6272 // Get and store the index of the function context. 6273 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6274 AllocaInst *FnCtx = 6275 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6276 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6277 MFI.setFunctionContextIndex(FI); 6278 return; 6279 } 6280 case Intrinsic::eh_sjlj_setjmp: { 6281 SDValue Ops[2]; 6282 Ops[0] = getRoot(); 6283 Ops[1] = getValue(I.getArgOperand(0)); 6284 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6285 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6286 setValue(&I, Op.getValue(0)); 6287 DAG.setRoot(Op.getValue(1)); 6288 return; 6289 } 6290 case Intrinsic::eh_sjlj_longjmp: 6291 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6292 getRoot(), getValue(I.getArgOperand(0)))); 6293 return; 6294 case Intrinsic::eh_sjlj_setup_dispatch: 6295 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6296 getRoot())); 6297 return; 6298 case Intrinsic::masked_gather: 6299 visitMaskedGather(I); 6300 return; 6301 case Intrinsic::masked_load: 6302 visitMaskedLoad(I); 6303 return; 6304 case Intrinsic::masked_scatter: 6305 visitMaskedScatter(I); 6306 return; 6307 case Intrinsic::masked_store: 6308 visitMaskedStore(I); 6309 return; 6310 case Intrinsic::masked_expandload: 6311 visitMaskedLoad(I, true /* IsExpanding */); 6312 return; 6313 case Intrinsic::masked_compressstore: 6314 visitMaskedStore(I, true /* IsCompressing */); 6315 return; 6316 case Intrinsic::powi: 6317 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6318 getValue(I.getArgOperand(1)), DAG)); 6319 return; 6320 case Intrinsic::log: 6321 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6322 return; 6323 case Intrinsic::log2: 6324 setValue(&I, 6325 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6326 return; 6327 case Intrinsic::log10: 6328 setValue(&I, 6329 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6330 return; 6331 case Intrinsic::exp: 6332 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6333 return; 6334 case Intrinsic::exp2: 6335 setValue(&I, 6336 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6337 return; 6338 case Intrinsic::pow: 6339 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6340 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6341 return; 6342 case Intrinsic::sqrt: 6343 case Intrinsic::fabs: 6344 case Intrinsic::sin: 6345 case Intrinsic::cos: 6346 case Intrinsic::floor: 6347 case Intrinsic::ceil: 6348 case Intrinsic::trunc: 6349 case Intrinsic::rint: 6350 case Intrinsic::nearbyint: 6351 case Intrinsic::round: 6352 case Intrinsic::roundeven: 6353 case Intrinsic::canonicalize: { 6354 unsigned Opcode; 6355 switch (Intrinsic) { 6356 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6357 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6358 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6359 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6360 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6361 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6362 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6363 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6364 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6365 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6366 case Intrinsic::round: Opcode = ISD::FROUND; break; 6367 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6368 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6369 } 6370 6371 setValue(&I, DAG.getNode(Opcode, sdl, 6372 getValue(I.getArgOperand(0)).getValueType(), 6373 getValue(I.getArgOperand(0)), Flags)); 6374 return; 6375 } 6376 case Intrinsic::lround: 6377 case Intrinsic::llround: 6378 case Intrinsic::lrint: 6379 case Intrinsic::llrint: { 6380 unsigned Opcode; 6381 switch (Intrinsic) { 6382 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6383 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6384 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6385 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6386 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6387 } 6388 6389 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6390 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6391 getValue(I.getArgOperand(0)))); 6392 return; 6393 } 6394 case Intrinsic::minnum: 6395 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6396 getValue(I.getArgOperand(0)).getValueType(), 6397 getValue(I.getArgOperand(0)), 6398 getValue(I.getArgOperand(1)), Flags)); 6399 return; 6400 case Intrinsic::maxnum: 6401 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6402 getValue(I.getArgOperand(0)).getValueType(), 6403 getValue(I.getArgOperand(0)), 6404 getValue(I.getArgOperand(1)), Flags)); 6405 return; 6406 case Intrinsic::minimum: 6407 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6408 getValue(I.getArgOperand(0)).getValueType(), 6409 getValue(I.getArgOperand(0)), 6410 getValue(I.getArgOperand(1)), Flags)); 6411 return; 6412 case Intrinsic::maximum: 6413 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6414 getValue(I.getArgOperand(0)).getValueType(), 6415 getValue(I.getArgOperand(0)), 6416 getValue(I.getArgOperand(1)), Flags)); 6417 return; 6418 case Intrinsic::copysign: 6419 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6420 getValue(I.getArgOperand(0)).getValueType(), 6421 getValue(I.getArgOperand(0)), 6422 getValue(I.getArgOperand(1)), Flags)); 6423 return; 6424 case Intrinsic::arithmetic_fence: { 6425 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6426 getValue(I.getArgOperand(0)).getValueType(), 6427 getValue(I.getArgOperand(0)), Flags)); 6428 return; 6429 } 6430 case Intrinsic::fma: 6431 setValue(&I, DAG.getNode( 6432 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6433 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6434 getValue(I.getArgOperand(2)), Flags)); 6435 return; 6436 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6437 case Intrinsic::INTRINSIC: 6438 #include "llvm/IR/ConstrainedOps.def" 6439 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6440 return; 6441 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6442 #include "llvm/IR/VPIntrinsics.def" 6443 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6444 return; 6445 case Intrinsic::fptrunc_round: { 6446 // Get the last argument, the metadata and convert it to an integer in the 6447 // call 6448 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6449 std::optional<RoundingMode> RoundMode = 6450 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6451 6452 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6453 6454 // Propagate fast-math-flags from IR to node(s). 6455 SDNodeFlags Flags; 6456 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6457 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6458 6459 SDValue Result; 6460 Result = DAG.getNode( 6461 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6462 DAG.getTargetConstant((int)*RoundMode, sdl, 6463 TLI.getPointerTy(DAG.getDataLayout()))); 6464 setValue(&I, Result); 6465 6466 return; 6467 } 6468 case Intrinsic::fmuladd: { 6469 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6470 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6471 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6472 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6473 getValue(I.getArgOperand(0)).getValueType(), 6474 getValue(I.getArgOperand(0)), 6475 getValue(I.getArgOperand(1)), 6476 getValue(I.getArgOperand(2)), Flags)); 6477 } else { 6478 // TODO: Intrinsic calls should have fast-math-flags. 6479 SDValue Mul = DAG.getNode( 6480 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6481 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6482 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6483 getValue(I.getArgOperand(0)).getValueType(), 6484 Mul, getValue(I.getArgOperand(2)), Flags); 6485 setValue(&I, Add); 6486 } 6487 return; 6488 } 6489 case Intrinsic::convert_to_fp16: 6490 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6491 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6492 getValue(I.getArgOperand(0)), 6493 DAG.getTargetConstant(0, sdl, 6494 MVT::i32)))); 6495 return; 6496 case Intrinsic::convert_from_fp16: 6497 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6498 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6499 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6500 getValue(I.getArgOperand(0))))); 6501 return; 6502 case Intrinsic::fptosi_sat: { 6503 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6504 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6505 getValue(I.getArgOperand(0)), 6506 DAG.getValueType(VT.getScalarType()))); 6507 return; 6508 } 6509 case Intrinsic::fptoui_sat: { 6510 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6511 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6512 getValue(I.getArgOperand(0)), 6513 DAG.getValueType(VT.getScalarType()))); 6514 return; 6515 } 6516 case Intrinsic::set_rounding: 6517 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6518 {getRoot(), getValue(I.getArgOperand(0))}); 6519 setValue(&I, Res); 6520 DAG.setRoot(Res.getValue(0)); 6521 return; 6522 case Intrinsic::is_fpclass: { 6523 const DataLayout DLayout = DAG.getDataLayout(); 6524 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6525 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6526 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6527 MachineFunction &MF = DAG.getMachineFunction(); 6528 const Function &F = MF.getFunction(); 6529 SDValue Op = getValue(I.getArgOperand(0)); 6530 SDNodeFlags Flags; 6531 Flags.setNoFPExcept( 6532 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6533 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6534 // expansion can use illegal types. Making expansion early allows 6535 // legalizing these types prior to selection. 6536 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6537 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6538 setValue(&I, Result); 6539 return; 6540 } 6541 6542 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6543 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6544 setValue(&I, V); 6545 return; 6546 } 6547 case Intrinsic::pcmarker: { 6548 SDValue Tmp = getValue(I.getArgOperand(0)); 6549 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6550 return; 6551 } 6552 case Intrinsic::readcyclecounter: { 6553 SDValue Op = getRoot(); 6554 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6555 DAG.getVTList(MVT::i64, MVT::Other), Op); 6556 setValue(&I, Res); 6557 DAG.setRoot(Res.getValue(1)); 6558 return; 6559 } 6560 case Intrinsic::bitreverse: 6561 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6562 getValue(I.getArgOperand(0)).getValueType(), 6563 getValue(I.getArgOperand(0)))); 6564 return; 6565 case Intrinsic::bswap: 6566 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6567 getValue(I.getArgOperand(0)).getValueType(), 6568 getValue(I.getArgOperand(0)))); 6569 return; 6570 case Intrinsic::cttz: { 6571 SDValue Arg = getValue(I.getArgOperand(0)); 6572 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6573 EVT Ty = Arg.getValueType(); 6574 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6575 sdl, Ty, Arg)); 6576 return; 6577 } 6578 case Intrinsic::ctlz: { 6579 SDValue Arg = getValue(I.getArgOperand(0)); 6580 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6581 EVT Ty = Arg.getValueType(); 6582 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6583 sdl, Ty, Arg)); 6584 return; 6585 } 6586 case Intrinsic::ctpop: { 6587 SDValue Arg = getValue(I.getArgOperand(0)); 6588 EVT Ty = Arg.getValueType(); 6589 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6590 return; 6591 } 6592 case Intrinsic::fshl: 6593 case Intrinsic::fshr: { 6594 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6595 SDValue X = getValue(I.getArgOperand(0)); 6596 SDValue Y = getValue(I.getArgOperand(1)); 6597 SDValue Z = getValue(I.getArgOperand(2)); 6598 EVT VT = X.getValueType(); 6599 6600 if (X == Y) { 6601 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6602 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6603 } else { 6604 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6605 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6606 } 6607 return; 6608 } 6609 case Intrinsic::sadd_sat: { 6610 SDValue Op1 = getValue(I.getArgOperand(0)); 6611 SDValue Op2 = getValue(I.getArgOperand(1)); 6612 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6613 return; 6614 } 6615 case Intrinsic::uadd_sat: { 6616 SDValue Op1 = getValue(I.getArgOperand(0)); 6617 SDValue Op2 = getValue(I.getArgOperand(1)); 6618 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6619 return; 6620 } 6621 case Intrinsic::ssub_sat: { 6622 SDValue Op1 = getValue(I.getArgOperand(0)); 6623 SDValue Op2 = getValue(I.getArgOperand(1)); 6624 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6625 return; 6626 } 6627 case Intrinsic::usub_sat: { 6628 SDValue Op1 = getValue(I.getArgOperand(0)); 6629 SDValue Op2 = getValue(I.getArgOperand(1)); 6630 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6631 return; 6632 } 6633 case Intrinsic::sshl_sat: { 6634 SDValue Op1 = getValue(I.getArgOperand(0)); 6635 SDValue Op2 = getValue(I.getArgOperand(1)); 6636 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6637 return; 6638 } 6639 case Intrinsic::ushl_sat: { 6640 SDValue Op1 = getValue(I.getArgOperand(0)); 6641 SDValue Op2 = getValue(I.getArgOperand(1)); 6642 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6643 return; 6644 } 6645 case Intrinsic::smul_fix: 6646 case Intrinsic::umul_fix: 6647 case Intrinsic::smul_fix_sat: 6648 case Intrinsic::umul_fix_sat: { 6649 SDValue Op1 = getValue(I.getArgOperand(0)); 6650 SDValue Op2 = getValue(I.getArgOperand(1)); 6651 SDValue Op3 = getValue(I.getArgOperand(2)); 6652 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6653 Op1.getValueType(), Op1, Op2, Op3)); 6654 return; 6655 } 6656 case Intrinsic::sdiv_fix: 6657 case Intrinsic::udiv_fix: 6658 case Intrinsic::sdiv_fix_sat: 6659 case Intrinsic::udiv_fix_sat: { 6660 SDValue Op1 = getValue(I.getArgOperand(0)); 6661 SDValue Op2 = getValue(I.getArgOperand(1)); 6662 SDValue Op3 = getValue(I.getArgOperand(2)); 6663 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6664 Op1, Op2, Op3, DAG, TLI)); 6665 return; 6666 } 6667 case Intrinsic::smax: { 6668 SDValue Op1 = getValue(I.getArgOperand(0)); 6669 SDValue Op2 = getValue(I.getArgOperand(1)); 6670 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6671 return; 6672 } 6673 case Intrinsic::smin: { 6674 SDValue Op1 = getValue(I.getArgOperand(0)); 6675 SDValue Op2 = getValue(I.getArgOperand(1)); 6676 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6677 return; 6678 } 6679 case Intrinsic::umax: { 6680 SDValue Op1 = getValue(I.getArgOperand(0)); 6681 SDValue Op2 = getValue(I.getArgOperand(1)); 6682 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6683 return; 6684 } 6685 case Intrinsic::umin: { 6686 SDValue Op1 = getValue(I.getArgOperand(0)); 6687 SDValue Op2 = getValue(I.getArgOperand(1)); 6688 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6689 return; 6690 } 6691 case Intrinsic::abs: { 6692 // TODO: Preserve "int min is poison" arg in SDAG? 6693 SDValue Op1 = getValue(I.getArgOperand(0)); 6694 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6695 return; 6696 } 6697 case Intrinsic::stacksave: { 6698 SDValue Op = getRoot(); 6699 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6700 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6701 setValue(&I, Res); 6702 DAG.setRoot(Res.getValue(1)); 6703 return; 6704 } 6705 case Intrinsic::stackrestore: 6706 Res = getValue(I.getArgOperand(0)); 6707 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6708 return; 6709 case Intrinsic::get_dynamic_area_offset: { 6710 SDValue Op = getRoot(); 6711 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6712 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6713 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6714 // target. 6715 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6716 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6717 " intrinsic!"); 6718 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6719 Op); 6720 DAG.setRoot(Op); 6721 setValue(&I, Res); 6722 return; 6723 } 6724 case Intrinsic::stackguard: { 6725 MachineFunction &MF = DAG.getMachineFunction(); 6726 const Module &M = *MF.getFunction().getParent(); 6727 SDValue Chain = getRoot(); 6728 if (TLI.useLoadStackGuardNode()) { 6729 Res = getLoadStackGuard(DAG, sdl, Chain); 6730 } else { 6731 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6732 const Value *Global = TLI.getSDagStackGuard(M); 6733 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6734 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6735 MachinePointerInfo(Global, 0), Align, 6736 MachineMemOperand::MOVolatile); 6737 } 6738 if (TLI.useStackGuardXorFP()) 6739 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6740 DAG.setRoot(Chain); 6741 setValue(&I, Res); 6742 return; 6743 } 6744 case Intrinsic::stackprotector: { 6745 // Emit code into the DAG to store the stack guard onto the stack. 6746 MachineFunction &MF = DAG.getMachineFunction(); 6747 MachineFrameInfo &MFI = MF.getFrameInfo(); 6748 SDValue Src, Chain = getRoot(); 6749 6750 if (TLI.useLoadStackGuardNode()) 6751 Src = getLoadStackGuard(DAG, sdl, Chain); 6752 else 6753 Src = getValue(I.getArgOperand(0)); // The guard's value. 6754 6755 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6756 6757 int FI = FuncInfo.StaticAllocaMap[Slot]; 6758 MFI.setStackProtectorIndex(FI); 6759 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6760 6761 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6762 6763 // Store the stack protector onto the stack. 6764 Res = DAG.getStore( 6765 Chain, sdl, Src, FIN, 6766 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6767 MaybeAlign(), MachineMemOperand::MOVolatile); 6768 setValue(&I, Res); 6769 DAG.setRoot(Res); 6770 return; 6771 } 6772 case Intrinsic::objectsize: 6773 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6774 6775 case Intrinsic::is_constant: 6776 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6777 6778 case Intrinsic::annotation: 6779 case Intrinsic::ptr_annotation: 6780 case Intrinsic::launder_invariant_group: 6781 case Intrinsic::strip_invariant_group: 6782 // Drop the intrinsic, but forward the value 6783 setValue(&I, getValue(I.getOperand(0))); 6784 return; 6785 6786 case Intrinsic::assume: 6787 case Intrinsic::experimental_noalias_scope_decl: 6788 case Intrinsic::var_annotation: 6789 case Intrinsic::sideeffect: 6790 // Discard annotate attributes, noalias scope declarations, assumptions, and 6791 // artificial side-effects. 6792 return; 6793 6794 case Intrinsic::codeview_annotation: { 6795 // Emit a label associated with this metadata. 6796 MachineFunction &MF = DAG.getMachineFunction(); 6797 MCSymbol *Label = 6798 MF.getMMI().getContext().createTempSymbol("annotation", true); 6799 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6800 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6801 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6802 DAG.setRoot(Res); 6803 return; 6804 } 6805 6806 case Intrinsic::init_trampoline: { 6807 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6808 6809 SDValue Ops[6]; 6810 Ops[0] = getRoot(); 6811 Ops[1] = getValue(I.getArgOperand(0)); 6812 Ops[2] = getValue(I.getArgOperand(1)); 6813 Ops[3] = getValue(I.getArgOperand(2)); 6814 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6815 Ops[5] = DAG.getSrcValue(F); 6816 6817 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6818 6819 DAG.setRoot(Res); 6820 return; 6821 } 6822 case Intrinsic::adjust_trampoline: 6823 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6824 TLI.getPointerTy(DAG.getDataLayout()), 6825 getValue(I.getArgOperand(0)))); 6826 return; 6827 case Intrinsic::gcroot: { 6828 assert(DAG.getMachineFunction().getFunction().hasGC() && 6829 "only valid in functions with gc specified, enforced by Verifier"); 6830 assert(GFI && "implied by previous"); 6831 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6832 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6833 6834 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6835 GFI->addStackRoot(FI->getIndex(), TypeMap); 6836 return; 6837 } 6838 case Intrinsic::gcread: 6839 case Intrinsic::gcwrite: 6840 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6841 case Intrinsic::get_rounding: 6842 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 6843 setValue(&I, Res); 6844 DAG.setRoot(Res.getValue(1)); 6845 return; 6846 6847 case Intrinsic::expect: 6848 // Just replace __builtin_expect(exp, c) with EXP. 6849 setValue(&I, getValue(I.getArgOperand(0))); 6850 return; 6851 6852 case Intrinsic::ubsantrap: 6853 case Intrinsic::debugtrap: 6854 case Intrinsic::trap: { 6855 StringRef TrapFuncName = 6856 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6857 if (TrapFuncName.empty()) { 6858 switch (Intrinsic) { 6859 case Intrinsic::trap: 6860 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6861 break; 6862 case Intrinsic::debugtrap: 6863 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6864 break; 6865 case Intrinsic::ubsantrap: 6866 DAG.setRoot(DAG.getNode( 6867 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6868 DAG.getTargetConstant( 6869 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6870 MVT::i32))); 6871 break; 6872 default: llvm_unreachable("unknown trap intrinsic"); 6873 } 6874 return; 6875 } 6876 TargetLowering::ArgListTy Args; 6877 if (Intrinsic == Intrinsic::ubsantrap) { 6878 Args.push_back(TargetLoweringBase::ArgListEntry()); 6879 Args[0].Val = I.getArgOperand(0); 6880 Args[0].Node = getValue(Args[0].Val); 6881 Args[0].Ty = Args[0].Val->getType(); 6882 } 6883 6884 TargetLowering::CallLoweringInfo CLI(DAG); 6885 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6886 CallingConv::C, I.getType(), 6887 DAG.getExternalSymbol(TrapFuncName.data(), 6888 TLI.getPointerTy(DAG.getDataLayout())), 6889 std::move(Args)); 6890 6891 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6892 DAG.setRoot(Result.second); 6893 return; 6894 } 6895 6896 case Intrinsic::uadd_with_overflow: 6897 case Intrinsic::sadd_with_overflow: 6898 case Intrinsic::usub_with_overflow: 6899 case Intrinsic::ssub_with_overflow: 6900 case Intrinsic::umul_with_overflow: 6901 case Intrinsic::smul_with_overflow: { 6902 ISD::NodeType Op; 6903 switch (Intrinsic) { 6904 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6905 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6906 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6907 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6908 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6909 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6910 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6911 } 6912 SDValue Op1 = getValue(I.getArgOperand(0)); 6913 SDValue Op2 = getValue(I.getArgOperand(1)); 6914 6915 EVT ResultVT = Op1.getValueType(); 6916 EVT OverflowVT = MVT::i1; 6917 if (ResultVT.isVector()) 6918 OverflowVT = EVT::getVectorVT( 6919 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6920 6921 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6922 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6923 return; 6924 } 6925 case Intrinsic::prefetch: { 6926 SDValue Ops[5]; 6927 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6928 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6929 Ops[0] = DAG.getRoot(); 6930 Ops[1] = getValue(I.getArgOperand(0)); 6931 Ops[2] = getValue(I.getArgOperand(1)); 6932 Ops[3] = getValue(I.getArgOperand(2)); 6933 Ops[4] = getValue(I.getArgOperand(3)); 6934 SDValue Result = DAG.getMemIntrinsicNode( 6935 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6936 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6937 /* align */ std::nullopt, Flags); 6938 6939 // Chain the prefetch in parallell with any pending loads, to stay out of 6940 // the way of later optimizations. 6941 PendingLoads.push_back(Result); 6942 Result = getRoot(); 6943 DAG.setRoot(Result); 6944 return; 6945 } 6946 case Intrinsic::lifetime_start: 6947 case Intrinsic::lifetime_end: { 6948 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6949 // Stack coloring is not enabled in O0, discard region information. 6950 if (TM.getOptLevel() == CodeGenOpt::None) 6951 return; 6952 6953 const int64_t ObjectSize = 6954 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6955 Value *const ObjectPtr = I.getArgOperand(1); 6956 SmallVector<const Value *, 4> Allocas; 6957 getUnderlyingObjects(ObjectPtr, Allocas); 6958 6959 for (const Value *Alloca : Allocas) { 6960 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6961 6962 // Could not find an Alloca. 6963 if (!LifetimeObject) 6964 continue; 6965 6966 // First check that the Alloca is static, otherwise it won't have a 6967 // valid frame index. 