1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 bool Smaller = ValueVT.bitsLE(PartEVT); 323 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 324 DL, ValueVT, Val); 325 326 } 327 328 // Trivial bitcast if the types are the same size and the destination 329 // vector type is legal. 330 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 331 TLI.isTypeLegal(ValueVT)) 332 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 333 334 // Handle cases such as i8 -> <1 x i1> 335 if (ValueVT.getVectorNumElements() != 1) { 336 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 337 "non-trivial scalar-to-vector conversion"); 338 return DAG.getUNDEF(ValueVT); 339 } 340 341 if (ValueVT.getVectorNumElements() == 1 && 342 ValueVT.getVectorElementType() != PartEVT) { 343 bool Smaller = ValueVT.bitsLE(PartEVT); 344 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 345 DL, ValueVT.getScalarType(), Val); 346 } 347 348 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 349 } 350 351 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 352 SDValue Val, SDValue *Parts, unsigned NumParts, 353 MVT PartVT, const Value *V); 354 355 /// getCopyToParts - Create a series of nodes that contain the specified value 356 /// split into legal parts. If the parts contain more bits than Val, then, for 357 /// integers, ExtendKind can be used to specify how to generate the extra bits. 358 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 359 SDValue Val, SDValue *Parts, unsigned NumParts, 360 MVT PartVT, const Value *V, 361 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 362 EVT ValueVT = Val.getValueType(); 363 364 // Handle the vector case separately. 365 if (ValueVT.isVector()) 366 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 367 368 unsigned PartBits = PartVT.getSizeInBits(); 369 unsigned OrigNumParts = NumParts; 370 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 371 "Copying to an illegal type!"); 372 373 if (NumParts == 0) 374 return; 375 376 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 377 EVT PartEVT = PartVT; 378 if (PartEVT == ValueVT) { 379 assert(NumParts == 1 && "No-op copy with multiple parts!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 385 // If the parts cover more bits than the value has, promote the value. 386 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 387 assert(NumParts == 1 && "Do not know what to promote to!"); 388 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 389 } else { 390 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 391 ValueVT.isInteger() && 392 "Unknown mismatch!"); 393 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 394 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 395 if (PartVT == MVT::x86mmx) 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } 398 } else if (PartBits == ValueVT.getSizeInBits()) { 399 // Different types of the same size. 400 assert(NumParts == 1 && PartEVT != ValueVT); 401 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 402 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 403 // If the parts cover less bits than value has, truncate the value. 404 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 405 ValueVT.isInteger() && 406 "Unknown mismatch!"); 407 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 408 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 409 if (PartVT == MVT::x86mmx) 410 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 411 } 412 413 // The value may have changed - recompute ValueVT. 414 ValueVT = Val.getValueType(); 415 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 416 "Failed to tile the value with PartVT!"); 417 418 if (NumParts == 1) { 419 if (PartEVT != ValueVT) 420 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 421 "scalar-to-vector conversion failed"); 422 423 Parts[0] = Val; 424 return; 425 } 426 427 // Expand the value into multiple parts. 428 if (NumParts & (NumParts - 1)) { 429 // The number of parts is not a power of 2. Split off and copy the tail. 430 assert(PartVT.isInteger() && ValueVT.isInteger() && 431 "Do not know what to expand to!"); 432 unsigned RoundParts = 1 << Log2_32(NumParts); 433 unsigned RoundBits = RoundParts * PartBits; 434 unsigned OddParts = NumParts - RoundParts; 435 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 436 DAG.getIntPtrConstant(RoundBits, DL)); 437 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 438 439 if (DAG.getDataLayout().isBigEndian()) 440 // The odd parts were reversed by getCopyToParts - unreverse them. 441 std::reverse(Parts + RoundParts, Parts + NumParts); 442 443 NumParts = RoundParts; 444 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 445 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 446 } 447 448 // The number of parts is a power of 2. Repeatedly bisect the value using 449 // EXTRACT_ELEMENT. 450 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 451 EVT::getIntegerVT(*DAG.getContext(), 452 ValueVT.getSizeInBits()), 453 Val); 454 455 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 456 for (unsigned i = 0; i < NumParts; i += StepSize) { 457 unsigned ThisBits = StepSize * PartBits / 2; 458 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 459 SDValue &Part0 = Parts[i]; 460 SDValue &Part1 = Parts[i+StepSize/2]; 461 462 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 463 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 464 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 465 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 466 467 if (ThisBits == PartBits && ThisVT != PartVT) { 468 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 469 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 470 } 471 } 472 } 473 474 if (DAG.getDataLayout().isBigEndian()) 475 std::reverse(Parts, Parts + OrigNumParts); 476 } 477 478 479 /// getCopyToPartsVector - Create a series of nodes that contain the specified 480 /// value split into legal parts. 481 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 482 SDValue Val, SDValue *Parts, unsigned NumParts, 483 MVT PartVT, const Value *V) { 484 EVT ValueVT = Val.getValueType(); 485 assert(ValueVT.isVector() && "Not a vector"); 486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 487 488 if (NumParts == 1) { 489 EVT PartEVT = PartVT; 490 if (PartEVT == ValueVT) { 491 // Nothing to do. 492 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 493 // Bitconvert vector->vector case. 494 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 495 } else if (PartVT.isVector() && 496 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 497 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 498 EVT ElementVT = PartVT.getVectorElementType(); 499 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 500 // undef elements. 501 SmallVector<SDValue, 16> Ops; 502 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 503 Ops.push_back(DAG.getNode( 504 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 505 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 506 507 for (unsigned i = ValueVT.getVectorNumElements(), 508 e = PartVT.getVectorNumElements(); i != e; ++i) 509 Ops.push_back(DAG.getUNDEF(ElementVT)); 510 511 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 512 513 // FIXME: Use CONCAT for 2x -> 4x. 514 515 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 516 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 517 } else if (PartVT.isVector() && 518 PartEVT.getVectorElementType().bitsGE( 519 ValueVT.getVectorElementType()) && 520 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 521 522 // Promoted vector extract 523 bool Smaller = PartEVT.bitsLE(ValueVT); 524 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 525 DL, PartVT, Val); 526 } else{ 527 // Vector -> scalar conversion. 528 assert(ValueVT.getVectorNumElements() == 1 && 529 "Only trivial vector-to-scalar conversions should get here!"); 530 Val = DAG.getNode( 531 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 532 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 533 534 bool Smaller = ValueVT.bitsLE(PartVT); 535 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 536 DL, PartVT, Val); 537 } 538 539 Parts[0] = Val; 540 return; 541 } 542 543 // Handle a multi-element vector. 544 EVT IntermediateVT; 545 MVT RegisterVT; 546 unsigned NumIntermediates; 547 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 548 IntermediateVT, 549 NumIntermediates, RegisterVT); 550 unsigned NumElements = ValueVT.getVectorNumElements(); 551 552 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 553 NumParts = NumRegs; // Silence a compiler warning. 554 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 555 556 // Split the vector into intermediate operands. 557 SmallVector<SDValue, 8> Ops(NumIntermediates); 558 for (unsigned i = 0; i != NumIntermediates; ++i) { 559 if (IntermediateVT.isVector()) 560 Ops[i] = 561 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 562 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 563 TLI.getVectorIdxTy(DAG.getDataLayout()))); 564 else 565 Ops[i] = DAG.getNode( 566 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 567 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 568 } 569 570 // Split the intermediate operands into legal parts. 571 if (NumParts == NumIntermediates) { 572 // If the register was not expanded, promote or copy the value, 573 // as appropriate. 574 for (unsigned i = 0; i != NumParts; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 576 } else if (NumParts > 0) { 577 // If the intermediate type was expanded, split each the value into 578 // legal parts. 579 assert(NumIntermediates != 0 && "division by zero"); 580 assert(NumParts % NumIntermediates == 0 && 581 "Must expand into a divisible number of parts!"); 582 unsigned Factor = NumParts / NumIntermediates; 583 for (unsigned i = 0; i != NumIntermediates; ++i) 584 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 585 } 586 } 587 588 RegsForValue::RegsForValue() {} 589 590 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 591 EVT valuevt) 592 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 593 594 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 595 const DataLayout &DL, unsigned Reg, Type *Ty) { 596 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 597 598 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 599 EVT ValueVT = ValueVTs[Value]; 600 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 601 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 602 for (unsigned i = 0; i != NumRegs; ++i) 603 Regs.push_back(Reg + i); 604 RegVTs.push_back(RegisterVT); 605 Reg += NumRegs; 606 } 607 } 608 609 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 610 /// this value and returns the result as a ValueVT value. This uses 611 /// Chain/Flag as the input and updates them for the output Chain/Flag. 612 /// If the Flag pointer is NULL, no flag is used. 613 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 614 FunctionLoweringInfo &FuncInfo, 615 SDLoc dl, 616 SDValue &Chain, SDValue *Flag, 617 const Value *V) const { 618 // A Value with type {} or [0 x %t] needs no registers. 619 if (ValueVTs.empty()) 620 return SDValue(); 621 622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 623 624 // Assemble the legal parts into the final values. 625 SmallVector<SDValue, 4> Values(ValueVTs.size()); 626 SmallVector<SDValue, 8> Parts; 627 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 628 // Copy the legal parts from the registers. 629 EVT ValueVT = ValueVTs[Value]; 630 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 631 MVT RegisterVT = RegVTs[Value]; 632 633 Parts.resize(NumRegs); 634 for (unsigned i = 0; i != NumRegs; ++i) { 635 SDValue P; 636 if (!Flag) { 637 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 638 } else { 639 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 640 *Flag = P.getValue(2); 641 } 642 643 Chain = P.getValue(1); 644 Parts[i] = P; 645 646 // If the source register was virtual and if we know something about it, 647 // add an assert node. 648 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 649 !RegisterVT.isInteger() || RegisterVT.isVector()) 650 continue; 651 652 const FunctionLoweringInfo::LiveOutInfo *LOI = 653 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 654 if (!LOI) 655 continue; 656 657 unsigned RegSize = RegisterVT.getSizeInBits(); 658 unsigned NumSignBits = LOI->NumSignBits; 659 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 660 661 if (NumZeroBits == RegSize) { 662 // The current value is a zero. 663 // Explicitly express that as it would be easier for 664 // optimizations to kick in. 665 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 666 continue; 667 } 668 669 // FIXME: We capture more information than the dag can represent. For 670 // now, just use the tightest assertzext/assertsext possible. 671 bool isSExt = true; 672 EVT FromVT(MVT::Other); 673 if (NumSignBits == RegSize) 674 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 675 else if (NumZeroBits >= RegSize-1) 676 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 677 else if (NumSignBits > RegSize-8) 678 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 679 else if (NumZeroBits >= RegSize-8) 680 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 681 else if (NumSignBits > RegSize-16) 682 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 683 else if (NumZeroBits >= RegSize-16) 684 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 685 else if (NumSignBits > RegSize-32) 686 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 687 else if (NumZeroBits >= RegSize-32) 688 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 689 else 690 continue; 691 692 // Add an assertion node. 693 assert(FromVT != MVT::Other); 694 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 695 RegisterVT, P, DAG.getValueType(FromVT)); 696 } 697 698 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 699 NumRegs, RegisterVT, ValueVT, V); 700 Part += NumRegs; 701 Parts.clear(); 702 } 703 704 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 705 } 706 707 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 708 /// specified value into the registers specified by this object. This uses 709 /// Chain/Flag as the input and updates them for the output Chain/Flag. 710 /// If the Flag pointer is NULL, no flag is used. 711 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 712 SDValue &Chain, SDValue *Flag, const Value *V, 713 ISD::NodeType PreferredExtendType) const { 714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 715 ISD::NodeType ExtendKind = PreferredExtendType; 716 717 // Get the list of the values's legal parts. 718 unsigned NumRegs = Regs.size(); 719 SmallVector<SDValue, 8> Parts(NumRegs); 720 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 721 EVT ValueVT = ValueVTs[Value]; 722 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 723 MVT RegisterVT = RegVTs[Value]; 724 725 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 726 ExtendKind = ISD::ZERO_EXTEND; 727 728 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 729 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 730 Part += NumParts; 731 } 732 733 // Copy the parts into the registers. 734 SmallVector<SDValue, 8> Chains(NumRegs); 735 for (unsigned i = 0; i != NumRegs; ++i) { 736 SDValue Part; 737 if (!Flag) { 738 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 739 } else { 740 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 741 *Flag = Part.getValue(1); 742 } 743 744 Chains[i] = Part.getValue(0); 745 } 746 747 if (NumRegs == 1 || Flag) 748 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 749 // flagged to it. That is the CopyToReg nodes and the user are considered 750 // a single scheduling unit. If we create a TokenFactor and return it as 751 // chain, then the TokenFactor is both a predecessor (operand) of the 752 // user as well as a successor (the TF operands are flagged to the user). 753 // c1, f1 = CopyToReg 754 // c2, f2 = CopyToReg 755 // c3 = TokenFactor c1, c2 756 // ... 757 // = op c3, ..., f2 758 Chain = Chains[NumRegs-1]; 759 else 760 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 761 } 762 763 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 764 /// operand list. This adds the code marker and includes the number of 765 /// values added into it. 766 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 767 unsigned MatchingIdx, SDLoc dl, 768 SelectionDAG &DAG, 769 std::vector<SDValue> &Ops) const { 770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 771 772 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 773 if (HasMatching) 774 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 775 else if (!Regs.empty() && 776 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 777 // Put the register class of the virtual registers in the flag word. That 778 // way, later passes can recompute register class constraints for inline 779 // assembly as well as normal instructions. 780 // Don't do this for tied operands that can use the regclass information 781 // from the def. 782 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 783 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 784 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 785 } 786 787 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 788 Ops.push_back(Res); 789 790 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 791 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 792 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 793 MVT RegisterVT = RegVTs[Value]; 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 796 unsigned TheReg = Regs[Reg++]; 797 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 798 799 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 800 // If we clobbered the stack pointer, MFI should know about it. 801 assert(DAG.getMachineFunction().getFrameInfo()-> 802 hasOpaqueSPAdjustment()); 803 } 804 } 805 } 806 } 807 808 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 809 const TargetLibraryInfo *li) { 810 AA = &aa; 811 GFI = gfi; 812 LibInfo = li; 813 DL = &DAG.getDataLayout(); 814 Context = DAG.getContext(); 815 LPadToCallSiteMap.clear(); 816 } 817 818 /// clear - Clear out the current SelectionDAG and the associated 819 /// state and prepare this SelectionDAGBuilder object to be used 820 /// for a new block. This doesn't clear out information about 821 /// additional blocks that are needed to complete switch lowering 822 /// or PHI node updating; that information is cleared out as it is 823 /// consumed. 824 void SelectionDAGBuilder::clear() { 825 NodeMap.clear(); 826 UnusedArgNodeMap.clear(); 827 PendingLoads.clear(); 828 PendingExports.clear(); 829 CurInst = nullptr; 830 HasTailCall = false; 831 SDNodeOrder = LowestSDNodeOrder; 832 StatepointLowering.clear(); 833 } 834 835 /// clearDanglingDebugInfo - Clear the dangling debug information 836 /// map. This function is separated from the clear so that debug 837 /// information that is dangling in a basic block can be properly 838 /// resolved in a different basic block. This allows the 839 /// SelectionDAG to resolve dangling debug information attached 840 /// to PHI nodes. 841 void SelectionDAGBuilder::clearDanglingDebugInfo() { 842 DanglingDebugInfoMap.clear(); 843 } 844 845 /// getRoot - Return the current virtual root of the Selection DAG, 846 /// flushing any PendingLoad items. This must be done before emitting 847 /// a store or any other node that may need to be ordered after any 848 /// prior load instructions. 849 /// 850 SDValue SelectionDAGBuilder::getRoot() { 851 if (PendingLoads.empty()) 852 return DAG.getRoot(); 853 854 if (PendingLoads.size() == 1) { 855 SDValue Root = PendingLoads[0]; 856 DAG.setRoot(Root); 857 PendingLoads.clear(); 858 return Root; 859 } 860 861 // Otherwise, we have to make a token factor node. 862 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 863 PendingLoads); 864 PendingLoads.clear(); 865 DAG.setRoot(Root); 866 return Root; 867 } 868 869 /// getControlRoot - Similar to getRoot, but instead of flushing all the 870 /// PendingLoad items, flush all the PendingExports items. It is necessary 871 /// to do this before emitting a terminator instruction. 872 /// 873 SDValue SelectionDAGBuilder::getControlRoot() { 874 SDValue Root = DAG.getRoot(); 875 876 if (PendingExports.empty()) 877 return Root; 878 879 // Turn all of the CopyToReg chains into one factored node. 880 if (Root.getOpcode() != ISD::EntryToken) { 881 unsigned i = 0, e = PendingExports.size(); 882 for (; i != e; ++i) { 883 assert(PendingExports[i].getNode()->getNumOperands() > 1); 884 if (PendingExports[i].getNode()->getOperand(0) == Root) 885 break; // Don't add the root if we already indirectly depend on it. 886 } 887 888 if (i == e) 889 PendingExports.push_back(Root); 890 } 891 892 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 893 PendingExports); 894 PendingExports.clear(); 895 DAG.setRoot(Root); 896 return Root; 897 } 898 899 void SelectionDAGBuilder::visit(const Instruction &I) { 900 // Set up outgoing PHI node register values before emitting the terminator. 901 if (isa<TerminatorInst>(&I)) 902 HandlePHINodesInSuccessorBlocks(I.getParent()); 903 904 ++SDNodeOrder; 905 906 CurInst = &I; 907 908 visit(I.getOpcode(), I); 909 910 if (!isa<TerminatorInst>(&I) && !HasTailCall) 911 CopyToExportRegsIfNeeded(&I); 912 913 CurInst = nullptr; 914 } 915 916 void SelectionDAGBuilder::visitPHI(const PHINode &) { 917 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 918 } 919 920 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 921 // Note: this doesn't use InstVisitor, because it has to work with 922 // ConstantExpr's in addition to instructions. 923 switch (Opcode) { 924 default: llvm_unreachable("Unknown instruction type encountered!"); 925 // Build the switch statement using the Instruction.def file. 926 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 927 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 928 #include "llvm/IR/Instruction.def" 929 } 930 } 931 932 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 933 // generate the debug data structures now that we've seen its definition. 934 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 935 SDValue Val) { 936 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 937 if (DDI.getDI()) { 938 const DbgValueInst *DI = DDI.getDI(); 939 DebugLoc dl = DDI.getdl(); 940 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 941 DILocalVariable *Variable = DI->getVariable(); 942 DIExpression *Expr = DI->getExpression(); 943 assert(Variable->isValidLocationForIntrinsic(dl) && 944 "Expected inlined-at fields to agree"); 945 uint64_t Offset = DI->getOffset(); 946 // A dbg.value for an alloca is always indirect. 947 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 948 SDDbgValue *SDV; 949 if (Val.getNode()) { 950 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 951 Val)) { 952 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 953 IsIndirect, Offset, dl, DbgSDNodeOrder); 954 DAG.AddDbgValue(SDV, Val.getNode(), false); 955 } 956 } else 957 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 958 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 959 } 960 } 961 962 /// getCopyFromRegs - If there was virtual register allocated for the value V 963 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 964 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 965 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 966 SDValue Result; 967 968 if (It != FuncInfo.ValueMap.end()) { 969 unsigned InReg = It->second; 970 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 971 DAG.getDataLayout(), InReg, Ty); 972 SDValue Chain = DAG.getEntryNode(); 973 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 974 resolveDanglingDebugInfo(V, Result); 975 } 976 977 return Result; 978 } 979 980 /// getValue - Return an SDValue for the given Value. 981 SDValue SelectionDAGBuilder::getValue(const Value *V) { 982 // If we already have an SDValue for this value, use it. It's important 983 // to do this first, so that we don't create a CopyFromReg if we already 984 // have a regular SDValue. 985 SDValue &N = NodeMap[V]; 986 if (N.getNode()) return N; 987 988 // If there's a virtual register allocated and initialized for this 989 // value, use it. 990 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 991 if (copyFromReg.getNode()) { 992 return copyFromReg; 993 } 994 995 // Otherwise create a new SDValue and remember it. 996 SDValue Val = getValueImpl(V); 997 NodeMap[V] = Val; 998 resolveDanglingDebugInfo(V, Val); 999 return Val; 1000 } 1001 1002 // Return true if SDValue exists for the given Value 1003 bool SelectionDAGBuilder::findValue(const Value *V) const { 1004 return (NodeMap.find(V) != NodeMap.end()) || 1005 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1006 } 1007 1008 /// getNonRegisterValue - Return an SDValue for the given Value, but 1009 /// don't look in FuncInfo.ValueMap for a virtual register. 1010 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1011 // If we already have an SDValue for this value, use it. 1012 SDValue &N = NodeMap[V]; 1013 if (N.getNode()) { 1014 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1015 // Remove the debug location from the node as the node is about to be used 1016 // in a location which may differ from the original debug location. This 1017 // is relevant to Constant and ConstantFP nodes because they can appear 1018 // as constant expressions inside PHI nodes. 1019 N->setDebugLoc(DebugLoc()); 1020 } 1021 return N; 1022 } 1023 1024 // Otherwise create a new SDValue and remember it. 1025 SDValue Val = getValueImpl(V); 1026 NodeMap[V] = Val; 1027 resolveDanglingDebugInfo(V, Val); 1028 return Val; 1029 } 1030 1031 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1032 /// Create an SDValue for the given value. 1033 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1035 1036 if (const Constant *C = dyn_cast<Constant>(V)) { 1037 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1038 1039 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1040 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1041 1042 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1043 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1044 1045 if (isa<ConstantPointerNull>(C)) { 1046 unsigned AS = V->getType()->getPointerAddressSpace(); 1047 return DAG.getConstant(0, getCurSDLoc(), 1048 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1049 } 1050 1051 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1052 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1053 1054 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1055 return DAG.getUNDEF(VT); 1056 1057 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1058 visit(CE->getOpcode(), *CE); 1059 SDValue N1 = NodeMap[V]; 1060 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1061 return N1; 1062 } 1063 1064 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1065 SmallVector<SDValue, 4> Constants; 1066 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1067 OI != OE; ++OI) { 1068 SDNode *Val = getValue(*OI).getNode(); 1069 // If the operand is an empty aggregate, there are no values. 1070 if (!Val) continue; 1071 // Add each leaf value from the operand to the Constants list 1072 // to form a flattened list of all the values. 1073 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1074 Constants.push_back(SDValue(Val, i)); 1075 } 1076 1077 return DAG.getMergeValues(Constants, getCurSDLoc()); 1078 } 1079 1080 if (const ConstantDataSequential *CDS = 1081 dyn_cast<ConstantDataSequential>(C)) { 1082 SmallVector<SDValue, 4> Ops; 1083 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1084 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1085 // Add each leaf value from the operand to the Constants list 1086 // to form a flattened list of all the values. 1087 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1088 Ops.push_back(SDValue(Val, i)); 1089 } 1090 1091 if (isa<ArrayType>(CDS->getType())) 1092 return DAG.getMergeValues(Ops, getCurSDLoc()); 1093 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1094 VT, Ops); 1095 } 1096 1097 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1098 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1099 "Unknown struct or array constant!"); 1100 1101 SmallVector<EVT, 4> ValueVTs; 1102 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1103 unsigned NumElts = ValueVTs.size(); 1104 if (NumElts == 0) 1105 return SDValue(); // empty struct 1106 SmallVector<SDValue, 4> Constants(NumElts); 1107 for (unsigned i = 0; i != NumElts; ++i) { 1108 EVT EltVT = ValueVTs[i]; 1109 if (isa<UndefValue>(C)) 1110 Constants[i] = DAG.getUNDEF(EltVT); 1111 else if (EltVT.isFloatingPoint()) 1112 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1113 else 1114 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1115 } 1116 1117 return DAG.getMergeValues(Constants, getCurSDLoc()); 1118 } 1119 1120 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1121 return DAG.getBlockAddress(BA, VT); 1122 1123 VectorType *VecTy = cast<VectorType>(V->getType()); 1124 unsigned NumElements = VecTy->getNumElements(); 1125 1126 // Now that we know the number and type of the elements, get that number of 1127 // elements into the Ops array based on what kind of constant it is. 1128 SmallVector<SDValue, 16> Ops; 1129 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1130 for (unsigned i = 0; i != NumElements; ++i) 1131 Ops.push_back(getValue(CV->getOperand(i))); 1132 } else { 1133 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1134 EVT EltVT = 1135 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1136 1137 SDValue Op; 1138 if (EltVT.isFloatingPoint()) 1139 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1140 else 1141 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1142 Ops.assign(NumElements, Op); 1143 } 1144 1145 // Create a BUILD_VECTOR node. 1146 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1147 } 1148 1149 // If this is a static alloca, generate it as the frameindex instead of 1150 // computation. 1151 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1152 DenseMap<const AllocaInst*, int>::iterator SI = 1153 FuncInfo.StaticAllocaMap.find(AI); 1154 if (SI != FuncInfo.StaticAllocaMap.end()) 1155 return DAG.getFrameIndex(SI->second, 1156 TLI.getPointerTy(DAG.getDataLayout())); 1157 } 1158 1159 // If this is an instruction which fast-isel has deferred, select it now. 1160 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1161 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1162 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1163 Inst->getType()); 1164 SDValue Chain = DAG.getEntryNode(); 1165 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1166 } 1167 1168 llvm_unreachable("Can't get register for value!"); 1169 } 1170 1171 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1173 auto &DL = DAG.getDataLayout(); 1174 SDValue Chain = getControlRoot(); 1175 SmallVector<ISD::OutputArg, 8> Outs; 1176 SmallVector<SDValue, 8> OutVals; 1177 1178 if (!FuncInfo.CanLowerReturn) { 1179 unsigned DemoteReg = FuncInfo.DemoteRegister; 1180 const Function *F = I.getParent()->getParent(); 1181 1182 // Emit a store of the return value through the virtual register. 1183 // Leave Outs empty so that LowerReturn won't try to load return 1184 // registers the usual way. 1185 SmallVector<EVT, 1> PtrValueVTs; 1186 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1187 PtrValueVTs); 1188 1189 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1190 SDValue RetOp = getValue(I.getOperand(0)); 1191 1192 SmallVector<EVT, 4> ValueVTs; 1193 SmallVector<uint64_t, 4> Offsets; 1194 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1195 unsigned NumValues = ValueVTs.size(); 1196 1197 SmallVector<SDValue, 4> Chains(NumValues); 1198 for (unsigned i = 0; i != NumValues; ++i) { 1199 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1200 RetPtr.getValueType(), RetPtr, 1201 DAG.getIntPtrConstant(Offsets[i], 1202 getCurSDLoc())); 1203 Chains[i] = 1204 DAG.getStore(Chain, getCurSDLoc(), 1205 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1206 // FIXME: better loc info would be nice. 1207 Add, MachinePointerInfo(), false, false, 0); 1208 } 1209 1210 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1211 MVT::Other, Chains); 1212 } else if (I.getNumOperands() != 0) { 1213 SmallVector<EVT, 4> ValueVTs; 1214 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1215 unsigned NumValues = ValueVTs.size(); 1216 if (NumValues) { 1217 SDValue RetOp = getValue(I.getOperand(0)); 1218 1219 const Function *F = I.getParent()->getParent(); 1220 1221 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1222 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1223 Attribute::SExt)) 1224 ExtendKind = ISD::SIGN_EXTEND; 1225 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1226 Attribute::ZExt)) 1227 ExtendKind = ISD::ZERO_EXTEND; 1228 1229 LLVMContext &Context = F->getContext(); 1230 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1231 Attribute::InReg); 1232 1233 for (unsigned j = 0; j != NumValues; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1237 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1238 1239 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1240 MVT PartVT = TLI.getRegisterType(Context, VT); 1241 SmallVector<SDValue, 4> Parts(NumParts); 1242 getCopyToParts(DAG, getCurSDLoc(), 1243 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1244 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1245 1246 // 'inreg' on function refers to return value 1247 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1248 if (RetInReg) 1249 Flags.setInReg(); 1250 1251 // Propagate extension type if any 1252 if (ExtendKind == ISD::SIGN_EXTEND) 1253 Flags.setSExt(); 1254 else if (ExtendKind == ISD::ZERO_EXTEND) 1255 Flags.setZExt(); 1256 1257 for (unsigned i = 0; i < NumParts; ++i) { 1258 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1259 VT, /*isfixed=*/true, 0, 0)); 1260 OutVals.push_back(Parts[i]); 1261 } 1262 } 1263 } 1264 } 1265 1266 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1267 CallingConv::ID CallConv = 1268 DAG.getMachineFunction().getFunction()->getCallingConv(); 1269 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1270 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1271 1272 // Verify that the target's LowerReturn behaved as expected. 1273 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1274 "LowerReturn didn't return a valid chain!"); 1275 1276 // Update the DAG with the new chain value resulting from return lowering. 1277 DAG.setRoot(Chain); 1278 } 1279 1280 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1281 /// created for it, emit nodes to copy the value into the virtual 1282 /// registers. 1283 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1284 // Skip empty types 1285 if (V->getType()->isEmptyTy()) 1286 return; 1287 1288 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1289 if (VMI != FuncInfo.ValueMap.end()) { 1290 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1291 CopyValueToVirtualRegister(V, VMI->second); 1292 } 1293 } 1294 1295 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1296 /// the current basic block, add it to ValueMap now so that we'll get a 1297 /// CopyTo/FromReg. 1298 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1299 // No need to export constants. 1300 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1301 1302 // Already exported? 1303 if (FuncInfo.isExportedInst(V)) return; 1304 1305 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1306 CopyValueToVirtualRegister(V, Reg); 1307 } 1308 1309 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1310 const BasicBlock *FromBB) { 1311 // The operands of the setcc have to be in this block. We don't know 1312 // how to export them from some other block. 1313 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1314 // Can export from current BB. 1315 if (VI->getParent() == FromBB) 1316 return true; 1317 1318 // Is already exported, noop. 1319 return FuncInfo.isExportedInst(V); 1320 } 1321 1322 // If this is an argument, we can export it if the BB is the entry block or 1323 // if it is already exported. 1324 if (isa<Argument>(V)) { 1325 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1326 return true; 1327 1328 // Otherwise, can only export this if it is already exported. 