1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 /// Minimum jump table density for normal functions. 90 static cl::opt<unsigned> 91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 92 cl::desc("Minimum density for building a jump table in " 93 "a normal function")); 94 95 /// Minimum jump table density for -Os or -Oz functions. 96 static cl::opt<unsigned> 97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 98 cl::desc("Minimum density for building a jump table in " 99 "an optsize function")); 100 101 102 // Limit the width of DAG chains. This is important in general to prevent 103 // DAG-based analysis from blowing up. For example, alias analysis and 104 // load clustering may not complete in reasonable time. It is difficult to 105 // recognize and avoid this situation within each individual analysis, and 106 // future analyses are likely to have the same behavior. Limiting DAG width is 107 // the safe approach and will be especially important with global DAGs. 108 // 109 // MaxParallelChains default is arbitrarily high to avoid affecting 110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 111 // sequence over this should have been converted to llvm.memcpy by the 112 // frontend. It easy to induce this behavior with .ll code such as: 113 // %buffer = alloca [4096 x i8] 114 // %data = load [4096 x i8]* %argPtr 115 // store [4096 x i8] %data, [4096 x i8]* %buffer 116 static const unsigned MaxParallelChains = 64; 117 118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 119 const SDValue *Parts, unsigned NumParts, 120 MVT PartVT, EVT ValueVT, const Value *V); 121 122 /// getCopyFromParts - Create a value that contains the specified legal parts 123 /// combined into the value they represent. If the parts combine to a type 124 /// larger then ValueVT then AssertOp can be used to specify whether the extra 125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 126 /// (ISD::AssertSext). 127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 128 const SDValue *Parts, 129 unsigned NumParts, MVT PartVT, EVT ValueVT, 130 const Value *V, 131 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 132 if (ValueVT.isVector()) 133 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 134 PartVT, ValueVT, V); 135 136 assert(NumParts > 0 && "No parts to assemble!"); 137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 138 SDValue Val = Parts[0]; 139 140 if (NumParts > 1) { 141 // Assemble the value from multiple parts. 142 if (ValueVT.isInteger()) { 143 unsigned PartBits = PartVT.getSizeInBits(); 144 unsigned ValueBits = ValueVT.getSizeInBits(); 145 146 // Assemble the power of 2 part. 147 unsigned RoundParts = NumParts & (NumParts - 1) ? 148 1 << Log2_32(NumParts) : NumParts; 149 unsigned RoundBits = PartBits * RoundParts; 150 EVT RoundVT = RoundBits == ValueBits ? 151 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 152 SDValue Lo, Hi; 153 154 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 155 156 if (RoundParts > 2) { 157 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 158 PartVT, HalfVT, V); 159 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 160 RoundParts / 2, PartVT, HalfVT, V); 161 } else { 162 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 163 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 164 } 165 166 if (DAG.getDataLayout().isBigEndian()) 167 std::swap(Lo, Hi); 168 169 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 170 171 if (RoundParts < NumParts) { 172 // Assemble the trailing non-power-of-2 part. 173 unsigned OddParts = NumParts - RoundParts; 174 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 175 Hi = getCopyFromParts(DAG, DL, 176 Parts + RoundParts, OddParts, PartVT, OddVT, V); 177 178 // Combine the round and odd parts. 179 Lo = Val; 180 if (DAG.getDataLayout().isBigEndian()) 181 std::swap(Lo, Hi); 182 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 183 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 184 Hi = 185 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 186 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 187 TLI.getPointerTy(DAG.getDataLayout()))); 188 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 189 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 190 } 191 } else if (PartVT.isFloatingPoint()) { 192 // FP split into multiple FP parts (for ppcf128) 193 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 194 "Unexpected split"); 195 SDValue Lo, Hi; 196 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 197 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 198 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 199 std::swap(Lo, Hi); 200 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 201 } else { 202 // FP split into integer parts (soft fp) 203 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 204 !PartVT.isVector() && "Unexpected split"); 205 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 207 } 208 } 209 210 // There is now one part, held in Val. Correct it to match ValueVT. 211 // PartEVT is the type of the register class that holds the value. 212 // ValueVT is the type of the inline asm operation. 213 EVT PartEVT = Val.getValueType(); 214 215 if (PartEVT == ValueVT) 216 return Val; 217 218 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 219 ValueVT.bitsLT(PartEVT)) { 220 // For an FP value in an integer part, we need to truncate to the right 221 // width first. 222 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 223 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 224 } 225 226 // Handle types that have the same size. 227 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 228 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 229 230 // Handle types with different sizes. 231 if (PartEVT.isInteger() && ValueVT.isInteger()) { 232 if (ValueVT.bitsLT(PartEVT)) { 233 // For a truncate, see if we have any information to 234 // indicate whether the truncated bits will always be 235 // zero or sign-extension. 236 if (AssertOp != ISD::DELETED_NODE) 237 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 238 DAG.getValueType(ValueVT)); 239 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 240 } 241 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 242 } 243 244 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 245 // FP_ROUND's are always exact here. 246 if (ValueVT.bitsLT(Val.getValueType())) 247 return DAG.getNode( 248 ISD::FP_ROUND, DL, ValueVT, Val, 249 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 250 251 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 252 } 253 254 llvm_unreachable("Unknown mismatch!"); 255 } 256 257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 258 const Twine &ErrMsg) { 259 const Instruction *I = dyn_cast_or_null<Instruction>(V); 260 if (!V) 261 return Ctx.emitError(ErrMsg); 262 263 const char *AsmError = ", possible invalid constraint for vector type"; 264 if (const CallInst *CI = dyn_cast<CallInst>(I)) 265 if (isa<InlineAsm>(CI->getCalledValue())) 266 return Ctx.emitError(I, ErrMsg + AsmError); 267 268 return Ctx.emitError(I, ErrMsg); 269 } 270 271 /// getCopyFromPartsVector - Create a value that contains the specified legal 272 /// parts combined into the value they represent. If the parts combine to a 273 /// type larger then ValueVT then AssertOp can be used to specify whether the 274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 275 /// ValueVT (ISD::AssertSext). 276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 277 const SDValue *Parts, unsigned NumParts, 278 MVT PartVT, EVT ValueVT, const Value *V) { 279 assert(ValueVT.isVector() && "Not a vector value"); 280 assert(NumParts > 0 && "No parts to assemble!"); 281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 282 SDValue Val = Parts[0]; 283 284 // Handle a multi-element vector. 285 if (NumParts > 1) { 286 EVT IntermediateVT; 287 MVT RegisterVT; 288 unsigned NumIntermediates; 289 unsigned NumRegs = 290 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 291 NumIntermediates, RegisterVT); 292 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 293 NumParts = NumRegs; // Silence a compiler warning. 294 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 295 assert(RegisterVT.getSizeInBits() == 296 Parts[0].getSimpleValueType().getSizeInBits() && 297 "Part type sizes don't match!"); 298 299 // Assemble the parts into intermediate operands. 300 SmallVector<SDValue, 8> Ops(NumIntermediates); 301 if (NumIntermediates == NumParts) { 302 // If the register was not expanded, truncate or copy the value, 303 // as appropriate. 304 for (unsigned i = 0; i != NumParts; ++i) 305 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 306 PartVT, IntermediateVT, V); 307 } else if (NumParts > 0) { 308 // If the intermediate type was expanded, build the intermediate 309 // operands from the parts. 310 assert(NumParts % NumIntermediates == 0 && 311 "Must expand into a divisible number of parts!"); 312 unsigned Factor = NumParts / NumIntermediates; 313 for (unsigned i = 0; i != NumIntermediates; ++i) 314 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 315 PartVT, IntermediateVT, V); 316 } 317 318 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 319 // intermediate operands. 320 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 321 : ISD::BUILD_VECTOR, 322 DL, ValueVT, Ops); 323 } 324 325 // There is now one part, held in Val. Correct it to match ValueVT. 326 EVT PartEVT = Val.getValueType(); 327 328 if (PartEVT == ValueVT) 329 return Val; 330 331 if (PartEVT.isVector()) { 332 // If the element type of the source/dest vectors are the same, but the 333 // parts vector has more elements than the value vector, then we have a 334 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 335 // elements we want. 336 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 337 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 338 "Cannot narrow, it would be a lossy transformation"); 339 return DAG.getNode( 340 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 341 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 342 } 343 344 // Vector/Vector bitcast. 345 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 349 "Cannot handle this kind of promotion"); 350 // Promoted vector extract 351 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 352 353 } 354 355 // Trivial bitcast if the types are the same size and the destination 356 // vector type is legal. 