6968 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6969 if (SI == FuncInfo.StaticAllocaMap.end()) 6970 return; 6971 6972 const int FrameIndex = SI->second; 6973 int64_t Offset; 6974 if (GetPointerBaseWithConstantOffset( 6975 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6976 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6977 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6978 Offset); 6979 DAG.setRoot(Res); 6980 } 6981 return; 6982 } 6983 case Intrinsic::pseudoprobe: { 6984 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6985 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6986 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6987 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6988 DAG.setRoot(Res); 6989 return; 6990 } 6991 case Intrinsic::invariant_start: 6992 // Discard region information. 6993 setValue(&I, 6994 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6995 return; 6996 case Intrinsic::invariant_end: 6997 // Discard region information. 6998 return; 6999 case Intrinsic::clear_cache: 7000 /// FunctionName may be null. 7001 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7002 lowerCallToExternalSymbol(I, FunctionName); 7003 return; 7004 case Intrinsic::donothing: 7005 case Intrinsic::seh_try_begin: 7006 case Intrinsic::seh_scope_begin: 7007 case Intrinsic::seh_try_end: 7008 case Intrinsic::seh_scope_end: 7009 // ignore 7010 return; 7011 case Intrinsic::experimental_stackmap: 7012 visitStackmap(I); 7013 return; 7014 case Intrinsic::experimental_patchpoint_void: 7015 case Intrinsic::experimental_patchpoint_i64: 7016 visitPatchpoint(I); 7017 return; 7018 case Intrinsic::experimental_gc_statepoint: 7019 LowerStatepoint(cast<GCStatepointInst>(I)); 7020 return; 7021 case Intrinsic::experimental_gc_result: 7022 visitGCResult(cast<GCResultInst>(I)); 7023 return; 7024 case Intrinsic::experimental_gc_relocate: 7025 visitGCRelocate(cast<GCRelocateInst>(I)); 7026 return; 7027 case Intrinsic::instrprof_cover: 7028 llvm_unreachable("instrprof failed to lower a cover"); 7029 case Intrinsic::instrprof_increment: 7030 llvm_unreachable("instrprof failed to lower an increment"); 7031 case Intrinsic::instrprof_value_profile: 7032 llvm_unreachable("instrprof failed to lower a value profiling call"); 7033 case Intrinsic::localescape: { 7034 MachineFunction &MF = DAG.getMachineFunction(); 7035 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7036 7037 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7038 // is the same on all targets. 7039 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7040 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7041 if (isa<ConstantPointerNull>(Arg)) 7042 continue; // Skip null pointers. They represent a hole in index space. 7043 AllocaInst *Slot = cast<AllocaInst>(Arg); 7044 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7045 "can only escape static allocas"); 7046 int FI = FuncInfo.StaticAllocaMap[Slot]; 7047 MCSymbol *FrameAllocSym = 7048 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7049 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7050 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7051 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7052 .addSym(FrameAllocSym) 7053 .addFrameIndex(FI); 7054 } 7055 7056 return; 7057 } 7058 7059 case Intrinsic::localrecover: { 7060 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7061 MachineFunction &MF = DAG.getMachineFunction(); 7062 7063 // Get the symbol that defines the frame offset. 7064 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7065 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7066 unsigned IdxVal = 7067 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7068 MCSymbol *FrameAllocSym = 7069 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7070 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7071 7072 Value *FP = I.getArgOperand(1); 7073 SDValue FPVal = getValue(FP); 7074 EVT PtrVT = FPVal.getValueType(); 7075 7076 // Create a MCSymbol for the label to avoid any target lowering 7077 // that would make this PC relative. 7078 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7079 SDValue OffsetVal = 7080 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7081 7082 // Add the offset to the FP. 7083 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7084 setValue(&I, Add); 7085 7086 return; 7087 } 7088 7089 case Intrinsic::eh_exceptionpointer: 7090 case Intrinsic::eh_exceptioncode: { 7091 // Get the exception pointer vreg, copy from it, and resize it to fit. 7092 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7093 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7094 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7095 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7096 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7097 if (Intrinsic == Intrinsic::eh_exceptioncode) 7098 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7099 setValue(&I, N); 7100 return; 7101 } 7102 case Intrinsic::xray_customevent: { 7103 // Here we want to make sure that the intrinsic behaves as if it has a 7104 // specific calling convention, and only for x86_64. 7105 // FIXME: Support other platforms later. 7106 const auto &Triple = DAG.getTarget().getTargetTriple(); 7107 if (Triple.getArch() != Triple::x86_64) 7108 return; 7109 7110 SmallVector<SDValue, 8> Ops; 7111 7112 // We want to say that we always want the arguments in registers. 7113 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7114 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7115 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7116 SDValue Chain = getRoot(); 7117 Ops.push_back(LogEntryVal); 7118 Ops.push_back(StrSizeVal); 7119 Ops.push_back(Chain); 7120 7121 // We need to enforce the calling convention for the callsite, so that 7122 // argument ordering is enforced correctly, and that register allocation can 7123 // see that some registers may be assumed clobbered and have to preserve 7124 // them across calls to the intrinsic. 7125 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7126 sdl, NodeTys, Ops); 7127 SDValue patchableNode = SDValue(MN, 0); 7128 DAG.setRoot(patchableNode); 7129 setValue(&I, patchableNode); 7130 return; 7131 } 7132 case Intrinsic::xray_typedevent: { 7133 // Here we want to make sure that the intrinsic behaves as if it has a 7134 // specific calling convention, and only for x86_64. 7135 // FIXME: Support other platforms later. 7136 const auto &Triple = DAG.getTarget().getTargetTriple(); 7137 if (Triple.getArch() != Triple::x86_64) 7138 return; 7139 7140 SmallVector<SDValue, 8> Ops; 7141 7142 // We want to say that we always want the arguments in registers. 7143 // It's unclear to me how manipulating the selection DAG here forces callers 7144 // to provide arguments in registers instead of on the stack. 7145 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7146 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7147 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7148 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7149 SDValue Chain = getRoot(); 7150 Ops.push_back(LogTypeId); 7151 Ops.push_back(LogEntryVal); 7152 Ops.push_back(StrSizeVal); 7153 Ops.push_back(Chain); 7154 7155 // We need to enforce the calling convention for the callsite, so that 7156 // argument ordering is enforced correctly, and that register allocation can 7157 // see that some registers may be assumed clobbered and have to preserve 7158 // them across calls to the intrinsic. 7159 MachineSDNode *MN = DAG.getMachineNode( 7160 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7161 SDValue patchableNode = SDValue(MN, 0); 7162 DAG.setRoot(patchableNode); 7163 setValue(&I, patchableNode); 7164 return; 7165 } 7166 case Intrinsic::experimental_deoptimize: 7167 LowerDeoptimizeCall(&I); 7168 return; 7169 case Intrinsic::experimental_stepvector: 7170 visitStepVector(I); 7171 return; 7172 case Intrinsic::vector_reduce_fadd: 7173 case Intrinsic::vector_reduce_fmul: 7174 case Intrinsic::vector_reduce_add: 7175 case Intrinsic::vector_reduce_mul: 7176 case Intrinsic::vector_reduce_and: 7177 case Intrinsic::vector_reduce_or: 7178 case Intrinsic::vector_reduce_xor: 7179 case Intrinsic::vector_reduce_smax: 7180 case Intrinsic::vector_reduce_smin: 7181 case Intrinsic::vector_reduce_umax: 7182 case Intrinsic::vector_reduce_umin: 7183 case Intrinsic::vector_reduce_fmax: 7184 case Intrinsic::vector_reduce_fmin: 7185 visitVectorReduce(I, Intrinsic); 7186 return; 7187 7188 case Intrinsic::icall_branch_funnel: { 7189 SmallVector<SDValue, 16> Ops; 7190 Ops.push_back(getValue(I.getArgOperand(0))); 7191 7192 int64_t Offset; 7193 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7194 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7195 if (!Base) 7196 report_fatal_error( 7197 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7198 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7199 7200 struct BranchFunnelTarget { 7201 int64_t Offset; 7202 SDValue Target; 7203 }; 7204 SmallVector<BranchFunnelTarget, 8> Targets; 7205 7206 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7207 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7208 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7209 if (ElemBase != Base) 7210 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7211 "to the same GlobalValue"); 7212 7213 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7214 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7215 if (!GA) 7216 report_fatal_error( 7217 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7218 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7219 GA->getGlobal(), sdl, Val.getValueType(), 7220 GA->getOffset())}); 7221 } 7222 llvm::sort(Targets, 7223 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7224 return T1.Offset < T2.Offset; 7225 }); 7226 7227 for (auto &T : Targets) { 7228 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7229 Ops.push_back(T.Target); 7230 } 7231 7232 Ops.push_back(DAG.getRoot()); // Chain 7233 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7234 MVT::Other, Ops), 7235 0); 7236 DAG.setRoot(N); 7237 setValue(&I, N); 7238 HasTailCall = true; 7239 return; 7240 } 7241 7242 case Intrinsic::wasm_landingpad_index: 7243 // Information this intrinsic contained has been transferred to 7244 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7245 // delete it now. 7246 return; 7247 7248 case Intrinsic::aarch64_settag: 7249 case Intrinsic::aarch64_settag_zero: { 7250 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7251 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7252 SDValue Val = TSI.EmitTargetCodeForSetTag( 7253 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7254 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7255 ZeroMemory); 7256 DAG.setRoot(Val); 7257 setValue(&I, Val); 7258 return; 7259 } 7260 case Intrinsic::ptrmask: { 7261 SDValue Ptr = getValue(I.getOperand(0)); 7262 SDValue Const = getValue(I.getOperand(1)); 7263 7264 EVT PtrVT = Ptr.getValueType(); 7265 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7266 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7267 return; 7268 } 7269 case Intrinsic::threadlocal_address: { 7270 setValue(&I, getValue(I.getOperand(0))); 7271 return; 7272 } 7273 case Intrinsic::get_active_lane_mask: { 7274 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7275 SDValue Index = getValue(I.getOperand(0)); 7276 EVT ElementVT = Index.getValueType(); 7277 7278 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7279 visitTargetIntrinsic(I, Intrinsic); 7280 return; 7281 } 7282 7283 SDValue TripCount = getValue(I.getOperand(1)); 7284 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7285 7286 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7287 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7288 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7289 SDValue VectorInduction = DAG.getNode( 7290 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7291 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7292 VectorTripCount, ISD::CondCode::SETULT); 7293 setValue(&I, SetCC); 7294 return; 7295 } 7296 case Intrinsic::vector_insert: { 7297 SDValue Vec = getValue(I.getOperand(0)); 7298 SDValue SubVec = getValue(I.getOperand(1)); 7299 SDValue Index = getValue(I.getOperand(2)); 7300 7301 // The intrinsic's index type is i64, but the SDNode requires an index type 7302 // suitable for the target. Convert the index as required. 7303 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7304 if (Index.getValueType() != VectorIdxTy) 7305 Index = DAG.getVectorIdxConstant( 7306 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7307 7308 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7309 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7310 Index)); 7311 return; 7312 } 7313 case Intrinsic::vector_extract: { 7314 SDValue Vec = getValue(I.getOperand(0)); 7315 SDValue Index = getValue(I.getOperand(1)); 7316 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7317 7318 // The intrinsic's index type is i64, but the SDNode requires an index type 7319 // suitable for the target. Convert the index as required. 7320 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7321 if (Index.getValueType() != VectorIdxTy) 7322 Index = DAG.getVectorIdxConstant( 7323 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7324 7325 setValue(&I, 7326 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7327 return; 7328 } 7329 case Intrinsic::experimental_vector_reverse: 7330 visitVectorReverse(I); 7331 return; 7332 case Intrinsic::experimental_vector_splice: 7333 visitVectorSplice(I); 7334 return; 7335 } 7336 } 7337 7338 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7339 const ConstrainedFPIntrinsic &FPI) { 7340 SDLoc sdl = getCurSDLoc(); 7341 7342 // We do not need to serialize constrained FP intrinsics against 7343 // each other or against (nonvolatile) loads, so they can be 7344 // chained like loads. 7345 SDValue Chain = DAG.getRoot(); 7346 SmallVector<SDValue, 4> Opers; 7347 Opers.push_back(Chain); 7348 if (FPI.isUnaryOp()) { 7349 Opers.push_back(getValue(FPI.getArgOperand(0))); 7350 } else if (FPI.isTernaryOp()) { 7351 Opers.push_back(getValue(FPI.getArgOperand(0))); 7352 Opers.push_back(getValue(FPI.getArgOperand(1))); 7353 Opers.push_back(getValue(FPI.getArgOperand(2))); 7354 } else { 7355 Opers.push_back(getValue(FPI.getArgOperand(0))); 7356 Opers.push_back(getValue(FPI.getArgOperand(1))); 7357 } 7358 7359 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7360 assert(Result.getNode()->getNumValues() == 2); 7361 7362 // Push node to the appropriate list so that future instructions can be 7363 // chained up correctly. 7364 SDValue OutChain = Result.getValue(1); 7365 switch (EB) { 7366 case fp::ExceptionBehavior::ebIgnore: 7367 // The only reason why ebIgnore nodes still need to be chained is that 7368 // they might depend on the current rounding mode, and therefore must 7369 // not be moved across instruction that may change that mode. 7370 [[fallthrough]]; 7371 case fp::ExceptionBehavior::ebMayTrap: 7372 // These must not be moved across calls or instructions that may change 7373 // floating-point exception masks. 7374 PendingConstrainedFP.push_back(OutChain); 7375 break; 7376 case fp::ExceptionBehavior::ebStrict: 7377 // These must not be moved across calls or instructions that may change 7378 // floating-point exception masks or read floating-point exception flags. 7379 // In addition, they cannot be optimized out even if unused. 7380 PendingConstrainedFPStrict.push_back(OutChain); 7381 break; 7382 } 7383 }; 7384 7385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7386 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7387 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7388 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7389 7390 SDNodeFlags Flags; 7391 if (EB == fp::ExceptionBehavior::ebIgnore) 7392 Flags.setNoFPExcept(true); 7393 7394 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7395 Flags.copyFMF(*FPOp); 7396 7397 unsigned Opcode; 7398 switch (FPI.getIntrinsicID()) { 7399 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7400 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7401 case Intrinsic::INTRINSIC: \ 7402 Opcode = ISD::STRICT_##DAGN; \ 7403 break; 7404 #include "llvm/IR/ConstrainedOps.def" 7405 case Intrinsic::experimental_constrained_fmuladd: { 7406 Opcode = ISD::STRICT_FMA; 7407 // Break fmuladd into fmul and fadd. 7408 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7409 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7410 Opers.pop_back(); 7411 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7412 pushOutChain(Mul, EB); 7413 Opcode = ISD::STRICT_FADD; 7414 Opers.clear(); 7415 Opers.push_back(Mul.getValue(1)); 7416 Opers.push_back(Mul.getValue(0)); 7417 Opers.push_back(getValue(FPI.getArgOperand(2))); 7418 } 7419 break; 7420 } 7421 } 7422 7423 // A few strict DAG nodes carry additional operands that are not 7424 // set up by the default code above. 7425 switch (Opcode) { 7426 default: break; 7427 case ISD::STRICT_FP_ROUND: 7428 Opers.push_back( 7429 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7430 break; 7431 case ISD::STRICT_FSETCC: 7432 case ISD::STRICT_FSETCCS: { 7433 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7434 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7435 if (TM.Options.NoNaNsFPMath) 7436 Condition = getFCmpCodeWithoutNaN(Condition); 7437 Opers.push_back(DAG.getCondCode(Condition)); 7438 break; 7439 } 7440 } 7441 7442 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7443 pushOutChain(Result, EB); 7444 7445 SDValue FPResult = Result.getValue(0); 7446 setValue(&FPI, FPResult); 7447 } 7448 7449 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7450 std::optional<unsigned> ResOPC; 7451 switch (VPIntrin.getIntrinsicID()) { 7452 case Intrinsic::vp_ctlz: { 7453 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne(); 7454 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7455 break; 7456 } 7457 case Intrinsic::vp_cttz: { 7458 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne(); 7459 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7460 break; 7461 } 7462 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7463 case Intrinsic::VPID: \ 7464 ResOPC = ISD::VPSD; \ 7465 break; 7466 #include "llvm/IR/VPIntrinsics.def" 7467 } 7468 7469 if (!ResOPC) 7470 llvm_unreachable( 7471 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7472 7473 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7474 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7475 if (VPIntrin.getFastMathFlags().allowReassoc()) 7476 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7477 : ISD::VP_REDUCE_FMUL; 7478 } 7479 7480 return *ResOPC; 7481 } 7482 7483 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7484 SmallVector<SDValue, 7> &OpValues) { 7485 SDLoc DL = getCurSDLoc(); 7486 Value *PtrOperand = VPIntrin.getArgOperand(0); 7487 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7488 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7489 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7490 SDValue LD; 7491 bool AddToChain = true; 7492 // Do not serialize variable-length loads of constant memory with 7493 // anything. 7494 if (!Alignment) 7495 Alignment = DAG.getEVTAlign(VT); 7496 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7497 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7498 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7499 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7500 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7501 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7502 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7503 MMO, false /*IsExpanding */); 7504 if (AddToChain) 7505 PendingLoads.push_back(LD.getValue(1)); 7506 setValue(&VPIntrin, LD); 7507 } 7508 7509 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7510 SmallVector<SDValue, 7> &OpValues) { 7511 SDLoc DL = getCurSDLoc(); 7512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7513 Value *PtrOperand = VPIntrin.getArgOperand(0); 7514 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7515 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7516 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7517 SDValue LD; 7518 if (!Alignment) 7519 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7520 unsigned AS = 7521 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7522 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7523 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7524 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7525 SDValue Base, Index, Scale; 7526 ISD::MemIndexType IndexType; 7527 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7528 this, VPIntrin.getParent(), 7529 VT.getScalarStoreSize()); 7530 if (!UniformBase) { 7531 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7532 Index = getValue(PtrOperand); 7533 IndexType = ISD::SIGNED_SCALED; 7534 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7535 } 7536 EVT IdxVT = Index.getValueType(); 7537 EVT EltTy = IdxVT.getVectorElementType(); 7538 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7539 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7540 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7541 } 7542 LD = DAG.getGatherVP( 7543 DAG.getVTList(VT, MVT::Other), VT, DL, 7544 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7545 IndexType); 7546 PendingLoads.push_back(LD.getValue(1)); 7547 setValue(&VPIntrin, LD); 7548 } 7549 7550 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7551 SmallVector<SDValue, 7> &OpValues) { 7552 SDLoc DL = getCurSDLoc(); 7553 Value *PtrOperand = VPIntrin.getArgOperand(1); 7554 EVT VT = OpValues[0].getValueType(); 7555 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7556 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7557 SDValue ST; 7558 if (!Alignment) 7559 Alignment = DAG.getEVTAlign(VT); 7560 SDValue Ptr = OpValues[1]; 7561 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7562 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7563 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7564 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7565 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7566 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7567 /* IsTruncating */ false, /*IsCompressing*/ false); 7568 DAG.setRoot(ST); 7569 setValue(&VPIntrin, ST); 7570 } 7571 7572 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7573 SmallVector<SDValue, 7> &OpValues) { 7574 SDLoc DL = getCurSDLoc(); 7575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7576 Value *PtrOperand = VPIntrin.getArgOperand(1); 7577 EVT VT = OpValues[0].getValueType(); 7578 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7579 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7580 SDValue ST; 7581 if (!Alignment) 7582 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7583 unsigned AS = 7584 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7585 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7586 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7587 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7588 SDValue Base, Index, Scale; 7589 ISD::MemIndexType IndexType; 7590 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7591 this, VPIntrin.getParent(), 7592 VT.getScalarStoreSize()); 7593 if (!UniformBase) { 7594 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7595 Index = getValue(PtrOperand); 7596 IndexType = ISD::SIGNED_SCALED; 7597 Scale = 7598 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7599 } 7600 EVT IdxVT = Index.getValueType(); 7601 EVT EltTy = IdxVT.getVectorElementType(); 7602 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7603 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7604 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7605 } 7606 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7607 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7608 OpValues[2], OpValues[3]}, 7609 MMO, IndexType); 7610 DAG.setRoot(ST); 7611 setValue(&VPIntrin, ST); 7612 } 7613 7614 void SelectionDAGBuilder::visitVPStridedLoad( 7615 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7616 SDLoc DL = getCurSDLoc(); 7617 Value *PtrOperand = VPIntrin.getArgOperand(0); 7618 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7619 if (!Alignment) 7620 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7621 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7622 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7623 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7624 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7625 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7626 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7627 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7628 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7629 7630 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7631 OpValues[2], OpValues[3], MMO, 7632 false /*IsExpanding*/); 7633 7634 if (AddToChain) 7635 PendingLoads.push_back(LD.getValue(1)); 7636 setValue(&VPIntrin, LD); 7637 } 7638 7639 void SelectionDAGBuilder::visitVPStridedStore( 7640 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7641 SDLoc DL = getCurSDLoc(); 7642 Value *PtrOperand = VPIntrin.getArgOperand(1); 7643 EVT VT = OpValues[0].getValueType(); 7644 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7645 if (!Alignment) 7646 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7647 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7648 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7649 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7650 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7651 7652 SDValue ST = DAG.getStridedStoreVP( 7653 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7654 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7655 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7656 /*IsCompressing*/ false); 7657 7658 DAG.setRoot(ST); 7659 setValue(&VPIntrin, ST); 7660 } 7661 7662 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7664 SDLoc DL = getCurSDLoc(); 7665 7666 ISD::CondCode Condition; 7667 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7668 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7669 if (IsFP) { 7670 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7671 // flags, but calls that don't return floating-point types can't be 7672 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7673 Condition = getFCmpCondCode(CondCode); 7674 if (TM.Options.NoNaNsFPMath) 7675 Condition = getFCmpCodeWithoutNaN(Condition); 7676 } else { 7677 Condition = getICmpCondCode(CondCode); 7678 } 7679 7680 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7681 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7682 // #2 is the condition code 7683 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7684 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7685 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7686 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7687 "Unexpected target EVL type"); 7688 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7689 7690 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7691 VPIntrin.getType()); 7692 setValue(&VPIntrin, 7693 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7694 } 7695 7696 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7697 const VPIntrinsic &VPIntrin) { 7698 SDLoc DL = getCurSDLoc(); 7699 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7700 7701 auto IID = VPIntrin.getIntrinsicID(); 7702 7703 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7704 return visitVPCmp(*CmpI); 7705 7706 SmallVector<EVT, 4> ValueVTs; 7707 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7708 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7709 SDVTList VTs = DAG.getVTList(ValueVTs); 7710 7711 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7712 7713 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7714 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7715 "Unexpected target EVL type"); 7716 7717 // Request operands. 