1329 return FuncInfo.isExportedInst(V); 1330 } 1331 1332 // Otherwise, constants can always be exported. 1333 return true; 1334 } 1335 1336 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1337 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1338 const MachineBasicBlock *Dst) const { 1339 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1340 if (!BPI) 1341 return 0; 1342 const BasicBlock *SrcBB = Src->getBasicBlock(); 1343 const BasicBlock *DstBB = Dst->getBasicBlock(); 1344 return BPI->getEdgeWeight(SrcBB, DstBB); 1345 } 1346 1347 void SelectionDAGBuilder:: 1348 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1349 uint32_t Weight /* = 0 */) { 1350 if (!Weight) 1351 Weight = getEdgeWeight(Src, Dst); 1352 Src->addSuccessor(Dst, Weight); 1353 } 1354 1355 1356 static bool InBlock(const Value *V, const BasicBlock *BB) { 1357 if (const Instruction *I = dyn_cast<Instruction>(V)) 1358 return I->getParent() == BB; 1359 return true; 1360 } 1361 1362 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1363 /// This function emits a branch and is used at the leaves of an OR or an 1364 /// AND operator tree. 1365 /// 1366 void 1367 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1368 MachineBasicBlock *TBB, 1369 MachineBasicBlock *FBB, 1370 MachineBasicBlock *CurBB, 1371 MachineBasicBlock *SwitchBB, 1372 uint32_t TWeight, 1373 uint32_t FWeight) { 1374 const BasicBlock *BB = CurBB->getBasicBlock(); 1375 1376 // If the leaf of the tree is a comparison, merge the condition into 1377 // the caseblock. 1378 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1379 // The operands of the cmp have to be in this block. We don't know 1380 // how to export them from some other block. If this is the first block 1381 // of the sequence, no exporting is needed. 1382 if (CurBB == SwitchBB || 1383 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1384 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1385 ISD::CondCode Condition; 1386 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1387 Condition = getICmpCondCode(IC->getPredicate()); 1388 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1389 Condition = getFCmpCondCode(FC->getPredicate()); 1390 if (TM.Options.NoNaNsFPMath) 1391 Condition = getFCmpCodeWithoutNaN(Condition); 1392 } else { 1393 (void)Condition; // silence warning. 1394 llvm_unreachable("Unknown compare instruction"); 1395 } 1396 1397 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1398 TBB, FBB, CurBB, TWeight, FWeight); 1399 SwitchCases.push_back(CB); 1400 return; 1401 } 1402 } 1403 1404 // Create a CaseBlock record representing this branch. 1405 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1406 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1407 SwitchCases.push_back(CB); 1408 } 1409 1410 /// Scale down both weights to fit into uint32_t. 1411 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1412 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1413 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1414 NewTrue = NewTrue / Scale; 1415 NewFalse = NewFalse / Scale; 1416 } 1417 1418 /// FindMergedConditions - If Cond is an expression like 1419 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1420 MachineBasicBlock *TBB, 1421 MachineBasicBlock *FBB, 1422 MachineBasicBlock *CurBB, 1423 MachineBasicBlock *SwitchBB, 1424 unsigned Opc, uint32_t TWeight, 1425 uint32_t FWeight) { 1426 // If this node is not part of the or/and tree, emit it as a branch. 1427 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1428 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1429 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1430 BOp->getParent() != CurBB->getBasicBlock() || 1431 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1432 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1433 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1434 TWeight, FWeight); 1435 return; 1436 } 1437 1438 // Create TmpBB after CurBB. 1439 MachineFunction::iterator BBI = CurBB; 1440 MachineFunction &MF = DAG.getMachineFunction(); 1441 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1442 CurBB->getParent()->insert(++BBI, TmpBB); 1443 1444 if (Opc == Instruction::Or) { 1445 // Codegen X | Y as: 1446 // BB1: 1447 // jmp_if_X TBB 1448 // jmp TmpBB 1449 // TmpBB: 1450 // jmp_if_Y TBB 1451 // jmp FBB 1452 // 1453 1454 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1455 // The requirement is that 1456 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1457 // = TrueProb for original BB. 1458 // Assuming the original weights are A and B, one choice is to set BB1's 1459 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1460 // assumes that 1461 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1462 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1463 // TmpBB, but the math is more complicated. 1464 1465 uint64_t NewTrueWeight = TWeight; 1466 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1467 ScaleWeights(NewTrueWeight, NewFalseWeight); 1468 // Emit the LHS condition. 1469 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1470 NewTrueWeight, NewFalseWeight); 1471 1472 NewTrueWeight = TWeight; 1473 NewFalseWeight = 2 * (uint64_t)FWeight; 1474 ScaleWeights(NewTrueWeight, NewFalseWeight); 1475 // Emit the RHS condition into TmpBB. 1476 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1477 NewTrueWeight, NewFalseWeight); 1478 } else { 1479 assert(Opc == Instruction::And && "Unknown merge op!"); 1480 // Codegen X & Y as: 1481 // BB1: 1482 // jmp_if_X TmpBB 1483 // jmp FBB 1484 // TmpBB: 1485 // jmp_if_Y TBB 1486 // jmp FBB 1487 // 1488 // This requires creation of TmpBB after CurBB. 1489 1490 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1491 // The requirement is that 1492 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1493 // = FalseProb for original BB. 1494 // Assuming the original weights are A and B, one choice is to set BB1's 1495 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1496 // assumes that 1497 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1498 1499 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1500 uint64_t NewFalseWeight = FWeight; 1501 ScaleWeights(NewTrueWeight, NewFalseWeight); 1502 // Emit the LHS condition. 1503 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1504 NewTrueWeight, NewFalseWeight); 1505 1506 NewTrueWeight = 2 * (uint64_t)TWeight; 1507 NewFalseWeight = FWeight; 1508 ScaleWeights(NewTrueWeight, NewFalseWeight); 1509 // Emit the RHS condition into TmpBB. 1510 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1511 NewTrueWeight, NewFalseWeight); 1512 } 1513 } 1514 1515 /// If the set of cases should be emitted as a series of branches, return true. 1516 /// If we should emit this as a bunch of and/or'd together conditions, return 1517 /// false. 1518 bool 1519 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1520 if (Cases.size() != 2) return true; 1521 1522 // If this is two comparisons of the same values or'd or and'd together, they 1523 // will get folded into a single comparison, so don't emit two blocks. 1524 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1525 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1526 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1527 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1528 return false; 1529 } 1530 1531 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1532 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1533 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1534 Cases[0].CC == Cases[1].CC && 1535 isa<Constant>(Cases[0].CmpRHS) && 1536 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1537 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1538 return false; 1539 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1540 return false; 1541 } 1542 1543 return true; 1544 } 1545 1546 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1547 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1548 1549 // Update machine-CFG edges. 1550 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1551 1552 if (I.isUnconditional()) { 1553 // Update machine-CFG edges. 1554 BrMBB->addSuccessor(Succ0MBB); 1555 1556 // If this is not a fall-through branch or optimizations are switched off, 1557 // emit the branch. 1558 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1559 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1560 MVT::Other, getControlRoot(), 1561 DAG.getBasicBlock(Succ0MBB))); 1562 1563 return; 1564 } 1565 1566 // If this condition is one of the special cases we handle, do special stuff 1567 // now. 1568 const Value *CondVal = I.getCondition(); 1569 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1570 1571 // If this is a series of conditions that are or'd or and'd together, emit 1572 // this as a sequence of branches instead of setcc's with and/or operations. 1573 // As long as jumps are not expensive, this should improve performance. 1574 // For example, instead of something like: 1575 // cmp A, B 1576 // C = seteq 1577 // cmp D, E 1578 // F = setle 1579 // or C, F 1580 // jnz foo 1581 // Emit: 1582 // cmp A, B 1583 // je foo 1584 // cmp D, E 1585 // jle foo 1586 // 1587 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1588 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1589 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1590 BOp->getOpcode() == Instruction::Or)) { 1591 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1592 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1593 getEdgeWeight(BrMBB, Succ1MBB)); 1594 // If the compares in later blocks need to use values not currently 1595 // exported from this block, export them now. This block should always 1596 // be the first entry. 1597 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1598 1599 // Allow some cases to be rejected. 1600 if (ShouldEmitAsBranches(SwitchCases)) { 1601 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1602 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1603 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1604 } 1605 1606 // Emit the branch for this block. 1607 visitSwitchCase(SwitchCases[0], BrMBB); 1608 SwitchCases.erase(SwitchCases.begin()); 1609 return; 1610 } 1611 1612 // Okay, we decided not to do this, remove any inserted MBB's and clear 1613 // SwitchCases. 1614 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1615 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1616 1617 SwitchCases.clear(); 1618 } 1619 } 1620 1621 // Create a CaseBlock record representing this branch. 1622 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1623 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1624 1625 // Use visitSwitchCase to actually insert the fast branch sequence for this 1626 // cond branch. 1627 visitSwitchCase(CB, BrMBB); 1628 } 1629 1630 /// visitSwitchCase - Emits the necessary code to represent a single node in 1631 /// the binary search tree resulting from lowering a switch instruction. 1632 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1633 MachineBasicBlock *SwitchBB) { 1634 SDValue Cond; 1635 SDValue CondLHS = getValue(CB.CmpLHS); 1636 SDLoc dl = getCurSDLoc(); 1637 1638 // Build the setcc now. 1639 if (!CB.CmpMHS) { 1640 // Fold "(X == true)" to X and "(X == false)" to !X to 1641 // handle common cases produced by branch lowering. 1642 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1643 CB.CC == ISD::SETEQ) 1644 Cond = CondLHS; 1645 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1646 CB.CC == ISD::SETEQ) { 1647 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1648 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1649 } else 1650 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1651 } else { 1652 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1653 1654 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1655 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1656 1657 SDValue CmpOp = getValue(CB.CmpMHS); 1658 EVT VT = CmpOp.getValueType(); 1659 1660 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1661 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1662 ISD::SETLE); 1663 } else { 1664 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1665 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1666 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1667 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1668 } 1669 } 1670 1671 // Update successor info 1672 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1673 // TrueBB and FalseBB are always different unless the incoming IR is 1674 // degenerate. This only happens when running llc on weird IR. 1675 if (CB.TrueBB != CB.FalseBB) 1676 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1677 1678 // If the lhs block is the next block, invert the condition so that we can 1679 // fall through to the lhs instead of the rhs block. 1680 if (CB.TrueBB == NextBlock(SwitchBB)) { 1681 std::swap(CB.TrueBB, CB.FalseBB); 1682 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1683 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1684 } 1685 1686 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1687 MVT::Other, getControlRoot(), Cond, 1688 DAG.getBasicBlock(CB.TrueBB)); 1689 1690 // Insert the false branch. Do this even if it's a fall through branch, 1691 // this makes it easier to do DAG optimizations which require inverting 1692 // the branch condition. 1693 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1694 DAG.getBasicBlock(CB.FalseBB)); 1695 1696 DAG.setRoot(BrCond); 1697 } 1698 1699 /// visitJumpTable - Emit JumpTable node in the current MBB 1700 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1701 // Emit the code for the jump table 1702 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1703 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1704 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1705 JT.Reg, PTy); 1706 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1707 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1708 MVT::Other, Index.getValue(1), 1709 Table, Index); 1710 DAG.setRoot(BrJumpTable); 1711 } 1712 1713 /// visitJumpTableHeader - This function emits necessary code to produce index 1714 /// in the JumpTable from switch case. 1715 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1716 JumpTableHeader &JTH, 1717 MachineBasicBlock *SwitchBB) { 1718 SDLoc dl = getCurSDLoc(); 1719 1720 // Subtract the lowest switch case value from the value being switched on and 1721 // conditional branch to default mbb if the result is greater than the 1722 // difference between smallest and largest cases. 1723 SDValue SwitchOp = getValue(JTH.SValue); 1724 EVT VT = SwitchOp.getValueType(); 1725 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1726 DAG.getConstant(JTH.First, dl, VT)); 1727 1728 // The SDNode we just created, which holds the value being switched on minus 1729 // the smallest case value, needs to be copied to a virtual register so it 1730 // can be used as an index into the jump table in a subsequent basic block. 1731 // This value may be smaller or larger than the target's pointer type, and 1732 // therefore require extension or truncating. 1733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1734 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1735 1736 unsigned JumpTableReg = 1737 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1738 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1739 JumpTableReg, SwitchOp); 1740 JT.Reg = JumpTableReg; 1741 1742 // Emit the range check for the jump table, and branch to the default block 1743 // for the switch statement if the value being switched on exceeds the largest 1744 // case in the switch. 1745 SDValue CMP = DAG.getSetCC( 1746 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1747 Sub.getValueType()), 1748 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1749 1750 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1751 MVT::Other, CopyTo, CMP, 1752 DAG.getBasicBlock(JT.Default)); 1753 1754 // Avoid emitting unnecessary branches to the next block. 1755 if (JT.MBB != NextBlock(SwitchBB)) 1756 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1757 DAG.getBasicBlock(JT.MBB)); 1758 1759 DAG.setRoot(BrCond); 1760 } 1761 1762 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1763 /// tail spliced into a stack protector check success bb. 1764 /// 1765 /// For a high level explanation of how this fits into the stack protector 1766 /// generation see the comment on the declaration of class 1767 /// StackProtectorDescriptor. 1768 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1769 MachineBasicBlock *ParentBB) { 1770 1771 // First create the loads to the guard/stack slot for the comparison. 1772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1773 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1774 1775 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1776 int FI = MFI->getStackProtectorIndex(); 1777 1778 const Value *IRGuard = SPD.getGuard(); 1779 SDValue GuardPtr = getValue(IRGuard); 1780 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1781 1782 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1783 1784 SDValue Guard; 1785 SDLoc dl = getCurSDLoc(); 1786 1787 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1788 // guard value from the virtual register holding the value. Otherwise, emit a 1789 // volatile load to retrieve the stack guard value. 1790 unsigned GuardReg = SPD.getGuardReg(); 1791 1792 if (GuardReg && TLI.useLoadStackGuardNode()) 1793 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1794 PtrTy); 1795 else 1796 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1797 GuardPtr, MachinePointerInfo(IRGuard, 0), 1798 true, false, false, Align); 1799 1800 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1801 StackSlotPtr, 1802 MachinePointerInfo::getFixedStack(FI), 1803 true, false, false, Align); 1804 1805 // Perform the comparison via a subtract/getsetcc. 1806 EVT VT = Guard.getValueType(); 1807 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1808 1809 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1810 *DAG.getContext(), 1811 Sub.getValueType()), 1812 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1813 1814 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1815 // branch to failure MBB. 1816 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1817 MVT::Other, StackSlot.getOperand(0), 1818 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1819 // Otherwise branch to success MBB. 1820 SDValue Br = DAG.getNode(ISD::BR, dl, 1821 MVT::Other, BrCond, 1822 DAG.getBasicBlock(SPD.getSuccessMBB())); 1823 1824 DAG.setRoot(Br); 1825 } 1826 1827 /// Codegen the failure basic block for a stack protector check. 1828 /// 1829 /// A failure stack protector machine basic block consists simply of a call to 1830 /// __stack_chk_fail(). 1831 /// 1832 /// For a high level explanation of how this fits into the stack protector 1833 /// generation see the comment on the declaration of class 1834 /// StackProtectorDescriptor. 1835 void 1836 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1838 SDValue Chain = 1839 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1840 nullptr, 0, false, getCurSDLoc(), false, false).second; 1841 DAG.setRoot(Chain); 1842 } 1843 1844 /// visitBitTestHeader - This function emits necessary code to produce value 1845 /// suitable for "bit tests" 1846 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1847 MachineBasicBlock *SwitchBB) { 1848 SDLoc dl = getCurSDLoc(); 1849 1850 // Subtract the minimum value 1851 SDValue SwitchOp = getValue(B.SValue); 1852 EVT VT = SwitchOp.getValueType(); 1853 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1854 DAG.getConstant(B.First, dl, VT)); 1855 1856 // Check range 1857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1858 SDValue RangeCmp = DAG.getSetCC( 1859 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1860 Sub.getValueType()), 1861 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1862 1863 // Determine the type of the test operands. 1864 bool UsePtrType = false; 1865 if (!TLI.isTypeLegal(VT)) 1866 UsePtrType = true; 1867 else { 1868 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1869 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1870 // Switch table case range are encoded into series of masks. 1871 // Just use pointer type, it's guaranteed to fit. 1872 UsePtrType = true; 1873 break; 1874 } 1875 } 1876 if (UsePtrType) { 1877 VT = TLI.getPointerTy(DAG.getDataLayout()); 1878 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1879 } 1880 1881 B.RegVT = VT.getSimpleVT(); 1882 B.Reg = FuncInfo.CreateReg(B.RegVT); 1883 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1884 1885 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1886 1887 addSuccessorWithWeight(SwitchBB, B.Default); 1888 addSuccessorWithWeight(SwitchBB, MBB); 1889 1890 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1891 MVT::Other, CopyTo, RangeCmp, 1892 DAG.getBasicBlock(B.Default)); 1893 1894 // Avoid emitting unnecessary branches to the next block. 1895 if (MBB != NextBlock(SwitchBB)) 1896 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1897 DAG.getBasicBlock(MBB)); 1898 1899 DAG.setRoot(BrRange); 1900 } 1901 1902 /// visitBitTestCase - this function produces one "bit test" 1903 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1904 MachineBasicBlock* NextMBB, 1905 uint32_t BranchWeightToNext, 1906 unsigned Reg, 1907 BitTestCase &B, 1908 MachineBasicBlock *SwitchBB) { 1909 SDLoc dl = getCurSDLoc(); 1910 MVT VT = BB.RegVT; 1911 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1912 SDValue Cmp; 1913 unsigned PopCount = countPopulation(B.Mask); 1914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1915 if (PopCount == 1) { 1916 // Testing for a single bit; just compare the shift count with what it 1917 // would need to be to shift a 1 bit in that position. 1918 Cmp = DAG.getSetCC( 1919 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1920 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1921 ISD::SETEQ); 1922 } else if (PopCount == BB.Range) { 1923 // There is only one zero bit in the range, test for it directly. 1924 Cmp = DAG.getSetCC( 1925 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1926 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1927 ISD::SETNE); 1928 } else { 1929 // Make desired shift 1930 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1931 DAG.getConstant(1, dl, VT), ShiftOp); 1932 1933 // Emit bit tests and jumps 1934 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1935 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1936 Cmp = DAG.getSetCC( 1937 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1938 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1939 } 1940 1941 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1942 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1943 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1944 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1945 1946 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1947 MVT::Other, getControlRoot(), 1948 Cmp, DAG.getBasicBlock(B.TargetBB)); 1949 1950 // Avoid emitting unnecessary branches to the next block. 1951 if (NextMBB != NextBlock(SwitchBB)) 1952 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1953 DAG.getBasicBlock(NextMBB)); 1954 1955 DAG.setRoot(BrAnd); 1956 } 1957 1958 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1959 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1960 1961 // Retrieve successors. 1962 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1963 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1964 1965 const Value *Callee(I.getCalledValue()); 1966 const Function *Fn = dyn_cast<Function>(Callee); 1967 if (isa<InlineAsm>(Callee)) 1968 visitInlineAsm(&I); 1969 else if (Fn && Fn->isIntrinsic()) { 1970 switch (Fn->getIntrinsicID()) { 1971 default: 1972 llvm_unreachable("Cannot invoke this intrinsic"); 1973 case Intrinsic::donothing: 1974 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1975 break; 1976 case Intrinsic::experimental_patchpoint_void: 1977 case Intrinsic::experimental_patchpoint_i64: 1978 visitPatchpoint(&I, LandingPad); 1979 break; 1980 case Intrinsic::experimental_gc_statepoint: 1981 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1982 break; 1983 } 1984 } else 1985 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1986 1987 // If the value of the invoke is used outside of its defining block, make it 1988 // available as a virtual register. 1989 // We already took care of the exported value for the statepoint instruction 1990 // during call to the LowerStatepoint. 1991 if (!isStatepoint(I)) { 1992 CopyToExportRegsIfNeeded(&I); 1993 } 1994 1995 // Update successor info 1996 addSuccessorWithWeight(InvokeMBB, Return); 1997 addSuccessorWithWeight(InvokeMBB, LandingPad); 1998 1999 // Drop into normal successor. 2000 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2001 MVT::Other, getControlRoot(), 2002 DAG.getBasicBlock(Return))); 2003 } 2004 2005 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2006 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2007 } 2008 2009 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2010 assert(FuncInfo.MBB->isLandingPad() && 2011 "Call to landingpad not in landing pad!"); 2012 2013 MachineBasicBlock *MBB = FuncInfo.MBB; 2014 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2015 AddLandingPadInfo(LP, MMI, MBB); 2016 2017 // If there aren't registers to copy the values into (e.g., during SjLj 2018 // exceptions), then don't bother to create these DAG nodes. 2019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2020 if (TLI.getExceptionPointerRegister() == 0 && 2021 TLI.getExceptionSelectorRegister() == 0) 2022 return; 2023 2024 SmallVector<EVT, 2> ValueVTs; 2025 SDLoc dl = getCurSDLoc(); 2026 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2027 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2028 2029 // Get the two live-in registers as SDValues. The physregs have already been 2030 // copied into virtual registers. 2031 SDValue Ops[2]; 2032 if (FuncInfo.ExceptionPointerVirtReg) { 2033 Ops[0] = DAG.getZExtOrTrunc( 2034 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2035 FuncInfo.ExceptionPointerVirtReg, 2036 TLI.getPointerTy(DAG.getDataLayout())), 2037 dl, ValueVTs[0]); 2038 } else { 2039 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2040 } 2041 Ops[1] = DAG.getZExtOrTrunc( 2042 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2043 FuncInfo.ExceptionSelectorVirtReg, 2044 TLI.getPointerTy(DAG.getDataLayout())), 2045 dl, ValueVTs[1]); 2046 2047 // Merge into one. 2048 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2049 DAG.getVTList(ValueVTs), Ops); 2050 setValue(&LP, Res); 2051 } 2052 2053 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2054 #ifndef NDEBUG 2055 for (const CaseCluster &CC : Clusters) 2056 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2057 #endif 2058 2059 std::sort(Clusters.begin(), Clusters.end(), 2060 [](const CaseCluster &a, const CaseCluster &b) { 2061 return a.Low->getValue().slt(b.Low->getValue()); 2062 }); 2063 2064 // Merge adjacent clusters with the same destination. 2065 const unsigned N = Clusters.size(); 2066 unsigned DstIndex = 0; 2067 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2068 CaseCluster &CC = Clusters[SrcIndex]; 2069 const ConstantInt *CaseVal = CC.Low; 2070 MachineBasicBlock *Succ = CC.MBB; 2071 2072 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2073 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2074 // If this case has the same successor and is a neighbour, merge it into 2075 // the previous cluster. 2076 Clusters[DstIndex - 1].High = CaseVal; 2077 Clusters[DstIndex - 1].Weight += CC.Weight; 2078 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2079 } else { 2080 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2081 sizeof(Clusters[SrcIndex])); 2082 } 2083 } 2084 Clusters.resize(DstIndex); 2085 } 2086 2087 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2088 MachineBasicBlock *Last) { 2089 // Update JTCases. 2090 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2091 if (JTCases[i].first.HeaderBB == First) 2092 JTCases[i].first.HeaderBB = Last; 2093 2094 // Update BitTestCases. 2095 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2096 if (BitTestCases[i].Parent == First) 2097 BitTestCases[i].Parent = Last; 2098 } 2099 2100 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2101 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2102 2103 // Update machine-CFG edges with unique successors. 2104 SmallSet<BasicBlock*, 32> Done; 2105 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2106 BasicBlock *BB = I.getSuccessor(i); 2107 bool Inserted = Done.insert(BB).second; 2108 if (!Inserted) 2109 continue; 2110 2111 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2112 addSuccessorWithWeight(IndirectBrMBB, Succ); 2113 } 2114 2115 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2116 MVT::Other, getControlRoot(), 2117 getValue(I.getAddress()))); 2118 } 2119 2120 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2121 if (DAG.getTarget().Options.TrapUnreachable) 2122 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2123 } 2124 2125 void SelectionDAGBuilder::visitFSub(const User &I) { 2126 // -0.0 - X --> fneg 2127 Type *Ty = I.getType(); 2128 if (isa<Constant>(I.getOperand(0)) && 2129 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2130 SDValue Op2 = getValue(I.getOperand(1)); 2131 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2132 Op2.getValueType(), Op2)); 2133 return; 2134 } 2135 2136 visitBinary(I, ISD::FSUB); 2137 } 2138 2139 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2140 SDValue Op1 = getValue(I.getOperand(0)); 2141 SDValue Op2 = getValue(I.getOperand(1)); 2142 2143 bool nuw = false; 2144 bool nsw = false; 2145 bool exact = false; 2146 FastMathFlags FMF; 2147 2148 if (const OverflowingBinaryOperator *OFBinOp = 2149 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2150 nuw = OFBinOp->hasNoUnsignedWrap(); 2151 nsw = OFBinOp->hasNoSignedWrap(); 2152 } 2153 if (const PossiblyExactOperator *ExactOp = 2154 dyn_cast<const PossiblyExactOperator>(&I)) 2155 exact = ExactOp->isExact(); 2156 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2157 FMF = FPOp->getFastMathFlags(); 2158 2159 SDNodeFlags Flags; 2160 Flags.setExact(exact); 2161 Flags.setNoSignedWrap(nsw); 2162 Flags.setNoUnsignedWrap(nuw); 2163 if (EnableFMFInDAG) { 2164 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2165 Flags.setNoInfs(FMF.noInfs()); 2166 Flags.setNoNaNs(FMF.noNaNs()); 2167 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2168 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2169 } 2170 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2171 Op1, Op2, &Flags); 2172 setValue(&I, BinNodeValue); 2173 } 2174 2175 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2176 SDValue Op1 = getValue(I.getOperand(0)); 2177 SDValue Op2 = getValue(I.getOperand(1)); 2178 2179 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2180 Op2.getValueType(), DAG.getDataLayout()); 2181 2182 // Coerce the shift amount to the right type if we can. 2183 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2184 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2185 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2186 SDLoc DL = getCurSDLoc(); 2187 2188 // If the operand is smaller than the shift count type, promote it. 2189 if (ShiftSize > Op2Size) 2190 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2191 2192 // If the operand is larger than the shift count type but the shift 2193 // count type has enough bits to represent any shift value, truncate 2194 // it now. This is a common case and it exposes the truncate to 2195 // optimization early. 2196 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2197 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2198 // Otherwise we'll need to temporarily settle for some other convenient 2199 // type. Type legalization will make adjustments once the shiftee is split. 2200 else 2201 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2202 } 2203 2204 bool nuw = false; 2205 bool nsw = false; 2206 bool exact = false; 2207 2208 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2209 2210 if (const OverflowingBinaryOperator *OFBinOp = 2211 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2212 nuw = OFBinOp->hasNoUnsignedWrap(); 2213 nsw = OFBinOp->hasNoSignedWrap(); 2214 } 2215 if (const PossiblyExactOperator *ExactOp = 2216 dyn_cast<const PossiblyExactOperator>(&I)) 2217 exact = ExactOp->isExact(); 2218 } 2219 SDNodeFlags Flags; 2220 Flags.setExact(exact); 2221 Flags.setNoSignedWrap(nsw); 2222 Flags.setNoUnsignedWrap(nuw); 2223 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2224 &Flags); 2225 setValue(&I, Res); 2226 } 2227 2228 void SelectionDAGBuilder::visitSDiv(const User &I) { 2229 SDValue Op1 = getValue(I.getOperand(0)); 2230 SDValue Op2 = getValue(I.getOperand(1)); 2231 2232 SDNodeFlags Flags; 2233 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2234 cast<PossiblyExactOperator>(&I)->isExact()); 2235 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2236 Op2, &Flags)); 2237 } 2238 2239 void SelectionDAGBuilder::visitICmp(const User &I) { 2240 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2241 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2242 predicate = IC->getPredicate(); 2243 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2244 predicate = ICmpInst::Predicate(IC->getPredicate()); 2245 SDValue Op1 = getValue(I.getOperand(0)); 2246 SDValue Op2 = getValue(I.getOperand(1)); 2247 ISD::CondCode Opcode = getICmpCondCode(predicate); 2248 2249 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2250 I.getType()); 2251 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2252 } 2253 2254 void SelectionDAGBuilder::visitFCmp(const User &I) { 2255 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2256 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2257 predicate = FC->getPredicate(); 2258 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2259 predicate = FCmpInst::Predicate(FC->getPredicate()); 2260 SDValue Op1 = getValue(I.getOperand(0)); 2261 SDValue Op2 = getValue(I.getOperand(1)); 2262 ISD::CondCode Condition = getFCmpCondCode(predicate); 2263 if (TM.Options.NoNaNsFPMath) 2264 Condition = getFCmpCodeWithoutNaN(Condition); 2265 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2266 I.getType()); 2267 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2268 } 2269 2270 void SelectionDAGBuilder::visitSelect(const User &I) { 2271 SmallVector<EVT, 4> ValueVTs; 2272 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2273 ValueVTs); 2274 unsigned NumValues = ValueVTs.size(); 2275 if (NumValues == 0) return; 2276 2277 SmallVector<SDValue, 4> Values(NumValues); 2278 SDValue Cond = getValue(I.getOperand(0)); 2279 SDValue LHSVal = getValue(I.getOperand(1)); 2280 SDValue RHSVal = getValue(I.getOperand(2)); 2281 auto BaseOps = {Cond}; 2282 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2283 ISD::VSELECT : ISD::SELECT; 2284 2285 // Min/max matching is only viable if all output VTs are the same. 2286 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2287 Value *LHS, *RHS; 2288 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2289 ISD::NodeType Opc = ISD::DELETED_NODE; 2290 switch (SPF) { 2291 case SPF_UMAX: Opc = ISD::UMAX; break; 2292 case SPF_UMIN: Opc = ISD::UMIN; break; 2293 case SPF_SMAX: Opc = ISD::SMAX; break; 2294 case SPF_SMIN: Opc = ISD::SMIN; break; 2295 default: break; 2296 } 2297 2298 EVT VT = ValueVTs[0]; 2299 LLVMContext &Ctx = *DAG.getContext(); 2300 auto &TLI = DAG.getTargetLoweringInfo(); 2301 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2302 VT = TLI.getTypeToTransformTo(Ctx, VT); 2303 2304 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2305 // If the underlying comparison instruction is used by any other instruction, 2306 // the consumed instructions won't be destroyed, so it is not profitable 2307 // to convert to a min/max. 2308 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2309 OpCode = Opc; 2310 LHSVal = getValue(LHS); 2311 RHSVal = getValue(RHS); 2312 BaseOps = {}; 2313 } 2314 } 2315 2316 for (unsigned i = 0; i != NumValues; ++i) { 2317 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2318 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2319 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2320 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2321 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2322 Ops); 2323 } 2324 2325 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2326 DAG.getVTList(ValueVTs), Values)); 2327 } 2328 2329 void SelectionDAGBuilder::visitTrunc(const User &I) { 2330 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2331 SDValue N = getValue(I.getOperand(0)); 2332 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2333 I.getType()); 2334 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2335 } 2336 2337 void SelectionDAGBuilder::visitZExt(const User &I) { 2338 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2339 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2340 SDValue N = getValue(I.getOperand(0)); 2341 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2342 I.getType()); 2343 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2344 } 2345 2346 void SelectionDAGBuilder::visitSExt(const User &I) { 2347 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2348 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2349 SDValue N = getValue(I.getOperand(0)); 2350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2351 I.getType()); 2352 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2353 } 2354 2355 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2356 // FPTrunc is never a no-op cast, no need to check 2357 SDValue N = getValue(I.getOperand(0)); 2358 SDLoc dl = getCurSDLoc(); 2359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2360 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2361 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2362 DAG.getTargetConstant( 2363 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2364 } 2365 2366 void SelectionDAGBuilder::visitFPExt(const User &I) { 2367 // FPExt is never a no-op cast, no need to check 2368 SDValue N = getValue(I.getOperand(0)); 2369 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2370 I.getType()); 2371 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2372 } 2373 2374 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2375 // FPToUI is never a no-op cast, no need to check 2376 SDValue N = getValue(I.getOperand(0)); 2377 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2378 I.getType()); 2379 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2380 } 2381 2382 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2383 // FPToSI is never a no-op cast, no need to check 2384 SDValue N = getValue(I.getOperand(0)); 2385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2386 I.getType()); 2387 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2388 } 2389 2390 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2391 // UIToFP is never a no-op cast, no need to check 2392 SDValue N = getValue(I.getOperand(0)); 2393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2394 I.getType()); 2395 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2396 } 2397 2398 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2399 // SIToFP is never a no-op cast, no need to check 2400 SDValue N = getValue(I.getOperand(0)); 2401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2402 I.getType()); 2403 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2404 } 2405 2406 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2407 // What to do depends on the size of the integer and the size of the pointer. 