357 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 358 TLI.isTypeLegal(ValueVT)) 359 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 360 361 // Handle cases such as i8 -> <1 x i1> 362 if (ValueVT.getVectorNumElements() != 1) { 363 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 364 "non-trivial scalar-to-vector conversion"); 365 return DAG.getUNDEF(ValueVT); 366 } 367 368 if (ValueVT.getVectorNumElements() == 1 && 369 ValueVT.getVectorElementType() != PartEVT) 370 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 371 372 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 373 } 374 375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 376 SDValue Val, SDValue *Parts, unsigned NumParts, 377 MVT PartVT, const Value *V); 378 379 /// getCopyToParts - Create a series of nodes that contain the specified value 380 /// split into legal parts. If the parts contain more bits than Val, then, for 381 /// integers, ExtendKind can be used to specify how to generate the extra bits. 382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 383 SDValue Val, SDValue *Parts, unsigned NumParts, 384 MVT PartVT, const Value *V, 385 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 386 EVT ValueVT = Val.getValueType(); 387 388 // Handle the vector case separately. 389 if (ValueVT.isVector()) 390 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 391 392 unsigned PartBits = PartVT.getSizeInBits(); 393 unsigned OrigNumParts = NumParts; 394 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 395 "Copying to an illegal type!"); 396 397 if (NumParts == 0) 398 return; 399 400 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 401 EVT PartEVT = PartVT; 402 if (PartEVT == ValueVT) { 403 assert(NumParts == 1 && "No-op copy with multiple parts!"); 404 Parts[0] = Val; 405 return; 406 } 407 408 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 409 // If the parts cover more bits than the value has, promote the value. 410 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 411 assert(NumParts == 1 && "Do not know what to promote to!"); 412 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 413 } else { 414 if (ValueVT.isFloatingPoint()) { 415 // FP values need to be bitcast, then extended if they are being put 416 // into a larger container. 417 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 418 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 421 ValueVT.isInteger() && 422 "Unknown mismatch!"); 423 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 424 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 425 if (PartVT == MVT::x86mmx) 426 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 427 } 428 } else if (PartBits == ValueVT.getSizeInBits()) { 429 // Different types of the same size. 430 assert(NumParts == 1 && PartEVT != ValueVT); 431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 432 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 433 // If the parts cover less bits than value has, truncate the value. 434 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 435 ValueVT.isInteger() && 436 "Unknown mismatch!"); 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 if (PartVT == MVT::x86mmx) 440 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 441 } 442 443 // The value may have changed - recompute ValueVT. 444 ValueVT = Val.getValueType(); 445 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 446 "Failed to tile the value with PartVT!"); 447 448 if (NumParts == 1) { 449 if (PartEVT != ValueVT) 450 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 451 "scalar-to-vector conversion failed"); 452 453 Parts[0] = Val; 454 return; 455 } 456 457 // Expand the value into multiple parts. 458 if (NumParts & (NumParts - 1)) { 459 // The number of parts is not a power of 2. Split off and copy the tail. 460 assert(PartVT.isInteger() && ValueVT.isInteger() && 461 "Do not know what to expand to!"); 462 unsigned RoundParts = 1 << Log2_32(NumParts); 463 unsigned RoundBits = RoundParts * PartBits; 464 unsigned OddParts = NumParts - RoundParts; 465 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 466 DAG.getIntPtrConstant(RoundBits, DL)); 467 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 468 469 if (DAG.getDataLayout().isBigEndian()) 470 // The odd parts were reversed by getCopyToParts - unreverse them. 471 std::reverse(Parts + RoundParts, Parts + NumParts); 472 473 NumParts = RoundParts; 474 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 475 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 476 } 477 478 // The number of parts is a power of 2. Repeatedly bisect the value using 479 // EXTRACT_ELEMENT. 480 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 481 EVT::getIntegerVT(*DAG.getContext(), 482 ValueVT.getSizeInBits()), 483 Val); 484 485 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 486 for (unsigned i = 0; i < NumParts; i += StepSize) { 487 unsigned ThisBits = StepSize * PartBits / 2; 488 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 489 SDValue &Part0 = Parts[i]; 490 SDValue &Part1 = Parts[i+StepSize/2]; 491 492 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 493 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 494 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 495 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 496 497 if (ThisBits == PartBits && ThisVT != PartVT) { 498 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 499 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 500 } 501 } 502 } 503 504 if (DAG.getDataLayout().isBigEndian()) 505 std::reverse(Parts, Parts + OrigNumParts); 506 } 507 508 509 /// getCopyToPartsVector - Create a series of nodes that contain the specified 510 /// value split into legal parts. 511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 512 SDValue Val, SDValue *Parts, unsigned NumParts, 513 MVT PartVT, const Value *V) { 514 EVT ValueVT = Val.getValueType(); 515 assert(ValueVT.isVector() && "Not a vector"); 516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 517 518 if (NumParts == 1) { 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 // Nothing to do. 522 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 523 // Bitconvert vector->vector case. 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } else if (PartVT.isVector() && 526 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 527 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 528 EVT ElementVT = PartVT.getVectorElementType(); 529 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 530 // undef elements. 531 SmallVector<SDValue, 16> Ops; 532 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 533 Ops.push_back(DAG.getNode( 534 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 535 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 536 537 for (unsigned i = ValueVT.getVectorNumElements(), 538 e = PartVT.getVectorNumElements(); i != e; ++i) 539 Ops.push_back(DAG.getUNDEF(ElementVT)); 540 541 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 542 543 // FIXME: Use CONCAT for 2x -> 4x. 544 545 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 546 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 547 } else if (PartVT.isVector() && 548 PartEVT.getVectorElementType().bitsGE( 549 ValueVT.getVectorElementType()) && 550 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 551 552 // Promoted vector extract 553 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 554 } else{ 555 // Vector -> scalar conversion. 556 assert(ValueVT.getVectorNumElements() == 1 && 557 "Only trivial vector-to-scalar conversions should get here!"); 558 Val = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 560 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 562 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 563 } 564 565 Parts[0] = Val; 566 return; 567 } 568 569 // Handle a multi-element vector. 570 EVT IntermediateVT; 571 MVT RegisterVT; 572 unsigned NumIntermediates; 573 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 574 IntermediateVT, 575 NumIntermediates, RegisterVT); 576 unsigned NumElements = ValueVT.getVectorNumElements(); 577 578 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 579 NumParts = NumRegs; // Silence a compiler warning. 580 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 581 582 // Split the vector into intermediate operands. 583 SmallVector<SDValue, 8> Ops(NumIntermediates); 584 for (unsigned i = 0; i != NumIntermediates; ++i) { 585 if (IntermediateVT.isVector()) 586 Ops[i] = 587 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 588 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 589 TLI.getVectorIdxTy(DAG.getDataLayout()))); 590 else 591 Ops[i] = DAG.getNode( 592 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 593 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 594 } 595 596 // Split the intermediate operands into legal parts. 597 if (NumParts == NumIntermediates) { 598 // If the register was not expanded, promote or copy the value, 599 // as appropriate. 600 for (unsigned i = 0; i != NumParts; ++i) 601 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 602 } else if (NumParts > 0) { 603 // If the intermediate type was expanded, split each the value into 604 // legal parts. 605 assert(NumIntermediates != 0 && "division by zero"); 606 assert(NumParts % NumIntermediates == 0 && 607 "Must expand into a divisible number of parts!"); 608 unsigned Factor = NumParts / NumIntermediates; 609 for (unsigned i = 0; i != NumIntermediates; ++i) 610 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 611 } 612 } 613 614 RegsForValue::RegsForValue() {} 615 616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 617 EVT valuevt) 618 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 619 620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 621 const DataLayout &DL, unsigned Reg, Type *Ty) { 622 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 623 624 for (EVT ValueVT : ValueVTs) { 625 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 635 /// this value and returns the result as a ValueVT value. This uses 636 /// Chain/Flag as the input and updates them for the output Chain/Flag. 637 /// If the Flag pointer is NULL, no flag is used. 638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 639 FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V) const { 643 // A Value with type {} or [0 x %t] needs no registers. 644 if (ValueVTs.empty()) 645 return SDValue(); 646 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 649 // Assemble the legal parts into the final values. 650 SmallVector<SDValue, 4> Values(ValueVTs.size()); 651 SmallVector<SDValue, 8> Parts; 652 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 653 // Copy the legal parts from the registers. 