7718 SmallVector<SDValue, 7> OpValues; 7719 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7720 auto Op = getValue(VPIntrin.getArgOperand(I)); 7721 if (I == EVLParamPos) 7722 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7723 OpValues.push_back(Op); 7724 } 7725 7726 switch (Opcode) { 7727 default: { 7728 SDNodeFlags SDFlags; 7729 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7730 SDFlags.copyFMF(*FPMO); 7731 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7732 setValue(&VPIntrin, Result); 7733 break; 7734 } 7735 case ISD::VP_LOAD: 7736 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7737 break; 7738 case ISD::VP_GATHER: 7739 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7740 break; 7741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7742 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7743 break; 7744 case ISD::VP_STORE: 7745 visitVPStore(VPIntrin, OpValues); 7746 break; 7747 case ISD::VP_SCATTER: 7748 visitVPScatter(VPIntrin, OpValues); 7749 break; 7750 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7751 visitVPStridedStore(VPIntrin, OpValues); 7752 break; 7753 case ISD::VP_FMULADD: { 7754 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7755 SDNodeFlags SDFlags; 7756 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7757 SDFlags.copyFMF(*FPMO); 7758 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7759 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7760 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7761 } else { 7762 SDValue Mul = DAG.getNode( 7763 ISD::VP_FMUL, DL, VTs, 7764 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7765 SDValue Add = 7766 DAG.getNode(ISD::VP_FADD, DL, VTs, 7767 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7768 setValue(&VPIntrin, Add); 7769 } 7770 break; 7771 } 7772 case ISD::VP_INTTOPTR: { 7773 SDValue N = OpValues[0]; 7774 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7775 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7776 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7777 OpValues[2]); 7778 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7779 OpValues[2]); 7780 setValue(&VPIntrin, N); 7781 break; 7782 } 7783 case ISD::VP_PTRTOINT: { 7784 SDValue N = OpValues[0]; 7785 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7786 VPIntrin.getType()); 7787 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 7788 VPIntrin.getOperand(0)->getType()); 7789 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7790 OpValues[2]); 7791 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7792 OpValues[2]); 7793 setValue(&VPIntrin, N); 7794 break; 7795 } 7796 case ISD::VP_ABS: 7797 case ISD::VP_CTLZ: 7798 case ISD::VP_CTLZ_ZERO_UNDEF: 7799 case ISD::VP_CTTZ: 7800 case ISD::VP_CTTZ_ZERO_UNDEF: { 7801 // Pop is_zero_poison operand for cp.ctlz/cttz or 7802 // is_int_min_poison operand for vp.abs. 7803 OpValues.pop_back(); 7804 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7805 setValue(&VPIntrin, Result); 7806 break; 7807 } 7808 } 7809 } 7810 7811 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7812 const BasicBlock *EHPadBB, 7813 MCSymbol *&BeginLabel) { 7814 MachineFunction &MF = DAG.getMachineFunction(); 7815 MachineModuleInfo &MMI = MF.getMMI(); 7816 7817 // Insert a label before the invoke call to mark the try range. This can be 7818 // used to detect deletion of the invoke via the MachineModuleInfo. 7819 BeginLabel = MMI.getContext().createTempSymbol(); 7820 7821 // For SjLj, keep track of which landing pads go with which invokes 7822 // so as to maintain the ordering of pads in the LSDA. 7823 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7824 if (CallSiteIndex) { 7825 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7826 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7827 7828 // Now that the call site is handled, stop tracking it. 7829 MMI.setCurrentCallSite(0); 7830 } 7831 7832 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7833 } 7834 7835 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7836 const BasicBlock *EHPadBB, 7837 MCSymbol *BeginLabel) { 7838 assert(BeginLabel && "BeginLabel should've been set"); 7839 7840 MachineFunction &MF = DAG.getMachineFunction(); 7841 MachineModuleInfo &MMI = MF.getMMI(); 7842 7843 // Insert a label at the end of the invoke call to mark the try range. This 7844 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7845 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7846 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7847 7848 // Inform MachineModuleInfo of range. 7849 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7850 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7851 // actually use outlined funclets and their LSDA info style. 7852 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7853 assert(II && "II should've been set"); 7854 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7855 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7856 } else if (!isScopedEHPersonality(Pers)) { 7857 assert(EHPadBB); 7858 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7859 } 7860 7861 return Chain; 7862 } 7863 7864 std::pair<SDValue, SDValue> 7865 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7866 const BasicBlock *EHPadBB) { 7867 MCSymbol *BeginLabel = nullptr; 7868 7869 if (EHPadBB) { 7870 // Both PendingLoads and PendingExports must be flushed here; 7871 // this call might not return. 7872 (void)getRoot(); 7873 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7874 CLI.setChain(getRoot()); 7875 } 7876 7877 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7878 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7879 7880 assert((CLI.IsTailCall || Result.second.getNode()) && 7881 "Non-null chain expected with non-tail call!"); 7882 assert((Result.second.getNode() || !Result.first.getNode()) && 7883 "Null value expected with tail call!"); 7884 7885 if (!Result.second.getNode()) { 7886 // As a special case, a null chain means that a tail call has been emitted 7887 // and the DAG root is already updated. 7888 HasTailCall = true; 7889 7890 // Since there's no actual continuation from this block, nothing can be 7891 // relying on us setting vregs for them. 7892 PendingExports.clear(); 7893 } else { 7894 DAG.setRoot(Result.second); 7895 } 7896 7897 if (EHPadBB) { 7898 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7899 BeginLabel)); 7900 } 7901 7902 return Result; 7903 } 7904 7905 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7906 bool isTailCall, 7907 bool isMustTailCall, 7908 const BasicBlock *EHPadBB) { 7909 auto &DL = DAG.getDataLayout(); 7910 FunctionType *FTy = CB.getFunctionType(); 7911 Type *RetTy = CB.getType(); 7912 7913 TargetLowering::ArgListTy Args; 7914 Args.reserve(CB.arg_size()); 7915 7916 const Value *SwiftErrorVal = nullptr; 7917 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7918 7919 if (isTailCall) { 7920 // Avoid emitting tail calls in functions with the disable-tail-calls 7921 // attribute. 7922 auto *Caller = CB.getParent()->getParent(); 7923 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7924 "true" && !isMustTailCall) 7925 isTailCall = false; 7926 7927 // We can't tail call inside a function with a swifterror argument. Lowering 7928 // does not support this yet. It would have to move into the swifterror 7929 // register before the call. 7930 if (TLI.supportSwiftError() && 7931 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7932 isTailCall = false; 7933 } 7934 7935 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7936 TargetLowering::ArgListEntry Entry; 7937 const Value *V = *I; 7938 7939 // Skip empty types 7940 if (V->getType()->isEmptyTy()) 7941 continue; 7942 7943 SDValue ArgNode = getValue(V); 7944 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7945 7946 Entry.setAttributes(&CB, I - CB.arg_begin()); 7947 7948 // Use swifterror virtual register as input to the call. 7949 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7950 SwiftErrorVal = V; 7951 // We find the virtual register for the actual swifterror argument. 7952 // Instead of using the Value, we use the virtual register instead. 7953 Entry.Node = 7954 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7955 EVT(TLI.getPointerTy(DL))); 7956 } 7957 7958 Args.push_back(Entry); 7959 7960 // If we have an explicit sret argument that is an Instruction, (i.e., it 7961 // might point to function-local memory), we can't meaningfully tail-call. 7962 if (Entry.IsSRet && isa<Instruction>(V)) 7963 isTailCall = false; 7964 } 7965 7966 // If call site has a cfguardtarget operand bundle, create and add an 7967 // additional ArgListEntry. 7968 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7969 TargetLowering::ArgListEntry Entry; 7970 Value *V = Bundle->Inputs[0]; 7971 SDValue ArgNode = getValue(V); 7972 Entry.Node = ArgNode; 7973 Entry.Ty = V->getType(); 7974 Entry.IsCFGuardTarget = true; 7975 Args.push_back(Entry); 7976 } 7977 7978 // Check if target-independent constraints permit a tail call here. 7979 // Target-dependent constraints are checked within TLI->LowerCallTo. 7980 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7981 isTailCall = false; 7982 7983 // Disable tail calls if there is an swifterror argument. Targets have not 7984 // been updated to support tail calls. 7985 if (TLI.supportSwiftError() && SwiftErrorVal) 7986 isTailCall = false; 7987 7988 ConstantInt *CFIType = nullptr; 7989 if (CB.isIndirectCall()) { 7990 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7991 if (!TLI.supportKCFIBundles()) 7992 report_fatal_error( 7993 "Target doesn't support calls with kcfi operand bundles."); 7994 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7995 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7996 } 7997 } 7998 7999 TargetLowering::CallLoweringInfo CLI(DAG); 8000 CLI.setDebugLoc(getCurSDLoc()) 8001 .setChain(getRoot()) 8002 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8003 .setTailCall(isTailCall) 8004 .setConvergent(CB.isConvergent()) 8005 .setIsPreallocated( 8006 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8007 .setCFIType(CFIType); 8008 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8009 8010 if (Result.first.getNode()) { 8011 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8012 setValue(&CB, Result.first); 8013 } 8014 8015 // The last element of CLI.InVals has the SDValue for swifterror return. 8016 // Here we copy it to a virtual register and update SwiftErrorMap for 8017 // book-keeping. 8018 if (SwiftErrorVal && TLI.supportSwiftError()) { 8019 // Get the last element of InVals. 8020 SDValue Src = CLI.InVals.back(); 8021 Register VReg = 8022 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8023 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8024 DAG.setRoot(CopyNode); 8025 } 8026 } 8027 8028 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8029 SelectionDAGBuilder &Builder) { 8030 // Check to see if this load can be trivially constant folded, e.g. if the 8031 // input is from a string literal. 8032 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8033 // Cast pointer to the type we really want to load. 8034 Type *LoadTy = 8035 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8036 if (LoadVT.isVector()) 8037 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8038 8039 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8040 PointerType::getUnqual(LoadTy)); 8041 8042 if (const Constant *LoadCst = 8043 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8044 LoadTy, Builder.DAG.getDataLayout())) 8045 return Builder.getValue(LoadCst); 8046 } 8047 8048 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8049 // still constant memory, the input chain can be the entry node. 8050 SDValue Root; 8051 bool ConstantMemory = false; 8052 8053 // Do not serialize (non-volatile) loads of constant memory with anything. 8054 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8055 Root = Builder.DAG.getEntryNode(); 8056 ConstantMemory = true; 8057 } else { 8058 // Do not serialize non-volatile loads against each other. 8059 Root = Builder.DAG.getRoot(); 8060 } 8061 8062 SDValue Ptr = Builder.getValue(PtrVal); 8063 SDValue LoadVal = 8064 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8065 MachinePointerInfo(PtrVal), Align(1)); 8066 8067 if (!ConstantMemory) 8068 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8069 return LoadVal; 8070 } 8071 8072 /// Record the value for an instruction that produces an integer result, 8073 /// converting the type where necessary. 8074 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8075 SDValue Value, 8076 bool IsSigned) { 8077 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8078 I.getType(), true); 8079 if (IsSigned) 8080 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 8081 else 8082 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 8083 setValue(&I, Value); 8084 } 8085 8086 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8087 /// true and lower it. Otherwise return false, and it will be lowered like a 8088 /// normal call. 8089 /// The caller already checked that \p I calls the appropriate LibFunc with a 8090 /// correct prototype. 8091 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8092 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8093 const Value *Size = I.getArgOperand(2); 8094 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8095 if (CSize && CSize->getZExtValue() == 0) { 8096 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8097 I.getType(), true); 8098 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8099 return true; 8100 } 8101 8102 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8103 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8104 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8105 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8106 if (Res.first.getNode()) { 8107 processIntegerCallValue(I, Res.first, true); 8108 PendingLoads.push_back(Res.second); 8109 return true; 8110 } 8111 8112 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8113 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8114 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8115 return false; 8116 8117 // If the target has a fast compare for the given size, it will return a 8118 // preferred load type for that size. Require that the load VT is legal and 8119 // that the target supports unaligned loads of that type. Otherwise, return 8120 // INVALID. 8121 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8123 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8124 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8125 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8126 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8127 // TODO: Check alignment of src and dest ptrs. 8128 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8129 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8130 if (!TLI.isTypeLegal(LVT) || 8131 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8132 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8133 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8134 } 8135 8136 return LVT; 8137 }; 8138 8139 // This turns into unaligned loads. We only do this if the target natively 8140 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8141 // we'll only produce a small number of byte loads. 8142 MVT LoadVT; 8143 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8144 switch (NumBitsToCompare) { 8145 default: 8146 return false; 8147 case 16: 8148 LoadVT = MVT::i16; 8149 break; 8150 case 32: 8151 LoadVT = MVT::i32; 8152 break; 8153 case 64: 8154 case 128: 8155 case 256: 8156 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8157 break; 8158 } 8159 8160 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8161 return false; 8162 8163 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8164 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8165 8166 // Bitcast to a wide integer type if the loads are vectors. 8167 if (LoadVT.isVector()) { 8168 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8169 LoadL = DAG.getBitcast(CmpVT, LoadL); 8170 LoadR = DAG.getBitcast(CmpVT, LoadR); 8171 } 8172 8173 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8174 processIntegerCallValue(I, Cmp, false); 8175 return true; 8176 } 8177 8178 /// See if we can lower a memchr call into an optimized form. If so, return 8179 /// true and lower it. Otherwise return false, and it will be lowered like a 8180 /// normal call. 8181 /// The caller already checked that \p I calls the appropriate LibFunc with a 8182 /// correct prototype. 8183 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8184 const Value *Src = I.getArgOperand(0); 8185 const Value *Char = I.getArgOperand(1); 8186 const Value *Length = I.getArgOperand(2); 8187 8188 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8189 std::pair<SDValue, SDValue> Res = 8190 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8191 getValue(Src), getValue(Char), getValue(Length), 8192 MachinePointerInfo(Src)); 8193 if (Res.first.getNode()) { 8194 setValue(&I, Res.first); 8195 PendingLoads.push_back(Res.second); 8196 return true; 8197 } 8198 8199 return false; 8200 } 8201 8202 /// See if we can lower a mempcpy call into an optimized form. If so, return 8203 /// true and lower it. Otherwise return false, and it will be lowered like a 8204 /// normal call. 8205 /// The caller already checked that \p I calls the appropriate LibFunc with a 8206 /// correct prototype. 8207 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8208 SDValue Dst = getValue(I.getArgOperand(0)); 8209 SDValue Src = getValue(I.getArgOperand(1)); 8210 SDValue Size = getValue(I.getArgOperand(2)); 8211 8212 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8213 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8214 // DAG::getMemcpy needs Alignment to be defined. 8215 Align Alignment = std::min(DstAlign, SrcAlign); 8216 8217 bool isVol = false; 8218 SDLoc sdl = getCurSDLoc(); 8219 8220 // In the mempcpy context we need to pass in a false value for isTailCall 8221 // because the return pointer needs to be adjusted by the size of 8222 // the copied memory. 8223 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8224 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8225 /*isTailCall=*/false, 8226 MachinePointerInfo(I.getArgOperand(0)), 8227 MachinePointerInfo(I.getArgOperand(1)), 8228 I.getAAMetadata()); 8229 assert(MC.getNode() != nullptr && 8230 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8231 DAG.setRoot(MC); 8232 8233 // Check if Size needs to be truncated or extended. 8234 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8235 8236 // Adjust return pointer to point just past the last dst byte. 8237 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8238 Dst, Size); 8239 setValue(&I, DstPlusSize); 8240 return true; 8241 } 8242 8243 /// See if we can lower a strcpy call into an optimized form. If so, return 8244 /// true and lower it, otherwise return false and it will be lowered like a 8245 /// normal call. 8246 /// The caller already checked that \p I calls the appropriate LibFunc with a 8247 /// correct prototype. 8248 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8249 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8250 8251 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8252 std::pair<SDValue, SDValue> Res = 8253 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8254 getValue(Arg0), getValue(Arg1), 8255 MachinePointerInfo(Arg0), 8256 MachinePointerInfo(Arg1), isStpcpy); 8257 if (Res.first.getNode()) { 8258 setValue(&I, Res.first); 8259 DAG.setRoot(Res.second); 8260 return true; 8261 } 8262 8263 return false; 8264 } 8265 8266 /// See if we can lower a strcmp call into an optimized form. If so, return 8267 /// true and lower it, otherwise return false and it will be lowered like a 8268 /// normal call. 8269 /// The caller already checked that \p I calls the appropriate LibFunc with a 8270 /// correct prototype. 8271 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8272 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8273 8274 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8275 std::pair<SDValue, SDValue> Res = 8276 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8277 getValue(Arg0), getValue(Arg1), 8278 MachinePointerInfo(Arg0), 8279 MachinePointerInfo(Arg1)); 8280 if (Res.first.getNode()) { 8281 processIntegerCallValue(I, Res.first, true); 8282 PendingLoads.push_back(Res.second); 8283 return true; 8284 } 8285 8286 return false; 8287 } 8288 8289 /// See if we can lower a strlen call into an optimized form. If so, return 8290 /// true and lower it, otherwise return false and it will be lowered like a 8291 /// normal call. 8292 /// The caller already checked that \p I calls the appropriate LibFunc with a 8293 /// correct prototype. 8294 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8295 const Value *Arg0 = I.getArgOperand(0); 8296 8297 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8298 std::pair<SDValue, SDValue> Res = 8299 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8300 getValue(Arg0), MachinePointerInfo(Arg0)); 8301 if (Res.first.getNode()) { 8302 processIntegerCallValue(I, Res.first, false); 8303 PendingLoads.push_back(Res.second); 8304 return true; 8305 } 8306 8307 return false; 8308 } 8309 8310 /// See if we can lower a strnlen call into an optimized form. If so, return 8311 /// true and lower it, otherwise return false and it will be lowered like a 8312 /// normal call. 8313 /// The caller already checked that \p I calls the appropriate LibFunc with a 8314 /// correct prototype. 