2408 // We can either truncate, zero extend, or no-op, accordingly. 2409 SDValue N = getValue(I.getOperand(0)); 2410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2411 I.getType()); 2412 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2413 } 2414 2415 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2416 // What to do depends on the size of the integer and the size of the pointer. 2417 // We can either truncate, zero extend, or no-op, accordingly. 2418 SDValue N = getValue(I.getOperand(0)); 2419 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2420 I.getType()); 2421 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2422 } 2423 2424 void SelectionDAGBuilder::visitBitCast(const User &I) { 2425 SDValue N = getValue(I.getOperand(0)); 2426 SDLoc dl = getCurSDLoc(); 2427 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2428 I.getType()); 2429 2430 // BitCast assures us that source and destination are the same size so this is 2431 // either a BITCAST or a no-op. 2432 if (DestVT != N.getValueType()) 2433 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2434 DestVT, N)); // convert types. 2435 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2436 // might fold any kind of constant expression to an integer constant and that 2437 // is not what we are looking for. Only regcognize a bitcast of a genuine 2438 // constant integer as an opaque constant. 2439 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2440 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2441 /*isOpaque*/true)); 2442 else 2443 setValue(&I, N); // noop cast. 2444 } 2445 2446 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2448 const Value *SV = I.getOperand(0); 2449 SDValue N = getValue(SV); 2450 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2451 2452 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2453 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2454 2455 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2456 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2457 2458 setValue(&I, N); 2459 } 2460 2461 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2463 SDValue InVec = getValue(I.getOperand(0)); 2464 SDValue InVal = getValue(I.getOperand(1)); 2465 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2466 TLI.getVectorIdxTy(DAG.getDataLayout())); 2467 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2468 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2469 InVec, InVal, InIdx)); 2470 } 2471 2472 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2474 SDValue InVec = getValue(I.getOperand(0)); 2475 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2476 TLI.getVectorIdxTy(DAG.getDataLayout())); 2477 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2478 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2479 InVec, InIdx)); 2480 } 2481 2482 // Utility for visitShuffleVector - Return true if every element in Mask, 2483 // beginning from position Pos and ending in Pos+Size, falls within the 2484 // specified sequential range [L, L+Pos). or is undef. 2485 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2486 unsigned Pos, unsigned Size, int Low) { 2487 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2488 if (Mask[i] >= 0 && Mask[i] != Low) 2489 return false; 2490 return true; 2491 } 2492 2493 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2494 SDValue Src1 = getValue(I.getOperand(0)); 2495 SDValue Src2 = getValue(I.getOperand(1)); 2496 2497 SmallVector<int, 8> Mask; 2498 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2499 unsigned MaskNumElts = Mask.size(); 2500 2501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2502 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2503 EVT SrcVT = Src1.getValueType(); 2504 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2505 2506 if (SrcNumElts == MaskNumElts) { 2507 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2508 &Mask[0])); 2509 return; 2510 } 2511 2512 // Normalize the shuffle vector since mask and vector length don't match. 2513 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2514 // Mask is longer than the source vectors and is a multiple of the source 2515 // vectors. We can use concatenate vector to make the mask and vectors 2516 // lengths match. 2517 if (SrcNumElts*2 == MaskNumElts) { 2518 // First check for Src1 in low and Src2 in high 2519 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2520 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2521 // The shuffle is concatenating two vectors together. 2522 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2523 VT, Src1, Src2)); 2524 return; 2525 } 2526 // Then check for Src2 in low and Src1 in high 2527 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2528 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2529 // The shuffle is concatenating two vectors together. 2530 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2531 VT, Src2, Src1)); 2532 return; 2533 } 2534 } 2535 2536 // Pad both vectors with undefs to make them the same length as the mask. 2537 unsigned NumConcat = MaskNumElts / SrcNumElts; 2538 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2539 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2540 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2541 2542 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2543 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2544 MOps1[0] = Src1; 2545 MOps2[0] = Src2; 2546 2547 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2548 getCurSDLoc(), VT, MOps1); 2549 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2550 getCurSDLoc(), VT, MOps2); 2551 2552 // Readjust mask for new input vector length. 2553 SmallVector<int, 8> MappedOps; 2554 for (unsigned i = 0; i != MaskNumElts; ++i) { 2555 int Idx = Mask[i]; 2556 if (Idx >= (int)SrcNumElts) 2557 Idx -= SrcNumElts - MaskNumElts; 2558 MappedOps.push_back(Idx); 2559 } 2560 2561 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2562 &MappedOps[0])); 2563 return; 2564 } 2565 2566 if (SrcNumElts > MaskNumElts) { 2567 // Analyze the access pattern of the vector to see if we can extract 2568 // two subvectors and do the shuffle. The analysis is done by calculating 2569 // the range of elements the mask access on both vectors. 2570 int MinRange[2] = { static_cast<int>(SrcNumElts), 2571 static_cast<int>(SrcNumElts)}; 2572 int MaxRange[2] = {-1, -1}; 2573 2574 for (unsigned i = 0; i != MaskNumElts; ++i) { 2575 int Idx = Mask[i]; 2576 unsigned Input = 0; 2577 if (Idx < 0) 2578 continue; 2579 2580 if (Idx >= (int)SrcNumElts) { 2581 Input = 1; 2582 Idx -= SrcNumElts; 2583 } 2584 if (Idx > MaxRange[Input]) 2585 MaxRange[Input] = Idx; 2586 if (Idx < MinRange[Input]) 2587 MinRange[Input] = Idx; 2588 } 2589 2590 // Check if the access is smaller than the vector size and can we find 2591 // a reasonable extract index. 2592 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2593 // Extract. 2594 int StartIdx[2]; // StartIdx to extract from 2595 for (unsigned Input = 0; Input < 2; ++Input) { 2596 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2597 RangeUse[Input] = 0; // Unused 2598 StartIdx[Input] = 0; 2599 continue; 2600 } 2601 2602 // Find a good start index that is a multiple of the mask length. Then 2603 // see if the rest of the elements are in range. 2604 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2605 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2606 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2607 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2608 } 2609 2610 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2611 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2612 return; 2613 } 2614 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2615 // Extract appropriate subvector and generate a vector shuffle 2616 for (unsigned Input = 0; Input < 2; ++Input) { 2617 SDValue &Src = Input == 0 ? Src1 : Src2; 2618 if (RangeUse[Input] == 0) 2619 Src = DAG.getUNDEF(VT); 2620 else { 2621 SDLoc dl = getCurSDLoc(); 2622 Src = DAG.getNode( 2623 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2624 DAG.getConstant(StartIdx[Input], dl, 2625 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2626 } 2627 } 2628 2629 // Calculate new mask. 2630 SmallVector<int, 8> MappedOps; 2631 for (unsigned i = 0; i != MaskNumElts; ++i) { 2632 int Idx = Mask[i]; 2633 if (Idx >= 0) { 2634 if (Idx < (int)SrcNumElts) 2635 Idx -= StartIdx[0]; 2636 else 2637 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2638 } 2639 MappedOps.push_back(Idx); 2640 } 2641 2642 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2643 &MappedOps[0])); 2644 return; 2645 } 2646 } 2647 2648 // We can't use either concat vectors or extract subvectors so fall back to 2649 // replacing the shuffle with extract and build vector. 2650 // to insert and build vector. 2651 EVT EltVT = VT.getVectorElementType(); 2652 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2653 SDLoc dl = getCurSDLoc(); 2654 SmallVector<SDValue,8> Ops; 2655 for (unsigned i = 0; i != MaskNumElts; ++i) { 2656 int Idx = Mask[i]; 2657 SDValue Res; 2658 2659 if (Idx < 0) { 2660 Res = DAG.getUNDEF(EltVT); 2661 } else { 2662 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2663 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2664 2665 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2666 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2667 } 2668 2669 Ops.push_back(Res); 2670 } 2671 2672 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2673 } 2674 2675 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2676 const Value *Op0 = I.getOperand(0); 2677 const Value *Op1 = I.getOperand(1); 2678 Type *AggTy = I.getType(); 2679 Type *ValTy = Op1->getType(); 2680 bool IntoUndef = isa<UndefValue>(Op0); 2681 bool FromUndef = isa<UndefValue>(Op1); 2682 2683 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2684 2685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2686 SmallVector<EVT, 4> AggValueVTs; 2687 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2688 SmallVector<EVT, 4> ValValueVTs; 2689 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2690 2691 unsigned NumAggValues = AggValueVTs.size(); 2692 unsigned NumValValues = ValValueVTs.size(); 2693 SmallVector<SDValue, 4> Values(NumAggValues); 2694 2695 // Ignore an insertvalue that produces an empty object 2696 if (!NumAggValues) { 2697 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2698 return; 2699 } 2700 2701 SDValue Agg = getValue(Op0); 2702 unsigned i = 0; 2703 // Copy the beginning value(s) from the original aggregate. 2704 for (; i != LinearIndex; ++i) 2705 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2706 SDValue(Agg.getNode(), Agg.getResNo() + i); 2707 // Copy values from the inserted value(s). 2708 if (NumValValues) { 2709 SDValue Val = getValue(Op1); 2710 for (; i != LinearIndex + NumValValues; ++i) 2711 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2712 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2713 } 2714 // Copy remaining value(s) from the original aggregate. 2715 for (; i != NumAggValues; ++i) 2716 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2717 SDValue(Agg.getNode(), Agg.getResNo() + i); 2718 2719 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2720 DAG.getVTList(AggValueVTs), Values)); 2721 } 2722 2723 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2724 const Value *Op0 = I.getOperand(0); 2725 Type *AggTy = Op0->getType(); 2726 Type *ValTy = I.getType(); 2727 bool OutOfUndef = isa<UndefValue>(Op0); 2728 2729 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2730 2731 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2732 SmallVector<EVT, 4> ValValueVTs; 2733 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2734 2735 unsigned NumValValues = ValValueVTs.size(); 2736 2737 // Ignore a extractvalue that produces an empty object 2738 if (!NumValValues) { 2739 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2740 return; 2741 } 2742 2743 SmallVector<SDValue, 4> Values(NumValValues); 2744 2745 SDValue Agg = getValue(Op0); 2746 // Copy out the selected value(s). 2747 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2748 Values[i - LinearIndex] = 2749 OutOfUndef ? 2750 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2751 SDValue(Agg.getNode(), Agg.getResNo() + i); 2752 2753 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2754 DAG.getVTList(ValValueVTs), Values)); 2755 } 2756 2757 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2758 Value *Op0 = I.getOperand(0); 2759 // Note that the pointer operand may be a vector of pointers. Take the scalar 2760 // element which holds a pointer. 2761 Type *Ty = Op0->getType()->getScalarType(); 2762 unsigned AS = Ty->getPointerAddressSpace(); 2763 SDValue N = getValue(Op0); 2764 SDLoc dl = getCurSDLoc(); 2765 2766 // Normalize Vector GEP - all scalar operands should be converted to the 2767 // splat vector. 2768 unsigned VectorWidth = I.getType()->isVectorTy() ? 2769 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2770 2771 if (VectorWidth && !N.getValueType().isVector()) { 2772 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2773 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2774 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2775 } 2776 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2777 OI != E; ++OI) { 2778 const Value *Idx = *OI; 2779 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2780 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2781 if (Field) { 2782 // N = N + Offset 2783 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2784 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2785 DAG.getConstant(Offset, dl, N.getValueType())); 2786 } 2787 2788 Ty = StTy->getElementType(Field); 2789 } else { 2790 Ty = cast<SequentialType>(Ty)->getElementType(); 2791 MVT PtrTy = 2792 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2793 unsigned PtrSize = PtrTy.getSizeInBits(); 2794 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2795 2796 // If this is a scalar constant or a splat vector of constants, 2797 // handle it quickly. 2798 const auto *CI = dyn_cast<ConstantInt>(Idx); 2799 if (!CI && isa<ConstantDataVector>(Idx) && 2800 cast<ConstantDataVector>(Idx)->getSplatValue()) 2801 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2802 2803 if (CI) { 2804 if (CI->isZero()) 2805 continue; 2806 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2807 SDValue OffsVal = VectorWidth ? 2808 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2809 DAG.getConstant(Offs, dl, PtrTy); 2810 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2811 continue; 2812 } 2813 2814 // N = N + Idx * ElementSize; 2815 SDValue IdxN = getValue(Idx); 2816 2817 if (!IdxN.getValueType().isVector() && VectorWidth) { 2818 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2819 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2820 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2821 } 2822 // If the index is smaller or larger than intptr_t, truncate or extend 2823 // it. 2824 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2825 2826 // If this is a multiply by a power of two, turn it into a shl 2827 // immediately. This is a very common case. 2828 if (ElementSize != 1) { 2829 if (ElementSize.isPowerOf2()) { 2830 unsigned Amt = ElementSize.logBase2(); 2831 IdxN = DAG.getNode(ISD::SHL, dl, 2832 N.getValueType(), IdxN, 2833 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2834 } else { 2835 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2836 IdxN = DAG.getNode(ISD::MUL, dl, 2837 N.getValueType(), IdxN, Scale); 2838 } 2839 } 2840 2841 N = DAG.getNode(ISD::ADD, dl, 2842 N.getValueType(), N, IdxN); 2843 } 2844 } 2845 2846 setValue(&I, N); 2847 } 2848 2849 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2850 // If this is a fixed sized alloca in the entry block of the function, 2851 // allocate it statically on the stack. 2852 if (FuncInfo.StaticAllocaMap.count(&I)) 2853 return; // getValue will auto-populate this. 2854 2855 SDLoc dl = getCurSDLoc(); 2856 Type *Ty = I.getAllocatedType(); 2857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2858 auto &DL = DAG.getDataLayout(); 2859 uint64_t TySize = DL.getTypeAllocSize(Ty); 2860 unsigned Align = 2861 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2862 2863 SDValue AllocSize = getValue(I.getArraySize()); 2864 2865 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2866 if (AllocSize.getValueType() != IntPtr) 2867 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2868 2869 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2870 AllocSize, 2871 DAG.getConstant(TySize, dl, IntPtr)); 2872 2873 // Handle alignment. If the requested alignment is less than or equal to 2874 // the stack alignment, ignore it. If the size is greater than or equal to 2875 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2876 unsigned StackAlign = 2877 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2878 if (Align <= StackAlign) 2879 Align = 0; 2880 2881 // Round the size of the allocation up to the stack alignment size 2882 // by add SA-1 to the size. 2883 AllocSize = DAG.getNode(ISD::ADD, dl, 2884 AllocSize.getValueType(), AllocSize, 2885 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2886 2887 // Mask out the low bits for alignment purposes. 2888 AllocSize = DAG.getNode(ISD::AND, dl, 2889 AllocSize.getValueType(), AllocSize, 2890 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2891 dl)); 2892 2893 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2894 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2895 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2896 setValue(&I, DSA); 2897 DAG.setRoot(DSA.getValue(1)); 2898 2899 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2900 } 2901 2902 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2903 if (I.isAtomic()) 2904 return visitAtomicLoad(I); 2905 2906 const Value *SV = I.getOperand(0); 2907 SDValue Ptr = getValue(SV); 2908 2909 Type *Ty = I.getType(); 2910 2911 bool isVolatile = I.isVolatile(); 2912 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2913 2914 // The IR notion of invariant_load only guarantees that all *non-faulting* 2915 // invariant loads result in the same value. The MI notion of invariant load 2916 // guarantees that the load can be legally moved to any location within its 2917 // containing function. The MI notion of invariant_load is stronger than the 2918 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2919 // with a guarantee that the location being loaded from is dereferenceable 2920 // throughout the function's lifetime. 2921 2922 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2923 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2924 unsigned Alignment = I.getAlignment(); 2925 2926 AAMDNodes AAInfo; 2927 I.getAAMetadata(AAInfo); 2928 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2929 2930 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2931 SmallVector<EVT, 4> ValueVTs; 2932 SmallVector<uint64_t, 4> Offsets; 2933 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2934 unsigned NumValues = ValueVTs.size(); 2935 if (NumValues == 0) 2936 return; 2937 2938 SDValue Root; 2939 bool ConstantMemory = false; 2940 if (isVolatile || NumValues > MaxParallelChains) 2941 // Serialize volatile loads with other side effects. 2942 Root = getRoot(); 2943 else if (AA->pointsToConstantMemory( 2944 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2945 // Do not serialize (non-volatile) loads of constant memory with anything. 2946 Root = DAG.getEntryNode(); 2947 ConstantMemory = true; 2948 } else { 2949 // Do not serialize non-volatile loads against each other. 2950 Root = DAG.getRoot(); 2951 } 2952 2953 SDLoc dl = getCurSDLoc(); 2954 2955 if (isVolatile) 2956 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2957 2958 SmallVector<SDValue, 4> Values(NumValues); 2959 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2960 EVT PtrVT = Ptr.getValueType(); 2961 unsigned ChainI = 0; 2962 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2963 // Serializing loads here may result in excessive register pressure, and 2964 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2965 // could recover a bit by hoisting nodes upward in the chain by recognizing 2966 // they are side-effect free or do not alias. The optimizer should really 2967 // avoid this case by converting large object/array copies to llvm.memcpy 2968 // (MaxParallelChains should always remain as failsafe). 2969 if (ChainI == MaxParallelChains) { 2970 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2971 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2972 makeArrayRef(Chains.data(), ChainI)); 2973 Root = Chain; 2974 ChainI = 0; 2975 } 2976 SDValue A = DAG.getNode(ISD::ADD, dl, 2977 PtrVT, Ptr, 2978 DAG.getConstant(Offsets[i], dl, PtrVT)); 2979 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2980 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2981 isNonTemporal, isInvariant, Alignment, AAInfo, 2982 Ranges); 2983 2984 Values[i] = L; 2985 Chains[ChainI] = L.getValue(1); 2986 } 2987 2988 if (!ConstantMemory) { 2989 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2990 makeArrayRef(Chains.data(), ChainI)); 2991 if (isVolatile) 2992 DAG.setRoot(Chain); 2993 else 2994 PendingLoads.push_back(Chain); 2995 } 2996 2997 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2998 DAG.getVTList(ValueVTs), Values)); 2999 } 3000 3001 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3002 if (I.isAtomic()) 3003 return visitAtomicStore(I); 3004 3005 const Value *SrcV = I.getOperand(0); 3006 const Value *PtrV = I.getOperand(1); 3007 3008 SmallVector<EVT, 4> ValueVTs; 3009 SmallVector<uint64_t, 4> Offsets; 3010 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3011 SrcV->getType(), ValueVTs, &Offsets); 3012 unsigned NumValues = ValueVTs.size(); 3013 if (NumValues == 0) 3014 return; 3015 3016 // Get the lowered operands. Note that we do this after 3017 // checking if NumResults is zero, because with zero results 3018 // the operands won't have values in the map. 3019 SDValue Src = getValue(SrcV); 3020 SDValue Ptr = getValue(PtrV); 3021 3022 SDValue Root = getRoot(); 3023 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3024 EVT PtrVT = Ptr.getValueType(); 3025 bool isVolatile = I.isVolatile(); 3026 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3027 unsigned Alignment = I.getAlignment(); 3028 SDLoc dl = getCurSDLoc(); 3029 3030 AAMDNodes AAInfo; 3031 I.getAAMetadata(AAInfo); 3032 3033 unsigned ChainI = 0; 3034 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3035 // See visitLoad comments. 3036 if (ChainI == MaxParallelChains) { 3037 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3038 makeArrayRef(Chains.data(), ChainI)); 3039 Root = Chain; 3040 ChainI = 0; 3041 } 3042 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3043 DAG.getConstant(Offsets[i], dl, PtrVT)); 3044 SDValue St = DAG.getStore(Root, dl, 3045 SDValue(Src.getNode(), Src.getResNo() + i), 3046 Add, MachinePointerInfo(PtrV, Offsets[i]), 3047 isVolatile, isNonTemporal, Alignment, AAInfo); 3048 Chains[ChainI] = St; 3049 } 3050 3051 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3052 makeArrayRef(Chains.data(), ChainI)); 3053 DAG.setRoot(StoreNode); 3054 } 3055 3056 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3057 SDLoc sdl = getCurSDLoc(); 3058 3059 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3060 Value *PtrOperand = I.getArgOperand(1); 3061 SDValue Ptr = getValue(PtrOperand); 3062 SDValue Src0 = getValue(I.getArgOperand(0)); 3063 SDValue Mask = getValue(I.getArgOperand(3)); 3064 EVT VT = Src0.getValueType(); 3065 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3066 if (!Alignment) 3067 Alignment = DAG.getEVTAlignment(VT); 3068 3069 AAMDNodes AAInfo; 3070 I.getAAMetadata(AAInfo); 3071 3072 MachineMemOperand *MMO = 3073 DAG.getMachineFunction(). 3074 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3075 MachineMemOperand::MOStore, VT.getStoreSize(), 3076 Alignment, AAInfo); 3077 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3078 MMO, false); 3079 DAG.setRoot(StoreNode); 3080 setValue(&I, StoreNode); 3081 } 3082 3083 // Gather/scatter receive a vector of pointers. 3084 // This vector of pointers may be represented as a base pointer + vector of 3085 // indices, it depends on GEP and instruction preceeding GEP 3086 // that calculates indices 3087 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3088 SelectionDAGBuilder* SDB) { 3089 3090 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3091 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3092 if (!Gep || Gep->getNumOperands() > 2) 3093 return false; 3094 ShuffleVectorInst *ShuffleInst = 3095 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3096 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3097 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3098 Instruction::InsertElement) 3099 return false; 3100 3101 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3102 3103 SelectionDAG& DAG = SDB->DAG; 3104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3105 // Check is the Ptr is inside current basic block 3106 // If not, look for the shuffle instruction 3107 if (SDB->findValue(Ptr)) 3108 Base = SDB->getValue(Ptr); 3109 else if (SDB->findValue(ShuffleInst)) { 3110 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3111 SDLoc sdl = ShuffleNode; 3112 Base = DAG.getNode( 3113 ISD::EXTRACT_VECTOR_ELT, sdl, 3114 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3115 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3116 SDB->setValue(Ptr, Base); 3117 } 3118 else 3119 return false; 3120 3121 Value *IndexVal = Gep->getOperand(1); 3122 if (SDB->findValue(IndexVal)) { 3123 Index = SDB->getValue(IndexVal); 3124 3125 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3126 IndexVal = Sext->getOperand(0); 3127 if (SDB->findValue(IndexVal)) 3128 Index = SDB->getValue(IndexVal); 3129 } 3130 return true; 3131 } 3132 return false; 3133 } 3134 3135 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3136 SDLoc sdl = getCurSDLoc(); 3137 3138 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3139 Value *Ptr = I.getArgOperand(1); 3140 SDValue Src0 = getValue(I.getArgOperand(0)); 3141 SDValue Mask = getValue(I.getArgOperand(3)); 3142 EVT VT = Src0.getValueType(); 3143 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3144 if (!Alignment) 3145 Alignment = DAG.getEVTAlignment(VT); 3146 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3147 3148 AAMDNodes AAInfo; 3149 I.getAAMetadata(AAInfo); 3150 3151 SDValue Base; 3152 SDValue Index; 3153 Value *BasePtr = Ptr; 3154 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3155 3156 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3157 MachineMemOperand *MMO = DAG.getMachineFunction(). 3158 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3159 MachineMemOperand::MOStore, VT.getStoreSize(), 3160 Alignment, AAInfo); 3161 if (!UniformBase) { 3162 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3163 Index = getValue(Ptr); 3164 } 3165 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3166 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3167 Ops, MMO); 3168 DAG.setRoot(Scatter); 3169 setValue(&I, Scatter); 3170 } 3171 3172 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3173 SDLoc sdl = getCurSDLoc(); 3174 3175 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3176 Value *PtrOperand = I.getArgOperand(0); 3177 SDValue Ptr = getValue(PtrOperand); 3178 SDValue Src0 = getValue(I.getArgOperand(3)); 3179 SDValue Mask = getValue(I.getArgOperand(2)); 3180 3181 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3182 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3183 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3184 if (!Alignment) 3185 Alignment = DAG.getEVTAlignment(VT); 3186 3187 AAMDNodes AAInfo; 3188 I.getAAMetadata(AAInfo); 3189 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3190 3191 SDValue InChain = DAG.getRoot(); 3192 if (AA->pointsToConstantMemory(MemoryLocation( 3193 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3194 // Do not serialize (non-volatile) loads of constant memory with anything. 3195 InChain = DAG.getEntryNode(); 3196 } 3197 3198 MachineMemOperand *MMO = 3199 DAG.getMachineFunction(). 3200 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3201 MachineMemOperand::MOLoad, VT.getStoreSize(), 3202 Alignment, AAInfo, Ranges); 3203 3204 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3205 ISD::NON_EXTLOAD); 3206 SDValue OutChain = Load.getValue(1); 3207 DAG.setRoot(OutChain); 3208 setValue(&I, Load); 3209 } 3210 3211 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3212 SDLoc sdl = getCurSDLoc(); 3213 3214 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3215 Value *Ptr = I.getArgOperand(0); 3216 SDValue Src0 = getValue(I.getArgOperand(3)); 3217 SDValue Mask = getValue(I.getArgOperand(2)); 3218 3219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3220 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3221 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3222 if (!Alignment) 3223 Alignment = DAG.getEVTAlignment(VT); 3224 3225 AAMDNodes AAInfo; 3226 I.getAAMetadata(AAInfo); 3227 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3228 3229 SDValue Root = DAG.getRoot(); 3230 SDValue Base; 3231 SDValue Index; 3232 Value *BasePtr = Ptr; 3233 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3234 bool ConstantMemory = false; 3235 if (UniformBase && 3236 AA->pointsToConstantMemory( 3237 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3238 // Do not serialize (non-volatile) loads of constant memory with anything. 3239 Root = DAG.getEntryNode(); 3240 ConstantMemory = true; 3241 } 3242 3243 MachineMemOperand *MMO = 3244 DAG.getMachineFunction(). 3245 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3246 MachineMemOperand::MOLoad, VT.getStoreSize(), 3247 Alignment, AAInfo, Ranges); 3248 3249 if (!UniformBase) { 3250 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3251 Index = getValue(Ptr); 3252 } 3253 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3254 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3255 Ops, MMO); 3256 3257 SDValue OutChain = Gather.getValue(1); 3258 if (!ConstantMemory) 3259 PendingLoads.push_back(OutChain); 3260 setValue(&I, Gather); 3261 } 3262 3263 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3264 SDLoc dl = getCurSDLoc(); 3265 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3266 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3267 SynchronizationScope Scope = I.getSynchScope(); 3268 3269 SDValue InChain = getRoot(); 3270 3271 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3272 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3273 SDValue L = DAG.getAtomicCmpSwap( 3274 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3275 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3276 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3277 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3278 3279 SDValue OutChain = L.getValue(2); 3280 3281 setValue(&I, L); 3282 DAG.setRoot(OutChain); 3283 } 3284 3285 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3286 SDLoc dl = getCurSDLoc(); 3287 ISD::NodeType NT; 3288 switch (I.getOperation()) { 3289 default: llvm_unreachable("Unknown atomicrmw operation"); 3290 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3291 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3292 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3293 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3294 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3295 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3296 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3297 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3298 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3299 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3300 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3301 } 3302 AtomicOrdering Order = I.getOrdering(); 3303 SynchronizationScope Scope = I.getSynchScope(); 3304 3305 SDValue InChain = getRoot(); 3306 3307 SDValue L = 3308 DAG.getAtomic(NT, dl, 3309 getValue(I.getValOperand()).getSimpleValueType(), 3310 InChain, 3311 getValue(I.getPointerOperand()), 3312 getValue(I.getValOperand()), 3313 I.getPointerOperand(), 3314 /* Alignment=*/ 0, Order, Scope); 3315 3316 SDValue OutChain = L.getValue(1); 3317 3318 setValue(&I, L); 3319 DAG.setRoot(OutChain); 3320 } 3321 3322 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3323 SDLoc dl = getCurSDLoc(); 3324 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3325 SDValue Ops[3]; 3326 Ops[0] = getRoot(); 3327 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3328 TLI.getPointerTy(DAG.getDataLayout())); 3329 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3330 TLI.getPointerTy(DAG.getDataLayout())); 3331 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3332 } 3333 3334 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3335 SDLoc dl = getCurSDLoc(); 3336 AtomicOrdering Order = I.getOrdering(); 3337 SynchronizationScope Scope = I.getSynchScope(); 3338 3339 SDValue InChain = getRoot(); 3340 3341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3342 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3343 3344 if (I.getAlignment() < VT.getSizeInBits() / 8) 3345 report_fatal_error("Cannot generate unaligned atomic load"); 3346 3347 MachineMemOperand *MMO = 3348 DAG.getMachineFunction(). 