654 EVT ValueVT = ValueVTs[Value]; 655 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 656 MVT RegisterVT = RegVTs[Value]; 657 658 Parts.resize(NumRegs); 659 for (unsigned i = 0; i != NumRegs; ++i) { 660 SDValue P; 661 if (!Flag) { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 663 } else { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 665 *Flag = P.getValue(2); 666 } 667 668 Chain = P.getValue(1); 669 Parts[i] = P; 670 671 // If the source register was virtual and if we know something about it, 672 // add an assert node. 673 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 674 !RegisterVT.isInteger() || RegisterVT.isVector()) 675 continue; 676 677 const FunctionLoweringInfo::LiveOutInfo *LOI = 678 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 679 if (!LOI) 680 continue; 681 682 unsigned RegSize = RegisterVT.getSizeInBits(); 683 unsigned NumSignBits = LOI->NumSignBits; 684 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 685 686 if (NumZeroBits == RegSize) { 687 // The current value is a zero. 688 // Explicitly express that as it would be easier for 689 // optimizations to kick in. 690 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 691 continue; 692 } 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) { 699 isSExt = true; // ASSERT SEXT 1 700 FromVT = MVT::i1; 701 } else if (NumZeroBits >= RegSize - 1) { 702 isSExt = false; // ASSERT ZEXT 1 703 FromVT = MVT::i1; 704 } else if (NumSignBits > RegSize - 8) { 705 isSExt = true; // ASSERT SEXT 8 706 FromVT = MVT::i8; 707 } else if (NumZeroBits >= RegSize - 8) { 708 isSExt = false; // ASSERT ZEXT 8 709 FromVT = MVT::i8; 710 } else if (NumSignBits > RegSize - 16) { 711 isSExt = true; // ASSERT SEXT 16 712 FromVT = MVT::i16; 713 } else if (NumZeroBits >= RegSize - 16) { 714 isSExt = false; // ASSERT ZEXT 16 715 FromVT = MVT::i16; 716 } else if (NumSignBits > RegSize - 32) { 717 isSExt = true; // ASSERT SEXT 32 718 FromVT = MVT::i32; 719 } else if (NumZeroBits >= RegSize - 32) { 720 isSExt = false; // ASSERT ZEXT 32 721 FromVT = MVT::i32; 722 } else { 723 continue; 724 } 725 // Add an assertion node. 726 assert(FromVT != MVT::Other); 727 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 728 RegisterVT, P, DAG.getValueType(FromVT)); 729 } 730 731 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 732 NumRegs, RegisterVT, ValueVT, V); 733 Part += NumRegs; 734 Parts.clear(); 735 } 736 737 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 738 } 739 740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 741 /// specified value into the registers specified by this object. This uses 742 /// Chain/Flag as the input and updates them for the output Chain/Flag. 743 /// If the Flag pointer is NULL, no flag is used. 744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 745 SDValue &Chain, SDValue *Flag, const Value *V, 746 ISD::NodeType PreferredExtendType) const { 747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 748 ISD::NodeType ExtendKind = PreferredExtendType; 749 750 // Get the list of the values's legal parts. 751 unsigned NumRegs = Regs.size(); 752 SmallVector<SDValue, 8> Parts(NumRegs); 753 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 754 EVT ValueVT = ValueVTs[Value]; 755 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 756 MVT RegisterVT = RegVTs[Value]; 757 758 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 759 ExtendKind = ISD::ZERO_EXTEND; 760 761 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 762 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 763 Part += NumParts; 764 } 765 766 // Copy the parts into the registers. 767 SmallVector<SDValue, 8> Chains(NumRegs); 768 for (unsigned i = 0; i != NumRegs; ++i) { 769 SDValue Part; 770 if (!Flag) { 771 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 772 } else { 773 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 774 *Flag = Part.getValue(1); 775 } 776 777 Chains[i] = Part.getValue(0); 778 } 779 780 if (NumRegs == 1 || Flag) 781 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 782 // flagged to it. That is the CopyToReg nodes and the user are considered 783 // a single scheduling unit. If we create a TokenFactor and return it as 784 // chain, then the TokenFactor is both a predecessor (operand) of the 785 // user as well as a successor (the TF operands are flagged to the user). 786 // c1, f1 = CopyToReg 787 // c2, f2 = CopyToReg 788 // c3 = TokenFactor c1, c2 789 // ... 790 // = op c3, ..., f2 791 Chain = Chains[NumRegs-1]; 792 else 793 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 794 } 795 796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 797 /// operand list. This adds the code marker and includes the number of 798 /// values added into it. 799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 800 unsigned MatchingIdx, SDLoc dl, 801 SelectionDAG &DAG, 802 std::vector<SDValue> &Ops) const { 803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 804 805 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 806 if (HasMatching) 807 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 808 else if (!Regs.empty() && 809 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 810 // Put the register class of the virtual registers in the flag word. That 811 // way, later passes can recompute register class constraints for inline 812 // assembly as well as normal instructions. 813 // Don't do this for tied operands that can use the regclass information 814 // from the def. 815 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 816 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 817 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 818 } 819 820 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 821 Ops.push_back(Res); 822 823 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 824 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 825 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 826 MVT RegisterVT = RegVTs[Value]; 827 for (unsigned i = 0; i != NumRegs; ++i) { 828 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 829 unsigned TheReg = Regs[Reg++]; 830 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 831 832 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 833 // If we clobbered the stack pointer, MFI should know about it. 834 assert(DAG.getMachineFunction().getFrameInfo()-> 835 hasOpaqueSPAdjustment()); 836 } 837 } 838 } 839 } 840 841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 842 const TargetLibraryInfo *li) { 843 AA = &aa; 844 GFI = gfi; 845 LibInfo = li; 846 DL = &DAG.getDataLayout(); 847 Context = DAG.getContext(); 848 LPadToCallSiteMap.clear(); 849 } 850 851 /// clear - Clear out the current SelectionDAG and the associated 852 /// state and prepare this SelectionDAGBuilder object to be used 853 /// for a new block. This doesn't clear out information about 854 /// additional blocks that are needed to complete switch lowering 855 /// or PHI node updating; that information is cleared out as it is 856 /// consumed. 857 void SelectionDAGBuilder::clear() { 858 NodeMap.clear(); 859 UnusedArgNodeMap.clear(); 860 PendingLoads.clear(); 861 PendingExports.clear(); 862 CurInst = nullptr; 863 HasTailCall = false; 864 SDNodeOrder = LowestSDNodeOrder; 865 StatepointLowering.clear(); 866 } 867 868 /// clearDanglingDebugInfo - Clear the dangling debug information 869 /// map. This function is separated from the clear so that debug 870 /// information that is dangling in a basic block can be properly 871 /// resolved in a different basic block. This allows the 872 /// SelectionDAG to resolve dangling debug information attached 873 /// to PHI nodes. 874 void SelectionDAGBuilder::clearDanglingDebugInfo() { 875 DanglingDebugInfoMap.clear(); 876 } 877 878 /// getRoot - Return the current virtual root of the Selection DAG, 879 /// flushing any PendingLoad items. This must be done before emitting 880 /// a store or any other node that may need to be ordered after any 881 /// prior load instructions. 882 /// 883 SDValue SelectionDAGBuilder::getRoot() { 884 if (PendingLoads.empty()) 885 return DAG.getRoot(); 886 887 if (PendingLoads.size() == 1) { 888 SDValue Root = PendingLoads[0]; 889 DAG.setRoot(Root); 890 PendingLoads.clear(); 891 return Root; 892 } 893 894 // Otherwise, we have to make a token factor node. 895 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 896 PendingLoads); 897 PendingLoads.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 /// getControlRoot - Similar to getRoot, but instead of flushing all the 903 /// PendingLoad items, flush all the PendingExports items. It is necessary 904 /// to do this before emitting a terminator instruction. 905 /// 906 SDValue SelectionDAGBuilder::getControlRoot() { 907 SDValue Root = DAG.getRoot(); 908 909 if (PendingExports.empty()) 910 return Root; 911 912 // Turn all of the CopyToReg chains into one factored node. 913 if (Root.getOpcode() != ISD::EntryToken) { 914 unsigned i = 0, e = PendingExports.size(); 915 for (; i != e; ++i) { 916 assert(PendingExports[i].getNode()->getNumOperands() > 1); 917 if (PendingExports[i].getNode()->getOperand(0) == Root) 918 break; // Don't add the root if we already indirectly depend on it. 919 } 920 921 if (i == e) 922 PendingExports.push_back(Root); 923 } 924 925 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 926 PendingExports); 927 PendingExports.clear(); 928 DAG.setRoot(Root); 929 return Root; 930 } 931 932 /// Copy swift error to the final virtual register at end of a basic block, as 933 /// specified by SwiftErrorWorklist, if necessary. 934 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) { 935 const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo(); 936 if (!TLI.supportSwiftError()) 937 return; 938 939 if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB)) 940 return; 941 942 // Go through entries in SwiftErrorWorklist, and create copy as necessary. 943 FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry = 944 SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB]; 945 FunctionLoweringInfo::SwiftErrorVRegs &MapEntry = 946 SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB]; 947 for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) { 948 unsigned WorkReg = WorklistEntry[I]; 949 950 // Find the swifterror virtual register for the value in SwiftErrorMap. 951 unsigned MapReg = MapEntry[I]; 952 assert(TargetRegisterInfo::isVirtualRegister(MapReg) && 953 "Entries in SwiftErrorMap should be virtual registers"); 954 955 if (WorkReg == MapReg) 956 continue; 957 958 // Create copy from SwiftErrorMap to SwiftWorklist. 959 auto &DL = SDB.DAG.getDataLayout(); 960 SDValue CopyNode = SDB.DAG.getCopyToReg( 961 SDB.getRoot(), SDB.getCurSDLoc(), WorkReg, 962 SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL)))); 963 MapEntry[I] = WorkReg; 964 SDB.DAG.setRoot(CopyNode); 965 } 966 } 967 968 void SelectionDAGBuilder::visit(const Instruction &I) { 969 // Set up outgoing PHI node register values before emitting the terminator. 970 if (isa<TerminatorInst>(&I)) { 971 copySwiftErrorsToFinalVRegs(*this); 972 HandlePHINodesInSuccessorBlocks(I.getParent()); 973 } 974 975 ++SDNodeOrder; 976 977 CurInst = &I; 978 979 visit(I.getOpcode(), I); 980 981 if (!isa<TerminatorInst>(&I) && !HasTailCall && 982 !isStatepoint(&I)) // statepoints handle their exports internally 983 CopyToExportRegsIfNeeded(&I); 984 985 CurInst = nullptr; 986 } 987 988 void SelectionDAGBuilder::visitPHI(const PHINode &) { 989 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 990 } 991 992 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 993 // Note: this doesn't use InstVisitor, because it has to work with 994 // ConstantExpr's in addition to instructions. 