8315 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8316 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8317 8318 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8319 std::pair<SDValue, SDValue> Res = 8320 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8321 getValue(Arg0), getValue(Arg1), 8322 MachinePointerInfo(Arg0)); 8323 if (Res.first.getNode()) { 8324 processIntegerCallValue(I, Res.first, false); 8325 PendingLoads.push_back(Res.second); 8326 return true; 8327 } 8328 8329 return false; 8330 } 8331 8332 /// See if we can lower a unary floating-point operation into an SDNode with 8333 /// the specified Opcode. If so, return true and lower it, otherwise return 8334 /// false and it will be lowered like a normal call. 8335 /// The caller already checked that \p I calls the appropriate LibFunc with a 8336 /// correct prototype. 8337 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8338 unsigned Opcode) { 8339 // We already checked this call's prototype; verify it doesn't modify errno. 8340 if (!I.onlyReadsMemory()) 8341 return false; 8342 8343 SDNodeFlags Flags; 8344 Flags.copyFMF(cast<FPMathOperator>(I)); 8345 8346 SDValue Tmp = getValue(I.getArgOperand(0)); 8347 setValue(&I, 8348 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8349 return true; 8350 } 8351 8352 /// See if we can lower a binary floating-point operation into an SDNode with 8353 /// the specified Opcode. If so, return true and lower it. Otherwise return 8354 /// false, and it will be lowered like a normal call. 8355 /// The caller already checked that \p I calls the appropriate LibFunc with a 8356 /// correct prototype. 8357 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8358 unsigned Opcode) { 8359 // We already checked this call's prototype; verify it doesn't modify errno. 8360 if (!I.onlyReadsMemory()) 8361 return false; 8362 8363 SDNodeFlags Flags; 8364 Flags.copyFMF(cast<FPMathOperator>(I)); 8365 8366 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8367 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8368 EVT VT = Tmp0.getValueType(); 8369 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8370 return true; 8371 } 8372 8373 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8374 // Handle inline assembly differently. 8375 if (I.isInlineAsm()) { 8376 visitInlineAsm(I); 8377 return; 8378 } 8379 8380 diagnoseDontCall(I); 8381 8382 if (Function *F = I.getCalledFunction()) { 8383 if (F->isDeclaration()) { 8384 // Is this an LLVM intrinsic or a target-specific intrinsic? 8385 unsigned IID = F->getIntrinsicID(); 8386 if (!IID) 8387 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8388 IID = II->getIntrinsicID(F); 8389 8390 if (IID) { 8391 visitIntrinsicCall(I, IID); 8392 return; 8393 } 8394 } 8395 8396 // Check for well-known libc/libm calls. If the function is internal, it 8397 // can't be a library call. Don't do the check if marked as nobuiltin for 8398 // some reason or the call site requires strict floating point semantics. 8399 LibFunc Func; 8400 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8401 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8402 LibInfo->hasOptimizedCodeGen(Func)) { 8403 switch (Func) { 8404 default: break; 8405 case LibFunc_bcmp: 8406 if (visitMemCmpBCmpCall(I)) 8407 return; 8408 break; 8409 case LibFunc_copysign: 8410 case LibFunc_copysignf: 8411 case LibFunc_copysignl: 8412 // We already checked this call's prototype; verify it doesn't modify 8413 // errno. 8414 if (I.onlyReadsMemory()) { 8415 SDValue LHS = getValue(I.getArgOperand(0)); 8416 SDValue RHS = getValue(I.getArgOperand(1)); 8417 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8418 LHS.getValueType(), LHS, RHS)); 8419 return; 8420 } 8421 break; 8422 case LibFunc_fabs: 8423 case LibFunc_fabsf: 8424 case LibFunc_fabsl: 8425 if (visitUnaryFloatCall(I, ISD::FABS)) 8426 return; 8427 break; 8428 case LibFunc_fmin: 8429 case LibFunc_fminf: 8430 case LibFunc_fminl: 8431 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8432 return; 8433 break; 8434 case LibFunc_fmax: 8435 case LibFunc_fmaxf: 8436 case LibFunc_fmaxl: 8437 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8438 return; 8439 break; 8440 case LibFunc_sin: 8441 case LibFunc_sinf: 8442 case LibFunc_sinl: 8443 if (visitUnaryFloatCall(I, ISD::FSIN)) 8444 return; 8445 break; 8446 case LibFunc_cos: 8447 case LibFunc_cosf: 8448 case LibFunc_cosl: 8449 if (visitUnaryFloatCall(I, ISD::FCOS)) 8450 return; 8451 break; 8452 case LibFunc_sqrt: 8453 case LibFunc_sqrtf: 8454 case LibFunc_sqrtl: 8455 case LibFunc_sqrt_finite: 8456 case LibFunc_sqrtf_finite: 8457 case LibFunc_sqrtl_finite: 8458 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8459 return; 8460 break; 8461 case LibFunc_floor: 8462 case LibFunc_floorf: 8463 case LibFunc_floorl: 8464 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8465 return; 8466 break; 8467 case LibFunc_nearbyint: 8468 case LibFunc_nearbyintf: 8469 case LibFunc_nearbyintl: 8470 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8471 return; 8472 break; 8473 case LibFunc_ceil: 8474 case LibFunc_ceilf: 8475 case LibFunc_ceill: 8476 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8477 return; 8478 break; 8479 case LibFunc_rint: 8480 case LibFunc_rintf: 8481 case LibFunc_rintl: 8482 if (visitUnaryFloatCall(I, ISD::FRINT)) 8483 return; 8484 break; 8485 case LibFunc_round: 8486 case LibFunc_roundf: 8487 case LibFunc_roundl: 8488 if (visitUnaryFloatCall(I, ISD::FROUND)) 8489 return; 8490 break; 8491 case LibFunc_trunc: 8492 case LibFunc_truncf: 8493 case LibFunc_truncl: 8494 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8495 return; 8496 break; 8497 case LibFunc_log2: 8498 case LibFunc_log2f: 8499 case LibFunc_log2l: 8500 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8501 return; 8502 break; 8503 case LibFunc_exp2: 8504 case LibFunc_exp2f: 8505 case LibFunc_exp2l: 8506 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8507 return; 8508 break; 8509 case LibFunc_memcmp: 8510 if (visitMemCmpBCmpCall(I)) 8511 return; 8512 break; 8513 case LibFunc_mempcpy: 8514 if (visitMemPCpyCall(I)) 8515 return; 8516 break; 8517 case LibFunc_memchr: 8518 if (visitMemChrCall(I)) 8519 return; 8520 break; 8521 case LibFunc_strcpy: 8522 if (visitStrCpyCall(I, false)) 8523 return; 8524 break; 8525 case LibFunc_stpcpy: 8526 if (visitStrCpyCall(I, true)) 8527 return; 8528 break; 8529 case LibFunc_strcmp: 8530 if (visitStrCmpCall(I)) 8531 return; 8532 break; 8533 case LibFunc_strlen: 8534 if (visitStrLenCall(I)) 8535 return; 8536 break; 8537 case LibFunc_strnlen: 8538 if (visitStrNLenCall(I)) 8539 return; 8540 break; 8541 } 8542 } 8543 } 8544 8545 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8546 // have to do anything here to lower funclet bundles. 8547 // CFGuardTarget bundles are lowered in LowerCallTo. 8548 assert(!I.hasOperandBundlesOtherThan( 8549 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8550 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8551 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8552 "Cannot lower calls with arbitrary operand bundles!"); 8553 8554 SDValue Callee = getValue(I.getCalledOperand()); 8555 8556 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8557 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8558 else 8559 // Check if we can potentially perform a tail call. More detailed checking 8560 // is be done within LowerCallTo, after more information about the call is 8561 // known. 8562 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8563 } 8564 8565 namespace { 8566 8567 /// AsmOperandInfo - This contains information for each constraint that we are 8568 /// lowering. 8569 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8570 public: 8571 /// CallOperand - If this is the result output operand or a clobber 8572 /// this is null, otherwise it is the incoming operand to the CallInst. 8573 /// This gets modified as the asm is processed. 8574 SDValue CallOperand; 8575 8576 /// AssignedRegs - If this is a register or register class operand, this 8577 /// contains the set of register corresponding to the operand. 8578 RegsForValue AssignedRegs; 8579 8580 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8581 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8582 } 8583 8584 /// Whether or not this operand accesses memory 8585 bool hasMemory(const TargetLowering &TLI) const { 8586 // Indirect operand accesses access memory. 8587 if (isIndirect) 8588 return true; 8589 8590 for (const auto &Code : Codes) 8591 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8592 return true; 8593 8594 return false; 8595 } 8596 }; 8597 8598 8599 } // end anonymous namespace 8600 8601 /// Make sure that the output operand \p OpInfo and its corresponding input 8602 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8603 /// out). 8604 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8605 SDISelAsmOperandInfo &MatchingOpInfo, 8606 SelectionDAG &DAG) { 8607 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8608 return; 8609 8610 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8611 const auto &TLI = DAG.getTargetLoweringInfo(); 8612 8613 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8614 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8615 OpInfo.ConstraintVT); 8616 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8617 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8618 MatchingOpInfo.ConstraintVT); 8619 if ((OpInfo.ConstraintVT.isInteger() != 8620 MatchingOpInfo.ConstraintVT.isInteger()) || 8621 (MatchRC.second != InputRC.second)) { 8622 // FIXME: error out in a more elegant fashion 8623 report_fatal_error("Unsupported asm: input constraint" 8624 " with a matching output constraint of" 8625 " incompatible type!"); 8626 } 8627 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8628 } 8629 8630 /// Get a direct memory input to behave well as an indirect operand. 8631 /// This may introduce stores, hence the need for a \p Chain. 8632 /// \return The (possibly updated) chain. 8633 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8634 SDISelAsmOperandInfo &OpInfo, 8635 SelectionDAG &DAG) { 8636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8637 8638 // If we don't have an indirect input, put it in the constpool if we can, 8639 // otherwise spill it to a stack slot. 8640 // TODO: This isn't quite right. We need to handle these according to 8641 // the addressing mode that the constraint wants. Also, this may take 8642 // an additional register for the computation and we don't want that 8643 // either. 8644 8645 // If the operand is a float, integer, or vector constant, spill to a 8646 // constant pool entry to get its address. 8647 const Value *OpVal = OpInfo.CallOperandVal; 8648 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8649 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8650 OpInfo.CallOperand = DAG.getConstantPool( 8651 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8652 return Chain; 8653 } 8654 8655 // Otherwise, create a stack slot and emit a store to it before the asm. 8656 Type *Ty = OpVal->getType(); 8657 auto &DL = DAG.getDataLayout(); 8658 uint64_t TySize = DL.getTypeAllocSize(Ty); 8659 MachineFunction &MF = DAG.getMachineFunction(); 8660 int SSFI = MF.getFrameInfo().CreateStackObject( 8661 TySize, DL.getPrefTypeAlign(Ty), false); 8662 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8663 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8664 MachinePointerInfo::getFixedStack(MF, SSFI), 8665 TLI.getMemValueType(DL, Ty)); 8666 OpInfo.CallOperand = StackSlot; 8667 8668 return Chain; 8669 } 8670 8671 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8672 /// specified operand. We prefer to assign virtual registers, to allow the 8673 /// register allocator to handle the assignment process. However, if the asm 8674 /// uses features that we can't model on machineinstrs, we have SDISel do the 8675 /// allocation. This produces generally horrible, but correct, code. 8676 /// 8677 /// OpInfo describes the operand 8678 /// RefOpInfo describes the matching operand if any, the operand otherwise 8679 static std::optional<unsigned> 8680 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8681 SDISelAsmOperandInfo &OpInfo, 8682 SDISelAsmOperandInfo &RefOpInfo) { 8683 LLVMContext &Context = *DAG.getContext(); 8684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8685 8686 MachineFunction &MF = DAG.getMachineFunction(); 8687 SmallVector<unsigned, 4> Regs; 8688 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8689 8690 // No work to do for memory/address operands. 8691 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8692 OpInfo.ConstraintType == TargetLowering::C_Address) 8693 return std::nullopt; 8694 8695 // If this is a constraint for a single physreg, or a constraint for a 8696 // register class, find it. 8697 unsigned AssignedReg; 8698 const TargetRegisterClass *RC; 8699 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8700 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8701 // RC is unset only on failure. Return immediately. 8702 if (!RC) 8703 return std::nullopt; 8704 8705 // Get the actual register value type. This is important, because the user 8706 // may have asked for (e.g.) the AX register in i32 type. We need to 8707 // remember that AX is actually i16 to get the right extension. 8708 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8709 8710 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8711 // If this is an FP operand in an integer register (or visa versa), or more 8712 // generally if the operand value disagrees with the register class we plan 8713 // to stick it in, fix the operand type. 8714 // 8715 // If this is an input value, the bitcast to the new type is done now. 8716 // Bitcast for output value is done at the end of visitInlineAsm(). 8717 if ((OpInfo.Type == InlineAsm::isOutput || 8718 OpInfo.Type == InlineAsm::isInput) && 8719 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8720 // Try to convert to the first EVT that the reg class contains. If the 8721 // types are identical size, use a bitcast to convert (e.g. two differing 8722 // vector types). Note: output bitcast is done at the end of 8723 // visitInlineAsm(). 8724 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8725 // Exclude indirect inputs while they are unsupported because the code 8726 // to perform the load is missing and thus OpInfo.CallOperand still 8727 // refers to the input address rather than the pointed-to value. 8728 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8729 OpInfo.CallOperand = 8730 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8731 OpInfo.ConstraintVT = RegVT; 8732 // If the operand is an FP value and we want it in integer registers, 8733 // use the corresponding integer type. This turns an f64 value into 8734 // i64, which can be passed with two i32 values on a 32-bit machine. 8735 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8736 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8737 if (OpInfo.Type == InlineAsm::isInput) 8738 OpInfo.CallOperand = 8739 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8740 OpInfo.ConstraintVT = VT; 8741 } 8742 } 8743 } 8744 8745 // No need to allocate a matching input constraint since the constraint it's 8746 // matching to has already been allocated. 8747 if (OpInfo.isMatchingInputConstraint()) 8748 return std::nullopt; 8749 8750 EVT ValueVT = OpInfo.ConstraintVT; 8751 if (OpInfo.ConstraintVT == MVT::Other) 8752 ValueVT = RegVT; 8753 8754 // Initialize NumRegs. 8755 unsigned NumRegs = 1; 8756 if (OpInfo.ConstraintVT != MVT::Other) 8757 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8758 8759 // If this is a constraint for a specific physical register, like {r17}, 8760 // assign it now. 8761 8762 // If this associated to a specific register, initialize iterator to correct 8763 // place. If virtual, make sure we have enough registers 8764 8765 // Initialize iterator if necessary 8766 TargetRegisterClass::iterator I = RC->begin(); 8767 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8768 8769 // Do not check for single registers. 8770 if (AssignedReg) { 8771 I = std::find(I, RC->end(), AssignedReg); 8772 if (I == RC->end()) { 8773 // RC does not contain the selected register, which indicates a 8774 // mismatch between the register and the required type/bitwidth. 8775 return {AssignedReg}; 8776 } 8777 } 8778 8779 for (; NumRegs; --NumRegs, ++I) { 8780 assert(I != RC->end() && "Ran out of registers to allocate!"); 8781 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8782 Regs.push_back(R); 8783 } 8784 8785 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8786 return std::nullopt; 8787 } 8788 8789 static unsigned 8790 findMatchingInlineAsmOperand(unsigned OperandNo, 8791 const std::vector<SDValue> &AsmNodeOperands) { 8792 // Scan until we find the definition we already emitted of this operand. 8793 unsigned CurOp = InlineAsm::Op_FirstOperand; 8794 for (; OperandNo; --OperandNo) { 8795 // Advance to the next operand. 8796 unsigned OpFlag = 8797 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8798 assert((InlineAsm::isRegDefKind(OpFlag) || 8799 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8800 InlineAsm::isMemKind(OpFlag)) && 8801 "Skipped past definitions?"); 8802 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8803 } 8804 return CurOp; 8805 } 8806 8807 namespace { 8808 8809 class ExtraFlags { 8810 unsigned Flags = 0; 8811 8812 public: 8813 explicit ExtraFlags(const CallBase &Call) { 8814 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8815 if (IA->hasSideEffects()) 8816 Flags |= InlineAsm::Extra_HasSideEffects; 8817 if (IA->isAlignStack()) 8818 Flags |= InlineAsm::Extra_IsAlignStack; 8819 if (Call.isConvergent()) 8820 Flags |= InlineAsm::Extra_IsConvergent; 8821 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8822 } 8823 8824 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8825 // Ideally, we would only check against memory constraints. However, the 8826 // meaning of an Other constraint can be target-specific and we can't easily 8827 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8828 // for Other constraints as well. 8829 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8830 OpInfo.ConstraintType == TargetLowering::C_Other) { 8831 if (OpInfo.Type == InlineAsm::isInput) 8832 Flags |= InlineAsm::Extra_MayLoad; 8833 else if (OpInfo.Type == InlineAsm::isOutput) 8834 Flags |= InlineAsm::Extra_MayStore; 8835 else if (OpInfo.Type == InlineAsm::isClobber) 8836 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8837 } 8838 } 8839 8840 unsigned get() const { return Flags; } 8841 }; 8842 8843 } // end anonymous namespace 8844 8845 static bool isFunction(SDValue Op) { 8846 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 8847 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8848 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 8849 8850 // In normal "call dllimport func" instruction (non-inlineasm) it force 8851 // indirect access by specifing call opcode. And usually specially print 8852 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 8853 // not do in this way now. (In fact, this is similar with "Data Access" 8854 // action). So here we ignore dllimport function. 8855 if (Fn && !Fn->hasDLLImportStorageClass()) 8856 return true; 8857 } 8858 } 8859 return false; 8860 } 8861 8862 /// visitInlineAsm - Handle a call to an InlineAsm object. 8863 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8864 const BasicBlock *EHPadBB) { 8865 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8866 8867 /// ConstraintOperands - Information about all of the constraints. 8868 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8869 8870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8871 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8872 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8873 8874 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8875 // AsmDialect, MayLoad, MayStore). 8876 bool HasSideEffect = IA->hasSideEffects(); 8877 ExtraFlags ExtraInfo(Call); 8878 8879 for (auto &T : TargetConstraints) { 8880 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8881 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8882 8883 if (OpInfo.CallOperandVal) 8884 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8885 8886 if (!HasSideEffect) 8887 HasSideEffect = OpInfo.hasMemory(TLI); 8888 8889 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8890 // FIXME: Could we compute this on OpInfo rather than T? 8891 8892 // Compute the constraint code and ConstraintType to use. 8893 TLI.ComputeConstraintToUse(T, SDValue()); 8894 8895 if (T.ConstraintType == TargetLowering::C_Immediate && 8896 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8897 // We've delayed emitting a diagnostic like the "n" constraint because 8898 // inlining could cause an integer showing up. 8899 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8900 "' expects an integer constant " 8901 "expression"); 8902 8903 ExtraInfo.update(T); 8904 } 8905 8906 // We won't need to flush pending loads if this asm doesn't touch 8907 // memory and is nonvolatile. 8908 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8909 8910 bool EmitEHLabels = isa<InvokeInst>(Call); 8911 if (EmitEHLabels) { 8912 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8913 } 8914 bool IsCallBr = isa<CallBrInst>(Call); 8915 8916 if (IsCallBr || EmitEHLabels) { 8917 // If this is a callbr or invoke we need to flush pending exports since 8918 // inlineasm_br and invoke are terminators. 8919 // We need to do this before nodes are glued to the inlineasm_br node. 8920 Chain = getControlRoot(); 8921 } 8922 8923 MCSymbol *BeginLabel = nullptr; 8924 if (EmitEHLabels) { 8925 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8926 } 8927 8928 int OpNo = -1; 8929 SmallVector<StringRef> AsmStrs; 8930 IA->collectAsmStrs(AsmStrs); 8931 8932 // Second pass over the constraints: compute which constraint option to use. 8933 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8934 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 8935 OpNo++; 8936 8937 // If this is an output operand with a matching input operand, look up the 8938 // matching input. If their types mismatch, e.g. one is an integer, the 8939 // other is floating point, or their sizes are different, flag it as an 8940 // error. 8941 if (OpInfo.hasMatchingInput()) { 8942 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8943 patchMatchingInput(OpInfo, Input, DAG); 8944 } 8945 8946 // Compute the constraint code and ConstraintType to use. 8947 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8948 8949 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8950 OpInfo.Type == InlineAsm::isClobber) || 8951 OpInfo.ConstraintType == TargetLowering::C_Address) 8952 continue; 8953 8954 // In Linux PIC model, there are 4 cases about value/label addressing: 8955 // 8956 // 1: Function call or Label jmp inside the module. 8957 // 2: Data access (such as global variable, static variable) inside module. 8958 // 3: Function call or Label jmp outside the module. 8959 // 4: Data access (such as global variable) outside the module. 8960 // 8961 // Due to current llvm inline asm architecture designed to not "recognize" 8962 // the asm code, there are quite troubles for us to treat mem addressing 8963 // differently for same value/adress used in different instuctions. 8964 // For example, in pic model, call a func may in plt way or direclty 8965 // pc-related, but lea/mov a function adress may use got. 8966 // 8967 // Here we try to "recognize" function call for the case 1 and case 3 in 8968 // inline asm. And try to adjust the constraint for them. 8969 // 8970 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 8971 // label, so here we don't handle jmp function label now, but we need to 8972 // enhance it (especilly in PIC model) if we meet meaningful requirements. 8973 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 8974 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 8975 TM.getCodeModel() != CodeModel::Large) { 8976 OpInfo.isIndirect = false; 8977 OpInfo.ConstraintType = TargetLowering::C_Address; 8978 } 8979 8980 // If this is a memory input, and if the operand is not indirect, do what we 8981 // need to provide an address for the memory input. 8982 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8983 !OpInfo.isIndirect) { 8984 assert((OpInfo.isMultipleAlternative || 8985 (OpInfo.Type == InlineAsm::isInput)) && 8986 "Can only indirectify direct input operands!"); 8987 8988 // Memory operands really want the address of the value. 