3349 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3350 MachineMemOperand::MOVolatile | 3351 MachineMemOperand::MOLoad, 3352 VT.getStoreSize(), 3353 I.getAlignment() ? I.getAlignment() : 3354 DAG.getEVTAlignment(VT)); 3355 3356 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3357 SDValue L = 3358 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3359 getValue(I.getPointerOperand()), MMO, 3360 Order, Scope); 3361 3362 SDValue OutChain = L.getValue(1); 3363 3364 setValue(&I, L); 3365 DAG.setRoot(OutChain); 3366 } 3367 3368 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3369 SDLoc dl = getCurSDLoc(); 3370 3371 AtomicOrdering Order = I.getOrdering(); 3372 SynchronizationScope Scope = I.getSynchScope(); 3373 3374 SDValue InChain = getRoot(); 3375 3376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3377 EVT VT = 3378 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3379 3380 if (I.getAlignment() < VT.getSizeInBits() / 8) 3381 report_fatal_error("Cannot generate unaligned atomic store"); 3382 3383 SDValue OutChain = 3384 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3385 InChain, 3386 getValue(I.getPointerOperand()), 3387 getValue(I.getValueOperand()), 3388 I.getPointerOperand(), I.getAlignment(), 3389 Order, Scope); 3390 3391 DAG.setRoot(OutChain); 3392 } 3393 3394 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3395 /// node. 3396 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3397 unsigned Intrinsic) { 3398 bool HasChain = !I.doesNotAccessMemory(); 3399 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3400 3401 // Build the operand list. 3402 SmallVector<SDValue, 8> Ops; 3403 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3404 if (OnlyLoad) { 3405 // We don't need to serialize loads against other loads. 3406 Ops.push_back(DAG.getRoot()); 3407 } else { 3408 Ops.push_back(getRoot()); 3409 } 3410 } 3411 3412 // Info is set by getTgtMemInstrinsic 3413 TargetLowering::IntrinsicInfo Info; 3414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3415 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3416 3417 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3418 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3419 Info.opc == ISD::INTRINSIC_W_CHAIN) 3420 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3421 TLI.getPointerTy(DAG.getDataLayout()))); 3422 3423 // Add all operands of the call to the operand list. 3424 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3425 SDValue Op = getValue(I.getArgOperand(i)); 3426 Ops.push_back(Op); 3427 } 3428 3429 SmallVector<EVT, 4> ValueVTs; 3430 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3431 3432 if (HasChain) 3433 ValueVTs.push_back(MVT::Other); 3434 3435 SDVTList VTs = DAG.getVTList(ValueVTs); 3436 3437 // Create the node. 3438 SDValue Result; 3439 if (IsTgtIntrinsic) { 3440 // This is target intrinsic that touches memory 3441 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3442 VTs, Ops, Info.memVT, 3443 MachinePointerInfo(Info.ptrVal, Info.offset), 3444 Info.align, Info.vol, 3445 Info.readMem, Info.writeMem, Info.size); 3446 } else if (!HasChain) { 3447 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3448 } else if (!I.getType()->isVoidTy()) { 3449 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3450 } else { 3451 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3452 } 3453 3454 if (HasChain) { 3455 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3456 if (OnlyLoad) 3457 PendingLoads.push_back(Chain); 3458 else 3459 DAG.setRoot(Chain); 3460 } 3461 3462 if (!I.getType()->isVoidTy()) { 3463 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3464 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3465 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3466 } 3467 3468 setValue(&I, Result); 3469 } 3470 } 3471 3472 /// GetSignificand - Get the significand and build it into a floating-point 3473 /// number with exponent of 1: 3474 /// 3475 /// Op = (Op & 0x007fffff) | 0x3f800000; 3476 /// 3477 /// where Op is the hexadecimal representation of floating point value. 3478 static SDValue 3479 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3480 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3481 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3482 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3483 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3484 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3485 } 3486 3487 /// GetExponent - Get the exponent: 3488 /// 3489 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3490 /// 3491 /// where Op is the hexadecimal representation of floating point value. 3492 static SDValue 3493 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3494 SDLoc dl) { 3495 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3496 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3497 SDValue t1 = DAG.getNode( 3498 ISD::SRL, dl, MVT::i32, t0, 3499 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3500 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3501 DAG.getConstant(127, dl, MVT::i32)); 3502 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3503 } 3504 3505 /// getF32Constant - Get 32-bit floating point constant. 3506 static SDValue 3507 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3508 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3509 MVT::f32); 3510 } 3511 3512 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3513 SelectionDAG &DAG) { 3514 // IntegerPartOfX = ((int32_t)(t0); 3515 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3516 3517 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3518 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3519 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3520 3521 // IntegerPartOfX <<= 23; 3522 IntegerPartOfX = DAG.getNode( 3523 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3524 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3525 DAG.getDataLayout()))); 3526 3527 SDValue TwoToFractionalPartOfX; 3528 if (LimitFloatPrecision <= 6) { 3529 // For floating-point precision of 6: 3530 // 3531 // TwoToFractionalPartOfX = 3532 // 0.997535578f + 3533 // (0.735607626f + 0.252464424f * x) * x; 3534 // 3535 // error 0.0144103317, which is 6 bits 3536 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3537 getF32Constant(DAG, 0x3e814304, dl)); 3538 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3539 getF32Constant(DAG, 0x3f3c50c8, dl)); 3540 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3541 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3542 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3543 } else if (LimitFloatPrecision <= 12) { 3544 // For floating-point precision of 12: 3545 // 3546 // TwoToFractionalPartOfX = 3547 // 0.999892986f + 3548 // (0.696457318f + 3549 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3550 // 3551 // error 0.000107046256, which is 13 to 14 bits 3552 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3553 getF32Constant(DAG, 0x3da235e3, dl)); 3554 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3555 getF32Constant(DAG, 0x3e65b8f3, dl)); 3556 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3557 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3558 getF32Constant(DAG, 0x3f324b07, dl)); 3559 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3560 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3561 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3562 } else { // LimitFloatPrecision <= 18 3563 // For floating-point precision of 18: 3564 // 3565 // TwoToFractionalPartOfX = 3566 // 0.999999982f + 3567 // (0.693148872f + 3568 // (0.240227044f + 3569 // (0.554906021e-1f + 3570 // (0.961591928e-2f + 3571 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3572 // error 2.47208000*10^(-7), which is better than 18 bits 3573 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3574 getF32Constant(DAG, 0x3924b03e, dl)); 3575 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3576 getF32Constant(DAG, 0x3ab24b87, dl)); 3577 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3578 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3579 getF32Constant(DAG, 0x3c1d8c17, dl)); 3580 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3581 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3582 getF32Constant(DAG, 0x3d634a1d, dl)); 3583 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3584 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3585 getF32Constant(DAG, 0x3e75fe14, dl)); 3586 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3587 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3588 getF32Constant(DAG, 0x3f317234, dl)); 3589 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3590 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3591 getF32Constant(DAG, 0x3f800000, dl)); 3592 } 3593 3594 // Add the exponent into the result in integer domain. 3595 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3596 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3597 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3598 } 3599 3600 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3601 /// limited-precision mode. 3602 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3603 const TargetLowering &TLI) { 3604 if (Op.getValueType() == MVT::f32 && 3605 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3606 3607 // Put the exponent in the right bit position for later addition to the 3608 // final result: 3609 // 3610 // #define LOG2OFe 1.4426950f 3611 // t0 = Op * LOG2OFe 3612 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3613 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3614 return getLimitedPrecisionExp2(t0, dl, DAG); 3615 } 3616 3617 // No special expansion. 3618 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3619 } 3620 3621 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3622 /// limited-precision mode. 3623 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3624 const TargetLowering &TLI) { 3625 if (Op.getValueType() == MVT::f32 && 3626 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3627 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3628 3629 // Scale the exponent by log(2) [0.69314718f]. 3630 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3631 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3632 getF32Constant(DAG, 0x3f317218, dl)); 3633 3634 // Get the significand and build it into a floating-point number with 3635 // exponent of 1. 3636 SDValue X = GetSignificand(DAG, Op1, dl); 3637 3638 SDValue LogOfMantissa; 3639 if (LimitFloatPrecision <= 6) { 3640 // For floating-point precision of 6: 3641 // 3642 // LogofMantissa = 3643 // -1.1609546f + 3644 // (1.4034025f - 0.23903021f * x) * x; 3645 // 3646 // error 0.0034276066, which is better than 8 bits 3647 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3648 getF32Constant(DAG, 0xbe74c456, dl)); 3649 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3650 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3651 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3652 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3653 getF32Constant(DAG, 0x3f949a29, dl)); 3654 } else if (LimitFloatPrecision <= 12) { 3655 // For floating-point precision of 12: 3656 // 3657 // LogOfMantissa = 3658 // -1.7417939f + 3659 // (2.8212026f + 3660 // (-1.4699568f + 3661 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3662 // 3663 // error 0.000061011436, which is 14 bits 3664 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3665 getF32Constant(DAG, 0xbd67b6d6, dl)); 3666 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3667 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3668 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3669 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3670 getF32Constant(DAG, 0x3fbc278b, dl)); 3671 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3672 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3673 getF32Constant(DAG, 0x40348e95, dl)); 3674 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3675 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3676 getF32Constant(DAG, 0x3fdef31a, dl)); 3677 } else { // LimitFloatPrecision <= 18 3678 // For floating-point precision of 18: 3679 // 3680 // LogOfMantissa = 3681 // -2.1072184f + 3682 // (4.2372794f + 3683 // (-3.7029485f + 3684 // (2.2781945f + 3685 // (-0.87823314f + 3686 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3687 // 3688 // error 0.0000023660568, which is better than 18 bits 3689 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3690 getF32Constant(DAG, 0xbc91e5ac, dl)); 3691 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3692 getF32Constant(DAG, 0x3e4350aa, dl)); 3693 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3694 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3695 getF32Constant(DAG, 0x3f60d3e3, dl)); 3696 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3697 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3698 getF32Constant(DAG, 0x4011cdf0, dl)); 3699 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3700 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3701 getF32Constant(DAG, 0x406cfd1c, dl)); 3702 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3703 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3704 getF32Constant(DAG, 0x408797cb, dl)); 3705 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3706 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3707 getF32Constant(DAG, 0x4006dcab, dl)); 3708 } 3709 3710 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3711 } 3712 3713 // No special expansion. 3714 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3715 } 3716 3717 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3718 /// limited-precision mode. 3719 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3720 const TargetLowering &TLI) { 3721 if (Op.getValueType() == MVT::f32 && 3722 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3723 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3724 3725 // Get the exponent. 3726 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3727 3728 // Get the significand and build it into a floating-point number with 3729 // exponent of 1. 3730 SDValue X = GetSignificand(DAG, Op1, dl); 3731 3732 // Different possible minimax approximations of significand in 3733 // floating-point for various degrees of accuracy over [1,2]. 3734 SDValue Log2ofMantissa; 3735 if (LimitFloatPrecision <= 6) { 3736 // For floating-point precision of 6: 3737 // 3738 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3739 // 3740 // error 0.0049451742, which is more than 7 bits 3741 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3742 getF32Constant(DAG, 0xbeb08fe0, dl)); 3743 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3744 getF32Constant(DAG, 0x40019463, dl)); 3745 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3746 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3747 getF32Constant(DAG, 0x3fd6633d, dl)); 3748 } else if (LimitFloatPrecision <= 12) { 3749 // For floating-point precision of 12: 3750 // 3751 // Log2ofMantissa = 3752 // -2.51285454f + 3753 // (4.07009056f + 3754 // (-2.12067489f + 3755 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3756 // 3757 // error 0.0000876136000, which is better than 13 bits 3758 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3759 getF32Constant(DAG, 0xbda7262e, dl)); 3760 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3761 getF32Constant(DAG, 0x3f25280b, dl)); 3762 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3763 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3764 getF32Constant(DAG, 0x4007b923, dl)); 3765 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3766 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3767 getF32Constant(DAG, 0x40823e2f, dl)); 3768 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3769 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3770 getF32Constant(DAG, 0x4020d29c, dl)); 3771 } else { // LimitFloatPrecision <= 18 3772 // For floating-point precision of 18: 3773 // 3774 // Log2ofMantissa = 3775 // -3.0400495f + 3776 // (6.1129976f + 3777 // (-5.3420409f + 3778 // (3.2865683f + 3779 // (-1.2669343f + 3780 // (0.27515199f - 3781 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3782 // 3783 // error 0.0000018516, which is better than 18 bits 3784 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3785 getF32Constant(DAG, 0xbcd2769e, dl)); 3786 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3787 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3788 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3789 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3790 getF32Constant(DAG, 0x3fa22ae7, dl)); 3791 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3792 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3793 getF32Constant(DAG, 0x40525723, dl)); 3794 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3795 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3796 getF32Constant(DAG, 0x40aaf200, dl)); 3797 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3798 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3799 getF32Constant(DAG, 0x40c39dad, dl)); 3800 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3801 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3802 getF32Constant(DAG, 0x4042902c, dl)); 3803 } 3804 3805 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3806 } 3807 3808 // No special expansion. 3809 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3810 } 3811 3812 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3813 /// limited-precision mode. 3814 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3815 const TargetLowering &TLI) { 3816 if (Op.getValueType() == MVT::f32 && 3817 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3818 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3819 3820 // Scale the exponent by log10(2) [0.30102999f]. 3821 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3822 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3823 getF32Constant(DAG, 0x3e9a209a, dl)); 3824 3825 // Get the significand and build it into a floating-point number with 3826 // exponent of 1. 3827 SDValue X = GetSignificand(DAG, Op1, dl); 3828 3829 SDValue Log10ofMantissa; 3830 if (LimitFloatPrecision <= 6) { 3831 // For floating-point precision of 6: 3832 // 3833 // Log10ofMantissa = 3834 // -0.50419619f + 3835 // (0.60948995f - 0.10380950f * x) * x; 3836 // 3837 // error 0.0014886165, which is 6 bits 3838 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3839 getF32Constant(DAG, 0xbdd49a13, dl)); 3840 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3841 getF32Constant(DAG, 0x3f1c0789, dl)); 3842 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3843 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3844 getF32Constant(DAG, 0x3f011300, dl)); 3845 } else if (LimitFloatPrecision <= 12) { 3846 // For floating-point precision of 12: 3847 // 3848 // Log10ofMantissa = 3849 // -0.64831180f + 3850 // (0.91751397f + 3851 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3852 // 3853 // error 0.00019228036, which is better than 12 bits 3854 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3855 getF32Constant(DAG, 0x3d431f31, dl)); 3856 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3857 getF32Constant(DAG, 0x3ea21fb2, dl)); 3858 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3859 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3860 getF32Constant(DAG, 0x3f6ae232, dl)); 3861 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3862 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3863 getF32Constant(DAG, 0x3f25f7c3, dl)); 3864 } else { // LimitFloatPrecision <= 18 3865 // For floating-point precision of 18: 3866 // 3867 // Log10ofMantissa = 3868 // -0.84299375f + 3869 // (1.5327582f + 3870 // (-1.0688956f + 3871 // (0.49102474f + 3872 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3873 // 3874 // error 0.0000037995730, which is better than 18 bits 3875 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3876 getF32Constant(DAG, 0x3c5d51ce, dl)); 3877 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3878 getF32Constant(DAG, 0x3e00685a, dl)); 3879 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3880 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3881 getF32Constant(DAG, 0x3efb6798, dl)); 3882 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3883 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3884 getF32Constant(DAG, 0x3f88d192, dl)); 3885 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3886 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3887 getF32Constant(DAG, 0x3fc4316c, dl)); 3888 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3889 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3890 getF32Constant(DAG, 0x3f57ce70, dl)); 3891 } 3892 3893 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3894 } 3895 3896 // No special expansion. 3897 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3898 } 3899 3900 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3901 /// limited-precision mode. 3902 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3903 const TargetLowering &TLI) { 3904 if (Op.getValueType() == MVT::f32 && 3905 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3906 return getLimitedPrecisionExp2(Op, dl, DAG); 3907 3908 // No special expansion. 3909 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3910 } 3911 3912 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3913 /// limited-precision mode with x == 10.0f. 3914 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3915 SelectionDAG &DAG, const TargetLowering &TLI) { 3916 bool IsExp10 = false; 3917 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3918 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3919 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3920 APFloat Ten(10.0f); 3921 IsExp10 = LHSC->isExactlyValue(Ten); 3922 } 3923 } 3924 3925 if (IsExp10) { 3926 // Put the exponent in the right bit position for later addition to the 3927 // final result: 3928 // 3929 // #define LOG2OF10 3.3219281f 3930 // t0 = Op * LOG2OF10; 3931 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3932 getF32Constant(DAG, 0x40549a78, dl)); 3933 return getLimitedPrecisionExp2(t0, dl, DAG); 3934 } 3935 3936 // No special expansion. 3937 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3938 } 3939 3940 3941 /// ExpandPowI - Expand a llvm.powi intrinsic. 3942 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3943 SelectionDAG &DAG) { 3944 // If RHS is a constant, we can expand this out to a multiplication tree, 3945 // otherwise we end up lowering to a call to __powidf2 (for example). When 3946 // optimizing for size, we only want to do this if the expansion would produce 3947 // a small number of multiplies, otherwise we do the full expansion. 3948 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3949 // Get the exponent as a positive value. 3950 unsigned Val = RHSC->getSExtValue(); 3951 if ((int)Val < 0) Val = -Val; 3952 3953 // powi(x, 0) -> 1.0 3954 if (Val == 0) 3955 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3956 3957 const Function *F = DAG.getMachineFunction().getFunction(); 3958 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3959 // If optimizing for size, don't insert too many multiplies. This 3960 // inserts up to 5 multiplies. 3961 countPopulation(Val) + Log2_32(Val) < 7) { 3962 // We use the simple binary decomposition method to generate the multiply 3963 // sequence. There are more optimal ways to do this (for example, 3964 // powi(x,15) generates one more multiply than it should), but this has 3965 // the benefit of being both really simple and much better than a libcall. 3966 SDValue Res; // Logically starts equal to 1.0 3967 SDValue CurSquare = LHS; 3968 while (Val) { 3969 if (Val & 1) { 3970 if (Res.getNode()) 3971 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3972 else 3973 Res = CurSquare; // 1.0*CurSquare. 3974 } 3975 3976 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3977 CurSquare, CurSquare); 3978 Val >>= 1; 3979 } 3980 3981 // If the original was negative, invert the result, producing 1/(x*x*x). 3982 if (RHSC->getSExtValue() < 0) 3983 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3984 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3985 return Res; 3986 } 3987 } 3988 3989 // Otherwise, expand to a libcall. 3990 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3991 } 3992 3993 // getTruncatedArgReg - Find underlying register used for an truncated 3994 // argument. 3995 static unsigned getTruncatedArgReg(const SDValue &N) { 3996 if (N.getOpcode() != ISD::TRUNCATE) 3997 return 0; 3998 3999 const SDValue &Ext = N.getOperand(0); 4000 if (Ext.getOpcode() == ISD::AssertZext || 4001 Ext.getOpcode() == ISD::AssertSext) { 4002 const SDValue &CFR = Ext.getOperand(0); 4003 if (CFR.getOpcode() == ISD::CopyFromReg) 4004 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4005 if (CFR.getOpcode() == ISD::TRUNCATE) 4006 return getTruncatedArgReg(CFR); 4007 } 4008 return 0; 4009 } 4010 4011 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4012 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4013 /// At the end of instruction selection, they will be inserted to the entry BB. 4014 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4015 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4016 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4017 const Argument *Arg = dyn_cast<Argument>(V); 4018 if (!Arg) 4019 return false; 4020 4021 MachineFunction &MF = DAG.getMachineFunction(); 4022 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4023 4024 // Ignore inlined function arguments here. 4025 // 4026 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4027 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4028 return false; 4029 4030 Optional<MachineOperand> Op; 4031 // Some arguments' frame index is recorded during argument lowering. 4032 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4033 Op = MachineOperand::CreateFI(FI); 4034 4035 if (!Op && N.getNode()) { 4036 unsigned Reg; 4037 if (N.getOpcode() == ISD::CopyFromReg) 4038 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4039 else 4040 Reg = getTruncatedArgReg(N); 4041 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4042 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4043 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4044 if (PR) 4045 Reg = PR; 4046 } 4047 if (Reg) 4048 Op = MachineOperand::CreateReg(Reg, false); 4049 } 4050 4051 if (!Op) { 4052 // Check if ValueMap has reg number. 4053 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4054 if (VMI != FuncInfo.ValueMap.end()) 4055 Op = MachineOperand::CreateReg(VMI->second, false); 4056 } 4057 4058 if (!Op && N.getNode()) 4059 // Check if frame index is available. 4060 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4061 if (FrameIndexSDNode *FINode = 4062 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4063 Op = MachineOperand::CreateFI(FINode->getIndex()); 4064 4065 if (!Op) 4066 return false; 4067 4068 assert(Variable->isValidLocationForIntrinsic(DL) && 4069 "Expected inlined-at fields to agree"); 4070 if (Op->isReg()) 4071 FuncInfo.ArgDbgValues.push_back( 4072 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4073 Op->getReg(), Offset, Variable, Expr)); 4074 else 4075 FuncInfo.ArgDbgValues.push_back( 4076 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4077 .addOperand(*Op) 4078 .addImm(Offset) 4079 .addMetadata(Variable) 4080 .addMetadata(Expr)); 4081 4082 return true; 4083 } 4084 4085 // VisualStudio defines setjmp as _setjmp 4086 #if defined(_MSC_VER) && defined(setjmp) && \ 4087 !defined(setjmp_undefined_for_msvc) 4088 # pragma push_macro("setjmp") 4089 # undef setjmp 4090 # define setjmp_undefined_for_msvc 4091 #endif 4092 4093 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4094 /// we want to emit this as a call to a named external function, return the name 4095 /// otherwise lower it and return null. 4096 const char * 4097 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4099 SDLoc sdl = getCurSDLoc(); 4100 DebugLoc dl = getCurDebugLoc(); 4101 SDValue Res; 4102 4103 switch (Intrinsic) { 4104 default: 4105 // By default, turn this into a target intrinsic node. 4106 visitTargetIntrinsic(I, Intrinsic); 4107 return nullptr; 4108 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4109 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4110 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4111 case Intrinsic::returnaddress: 4112 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4113 TLI.getPointerTy(DAG.getDataLayout()), 4114 getValue(I.getArgOperand(0)))); 4115 return nullptr; 4116 case Intrinsic::frameaddress: 4117 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4118 TLI.getPointerTy(DAG.getDataLayout()), 4119 getValue(I.getArgOperand(0)))); 4120 return nullptr; 4121 case Intrinsic::read_register: { 4122 Value *Reg = I.getArgOperand(0); 4123 SDValue Chain = getRoot(); 4124 SDValue RegName = 4125 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4126 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4127 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4128 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4129 setValue(&I, Res); 4130 DAG.setRoot(Res.getValue(1)); 4131 return nullptr; 4132 } 4133 case Intrinsic::write_register: { 4134 Value *Reg = I.getArgOperand(0); 4135 Value *RegValue = I.getArgOperand(1); 4136 SDValue Chain = getRoot(); 4137 SDValue RegName = 4138 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4139 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4140 RegName, getValue(RegValue))); 4141 return nullptr; 4142 } 4143 case Intrinsic::setjmp: 4144 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4145 case Intrinsic::longjmp: 4146 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4147 case Intrinsic::memcpy: { 4148 // FIXME: this definition of "user defined address space" is x86-specific 4149 // Assert for address < 256 since we support only user defined address 4150 // spaces. 4151 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4152 < 256 && 4153 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4154 < 256 && 4155 "Unknown address space"); 4156 SDValue Op1 = getValue(I.getArgOperand(0)); 4157 SDValue Op2 = getValue(I.getArgOperand(1)); 4158 SDValue Op3 = getValue(I.getArgOperand(2)); 4159 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4160 if (!Align) 4161 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4162 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4163 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4164 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4165 false, isTC, 4166 MachinePointerInfo(I.getArgOperand(0)), 4167 MachinePointerInfo(I.getArgOperand(1))); 4168 updateDAGForMaybeTailCall(MC); 4169 return nullptr; 4170 } 4171 case Intrinsic::memset: { 4172 // FIXME: this definition of "user defined address space" is x86-specific 4173 // Assert for address < 256 since we support only user defined address 4174 // spaces. 4175 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4176 < 256 && 4177 "Unknown address space"); 4178 SDValue Op1 = getValue(I.getArgOperand(0)); 4179 SDValue Op2 = getValue(I.getArgOperand(1)); 4180 SDValue Op3 = getValue(I.getArgOperand(2)); 4181 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4182 if (!Align) 4183 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4184 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4185 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4186 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4187 isTC, MachinePointerInfo(I.getArgOperand(0))); 4188 updateDAGForMaybeTailCall(MS); 4189 return nullptr; 4190 } 4191 case Intrinsic::memmove: { 4192 // FIXME: this definition of "user defined address space" is x86-specific 4193 // Assert for address < 256 since we support only user defined address 4194 // spaces. 4195 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4196 < 256 && 4197 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4198 < 256 && 4199 "Unknown address space"); 4200 SDValue Op1 = getValue(I.getArgOperand(0)); 4201 SDValue Op2 = getValue(I.getArgOperand(1)); 4202 SDValue Op3 = getValue(I.getArgOperand(2)); 4203 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4204 if (!Align) 4205 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4206 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4207 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4208 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4209 isTC, MachinePointerInfo(I.getArgOperand(0)), 4210 MachinePointerInfo(I.getArgOperand(1))); 4211 updateDAGForMaybeTailCall(MM); 4212 return nullptr; 4213 } 4214 case Intrinsic::dbg_declare: { 4215 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4216 DILocalVariable *Variable = DI.getVariable(); 4217 DIExpression *Expression = DI.getExpression(); 4218 const Value *Address = DI.getAddress(); 4219 assert(Variable && "Missing variable"); 4220 if (!Address) { 4221 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4222 return nullptr; 4223 } 4224 4225 // Check if address has undef value. 4226 if (isa<UndefValue>(Address) || 4227 (Address->use_empty() && !isa<Argument>(Address))) { 4228 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4229 return nullptr; 4230 } 4231 4232 SDValue &N = NodeMap[Address]; 4233 if (!N.getNode() && isa<Argument>(Address)) 4234 // Check unused arguments map. 4235 N = UnusedArgNodeMap[Address]; 4236 SDDbgValue *SDV; 4237 if (N.getNode()) { 4238 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4239 Address = BCI->getOperand(0); 4240 // Parameters are handled specially. 4241 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4242 isa<Argument>(Address); 4243 4244 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4245 4246 if (isParameter && !AI) { 4247 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4248 if (FINode) 4249 // Byval parameter. We have a frame index at this point. 4250 SDV = DAG.getFrameIndexDbgValue( 4251 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4252 else { 4253 // Address is an argument, so try to emit its dbg value using 4254 // virtual register info from the FuncInfo.ValueMap. 4255 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4256 N); 4257 return nullptr; 4258 } 4259 } else if (AI) 4260 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4261 true, 0, dl, SDNodeOrder); 4262 else { 4263 // Can't do anything with other non-AI cases yet. 4264 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4265 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4266 DEBUG(Address->dump()); 4267 return nullptr; 4268 } 4269 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4270 } else { 4271 // If Address is an argument then try to emit its dbg value using 4272 // virtual register info from the FuncInfo.ValueMap. 4273 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4274 N)) { 4275 // If variable is pinned by a alloca in dominating bb then 4276 // use StaticAllocaMap. 