995 switch (Opcode) { 996 default: llvm_unreachable("Unknown instruction type encountered!"); 997 // Build the switch statement using the Instruction.def file. 998 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 999 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1000 #include "llvm/IR/Instruction.def" 1001 } 1002 } 1003 1004 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1005 // generate the debug data structures now that we've seen its definition. 1006 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1007 SDValue Val) { 1008 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1009 if (DDI.getDI()) { 1010 const DbgValueInst *DI = DDI.getDI(); 1011 DebugLoc dl = DDI.getdl(); 1012 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1013 DILocalVariable *Variable = DI->getVariable(); 1014 DIExpression *Expr = DI->getExpression(); 1015 assert(Variable->isValidLocationForIntrinsic(dl) && 1016 "Expected inlined-at fields to agree"); 1017 uint64_t Offset = DI->getOffset(); 1018 SDDbgValue *SDV; 1019 if (Val.getNode()) { 1020 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 1021 Val)) { 1022 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1023 false, Offset, dl, DbgSDNodeOrder); 1024 DAG.AddDbgValue(SDV, Val.getNode(), false); 1025 } 1026 } else 1027 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1028 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1029 } 1030 } 1031 1032 /// getCopyFromRegs - If there was virtual register allocated for the value V 1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1035 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1036 SDValue Result; 1037 1038 if (It != FuncInfo.ValueMap.end()) { 1039 unsigned InReg = It->second; 1040 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1041 DAG.getDataLayout(), InReg, Ty); 1042 SDValue Chain = DAG.getEntryNode(); 1043 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1044 resolveDanglingDebugInfo(V, Result); 1045 } 1046 1047 return Result; 1048 } 1049 1050 /// getValue - Return an SDValue for the given Value. 1051 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1052 // If we already have an SDValue for this value, use it. It's important 1053 // to do this first, so that we don't create a CopyFromReg if we already 1054 // have a regular SDValue. 1055 SDValue &N = NodeMap[V]; 1056 if (N.getNode()) return N; 1057 1058 // If there's a virtual register allocated and initialized for this 1059 // value, use it. 1060 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1061 return copyFromReg; 1062 1063 // Otherwise create a new SDValue and remember it. 1064 SDValue Val = getValueImpl(V); 1065 NodeMap[V] = Val; 1066 resolveDanglingDebugInfo(V, Val); 1067 return Val; 1068 } 1069 1070 // Return true if SDValue exists for the given Value 1071 bool SelectionDAGBuilder::findValue(const Value *V) const { 1072 return (NodeMap.find(V) != NodeMap.end()) || 1073 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1074 } 1075 1076 /// getNonRegisterValue - Return an SDValue for the given Value, but 1077 /// don't look in FuncInfo.ValueMap for a virtual register. 1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1079 // If we already have an SDValue for this value, use it. 1080 SDValue &N = NodeMap[V]; 1081 if (N.getNode()) { 1082 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1083 // Remove the debug location from the node as the node is about to be used 1084 // in a location which may differ from the original debug location. This 1085 // is relevant to Constant and ConstantFP nodes because they can appear 1086 // as constant expressions inside PHI nodes. 1087 N->setDebugLoc(DebugLoc()); 1088 } 1089 return N; 1090 } 1091 1092 // Otherwise create a new SDValue and remember it. 1093 SDValue Val = getValueImpl(V); 1094 NodeMap[V] = Val; 1095 resolveDanglingDebugInfo(V, Val); 1096 return Val; 1097 } 1098 1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1100 /// Create an SDValue for the given value. 1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1103 1104 if (const Constant *C = dyn_cast<Constant>(V)) { 1105 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1106 1107 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1108 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1109 1110 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1111 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1112 1113 if (isa<ConstantPointerNull>(C)) { 1114 unsigned AS = V->getType()->getPointerAddressSpace(); 1115 return DAG.getConstant(0, getCurSDLoc(), 1116 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1117 } 1118 1119 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1120 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1121 1122 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1123 return DAG.getUNDEF(VT); 1124 1125 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1126 visit(CE->getOpcode(), *CE); 1127 SDValue N1 = NodeMap[V]; 1128 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1129 return N1; 1130 } 1131 1132 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1133 SmallVector<SDValue, 4> Constants; 1134 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1135 OI != OE; ++OI) { 1136 SDNode *Val = getValue(*OI).getNode(); 1137 // If the operand is an empty aggregate, there are no values. 1138 if (!Val) continue; 1139 // Add each leaf value from the operand to the Constants list 1140 // to form a flattened list of all the values. 1141 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1142 Constants.push_back(SDValue(Val, i)); 1143 } 1144 1145 return DAG.getMergeValues(Constants, getCurSDLoc()); 1146 } 1147 1148 if (const ConstantDataSequential *CDS = 1149 dyn_cast<ConstantDataSequential>(C)) { 1150 SmallVector<SDValue, 4> Ops; 1151 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1152 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1153 // Add each leaf value from the operand to the Constants list 1154 // to form a flattened list of all the values. 1155 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1156 Ops.push_back(SDValue(Val, i)); 1157 } 1158 1159 if (isa<ArrayType>(CDS->getType())) 1160 return DAG.getMergeValues(Ops, getCurSDLoc()); 1161 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1162 VT, Ops); 1163 } 1164 1165 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1166 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1167 "Unknown struct or array constant!"); 1168 1169 SmallVector<EVT, 4> ValueVTs; 1170 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1171 unsigned NumElts = ValueVTs.size(); 1172 if (NumElts == 0) 1173 return SDValue(); // empty struct 1174 SmallVector<SDValue, 4> Constants(NumElts); 1175 for (unsigned i = 0; i != NumElts; ++i) { 1176 EVT EltVT = ValueVTs[i]; 1177 if (isa<UndefValue>(C)) 1178 Constants[i] = DAG.getUNDEF(EltVT); 1179 else if (EltVT.isFloatingPoint()) 1180 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1181 else 1182 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1183 } 1184 1185 return DAG.getMergeValues(Constants, getCurSDLoc()); 1186 } 1187 1188 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1189 return DAG.getBlockAddress(BA, VT); 1190 1191 VectorType *VecTy = cast<VectorType>(V->getType()); 1192 unsigned NumElements = VecTy->getNumElements(); 1193 1194 // Now that we know the number and type of the elements, get that number of 1195 // elements into the Ops array based on what kind of constant it is. 1196 SmallVector<SDValue, 16> Ops; 1197 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1198 for (unsigned i = 0; i != NumElements; ++i) 1199 Ops.push_back(getValue(CV->getOperand(i))); 1200 } else { 1201 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1202 EVT EltVT = 1203 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1204 1205 SDValue Op; 1206 if (EltVT.isFloatingPoint()) 1207 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1208 else 1209 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1210 Ops.assign(NumElements, Op); 1211 } 1212 1213 // Create a BUILD_VECTOR node. 1214 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1215 } 1216 1217 // If this is a static alloca, generate it as the frameindex instead of 1218 // computation. 1219 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1220 DenseMap<const AllocaInst*, int>::iterator SI = 1221 FuncInfo.StaticAllocaMap.find(AI); 1222 if (SI != FuncInfo.StaticAllocaMap.end()) 1223 return DAG.getFrameIndex(SI->second, 1224 TLI.getPointerTy(DAG.getDataLayout())); 1225 } 1226 1227 // If this is an instruction which fast-isel has deferred, select it now. 1228 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1229 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1230 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1231 Inst->getType()); 1232 SDValue Chain = DAG.getEntryNode(); 1233 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1234 } 1235 1236 llvm_unreachable("Can't get register for value!"); 1237 } 1238 1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1240 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1241 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1242 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1243 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1244 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1245 if (IsMSVCCXX || IsCoreCLR) 1246 CatchPadMBB->setIsEHFuncletEntry(); 1247 1248 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1249 } 1250 1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1252 // Update machine-CFG edge. 1253 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1254 FuncInfo.MBB->addSuccessor(TargetMBB); 1255 1256 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1257 bool IsSEH = isAsynchronousEHPersonality(Pers); 1258 if (IsSEH) { 1259 // If this is not a fall-through branch or optimizations are switched off, 1260 // emit the branch. 1261 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1262 TM.getOptLevel() == CodeGenOpt::None) 1263 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1264 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1265 return; 1266 } 1267 1268 // Figure out the funclet membership for the catchret's successor. 1269 // This will be used by the FuncletLayout pass to determine how to order the 1270 // BB's. 1271 // A 'catchret' returns to the outer scope's color. 1272 Value *ParentPad = I.getCatchSwitchParentPad(); 1273 const BasicBlock *SuccessorColor; 1274 if (isa<ConstantTokenNone>(ParentPad)) 1275 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1276 else 1277 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1278 assert(SuccessorColor && "No parent funclet for catchret!"); 1279 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1280 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1281 1282 // Create the terminator node. 1283 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1284 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1285 DAG.getBasicBlock(SuccessorColorMBB)); 1286 DAG.setRoot(Ret); 1287 } 1288 1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1290 // Don't emit any special code for the cleanuppad instruction. It just marks 1291 // the start of a funclet. 