8989 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8990 8991 // There is no longer a Value* corresponding to this operand. 8992 OpInfo.CallOperandVal = nullptr; 8993 8994 // It is now an indirect operand. 8995 OpInfo.isIndirect = true; 8996 } 8997 8998 } 8999 9000 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9001 std::vector<SDValue> AsmNodeOperands; 9002 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9003 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9004 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9005 9006 // If we have a !srcloc metadata node associated with it, we want to attach 9007 // this to the ultimately generated inline asm machineinstr. To do this, we 9008 // pass in the third operand as this (potentially null) inline asm MDNode. 9009 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9010 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9011 9012 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9013 // bits as operand 3. 9014 AsmNodeOperands.push_back(DAG.getTargetConstant( 9015 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9016 9017 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9018 // this, assign virtual and physical registers for inputs and otput. 9019 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9020 // Assign Registers. 9021 SDISelAsmOperandInfo &RefOpInfo = 9022 OpInfo.isMatchingInputConstraint() 9023 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9024 : OpInfo; 9025 const auto RegError = 9026 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9027 if (RegError) { 9028 const MachineFunction &MF = DAG.getMachineFunction(); 9029 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9030 const char *RegName = TRI.getName(*RegError); 9031 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9032 "' allocated for constraint '" + 9033 Twine(OpInfo.ConstraintCode) + 9034 "' does not match required type"); 9035 return; 9036 } 9037 9038 auto DetectWriteToReservedRegister = [&]() { 9039 const MachineFunction &MF = DAG.getMachineFunction(); 9040 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9041 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9042 if (Register::isPhysicalRegister(Reg) && 9043 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9044 const char *RegName = TRI.getName(Reg); 9045 emitInlineAsmError(Call, "write to reserved register '" + 9046 Twine(RegName) + "'"); 9047 return true; 9048 } 9049 } 9050 return false; 9051 }; 9052 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9053 (OpInfo.Type == InlineAsm::isInput && 9054 !OpInfo.isMatchingInputConstraint())) && 9055 "Only address as input operand is allowed."); 9056 9057 switch (OpInfo.Type) { 9058 case InlineAsm::isOutput: 9059 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9060 unsigned ConstraintID = 9061 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9062 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9063 "Failed to convert memory constraint code to constraint id."); 9064 9065 // Add information to the INLINEASM node to know about this output. 9066 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9067 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 9068 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9069 MVT::i32)); 9070 AsmNodeOperands.push_back(OpInfo.CallOperand); 9071 } else { 9072 // Otherwise, this outputs to a register (directly for C_Register / 9073 // C_RegisterClass, and a target-defined fashion for 9074 // C_Immediate/C_Other). Find a register that we can use. 9075 if (OpInfo.AssignedRegs.Regs.empty()) { 9076 emitInlineAsmError( 9077 Call, "couldn't allocate output register for constraint '" + 9078 Twine(OpInfo.ConstraintCode) + "'"); 9079 return; 9080 } 9081 9082 if (DetectWriteToReservedRegister()) 9083 return; 9084 9085 // Add information to the INLINEASM node to know that this register is 9086 // set. 9087 OpInfo.AssignedRegs.AddInlineAsmOperands( 9088 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 9089 : InlineAsm::Kind_RegDef, 9090 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9091 } 9092 break; 9093 9094 case InlineAsm::isInput: 9095 case InlineAsm::isLabel: { 9096 SDValue InOperandVal = OpInfo.CallOperand; 9097 9098 if (OpInfo.isMatchingInputConstraint()) { 9099 // If this is required to match an output register we have already set, 9100 // just use its register. 9101 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9102 AsmNodeOperands); 9103 unsigned OpFlag = 9104 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9105 if (InlineAsm::isRegDefKind(OpFlag) || 9106 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9107 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9108 if (OpInfo.isIndirect) { 9109 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9110 emitInlineAsmError(Call, "inline asm not supported yet: " 9111 "don't know how to handle tied " 9112 "indirect register inputs"); 9113 return; 9114 } 9115 9116 SmallVector<unsigned, 4> Regs; 9117 MachineFunction &MF = DAG.getMachineFunction(); 9118 MachineRegisterInfo &MRI = MF.getRegInfo(); 9119 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9120 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9121 Register TiedReg = R->getReg(); 9122 MVT RegVT = R->getSimpleValueType(0); 9123 const TargetRegisterClass *RC = 9124 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9125 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9126 : TRI.getMinimalPhysRegClass(TiedReg); 9127 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9128 for (unsigned i = 0; i != NumRegs; ++i) 9129 Regs.push_back(MRI.createVirtualRegister(RC)); 9130 9131 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9132 9133 SDLoc dl = getCurSDLoc(); 9134 // Use the produced MatchedRegs object to 9135 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9136 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9137 true, OpInfo.getMatchedOperand(), dl, 9138 DAG, AsmNodeOperands); 9139 break; 9140 } 9141 9142 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9143 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9144 "Unexpected number of operands"); 9145 // Add information to the INLINEASM node to know about this input. 9146 // See InlineAsm.h isUseOperandTiedToDef. 9147 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9148 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9149 OpInfo.getMatchedOperand()); 9150 AsmNodeOperands.push_back(DAG.getTargetConstant( 9151 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9152 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9153 break; 9154 } 9155 9156 // Treat indirect 'X' constraint as memory. 9157 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9158 OpInfo.isIndirect) 9159 OpInfo.ConstraintType = TargetLowering::C_Memory; 9160 9161 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9162 OpInfo.ConstraintType == TargetLowering::C_Other) { 9163 std::vector<SDValue> Ops; 9164 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9165 Ops, DAG); 9166 if (Ops.empty()) { 9167 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9168 if (isa<ConstantSDNode>(InOperandVal)) { 9169 emitInlineAsmError(Call, "value out of range for constraint '" + 9170 Twine(OpInfo.ConstraintCode) + "'"); 9171 return; 9172 } 9173 9174 emitInlineAsmError(Call, 9175 "invalid operand for inline asm constraint '" + 9176 Twine(OpInfo.ConstraintCode) + "'"); 9177 return; 9178 } 9179 9180 // Add information to the INLINEASM node to know about this input. 9181 unsigned ResOpType = 9182 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9183 AsmNodeOperands.push_back(DAG.getTargetConstant( 9184 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9185 llvm::append_range(AsmNodeOperands, Ops); 9186 break; 9187 } 9188 9189 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9190 assert((OpInfo.isIndirect || 9191 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9192 "Operand must be indirect to be a mem!"); 9193 assert(InOperandVal.getValueType() == 9194 TLI.getPointerTy(DAG.getDataLayout()) && 9195 "Memory operands expect pointer values"); 9196 9197 unsigned ConstraintID = 9198 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9199 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9200 "Failed to convert memory constraint code to constraint id."); 9201 9202 // Add information to the INLINEASM node to know about this input. 9203 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9204 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9205 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9206 getCurSDLoc(), 9207 MVT::i32)); 9208 AsmNodeOperands.push_back(InOperandVal); 9209 break; 9210 } 9211 9212 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9213 assert(InOperandVal.getValueType() == 9214 TLI.getPointerTy(DAG.getDataLayout()) && 9215 "Address operands expect pointer values"); 9216 9217 unsigned ConstraintID = 9218 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9219 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9220 "Failed to convert memory constraint code to constraint id."); 9221 9222 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9223 9224 SDValue AsmOp = InOperandVal; 9225 if (isFunction(InOperandVal)) { 9226 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9227 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9228 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9229 InOperandVal.getValueType(), 9230 GA->getOffset()); 9231 } 9232 9233 // Add information to the INLINEASM node to know about this input. 9234 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9235 9236 AsmNodeOperands.push_back( 9237 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9238 9239 AsmNodeOperands.push_back(AsmOp); 9240 break; 9241 } 9242 9243 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9244 OpInfo.ConstraintType == TargetLowering::C_Register) && 9245 "Unknown constraint type!"); 9246 9247 // TODO: Support this. 9248 if (OpInfo.isIndirect) { 9249 emitInlineAsmError( 9250 Call, "Don't know how to handle indirect register inputs yet " 9251 "for constraint '" + 9252 Twine(OpInfo.ConstraintCode) + "'"); 9253 return; 9254 } 9255 9256 // Copy the input into the appropriate registers. 9257 if (OpInfo.AssignedRegs.Regs.empty()) { 9258 emitInlineAsmError(Call, 9259 "couldn't allocate input reg for constraint '" + 9260 Twine(OpInfo.ConstraintCode) + "'"); 9261 return; 9262 } 9263 9264 if (DetectWriteToReservedRegister()) 9265 return; 9266 9267 SDLoc dl = getCurSDLoc(); 9268 9269 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9270 &Call); 9271 9272 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9273 dl, DAG, AsmNodeOperands); 9274 break; 9275 } 9276 case InlineAsm::isClobber: 9277 // Add the clobbered value to the operand list, so that the register 9278 // allocator is aware that the physreg got clobbered. 9279 if (!OpInfo.AssignedRegs.Regs.empty()) 9280 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9281 false, 0, getCurSDLoc(), DAG, 9282 AsmNodeOperands); 9283 break; 9284 } 9285 } 9286 9287 // Finish up input operands. Set the input chain and add the flag last. 9288 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9289 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9290 9291 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9292 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9293 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9294 Flag = Chain.getValue(1); 9295 9296 // Do additional work to generate outputs. 9297 9298 SmallVector<EVT, 1> ResultVTs; 9299 SmallVector<SDValue, 1> ResultValues; 9300 SmallVector<SDValue, 8> OutChains; 9301 9302 llvm::Type *CallResultType = Call.getType(); 9303 ArrayRef<Type *> ResultTypes; 9304 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9305 ResultTypes = StructResult->elements(); 9306 else if (!CallResultType->isVoidTy()) 9307 ResultTypes = ArrayRef(CallResultType); 9308 9309 auto CurResultType = ResultTypes.begin(); 9310 auto handleRegAssign = [&](SDValue V) { 9311 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9312 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9313 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9314 ++CurResultType; 9315 // If the type of the inline asm call site return value is different but has 9316 // same size as the type of the asm output bitcast it. One example of this 9317 // is for vectors with different width / number of elements. This can 9318 // happen for register classes that can contain multiple different value 9319 // types. The preg or vreg allocated may not have the same VT as was 9320 // expected. 9321 // 9322 // This can also happen for a return value that disagrees with the register 9323 // class it is put in, eg. a double in a general-purpose register on a 9324 // 32-bit machine. 9325 if (ResultVT != V.getValueType() && 9326 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9327 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9328 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9329 V.getValueType().isInteger()) { 9330 // If a result value was tied to an input value, the computed result 9331 // may have a wider width than the expected result. Extract the 9332 // relevant portion. 9333 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9334 } 9335 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9336 ResultVTs.push_back(ResultVT); 9337 ResultValues.push_back(V); 9338 }; 9339 9340 // Deal with output operands. 9341 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9342 if (OpInfo.Type == InlineAsm::isOutput) { 9343 SDValue Val; 9344 // Skip trivial output operands. 9345 if (OpInfo.AssignedRegs.Regs.empty()) 9346 continue; 9347 9348 switch (OpInfo.ConstraintType) { 9349 case TargetLowering::C_Register: 9350 case TargetLowering::C_RegisterClass: 9351 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9352 Chain, &Flag, &Call); 9353 break; 9354 case TargetLowering::C_Immediate: 9355 case TargetLowering::C_Other: 9356 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9357 OpInfo, DAG); 9358 break; 9359 case TargetLowering::C_Memory: 9360 break; // Already handled. 9361 case TargetLowering::C_Address: 9362 break; // Silence warning. 9363 case TargetLowering::C_Unknown: 9364 assert(false && "Unexpected unknown constraint"); 9365 } 9366 9367 // Indirect output manifest as stores. Record output chains. 9368 if (OpInfo.isIndirect) { 9369 const Value *Ptr = OpInfo.CallOperandVal; 9370 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9371 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9372 MachinePointerInfo(Ptr)); 9373 OutChains.push_back(Store); 9374 } else { 9375 // generate CopyFromRegs to associated registers. 9376 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9377 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9378 for (const SDValue &V : Val->op_values()) 9379 handleRegAssign(V); 9380 } else 9381 handleRegAssign(Val); 9382 } 9383 } 9384 } 9385 9386 // Set results. 9387 if (!ResultValues.empty()) { 9388 assert(CurResultType == ResultTypes.end() && 9389 "Mismatch in number of ResultTypes"); 9390 assert(ResultValues.size() == ResultTypes.size() && 9391 "Mismatch in number of output operands in asm result"); 9392 9393 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9394 DAG.getVTList(ResultVTs), ResultValues); 9395 setValue(&Call, V); 9396 } 9397 9398 // Collect store chains. 9399 if (!OutChains.empty()) 9400 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9401 9402 if (EmitEHLabels) { 9403 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9404 } 9405 9406 // Only Update Root if inline assembly has a memory effect. 9407 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9408 EmitEHLabels) 9409 DAG.setRoot(Chain); 9410 } 9411 9412 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9413 const Twine &Message) { 9414 LLVMContext &Ctx = *DAG.getContext(); 9415 Ctx.emitError(&Call, Message); 9416 9417 // Make sure we leave the DAG in a valid state 9418 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9419 SmallVector<EVT, 1> ValueVTs; 9420 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9421 9422 if (ValueVTs.empty()) 9423 return; 9424 9425 SmallVector<SDValue, 1> Ops; 9426 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9427 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9428 9429 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9430 } 9431 9432 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9433 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9434 MVT::Other, getRoot(), 9435 getValue(I.getArgOperand(0)), 9436 DAG.getSrcValue(I.getArgOperand(0)))); 9437 } 9438 9439 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9441 const DataLayout &DL = DAG.getDataLayout(); 9442 SDValue V = DAG.getVAArg( 9443 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9444 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9445 DL.getABITypeAlign(I.getType()).value()); 9446 DAG.setRoot(V.getValue(1)); 9447 9448 if (I.getType()->isPointerTy()) 9449 V = DAG.getPtrExtOrTrunc( 9450 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9451 setValue(&I, V); 9452 } 9453 9454 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9455 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9456 MVT::Other, getRoot(), 9457 getValue(I.getArgOperand(0)), 9458 DAG.getSrcValue(I.getArgOperand(0)))); 9459 } 9460 9461 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9462 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9463 MVT::Other, getRoot(), 9464 getValue(I.getArgOperand(0)), 9465 getValue(I.getArgOperand(1)), 9466 DAG.getSrcValue(I.getArgOperand(0)), 9467 DAG.getSrcValue(I.getArgOperand(1)))); 9468 } 9469 9470 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9471 const Instruction &I, 9472 SDValue Op) { 9473 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9474 if (!Range) 9475 return Op; 9476 9477 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9478 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9479 return Op; 9480 9481 APInt Lo = CR.getUnsignedMin(); 9482 if (!Lo.isMinValue()) 9483 return Op; 9484 9485 APInt Hi = CR.getUnsignedMax(); 9486 unsigned Bits = std::max(Hi.getActiveBits(), 9487 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9488 9489 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9490 9491 SDLoc SL = getCurSDLoc(); 9492 9493 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9494 DAG.getValueType(SmallVT)); 9495 unsigned NumVals = Op.getNode()->getNumValues(); 9496 if (NumVals == 1) 9497 return ZExt; 9498 9499 SmallVector<SDValue, 4> Ops; 9500 9501 Ops.push_back(ZExt); 9502 for (unsigned I = 1; I != NumVals; ++I) 9503 Ops.push_back(Op.getValue(I)); 9504 9505 return DAG.getMergeValues(Ops, SL); 9506 } 9507 9508 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9509 /// the call being lowered. 9510 /// 9511 /// This is a helper for lowering intrinsics that follow a target calling 9512 /// convention or require stack pointer adjustment. Only a subset of the 9513 /// intrinsic's operands need to participate in the calling convention. 9514 void SelectionDAGBuilder::populateCallLoweringInfo( 9515 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9516 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9517 bool IsPatchPoint) { 9518 TargetLowering::ArgListTy Args; 9519 Args.reserve(NumArgs); 9520 9521 // Populate the argument list. 9522 // Attributes for args start at offset 1, after the return attribute. 9523 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9524 ArgI != ArgE; ++ArgI) { 9525 const Value *V = Call->getOperand(ArgI); 9526 9527 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9528 9529 TargetLowering::ArgListEntry Entry; 9530 Entry.Node = getValue(V); 9531 Entry.Ty = V->getType(); 9532 Entry.setAttributes(Call, ArgI); 9533 Args.push_back(Entry); 9534 } 9535 9536 CLI.setDebugLoc(getCurSDLoc()) 9537 .setChain(getRoot()) 9538 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9539 .setDiscardResult(Call->use_empty()) 9540 .setIsPatchPoint(IsPatchPoint) 9541 .setIsPreallocated( 9542 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9543 } 9544 9545 /// Add a stack map intrinsic call's live variable operands to a stackmap 9546 /// or patchpoint target node's operand list. 9547 /// 9548 /// Constants are converted to TargetConstants purely as an optimization to 9549 /// avoid constant materialization and register allocation. 9550 /// 9551 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9552 /// generate addess computation nodes, and so FinalizeISel can convert the 9553 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9554 /// address materialization and register allocation, but may also be required 9555 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9556 /// alloca in the entry block, then the runtime may assume that the alloca's 9557 /// StackMap location can be read immediately after compilation and that the 9558 /// location is valid at any point during execution (this is similar to the 9559 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9560 /// only available in a register, then the runtime would need to trap when 9561 /// execution reaches the StackMap in order to read the alloca's location. 9562 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9563 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9564 SelectionDAGBuilder &Builder) { 9565 SelectionDAG &DAG = Builder.DAG; 9566 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9567 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9568 9569 // Things on the stack are pointer-typed, meaning that they are already 9570 // legal and can be emitted directly to target nodes. 9571 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9572 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9573 } else { 9574 // Otherwise emit a target independent node to be legalised. 9575 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9576 } 9577 } 9578 } 9579 9580 /// Lower llvm.experimental.stackmap. 9581 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9582 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9583 // [live variables...]) 9584 9585 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9586 9587 SDValue Chain, InFlag, Callee; 9588 SmallVector<SDValue, 32> Ops; 9589 9590 SDLoc DL = getCurSDLoc(); 9591 Callee = getValue(CI.getCalledOperand()); 9592 9593 // The stackmap intrinsic only records the live variables (the arguments 9594 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9595 // intrinsic, this won't be lowered to a function call. This means we don't 9596 // have to worry about calling conventions and target specific lowering code. 9597 // Instead we perform the call lowering right here. 9598 // 9599 // chain, flag = CALLSEQ_START(chain, 0, 0) 9600 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9601 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9602 // 9603 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9604 InFlag = Chain.getValue(1); 9605 9606 // Add the STACKMAP operands, starting with DAG house-keeping. 9607 Ops.push_back(Chain); 9608 Ops.push_back(InFlag); 9609 9610 // Add the <id>, <numShadowBytes> operands. 9611 // 9612 // These do not require legalisation, and can be emitted directly to target 9613 // constant nodes. 9614 SDValue ID = getValue(CI.getArgOperand(0)); 9615 assert(ID.getValueType() == MVT::i64); 9616 SDValue IDConst = DAG.getTargetConstant( 9617 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9618 Ops.push_back(IDConst); 9619 9620 SDValue Shad = getValue(CI.getArgOperand(1)); 9621 assert(Shad.getValueType() == MVT::i32); 9622 SDValue ShadConst = DAG.getTargetConstant( 9623 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9624 Ops.push_back(ShadConst); 9625 9626 // Add the live variables. 9627 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9628 9629 // Create the STACKMAP node. 9630 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9631 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9632 InFlag = Chain.getValue(1); 9633 9634 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9635 9636 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9637 9638 // Set the root to the target-lowered call chain. 9639 DAG.setRoot(Chain); 9640 9641 // Inform the Frame Information that we have a stackmap in this function. 9642 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9643 } 9644 9645 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9646 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9647 const BasicBlock *EHPadBB) { 9648 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9649 // i32 <numBytes>, 9650 // i8* <target>, 9651 // i32 <numArgs>, 9652 // [Args...], 9653 // [live variables...]) 