4277 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4278 if (AI->getParent() != DI.getParent()) { 4279 DenseMap<const AllocaInst*, int>::iterator SI = 4280 FuncInfo.StaticAllocaMap.find(AI); 4281 if (SI != FuncInfo.StaticAllocaMap.end()) { 4282 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4283 0, dl, SDNodeOrder); 4284 DAG.AddDbgValue(SDV, nullptr, false); 4285 return nullptr; 4286 } 4287 } 4288 } 4289 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4290 } 4291 } 4292 return nullptr; 4293 } 4294 case Intrinsic::dbg_value: { 4295 const DbgValueInst &DI = cast<DbgValueInst>(I); 4296 assert(DI.getVariable() && "Missing variable"); 4297 4298 DILocalVariable *Variable = DI.getVariable(); 4299 DIExpression *Expression = DI.getExpression(); 4300 uint64_t Offset = DI.getOffset(); 4301 const Value *V = DI.getValue(); 4302 if (!V) 4303 return nullptr; 4304 4305 SDDbgValue *SDV; 4306 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4307 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4308 SDNodeOrder); 4309 DAG.AddDbgValue(SDV, nullptr, false); 4310 } else { 4311 // Do not use getValue() in here; we don't want to generate code at 4312 // this point if it hasn't been done yet. 4313 SDValue N = NodeMap[V]; 4314 if (!N.getNode() && isa<Argument>(V)) 4315 // Check unused arguments map. 4316 N = UnusedArgNodeMap[V]; 4317 if (N.getNode()) { 4318 // A dbg.value for an alloca is always indirect. 4319 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4320 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4321 IsIndirect, N)) { 4322 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4323 IsIndirect, Offset, dl, SDNodeOrder); 4324 DAG.AddDbgValue(SDV, N.getNode(), false); 4325 } 4326 } else if (!V->use_empty() ) { 4327 // Do not call getValue(V) yet, as we don't want to generate code. 4328 // Remember it for later. 4329 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4330 DanglingDebugInfoMap[V] = DDI; 4331 } else { 4332 // We may expand this to cover more cases. One case where we have no 4333 // data available is an unreferenced parameter. 4334 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4335 } 4336 } 4337 4338 // Build a debug info table entry. 4339 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4340 V = BCI->getOperand(0); 4341 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4342 // Don't handle byval struct arguments or VLAs, for example. 4343 if (!AI) { 4344 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4345 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4346 return nullptr; 4347 } 4348 DenseMap<const AllocaInst*, int>::iterator SI = 4349 FuncInfo.StaticAllocaMap.find(AI); 4350 if (SI == FuncInfo.StaticAllocaMap.end()) 4351 return nullptr; // VLAs. 4352 return nullptr; 4353 } 4354 4355 case Intrinsic::eh_typeid_for: { 4356 // Find the type id for the given typeinfo. 4357 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4358 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4359 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4360 setValue(&I, Res); 4361 return nullptr; 4362 } 4363 4364 case Intrinsic::eh_return_i32: 4365 case Intrinsic::eh_return_i64: 4366 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4367 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4368 MVT::Other, 4369 getControlRoot(), 4370 getValue(I.getArgOperand(0)), 4371 getValue(I.getArgOperand(1)))); 4372 return nullptr; 4373 case Intrinsic::eh_unwind_init: 4374 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4375 return nullptr; 4376 case Intrinsic::eh_dwarf_cfa: { 4377 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4378 TLI.getPointerTy(DAG.getDataLayout())); 4379 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4380 CfaArg.getValueType(), 4381 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4382 CfaArg.getValueType()), 4383 CfaArg); 4384 SDValue FA = DAG.getNode( 4385 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4386 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4387 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4388 FA, Offset)); 4389 return nullptr; 4390 } 4391 case Intrinsic::eh_sjlj_callsite: { 4392 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4393 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4394 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4395 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4396 4397 MMI.setCurrentCallSite(CI->getZExtValue()); 4398 return nullptr; 4399 } 4400 case Intrinsic::eh_sjlj_functioncontext: { 4401 // Get and store the index of the function context. 4402 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4403 AllocaInst *FnCtx = 4404 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4405 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4406 MFI->setFunctionContextIndex(FI); 4407 return nullptr; 4408 } 4409 case Intrinsic::eh_sjlj_setjmp: { 4410 SDValue Ops[2]; 4411 Ops[0] = getRoot(); 4412 Ops[1] = getValue(I.getArgOperand(0)); 4413 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4414 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4415 setValue(&I, Op.getValue(0)); 4416 DAG.setRoot(Op.getValue(1)); 4417 return nullptr; 4418 } 4419 case Intrinsic::eh_sjlj_longjmp: { 4420 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4421 getRoot(), getValue(I.getArgOperand(0)))); 4422 return nullptr; 4423 } 4424 4425 case Intrinsic::masked_gather: 4426 visitMaskedGather(I); 4427 return nullptr; 4428 case Intrinsic::masked_load: 4429 visitMaskedLoad(I); 4430 return nullptr; 4431 case Intrinsic::masked_scatter: 4432 visitMaskedScatter(I); 4433 return nullptr; 4434 case Intrinsic::masked_store: 4435 visitMaskedStore(I); 4436 return nullptr; 4437 case Intrinsic::x86_mmx_pslli_w: 4438 case Intrinsic::x86_mmx_pslli_d: 4439 case Intrinsic::x86_mmx_pslli_q: 4440 case Intrinsic::x86_mmx_psrli_w: 4441 case Intrinsic::x86_mmx_psrli_d: 4442 case Intrinsic::x86_mmx_psrli_q: 4443 case Intrinsic::x86_mmx_psrai_w: 4444 case Intrinsic::x86_mmx_psrai_d: { 4445 SDValue ShAmt = getValue(I.getArgOperand(1)); 4446 if (isa<ConstantSDNode>(ShAmt)) { 4447 visitTargetIntrinsic(I, Intrinsic); 4448 return nullptr; 4449 } 4450 unsigned NewIntrinsic = 0; 4451 EVT ShAmtVT = MVT::v2i32; 4452 switch (Intrinsic) { 4453 case Intrinsic::x86_mmx_pslli_w: 4454 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4455 break; 4456 case Intrinsic::x86_mmx_pslli_d: 4457 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4458 break; 4459 case Intrinsic::x86_mmx_pslli_q: 4460 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4461 break; 4462 case Intrinsic::x86_mmx_psrli_w: 4463 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4464 break; 4465 case Intrinsic::x86_mmx_psrli_d: 4466 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4467 break; 4468 case Intrinsic::x86_mmx_psrli_q: 4469 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4470 break; 4471 case Intrinsic::x86_mmx_psrai_w: 4472 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4473 break; 4474 case Intrinsic::x86_mmx_psrai_d: 4475 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4476 break; 4477 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4478 } 4479 4480 // The vector shift intrinsics with scalars uses 32b shift amounts but 4481 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4482 // to be zero. 4483 // We must do this early because v2i32 is not a legal type. 4484 SDValue ShOps[2]; 4485 ShOps[0] = ShAmt; 4486 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4487 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4488 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4489 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4490 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4491 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4492 getValue(I.getArgOperand(0)), ShAmt); 4493 setValue(&I, Res); 4494 return nullptr; 4495 } 4496 case Intrinsic::convertff: 4497 case Intrinsic::convertfsi: 4498 case Intrinsic::convertfui: 4499 case Intrinsic::convertsif: 4500 case Intrinsic::convertuif: 4501 case Intrinsic::convertss: 4502 case Intrinsic::convertsu: 4503 case Intrinsic::convertus: 4504 case Intrinsic::convertuu: { 4505 ISD::CvtCode Code = ISD::CVT_INVALID; 4506 switch (Intrinsic) { 4507 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4508 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4509 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4510 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4511 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4512 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4513 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4514 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4515 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4516 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4517 } 4518 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4519 const Value *Op1 = I.getArgOperand(0); 4520 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4521 DAG.getValueType(DestVT), 4522 DAG.getValueType(getValue(Op1).getValueType()), 4523 getValue(I.getArgOperand(1)), 4524 getValue(I.getArgOperand(2)), 4525 Code); 4526 setValue(&I, Res); 4527 return nullptr; 4528 } 4529 case Intrinsic::powi: 4530 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4531 getValue(I.getArgOperand(1)), DAG)); 4532 return nullptr; 4533 case Intrinsic::log: 4534 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4535 return nullptr; 4536 case Intrinsic::log2: 4537 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4538 return nullptr; 4539 case Intrinsic::log10: 4540 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4541 return nullptr; 4542 case Intrinsic::exp: 4543 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4544 return nullptr; 4545 case Intrinsic::exp2: 4546 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4547 return nullptr; 4548 case Intrinsic::pow: 4549 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4550 getValue(I.getArgOperand(1)), DAG, TLI)); 4551 return nullptr; 4552 case Intrinsic::sqrt: 4553 case Intrinsic::fabs: 4554 case Intrinsic::sin: 4555 case Intrinsic::cos: 4556 case Intrinsic::floor: 4557 case Intrinsic::ceil: 4558 case Intrinsic::trunc: 4559 case Intrinsic::rint: 4560 case Intrinsic::nearbyint: 4561 case Intrinsic::round: { 4562 unsigned Opcode; 4563 switch (Intrinsic) { 4564 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4565 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4566 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4567 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4568 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4569 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4570 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4571 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4572 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4573 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4574 case Intrinsic::round: Opcode = ISD::FROUND; break; 4575 } 4576 4577 setValue(&I, DAG.getNode(Opcode, sdl, 4578 getValue(I.getArgOperand(0)).getValueType(), 4579 getValue(I.getArgOperand(0)))); 4580 return nullptr; 4581 } 4582 case Intrinsic::minnum: 4583 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4584 getValue(I.getArgOperand(0)).getValueType(), 4585 getValue(I.getArgOperand(0)), 4586 getValue(I.getArgOperand(1)))); 4587 return nullptr; 4588 case Intrinsic::maxnum: 4589 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4590 getValue(I.getArgOperand(0)).getValueType(), 4591 getValue(I.getArgOperand(0)), 4592 getValue(I.getArgOperand(1)))); 4593 return nullptr; 4594 case Intrinsic::copysign: 4595 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4596 getValue(I.getArgOperand(0)).getValueType(), 4597 getValue(I.getArgOperand(0)), 4598 getValue(I.getArgOperand(1)))); 4599 return nullptr; 4600 case Intrinsic::fma: 4601 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4602 getValue(I.getArgOperand(0)).getValueType(), 4603 getValue(I.getArgOperand(0)), 4604 getValue(I.getArgOperand(1)), 4605 getValue(I.getArgOperand(2)))); 4606 return nullptr; 4607 case Intrinsic::fmuladd: { 4608 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4609 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4610 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4611 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4612 getValue(I.getArgOperand(0)).getValueType(), 4613 getValue(I.getArgOperand(0)), 4614 getValue(I.getArgOperand(1)), 4615 getValue(I.getArgOperand(2)))); 4616 } else { 4617 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4618 getValue(I.getArgOperand(0)).getValueType(), 4619 getValue(I.getArgOperand(0)), 4620 getValue(I.getArgOperand(1))); 4621 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4622 getValue(I.getArgOperand(0)).getValueType(), 4623 Mul, 4624 getValue(I.getArgOperand(2))); 4625 setValue(&I, Add); 4626 } 4627 return nullptr; 4628 } 4629 case Intrinsic::convert_to_fp16: 4630 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4631 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4632 getValue(I.getArgOperand(0)), 4633 DAG.getTargetConstant(0, sdl, 4634 MVT::i32)))); 4635 return nullptr; 4636 case Intrinsic::convert_from_fp16: 4637 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4638 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4639 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4640 getValue(I.getArgOperand(0))))); 4641 return nullptr; 4642 case Intrinsic::pcmarker: { 4643 SDValue Tmp = getValue(I.getArgOperand(0)); 4644 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4645 return nullptr; 4646 } 4647 case Intrinsic::readcyclecounter: { 4648 SDValue Op = getRoot(); 4649 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4650 DAG.getVTList(MVT::i64, MVT::Other), Op); 4651 setValue(&I, Res); 4652 DAG.setRoot(Res.getValue(1)); 4653 return nullptr; 4654 } 4655 case Intrinsic::bswap: 4656 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4657 getValue(I.getArgOperand(0)).getValueType(), 4658 getValue(I.getArgOperand(0)))); 4659 return nullptr; 4660 case Intrinsic::cttz: { 4661 SDValue Arg = getValue(I.getArgOperand(0)); 4662 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4663 EVT Ty = Arg.getValueType(); 4664 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4665 sdl, Ty, Arg)); 4666 return nullptr; 4667 } 4668 case Intrinsic::ctlz: { 4669 SDValue Arg = getValue(I.getArgOperand(0)); 4670 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4671 EVT Ty = Arg.getValueType(); 4672 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4673 sdl, Ty, Arg)); 4674 return nullptr; 4675 } 4676 case Intrinsic::ctpop: { 4677 SDValue Arg = getValue(I.getArgOperand(0)); 4678 EVT Ty = Arg.getValueType(); 4679 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4680 return nullptr; 4681 } 4682 case Intrinsic::stacksave: { 4683 SDValue Op = getRoot(); 4684 Res = DAG.getNode( 4685 ISD::STACKSAVE, sdl, 4686 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4687 setValue(&I, Res); 4688 DAG.setRoot(Res.getValue(1)); 4689 return nullptr; 4690 } 4691 case Intrinsic::stackrestore: { 4692 Res = getValue(I.getArgOperand(0)); 4693 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4694 return nullptr; 4695 } 4696 case Intrinsic::stackprotector: { 4697 // Emit code into the DAG to store the stack guard onto the stack. 4698 MachineFunction &MF = DAG.getMachineFunction(); 4699 MachineFrameInfo *MFI = MF.getFrameInfo(); 4700 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4701 SDValue Src, Chain = getRoot(); 4702 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4703 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4704 4705 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4706 // global variable __stack_chk_guard. 4707 if (!GV) 4708 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4709 if (BC->getOpcode() == Instruction::BitCast) 4710 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4711 4712 if (GV && TLI.useLoadStackGuardNode()) { 4713 // Emit a LOAD_STACK_GUARD node. 4714 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4715 sdl, PtrTy, Chain); 4716 MachinePointerInfo MPInfo(GV); 4717 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4718 unsigned Flags = MachineMemOperand::MOLoad | 4719 MachineMemOperand::MOInvariant; 4720 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4721 PtrTy.getSizeInBits() / 8, 4722 DAG.getEVTAlignment(PtrTy)); 4723 Node->setMemRefs(MemRefs, MemRefs + 1); 4724 4725 // Copy the guard value to a virtual register so that it can be 4726 // retrieved in the epilogue. 4727 Src = SDValue(Node, 0); 4728 const TargetRegisterClass *RC = 4729 TLI.getRegClassFor(Src.getSimpleValueType()); 4730 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4731 4732 SPDescriptor.setGuardReg(Reg); 4733 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4734 } else { 4735 Src = getValue(I.getArgOperand(0)); // The guard's value. 4736 } 4737 4738 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4739 4740 int FI = FuncInfo.StaticAllocaMap[Slot]; 4741 MFI->setStackProtectorIndex(FI); 4742 4743 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4744 4745 // Store the stack protector onto the stack. 4746 Res = DAG.getStore(Chain, sdl, Src, FIN, 4747 MachinePointerInfo::getFixedStack(FI), 4748 true, false, 0); 4749 setValue(&I, Res); 4750 DAG.setRoot(Res); 4751 return nullptr; 4752 } 4753 case Intrinsic::objectsize: { 4754 // If we don't know by now, we're never going to know. 4755 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4756 4757 assert(CI && "Non-constant type in __builtin_object_size?"); 4758 4759 SDValue Arg = getValue(I.getCalledValue()); 4760 EVT Ty = Arg.getValueType(); 4761 4762 if (CI->isZero()) 4763 Res = DAG.getConstant(-1ULL, sdl, Ty); 4764 else 4765 Res = DAG.getConstant(0, sdl, Ty); 4766 4767 setValue(&I, Res); 4768 return nullptr; 4769 } 4770 case Intrinsic::annotation: 4771 case Intrinsic::ptr_annotation: 4772 // Drop the intrinsic, but forward the value 4773 setValue(&I, getValue(I.getOperand(0))); 4774 return nullptr; 4775 case Intrinsic::assume: 4776 case Intrinsic::var_annotation: 4777 // Discard annotate attributes and assumptions 4778 return nullptr; 4779 4780 case Intrinsic::init_trampoline: { 4781 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4782 4783 SDValue Ops[6]; 4784 Ops[0] = getRoot(); 4785 Ops[1] = getValue(I.getArgOperand(0)); 4786 Ops[2] = getValue(I.getArgOperand(1)); 4787 Ops[3] = getValue(I.getArgOperand(2)); 4788 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4789 Ops[5] = DAG.getSrcValue(F); 4790 4791 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4792 4793 DAG.setRoot(Res); 4794 return nullptr; 4795 } 4796 case Intrinsic::adjust_trampoline: { 4797 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4798 TLI.getPointerTy(DAG.getDataLayout()), 4799 getValue(I.getArgOperand(0)))); 4800 return nullptr; 4801 } 4802 case Intrinsic::gcroot: 4803 if (GFI) { 4804 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4805 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4806 4807 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4808 GFI->addStackRoot(FI->getIndex(), TypeMap); 4809 } 4810 return nullptr; 4811 case Intrinsic::gcread: 4812 case Intrinsic::gcwrite: 4813 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4814 case Intrinsic::flt_rounds: 4815 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4816 return nullptr; 4817 4818 case Intrinsic::expect: { 4819 // Just replace __builtin_expect(exp, c) with EXP. 4820 setValue(&I, getValue(I.getArgOperand(0))); 4821 return nullptr; 4822 } 4823 4824 case Intrinsic::debugtrap: 4825 case Intrinsic::trap: { 4826 StringRef TrapFuncName = 4827 I.getAttributes() 4828 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4829 .getValueAsString(); 4830 if (TrapFuncName.empty()) { 4831 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4832 ISD::TRAP : ISD::DEBUGTRAP; 4833 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4834 return nullptr; 4835 } 4836 TargetLowering::ArgListTy Args; 4837 4838 TargetLowering::CallLoweringInfo CLI(DAG); 4839 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4840 CallingConv::C, I.getType(), 4841 DAG.getExternalSymbol(TrapFuncName.data(), 4842 TLI.getPointerTy(DAG.getDataLayout())), 4843 std::move(Args), 0); 4844 4845 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4846 DAG.setRoot(Result.second); 4847 return nullptr; 4848 } 4849 4850 case Intrinsic::uadd_with_overflow: 4851 case Intrinsic::sadd_with_overflow: 4852 case Intrinsic::usub_with_overflow: 4853 case Intrinsic::ssub_with_overflow: 4854 case Intrinsic::umul_with_overflow: 4855 case Intrinsic::smul_with_overflow: { 4856 ISD::NodeType Op; 4857 switch (Intrinsic) { 4858 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4859 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4860 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4861 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4862 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4863 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4864 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4865 } 4866 SDValue Op1 = getValue(I.getArgOperand(0)); 4867 SDValue Op2 = getValue(I.getArgOperand(1)); 4868 4869 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4870 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4871 return nullptr; 4872 } 4873 case Intrinsic::prefetch: { 4874 SDValue Ops[5]; 4875 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4876 Ops[0] = getRoot(); 4877 Ops[1] = getValue(I.getArgOperand(0)); 4878 Ops[2] = getValue(I.getArgOperand(1)); 4879 Ops[3] = getValue(I.getArgOperand(2)); 4880 Ops[4] = getValue(I.getArgOperand(3)); 4881 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4882 DAG.getVTList(MVT::Other), Ops, 4883 EVT::getIntegerVT(*Context, 8), 4884 MachinePointerInfo(I.getArgOperand(0)), 4885 0, /* align */ 4886 false, /* volatile */ 4887 rw==0, /* read */ 4888 rw==1)); /* write */ 4889 return nullptr; 4890 } 4891 case Intrinsic::lifetime_start: 4892 case Intrinsic::lifetime_end: { 4893 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4894 // Stack coloring is not enabled in O0, discard region information. 4895 if (TM.getOptLevel() == CodeGenOpt::None) 4896 return nullptr; 4897 4898 SmallVector<Value *, 4> Allocas; 4899 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4900 4901 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4902 E = Allocas.end(); Object != E; ++Object) { 4903 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4904 4905 // Could not find an Alloca. 4906 if (!LifetimeObject) 4907 continue; 4908 4909 // First check that the Alloca is static, otherwise it won't have a 4910 // valid frame index. 4911 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4912 if (SI == FuncInfo.StaticAllocaMap.end()) 4913 return nullptr; 4914 4915 int FI = SI->second; 4916 4917 SDValue Ops[2]; 4918 Ops[0] = getRoot(); 4919 Ops[1] = 4920 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4921 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4922 4923 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4924 DAG.setRoot(Res); 4925 } 4926 return nullptr; 4927 } 4928 case Intrinsic::invariant_start: 4929 // Discard region information. 4930 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4931 return nullptr; 4932 case Intrinsic::invariant_end: 4933 // Discard region information. 4934 return nullptr; 4935 case Intrinsic::stackprotectorcheck: { 4936 // Do not actually emit anything for this basic block. Instead we initialize 4937 // the stack protector descriptor and export the guard variable so we can 4938 // access it in FinishBasicBlock. 4939 const BasicBlock *BB = I.getParent(); 4940 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4941 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4942 4943 // Flush our exports since we are going to process a terminator. 4944 (void)getControlRoot(); 4945 return nullptr; 4946 } 4947 case Intrinsic::clear_cache: 4948 return TLI.getClearCacheBuiltinName(); 4949 case Intrinsic::eh_actions: 4950 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4951 return nullptr; 4952 case Intrinsic::donothing: 4953 // ignore 4954 return nullptr; 4955 case Intrinsic::experimental_stackmap: { 4956 visitStackmap(I); 4957 return nullptr; 4958 } 4959 case Intrinsic::experimental_patchpoint_void: 4960 case Intrinsic::experimental_patchpoint_i64: { 4961 visitPatchpoint(&I); 4962 return nullptr; 4963 } 4964 case Intrinsic::experimental_gc_statepoint: { 4965 visitStatepoint(I); 4966 return nullptr; 4967 } 4968 case Intrinsic::experimental_gc_result_int: 4969 case Intrinsic::experimental_gc_result_float: 4970 case Intrinsic::experimental_gc_result_ptr: 4971 case Intrinsic::experimental_gc_result: { 4972 visitGCResult(I); 4973 return nullptr; 4974 } 4975 case Intrinsic::experimental_gc_relocate: { 4976 visitGCRelocate(I); 4977 return nullptr; 4978 } 4979 case Intrinsic::instrprof_increment: 4980 llvm_unreachable("instrprof failed to lower an increment"); 4981 4982 case Intrinsic::localescape: { 4983 MachineFunction &MF = DAG.getMachineFunction(); 4984 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4985 4986 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 4987 // is the same on all targets. 4988 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4989 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4990 if (isa<ConstantPointerNull>(Arg)) 4991 continue; // Skip null pointers. They represent a hole in index space. 4992 AllocaInst *Slot = cast<AllocaInst>(Arg); 4993 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4994 "can only escape static allocas"); 4995 int FI = FuncInfo.StaticAllocaMap[Slot]; 4996 MCSymbol *FrameAllocSym = 4997 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4998 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5000 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5001 .addSym(FrameAllocSym) 5002 .addFrameIndex(FI); 5003 } 5004 5005 return nullptr; 5006 } 5007 5008 case Intrinsic::localrecover: { 5009 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5010 MachineFunction &MF = DAG.getMachineFunction(); 5011 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5012 5013 // Get the symbol that defines the frame offset. 5014 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5015 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5016 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5017 MCSymbol *FrameAllocSym = 5018 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5019 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5020 5021 // Create a MCSymbol for the label to avoid any target lowering 5022 // that would make this PC relative. 5023 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5024 SDValue OffsetVal = 5025 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5026 5027 // Add the offset to the FP. 5028 Value *FP = I.getArgOperand(1); 5029 SDValue FPVal = getValue(FP); 5030 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5031 setValue(&I, Add); 5032 5033 return nullptr; 5034 } 5035 case Intrinsic::eh_begincatch: 5036 case Intrinsic::eh_endcatch: 5037 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5038 case Intrinsic::eh_exceptioncode: { 5039 unsigned Reg = TLI.getExceptionPointerRegister(); 5040 assert(Reg && "cannot get exception code on this platform"); 5041 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5042 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5043 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5044 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5045 SDValue N = 5046 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5047 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5048 setValue(&I, N); 5049 return nullptr; 5050 } 5051 } 5052 } 5053 5054 std::pair<SDValue, SDValue> 5055 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5056 MachineBasicBlock *LandingPad) { 5057 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5058 MCSymbol *BeginLabel = nullptr; 5059 5060 if (LandingPad) { 5061 // Insert a label before the invoke call to mark the try range. This can be 5062 // used to detect deletion of the invoke via the MachineModuleInfo. 5063 BeginLabel = MMI.getContext().createTempSymbol(); 5064 5065 // For SjLj, keep track of which landing pads go with which invokes 5066 // so as to maintain the ordering of pads in the LSDA. 5067 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5068 if (CallSiteIndex) { 5069 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5070 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5071 5072 // Now that the call site is handled, stop tracking it. 5073 MMI.setCurrentCallSite(0); 5074 } 5075 5076 // Both PendingLoads and PendingExports must be flushed here; 5077 // this call might not return. 5078 (void)getRoot(); 5079 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5080 5081 CLI.setChain(getRoot()); 5082 } 5083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5084 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5085 5086 assert((CLI.IsTailCall || Result.second.getNode()) && 5087 "Non-null chain expected with non-tail call!"); 5088 assert((Result.second.getNode() || !Result.first.getNode()) && 5089 "Null value expected with tail call!"); 5090 5091 if (!Result.second.getNode()) { 5092 // As a special case, a null chain means that a tail call has been emitted 5093 // and the DAG root is already updated. 5094 HasTailCall = true; 5095 5096 // Since there's no actual continuation from this block, nothing can be 5097 // relying on us setting vregs for them. 5098 PendingExports.clear(); 5099 } else { 5100 DAG.setRoot(Result.second); 5101 } 5102 5103 if (LandingPad) { 5104 // Insert a label at the end of the invoke call to mark the try range. This 5105 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5106 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5107 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5108 5109 // Inform MachineModuleInfo of range. 5110 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5111 } 5112 5113 return Result; 5114 } 5115 5116 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5117 bool isTailCall, 5118 MachineBasicBlock *LandingPad) { 5119 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5120 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5121 Type *RetTy = FTy->getReturnType(); 5122 5123 TargetLowering::ArgListTy Args; 5124 TargetLowering::ArgListEntry Entry; 5125 Args.reserve(CS.arg_size()); 5126 5127 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5128 i != e; ++i) { 5129 const Value *V = *i; 5130 5131 // Skip empty types 5132 if (V->getType()->isEmptyTy()) 5133 continue; 5134 5135 SDValue ArgNode = getValue(V); 5136 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5137 5138 // Skip the first return-type Attribute to get to params. 5139 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5140 Args.push_back(Entry); 5141 5142 // If we have an explicit sret argument that is an Instruction, (i.e., it 5143 // might point to function-local memory), we can't meaningfully tail-call. 5144 if (Entry.isSRet && isa<Instruction>(V)) 5145 isTailCall = false; 5146 } 5147 5148 // Check if target-independent constraints permit a tail call here. 5149 // Target-dependent constraints are checked within TLI->LowerCallTo. 5150 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5151 isTailCall = false; 5152 5153 TargetLowering::CallLoweringInfo CLI(DAG); 5154 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5155 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5156 .setTailCall(isTailCall); 5157 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5158 5159 if (Result.first.getNode()) 5160 setValue(CS.getInstruction(), Result.first); 5161 } 5162 5163 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5164 /// value is equal or not-equal to zero. 5165 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5166 for (const User *U : V->users()) { 5167 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5168 if (IC->isEquality()) 5169 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5170 if (C->isNullValue()) 5171 continue; 5172 // Unknown instruction. 5173 return false; 5174 } 5175 return true; 5176 } 5177 5178 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5179 Type *LoadTy, 5180 SelectionDAGBuilder &Builder) { 5181 5182 // Check to see if this load can be trivially constant folded, e.g. if the 5183 // input is from a string literal. 5184 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5185 // Cast pointer to the type we really want to load. 5186 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5187 PointerType::getUnqual(LoadTy)); 5188 5189 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5190 const_cast<Constant *>(LoadInput), *Builder.DL)) 5191 return Builder.getValue(LoadCst); 5192 } 5193 5194 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5195 // still constant memory, the input chain can be the entry node. 5196 SDValue Root; 5197 bool ConstantMemory = false; 5198 5199 // Do not serialize (non-volatile) loads of constant memory with anything. 5200 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5201 Root = Builder.DAG.getEntryNode(); 5202 ConstantMemory = true; 5203 } else { 5204 // Do not serialize non-volatile loads against each other. 5205 Root = Builder.DAG.getRoot(); 5206 } 5207 5208 SDValue Ptr = Builder.getValue(PtrVal); 5209 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5210 Ptr, MachinePointerInfo(PtrVal), 5211 false /*volatile*/, 5212 false /*nontemporal*/, 5213 false /*isinvariant*/, 1 /* align=1 */); 5214 5215 if (!ConstantMemory) 5216 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5217 return LoadVal; 5218 } 5219 5220 /// processIntegerCallValue - Record the value for an instruction that 5221 /// produces an integer result, converting the type where necessary. 5222 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5223 SDValue Value, 5224 bool IsSigned) { 5225 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5226 I.getType(), true); 5227 if (IsSigned) 5228 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5229 else 5230 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5231 setValue(&I, Value); 5232 } 5233 5234 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5235 /// If so, return true and lower it, otherwise return false and it will be 5236 /// lowered like a normal call. 5237 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5238 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5239 if (I.getNumArgOperands() != 3) 5240 return false; 5241 5242 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5243 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5244 !I.getArgOperand(2)->getType()->isIntegerTy() || 5245 !I.getType()->isIntegerTy()) 5246 return false; 5247 5248 const Value *Size = I.getArgOperand(2); 5249 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5250 if (CSize && CSize->getZExtValue() == 0) { 5251 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5252 I.getType(), true); 5253 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5254 return true; 5255 } 5256 5257 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5258 std::pair<SDValue, SDValue> Res = 5259 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5260 getValue(LHS), getValue(RHS), getValue(Size), 5261 MachinePointerInfo(LHS), 5262 MachinePointerInfo(RHS)); 5263 if (Res.first.getNode()) { 5264 processIntegerCallValue(I, Res.first, true); 5265 PendingLoads.push_back(Res.second); 5266 return true; 5267 } 5268 5269 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5270 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5271 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5272 bool ActuallyDoIt = true; 5273 MVT LoadVT; 5274 Type *LoadTy; 5275 switch (CSize->getZExtValue()) { 5276 default: 5277 LoadVT = MVT::Other; 5278 LoadTy = nullptr; 5279 ActuallyDoIt = false; 5280 break; 5281 case 2: 5282 LoadVT = MVT::i16; 5283 LoadTy = Type::getInt16Ty(CSize->getContext()); 5284 break; 5285 case 4: 5286 LoadVT = MVT::i32; 5287 LoadTy = Type::getInt32Ty(CSize->getContext()); 5288 break; 5289 case 8: 5290 LoadVT = MVT::i64; 5291 LoadTy = Type::getInt64Ty(CSize->getContext()); 5292 break; 5293 /* 5294 case 16: 5295 LoadVT = MVT::v4i32; 5296 LoadTy = Type::getInt32Ty(CSize->getContext()); 5297 LoadTy = VectorType::get(LoadTy, 4); 5298 break; 5299 */ 5300 } 5301 5302 // This turns into unaligned loads. We only do this if the target natively 5303 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5304 // we'll only produce a small number of byte loads. 