1292 FuncInfo.MBB->setIsEHFuncletEntry(); 1293 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1294 } 1295 1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1297 /// many places it could ultimately go. In the IR, we have a single unwind 1298 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1299 /// This function skips over imaginary basic blocks that hold catchswitch 1300 /// instructions, and finds all the "real" machine 1301 /// basic block destinations. As those destinations may not be successors of 1302 /// EHPadBB, here we also calculate the edge probability to those destinations. 1303 /// The passed-in Prob is the edge probability to EHPadBB. 1304 static void findUnwindDestinations( 1305 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1306 BranchProbability Prob, 1307 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1308 &UnwindDests) { 1309 EHPersonality Personality = 1310 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1311 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1312 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1313 1314 while (EHPadBB) { 1315 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1316 BasicBlock *NewEHPadBB = nullptr; 1317 if (isa<LandingPadInst>(Pad)) { 1318 // Stop on landingpads. They are not funclets. 1319 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1320 break; 1321 } else if (isa<CleanupPadInst>(Pad)) { 1322 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1323 // personalities. 1324 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1325 UnwindDests.back().first->setIsEHFuncletEntry(); 1326 break; 1327 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1328 // Add the catchpad handlers to the possible destinations. 1329 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1330 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1331 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1332 if (IsMSVCCXX || IsCoreCLR) 1333 UnwindDests.back().first->setIsEHFuncletEntry(); 1334 } 1335 NewEHPadBB = CatchSwitch->getUnwindDest(); 1336 } else { 1337 continue; 1338 } 1339 1340 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1341 if (BPI && NewEHPadBB) 1342 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1343 EHPadBB = NewEHPadBB; 1344 } 1345 } 1346 1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1348 // Update successor info. 1349 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1350 auto UnwindDest = I.getUnwindDest(); 1351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1352 BranchProbability UnwindDestProb = 1353 (BPI && UnwindDest) 1354 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1355 : BranchProbability::getZero(); 1356 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1357 for (auto &UnwindDest : UnwindDests) { 1358 UnwindDest.first->setIsEHPad(); 1359 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1360 } 1361 FuncInfo.MBB->normalizeSuccProbs(); 1362 1363 // Create the terminator node. 1364 SDValue Ret = 1365 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1366 DAG.setRoot(Ret); 1367 } 1368 1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1370 report_fatal_error("visitCatchSwitch not yet implemented!"); 1371 } 1372 1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1375 auto &DL = DAG.getDataLayout(); 1376 SDValue Chain = getControlRoot(); 1377 SmallVector<ISD::OutputArg, 8> Outs; 1378 SmallVector<SDValue, 8> OutVals; 1379 1380 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1381 // lower 1382 // 1383 // %val = call <ty> @llvm.experimental.deoptimize() 1384 // ret <ty> %val 1385 // 1386 // differently. 1387 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1388 LowerDeoptimizingReturn(); 1389 return; 1390 } 1391 1392 if (!FuncInfo.CanLowerReturn) { 1393 unsigned DemoteReg = FuncInfo.DemoteRegister; 1394 const Function *F = I.getParent()->getParent(); 1395 1396 // Emit a store of the return value through the virtual register. 1397 // Leave Outs empty so that LowerReturn won't try to load return 1398 // registers the usual way. 1399 SmallVector<EVT, 1> PtrValueVTs; 1400 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1401 PtrValueVTs); 1402 1403 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1404 DemoteReg, PtrValueVTs[0]); 1405 SDValue RetOp = getValue(I.getOperand(0)); 1406 1407 SmallVector<EVT, 4> ValueVTs; 1408 SmallVector<uint64_t, 4> Offsets; 1409 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1410 unsigned NumValues = ValueVTs.size(); 1411 1412 // An aggregate return value cannot wrap around the address space, so 1413 // offsets to its parts don't wrap either. 1414 SDNodeFlags Flags; 1415 Flags.setNoUnsignedWrap(true); 1416 1417 SmallVector<SDValue, 4> Chains(NumValues); 1418 for (unsigned i = 0; i != NumValues; ++i) { 1419 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1420 RetPtr.getValueType(), RetPtr, 1421 DAG.getIntPtrConstant(Offsets[i], 1422 getCurSDLoc()), 1423 &Flags); 1424 Chains[i] = 1425 DAG.getStore(Chain, getCurSDLoc(), 1426 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1427 // FIXME: better loc info would be nice. 1428 Add, MachinePointerInfo(), false, false, 0); 1429 } 1430 1431 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1432 MVT::Other, Chains); 1433 } else if (I.getNumOperands() != 0) { 1434 SmallVector<EVT, 4> ValueVTs; 1435 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1436 unsigned NumValues = ValueVTs.size(); 1437 if (NumValues) { 1438 SDValue RetOp = getValue(I.getOperand(0)); 1439 1440 const Function *F = I.getParent()->getParent(); 1441 1442 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1443 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1444 Attribute::SExt)) 1445 ExtendKind = ISD::SIGN_EXTEND; 1446 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1447 Attribute::ZExt)) 1448 ExtendKind = ISD::ZERO_EXTEND; 1449 1450 LLVMContext &Context = F->getContext(); 1451 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1452 Attribute::InReg); 1453 1454 for (unsigned j = 0; j != NumValues; ++j) { 1455 EVT VT = ValueVTs[j]; 1456 1457 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1458 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1459 1460 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1461 MVT PartVT = TLI.getRegisterType(Context, VT); 1462 SmallVector<SDValue, 4> Parts(NumParts); 1463 getCopyToParts(DAG, getCurSDLoc(), 1464 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1465 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1466 1467 // 'inreg' on function refers to return value 1468 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1469 if (RetInReg) 1470 Flags.setInReg(); 1471 1472 // Propagate extension type if any 1473 if (ExtendKind == ISD::SIGN_EXTEND) 1474 Flags.setSExt(); 1475 else if (ExtendKind == ISD::ZERO_EXTEND) 1476 Flags.setZExt(); 1477 1478 for (unsigned i = 0; i < NumParts; ++i) { 1479 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1480 VT, /*isfixed=*/true, 0, 0)); 1481 OutVals.push_back(Parts[i]); 1482 } 1483 } 1484 } 1485 } 1486 1487 // Push in swifterror virtual register as the last element of Outs. This makes 1488 // sure swifterror virtual register will be returned in the swifterror 1489 // physical register. 1490 const Function *F = I.getParent()->getParent(); 1491 if (TLI.supportSwiftError() && 1492 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1493 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1494 Flags.setSwiftError(); 1495 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1496 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1497 true /*isfixed*/, 1 /*origidx*/, 1498 0 /*partOffs*/)); 1499 // Create SDNode for the swifterror virtual register. 1500 OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0], 1501 EVT(TLI.getPointerTy(DL)))); 1502 } 1503 1504 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1505 CallingConv::ID CallConv = 1506 DAG.getMachineFunction().getFunction()->getCallingConv(); 1507 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1508 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1509 1510 // Verify that the target's LowerReturn behaved as expected. 1511 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1512 "LowerReturn didn't return a valid chain!"); 1513 1514 // Update the DAG with the new chain value resulting from return lowering. 1515 DAG.setRoot(Chain); 1516 } 1517 1518 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1519 /// created for it, emit nodes to copy the value into the virtual 1520 /// registers. 1521 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1522 // Skip empty types 1523 if (V->getType()->isEmptyTy()) 1524 return; 1525 1526 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1527 if (VMI != FuncInfo.ValueMap.end()) { 1528 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1529 CopyValueToVirtualRegister(V, VMI->second); 1530 } 1531 } 1532 1533 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1534 /// the current basic block, add it to ValueMap now so that we'll get a 1535 /// CopyTo/FromReg. 1536 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1537 // No need to export constants. 1538 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1539 1540 // Already exported? 1541 if (FuncInfo.isExportedInst(V)) return; 1542 1543 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1544 CopyValueToVirtualRegister(V, Reg); 1545 } 1546 1547 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1548 const BasicBlock *FromBB) { 1549 // The operands of the setcc have to be in this block. We don't know 1550 // how to export them from some other block. 1551 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1552 // Can export from current BB. 1553 if (VI->getParent() == FromBB) 1554 return true; 1555 1556 // Is already exported, noop. 1557 return FuncInfo.isExportedInst(V); 1558 } 1559 1560 // If this is an argument, we can export it if the BB is the entry block or 1561 // if it is already exported. 1562 if (isa<Argument>(V)) { 1563 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1564 return true; 1565 1566 // Otherwise, can only export this if it is already exported. 1567 return FuncInfo.isExportedInst(V); 1568 } 1569 1570 // Otherwise, constants can always be exported. 1571 return true; 1572 } 1573 1574 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1575 BranchProbability 1576 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1577 const MachineBasicBlock *Dst) const { 1578 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1579 const BasicBlock *SrcBB = Src->getBasicBlock(); 1580 const BasicBlock *DstBB = Dst->getBasicBlock(); 1581 if (!BPI) { 1582 // If BPI is not available, set the default probability as 1 / N, where N is 1583 // the number of successors. 