9654 9655 CallingConv::ID CC = CB.getCallingConv(); 9656 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9657 bool HasDef = !CB.getType()->isVoidTy(); 9658 SDLoc dl = getCurSDLoc(); 9659 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9660 9661 // Handle immediate and symbolic callees. 9662 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9663 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9664 /*isTarget=*/true); 9665 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9666 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9667 SDLoc(SymbolicCallee), 9668 SymbolicCallee->getValueType(0)); 9669 9670 // Get the real number of arguments participating in the call <numArgs> 9671 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9672 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9673 9674 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9675 // Intrinsics include all meta-operands up to but not including CC. 9676 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9677 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9678 "Not enough arguments provided to the patchpoint intrinsic"); 9679 9680 // For AnyRegCC the arguments are lowered later on manually. 9681 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9682 Type *ReturnTy = 9683 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9684 9685 TargetLowering::CallLoweringInfo CLI(DAG); 9686 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9687 ReturnTy, true); 9688 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9689 9690 SDNode *CallEnd = Result.second.getNode(); 9691 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9692 CallEnd = CallEnd->getOperand(0).getNode(); 9693 9694 /// Get a call instruction from the call sequence chain. 9695 /// Tail calls are not allowed. 9696 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9697 "Expected a callseq node."); 9698 SDNode *Call = CallEnd->getOperand(0).getNode(); 9699 bool HasGlue = Call->getGluedNode(); 9700 9701 // Replace the target specific call node with the patchable intrinsic. 9702 SmallVector<SDValue, 8> Ops; 9703 9704 // Push the chain. 9705 Ops.push_back(*(Call->op_begin())); 9706 9707 // Optionally, push the glue (if any). 9708 if (HasGlue) 9709 Ops.push_back(*(Call->op_end() - 1)); 9710 9711 // Push the register mask info. 9712 if (HasGlue) 9713 Ops.push_back(*(Call->op_end() - 2)); 9714 else 9715 Ops.push_back(*(Call->op_end() - 1)); 9716 9717 // Add the <id> and <numBytes> constants. 9718 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9719 Ops.push_back(DAG.getTargetConstant( 9720 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9721 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9722 Ops.push_back(DAG.getTargetConstant( 9723 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9724 MVT::i32)); 9725 9726 // Add the callee. 9727 Ops.push_back(Callee); 9728 9729 // Adjust <numArgs> to account for any arguments that have been passed on the 9730 // stack instead. 9731 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9732 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9733 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9734 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9735 9736 // Add the calling convention 9737 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9738 9739 // Add the arguments we omitted previously. The register allocator should 9740 // place these in any free register. 9741 if (IsAnyRegCC) 9742 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9743 Ops.push_back(getValue(CB.getArgOperand(i))); 9744 9745 // Push the arguments from the call instruction. 9746 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9747 Ops.append(Call->op_begin() + 2, e); 9748 9749 // Push live variables for the stack map. 9750 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9751 9752 SDVTList NodeTys; 9753 if (IsAnyRegCC && HasDef) { 9754 // Create the return types based on the intrinsic definition 9755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9756 SmallVector<EVT, 3> ValueVTs; 9757 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9758 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9759 9760 // There is always a chain and a glue type at the end 9761 ValueVTs.push_back(MVT::Other); 9762 ValueVTs.push_back(MVT::Glue); 9763 NodeTys = DAG.getVTList(ValueVTs); 9764 } else 9765 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9766 9767 // Replace the target specific call node with a PATCHPOINT node. 9768 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9769 9770 // Update the NodeMap. 9771 if (HasDef) { 9772 if (IsAnyRegCC) 9773 setValue(&CB, SDValue(PPV.getNode(), 0)); 9774 else 9775 setValue(&CB, Result.first); 9776 } 9777 9778 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9779 // call sequence. Furthermore the location of the chain and glue can change 9780 // when the AnyReg calling convention is used and the intrinsic returns a 9781 // value. 9782 if (IsAnyRegCC && HasDef) { 9783 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9784 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9785 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9786 } else 9787 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9788 DAG.DeleteNode(Call); 9789 9790 // Inform the Frame Information that we have a patchpoint in this function. 9791 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9792 } 9793 9794 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9795 unsigned Intrinsic) { 9796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9797 SDValue Op1 = getValue(I.getArgOperand(0)); 9798 SDValue Op2; 9799 if (I.arg_size() > 1) 9800 Op2 = getValue(I.getArgOperand(1)); 9801 SDLoc dl = getCurSDLoc(); 9802 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9803 SDValue Res; 9804 SDNodeFlags SDFlags; 9805 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9806 SDFlags.copyFMF(*FPMO); 9807 9808 switch (Intrinsic) { 9809 case Intrinsic::vector_reduce_fadd: 9810 if (SDFlags.hasAllowReassociation()) 9811 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9812 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9813 SDFlags); 9814 else 9815 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9816 break; 9817 case Intrinsic::vector_reduce_fmul: 9818 if (SDFlags.hasAllowReassociation()) 9819 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9820 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9821 SDFlags); 9822 else 9823 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9824 break; 9825 case Intrinsic::vector_reduce_add: 9826 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9827 break; 9828 case Intrinsic::vector_reduce_mul: 9829 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9830 break; 9831 case Intrinsic::vector_reduce_and: 9832 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9833 break; 9834 case Intrinsic::vector_reduce_or: 9835 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9836 break; 9837 case Intrinsic::vector_reduce_xor: 9838 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9839 break; 9840 case Intrinsic::vector_reduce_smax: 9841 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9842 break; 9843 case Intrinsic::vector_reduce_smin: 9844 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9845 break; 9846 case Intrinsic::vector_reduce_umax: 9847 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9848 break; 9849 case Intrinsic::vector_reduce_umin: 9850 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9851 break; 9852 case Intrinsic::vector_reduce_fmax: 9853 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9854 break; 9855 case Intrinsic::vector_reduce_fmin: 9856 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9857 break; 9858 default: 9859 llvm_unreachable("Unhandled vector reduce intrinsic"); 9860 } 9861 setValue(&I, Res); 9862 } 9863 9864 /// Returns an AttributeList representing the attributes applied to the return 9865 /// value of the given call. 9866 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9867 SmallVector<Attribute::AttrKind, 2> Attrs; 9868 if (CLI.RetSExt) 9869 Attrs.push_back(Attribute::SExt); 9870 if (CLI.RetZExt) 9871 Attrs.push_back(Attribute::ZExt); 9872 if (CLI.IsInReg) 9873 Attrs.push_back(Attribute::InReg); 9874 9875 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9876 Attrs); 9877 } 9878 9879 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9880 /// implementation, which just calls LowerCall. 9881 /// FIXME: When all targets are 9882 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9883 std::pair<SDValue, SDValue> 9884 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9885 // Handle the incoming return values from the call. 9886 CLI.Ins.clear(); 9887 Type *OrigRetTy = CLI.RetTy; 9888 SmallVector<EVT, 4> RetTys; 9889 SmallVector<uint64_t, 4> Offsets; 9890 auto &DL = CLI.DAG.getDataLayout(); 9891 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9892 9893 if (CLI.IsPostTypeLegalization) { 9894 // If we are lowering a libcall after legalization, split the return type. 9895 SmallVector<EVT, 4> OldRetTys; 9896 SmallVector<uint64_t, 4> OldOffsets; 9897 RetTys.swap(OldRetTys); 9898 Offsets.swap(OldOffsets); 9899 9900 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9901 EVT RetVT = OldRetTys[i]; 9902 uint64_t Offset = OldOffsets[i]; 9903 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9904 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9905 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9906 RetTys.append(NumRegs, RegisterVT); 9907 for (unsigned j = 0; j != NumRegs; ++j) 9908 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9909 } 9910 } 9911 9912 SmallVector<ISD::OutputArg, 4> Outs; 9913 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9914 9915 bool CanLowerReturn = 9916 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9917 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9918 9919 SDValue DemoteStackSlot; 9920 int DemoteStackIdx = -100; 9921 if (!CanLowerReturn) { 9922 // FIXME: equivalent assert? 9923 // assert(!CS.hasInAllocaArgument() && 9924 // "sret demotion is incompatible with inalloca"); 9925 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9926 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9927 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9928 DemoteStackIdx = 9929 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9930 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9931 DL.getAllocaAddrSpace()); 9932 9933 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9934 ArgListEntry Entry; 9935 Entry.Node = DemoteStackSlot; 9936 Entry.Ty = StackSlotPtrType; 9937 Entry.IsSExt = false; 9938 Entry.IsZExt = false; 9939 Entry.IsInReg = false; 9940 Entry.IsSRet = true; 9941 Entry.IsNest = false; 9942 Entry.IsByVal = false; 9943 Entry.IsByRef = false; 9944 Entry.IsReturned = false; 9945 Entry.IsSwiftSelf = false; 9946 Entry.IsSwiftAsync = false; 9947 Entry.IsSwiftError = false; 9948 Entry.IsCFGuardTarget = false; 9949 Entry.Alignment = Alignment; 9950 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9951 CLI.NumFixedArgs += 1; 9952 CLI.getArgs()[0].IndirectType = CLI.RetTy; 9953 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9954 9955 // sret demotion isn't compatible with tail-calls, since the sret argument 9956 // points into the callers stack frame. 9957 CLI.IsTailCall = false; 9958 } else { 9959 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9960 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9961 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9962 ISD::ArgFlagsTy Flags; 9963 if (NeedsRegBlock) { 9964 Flags.setInConsecutiveRegs(); 9965 if (I == RetTys.size() - 1) 9966 Flags.setInConsecutiveRegsLast(); 9967 } 9968 EVT VT = RetTys[I]; 9969 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9970 CLI.CallConv, VT); 9971 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9972 CLI.CallConv, VT); 9973 for (unsigned i = 0; i != NumRegs; ++i) { 9974 ISD::InputArg MyFlags; 9975 MyFlags.Flags = Flags; 9976 MyFlags.VT = RegisterVT; 9977 MyFlags.ArgVT = VT; 9978 MyFlags.Used = CLI.IsReturnValueUsed; 9979 if (CLI.RetTy->isPointerTy()) { 9980 MyFlags.Flags.setPointer(); 9981 MyFlags.Flags.setPointerAddrSpace( 9982 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9983 } 9984 if (CLI.RetSExt) 9985 MyFlags.Flags.setSExt(); 9986 if (CLI.RetZExt) 9987 MyFlags.Flags.setZExt(); 9988 if (CLI.IsInReg) 9989 MyFlags.Flags.setInReg(); 9990 CLI.Ins.push_back(MyFlags); 9991 } 9992 } 9993 } 9994 9995 // We push in swifterror return as the last element of CLI.Ins. 9996 ArgListTy &Args = CLI.getArgs(); 9997 if (supportSwiftError()) { 9998 for (const ArgListEntry &Arg : Args) { 9999 if (Arg.IsSwiftError) { 10000 ISD::InputArg MyFlags; 10001 MyFlags.VT = getPointerTy(DL); 10002 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10003 MyFlags.Flags.setSwiftError(); 10004 CLI.Ins.push_back(MyFlags); 10005 } 10006 } 10007 } 10008 10009 // Handle all of the outgoing arguments. 10010 CLI.Outs.clear(); 10011 CLI.OutVals.clear(); 10012 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10013 SmallVector<EVT, 4> ValueVTs; 10014 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10015 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10016 Type *FinalType = Args[i].Ty; 10017 if (Args[i].IsByVal) 10018 FinalType = Args[i].IndirectType; 10019 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10020 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10021 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10022 ++Value) { 10023 EVT VT = ValueVTs[Value]; 10024 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10025 SDValue Op = SDValue(Args[i].Node.getNode(), 10026 Args[i].Node.getResNo() + Value); 10027 ISD::ArgFlagsTy Flags; 10028 10029 // Certain targets (such as MIPS), may have a different ABI alignment 10030 // for a type depending on the context. Give the target a chance to 10031 // specify the alignment it wants. 10032 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10033 Flags.setOrigAlign(OriginalAlignment); 10034 10035 if (Args[i].Ty->isPointerTy()) { 10036 Flags.setPointer(); 10037 Flags.setPointerAddrSpace( 10038 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10039 } 10040 if (Args[i].IsZExt) 10041 Flags.setZExt(); 10042 if (Args[i].IsSExt) 10043 Flags.setSExt(); 10044 if (Args[i].IsInReg) { 10045 // If we are using vectorcall calling convention, a structure that is 10046 // passed InReg - is surely an HVA 10047 if (CLI.CallConv == CallingConv::X86_VectorCall && 10048 isa<StructType>(FinalType)) { 10049 // The first value of a structure is marked 10050 if (0 == Value) 10051 Flags.setHvaStart(); 10052 Flags.setHva(); 10053 } 10054 // Set InReg Flag 10055 Flags.setInReg(); 10056 } 10057 if (Args[i].IsSRet) 10058 Flags.setSRet(); 10059 if (Args[i].IsSwiftSelf) 10060 Flags.setSwiftSelf(); 10061 if (Args[i].IsSwiftAsync) 10062 Flags.setSwiftAsync(); 10063 if (Args[i].IsSwiftError) 10064 Flags.setSwiftError(); 10065 if (Args[i].IsCFGuardTarget) 10066 Flags.setCFGuardTarget(); 10067 if (Args[i].IsByVal) 10068 Flags.setByVal(); 10069 if (Args[i].IsByRef) 10070 Flags.setByRef(); 10071 if (Args[i].IsPreallocated) { 10072 Flags.setPreallocated(); 10073 // Set the byval flag for CCAssignFn callbacks that don't know about 10074 // preallocated. This way we can know how many bytes we should've 10075 // allocated and how many bytes a callee cleanup function will pop. If 10076 // we port preallocated to more targets, we'll have to add custom 10077 // preallocated handling in the various CC lowering callbacks. 10078 Flags.setByVal(); 10079 } 10080 if (Args[i].IsInAlloca) { 10081 Flags.setInAlloca(); 10082 // Set the byval flag for CCAssignFn callbacks that don't know about 10083 // inalloca. This way we can know how many bytes we should've allocated 10084 // and how many bytes a callee cleanup function will pop. If we port 10085 // inalloca to more targets, we'll have to add custom inalloca handling 10086 // in the various CC lowering callbacks. 10087 Flags.setByVal(); 10088 } 10089 Align MemAlign; 10090 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10091 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10092 Flags.setByValSize(FrameSize); 10093 10094 // info is not there but there are cases it cannot get right. 10095 if (auto MA = Args[i].Alignment) 10096 MemAlign = *MA; 10097 else 10098 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10099 } else if (auto MA = Args[i].Alignment) { 10100 MemAlign = *MA; 10101 } else { 10102 MemAlign = OriginalAlignment; 10103 } 10104 Flags.setMemAlign(MemAlign); 10105 if (Args[i].IsNest) 10106 Flags.setNest(); 10107 if (NeedsRegBlock) 10108 Flags.setInConsecutiveRegs(); 10109 10110 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10111 CLI.CallConv, VT); 10112 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10113 CLI.CallConv, VT); 10114 SmallVector<SDValue, 4> Parts(NumParts); 10115 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10116 10117 if (Args[i].IsSExt) 10118 ExtendKind = ISD::SIGN_EXTEND; 10119 else if (Args[i].IsZExt) 10120 ExtendKind = ISD::ZERO_EXTEND; 10121 10122 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10123 // for now. 10124 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10125 CanLowerReturn) { 10126 assert((CLI.RetTy == Args[i].Ty || 10127 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10128 CLI.RetTy->getPointerAddressSpace() == 10129 Args[i].Ty->getPointerAddressSpace())) && 10130 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10131 // Before passing 'returned' to the target lowering code, ensure that 10132 // either the register MVT and the actual EVT are the same size or that 10133 // the return value and argument are extended in the same way; in these 10134 // cases it's safe to pass the argument register value unchanged as the 10135 // return register value (although it's at the target's option whether 10136 // to do so) 10137 // TODO: allow code generation to take advantage of partially preserved 10138 // registers rather than clobbering the entire register when the 10139 // parameter extension method is not compatible with the return 10140 // extension method 10141 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10142 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10143 CLI.RetZExt == Args[i].IsZExt)) 10144 Flags.setReturned(); 10145 } 10146 10147 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10148 CLI.CallConv, ExtendKind); 10149 10150 for (unsigned j = 0; j != NumParts; ++j) { 10151 // if it isn't first piece, alignment must be 1 10152 // For scalable vectors the scalable part is currently handled 10153 // by individual targets, so we just use the known minimum size here. 10154 ISD::OutputArg MyFlags( 10155 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10156 i < CLI.NumFixedArgs, i, 10157 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10158 if (NumParts > 1 && j == 0) 10159 MyFlags.Flags.setSplit(); 10160 else if (j != 0) { 10161 MyFlags.Flags.setOrigAlign(Align(1)); 10162 if (j == NumParts - 1) 10163 MyFlags.Flags.setSplitEnd(); 10164 } 10165 10166 CLI.Outs.push_back(MyFlags); 10167 CLI.OutVals.push_back(Parts[j]); 10168 } 10169 10170 if (NeedsRegBlock && Value == NumValues - 1) 10171 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10172 } 10173 } 10174 10175 SmallVector<SDValue, 4> InVals; 10176 CLI.Chain = LowerCall(CLI, InVals); 10177 10178 // Update CLI.InVals to use outside of this function. 10179 CLI.InVals = InVals; 10180 10181 // Verify that the target's LowerCall behaved as expected. 10182 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10183 "LowerCall didn't return a valid chain!"); 10184 assert((!CLI.IsTailCall || InVals.empty()) && 10185 "LowerCall emitted a return value for a tail call!"); 10186 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10187 "LowerCall didn't emit the correct number of values!"); 10188 10189 // For a tail call, the return value is merely live-out and there aren't 10190 // any nodes in the DAG representing it. Return a special value to 10191 // indicate that a tail call has been emitted and no more Instructions 10192 // should be processed in the current block. 10193 if (CLI.IsTailCall) { 10194 CLI.DAG.setRoot(CLI.Chain); 10195 return std::make_pair(SDValue(), SDValue()); 10196 } 10197 10198 #ifndef NDEBUG 10199 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10200 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10201 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10202 "LowerCall emitted a value with the wrong type!"); 10203 } 10204 #endif 10205 10206 SmallVector<SDValue, 4> ReturnValues; 10207 if (!CanLowerReturn) { 10208 // The instruction result is the result of loading from the 10209 // hidden sret parameter. 10210 SmallVector<EVT, 1> PVTs; 10211 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10212 10213 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10214 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10215 EVT PtrVT = PVTs[0]; 10216 10217 unsigned NumValues = RetTys.size(); 10218 ReturnValues.resize(NumValues); 10219 SmallVector<SDValue, 4> Chains(NumValues); 10220 10221 // An aggregate return value cannot wrap around the address space, so 10222 // offsets to its parts don't wrap either. 10223 SDNodeFlags Flags; 10224 Flags.setNoUnsignedWrap(true); 10225 10226 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10227 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10228 for (unsigned i = 0; i < NumValues; ++i) { 10229 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10230 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10231 PtrVT), Flags); 10232 SDValue L = CLI.DAG.getLoad( 10233 RetTys[i], CLI.DL, CLI.Chain, Add, 10234 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10235 DemoteStackIdx, Offsets[i]), 10236 HiddenSRetAlign); 10237 ReturnValues[i] = L; 10238 Chains[i] = L.getValue(1); 10239 } 10240 10241 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10242 } else { 10243 // Collect the legal value parts into potentially illegal values 10244 // that correspond to the original function's return values. 10245 std::optional<ISD::NodeType> AssertOp; 10246 if (CLI.RetSExt) 10247 AssertOp = ISD::AssertSext; 10248 else if (CLI.RetZExt) 10249 AssertOp = ISD::AssertZext; 10250 unsigned CurReg = 0; 10251 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10252 EVT VT = RetTys[I]; 10253 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10254 CLI.CallConv, VT); 10255 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10256 CLI.CallConv, VT); 10257 10258 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10259 NumRegs, RegisterVT, VT, nullptr, 10260 CLI.CallConv, AssertOp)); 10261 CurReg += NumRegs; 10262 } 10263 10264 // For a function returning void, there is no return value. We can't create 10265 // such a node, so we just return a null return value in that case. In 10266 // that case, nothing will actually look at the value. 10267 if (ReturnValues.empty()) 10268 return std::make_pair(SDValue(), CLI.Chain); 10269 } 10270 10271 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10272 CLI.DAG.getVTList(RetTys), ReturnValues); 10273 return std::make_pair(Res, CLI.Chain); 10274 } 10275 10276 /// Places new result values for the node in Results (their number 10277 /// and types must exactly match those of the original return values of 10278 /// the node), or leaves Results empty, which indicates that the node is not 10279 /// to be custom lowered after all. 10280 void TargetLowering::LowerOperationWrapper(SDNode *N, 10281 SmallVectorImpl<SDValue> &Results, 10282 SelectionDAG &DAG) const { 10283 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10284 10285 if (!Res.getNode()) 10286 return; 10287 10288 // If the original node has one result, take the return value from 10289 // LowerOperation as is. It might not be result number 0. 10290 if (N->getNumValues() == 1) { 10291 Results.push_back(Res); 10292 return; 10293 } 10294 10295 // If the original node has multiple results, then the return node should 10296 // have the same number of results. 10297 assert((N->getNumValues() == Res->getNumValues()) && 10298 "Lowering returned the wrong number of results!"); 10299 10300 // Places new result values base on N result number. 