5305 5306 // Require that we can find a legal MVT, and only do this if the target 5307 // supports unaligned loads of that type. Expanding into byte loads would 5308 // bloat the code. 5309 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5310 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5311 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5312 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5313 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5314 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5315 // TODO: Check alignment of src and dest ptrs. 5316 if (!TLI.isTypeLegal(LoadVT) || 5317 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5318 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5319 ActuallyDoIt = false; 5320 } 5321 5322 if (ActuallyDoIt) { 5323 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5324 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5325 5326 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5327 ISD::SETNE); 5328 processIntegerCallValue(I, Res, false); 5329 return true; 5330 } 5331 } 5332 5333 5334 return false; 5335 } 5336 5337 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5338 /// form. If so, return true and lower it, otherwise return false and it 5339 /// will be lowered like a normal call. 5340 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5341 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5342 if (I.getNumArgOperands() != 3) 5343 return false; 5344 5345 const Value *Src = I.getArgOperand(0); 5346 const Value *Char = I.getArgOperand(1); 5347 const Value *Length = I.getArgOperand(2); 5348 if (!Src->getType()->isPointerTy() || 5349 !Char->getType()->isIntegerTy() || 5350 !Length->getType()->isIntegerTy() || 5351 !I.getType()->isPointerTy()) 5352 return false; 5353 5354 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5355 std::pair<SDValue, SDValue> Res = 5356 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5357 getValue(Src), getValue(Char), getValue(Length), 5358 MachinePointerInfo(Src)); 5359 if (Res.first.getNode()) { 5360 setValue(&I, Res.first); 5361 PendingLoads.push_back(Res.second); 5362 return true; 5363 } 5364 5365 return false; 5366 } 5367 5368 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5369 /// optimized form. If so, return true and lower it, otherwise return false 5370 /// and it will be lowered like a normal call. 5371 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5372 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5373 if (I.getNumArgOperands() != 2) 5374 return false; 5375 5376 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5377 if (!Arg0->getType()->isPointerTy() || 5378 !Arg1->getType()->isPointerTy() || 5379 !I.getType()->isPointerTy()) 5380 return false; 5381 5382 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5383 std::pair<SDValue, SDValue> Res = 5384 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5385 getValue(Arg0), getValue(Arg1), 5386 MachinePointerInfo(Arg0), 5387 MachinePointerInfo(Arg1), isStpcpy); 5388 if (Res.first.getNode()) { 5389 setValue(&I, Res.first); 5390 DAG.setRoot(Res.second); 5391 return true; 5392 } 5393 5394 return false; 5395 } 5396 5397 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5398 /// If so, return true and lower it, otherwise return false and it will be 5399 /// lowered like a normal call. 5400 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5401 // Verify that the prototype makes sense. int strcmp(void*,void*) 5402 if (I.getNumArgOperands() != 2) 5403 return false; 5404 5405 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5406 if (!Arg0->getType()->isPointerTy() || 5407 !Arg1->getType()->isPointerTy() || 5408 !I.getType()->isIntegerTy()) 5409 return false; 5410 5411 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5412 std::pair<SDValue, SDValue> Res = 5413 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5414 getValue(Arg0), getValue(Arg1), 5415 MachinePointerInfo(Arg0), 5416 MachinePointerInfo(Arg1)); 5417 if (Res.first.getNode()) { 5418 processIntegerCallValue(I, Res.first, true); 5419 PendingLoads.push_back(Res.second); 5420 return true; 5421 } 5422 5423 return false; 5424 } 5425 5426 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5427 /// form. If so, return true and lower it, otherwise return false and it 5428 /// will be lowered like a normal call. 5429 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5430 // Verify that the prototype makes sense. size_t strlen(char *) 5431 if (I.getNumArgOperands() != 1) 5432 return false; 5433 5434 const Value *Arg0 = I.getArgOperand(0); 5435 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5436 return false; 5437 5438 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5439 std::pair<SDValue, SDValue> Res = 5440 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5441 getValue(Arg0), MachinePointerInfo(Arg0)); 5442 if (Res.first.getNode()) { 5443 processIntegerCallValue(I, Res.first, false); 5444 PendingLoads.push_back(Res.second); 5445 return true; 5446 } 5447 5448 return false; 5449 } 5450 5451 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5452 /// form. If so, return true and lower it, otherwise return false and it 5453 /// will be lowered like a normal call. 5454 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5455 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5456 if (I.getNumArgOperands() != 2) 5457 return false; 5458 5459 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5460 if (!Arg0->getType()->isPointerTy() || 5461 !Arg1->getType()->isIntegerTy() || 5462 !I.getType()->isIntegerTy()) 5463 return false; 5464 5465 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5466 std::pair<SDValue, SDValue> Res = 5467 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5468 getValue(Arg0), getValue(Arg1), 5469 MachinePointerInfo(Arg0)); 5470 if (Res.first.getNode()) { 5471 processIntegerCallValue(I, Res.first, false); 5472 PendingLoads.push_back(Res.second); 5473 return true; 5474 } 5475 5476 return false; 5477 } 5478 5479 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5480 /// operation (as expected), translate it to an SDNode with the specified opcode 5481 /// and return true. 5482 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5483 unsigned Opcode) { 5484 // Sanity check that it really is a unary floating-point call. 5485 if (I.getNumArgOperands() != 1 || 5486 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5487 I.getType() != I.getArgOperand(0)->getType() || 5488 !I.onlyReadsMemory()) 5489 return false; 5490 5491 SDValue Tmp = getValue(I.getArgOperand(0)); 5492 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5493 return true; 5494 } 5495 5496 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5497 /// operation (as expected), translate it to an SDNode with the specified opcode 5498 /// and return true. 5499 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5500 unsigned Opcode) { 5501 // Sanity check that it really is a binary floating-point call. 5502 if (I.getNumArgOperands() != 2 || 5503 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5504 I.getType() != I.getArgOperand(0)->getType() || 5505 I.getType() != I.getArgOperand(1)->getType() || 5506 !I.onlyReadsMemory()) 5507 return false; 5508 5509 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5510 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5511 EVT VT = Tmp0.getValueType(); 5512 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5513 return true; 5514 } 5515 5516 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5517 // Handle inline assembly differently. 5518 if (isa<InlineAsm>(I.getCalledValue())) { 5519 visitInlineAsm(&I); 5520 return; 5521 } 5522 5523 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5524 ComputeUsesVAFloatArgument(I, &MMI); 5525 5526 const char *RenameFn = nullptr; 5527 if (Function *F = I.getCalledFunction()) { 5528 if (F->isDeclaration()) { 5529 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5530 if (unsigned IID = II->getIntrinsicID(F)) { 5531 RenameFn = visitIntrinsicCall(I, IID); 5532 if (!RenameFn) 5533 return; 5534 } 5535 } 5536 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5537 RenameFn = visitIntrinsicCall(I, IID); 5538 if (!RenameFn) 5539 return; 5540 } 5541 } 5542 5543 // Check for well-known libc/libm calls. If the function is internal, it 5544 // can't be a library call. 5545 LibFunc::Func Func; 5546 if (!F->hasLocalLinkage() && F->hasName() && 5547 LibInfo->getLibFunc(F->getName(), Func) && 5548 LibInfo->hasOptimizedCodeGen(Func)) { 5549 switch (Func) { 5550 default: break; 5551 case LibFunc::copysign: 5552 case LibFunc::copysignf: 5553 case LibFunc::copysignl: 5554 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5555 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5556 I.getType() == I.getArgOperand(0)->getType() && 5557 I.getType() == I.getArgOperand(1)->getType() && 5558 I.onlyReadsMemory()) { 5559 SDValue LHS = getValue(I.getArgOperand(0)); 5560 SDValue RHS = getValue(I.getArgOperand(1)); 5561 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5562 LHS.getValueType(), LHS, RHS)); 5563 return; 5564 } 5565 break; 5566 case LibFunc::fabs: 5567 case LibFunc::fabsf: 5568 case LibFunc::fabsl: 5569 if (visitUnaryFloatCall(I, ISD::FABS)) 5570 return; 5571 break; 5572 case LibFunc::fmin: 5573 case LibFunc::fminf: 5574 case LibFunc::fminl: 5575 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5576 return; 5577 break; 5578 case LibFunc::fmax: 5579 case LibFunc::fmaxf: 5580 case LibFunc::fmaxl: 5581 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5582 return; 5583 break; 5584 case LibFunc::sin: 5585 case LibFunc::sinf: 5586 case LibFunc::sinl: 5587 if (visitUnaryFloatCall(I, ISD::FSIN)) 5588 return; 5589 break; 5590 case LibFunc::cos: 5591 case LibFunc::cosf: 5592 case LibFunc::cosl: 5593 if (visitUnaryFloatCall(I, ISD::FCOS)) 5594 return; 5595 break; 5596 case LibFunc::sqrt: 5597 case LibFunc::sqrtf: 5598 case LibFunc::sqrtl: 5599 case LibFunc::sqrt_finite: 5600 case LibFunc::sqrtf_finite: 5601 case LibFunc::sqrtl_finite: 5602 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5603 return; 5604 break; 5605 case LibFunc::floor: 5606 case LibFunc::floorf: 5607 case LibFunc::floorl: 5608 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5609 return; 5610 break; 5611 case LibFunc::nearbyint: 5612 case LibFunc::nearbyintf: 5613 case LibFunc::nearbyintl: 5614 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5615 return; 5616 break; 5617 case LibFunc::ceil: 5618 case LibFunc::ceilf: 5619 case LibFunc::ceill: 5620 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5621 return; 5622 break; 5623 case LibFunc::rint: 5624 case LibFunc::rintf: 5625 case LibFunc::rintl: 5626 if (visitUnaryFloatCall(I, ISD::FRINT)) 5627 return; 5628 break; 5629 case LibFunc::round: 5630 case LibFunc::roundf: 5631 case LibFunc::roundl: 5632 if (visitUnaryFloatCall(I, ISD::FROUND)) 5633 return; 5634 break; 5635 case LibFunc::trunc: 5636 case LibFunc::truncf: 5637 case LibFunc::truncl: 5638 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5639 return; 5640 break; 5641 case LibFunc::log2: 5642 case LibFunc::log2f: 5643 case LibFunc::log2l: 5644 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5645 return; 5646 break; 5647 case LibFunc::exp2: 5648 case LibFunc::exp2f: 5649 case LibFunc::exp2l: 5650 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5651 return; 5652 break; 5653 case LibFunc::memcmp: 5654 if (visitMemCmpCall(I)) 5655 return; 5656 break; 5657 case LibFunc::memchr: 5658 if (visitMemChrCall(I)) 5659 return; 5660 break; 5661 case LibFunc::strcpy: 5662 if (visitStrCpyCall(I, false)) 5663 return; 5664 break; 5665 case LibFunc::stpcpy: 5666 if (visitStrCpyCall(I, true)) 5667 return; 5668 break; 5669 case LibFunc::strcmp: 5670 if (visitStrCmpCall(I)) 5671 return; 5672 break; 5673 case LibFunc::strlen: 5674 if (visitStrLenCall(I)) 5675 return; 5676 break; 5677 case LibFunc::strnlen: 5678 if (visitStrNLenCall(I)) 5679 return; 5680 break; 5681 } 5682 } 5683 } 5684 5685 SDValue Callee; 5686 if (!RenameFn) 5687 Callee = getValue(I.getCalledValue()); 5688 else 5689 Callee = DAG.getExternalSymbol( 5690 RenameFn, 5691 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5692 5693 // Check if we can potentially perform a tail call. More detailed checking is 5694 // be done within LowerCallTo, after more information about the call is known. 5695 LowerCallTo(&I, Callee, I.isTailCall()); 5696 } 5697 5698 namespace { 5699 5700 /// AsmOperandInfo - This contains information for each constraint that we are 5701 /// lowering. 5702 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5703 public: 5704 /// CallOperand - If this is the result output operand or a clobber 5705 /// this is null, otherwise it is the incoming operand to the CallInst. 5706 /// This gets modified as the asm is processed. 5707 SDValue CallOperand; 5708 5709 /// AssignedRegs - If this is a register or register class operand, this 5710 /// contains the set of register corresponding to the operand. 5711 RegsForValue AssignedRegs; 5712 5713 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5714 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5715 } 5716 5717 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5718 /// corresponds to. If there is no Value* for this operand, it returns 5719 /// MVT::Other. 5720 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5721 const DataLayout &DL) const { 5722 if (!CallOperandVal) return MVT::Other; 5723 5724 if (isa<BasicBlock>(CallOperandVal)) 5725 return TLI.getPointerTy(DL); 5726 5727 llvm::Type *OpTy = CallOperandVal->getType(); 5728 5729 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5730 // If this is an indirect operand, the operand is a pointer to the 5731 // accessed type. 5732 if (isIndirect) { 5733 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5734 if (!PtrTy) 5735 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5736 OpTy = PtrTy->getElementType(); 5737 } 5738 5739 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5740 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5741 if (STy->getNumElements() == 1) 5742 OpTy = STy->getElementType(0); 5743 5744 // If OpTy is not a single value, it may be a struct/union that we 5745 // can tile with integers. 5746 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5747 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5748 switch (BitSize) { 5749 default: break; 5750 case 1: 5751 case 8: 5752 case 16: 5753 case 32: 5754 case 64: 5755 case 128: 5756 OpTy = IntegerType::get(Context, BitSize); 5757 break; 5758 } 5759 } 5760 5761 return TLI.getValueType(DL, OpTy, true); 5762 } 5763 }; 5764 5765 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5766 5767 } // end anonymous namespace 5768 5769 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5770 /// specified operand. We prefer to assign virtual registers, to allow the 5771 /// register allocator to handle the assignment process. However, if the asm 5772 /// uses features that we can't model on machineinstrs, we have SDISel do the 5773 /// allocation. This produces generally horrible, but correct, code. 5774 /// 5775 /// OpInfo describes the operand. 5776 /// 5777 static void GetRegistersForValue(SelectionDAG &DAG, 5778 const TargetLowering &TLI, 5779 SDLoc DL, 5780 SDISelAsmOperandInfo &OpInfo) { 5781 LLVMContext &Context = *DAG.getContext(); 5782 5783 MachineFunction &MF = DAG.getMachineFunction(); 5784 SmallVector<unsigned, 4> Regs; 5785 5786 // If this is a constraint for a single physreg, or a constraint for a 5787 // register class, find it. 5788 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5789 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5790 OpInfo.ConstraintCode, 5791 OpInfo.ConstraintVT); 5792 5793 unsigned NumRegs = 1; 5794 if (OpInfo.ConstraintVT != MVT::Other) { 5795 // If this is a FP input in an integer register (or visa versa) insert a bit 5796 // cast of the input value. More generally, handle any case where the input 5797 // value disagrees with the register class we plan to stick this in. 5798 if (OpInfo.Type == InlineAsm::isInput && 5799 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5800 // Try to convert to the first EVT that the reg class contains. If the 5801 // types are identical size, use a bitcast to convert (e.g. two differing 5802 // vector types). 5803 MVT RegVT = *PhysReg.second->vt_begin(); 5804 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5805 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5806 RegVT, OpInfo.CallOperand); 5807 OpInfo.ConstraintVT = RegVT; 5808 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5809 // If the input is a FP value and we want it in FP registers, do a 5810 // bitcast to the corresponding integer type. This turns an f64 value 5811 // into i64, which can be passed with two i32 values on a 32-bit 5812 // machine. 5813 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5814 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5815 RegVT, OpInfo.CallOperand); 5816 OpInfo.ConstraintVT = RegVT; 5817 } 5818 } 5819 5820 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5821 } 5822 5823 MVT RegVT; 5824 EVT ValueVT = OpInfo.ConstraintVT; 5825 5826 // If this is a constraint for a specific physical register, like {r17}, 5827 // assign it now. 5828 if (unsigned AssignedReg = PhysReg.first) { 5829 const TargetRegisterClass *RC = PhysReg.second; 5830 if (OpInfo.ConstraintVT == MVT::Other) 5831 ValueVT = *RC->vt_begin(); 5832 5833 // Get the actual register value type. This is important, because the user 5834 // may have asked for (e.g.) the AX register in i32 type. We need to 5835 // remember that AX is actually i16 to get the right extension. 5836 RegVT = *RC->vt_begin(); 5837 5838 // This is a explicit reference to a physical register. 5839 Regs.push_back(AssignedReg); 5840 5841 // If this is an expanded reference, add the rest of the regs to Regs. 5842 if (NumRegs != 1) { 5843 TargetRegisterClass::iterator I = RC->begin(); 5844 for (; *I != AssignedReg; ++I) 5845 assert(I != RC->end() && "Didn't find reg!"); 5846 5847 // Already added the first reg. 5848 --NumRegs; ++I; 5849 for (; NumRegs; --NumRegs, ++I) { 5850 assert(I != RC->end() && "Ran out of registers to allocate!"); 5851 Regs.push_back(*I); 5852 } 5853 } 5854 5855 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5856 return; 5857 } 5858 5859 // Otherwise, if this was a reference to an LLVM register class, create vregs 5860 // for this reference. 5861 if (const TargetRegisterClass *RC = PhysReg.second) { 5862 RegVT = *RC->vt_begin(); 5863 if (OpInfo.ConstraintVT == MVT::Other) 5864 ValueVT = RegVT; 5865 5866 // Create the appropriate number of virtual registers. 5867 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5868 for (; NumRegs; --NumRegs) 5869 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5870 5871 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5872 return; 5873 } 5874 5875 // Otherwise, we couldn't allocate enough registers for this. 5876 } 5877 5878 /// visitInlineAsm - Handle a call to an InlineAsm object. 5879 /// 5880 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5881 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5882 5883 /// ConstraintOperands - Information about all of the constraints. 5884 SDISelAsmOperandInfoVector ConstraintOperands; 5885 5886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5887 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5888 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5889 5890 bool hasMemory = false; 5891 5892 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5893 unsigned ResNo = 0; // ResNo - The result number of the next output. 5894 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5895 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5896 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5897 5898 MVT OpVT = MVT::Other; 5899 5900 // Compute the value type for each operand. 5901 switch (OpInfo.Type) { 5902 case InlineAsm::isOutput: 5903 // Indirect outputs just consume an argument. 5904 if (OpInfo.isIndirect) { 5905 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5906 break; 5907 } 5908 5909 // The return value of the call is this value. As such, there is no 5910 // corresponding argument. 5911 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5912 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5913 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5914 STy->getElementType(ResNo)); 5915 } else { 5916 assert(ResNo == 0 && "Asm only has one result!"); 5917 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5918 } 5919 ++ResNo; 5920 break; 5921 case InlineAsm::isInput: 5922 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5923 break; 5924 case InlineAsm::isClobber: 5925 // Nothing to do. 5926 break; 5927 } 5928 5929 // If this is an input or an indirect output, process the call argument. 5930 // BasicBlocks are labels, currently appearing only in asm's. 5931 if (OpInfo.CallOperandVal) { 5932 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5933 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5934 } else { 5935 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5936 } 5937 5938 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5939 DAG.getDataLayout()).getSimpleVT(); 5940 } 5941 5942 OpInfo.ConstraintVT = OpVT; 5943 5944 // Indirect operand accesses access memory. 5945 if (OpInfo.isIndirect) 5946 hasMemory = true; 5947 else { 5948 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5949 TargetLowering::ConstraintType 5950 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5951 if (CType == TargetLowering::C_Memory) { 5952 hasMemory = true; 5953 break; 5954 } 5955 } 5956 } 5957 } 5958 5959 SDValue Chain, Flag; 5960 5961 // We won't need to flush pending loads if this asm doesn't touch 5962 // memory and is nonvolatile. 5963 if (hasMemory || IA->hasSideEffects()) 5964 Chain = getRoot(); 5965 else 5966 Chain = DAG.getRoot(); 5967 5968 // Second pass over the constraints: compute which constraint option to use 5969 // and assign registers to constraints that want a specific physreg. 5970 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5971 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5972 5973 // If this is an output operand with a matching input operand, look up the 5974 // matching input. If their types mismatch, e.g. one is an integer, the 5975 // other is floating point, or their sizes are different, flag it as an 5976 // error. 5977 if (OpInfo.hasMatchingInput()) { 5978 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5979 5980 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5981 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5982 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5983 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5984 OpInfo.ConstraintVT); 5985 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5986 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5987 Input.ConstraintVT); 5988 if ((OpInfo.ConstraintVT.isInteger() != 5989 Input.ConstraintVT.isInteger()) || 5990 (MatchRC.second != InputRC.second)) { 5991 report_fatal_error("Unsupported asm: input constraint" 5992 " with a matching output constraint of" 5993 " incompatible type!"); 5994 } 5995 Input.ConstraintVT = OpInfo.ConstraintVT; 5996 } 5997 } 5998 5999 // Compute the constraint code and ConstraintType to use. 6000 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6001 6002 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6003 OpInfo.Type == InlineAsm::isClobber) 6004 continue; 6005 6006 // If this is a memory input, and if the operand is not indirect, do what we 6007 // need to to provide an address for the memory input. 6008 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6009 !OpInfo.isIndirect) { 6010 assert((OpInfo.isMultipleAlternative || 6011 (OpInfo.Type == InlineAsm::isInput)) && 6012 "Can only indirectify direct input operands!"); 6013 6014 // Memory operands really want the address of the value. If we don't have 6015 // an indirect input, put it in the constpool if we can, otherwise spill 6016 // it to a stack slot. 6017 // TODO: This isn't quite right. We need to handle these according to 6018 // the addressing mode that the constraint wants. Also, this may take 6019 // an additional register for the computation and we don't want that 6020 // either. 6021 6022 // If the operand is a float, integer, or vector constant, spill to a 6023 // constant pool entry to get its address. 6024 const Value *OpVal = OpInfo.CallOperandVal; 6025 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6026 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6027 OpInfo.CallOperand = DAG.getConstantPool( 6028 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6029 } else { 6030 // Otherwise, create a stack slot and emit a store to it before the 6031 // asm. 6032 Type *Ty = OpVal->getType(); 6033 auto &DL = DAG.getDataLayout(); 6034 uint64_t TySize = DL.getTypeAllocSize(Ty); 6035 unsigned Align = DL.getPrefTypeAlignment(Ty); 6036 MachineFunction &MF = DAG.getMachineFunction(); 6037 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6038 SDValue StackSlot = 6039 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6040 Chain = DAG.getStore(Chain, getCurSDLoc(), 6041 OpInfo.CallOperand, StackSlot, 6042 MachinePointerInfo::getFixedStack(SSFI), 6043 false, false, 0); 6044 OpInfo.CallOperand = StackSlot; 6045 } 6046 6047 // There is no longer a Value* corresponding to this operand. 6048 OpInfo.CallOperandVal = nullptr; 6049 6050 // It is now an indirect operand. 6051 OpInfo.isIndirect = true; 6052 } 6053 6054 // If this constraint is for a specific register, allocate it before 6055 // anything else. 6056 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6057 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6058 } 6059 6060 // Second pass - Loop over all of the operands, assigning virtual or physregs 6061 // to register class operands. 6062 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6063 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6064 6065 // C_Register operands have already been allocated, Other/Memory don't need 6066 // to be. 6067 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6068 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6069 } 6070 6071 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6072 std::vector<SDValue> AsmNodeOperands; 6073 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6074 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6075 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6076 6077 // If we have a !srcloc metadata node associated with it, we want to attach 6078 // this to the ultimately generated inline asm machineinstr. To do this, we 6079 // pass in the third operand as this (potentially null) inline asm MDNode. 6080 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6081 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6082 6083 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6084 // bits as operand 3. 6085 unsigned ExtraInfo = 0; 6086 if (IA->hasSideEffects()) 6087 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6088 if (IA->isAlignStack()) 6089 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6090 // Set the asm dialect. 6091 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6092 6093 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6094 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6095 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6096 6097 // Compute the constraint code and ConstraintType to use. 6098 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6099 6100 // Ideally, we would only check against memory constraints. However, the 6101 // meaning of an other constraint can be target-specific and we can't easily 6102 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6103 // for other constriants as well. 6104 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6105 OpInfo.ConstraintType == TargetLowering::C_Other) { 6106 if (OpInfo.Type == InlineAsm::isInput) 6107 ExtraInfo |= InlineAsm::Extra_MayLoad; 6108 else if (OpInfo.Type == InlineAsm::isOutput) 6109 ExtraInfo |= InlineAsm::Extra_MayStore; 6110 else if (OpInfo.Type == InlineAsm::isClobber) 6111 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6112 } 6113 } 6114 6115 AsmNodeOperands.push_back(DAG.getTargetConstant( 6116 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6117 6118 // Loop over all of the inputs, copying the operand values into the 6119 // appropriate registers and processing the output regs. 6120 RegsForValue RetValRegs; 6121 6122 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6123 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6124 6125 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6126 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6127 6128 switch (OpInfo.Type) { 6129 case InlineAsm::isOutput: { 6130 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6131 OpInfo.ConstraintType != TargetLowering::C_Register) { 6132 // Memory output, or 'other' output (e.g. 'X' constraint). 6133 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6134 6135 unsigned ConstraintID = 6136 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6137 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6138 "Failed to convert memory constraint code to constraint id."); 6139 6140 // Add information to the INLINEASM node to know about this output. 6141 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6142 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6143 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6144 MVT::i32)); 6145 AsmNodeOperands.push_back(OpInfo.CallOperand); 6146 break; 6147 } 6148 6149 // Otherwise, this is a register or register class output. 6150 6151 // Copy the output from the appropriate register. Find a register that 6152 // we can use. 6153 if (OpInfo.AssignedRegs.Regs.empty()) { 6154 LLVMContext &Ctx = *DAG.getContext(); 6155 Ctx.emitError(CS.getInstruction(), 6156 "couldn't allocate output register for constraint '" + 6157 Twine(OpInfo.ConstraintCode) + "'"); 6158 return; 6159 } 6160 6161 // If this is an indirect operand, store through the pointer after the 6162 // asm. 6163 if (OpInfo.isIndirect) { 6164 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6165 OpInfo.CallOperandVal)); 6166 } else { 6167 // This is the result value of the call. 6168 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6169 // Concatenate this output onto the outputs list. 6170 RetValRegs.append(OpInfo.AssignedRegs); 6171 } 6172 6173 // Add information to the INLINEASM node to know that this register is 6174 // set. 6175 OpInfo.AssignedRegs 6176 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6177 ? InlineAsm::Kind_RegDefEarlyClobber 6178 : InlineAsm::Kind_RegDef, 6179 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6180 break; 6181 } 6182 case InlineAsm::isInput: { 6183 SDValue InOperandVal = OpInfo.CallOperand; 6184 6185 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6186 // If this is required to match an output register we have already set, 6187 // just use its register. 6188 unsigned OperandNo = OpInfo.getMatchedOperand(); 6189 6190 // Scan until we find the definition we already emitted of this operand. 6191 // When we find it, create a RegsForValue operand. 6192 unsigned CurOp = InlineAsm::Op_FirstOperand; 6193 for (; OperandNo; --OperandNo) { 6194 // Advance to the next operand. 6195 unsigned OpFlag = 6196 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6197 assert((InlineAsm::isRegDefKind(OpFlag) || 6198 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6199 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6200 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6201 } 6202 6203 unsigned OpFlag = 6204 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6205 if (InlineAsm::isRegDefKind(OpFlag) || 6206 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6207 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6208 if (OpInfo.isIndirect) { 6209 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6210 LLVMContext &Ctx = *DAG.getContext(); 6211 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6212 " don't know how to handle tied " 6213 "indirect register inputs"); 6214 return; 6215 } 6216 6217 RegsForValue MatchedRegs; 6218 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6219 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6220 MatchedRegs.RegVTs.push_back(RegVT); 6221 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6222 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6223 i != e; ++i) { 6224 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6225 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6226 else { 6227 LLVMContext &Ctx = *DAG.getContext(); 6228 Ctx.emitError(CS.getInstruction(), 6229 "inline asm error: This value" 6230 " type register class is not natively supported!"); 6231 return; 6232 } 6233 } 6234 SDLoc dl = getCurSDLoc(); 6235 // Use the produced MatchedRegs object to 6236 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6237 Chain, &Flag, CS.getInstruction()); 6238 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6239 true, OpInfo.getMatchedOperand(), dl, 6240 DAG, AsmNodeOperands); 6241 break; 6242 } 6243 6244 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6245 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6246 "Unexpected number of operands"); 6247 // Add information to the INLINEASM node to know about this input. 6248 // See InlineAsm.h isUseOperandTiedToDef. 6249 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6250 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6251 OpInfo.getMatchedOperand()); 6252 AsmNodeOperands.push_back(DAG.getTargetConstant( 6253 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6254 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6255 break; 6256 } 6257 6258 // Treat indirect 'X' constraint as memory. 6259 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6260 OpInfo.isIndirect) 6261 OpInfo.ConstraintType = TargetLowering::C_Memory; 6262 6263 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6264 std::vector<SDValue> Ops; 6265 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6266 Ops, DAG); 6267 if (Ops.empty()) { 6268 LLVMContext &Ctx = *DAG.getContext(); 6269 Ctx.emitError(CS.getInstruction(), 6270 "invalid operand for inline asm constraint '" + 6271 Twine(OpInfo.ConstraintCode) + "'"); 6272 return; 6273 } 6274 6275 // Add information to the INLINEASM node to know about this input. 6276 unsigned ResOpType = 6277 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6278 AsmNodeOperands.push_back(DAG.getTargetConstant( 6279 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6280 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6281 break; 6282 } 6283 6284 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6285 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6286 assert(InOperandVal.getValueType() == 6287 TLI.getPointerTy(DAG.getDataLayout()) && 6288 "Memory operands expect pointer values"); 6289 6290 unsigned ConstraintID = 6291 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6292 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6293 "Failed to convert memory constraint code to constraint id."); 6294 6295 // Add information to the INLINEASM node to know about this input. 6296 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6297 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6298 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6299 getCurSDLoc(), 6300 MVT::i32)); 6301 AsmNodeOperands.push_back(InOperandVal); 6302 break; 6303 } 6304 6305 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6306 OpInfo.ConstraintType == TargetLowering::C_Register) && 6307 "Unknown constraint type!"); 6308 6309 // TODO: Support this. 6310 if (OpInfo.isIndirect) { 6311 LLVMContext &Ctx = *DAG.getContext(); 6312 Ctx.emitError(CS.getInstruction(), 6313 "Don't know how to handle indirect register inputs yet " 6314 "for constraint '" + 6315 Twine(OpInfo.ConstraintCode) + "'"); 6316 return; 6317 } 6318 6319 // Copy the input into the appropriate registers. 6320 if (OpInfo.AssignedRegs.Regs.empty()) { 6321 LLVMContext &Ctx = *DAG.getContext(); 6322 Ctx.emitError(CS.getInstruction(), 6323 "couldn't allocate input reg for constraint '" + 6324 Twine(OpInfo.ConstraintCode) + "'"); 6325 return; 6326 } 6327 6328 SDLoc dl = getCurSDLoc(); 6329 6330 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6331 Chain, &Flag, CS.getInstruction()); 6332 6333 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6334 dl, DAG, AsmNodeOperands); 6335 break; 6336 } 6337 case InlineAsm::isClobber: { 6338 // Add the clobbered value to the operand list, so that the register 6339 // allocator is aware that the physreg got clobbered. 