1584 auto SuccSize = std::max<uint32_t>( 1585 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1586 return BranchProbability(1, SuccSize); 1587 } 1588 return BPI->getEdgeProbability(SrcBB, DstBB); 1589 } 1590 1591 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1592 MachineBasicBlock *Dst, 1593 BranchProbability Prob) { 1594 if (!FuncInfo.BPI) 1595 Src->addSuccessorWithoutProb(Dst); 1596 else { 1597 if (Prob.isUnknown()) 1598 Prob = getEdgeProbability(Src, Dst); 1599 Src->addSuccessor(Dst, Prob); 1600 } 1601 } 1602 1603 static bool InBlock(const Value *V, const BasicBlock *BB) { 1604 if (const Instruction *I = dyn_cast<Instruction>(V)) 1605 return I->getParent() == BB; 1606 return true; 1607 } 1608 1609 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1610 /// This function emits a branch and is used at the leaves of an OR or an 1611 /// AND operator tree. 1612 /// 1613 void 1614 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1615 MachineBasicBlock *TBB, 1616 MachineBasicBlock *FBB, 1617 MachineBasicBlock *CurBB, 1618 MachineBasicBlock *SwitchBB, 1619 BranchProbability TProb, 1620 BranchProbability FProb) { 1621 const BasicBlock *BB = CurBB->getBasicBlock(); 1622 1623 // If the leaf of the tree is a comparison, merge the condition into 1624 // the caseblock. 1625 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1626 // The operands of the cmp have to be in this block. We don't know 1627 // how to export them from some other block. If this is the first block 1628 // of the sequence, no exporting is needed. 1629 if (CurBB == SwitchBB || 1630 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1631 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1632 ISD::CondCode Condition; 1633 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1634 Condition = getICmpCondCode(IC->getPredicate()); 1635 } else { 1636 const FCmpInst *FC = cast<FCmpInst>(Cond); 1637 Condition = getFCmpCondCode(FC->getPredicate()); 1638 if (TM.Options.NoNaNsFPMath) 1639 Condition = getFCmpCodeWithoutNaN(Condition); 1640 } 1641 1642 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1643 TBB, FBB, CurBB, TProb, FProb); 1644 SwitchCases.push_back(CB); 1645 return; 1646 } 1647 } 1648 1649 // Create a CaseBlock record representing this branch. 1650 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1651 nullptr, TBB, FBB, CurBB, TProb, FProb); 1652 SwitchCases.push_back(CB); 1653 } 1654 1655 /// FindMergedConditions - If Cond is an expression like 1656 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1657 MachineBasicBlock *TBB, 1658 MachineBasicBlock *FBB, 1659 MachineBasicBlock *CurBB, 1660 MachineBasicBlock *SwitchBB, 1661 Instruction::BinaryOps Opc, 1662 BranchProbability TProb, 1663 BranchProbability FProb) { 1664 // If this node is not part of the or/and tree, emit it as a branch. 1665 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1666 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1667 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1668 BOp->getParent() != CurBB->getBasicBlock() || 1669 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1670 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1671 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1672 TProb, FProb); 1673 return; 1674 } 1675 1676 // Create TmpBB after CurBB. 1677 MachineFunction::iterator BBI(CurBB); 1678 MachineFunction &MF = DAG.getMachineFunction(); 1679 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1680 CurBB->getParent()->insert(++BBI, TmpBB); 1681 1682 if (Opc == Instruction::Or) { 1683 // Codegen X | Y as: 1684 // BB1: 1685 // jmp_if_X TBB 1686 // jmp TmpBB 1687 // TmpBB: 1688 // jmp_if_Y TBB 1689 // jmp FBB 1690 // 1691 1692 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1693 // The requirement is that 1694 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1695 // = TrueProb for original BB. 1696 // Assuming the original probabilities are A and B, one choice is to set 1697 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1698 // A/(1+B) and 2B/(1+B). This choice assumes that 1699 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1700 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1701 // TmpBB, but the math is more complicated. 1702 1703 auto NewTrueProb = TProb / 2; 1704 auto NewFalseProb = TProb / 2 + FProb; 1705 // Emit the LHS condition. 1706 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1707 NewTrueProb, NewFalseProb); 1708 1709 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1710 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1711 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1712 // Emit the RHS condition into TmpBB. 1713 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1714 Probs[0], Probs[1]); 1715 } else { 1716 assert(Opc == Instruction::And && "Unknown merge op!"); 1717 // Codegen X & Y as: 1718 // BB1: 1719 // jmp_if_X TmpBB 1720 // jmp FBB 1721 // TmpBB: 1722 // jmp_if_Y TBB 1723 // jmp FBB 1724 // 1725 // This requires creation of TmpBB after CurBB. 1726 1727 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1728 // The requirement is that 1729 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1730 // = FalseProb for original BB. 1731 // Assuming the original probabilities are A and B, one choice is to set 1732 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1733 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1734 // TrueProb for BB1 * FalseProb for TmpBB. 1735 1736 auto NewTrueProb = TProb + FProb / 2; 1737 auto NewFalseProb = FProb / 2; 1738 // Emit the LHS condition. 1739 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1740 NewTrueProb, NewFalseProb); 1741 1742 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1743 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1744 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1745 // Emit the RHS condition into TmpBB. 1746 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1747 Probs[0], Probs[1]); 1748 } 1749 } 1750 1751 /// If the set of cases should be emitted as a series of branches, return true. 1752 /// If we should emit this as a bunch of and/or'd together conditions, return 1753 /// false. 1754 bool 1755 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1756 if (Cases.size() != 2) return true; 1757 1758 // If this is two comparisons of the same values or'd or and'd together, they 1759 // will get folded into a single comparison, so don't emit two blocks. 1760 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1761 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1762 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1763 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1764 return false; 1765 } 1766 1767 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1768 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1769 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1770 Cases[0].CC == Cases[1].CC && 1771 isa<Constant>(Cases[0].CmpRHS) && 1772 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1773 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1774 return false; 1775 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1776 return false; 1777 } 1778 1779 return true; 1780 } 1781 1782 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1783 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1784 1785 // Update machine-CFG edges. 1786 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1787 1788 if (I.isUnconditional()) { 1789 // Update machine-CFG edges. 1790 BrMBB->addSuccessor(Succ0MBB); 1791 1792 // If this is not a fall-through branch or optimizations are switched off, 1793 // emit the branch. 1794 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1795 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1796 MVT::Other, getControlRoot(), 1797 DAG.getBasicBlock(Succ0MBB))); 1798 1799 return; 1800 } 1801 1802 // If this condition is one of the special cases we handle, do special stuff 1803 // now. 1804 const Value *CondVal = I.getCondition(); 1805 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1806 1807 // If this is a series of conditions that are or'd or and'd together, emit 1808 // this as a sequence of branches instead of setcc's with and/or operations. 1809 // As long as jumps are not expensive, this should improve performance. 1810 // For example, instead of something like: 1811 // cmp A, B 1812 // C = seteq 1813 // cmp D, E 1814 // F = setle 1815 // or C, F 1816 // jnz foo 1817 // Emit: 1818 // cmp A, B 1819 // je foo 1820 // cmp D, E 1821 // jle foo 1822 // 1823 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1824 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1825 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1826 !I.getMetadata(LLVMContext::MD_unpredictable) && 1827 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1828 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1829 Opcode, 1830 getEdgeProbability(BrMBB, Succ0MBB), 1831 getEdgeProbability(BrMBB, Succ1MBB)); 1832 // If the compares in later blocks need to use values not currently 1833 // exported from this block, export them now. This block should always 1834 // be the first entry. 1835 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1836 1837 // Allow some cases to be rejected. 1838 if (ShouldEmitAsBranches(SwitchCases)) { 1839 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1840 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1841 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1842 } 1843 1844 // Emit the branch for this block. 1845 visitSwitchCase(SwitchCases[0], BrMBB); 1846 SwitchCases.erase(SwitchCases.begin()); 1847 return; 1848 } 1849 1850 // Okay, we decided not to do this, remove any inserted MBB's and clear 1851 // SwitchCases. 1852 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1853 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1854 1855 SwitchCases.clear(); 1856 } 1857 } 1858 1859 // Create a CaseBlock record representing this branch. 1860 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1861 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1862 1863 // Use visitSwitchCase to actually insert the fast branch sequence for this 1864 // cond branch. 1865 visitSwitchCase(CB, BrMBB); 1866 } 1867 1868 /// visitSwitchCase - Emits the necessary code to represent a single node in 1869 /// the binary search tree resulting from lowering a switch instruction. 1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1871 MachineBasicBlock *SwitchBB) { 1872 SDValue Cond; 1873 SDValue CondLHS = getValue(CB.CmpLHS); 1874 SDLoc dl = getCurSDLoc(); 1875 1876 // Build the setcc now. 1877 if (!CB.CmpMHS) { 1878 // Fold "(X == true)" to X and "(X == false)" to !X to 1879 // handle common cases produced by branch lowering. 