10301 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10302 Results.push_back(Res.getValue(I)); 10303 } 10304 10305 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10306 llvm_unreachable("LowerOperation not implemented for this target!"); 10307 } 10308 10309 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10310 unsigned Reg, 10311 ISD::NodeType ExtendType) { 10312 SDValue Op = getNonRegisterValue(V); 10313 assert((Op.getOpcode() != ISD::CopyFromReg || 10314 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10315 "Copy from a reg to the same reg!"); 10316 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10317 10318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10319 // If this is an InlineAsm we have to match the registers required, not the 10320 // notional registers required by the type. 10321 10322 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10323 std::nullopt); // This is not an ABI copy. 10324 SDValue Chain = DAG.getEntryNode(); 10325 10326 if (ExtendType == ISD::ANY_EXTEND) { 10327 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10328 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10329 ExtendType = PreferredExtendIt->second; 10330 } 10331 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10332 PendingExports.push_back(Chain); 10333 } 10334 10335 #include "llvm/CodeGen/SelectionDAGISel.h" 10336 10337 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10338 /// entry block, return true. This includes arguments used by switches, since 10339 /// the switch may expand into multiple basic blocks. 10340 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10341 // With FastISel active, we may be splitting blocks, so force creation 10342 // of virtual registers for all non-dead arguments. 10343 if (FastISel) 10344 return A->use_empty(); 10345 10346 const BasicBlock &Entry = A->getParent()->front(); 10347 for (const User *U : A->users()) 10348 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10349 return false; // Use not in entry block. 10350 10351 return true; 10352 } 10353 10354 using ArgCopyElisionMapTy = 10355 DenseMap<const Argument *, 10356 std::pair<const AllocaInst *, const StoreInst *>>; 10357 10358 /// Scan the entry block of the function in FuncInfo for arguments that look 10359 /// like copies into a local alloca. Record any copied arguments in 10360 /// ArgCopyElisionCandidates. 10361 static void 10362 findArgumentCopyElisionCandidates(const DataLayout &DL, 10363 FunctionLoweringInfo *FuncInfo, 10364 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10365 // Record the state of every static alloca used in the entry block. Argument 10366 // allocas are all used in the entry block, so we need approximately as many 10367 // entries as we have arguments. 10368 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10369 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10370 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10371 StaticAllocas.reserve(NumArgs * 2); 10372 10373 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10374 if (!V) 10375 return nullptr; 10376 V = V->stripPointerCasts(); 10377 const auto *AI = dyn_cast<AllocaInst>(V); 10378 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10379 return nullptr; 10380 auto Iter = StaticAllocas.insert({AI, Unknown}); 10381 return &Iter.first->second; 10382 }; 10383 10384 // Look for stores of arguments to static allocas. Look through bitcasts and 10385 // GEPs to handle type coercions, as long as the alloca is fully initialized 10386 // by the store. Any non-store use of an alloca escapes it and any subsequent 10387 // unanalyzed store might write it. 10388 // FIXME: Handle structs initialized with multiple stores. 10389 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10390 // Look for stores, and handle non-store uses conservatively. 10391 const auto *SI = dyn_cast<StoreInst>(&I); 10392 if (!SI) { 10393 // We will look through cast uses, so ignore them completely. 10394 if (I.isCast()) 10395 continue; 10396 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10397 // to allocas. 10398 if (I.isDebugOrPseudoInst()) 10399 continue; 10400 // This is an unknown instruction. Assume it escapes or writes to all 10401 // static alloca operands. 10402 for (const Use &U : I.operands()) { 10403 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10404 *Info = StaticAllocaInfo::Clobbered; 10405 } 10406 continue; 10407 } 10408 10409 // If the stored value is a static alloca, mark it as escaped. 10410 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10411 *Info = StaticAllocaInfo::Clobbered; 10412 10413 // Check if the destination is a static alloca. 10414 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10415 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10416 if (!Info) 10417 continue; 10418 const AllocaInst *AI = cast<AllocaInst>(Dst); 10419 10420 // Skip allocas that have been initialized or clobbered. 10421 if (*Info != StaticAllocaInfo::Unknown) 10422 continue; 10423 10424 // Check if the stored value is an argument, and that this store fully 10425 // initializes the alloca. 10426 // If the argument type has padding bits we can't directly forward a pointer 10427 // as the upper bits may contain garbage. 10428 // Don't elide copies from the same argument twice. 10429 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10430 const auto *Arg = dyn_cast<Argument>(Val); 10431 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10432 Arg->getType()->isEmptyTy() || 10433 DL.getTypeStoreSize(Arg->getType()) != 10434 DL.getTypeAllocSize(AI->getAllocatedType()) || 10435 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10436 ArgCopyElisionCandidates.count(Arg)) { 10437 *Info = StaticAllocaInfo::Clobbered; 10438 continue; 10439 } 10440 10441 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10442 << '\n'); 10443 10444 // Mark this alloca and store for argument copy elision. 10445 *Info = StaticAllocaInfo::Elidable; 10446 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10447 10448 // Stop scanning if we've seen all arguments. This will happen early in -O0 10449 // builds, which is useful, because -O0 builds have large entry blocks and 10450 // many allocas. 10451 if (ArgCopyElisionCandidates.size() == NumArgs) 10452 break; 10453 } 10454 } 10455 10456 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10457 /// ArgVal is a load from a suitable fixed stack object. 10458 static void tryToElideArgumentCopy( 10459 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10460 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10461 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10462 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10463 SDValue ArgVal, bool &ArgHasUses) { 10464 // Check if this is a load from a fixed stack object. 10465 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10466 if (!LNode) 10467 return; 10468 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10469 if (!FINode) 10470 return; 10471 10472 // Check that the fixed stack object is the right size and alignment. 10473 // Look at the alignment that the user wrote on the alloca instead of looking 10474 // at the stack object. 10475 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10476 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10477 const AllocaInst *AI = ArgCopyIter->second.first; 10478 int FixedIndex = FINode->getIndex(); 10479 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10480 int OldIndex = AllocaIndex; 10481 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10482 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10483 LLVM_DEBUG( 10484 dbgs() << " argument copy elision failed due to bad fixed stack " 10485 "object size\n"); 10486 return; 10487 } 10488 Align RequiredAlignment = AI->getAlign(); 10489 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10490 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10491 "greater than stack argument alignment (" 10492 << DebugStr(RequiredAlignment) << " vs " 10493 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10494 return; 10495 } 10496 10497 // Perform the elision. Delete the old stack object and replace its only use 10498 // in the variable info map. Mark the stack object as mutable. 10499 LLVM_DEBUG({ 10500 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10501 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10502 << '\n'; 10503 }); 10504 MFI.RemoveStackObject(OldIndex); 10505 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10506 AllocaIndex = FixedIndex; 10507 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10508 Chains.push_back(ArgVal.getValue(1)); 10509 10510 // Avoid emitting code for the store implementing the copy. 10511 const StoreInst *SI = ArgCopyIter->second.second; 10512 ElidedArgCopyInstrs.insert(SI); 10513 10514 // Check for uses of the argument again so that we can avoid exporting ArgVal 10515 // if it is't used by anything other than the store. 10516 for (const Value *U : Arg.users()) { 10517 if (U != SI) { 10518 ArgHasUses = true; 10519 break; 10520 } 10521 } 10522 } 10523 10524 void SelectionDAGISel::LowerArguments(const Function &F) { 10525 SelectionDAG &DAG = SDB->DAG; 10526 SDLoc dl = SDB->getCurSDLoc(); 10527 const DataLayout &DL = DAG.getDataLayout(); 10528 SmallVector<ISD::InputArg, 16> Ins; 10529 10530 // In Naked functions we aren't going to save any registers. 10531 if (F.hasFnAttribute(Attribute::Naked)) 10532 return; 10533 10534 if (!FuncInfo->CanLowerReturn) { 10535 // Put in an sret pointer parameter before all the other parameters. 10536 SmallVector<EVT, 1> ValueVTs; 10537 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10538 F.getReturnType()->getPointerTo( 10539 DAG.getDataLayout().getAllocaAddrSpace()), 10540 ValueVTs); 10541 10542 // NOTE: Assuming that a pointer will never break down to more than one VT 10543 // or one register. 10544 ISD::ArgFlagsTy Flags; 10545 Flags.setSRet(); 10546 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10547 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10548 ISD::InputArg::NoArgIndex, 0); 10549 Ins.push_back(RetArg); 10550 } 10551 10552 // Look for stores of arguments to static allocas. Mark such arguments with a 10553 // flag to ask the target to give us the memory location of that argument if 10554 // available. 10555 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10556 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10557 ArgCopyElisionCandidates); 10558 10559 // Set up the incoming argument description vector. 10560 for (const Argument &Arg : F.args()) { 10561 unsigned ArgNo = Arg.getArgNo(); 10562 SmallVector<EVT, 4> ValueVTs; 10563 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10564 bool isArgValueUsed = !Arg.use_empty(); 10565 unsigned PartBase = 0; 10566 Type *FinalType = Arg.getType(); 10567 if (Arg.hasAttribute(Attribute::ByVal)) 10568 FinalType = Arg.getParamByValType(); 10569 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10570 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10571 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10572 Value != NumValues; ++Value) { 10573 EVT VT = ValueVTs[Value]; 10574 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10575 ISD::ArgFlagsTy Flags; 10576 10577 10578 if (Arg.getType()->isPointerTy()) { 10579 Flags.setPointer(); 10580 Flags.setPointerAddrSpace( 10581 cast<PointerType>(Arg.getType())->getAddressSpace()); 10582 } 10583 if (Arg.hasAttribute(Attribute::ZExt)) 10584 Flags.setZExt(); 10585 if (Arg.hasAttribute(Attribute::SExt)) 10586 Flags.setSExt(); 10587 if (Arg.hasAttribute(Attribute::InReg)) { 10588 // If we are using vectorcall calling convention, a structure that is 10589 // passed InReg - is surely an HVA 10590 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10591 isa<StructType>(Arg.getType())) { 10592 // The first value of a structure is marked 10593 if (0 == Value) 10594 Flags.setHvaStart(); 10595 Flags.setHva(); 10596 } 10597 // Set InReg Flag 10598 Flags.setInReg(); 10599 } 10600 if (Arg.hasAttribute(Attribute::StructRet)) 10601 Flags.setSRet(); 10602 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10603 Flags.setSwiftSelf(); 10604 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10605 Flags.setSwiftAsync(); 10606 if (Arg.hasAttribute(Attribute::SwiftError)) 10607 Flags.setSwiftError(); 10608 if (Arg.hasAttribute(Attribute::ByVal)) 10609 Flags.setByVal(); 10610 if (Arg.hasAttribute(Attribute::ByRef)) 10611 Flags.setByRef(); 10612 if (Arg.hasAttribute(Attribute::InAlloca)) { 10613 Flags.setInAlloca(); 10614 // Set the byval flag for CCAssignFn callbacks that don't know about 10615 // inalloca. This way we can know how many bytes we should've allocated 10616 // and how many bytes a callee cleanup function will pop. If we port 10617 // inalloca to more targets, we'll have to add custom inalloca handling 10618 // in the various CC lowering callbacks. 10619 Flags.setByVal(); 10620 } 10621 if (Arg.hasAttribute(Attribute::Preallocated)) { 10622 Flags.setPreallocated(); 10623 // Set the byval flag for CCAssignFn callbacks that don't know about 10624 // preallocated. This way we can know how many bytes we should've 10625 // allocated and how many bytes a callee cleanup function will pop. If 10626 // we port preallocated to more targets, we'll have to add custom 10627 // preallocated handling in the various CC lowering callbacks. 10628 Flags.setByVal(); 10629 } 10630 10631 // Certain targets (such as MIPS), may have a different ABI alignment 10632 // for a type depending on the context. Give the target a chance to 10633 // specify the alignment it wants. 10634 const Align OriginalAlignment( 10635 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10636 Flags.setOrigAlign(OriginalAlignment); 10637 10638 Align MemAlign; 10639 Type *ArgMemTy = nullptr; 10640 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10641 Flags.isByRef()) { 10642 if (!ArgMemTy) 10643 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10644 10645 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10646 10647 // For in-memory arguments, size and alignment should be passed from FE. 10648 // BE will guess if this info is not there but there are cases it cannot 10649 // get right. 10650 if (auto ParamAlign = Arg.getParamStackAlign()) 10651 MemAlign = *ParamAlign; 10652 else if ((ParamAlign = Arg.getParamAlign())) 10653 MemAlign = *ParamAlign; 10654 else 10655 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10656 if (Flags.isByRef()) 10657 Flags.setByRefSize(MemSize); 10658 else 10659 Flags.setByValSize(MemSize); 10660 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10661 MemAlign = *ParamAlign; 10662 } else { 10663 MemAlign = OriginalAlignment; 10664 } 10665 Flags.setMemAlign(MemAlign); 10666 10667 if (Arg.hasAttribute(Attribute::Nest)) 10668 Flags.setNest(); 10669 if (NeedsRegBlock) 10670 Flags.setInConsecutiveRegs(); 10671 if (ArgCopyElisionCandidates.count(&Arg)) 10672 Flags.setCopyElisionCandidate(); 10673 if (Arg.hasAttribute(Attribute::Returned)) 10674 Flags.setReturned(); 10675 10676 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10677 *CurDAG->getContext(), F.getCallingConv(), VT); 10678 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10679 *CurDAG->getContext(), F.getCallingConv(), VT); 10680 for (unsigned i = 0; i != NumRegs; ++i) { 10681 // For scalable vectors, use the minimum size; individual targets 10682 // are responsible for handling scalable vector arguments and 10683 // return values. 10684 ISD::InputArg MyFlags( 10685 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10686 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10687 if (NumRegs > 1 && i == 0) 10688 MyFlags.Flags.setSplit(); 10689 // if it isn't first piece, alignment must be 1 10690 else if (i > 0) { 10691 MyFlags.Flags.setOrigAlign(Align(1)); 10692 if (i == NumRegs - 1) 10693 MyFlags.Flags.setSplitEnd(); 10694 } 10695 Ins.push_back(MyFlags); 10696 } 10697 if (NeedsRegBlock && Value == NumValues - 1) 10698 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10699 PartBase += VT.getStoreSize().getKnownMinValue(); 10700 } 10701 } 10702 10703 // Call the target to set up the argument values. 10704 SmallVector<SDValue, 8> InVals; 10705 SDValue NewRoot = TLI->LowerFormalArguments( 10706 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10707 10708 // Verify that the target's LowerFormalArguments behaved as expected. 10709 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10710 "LowerFormalArguments didn't return a valid chain!"); 10711 assert(InVals.size() == Ins.size() && 10712 "LowerFormalArguments didn't emit the correct number of values!"); 10713 LLVM_DEBUG({ 10714 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10715 assert(InVals[i].getNode() && 10716 "LowerFormalArguments emitted a null value!"); 10717 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10718 "LowerFormalArguments emitted a value with the wrong type!"); 10719 } 10720 }); 10721 10722 // Update the DAG with the new chain value resulting from argument lowering. 10723 DAG.setRoot(NewRoot); 10724 10725 // Set up the argument values. 10726 unsigned i = 0; 10727 if (!FuncInfo->CanLowerReturn) { 10728 // Create a virtual register for the sret pointer, and put in a copy 10729 // from the sret argument into it. 10730 SmallVector<EVT, 1> ValueVTs; 10731 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10732 F.getReturnType()->getPointerTo( 10733 DAG.getDataLayout().getAllocaAddrSpace()), 10734 ValueVTs); 10735 MVT VT = ValueVTs[0].getSimpleVT(); 10736 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10737 std::optional<ISD::NodeType> AssertOp; 10738 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10739 nullptr, F.getCallingConv(), AssertOp); 10740 10741 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10742 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10743 Register SRetReg = 10744 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10745 FuncInfo->DemoteRegister = SRetReg; 10746 NewRoot = 10747 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10748 DAG.setRoot(NewRoot); 10749 10750 // i indexes lowered arguments. Bump it past the hidden sret argument. 10751 ++i; 10752 } 10753 10754 SmallVector<SDValue, 4> Chains; 10755 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10756 for (const Argument &Arg : F.args()) { 10757 SmallVector<SDValue, 4> ArgValues; 10758 SmallVector<EVT, 4> ValueVTs; 10759 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10760 unsigned NumValues = ValueVTs.size(); 10761 if (NumValues == 0) 10762 continue; 10763 10764 bool ArgHasUses = !Arg.use_empty(); 10765 10766 // Elide the copying store if the target loaded this argument from a 10767 // suitable fixed stack object. 10768 if (Ins[i].Flags.isCopyElisionCandidate()) { 10769 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10770 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10771 InVals[i], ArgHasUses); 10772 } 10773 10774 // If this argument is unused then remember its value. It is used to generate 10775 // debugging information. 10776 bool isSwiftErrorArg = 10777 TLI->supportSwiftError() && 10778 Arg.hasAttribute(Attribute::SwiftError); 10779 if (!ArgHasUses && !isSwiftErrorArg) { 10780 SDB->setUnusedArgValue(&Arg, InVals[i]); 10781 10782 // Also remember any frame index for use in FastISel. 10783 if (FrameIndexSDNode *FI = 10784 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10785 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10786 } 10787 10788 for (unsigned Val = 0; Val != NumValues; ++Val) { 10789 EVT VT = ValueVTs[Val]; 10790 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10791 F.getCallingConv(), VT); 10792 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10793 *CurDAG->getContext(), F.getCallingConv(), VT); 10794 10795 // Even an apparent 'unused' swifterror argument needs to be returned. So 10796 // we do generate a copy for it that can be used on return from the 10797 // function. 10798 if (ArgHasUses || isSwiftErrorArg) { 10799 std::optional<ISD::NodeType> AssertOp; 10800 if (Arg.hasAttribute(Attribute::SExt)) 10801 AssertOp = ISD::AssertSext; 10802 else if (Arg.hasAttribute(Attribute::ZExt)) 10803 AssertOp = ISD::AssertZext; 10804 10805 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10806 PartVT, VT, nullptr, 10807 F.getCallingConv(), AssertOp)); 10808 } 10809 10810 i += NumParts; 10811 } 10812 10813 // We don't need to do anything else for unused arguments. 10814 if (ArgValues.empty()) 10815 continue; 10816 10817 // Note down frame index. 10818 if (FrameIndexSDNode *FI = 10819 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10820 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10821 10822 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 10823 SDB->getCurSDLoc()); 10824 10825 SDB->setValue(&Arg, Res); 10826 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10827 // We want to associate the argument with the frame index, among 10828 // involved operands, that correspond to the lowest address. The 10829 // getCopyFromParts function, called earlier, is swapping the order of 10830 // the operands to BUILD_PAIR depending on endianness. The result of 10831 // that swapping is that the least significant bits of the argument will 10832 // be in the first operand of the BUILD_PAIR node, and the most 10833 // significant bits will be in the second operand. 10834 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10835 if (LoadSDNode *LNode = 10836 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10837 if (FrameIndexSDNode *FI = 10838 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10839 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10840 } 10841 10842 // Analyses past this point are naive and don't expect an assertion. 10843 if (Res.getOpcode() == ISD::AssertZext) 10844 Res = Res.getOperand(0); 10845 10846 // Update the SwiftErrorVRegDefMap. 10847 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10848 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10849 if (Register::isVirtualRegister(Reg)) 10850 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10851 Reg); 10852 } 10853 10854 // If this argument is live outside of the entry block, insert a copy from 10855 // wherever we got it to the vreg that other BB's will reference it as. 10856 if (Res.getOpcode() == ISD::CopyFromReg) { 10857 // If we can, though, try to skip creating an unnecessary vreg. 10858 // FIXME: This isn't very clean... it would be nice to make this more 10859 // general. 10860 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10861 if (Register::isVirtualRegister(Reg)) { 10862 FuncInfo->ValueMap[&Arg] = Reg; 10863 continue; 10864 } 10865 } 10866 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10867 FuncInfo->InitializeRegForValue(&Arg); 10868 SDB->CopyToExportRegsIfNeeded(&Arg); 10869 } 10870 } 10871 10872 if (!Chains.empty()) { 10873 Chains.push_back(NewRoot); 10874 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10875 } 10876 10877 DAG.setRoot(NewRoot); 10878 10879 assert(i == InVals.size() && "Argument register count mismatch!"); 10880 10881 // If any argument copy elisions occurred and we have debug info, update the 10882 // stale frame indices used in the dbg.declare variable info table. 10883 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10884 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10885 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10886 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10887 if (I != ArgCopyElisionFrameIndexMap.end()) 10888 VI.Slot = I->second; 10889 } 10890 } 10891 10892 // Finally, if the target has anything special to do, allow it to do so. 10893 emitFunctionEntryCode(); 10894 } 10895 10896 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10897 /// ensure constants are generated when needed. Remember the virtual registers 10898 /// that need to be added to the Machine PHI nodes as input. We cannot just 10899 /// directly add them, because expansion might result in multiple MBB's for one 10900 /// BB. As such, the start of the BB might correspond to a different MBB than 10901 /// the end. 10902 void 10903 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10905 10906 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10907 10908 // Check PHI nodes in successors that expect a value to be available from this 10909 // block. 