6340 if (!OpInfo.AssignedRegs.Regs.empty()) 6341 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6342 false, 0, getCurSDLoc(), DAG, 6343 AsmNodeOperands); 6344 break; 6345 } 6346 } 6347 } 6348 6349 // Finish up input operands. Set the input chain and add the flag last. 6350 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6351 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6352 6353 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6354 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6355 Flag = Chain.getValue(1); 6356 6357 // If this asm returns a register value, copy the result from that register 6358 // and set it as the value of the call. 6359 if (!RetValRegs.Regs.empty()) { 6360 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6361 Chain, &Flag, CS.getInstruction()); 6362 6363 // FIXME: Why don't we do this for inline asms with MRVs? 6364 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6365 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6366 6367 // If any of the results of the inline asm is a vector, it may have the 6368 // wrong width/num elts. This can happen for register classes that can 6369 // contain multiple different value types. The preg or vreg allocated may 6370 // not have the same VT as was expected. Convert it to the right type 6371 // with bit_convert. 6372 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6373 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6374 ResultType, Val); 6375 6376 } else if (ResultType != Val.getValueType() && 6377 ResultType.isInteger() && Val.getValueType().isInteger()) { 6378 // If a result value was tied to an input value, the computed result may 6379 // have a wider width than the expected result. Extract the relevant 6380 // portion. 6381 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6382 } 6383 6384 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6385 } 6386 6387 setValue(CS.getInstruction(), Val); 6388 // Don't need to use this as a chain in this case. 6389 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6390 return; 6391 } 6392 6393 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6394 6395 // Process indirect outputs, first output all of the flagged copies out of 6396 // physregs. 6397 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6398 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6399 const Value *Ptr = IndirectStoresToEmit[i].second; 6400 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6401 Chain, &Flag, IA); 6402 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6403 } 6404 6405 // Emit the non-flagged stores from the physregs. 6406 SmallVector<SDValue, 8> OutChains; 6407 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6408 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6409 StoresToEmit[i].first, 6410 getValue(StoresToEmit[i].second), 6411 MachinePointerInfo(StoresToEmit[i].second), 6412 false, false, 0); 6413 OutChains.push_back(Val); 6414 } 6415 6416 if (!OutChains.empty()) 6417 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6418 6419 DAG.setRoot(Chain); 6420 } 6421 6422 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6423 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6424 MVT::Other, getRoot(), 6425 getValue(I.getArgOperand(0)), 6426 DAG.getSrcValue(I.getArgOperand(0)))); 6427 } 6428 6429 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6431 const DataLayout &DL = DAG.getDataLayout(); 6432 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6433 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6434 DAG.getSrcValue(I.getOperand(0)), 6435 DL.getABITypeAlignment(I.getType())); 6436 setValue(&I, V); 6437 DAG.setRoot(V.getValue(1)); 6438 } 6439 6440 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6441 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6442 MVT::Other, getRoot(), 6443 getValue(I.getArgOperand(0)), 6444 DAG.getSrcValue(I.getArgOperand(0)))); 6445 } 6446 6447 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6448 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6449 MVT::Other, getRoot(), 6450 getValue(I.getArgOperand(0)), 6451 getValue(I.getArgOperand(1)), 6452 DAG.getSrcValue(I.getArgOperand(0)), 6453 DAG.getSrcValue(I.getArgOperand(1)))); 6454 } 6455 6456 /// \brief Lower an argument list according to the target calling convention. 6457 /// 6458 /// \return A tuple of <return-value, token-chain> 6459 /// 6460 /// This is a helper for lowering intrinsics that follow a target calling 6461 /// convention or require stack pointer adjustment. Only a subset of the 6462 /// intrinsic's operands need to participate in the calling convention. 6463 std::pair<SDValue, SDValue> 6464 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6465 unsigned NumArgs, SDValue Callee, 6466 Type *ReturnTy, 6467 MachineBasicBlock *LandingPad, 6468 bool IsPatchPoint) { 6469 TargetLowering::ArgListTy Args; 6470 Args.reserve(NumArgs); 6471 6472 // Populate the argument list. 6473 // Attributes for args start at offset 1, after the return attribute. 6474 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6475 ArgI != ArgE; ++ArgI) { 6476 const Value *V = CS->getOperand(ArgI); 6477 6478 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6479 6480 TargetLowering::ArgListEntry Entry; 6481 Entry.Node = getValue(V); 6482 Entry.Ty = V->getType(); 6483 Entry.setAttributes(&CS, AttrI); 6484 Args.push_back(Entry); 6485 } 6486 6487 TargetLowering::CallLoweringInfo CLI(DAG); 6488 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6489 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6490 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6491 6492 return lowerInvokable(CLI, LandingPad); 6493 } 6494 6495 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6496 /// or patchpoint target node's operand list. 6497 /// 6498 /// Constants are converted to TargetConstants purely as an optimization to 6499 /// avoid constant materialization and register allocation. 6500 /// 6501 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6502 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6503 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6504 /// address materialization and register allocation, but may also be required 6505 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6506 /// alloca in the entry block, then the runtime may assume that the alloca's 6507 /// StackMap location can be read immediately after compilation and that the 6508 /// location is valid at any point during execution (this is similar to the 6509 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6510 /// only available in a register, then the runtime would need to trap when 6511 /// execution reaches the StackMap in order to read the alloca's location. 6512 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6513 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6514 SelectionDAGBuilder &Builder) { 6515 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6516 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6517 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6518 Ops.push_back( 6519 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6520 Ops.push_back( 6521 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6522 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6523 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6524 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6525 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6526 } else 6527 Ops.push_back(OpVal); 6528 } 6529 } 6530 6531 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6532 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6533 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6534 // [live variables...]) 6535 6536 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6537 6538 SDValue Chain, InFlag, Callee, NullPtr; 6539 SmallVector<SDValue, 32> Ops; 6540 6541 SDLoc DL = getCurSDLoc(); 6542 Callee = getValue(CI.getCalledValue()); 6543 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6544 6545 // The stackmap intrinsic only records the live variables (the arguemnts 6546 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6547 // intrinsic, this won't be lowered to a function call. This means we don't 6548 // have to worry about calling conventions and target specific lowering code. 6549 // Instead we perform the call lowering right here. 6550 // 6551 // chain, flag = CALLSEQ_START(chain, 0) 6552 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6553 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6554 // 6555 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6556 InFlag = Chain.getValue(1); 6557 6558 // Add the <id> and <numBytes> constants. 6559 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6560 Ops.push_back(DAG.getTargetConstant( 6561 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6562 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6563 Ops.push_back(DAG.getTargetConstant( 6564 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6565 MVT::i32)); 6566 6567 // Push live variables for the stack map. 6568 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6569 6570 // We are not pushing any register mask info here on the operands list, 6571 // because the stackmap doesn't clobber anything. 6572 6573 // Push the chain and the glue flag. 6574 Ops.push_back(Chain); 6575 Ops.push_back(InFlag); 6576 6577 // Create the STACKMAP node. 6578 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6579 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6580 Chain = SDValue(SM, 0); 6581 InFlag = Chain.getValue(1); 6582 6583 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6584 6585 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6586 6587 // Set the root to the target-lowered call chain. 6588 DAG.setRoot(Chain); 6589 6590 // Inform the Frame Information that we have a stackmap in this function. 6591 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6592 } 6593 6594 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6595 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6596 MachineBasicBlock *LandingPad) { 6597 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6598 // i32 <numBytes>, 6599 // i8* <target>, 6600 // i32 <numArgs>, 6601 // [Args...], 6602 // [live variables...]) 6603 6604 CallingConv::ID CC = CS.getCallingConv(); 6605 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6606 bool HasDef = !CS->getType()->isVoidTy(); 6607 SDLoc dl = getCurSDLoc(); 6608 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6609 6610 // Handle immediate and symbolic callees. 6611 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6612 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6613 /*isTarget=*/true); 6614 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6615 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6616 SDLoc(SymbolicCallee), 6617 SymbolicCallee->getValueType(0)); 6618 6619 // Get the real number of arguments participating in the call <numArgs> 6620 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6621 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6622 6623 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6624 // Intrinsics include all meta-operands up to but not including CC. 6625 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6626 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6627 "Not enough arguments provided to the patchpoint intrinsic"); 6628 6629 // For AnyRegCC the arguments are lowered later on manually. 6630 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6631 Type *ReturnTy = 6632 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6633 std::pair<SDValue, SDValue> Result = 6634 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6635 LandingPad, true); 6636 6637 SDNode *CallEnd = Result.second.getNode(); 6638 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6639 CallEnd = CallEnd->getOperand(0).getNode(); 6640 6641 /// Get a call instruction from the call sequence chain. 6642 /// Tail calls are not allowed. 6643 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6644 "Expected a callseq node."); 6645 SDNode *Call = CallEnd->getOperand(0).getNode(); 6646 bool HasGlue = Call->getGluedNode(); 6647 6648 // Replace the target specific call node with the patchable intrinsic. 6649 SmallVector<SDValue, 8> Ops; 6650 6651 // Add the <id> and <numBytes> constants. 6652 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6653 Ops.push_back(DAG.getTargetConstant( 6654 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6655 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6656 Ops.push_back(DAG.getTargetConstant( 6657 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6658 MVT::i32)); 6659 6660 // Add the callee. 6661 Ops.push_back(Callee); 6662 6663 // Adjust <numArgs> to account for any arguments that have been passed on the 6664 // stack instead. 6665 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6666 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6667 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6668 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6669 6670 // Add the calling convention 6671 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6672 6673 // Add the arguments we omitted previously. The register allocator should 6674 // place these in any free register. 6675 if (IsAnyRegCC) 6676 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6677 Ops.push_back(getValue(CS.getArgument(i))); 6678 6679 // Push the arguments from the call instruction up to the register mask. 6680 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6681 Ops.append(Call->op_begin() + 2, e); 6682 6683 // Push live variables for the stack map. 6684 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6685 6686 // Push the register mask info. 6687 if (HasGlue) 6688 Ops.push_back(*(Call->op_end()-2)); 6689 else 6690 Ops.push_back(*(Call->op_end()-1)); 6691 6692 // Push the chain (this is originally the first operand of the call, but 6693 // becomes now the last or second to last operand). 6694 Ops.push_back(*(Call->op_begin())); 6695 6696 // Push the glue flag (last operand). 6697 if (HasGlue) 6698 Ops.push_back(*(Call->op_end()-1)); 6699 6700 SDVTList NodeTys; 6701 if (IsAnyRegCC && HasDef) { 6702 // Create the return types based on the intrinsic definition 6703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6704 SmallVector<EVT, 3> ValueVTs; 6705 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6706 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6707 6708 // There is always a chain and a glue type at the end 6709 ValueVTs.push_back(MVT::Other); 6710 ValueVTs.push_back(MVT::Glue); 6711 NodeTys = DAG.getVTList(ValueVTs); 6712 } else 6713 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6714 6715 // Replace the target specific call node with a PATCHPOINT node. 6716 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6717 dl, NodeTys, Ops); 6718 6719 // Update the NodeMap. 6720 if (HasDef) { 6721 if (IsAnyRegCC) 6722 setValue(CS.getInstruction(), SDValue(MN, 0)); 6723 else 6724 setValue(CS.getInstruction(), Result.first); 6725 } 6726 6727 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6728 // call sequence. Furthermore the location of the chain and glue can change 6729 // when the AnyReg calling convention is used and the intrinsic returns a 6730 // value. 6731 if (IsAnyRegCC && HasDef) { 6732 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6733 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6734 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6735 } else 6736 DAG.ReplaceAllUsesWith(Call, MN); 6737 DAG.DeleteNode(Call); 6738 6739 // Inform the Frame Information that we have a patchpoint in this function. 6740 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6741 } 6742 6743 /// Returns an AttributeSet representing the attributes applied to the return 6744 /// value of the given call. 6745 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6746 SmallVector<Attribute::AttrKind, 2> Attrs; 6747 if (CLI.RetSExt) 6748 Attrs.push_back(Attribute::SExt); 6749 if (CLI.RetZExt) 6750 Attrs.push_back(Attribute::ZExt); 6751 if (CLI.IsInReg) 6752 Attrs.push_back(Attribute::InReg); 6753 6754 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6755 Attrs); 6756 } 6757 6758 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6759 /// implementation, which just calls LowerCall. 6760 /// FIXME: When all targets are 6761 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6762 std::pair<SDValue, SDValue> 6763 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6764 // Handle the incoming return values from the call. 6765 CLI.Ins.clear(); 6766 Type *OrigRetTy = CLI.RetTy; 6767 SmallVector<EVT, 4> RetTys; 6768 SmallVector<uint64_t, 4> Offsets; 6769 auto &DL = CLI.DAG.getDataLayout(); 6770 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6771 6772 SmallVector<ISD::OutputArg, 4> Outs; 6773 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6774 6775 bool CanLowerReturn = 6776 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6777 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6778 6779 SDValue DemoteStackSlot; 6780 int DemoteStackIdx = -100; 6781 if (!CanLowerReturn) { 6782 // FIXME: equivalent assert? 6783 // assert(!CS.hasInAllocaArgument() && 6784 // "sret demotion is incompatible with inalloca"); 6785 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6786 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6787 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6788 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6789 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6790 6791 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6792 ArgListEntry Entry; 6793 Entry.Node = DemoteStackSlot; 6794 Entry.Ty = StackSlotPtrType; 6795 Entry.isSExt = false; 6796 Entry.isZExt = false; 6797 Entry.isInReg = false; 6798 Entry.isSRet = true; 6799 Entry.isNest = false; 6800 Entry.isByVal = false; 6801 Entry.isReturned = false; 6802 Entry.Alignment = Align; 6803 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6804 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6805 6806 // sret demotion isn't compatible with tail-calls, since the sret argument 6807 // points into the callers stack frame. 6808 CLI.IsTailCall = false; 6809 } else { 6810 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6811 EVT VT = RetTys[I]; 6812 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6813 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6814 for (unsigned i = 0; i != NumRegs; ++i) { 6815 ISD::InputArg MyFlags; 6816 MyFlags.VT = RegisterVT; 6817 MyFlags.ArgVT = VT; 6818 MyFlags.Used = CLI.IsReturnValueUsed; 6819 if (CLI.RetSExt) 6820 MyFlags.Flags.setSExt(); 6821 if (CLI.RetZExt) 6822 MyFlags.Flags.setZExt(); 6823 if (CLI.IsInReg) 6824 MyFlags.Flags.setInReg(); 6825 CLI.Ins.push_back(MyFlags); 6826 } 6827 } 6828 } 6829 6830 // Handle all of the outgoing arguments. 6831 CLI.Outs.clear(); 6832 CLI.OutVals.clear(); 6833 ArgListTy &Args = CLI.getArgs(); 6834 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6835 SmallVector<EVT, 4> ValueVTs; 6836 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6837 Type *FinalType = Args[i].Ty; 6838 if (Args[i].isByVal) 6839 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6840 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6841 FinalType, CLI.CallConv, CLI.IsVarArg); 6842 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6843 ++Value) { 6844 EVT VT = ValueVTs[Value]; 6845 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6846 SDValue Op = SDValue(Args[i].Node.getNode(), 6847 Args[i].Node.getResNo() + Value); 6848 ISD::ArgFlagsTy Flags; 6849 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6850 6851 if (Args[i].isZExt) 6852 Flags.setZExt(); 6853 if (Args[i].isSExt) 6854 Flags.setSExt(); 6855 if (Args[i].isInReg) 6856 Flags.setInReg(); 6857 if (Args[i].isSRet) 6858 Flags.setSRet(); 6859 if (Args[i].isByVal) 6860 Flags.setByVal(); 6861 if (Args[i].isInAlloca) { 6862 Flags.setInAlloca(); 6863 // Set the byval flag for CCAssignFn callbacks that don't know about 6864 // inalloca. This way we can know how many bytes we should've allocated 6865 // and how many bytes a callee cleanup function will pop. If we port 6866 // inalloca to more targets, we'll have to add custom inalloca handling 6867 // in the various CC lowering callbacks. 6868 Flags.setByVal(); 6869 } 6870 if (Args[i].isByVal || Args[i].isInAlloca) { 6871 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6872 Type *ElementTy = Ty->getElementType(); 6873 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6874 // For ByVal, alignment should come from FE. BE will guess if this 6875 // info is not there but there are cases it cannot get right. 6876 unsigned FrameAlign; 6877 if (Args[i].Alignment) 6878 FrameAlign = Args[i].Alignment; 6879 else 6880 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6881 Flags.setByValAlign(FrameAlign); 6882 } 6883 if (Args[i].isNest) 6884 Flags.setNest(); 6885 if (NeedsRegBlock) 6886 Flags.setInConsecutiveRegs(); 6887 Flags.setOrigAlign(OriginalAlignment); 6888 6889 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6890 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6891 SmallVector<SDValue, 4> Parts(NumParts); 6892 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6893 6894 if (Args[i].isSExt) 6895 ExtendKind = ISD::SIGN_EXTEND; 6896 else if (Args[i].isZExt) 6897 ExtendKind = ISD::ZERO_EXTEND; 6898 6899 // Conservatively only handle 'returned' on non-vectors for now 6900 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6901 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6902 "unexpected use of 'returned'"); 6903 // Before passing 'returned' to the target lowering code, ensure that 6904 // either the register MVT and the actual EVT are the same size or that 6905 // the return value and argument are extended in the same way; in these 6906 // cases it's safe to pass the argument register value unchanged as the 6907 // return register value (although it's at the target's option whether 6908 // to do so) 6909 // TODO: allow code generation to take advantage of partially preserved 6910 // registers rather than clobbering the entire register when the 6911 // parameter extension method is not compatible with the return 6912 // extension method 6913 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6914 (ExtendKind != ISD::ANY_EXTEND && 6915 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6916 Flags.setReturned(); 6917 } 6918 6919 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6920 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6921 6922 for (unsigned j = 0; j != NumParts; ++j) { 6923 // if it isn't first piece, alignment must be 1 6924 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6925 i < CLI.NumFixedArgs, 6926 i, j*Parts[j].getValueType().getStoreSize()); 6927 if (NumParts > 1 && j == 0) 6928 MyFlags.Flags.setSplit(); 6929 else if (j != 0) 6930 MyFlags.Flags.setOrigAlign(1); 6931 6932 CLI.Outs.push_back(MyFlags); 6933 CLI.OutVals.push_back(Parts[j]); 6934 } 6935 6936 if (NeedsRegBlock && Value == NumValues - 1) 6937 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6938 } 6939 } 6940 6941 SmallVector<SDValue, 4> InVals; 6942 CLI.Chain = LowerCall(CLI, InVals); 6943 6944 // Verify that the target's LowerCall behaved as expected. 6945 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6946 "LowerCall didn't return a valid chain!"); 6947 assert((!CLI.IsTailCall || InVals.empty()) && 6948 "LowerCall emitted a return value for a tail call!"); 6949 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6950 "LowerCall didn't emit the correct number of values!"); 6951 6952 // For a tail call, the return value is merely live-out and there aren't 6953 // any nodes in the DAG representing it. Return a special value to 6954 // indicate that a tail call has been emitted and no more Instructions 6955 // should be processed in the current block. 6956 if (CLI.IsTailCall) { 6957 CLI.DAG.setRoot(CLI.Chain); 6958 return std::make_pair(SDValue(), SDValue()); 6959 } 6960 6961 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6962 assert(InVals[i].getNode() && 6963 "LowerCall emitted a null value!"); 6964 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6965 "LowerCall emitted a value with the wrong type!"); 6966 }); 6967 6968 SmallVector<SDValue, 4> ReturnValues; 6969 if (!CanLowerReturn) { 6970 // The instruction result is the result of loading from the 6971 // hidden sret parameter. 6972 SmallVector<EVT, 1> PVTs; 6973 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6974 6975 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 6976 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6977 EVT PtrVT = PVTs[0]; 6978 6979 unsigned NumValues = RetTys.size(); 6980 ReturnValues.resize(NumValues); 6981 SmallVector<SDValue, 4> Chains(NumValues); 6982 6983 for (unsigned i = 0; i < NumValues; ++i) { 6984 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6985 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6986 PtrVT)); 6987 SDValue L = CLI.DAG.getLoad( 6988 RetTys[i], CLI.DL, CLI.Chain, Add, 6989 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6990 false, false, 1); 6991 ReturnValues[i] = L; 6992 Chains[i] = L.getValue(1); 6993 } 6994 6995 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6996 } else { 6997 // Collect the legal value parts into potentially illegal values 6998 // that correspond to the original function's return values. 6999 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7000 if (CLI.RetSExt) 7001 AssertOp = ISD::AssertSext; 7002 else if (CLI.RetZExt) 7003 AssertOp = ISD::AssertZext; 7004 unsigned CurReg = 0; 7005 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7006 EVT VT = RetTys[I]; 7007 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7008 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7009 7010 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7011 NumRegs, RegisterVT, VT, nullptr, 7012 AssertOp)); 7013 CurReg += NumRegs; 7014 } 7015 7016 // For a function returning void, there is no return value. We can't create 7017 // such a node, so we just return a null return value in that case. In 7018 // that case, nothing will actually look at the value. 7019 if (ReturnValues.empty()) 7020 return std::make_pair(SDValue(), CLI.Chain); 7021 } 7022 7023 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7024 CLI.DAG.getVTList(RetTys), ReturnValues); 7025 return std::make_pair(Res, CLI.Chain); 7026 } 7027 7028 void TargetLowering::LowerOperationWrapper(SDNode *N, 7029 SmallVectorImpl<SDValue> &Results, 7030 SelectionDAG &DAG) const { 7031 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7032 if (Res.getNode()) 7033 Results.push_back(Res); 7034 } 7035 7036 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7037 llvm_unreachable("LowerOperation not implemented for this target!"); 7038 } 7039 7040 void 7041 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7042 SDValue Op = getNonRegisterValue(V); 7043 assert((Op.getOpcode() != ISD::CopyFromReg || 7044 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7045 "Copy from a reg to the same reg!"); 7046 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7047 7048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7049 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7050 V->getType()); 7051 SDValue Chain = DAG.getEntryNode(); 7052 7053 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7054 FuncInfo.PreferredExtendType.end()) 7055 ? ISD::ANY_EXTEND 7056 : FuncInfo.PreferredExtendType[V]; 7057 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7058 PendingExports.push_back(Chain); 7059 } 7060 7061 #include "llvm/CodeGen/SelectionDAGISel.h" 7062 7063 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7064 /// entry block, return true. This includes arguments used by switches, since 7065 /// the switch may expand into multiple basic blocks. 7066 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7067 // With FastISel active, we may be splitting blocks, so force creation 7068 // of virtual registers for all non-dead arguments. 7069 if (FastISel) 7070 return A->use_empty(); 7071 7072 const BasicBlock *Entry = A->getParent()->begin(); 7073 for (const User *U : A->users()) 7074 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7075 return false; // Use not in entry block. 7076 7077 return true; 7078 } 7079 7080 void SelectionDAGISel::LowerArguments(const Function &F) { 7081 SelectionDAG &DAG = SDB->DAG; 7082 SDLoc dl = SDB->getCurSDLoc(); 7083 const DataLayout &DL = DAG.getDataLayout(); 7084 SmallVector<ISD::InputArg, 16> Ins; 7085 7086 if (!FuncInfo->CanLowerReturn) { 7087 // Put in an sret pointer parameter before all the other parameters. 7088 SmallVector<EVT, 1> ValueVTs; 7089 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7090 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7091 7092 // NOTE: Assuming that a pointer will never break down to more than one VT 7093 // or one register. 7094 ISD::ArgFlagsTy Flags; 7095 Flags.setSRet(); 7096 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7097 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7098 ISD::InputArg::NoArgIndex, 0); 7099 Ins.push_back(RetArg); 7100 } 7101 7102 // Set up the incoming argument description vector. 7103 unsigned Idx = 1; 7104 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7105 I != E; ++I, ++Idx) { 7106 SmallVector<EVT, 4> ValueVTs; 7107 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7108 bool isArgValueUsed = !I->use_empty(); 7109 unsigned PartBase = 0; 7110 Type *FinalType = I->getType(); 7111 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7112 FinalType = cast<PointerType>(FinalType)->getElementType(); 7113 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7114 FinalType, F.getCallingConv(), F.isVarArg()); 7115 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7116 Value != NumValues; ++Value) { 7117 EVT VT = ValueVTs[Value]; 7118 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7119 ISD::ArgFlagsTy Flags; 7120 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7121 7122 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7123 Flags.setZExt(); 7124 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7125 Flags.setSExt(); 7126 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7127 Flags.setInReg(); 7128 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7129 Flags.setSRet(); 7130 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7131 Flags.setByVal(); 7132 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7133 Flags.setInAlloca(); 7134 // Set the byval flag for CCAssignFn callbacks that don't know about 7135 // inalloca. This way we can know how many bytes we should've allocated 7136 // and how many bytes a callee cleanup function will pop. If we port 7137 // inalloca to more targets, we'll have to add custom inalloca handling 7138 // in the various CC lowering callbacks. 7139 Flags.setByVal(); 7140 } 7141 if (Flags.isByVal() || Flags.isInAlloca()) { 7142 PointerType *Ty = cast<PointerType>(I->getType()); 7143 Type *ElementTy = Ty->getElementType(); 7144 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7145 // For ByVal, alignment should be passed from FE. BE will guess if 7146 // this info is not there but there are cases it cannot get right. 7147 unsigned FrameAlign; 7148 if (F.getParamAlignment(Idx)) 7149 FrameAlign = F.getParamAlignment(Idx); 7150 else 7151 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7152 Flags.setByValAlign(FrameAlign); 7153 } 7154 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7155 Flags.setNest(); 7156 if (NeedsRegBlock) 7157 Flags.setInConsecutiveRegs(); 7158 Flags.setOrigAlign(OriginalAlignment); 7159 7160 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7161 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7162 for (unsigned i = 0; i != NumRegs; ++i) { 7163 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7164 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7165 if (NumRegs > 1 && i == 0) 7166 MyFlags.Flags.setSplit(); 7167 // if it isn't first piece, alignment must be 1 7168 else if (i > 0) 7169 MyFlags.Flags.setOrigAlign(1); 7170 Ins.push_back(MyFlags); 7171 } 7172 if (NeedsRegBlock && Value == NumValues - 1) 7173 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7174 PartBase += VT.getStoreSize(); 7175 } 7176 } 7177 7178 // Call the target to set up the argument values. 7179 SmallVector<SDValue, 8> InVals; 7180 SDValue NewRoot = TLI->LowerFormalArguments( 7181 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7182 7183 // Verify that the target's LowerFormalArguments behaved as expected. 7184 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7185 "LowerFormalArguments didn't return a valid chain!"); 7186 assert(InVals.size() == Ins.size() && 7187 "LowerFormalArguments didn't emit the correct number of values!"); 7188 DEBUG({ 7189 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7190 assert(InVals[i].getNode() && 7191 "LowerFormalArguments emitted a null value!"); 7192 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7193 "LowerFormalArguments emitted a value with the wrong type!"); 7194 } 7195 }); 7196 7197 // Update the DAG with the new chain value resulting from argument lowering. 7198 DAG.setRoot(NewRoot); 7199 7200 // Set up the argument values. 7201 unsigned i = 0; 7202 Idx = 1; 7203 if (!FuncInfo->CanLowerReturn) { 7204 // Create a virtual register for the sret pointer, and put in a copy 7205 // from the sret argument into it. 7206 SmallVector<EVT, 1> ValueVTs; 7207 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7208 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7209 MVT VT = ValueVTs[0].getSimpleVT(); 7210 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7211 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7212 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7213 RegVT, VT, nullptr, AssertOp); 7214 7215 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7216 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7217 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7218 FuncInfo->DemoteRegister = SRetReg; 7219 NewRoot = 7220 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7221 DAG.setRoot(NewRoot); 7222 7223 // i indexes lowered arguments. Bump it past the hidden sret argument. 7224 // Idx indexes LLVM arguments. Don't touch it. 7225 ++i; 7226 } 7227 7228 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7229 ++I, ++Idx) { 7230 SmallVector<SDValue, 4> ArgValues; 7231 SmallVector<EVT, 4> ValueVTs; 7232 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7233 unsigned NumValues = ValueVTs.size(); 7234 7235 // If this argument is unused then remember its value. It is used to generate 7236 // debugging information. 7237 if (I->use_empty() && NumValues) { 7238 SDB->setUnusedArgValue(I, InVals[i]); 7239 7240 // Also remember any frame index for use in FastISel. 7241 if (FrameIndexSDNode *FI = 7242 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7243 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7244 } 7245 7246 for (unsigned Val = 0; Val != NumValues; ++Val) { 7247 EVT VT = ValueVTs[Val]; 7248 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7249 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7250 7251 if (!I->use_empty()) { 7252 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7253 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7254 AssertOp = ISD::AssertSext; 7255 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7256 AssertOp = ISD::AssertZext; 7257 7258 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7259 NumParts, PartVT, VT, 7260 nullptr, AssertOp)); 7261 } 7262 7263 i += NumParts; 7264 } 7265 7266 // We don't need to do anything else for unused arguments. 7267 if (ArgValues.empty()) 7268 continue; 7269 7270 // Note down frame index. 