1880 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1881 CB.CC == ISD::SETEQ) 1882 Cond = CondLHS; 1883 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1884 CB.CC == ISD::SETEQ) { 1885 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1886 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1887 } else 1888 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1889 } else { 1890 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1891 1892 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1893 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1894 1895 SDValue CmpOp = getValue(CB.CmpMHS); 1896 EVT VT = CmpOp.getValueType(); 1897 1898 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1899 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1900 ISD::SETLE); 1901 } else { 1902 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1903 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1904 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1905 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1906 } 1907 } 1908 1909 // Update successor info 1910 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1911 // TrueBB and FalseBB are always different unless the incoming IR is 1912 // degenerate. This only happens when running llc on weird IR. 1913 if (CB.TrueBB != CB.FalseBB) 1914 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1915 SwitchBB->normalizeSuccProbs(); 1916 1917 // If the lhs block is the next block, invert the condition so that we can 1918 // fall through to the lhs instead of the rhs block. 1919 if (CB.TrueBB == NextBlock(SwitchBB)) { 1920 std::swap(CB.TrueBB, CB.FalseBB); 1921 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1922 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1923 } 1924 1925 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1926 MVT::Other, getControlRoot(), Cond, 1927 DAG.getBasicBlock(CB.TrueBB)); 1928 1929 // Insert the false branch. Do this even if it's a fall through branch, 1930 // this makes it easier to do DAG optimizations which require inverting 1931 // the branch condition. 1932 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1933 DAG.getBasicBlock(CB.FalseBB)); 1934 1935 DAG.setRoot(BrCond); 1936 } 1937 1938 /// visitJumpTable - Emit JumpTable node in the current MBB 1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1940 // Emit the code for the jump table 1941 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1942 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1943 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1944 JT.Reg, PTy); 1945 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1946 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1947 MVT::Other, Index.getValue(1), 1948 Table, Index); 1949 DAG.setRoot(BrJumpTable); 1950 } 1951 1952 /// visitJumpTableHeader - This function emits necessary code to produce index 1953 /// in the JumpTable from switch case. 1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1955 JumpTableHeader &JTH, 1956 MachineBasicBlock *SwitchBB) { 1957 SDLoc dl = getCurSDLoc(); 1958 1959 // Subtract the lowest switch case value from the value being switched on and 1960 // conditional branch to default mbb if the result is greater than the 1961 // difference between smallest and largest cases. 1962 SDValue SwitchOp = getValue(JTH.SValue); 1963 EVT VT = SwitchOp.getValueType(); 1964 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1965 DAG.getConstant(JTH.First, dl, VT)); 1966 1967 // The SDNode we just created, which holds the value being switched on minus 1968 // the smallest case value, needs to be copied to a virtual register so it 1969 // can be used as an index into the jump table in a subsequent basic block. 1970 // This value may be smaller or larger than the target's pointer type, and 1971 // therefore require extension or truncating. 1972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1973 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1974 1975 unsigned JumpTableReg = 1976 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1977 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1978 JumpTableReg, SwitchOp); 1979 JT.Reg = JumpTableReg; 1980 1981 // Emit the range check for the jump table, and branch to the default block 1982 // for the switch statement if the value being switched on exceeds the largest 1983 // case in the switch. 1984 SDValue CMP = DAG.getSetCC( 1985 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1986 Sub.getValueType()), 1987 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1988 1989 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1990 MVT::Other, CopyTo, CMP, 1991 DAG.getBasicBlock(JT.Default)); 1992 1993 // Avoid emitting unnecessary branches to the next block. 1994 if (JT.MBB != NextBlock(SwitchBB)) 1995 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1996 DAG.getBasicBlock(JT.MBB)); 1997 1998 DAG.setRoot(BrCond); 1999 } 2000 2001 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2002 /// tail spliced into a stack protector check success bb. 2003 /// 2004 /// For a high level explanation of how this fits into the stack protector 2005 /// generation see the comment on the declaration of class 2006 /// StackProtectorDescriptor. 2007 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2008 MachineBasicBlock *ParentBB) { 2009 2010 // First create the loads to the guard/stack slot for the comparison. 2011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2012 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2013 2014 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 2015 int FI = MFI->getStackProtectorIndex(); 2016 2017 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2018 const Value *IRGuard = TLI.getSDStackGuard(M); 2019 assert(IRGuard && "Currently there must be an IR guard in order to use " 2020 "SelectionDAG SSP"); 2021 SDValue GuardPtr = getValue(IRGuard); 2022 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2023 2024 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 2025 2026 SDValue Guard; 2027 SDLoc dl = getCurSDLoc(); 2028 2029 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 2030 // guard value from the virtual register holding the value. Otherwise, emit a 2031 // volatile load to retrieve the stack guard value. 2032 unsigned GuardReg = SPD.getGuardReg(); 2033 2034 if (GuardReg && TLI.useLoadStackGuardNode()) 2035 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 2036 PtrTy); 2037 else 2038 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 2039 GuardPtr, MachinePointerInfo(IRGuard, 0), 2040 true, false, false, Align); 2041 2042 SDValue StackSlot = DAG.getLoad( 2043 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2044 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 2045 false, false, Align); 2046 2047 // Perform the comparison via a subtract/getsetcc. 2048 EVT VT = Guard.getValueType(); 2049 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2050 2051 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2052 *DAG.getContext(), 2053 Sub.getValueType()), 2054 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2055 2056 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2057 // branch to failure MBB. 2058 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2059 MVT::Other, StackSlot.getOperand(0), 2060 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2061 // Otherwise branch to success MBB. 2062 SDValue Br = DAG.getNode(ISD::BR, dl, 2063 MVT::Other, BrCond, 2064 DAG.getBasicBlock(SPD.getSuccessMBB())); 2065 2066 DAG.setRoot(Br); 2067 } 2068 2069 /// Codegen the failure basic block for a stack protector check. 2070 /// 2071 /// A failure stack protector machine basic block consists simply of a call to 2072 /// __stack_chk_fail(). 2073 /// 2074 /// For a high level explanation of how this fits into the stack protector 2075 /// generation see the comment on the declaration of class 2076 /// StackProtectorDescriptor. 2077 void 2078 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2080 SDValue Chain = 2081 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2082 None, false, getCurSDLoc(), false, false).second; 2083 DAG.setRoot(Chain); 2084 } 2085 2086 /// visitBitTestHeader - This function emits necessary code to produce value 2087 /// suitable for "bit tests" 2088 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2089 MachineBasicBlock *SwitchBB) { 2090 SDLoc dl = getCurSDLoc(); 2091 2092 // Subtract the minimum value 2093 SDValue SwitchOp = getValue(B.SValue); 2094 EVT VT = SwitchOp.getValueType(); 2095 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2096 DAG.getConstant(B.First, dl, VT)); 2097 2098 // Check range 2099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2100 SDValue RangeCmp = DAG.getSetCC( 2101 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2102 Sub.getValueType()), 2103 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2104 2105 // Determine the type of the test operands. 2106 bool UsePtrType = false; 2107 if (!TLI.isTypeLegal(VT)) 2108 UsePtrType = true; 2109 else { 2110 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2111 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2112 // Switch table case range are encoded into series of masks. 2113 // Just use pointer type, it's guaranteed to fit. 2114 UsePtrType = true; 2115 break; 2116 } 2117 } 2118 if (UsePtrType) { 2119 VT = TLI.getPointerTy(DAG.getDataLayout()); 2120 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2121 } 2122 2123 B.RegVT = VT.getSimpleVT(); 2124 B.Reg = FuncInfo.CreateReg(B.RegVT); 2125 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2126 2127 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2128 2129 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2130 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2131 SwitchBB->normalizeSuccProbs(); 2132 2133 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2134 MVT::Other, CopyTo, RangeCmp, 2135 DAG.getBasicBlock(B.Default)); 2136 2137 // Avoid emitting unnecessary branches to the next block. 2138 if (MBB != NextBlock(SwitchBB)) 2139 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2140 DAG.getBasicBlock(MBB)); 2141 2142 DAG.setRoot(BrRange); 2143 } 2144 2145 /// visitBitTestCase - this function produces one "bit test" 2146 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2147 MachineBasicBlock* NextMBB, 2148 BranchProbability BranchProbToNext, 2149 unsigned Reg, 2150 BitTestCase &B, 2151 MachineBasicBlock *SwitchBB) { 2152 SDLoc dl = getCurSDLoc(); 2153 MVT VT = BB.RegVT; 2154 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2155 SDValue Cmp; 2156 unsigned PopCount = countPopulation(B.Mask); 2157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2158 if (PopCount == 1) { 2159 // Testing for a single bit; just compare the shift count with what it 2160 // would need to be to shift a 1 bit in that position. 2161 Cmp = DAG.getSetCC( 2162 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2163 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2164 ISD::SETEQ); 2165 } else if (PopCount == BB.Range) { 2166 // There is only one zero bit in the range, test for it directly. 