10910 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 10911 if (!isa<PHINode>(SuccBB->begin())) continue; 10912 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10913 10914 // If this terminator has multiple identical successors (common for 10915 // switches), only handle each succ once. 10916 if (!SuccsHandled.insert(SuccMBB).second) 10917 continue; 10918 10919 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10920 10921 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10922 // nodes and Machine PHI nodes, but the incoming operands have not been 10923 // emitted yet. 10924 for (const PHINode &PN : SuccBB->phis()) { 10925 // Ignore dead phi's. 10926 if (PN.use_empty()) 10927 continue; 10928 10929 // Skip empty types 10930 if (PN.getType()->isEmptyTy()) 10931 continue; 10932 10933 unsigned Reg; 10934 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10935 10936 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 10937 unsigned &RegOut = ConstantsOut[C]; 10938 if (RegOut == 0) { 10939 RegOut = FuncInfo.CreateRegs(C); 10940 // We need to zero/sign extend ConstantInt phi operands to match 10941 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10942 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10943 if (auto *CI = dyn_cast<ConstantInt>(C)) 10944 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10945 : ISD::ZERO_EXTEND; 10946 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10947 } 10948 Reg = RegOut; 10949 } else { 10950 DenseMap<const Value *, Register>::iterator I = 10951 FuncInfo.ValueMap.find(PHIOp); 10952 if (I != FuncInfo.ValueMap.end()) 10953 Reg = I->second; 10954 else { 10955 assert(isa<AllocaInst>(PHIOp) && 10956 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10957 "Didn't codegen value into a register!??"); 10958 Reg = FuncInfo.CreateRegs(PHIOp); 10959 CopyValueToVirtualRegister(PHIOp, Reg); 10960 } 10961 } 10962 10963 // Remember that this register needs to added to the machine PHI node as 10964 // the input for this MBB. 10965 SmallVector<EVT, 4> ValueVTs; 10966 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10967 for (EVT VT : ValueVTs) { 10968 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10969 for (unsigned i = 0; i != NumRegisters; ++i) 10970 FuncInfo.PHINodesToUpdate.push_back( 10971 std::make_pair(&*MBBI++, Reg + i)); 10972 Reg += NumRegisters; 10973 } 10974 } 10975 } 10976 10977 ConstantsOut.clear(); 10978 } 10979 10980 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10981 MachineFunction::iterator I(MBB); 10982 if (++I == FuncInfo.MF->end()) 10983 return nullptr; 10984 return &*I; 10985 } 10986 10987 /// During lowering new call nodes can be created (such as memset, etc.). 10988 /// Those will become new roots of the current DAG, but complications arise 10989 /// when they are tail calls. In such cases, the call lowering will update 10990 /// the root, but the builder still needs to know that a tail call has been 10991 /// lowered in order to avoid generating an additional return. 10992 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10993 // If the node is null, we do have a tail call. 10994 if (MaybeTC.getNode() != nullptr) 10995 DAG.setRoot(MaybeTC); 10996 else 10997 HasTailCall = true; 10998 } 10999 11000 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11001 MachineBasicBlock *SwitchMBB, 11002 MachineBasicBlock *DefaultMBB) { 11003 MachineFunction *CurMF = FuncInfo.MF; 11004 MachineBasicBlock *NextMBB = nullptr; 11005 MachineFunction::iterator BBI(W.MBB); 11006 if (++BBI != FuncInfo.MF->end()) 11007 NextMBB = &*BBI; 11008 11009 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11010 11011 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11012 11013 if (Size == 2 && W.MBB == SwitchMBB) { 11014 // If any two of the cases has the same destination, and if one value 11015 // is the same as the other, but has one bit unset that the other has set, 11016 // use bit manipulation to do two compares at once. For example: 11017 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11018 // TODO: This could be extended to merge any 2 cases in switches with 3 11019 // cases. 11020 // TODO: Handle cases where W.CaseBB != SwitchBB. 11021 CaseCluster &Small = *W.FirstCluster; 11022 CaseCluster &Big = *W.LastCluster; 11023 11024 if (Small.Low == Small.High && Big.Low == Big.High && 11025 Small.MBB == Big.MBB) { 11026 const APInt &SmallValue = Small.Low->getValue(); 11027 const APInt &BigValue = Big.Low->getValue(); 11028 11029 // Check that there is only one bit different. 11030 APInt CommonBit = BigValue ^ SmallValue; 11031 if (CommonBit.isPowerOf2()) { 11032 SDValue CondLHS = getValue(Cond); 11033 EVT VT = CondLHS.getValueType(); 11034 SDLoc DL = getCurSDLoc(); 11035 11036 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11037 DAG.getConstant(CommonBit, DL, VT)); 11038 SDValue Cond = DAG.getSetCC( 11039 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11040 ISD::SETEQ); 11041 11042 // Update successor info. 11043 // Both Small and Big will jump to Small.BB, so we sum up the 11044 // probabilities. 11045 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11046 if (BPI) 11047 addSuccessorWithProb( 11048 SwitchMBB, DefaultMBB, 11049 // The default destination is the first successor in IR. 11050 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11051 else 11052 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11053 11054 // Insert the true branch. 11055 SDValue BrCond = 11056 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11057 DAG.getBasicBlock(Small.MBB)); 11058 // Insert the false branch. 11059 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11060 DAG.getBasicBlock(DefaultMBB)); 11061 11062 DAG.setRoot(BrCond); 11063 return; 11064 } 11065 } 11066 } 11067 11068 if (TM.getOptLevel() != CodeGenOpt::None) { 11069 // Here, we order cases by probability so the most likely case will be 11070 // checked first. However, two clusters can have the same probability in 11071 // which case their relative ordering is non-deterministic. So we use Low 11072 // as a tie-breaker as clusters are guaranteed to never overlap. 11073 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11074 [](const CaseCluster &a, const CaseCluster &b) { 11075 return a.Prob != b.Prob ? 11076 a.Prob > b.Prob : 11077 a.Low->getValue().slt(b.Low->getValue()); 11078 }); 11079 11080 // Rearrange the case blocks so that the last one falls through if possible 11081 // without changing the order of probabilities. 11082 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11083 --I; 11084 if (I->Prob > W.LastCluster->Prob) 11085 break; 11086 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11087 std::swap(*I, *W.LastCluster); 11088 break; 11089 } 11090 } 11091 } 11092 11093 // Compute total probability. 11094 BranchProbability DefaultProb = W.DefaultProb; 11095 BranchProbability UnhandledProbs = DefaultProb; 11096 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11097 UnhandledProbs += I->Prob; 11098 11099 MachineBasicBlock *CurMBB = W.MBB; 11100 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11101 bool FallthroughUnreachable = false; 11102 MachineBasicBlock *Fallthrough; 11103 if (I == W.LastCluster) { 11104 // For the last cluster, fall through to the default destination. 11105 Fallthrough = DefaultMBB; 11106 FallthroughUnreachable = isa<UnreachableInst>( 11107 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11108 } else { 11109 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11110 CurMF->insert(BBI, Fallthrough); 11111 // Put Cond in a virtual register to make it available from the new blocks. 11112 ExportFromCurrentBlock(Cond); 11113 } 11114 UnhandledProbs -= I->Prob; 11115 11116 switch (I->Kind) { 11117 case CC_JumpTable: { 11118 // FIXME: Optimize away range check based on pivot comparisons. 11119 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11120 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11121 11122 // The jump block hasn't been inserted yet; insert it here. 11123 MachineBasicBlock *JumpMBB = JT->MBB; 11124 CurMF->insert(BBI, JumpMBB); 11125 11126 auto JumpProb = I->Prob; 11127 auto FallthroughProb = UnhandledProbs; 11128 11129 // If the default statement is a target of the jump table, we evenly 11130 // distribute the default probability to successors of CurMBB. Also 11131 // update the probability on the edge from JumpMBB to Fallthrough. 11132 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11133 SE = JumpMBB->succ_end(); 11134 SI != SE; ++SI) { 11135 if (*SI == DefaultMBB) { 11136 JumpProb += DefaultProb / 2; 11137 FallthroughProb -= DefaultProb / 2; 11138 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11139 JumpMBB->normalizeSuccProbs(); 11140 break; 11141 } 11142 } 11143 11144 if (FallthroughUnreachable) 11145 JTH->FallthroughUnreachable = true; 11146 11147 if (!JTH->FallthroughUnreachable) 11148 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11149 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11150 CurMBB->normalizeSuccProbs(); 11151 11152 // The jump table header will be inserted in our current block, do the 11153 // range check, and fall through to our fallthrough block. 11154 JTH->HeaderBB = CurMBB; 11155 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11156 11157 // If we're in the right place, emit the jump table header right now. 11158 if (CurMBB == SwitchMBB) { 11159 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11160 JTH->Emitted = true; 11161 } 11162 break; 11163 } 11164 case CC_BitTests: { 11165 // FIXME: Optimize away range check based on pivot comparisons. 11166 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11167 11168 // The bit test blocks haven't been inserted yet; insert them here. 11169 for (BitTestCase &BTC : BTB->Cases) 11170 CurMF->insert(BBI, BTC.ThisBB); 11171 11172 // Fill in fields of the BitTestBlock. 11173 BTB->Parent = CurMBB; 11174 BTB->Default = Fallthrough; 11175 11176 BTB->DefaultProb = UnhandledProbs; 11177 // If the cases in bit test don't form a contiguous range, we evenly 11178 // distribute the probability on the edge to Fallthrough to two 11179 // successors of CurMBB. 11180 if (!BTB->ContiguousRange) { 11181 BTB->Prob += DefaultProb / 2; 11182 BTB->DefaultProb -= DefaultProb / 2; 11183 } 11184 11185 if (FallthroughUnreachable) 11186 BTB->FallthroughUnreachable = true; 11187 11188 // If we're in the right place, emit the bit test header right now. 11189 if (CurMBB == SwitchMBB) { 11190 visitBitTestHeader(*BTB, SwitchMBB); 11191 BTB->Emitted = true; 11192 } 11193 break; 11194 } 11195 case CC_Range: { 11196 const Value *RHS, *LHS, *MHS; 11197 ISD::CondCode CC; 11198 if (I->Low == I->High) { 11199 // Check Cond == I->Low. 11200 CC = ISD::SETEQ; 11201 LHS = Cond; 11202 RHS=I->Low; 11203 MHS = nullptr; 11204 } else { 11205 // Check I->Low <= Cond <= I->High. 11206 CC = ISD::SETLE; 11207 LHS = I->Low; 11208 MHS = Cond; 11209 RHS = I->High; 11210 } 11211 11212 // If Fallthrough is unreachable, fold away the comparison. 11213 if (FallthroughUnreachable) 11214 CC = ISD::SETTRUE; 11215 11216 // The false probability is the sum of all unhandled cases. 11217 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11218 getCurSDLoc(), I->Prob, UnhandledProbs); 11219 11220 if (CurMBB == SwitchMBB) 11221 visitSwitchCase(CB, SwitchMBB); 11222 else 11223 SL->SwitchCases.push_back(CB); 11224 11225 break; 11226 } 11227 } 11228 CurMBB = Fallthrough; 11229 } 11230 } 11231 11232 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11233 CaseClusterIt First, 11234 CaseClusterIt Last) { 11235 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11236 if (X.Prob != CC.Prob) 11237 return X.Prob > CC.Prob; 11238 11239 // Ties are broken by comparing the case value. 11240 return X.Low->getValue().slt(CC.Low->getValue()); 11241 }); 11242 } 11243 11244 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11245 const SwitchWorkListItem &W, 11246 Value *Cond, 11247 MachineBasicBlock *SwitchMBB) { 11248 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11249 "Clusters not sorted?"); 11250 11251 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11252 11253 // Balance the tree based on branch probabilities to create a near-optimal (in 11254 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11255 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11256 CaseClusterIt LastLeft = W.FirstCluster; 11257 CaseClusterIt FirstRight = W.LastCluster; 11258 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11259 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11260 11261 // Move LastLeft and FirstRight towards each other from opposite directions to 11262 // find a partitioning of the clusters which balances the probability on both 11263 // sides. If LeftProb and RightProb are equal, alternate which side is 11264 // taken to ensure 0-probability nodes are distributed evenly. 11265 unsigned I = 0; 11266 while (LastLeft + 1 < FirstRight) { 11267 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11268 LeftProb += (++LastLeft)->Prob; 11269 else 11270 RightProb += (--FirstRight)->Prob; 11271 I++; 11272 } 11273 11274 while (true) { 11275 // Our binary search tree differs from a typical BST in that ours can have up 11276 // to three values in each leaf. The pivot selection above doesn't take that 11277 // into account, which means the tree might require more nodes and be less 11278 // efficient. We compensate for this here. 11279 11280 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11281 unsigned NumRight = W.LastCluster - FirstRight + 1; 11282 11283 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11284 // If one side has less than 3 clusters, and the other has more than 3, 11285 // consider taking a cluster from the other side. 11286 11287 if (NumLeft < NumRight) { 11288 // Consider moving the first cluster on the right to the left side. 11289 CaseCluster &CC = *FirstRight; 11290 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11291 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11292 if (LeftSideRank <= RightSideRank) { 11293 // Moving the cluster to the left does not demote it. 11294 ++LastLeft; 11295 ++FirstRight; 11296 continue; 11297 } 11298 } else { 11299 assert(NumRight < NumLeft); 11300 // Consider moving the last element on the left to the right side. 11301 CaseCluster &CC = *LastLeft; 11302 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11303 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11304 if (RightSideRank <= LeftSideRank) { 11305 // Moving the cluster to the right does not demot it. 11306 --LastLeft; 11307 --FirstRight; 11308 continue; 11309 } 11310 } 11311 } 11312 break; 11313 } 11314 11315 assert(LastLeft + 1 == FirstRight); 11316 assert(LastLeft >= W.FirstCluster); 11317 assert(FirstRight <= W.LastCluster); 11318 11319 // Use the first element on the right as pivot since we will make less-than 11320 // comparisons against it. 11321 CaseClusterIt PivotCluster = FirstRight; 11322 assert(PivotCluster > W.FirstCluster); 11323 assert(PivotCluster <= W.LastCluster); 11324 11325 CaseClusterIt FirstLeft = W.FirstCluster; 11326 CaseClusterIt LastRight = W.LastCluster; 11327 11328 const ConstantInt *Pivot = PivotCluster->Low; 11329 11330 // New blocks will be inserted immediately after the current one. 11331 MachineFunction::iterator BBI(W.MBB); 11332 ++BBI; 11333 11334 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11335 // we can branch to its destination directly if it's squeezed exactly in 11336 // between the known lower bound and Pivot - 1. 11337 MachineBasicBlock *LeftMBB; 11338 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11339 FirstLeft->Low == W.GE && 11340 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11341 LeftMBB = FirstLeft->MBB; 11342 } else { 11343 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11344 FuncInfo.MF->insert(BBI, LeftMBB); 11345 WorkList.push_back( 11346 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11347 // Put Cond in a virtual register to make it available from the new blocks. 11348 ExportFromCurrentBlock(Cond); 11349 } 11350 11351 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11352 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11353 // directly if RHS.High equals the current upper bound. 11354 MachineBasicBlock *RightMBB; 11355 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11356 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11357 RightMBB = FirstRight->MBB; 11358 } else { 11359 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11360 FuncInfo.MF->insert(BBI, RightMBB); 11361 WorkList.push_back( 11362 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11363 // Put Cond in a virtual register to make it available from the new blocks. 11364 ExportFromCurrentBlock(Cond); 11365 } 11366 11367 // Create the CaseBlock record that will be used to lower the branch. 11368 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11369 getCurSDLoc(), LeftProb, RightProb); 11370 11371 if (W.MBB == SwitchMBB) 11372 visitSwitchCase(CB, SwitchMBB); 11373 else 11374 SL->SwitchCases.push_back(CB); 11375 } 11376 11377 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11378 // from the swith statement. 11379 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11380 BranchProbability PeeledCaseProb) { 11381 if (PeeledCaseProb == BranchProbability::getOne()) 11382 return BranchProbability::getZero(); 11383 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11384 11385 uint32_t Numerator = CaseProb.getNumerator(); 11386 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11387 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11388 } 11389 11390 // Try to peel the top probability case if it exceeds the threshold. 11391 // Return current MachineBasicBlock for the switch statement if the peeling 11392 // does not occur. 11393 // If the peeling is performed, return the newly created MachineBasicBlock 11394 // for the peeled switch statement. Also update Clusters to remove the peeled 11395 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11396 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11397 const SwitchInst &SI, CaseClusterVector &Clusters, 11398 BranchProbability &PeeledCaseProb) { 11399 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11400 // Don't perform if there is only one cluster or optimizing for size. 11401 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11402 TM.getOptLevel() == CodeGenOpt::None || 11403 SwitchMBB->getParent()->getFunction().hasMinSize()) 11404 return SwitchMBB; 11405 11406 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11407 unsigned PeeledCaseIndex = 0; 11408 bool SwitchPeeled = false; 11409 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11410 CaseCluster &CC = Clusters[Index]; 11411 if (CC.Prob < TopCaseProb) 11412 continue; 11413 TopCaseProb = CC.Prob; 11414 PeeledCaseIndex = Index; 11415 SwitchPeeled = true; 11416 } 11417 if (!SwitchPeeled) 11418 return SwitchMBB; 11419 11420 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11421 << TopCaseProb << "\n"); 11422 11423 // Record the MBB for the peeled switch statement. 11424 MachineFunction::iterator BBI(SwitchMBB); 11425 ++BBI; 11426 MachineBasicBlock *PeeledSwitchMBB = 11427 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11428 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11429 11430 ExportFromCurrentBlock(SI.getCondition()); 11431 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11432 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11433 nullptr, nullptr, TopCaseProb.getCompl()}; 11434 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11435 11436 Clusters.erase(PeeledCaseIt); 11437 for (CaseCluster &CC : Clusters) { 11438 LLVM_DEBUG( 11439 dbgs() << "Scale the probablity for one cluster, before scaling: " 11440 << CC.Prob << "\n"); 11441 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11442 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11443 } 11444 PeeledCaseProb = TopCaseProb; 11445 return PeeledSwitchMBB; 11446 } 11447 11448 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11449 // Extract cases from the switch. 11450 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11451 CaseClusterVector Clusters; 11452 Clusters.reserve(SI.getNumCases()); 11453 for (auto I : SI.cases()) { 11454 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11455 const ConstantInt *CaseVal = I.getCaseValue(); 11456 BranchProbability Prob = 11457 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11458 : BranchProbability(1, SI.getNumCases() + 1); 11459 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11460 } 11461 11462 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11463 11464 // Cluster adjacent cases with the same destination. We do this at all 11465 // optimization levels because it's cheap to do and will make codegen faster 11466 // if there are many clusters. 11467 sortAndRangeify(Clusters); 11468 11469 // The branch probablity of the peeled case. 11470 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11471 MachineBasicBlock *PeeledSwitchMBB = 11472 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11473 11474 // If there is only the default destination, jump there directly. 11475 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11476 if (Clusters.empty()) { 11477 assert(PeeledSwitchMBB == SwitchMBB); 11478 SwitchMBB->addSuccessor(DefaultMBB); 11479 if (DefaultMBB != NextBlock(SwitchMBB)) { 11480 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11481 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11482 } 11483 return; 11484 } 11485 11486 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11487 SL->findBitTestClusters(Clusters, &SI); 11488 11489 LLVM_DEBUG({ 11490 dbgs() << "Case clusters: "; 11491 for (const CaseCluster &C : Clusters) { 11492 if (C.Kind == CC_JumpTable) 11493 dbgs() << "JT:"; 11494 if (C.Kind == CC_BitTests) 11495 dbgs() << "BT:"; 11496 11497 C.Low->getValue().print(dbgs(), true); 11498 if (C.Low != C.High) { 11499 dbgs() << '-'; 11500 C.High->getValue().print(dbgs(), true); 11501 } 11502 dbgs() << ' '; 11503 } 11504 dbgs() << '\n'; 11505 }); 11506 11507 assert(!Clusters.empty()); 11508 SwitchWorkList WorkList; 11509 CaseClusterIt First = Clusters.begin(); 11510 CaseClusterIt Last = Clusters.end() - 1; 11511 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11512 // Scale the branchprobability for DefaultMBB if the peel occurs and 11513 // DefaultMBB is not replaced. 11514 if (PeeledCaseProb != BranchProbability::getZero() && 11515 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11516 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11517 WorkList.push_back( 11518 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11519 11520 while (!WorkList.empty()) { 11521 SwitchWorkListItem W = WorkList.pop_back_val(); 11522 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11523 11524 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11525 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11526 // For optimized builds, lower large range as a balanced binary tree. 11527 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11528 continue; 11529 } 11530 11531 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11532 } 11533 } 11534 11535 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11537 auto DL = getCurSDLoc(); 11538 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11539 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11540 } 11541 11542 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11544 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11545 11546 SDLoc DL = getCurSDLoc(); 11547 SDValue V = getValue(I.getOperand(0)); 11548 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11549 11550 if (VT.isScalableVector()) { 11551 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11552 return; 11553 } 11554 11555 // Use VECTOR_SHUFFLE for the fixed-length vector 11556 // to maintain existing behavior. 11557 SmallVector<int, 8> Mask; 11558 unsigned NumElts = VT.getVectorMinNumElements(); 11559 for (unsigned i = 0; i != NumElts; ++i) 11560 Mask.push_back(NumElts - 1 - i); 11561 11562 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11563 } 11564 11565 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11566 SmallVector<EVT, 4> ValueVTs; 11567 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11568 ValueVTs); 11569 unsigned NumValues = ValueVTs.size(); 11570 if (NumValues == 0) return; 11571 11572 SmallVector<SDValue, 4> Values(NumValues); 11573 SDValue Op = getValue(I.getOperand(0)); 11574 11575 for (unsigned i = 0; i != NumValues; ++i) 11576 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11577 SDValue(Op.getNode(), Op.getResNo() + i)); 11578 11579 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11580 DAG.getVTList(ValueVTs), Values)); 11581 } 11582 11583 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11585 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11586 11587 SDLoc DL = getCurSDLoc(); 11588 SDValue V1 = getValue(I.getOperand(0)); 11589 SDValue V2 = getValue(I.getOperand(1)); 11590 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11591 11592 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11593 if (VT.isScalableVector()) { 11594 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11595 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11596 DAG.getConstant(Imm, DL, IdxVT))); 11597 return; 11598 } 11599 11600 unsigned NumElts = VT.getVectorNumElements(); 11601 11602 uint64_t Idx = (NumElts + Imm) % NumElts; 11603 11604 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11605 SmallVector<int, 8> Mask; 11606 for (unsigned i = 0; i < NumElts; ++i) 11607 Mask.push_back(Idx + i); 11608 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11609 } 11610