7271 if (FrameIndexSDNode *FI = 7272 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7273 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7274 7275 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7276 SDB->getCurSDLoc()); 7277 7278 SDB->setValue(I, Res); 7279 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7280 if (LoadSDNode *LNode = 7281 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7282 if (FrameIndexSDNode *FI = 7283 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7284 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7285 } 7286 7287 // If this argument is live outside of the entry block, insert a copy from 7288 // wherever we got it to the vreg that other BB's will reference it as. 7289 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7290 // If we can, though, try to skip creating an unnecessary vreg. 7291 // FIXME: This isn't very clean... it would be nice to make this more 7292 // general. It's also subtly incompatible with the hacks FastISel 7293 // uses with vregs. 7294 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7295 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7296 FuncInfo->ValueMap[I] = Reg; 7297 continue; 7298 } 7299 } 7300 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7301 FuncInfo->InitializeRegForValue(I); 7302 SDB->CopyToExportRegsIfNeeded(I); 7303 } 7304 } 7305 7306 assert(i == InVals.size() && "Argument register count mismatch!"); 7307 7308 // Finally, if the target has anything special to do, allow it to do so. 7309 EmitFunctionEntryCode(); 7310 } 7311 7312 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7313 /// ensure constants are generated when needed. Remember the virtual registers 7314 /// that need to be added to the Machine PHI nodes as input. We cannot just 7315 /// directly add them, because expansion might result in multiple MBB's for one 7316 /// BB. As such, the start of the BB might correspond to a different MBB than 7317 /// the end. 7318 /// 7319 void 7320 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7321 const TerminatorInst *TI = LLVMBB->getTerminator(); 7322 7323 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7324 7325 // Check PHI nodes in successors that expect a value to be available from this 7326 // block. 7327 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7328 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7329 if (!isa<PHINode>(SuccBB->begin())) continue; 7330 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7331 7332 // If this terminator has multiple identical successors (common for 7333 // switches), only handle each succ once. 7334 if (!SuccsHandled.insert(SuccMBB).second) 7335 continue; 7336 7337 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7338 7339 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7340 // nodes and Machine PHI nodes, but the incoming operands have not been 7341 // emitted yet. 7342 for (BasicBlock::const_iterator I = SuccBB->begin(); 7343 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7344 // Ignore dead phi's. 7345 if (PN->use_empty()) continue; 7346 7347 // Skip empty types 7348 if (PN->getType()->isEmptyTy()) 7349 continue; 7350 7351 unsigned Reg; 7352 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7353 7354 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7355 unsigned &RegOut = ConstantsOut[C]; 7356 if (RegOut == 0) { 7357 RegOut = FuncInfo.CreateRegs(C->getType()); 7358 CopyValueToVirtualRegister(C, RegOut); 7359 } 7360 Reg = RegOut; 7361 } else { 7362 DenseMap<const Value *, unsigned>::iterator I = 7363 FuncInfo.ValueMap.find(PHIOp); 7364 if (I != FuncInfo.ValueMap.end()) 7365 Reg = I->second; 7366 else { 7367 assert(isa<AllocaInst>(PHIOp) && 7368 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7369 "Didn't codegen value into a register!??"); 7370 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7371 CopyValueToVirtualRegister(PHIOp, Reg); 7372 } 7373 } 7374 7375 // Remember that this register needs to added to the machine PHI node as 7376 // the input for this MBB. 7377 SmallVector<EVT, 4> ValueVTs; 7378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7379 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7380 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7381 EVT VT = ValueVTs[vti]; 7382 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7383 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7384 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7385 Reg += NumRegisters; 7386 } 7387 } 7388 } 7389 7390 ConstantsOut.clear(); 7391 } 7392 7393 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7394 /// is 0. 7395 MachineBasicBlock * 7396 SelectionDAGBuilder::StackProtectorDescriptor:: 7397 AddSuccessorMBB(const BasicBlock *BB, 7398 MachineBasicBlock *ParentMBB, 7399 bool IsLikely, 7400 MachineBasicBlock *SuccMBB) { 7401 // If SuccBB has not been created yet, create it. 7402 if (!SuccMBB) { 7403 MachineFunction *MF = ParentMBB->getParent(); 7404 MachineFunction::iterator BBI = ParentMBB; 7405 SuccMBB = MF->CreateMachineBasicBlock(BB); 7406 MF->insert(++BBI, SuccMBB); 7407 } 7408 // Add it as a successor of ParentMBB. 7409 ParentMBB->addSuccessor( 7410 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7411 return SuccMBB; 7412 } 7413 7414 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7415 MachineFunction::iterator I = MBB; 7416 if (++I == FuncInfo.MF->end()) 7417 return nullptr; 7418 return I; 7419 } 7420 7421 /// During lowering new call nodes can be created (such as memset, etc.). 7422 /// Those will become new roots of the current DAG, but complications arise 7423 /// when they are tail calls. In such cases, the call lowering will update 7424 /// the root, but the builder still needs to know that a tail call has been 7425 /// lowered in order to avoid generating an additional return. 7426 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7427 // If the node is null, we do have a tail call. 7428 if (MaybeTC.getNode() != nullptr) 7429 DAG.setRoot(MaybeTC); 7430 else 7431 HasTailCall = true; 7432 } 7433 7434 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7435 unsigned *TotalCases, unsigned First, 7436 unsigned Last) { 7437 assert(Last >= First); 7438 assert(TotalCases[Last] >= TotalCases[First]); 7439 7440 APInt LowCase = Clusters[First].Low->getValue(); 7441 APInt HighCase = Clusters[Last].High->getValue(); 7442 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7443 7444 // FIXME: A range of consecutive cases has 100% density, but only requires one 7445 // comparison to lower. We should discriminate against such consecutive ranges 7446 // in jump tables. 7447 7448 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7449 uint64_t Range = Diff + 1; 7450 7451 uint64_t NumCases = 7452 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7453 7454 assert(NumCases < UINT64_MAX / 100); 7455 assert(Range >= NumCases); 7456 7457 return NumCases * 100 >= Range * MinJumpTableDensity; 7458 } 7459 7460 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7461 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7462 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7463 } 7464 7465 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7466 unsigned First, unsigned Last, 7467 const SwitchInst *SI, 7468 MachineBasicBlock *DefaultMBB, 7469 CaseCluster &JTCluster) { 7470 assert(First <= Last); 7471 7472 uint32_t Weight = 0; 7473 unsigned NumCmps = 0; 7474 std::vector<MachineBasicBlock*> Table; 7475 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7476 for (unsigned I = First; I <= Last; ++I) { 7477 assert(Clusters[I].Kind == CC_Range); 7478 Weight += Clusters[I].Weight; 7479 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7480 APInt Low = Clusters[I].Low->getValue(); 7481 APInt High = Clusters[I].High->getValue(); 7482 NumCmps += (Low == High) ? 1 : 2; 7483 if (I != First) { 7484 // Fill the gap between this and the previous cluster. 7485 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7486 assert(PreviousHigh.slt(Low)); 7487 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7488 for (uint64_t J = 0; J < Gap; J++) 7489 Table.push_back(DefaultMBB); 7490 } 7491 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7492 for (uint64_t J = 0; J < ClusterSize; ++J) 7493 Table.push_back(Clusters[I].MBB); 7494 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7495 } 7496 7497 unsigned NumDests = JTWeights.size(); 7498 if (isSuitableForBitTests(NumDests, NumCmps, 7499 Clusters[First].Low->getValue(), 7500 Clusters[Last].High->getValue())) { 7501 // Clusters[First..Last] should be lowered as bit tests instead. 7502 return false; 7503 } 7504 7505 // Create the MBB that will load from and jump through the table. 7506 // Note: We create it here, but it's not inserted into the function yet. 7507 MachineFunction *CurMF = FuncInfo.MF; 7508 MachineBasicBlock *JumpTableMBB = 7509 CurMF->CreateMachineBasicBlock(SI->getParent()); 7510 7511 // Add successors. Note: use table order for determinism. 7512 SmallPtrSet<MachineBasicBlock *, 8> Done; 7513 for (MachineBasicBlock *Succ : Table) { 7514 if (Done.count(Succ)) 7515 continue; 7516 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7517 Done.insert(Succ); 7518 } 7519 7520 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7521 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7522 ->createJumpTableIndex(Table); 7523 7524 // Set up the jump table info. 7525 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7526 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7527 Clusters[Last].High->getValue(), SI->getCondition(), 7528 nullptr, false); 7529 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7530 7531 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7532 JTCases.size() - 1, Weight); 7533 return true; 7534 } 7535 7536 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7537 const SwitchInst *SI, 7538 MachineBasicBlock *DefaultMBB) { 7539 #ifndef NDEBUG 7540 // Clusters must be non-empty, sorted, and only contain Range clusters. 7541 assert(!Clusters.empty()); 7542 for (CaseCluster &C : Clusters) 7543 assert(C.Kind == CC_Range); 7544 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7545 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7546 #endif 7547 7548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7549 if (!areJTsAllowed(TLI)) 7550 return; 7551 7552 const int64_t N = Clusters.size(); 7553 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7554 7555 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7556 SmallVector<unsigned, 8> TotalCases(N); 7557 7558 for (unsigned i = 0; i < N; ++i) { 7559 APInt Hi = Clusters[i].High->getValue(); 7560 APInt Lo = Clusters[i].Low->getValue(); 7561 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7562 if (i != 0) 7563 TotalCases[i] += TotalCases[i - 1]; 7564 } 7565 7566 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7567 // Cheap case: the whole range might be suitable for jump table. 7568 CaseCluster JTCluster; 7569 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7570 Clusters[0] = JTCluster; 7571 Clusters.resize(1); 7572 return; 7573 } 7574 } 7575 7576 // The algorithm below is not suitable for -O0. 7577 if (TM.getOptLevel() == CodeGenOpt::None) 7578 return; 7579 7580 // Split Clusters into minimum number of dense partitions. The algorithm uses 7581 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7582 // for the Case Statement'" (1994), but builds the MinPartitions array in 7583 // reverse order to make it easier to reconstruct the partitions in ascending 7584 // order. In the choice between two optimal partitionings, it picks the one 7585 // which yields more jump tables. 7586 7587 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7588 SmallVector<unsigned, 8> MinPartitions(N); 7589 // LastElement[i] is the last element of the partition starting at i. 7590 SmallVector<unsigned, 8> LastElement(N); 7591 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7592 SmallVector<unsigned, 8> NumTables(N); 7593 7594 // Base case: There is only one way to partition Clusters[N-1]. 7595 MinPartitions[N - 1] = 1; 7596 LastElement[N - 1] = N - 1; 7597 assert(MinJumpTableSize > 1); 7598 NumTables[N - 1] = 0; 7599 7600 // Note: loop indexes are signed to avoid underflow. 7601 for (int64_t i = N - 2; i >= 0; i--) { 7602 // Find optimal partitioning of Clusters[i..N-1]. 7603 // Baseline: Put Clusters[i] into a partition on its own. 7604 MinPartitions[i] = MinPartitions[i + 1] + 1; 7605 LastElement[i] = i; 7606 NumTables[i] = NumTables[i + 1]; 7607 7608 // Search for a solution that results in fewer partitions. 7609 for (int64_t j = N - 1; j > i; j--) { 7610 // Try building a partition from Clusters[i..j]. 7611 if (isDense(Clusters, &TotalCases[0], i, j)) { 7612 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7613 bool IsTable = j - i + 1 >= MinJumpTableSize; 7614 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7615 7616 // If this j leads to fewer partitions, or same number of partitions 7617 // with more lookup tables, it is a better partitioning. 7618 if (NumPartitions < MinPartitions[i] || 7619 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7620 MinPartitions[i] = NumPartitions; 7621 LastElement[i] = j; 7622 NumTables[i] = Tables; 7623 } 7624 } 7625 } 7626 } 7627 7628 // Iterate over the partitions, replacing some with jump tables in-place. 7629 unsigned DstIndex = 0; 7630 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7631 Last = LastElement[First]; 7632 assert(Last >= First); 7633 assert(DstIndex <= First); 7634 unsigned NumClusters = Last - First + 1; 7635 7636 CaseCluster JTCluster; 7637 if (NumClusters >= MinJumpTableSize && 7638 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7639 Clusters[DstIndex++] = JTCluster; 7640 } else { 7641 for (unsigned I = First; I <= Last; ++I) 7642 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7643 } 7644 } 7645 Clusters.resize(DstIndex); 7646 } 7647 7648 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7649 // FIXME: Using the pointer type doesn't seem ideal. 7650 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7651 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7652 return Range <= BW; 7653 } 7654 7655 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7656 unsigned NumCmps, 7657 const APInt &Low, 7658 const APInt &High) { 7659 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7660 // range of cases both require only one branch to lower. Just looking at the 7661 // number of clusters and destinations should be enough to decide whether to 7662 // build bit tests. 7663 7664 // To lower a range with bit tests, the range must fit the bitwidth of a 7665 // machine word. 7666 if (!rangeFitsInWord(Low, High)) 7667 return false; 7668 7669 // Decide whether it's profitable to lower this range with bit tests. Each 7670 // destination requires a bit test and branch, and there is an overall range 7671 // check branch. For a small number of clusters, separate comparisons might be 7672 // cheaper, and for many destinations, splitting the range might be better. 7673 return (NumDests == 1 && NumCmps >= 3) || 7674 (NumDests == 2 && NumCmps >= 5) || 7675 (NumDests == 3 && NumCmps >= 6); 7676 } 7677 7678 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7679 unsigned First, unsigned Last, 7680 const SwitchInst *SI, 7681 CaseCluster &BTCluster) { 7682 assert(First <= Last); 7683 if (First == Last) 7684 return false; 7685 7686 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7687 unsigned NumCmps = 0; 7688 for (int64_t I = First; I <= Last; ++I) { 7689 assert(Clusters[I].Kind == CC_Range); 7690 Dests.set(Clusters[I].MBB->getNumber()); 7691 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7692 } 7693 unsigned NumDests = Dests.count(); 7694 7695 APInt Low = Clusters[First].Low->getValue(); 7696 APInt High = Clusters[Last].High->getValue(); 7697 assert(Low.slt(High)); 7698 7699 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7700 return false; 7701 7702 APInt LowBound; 7703 APInt CmpRange; 7704 7705 const int BitWidth = DAG.getTargetLoweringInfo() 7706 .getPointerTy(DAG.getDataLayout()) 7707 .getSizeInBits(); 7708 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7709 7710 if (Low.isNonNegative() && High.slt(BitWidth)) { 7711 // Optimize the case where all the case values fit in a 7712 // word without having to subtract minValue. In this case, 7713 // we can optimize away the subtraction. 7714 LowBound = APInt::getNullValue(Low.getBitWidth()); 7715 CmpRange = High; 7716 } else { 7717 LowBound = Low; 7718 CmpRange = High - Low; 7719 } 7720 7721 CaseBitsVector CBV; 7722 uint32_t TotalWeight = 0; 7723 for (unsigned i = First; i <= Last; ++i) { 7724 // Find the CaseBits for this destination. 7725 unsigned j; 7726 for (j = 0; j < CBV.size(); ++j) 7727 if (CBV[j].BB == Clusters[i].MBB) 7728 break; 7729 if (j == CBV.size()) 7730 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7731 CaseBits *CB = &CBV[j]; 7732 7733 // Update Mask, Bits and ExtraWeight. 7734 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7735 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7736 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7737 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7738 CB->Bits += Hi - Lo + 1; 7739 CB->ExtraWeight += Clusters[i].Weight; 7740 TotalWeight += Clusters[i].Weight; 7741 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7742 } 7743 7744 BitTestInfo BTI; 7745 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7746 // Sort by weight first, number of bits second. 7747 if (a.ExtraWeight != b.ExtraWeight) 7748 return a.ExtraWeight > b.ExtraWeight; 7749 return a.Bits > b.Bits; 7750 }); 7751 7752 for (auto &CB : CBV) { 7753 MachineBasicBlock *BitTestBB = 7754 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7755 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7756 } 7757 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7758 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7759 nullptr, std::move(BTI)); 7760 7761 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7762 BitTestCases.size() - 1, TotalWeight); 7763 return true; 7764 } 7765 7766 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7767 const SwitchInst *SI) { 7768 // Partition Clusters into as few subsets as possible, where each subset has a 7769 // range that fits in a machine word and has <= 3 unique destinations. 7770 7771 #ifndef NDEBUG 7772 // Clusters must be sorted and contain Range or JumpTable clusters. 7773 assert(!Clusters.empty()); 7774 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7775 for (const CaseCluster &C : Clusters) 7776 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7777 for (unsigned i = 1; i < Clusters.size(); ++i) 7778 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7779 #endif 7780 7781 // The algorithm below is not suitable for -O0. 7782 if (TM.getOptLevel() == CodeGenOpt::None) 7783 return; 7784 7785 // If target does not have legal shift left, do not emit bit tests at all. 7786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7787 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7788 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7789 return; 7790 7791 int BitWidth = PTy.getSizeInBits(); 7792 const int64_t N = Clusters.size(); 7793 7794 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7795 SmallVector<unsigned, 8> MinPartitions(N); 7796 // LastElement[i] is the last element of the partition starting at i. 7797 SmallVector<unsigned, 8> LastElement(N); 7798 7799 // FIXME: This might not be the best algorithm for finding bit test clusters. 7800 7801 // Base case: There is only one way to partition Clusters[N-1]. 7802 MinPartitions[N - 1] = 1; 7803 LastElement[N - 1] = N - 1; 7804 7805 // Note: loop indexes are signed to avoid underflow. 7806 for (int64_t i = N - 2; i >= 0; --i) { 7807 // Find optimal partitioning of Clusters[i..N-1]. 7808 // Baseline: Put Clusters[i] into a partition on its own. 7809 MinPartitions[i] = MinPartitions[i + 1] + 1; 7810 LastElement[i] = i; 7811 7812 // Search for a solution that results in fewer partitions. 7813 // Note: the search is limited by BitWidth, reducing time complexity. 7814 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7815 // Try building a partition from Clusters[i..j]. 7816 7817 // Check the range. 7818 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7819 Clusters[j].High->getValue())) 7820 continue; 7821 7822 // Check nbr of destinations and cluster types. 7823 // FIXME: This works, but doesn't seem very efficient. 7824 bool RangesOnly = true; 7825 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7826 for (int64_t k = i; k <= j; k++) { 7827 if (Clusters[k].Kind != CC_Range) { 7828 RangesOnly = false; 7829 break; 7830 } 7831 Dests.set(Clusters[k].MBB->getNumber()); 7832 } 7833 if (!RangesOnly || Dests.count() > 3) 7834 break; 7835 7836 // Check if it's a better partition. 7837 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7838 if (NumPartitions < MinPartitions[i]) { 7839 // Found a better partition. 7840 MinPartitions[i] = NumPartitions; 7841 LastElement[i] = j; 7842 } 7843 } 7844 } 7845 7846 // Iterate over the partitions, replacing with bit-test clusters in-place. 7847 unsigned DstIndex = 0; 7848 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7849 Last = LastElement[First]; 7850 assert(First <= Last); 7851 assert(DstIndex <= First); 7852 7853 CaseCluster BitTestCluster; 7854 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7855 Clusters[DstIndex++] = BitTestCluster; 7856 } else { 7857 size_t NumClusters = Last - First + 1; 7858 std::memmove(&Clusters[DstIndex], &Clusters[First], 7859 sizeof(Clusters[0]) * NumClusters); 7860 DstIndex += NumClusters; 7861 } 7862 } 7863 Clusters.resize(DstIndex); 7864 } 7865 7866 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7867 MachineBasicBlock *SwitchMBB, 7868 MachineBasicBlock *DefaultMBB) { 7869 MachineFunction *CurMF = FuncInfo.MF; 7870 MachineBasicBlock *NextMBB = nullptr; 7871 MachineFunction::iterator BBI = W.MBB; 7872 if (++BBI != FuncInfo.MF->end()) 7873 NextMBB = BBI; 7874 7875 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7876 7877 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7878 7879 if (Size == 2 && W.MBB == SwitchMBB) { 7880 // If any two of the cases has the same destination, and if one value 7881 // is the same as the other, but has one bit unset that the other has set, 7882 // use bit manipulation to do two compares at once. For example: 7883 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7884 // TODO: This could be extended to merge any 2 cases in switches with 3 7885 // cases. 7886 // TODO: Handle cases where W.CaseBB != SwitchBB. 7887 CaseCluster &Small = *W.FirstCluster; 7888 CaseCluster &Big = *W.LastCluster; 7889 7890 if (Small.Low == Small.High && Big.Low == Big.High && 7891 Small.MBB == Big.MBB) { 7892 const APInt &SmallValue = Small.Low->getValue(); 7893 const APInt &BigValue = Big.Low->getValue(); 7894 7895 // Check that there is only one bit different. 7896 APInt CommonBit = BigValue ^ SmallValue; 7897 if (CommonBit.isPowerOf2()) { 7898 SDValue CondLHS = getValue(Cond); 7899 EVT VT = CondLHS.getValueType(); 7900 SDLoc DL = getCurSDLoc(); 7901 7902 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7903 DAG.getConstant(CommonBit, DL, VT)); 7904 SDValue Cond = DAG.getSetCC( 7905 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7906 ISD::SETEQ); 7907 7908 // Update successor info. 7909 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7910 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7911 addSuccessorWithWeight( 7912 SwitchMBB, DefaultMBB, 7913 // The default destination is the first successor in IR. 7914 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7915 : 0); 7916 7917 // Insert the true branch. 7918 SDValue BrCond = 7919 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7920 DAG.getBasicBlock(Small.MBB)); 7921 // Insert the false branch. 7922 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7923 DAG.getBasicBlock(DefaultMBB)); 7924 7925 DAG.setRoot(BrCond); 7926 return; 7927 } 7928 } 7929 } 7930 7931 if (TM.getOptLevel() != CodeGenOpt::None) { 7932 // Order cases by weight so the most likely case will be checked first. 7933 std::sort(W.FirstCluster, W.LastCluster + 1, 7934 [](const CaseCluster &a, const CaseCluster &b) { 7935 return a.Weight > b.Weight; 7936 }); 7937 7938 // Rearrange the case blocks so that the last one falls through if possible 7939 // without without changing the order of weights. 7940 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7941 --I; 7942 if (I->Weight > W.LastCluster->Weight) 7943 break; 7944 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7945 std::swap(*I, *W.LastCluster); 7946 break; 7947 } 7948 } 7949 } 7950 7951 // Compute total weight. 7952 uint32_t UnhandledWeights = 0; 7953 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7954 UnhandledWeights += I->Weight; 7955 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7956 } 7957 7958 MachineBasicBlock *CurMBB = W.MBB; 7959 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7960 MachineBasicBlock *Fallthrough; 7961 if (I == W.LastCluster) { 7962 // For the last cluster, fall through to the default destination. 7963 Fallthrough = DefaultMBB; 7964 } else { 7965 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7966 CurMF->insert(BBI, Fallthrough); 7967 // Put Cond in a virtual register to make it available from the new blocks. 7968 ExportFromCurrentBlock(Cond); 7969 } 7970 7971 switch (I->Kind) { 7972 case CC_JumpTable: { 7973 // FIXME: Optimize away range check based on pivot comparisons. 7974 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7975 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7976 7977 // The jump block hasn't been inserted yet; insert it here. 7978 MachineBasicBlock *JumpMBB = JT->MBB; 7979 CurMF->insert(BBI, JumpMBB); 7980 addSuccessorWithWeight(CurMBB, Fallthrough); 7981 addSuccessorWithWeight(CurMBB, JumpMBB); 7982 7983 // The jump table header will be inserted in our current block, do the 7984 // range check, and fall through to our fallthrough block. 7985 JTH->HeaderBB = CurMBB; 7986 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7987 7988 // If we're in the right place, emit the jump table header right now. 7989 if (CurMBB == SwitchMBB) { 7990 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7991 JTH->Emitted = true; 7992 } 7993 break; 7994 } 7995 case CC_BitTests: { 7996 // FIXME: Optimize away range check based on pivot comparisons. 7997 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7998 7999 // The bit test blocks haven't been inserted yet; insert them here. 8000 for (BitTestCase &BTC : BTB->Cases) 8001 CurMF->insert(BBI, BTC.ThisBB); 8002 8003 // Fill in fields of the BitTestBlock. 8004 BTB->Parent = CurMBB; 8005 BTB->Default = Fallthrough; 8006 8007 // If we're in the right place, emit the bit test header header right now. 8008 if (CurMBB ==SwitchMBB) { 8009 visitBitTestHeader(*BTB, SwitchMBB); 8010 BTB->Emitted = true; 8011 } 8012 break; 8013 } 8014 case CC_Range: { 8015 const Value *RHS, *LHS, *MHS; 8016 ISD::CondCode CC; 8017 if (I->Low == I->High) { 8018 // Check Cond == I->Low. 8019 CC = ISD::SETEQ; 8020 LHS = Cond; 8021 RHS=I->Low; 8022 MHS = nullptr; 8023 } else { 8024 // Check I->Low <= Cond <= I->High. 8025 CC = ISD::SETLE; 8026 LHS = I->Low; 8027 MHS = Cond; 8028 RHS = I->High; 8029 } 8030 8031 // The false weight is the sum of all unhandled cases. 8032 UnhandledWeights -= I->Weight; 8033 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8034 UnhandledWeights); 8035 8036 if (CurMBB == SwitchMBB) 8037 visitSwitchCase(CB, SwitchMBB); 8038 else 8039 SwitchCases.push_back(CB); 8040 8041 break; 8042 } 8043 } 8044 CurMBB = Fallthrough; 8045 } 8046 } 8047 8048 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8049 CaseClusterIt First, 8050 CaseClusterIt Last) { 8051 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8052 if (X.Weight != CC.Weight) 8053 return X.Weight > CC.Weight; 8054 8055 // Ties are broken by comparing the case value. 8056 return X.Low->getValue().slt(CC.Low->getValue()); 8057 }); 8058 } 8059 8060 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8061 const SwitchWorkListItem &W, 8062 Value *Cond, 8063 MachineBasicBlock *SwitchMBB) { 8064 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8065 "Clusters not sorted?"); 8066 8067 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8068 8069 // Balance the tree based on branch weights to create a near-optimal (in terms 8070 // of search time given key frequency) binary search tree. See e.g. Kurt 8071 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8072 CaseClusterIt LastLeft = W.FirstCluster; 8073 CaseClusterIt FirstRight = W.LastCluster; 8074 uint32_t LeftWeight = LastLeft->Weight; 8075 uint32_t RightWeight = FirstRight->Weight; 8076 8077 // Move LastLeft and FirstRight towards each other from opposite directions to 8078 // find a partitioning of the clusters which balances the weight on both 8079 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8080 // taken to ensure 0-weight nodes are distributed evenly. 8081 unsigned I = 0; 8082 while (LastLeft + 1 < FirstRight) { 8083 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8084 LeftWeight += (++LastLeft)->Weight; 8085 else 8086 RightWeight += (--FirstRight)->Weight; 8087 I++; 8088 } 8089 8090 for (;;) { 8091 // Our binary search tree differs from a typical BST in that ours can have up 8092 // to three values in each leaf. The pivot selection above doesn't take that 8093 // into account, which means the tree might require more nodes and be less 8094 // efficient. We compensate for this here. 8095 8096 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8097 unsigned NumRight = W.LastCluster - FirstRight + 1; 8098 8099 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8100 // If one side has less than 3 clusters, and the other has more than 3, 8101 // consider taking a cluster from the other side. 8102 8103 if (NumLeft < NumRight) { 8104 // Consider moving the first cluster on the right to the left side. 8105 CaseCluster &CC = *FirstRight; 8106 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8107 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8108 if (LeftSideRank <= RightSideRank) { 8109 // Moving the cluster to the left does not demote it. 8110 ++LastLeft; 8111 ++FirstRight; 8112 continue; 8113 } 8114 } else { 8115 assert(NumRight < NumLeft); 8116 // Consider moving the last element on the left to the right side. 8117 CaseCluster &CC = *LastLeft; 8118 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8119 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8120 if (RightSideRank <= LeftSideRank) { 8121 // Moving the cluster to the right does not demot it. 8122 --LastLeft; 8123 --FirstRight; 8124 continue; 8125 } 8126 } 8127 } 8128 break; 8129 } 8130 8131 assert(LastLeft + 1 == FirstRight); 8132 assert(LastLeft >= W.FirstCluster); 8133 assert(FirstRight <= W.LastCluster); 8134 8135 // Use the first element on the right as pivot since we will make less-than 8136 // comparisons against it. 8137 CaseClusterIt PivotCluster = FirstRight; 8138 assert(PivotCluster > W.FirstCluster); 8139 assert(PivotCluster <= W.LastCluster); 8140 8141 CaseClusterIt FirstLeft = W.FirstCluster; 8142 CaseClusterIt LastRight = W.LastCluster; 8143 8144 const ConstantInt *Pivot = PivotCluster->Low; 8145 8146 // New blocks will be inserted immediately after the current one. 8147 MachineFunction::iterator BBI = W.MBB; 8148 ++BBI; 8149 8150 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8151 // we can branch to its destination directly if it's squeezed exactly in 8152 // between the known lower bound and Pivot - 1. 8153 MachineBasicBlock *LeftMBB; 8154 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8155 FirstLeft->Low == W.GE && 8156 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8157 LeftMBB = FirstLeft->MBB; 8158 } else { 8159 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8160 FuncInfo.MF->insert(BBI, LeftMBB); 8161 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8162 // Put Cond in a virtual register to make it available from the new blocks. 8163 ExportFromCurrentBlock(Cond); 8164 } 8165 8166 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8167 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8168 // directly if RHS.High equals the current upper bound. 8169 MachineBasicBlock *RightMBB; 8170 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8171 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8172 RightMBB = FirstRight->MBB; 8173 } else { 8174 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8175 FuncInfo.MF->insert(BBI, RightMBB); 8176 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8177 // Put Cond in a virtual register to make it available from the new blocks. 8178 ExportFromCurrentBlock(Cond); 8179 } 8180 8181 // Create the CaseBlock record that will be used to lower the branch. 8182 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8183 LeftWeight, RightWeight); 8184 8185 if (W.MBB == SwitchMBB) 8186 visitSwitchCase(CB, SwitchMBB); 8187 else 8188 SwitchCases.push_back(CB); 8189 } 8190 8191 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8192 // Extract cases from the switch. 8193 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8194 CaseClusterVector Clusters; 8195 Clusters.reserve(SI.getNumCases()); 8196 for (auto I : SI.cases()) { 8197 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8198 const ConstantInt *CaseVal = I.getCaseValue(); 8199 uint32_t Weight = 8200 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8201 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8202 } 8203 8204 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8205 8206 // Cluster adjacent cases with the same destination. We do this at all 8207 // optimization levels because it's cheap to do and will make codegen faster 8208 // if there are many clusters. 8209 sortAndRangeify(Clusters); 8210 8211 if (TM.getOptLevel() != CodeGenOpt::None) { 8212 // Replace an unreachable default with the most popular destination. 8213 // FIXME: Exploit unreachable default more aggressively. 8214 bool UnreachableDefault = 8215 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8216 if (UnreachableDefault && !Clusters.empty()) { 8217 DenseMap<const BasicBlock *, unsigned> Popularity; 8218 unsigned MaxPop = 0; 8219 const BasicBlock *MaxBB = nullptr; 8220 for (auto I : SI.cases()) { 8221 const BasicBlock *BB = I.getCaseSuccessor(); 8222 if (++Popularity[BB] > MaxPop) { 8223 MaxPop = Popularity[BB]; 8224 MaxBB = BB; 8225 } 8226 } 8227 // Set new default. 8228 assert(MaxPop > 0 && MaxBB); 8229 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8230 8231 // Remove cases that were pointing to the destination that is now the 8232 // default. 8233 CaseClusterVector New; 8234 New.reserve(Clusters.size()); 8235 for (CaseCluster &CC : Clusters) { 8236 if (CC.MBB != DefaultMBB) 8237 New.push_back(CC); 8238 } 8239 Clusters = std::move(New); 8240 } 8241 } 8242 8243 // If there is only the default destination, jump there directly. 8244 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8245 if (Clusters.empty()) { 8246 SwitchMBB->addSuccessor(DefaultMBB); 8247 if (DefaultMBB != NextBlock(SwitchMBB)) { 8248 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8249 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8250 } 8251 return; 8252 } 8253 8254 findJumpTables(Clusters, &SI, DefaultMBB); 8255 findBitTestClusters(Clusters, &SI); 8256 8257 DEBUG({ 8258 dbgs() << "Case clusters: "; 8259 for (const CaseCluster &C : Clusters) { 8260 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8261 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8262 8263 C.Low->getValue().print(dbgs(), true); 8264 if (C.Low != C.High) { 8265 dbgs() << '-'; 8266 C.High->getValue().print(dbgs(), true); 8267 } 8268 dbgs() << ' '; 8269 } 8270 dbgs() << '\n'; 8271 }); 8272 8273 assert(!Clusters.empty()); 8274 SwitchWorkList WorkList; 8275 CaseClusterIt First = Clusters.begin(); 8276 CaseClusterIt Last = Clusters.end() - 1; 8277 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8278 8279 while (!WorkList.empty()) { 8280 SwitchWorkListItem W = WorkList.back(); 8281 WorkList.pop_back(); 8282 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8283 8284 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8285 // For optimized builds, lower large range as a balanced binary tree. 8286 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8287 continue; 8288 } 8289 8290 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8291 } 8292 } 8293