2167 Cmp = DAG.getSetCC( 2168 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2169 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2170 ISD::SETNE); 2171 } else { 2172 // Make desired shift 2173 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2174 DAG.getConstant(1, dl, VT), ShiftOp); 2175 2176 // Emit bit tests and jumps 2177 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2178 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2179 Cmp = DAG.getSetCC( 2180 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2181 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2182 } 2183 2184 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2185 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2186 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2187 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2188 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2189 // one as they are relative probabilities (and thus work more like weights), 2190 // and hence we need to normalize them to let the sum of them become one. 2191 SwitchBB->normalizeSuccProbs(); 2192 2193 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2194 MVT::Other, getControlRoot(), 2195 Cmp, DAG.getBasicBlock(B.TargetBB)); 2196 2197 // Avoid emitting unnecessary branches to the next block. 2198 if (NextMBB != NextBlock(SwitchBB)) 2199 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2200 DAG.getBasicBlock(NextMBB)); 2201 2202 DAG.setRoot(BrAnd); 2203 } 2204 2205 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2206 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2207 2208 // Retrieve successors. Look through artificial IR level blocks like 2209 // catchswitch for successors. 2210 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2211 const BasicBlock *EHPadBB = I.getSuccessor(1); 2212 2213 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2214 // have to do anything here to lower funclet bundles. 2215 assert(!I.hasOperandBundlesOtherThan( 2216 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2217 "Cannot lower invokes with arbitrary operand bundles yet!"); 2218 2219 const Value *Callee(I.getCalledValue()); 2220 const Function *Fn = dyn_cast<Function>(Callee); 2221 if (isa<InlineAsm>(Callee)) 2222 visitInlineAsm(&I); 2223 else if (Fn && Fn->isIntrinsic()) { 2224 switch (Fn->getIntrinsicID()) { 2225 default: 2226 llvm_unreachable("Cannot invoke this intrinsic"); 2227 case Intrinsic::donothing: 2228 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2229 break; 2230 case Intrinsic::experimental_patchpoint_void: 2231 case Intrinsic::experimental_patchpoint_i64: 2232 visitPatchpoint(&I, EHPadBB); 2233 break; 2234 case Intrinsic::experimental_gc_statepoint: 2235 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2236 break; 2237 } 2238 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2239 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2240 // Eventually we will support lowering the @llvm.experimental.deoptimize 2241 // intrinsic, and right now there are no plans to support other intrinsics 2242 // with deopt state. 2243 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2244 } else { 2245 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2246 } 2247 2248 // If the value of the invoke is used outside of its defining block, make it 2249 // available as a virtual register. 2250 // We already took care of the exported value for the statepoint instruction 2251 // during call to the LowerStatepoint. 2252 if (!isStatepoint(I)) { 2253 CopyToExportRegsIfNeeded(&I); 2254 } 2255 2256 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2257 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2258 BranchProbability EHPadBBProb = 2259 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2260 : BranchProbability::getZero(); 2261 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2262 2263 // Update successor info. 2264 addSuccessorWithProb(InvokeMBB, Return); 2265 for (auto &UnwindDest : UnwindDests) { 2266 UnwindDest.first->setIsEHPad(); 2267 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2268 } 2269 InvokeMBB->normalizeSuccProbs(); 2270 2271 // Drop into normal successor. 2272 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2273 MVT::Other, getControlRoot(), 2274 DAG.getBasicBlock(Return))); 2275 } 2276 2277 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2278 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2279 } 2280 2281 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2282 assert(FuncInfo.MBB->isEHPad() && 2283 "Call to landingpad not in landing pad!"); 2284 2285 MachineBasicBlock *MBB = FuncInfo.MBB; 2286 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2287 AddLandingPadInfo(LP, MMI, MBB); 2288 2289 // If there aren't registers to copy the values into (e.g., during SjLj 2290 // exceptions), then don't bother to create these DAG nodes. 2291 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2292 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2293 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2294 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2295 return; 2296 2297 // If landingpad's return type is token type, we don't create DAG nodes 2298 // for its exception pointer and selector value. The extraction of exception 2299 // pointer or selector value from token type landingpads is not currently 2300 // supported. 2301 if (LP.getType()->isTokenTy()) 2302 return; 2303 2304 SmallVector<EVT, 2> ValueVTs; 2305 SDLoc dl = getCurSDLoc(); 2306 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2307 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2308 2309 // Get the two live-in registers as SDValues. The physregs have already been 2310 // copied into virtual registers. 2311 SDValue Ops[2]; 2312 if (FuncInfo.ExceptionPointerVirtReg) { 2313 Ops[0] = DAG.getZExtOrTrunc( 2314 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2315 FuncInfo.ExceptionPointerVirtReg, 2316 TLI.getPointerTy(DAG.getDataLayout())), 2317 dl, ValueVTs[0]); 2318 } else { 2319 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2320 } 2321 Ops[1] = DAG.getZExtOrTrunc( 2322 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2323 FuncInfo.ExceptionSelectorVirtReg, 2324 TLI.getPointerTy(DAG.getDataLayout())), 2325 dl, ValueVTs[1]); 2326 2327 // Merge into one. 2328 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2329 DAG.getVTList(ValueVTs), Ops); 2330 setValue(&LP, Res); 2331 } 2332 2333 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2334 #ifndef NDEBUG 2335 for (const CaseCluster &CC : Clusters) 2336 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2337 #endif 2338 2339 std::sort(Clusters.begin(), Clusters.end(), 2340 [](const CaseCluster &a, const CaseCluster &b) { 2341 return a.Low->getValue().slt(b.Low->getValue()); 2342 }); 2343 2344 // Merge adjacent clusters with the same destination. 2345 const unsigned N = Clusters.size(); 2346 unsigned DstIndex = 0; 2347 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2348 CaseCluster &CC = Clusters[SrcIndex]; 2349 const ConstantInt *CaseVal = CC.Low; 2350 MachineBasicBlock *Succ = CC.MBB; 2351 2352 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2353 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2354 // If this case has the same successor and is a neighbour, merge it into 2355 // the previous cluster. 2356 Clusters[DstIndex - 1].High = CaseVal; 2357 Clusters[DstIndex - 1].Prob += CC.Prob; 2358 } else { 2359 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2360 sizeof(Clusters[SrcIndex])); 2361 } 2362 } 2363 Clusters.resize(DstIndex); 2364 } 2365 2366 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2367 MachineBasicBlock *Last) { 2368 // Update JTCases. 2369 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2370 if (JTCases[i].first.HeaderBB == First) 2371 JTCases[i].first.HeaderBB = Last; 2372 2373 // Update BitTestCases. 2374 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2375 if (BitTestCases[i].Parent == First) 2376 BitTestCases[i].Parent = Last; 2377 } 2378 2379 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2380 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2381 2382 // Update machine-CFG edges with unique successors. 2383 SmallSet<BasicBlock*, 32> Done; 2384 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2385 BasicBlock *BB = I.getSuccessor(i); 2386 bool Inserted = Done.insert(BB).second; 2387 if (!Inserted) 2388 continue; 2389 2390 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2391 addSuccessorWithProb(IndirectBrMBB, Succ); 2392 } 2393 IndirectBrMBB->normalizeSuccProbs(); 2394 2395 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2396 MVT::Other, getControlRoot(), 2397 getValue(I.getAddress()))); 2398 } 2399 2400 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2401 if (DAG.getTarget().Options.TrapUnreachable) 2402 DAG.setRoot( 2403 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2404 } 2405 2406 void SelectionDAGBuilder::visitFSub(const User &I) { 2407 // -0.0 - X --> fneg 2408 Type *Ty = I.getType(); 2409 if (isa<Constant>(I.getOperand(0)) && 2410 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2411 SDValue Op2 = getValue(I.getOperand(1)); 2412 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2413 Op2.getValueType(), Op2)); 2414 return; 2415 } 2416 2417 visitBinary(I, ISD::FSUB); 2418 } 2419 2420 /// Checks if the given instruction performs a vector reduction, in which case 2421 /// we have the freedom to alter the elements in the result as long as the 2422 /// reduction of them stays unchanged. 2423 static bool isVectorReductionOp(const User *I) { 2424 const Instruction *Inst = dyn_cast<Instruction>(I); 2425 if (!Inst || !Inst->getType()->isVectorTy()) 2426 return false; 2427 2428 auto OpCode = Inst->getOpcode(); 2429 switch (OpCode) { 2430 case Instruction::Add: 2431 case Instruction::Mul: 2432 case Instruction::And: 2433 case Instruction::Or: 2434 case Instruction::Xor: 2435 break; 2436 case Instruction::FAdd: 2437 case Instruction::FMul: 2438 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2439 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2440 break; 2441 // Fall through. 2442 default: 2443 return false; 2444 } 2445 2446 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2447 unsigned ElemNumToReduce = ElemNum; 2448 2449 // Do DFS search on the def-use chain from the given instruction. We only 2450 // allow four kinds of operations during the search until we reach the 2451 // instruction that extracts the first element from the vector: 2452 // 2453 // 1. The reduction operation of the same opcode as the given instruction. 2454 // 2455 // 2. PHI node. 2456 // 2457 // 3. ShuffleVector instruction together with a reduction operation that 2458 // does a partial reduction. 2459 // 2460 // 4. ExtractElement that extracts the first element from the vector, and we 2461 // stop searching the def-use chain here. 2462 // 2463 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2464 // from 1-3 to the stack to continue the DFS. The given instruction is not 2465 // a reduction operation if we meet any other instructions other than those 2466 // listed above. 2467 2468 SmallVector<const User *, 16> UsersToVisit{Inst}; 2469 SmallPtrSet<const User *, 16> Visited; 2470 bool ReduxExtracted = false; 2471 2472 while (!UsersToVisit.empty()) { 2473 auto User = UsersToVisit.back(); 2474 UsersToVisit.pop_back(); 2475 if (!Visited.insert(User).second) 2476 continue; 2477 2478 for (const auto &U : User->users()) { 2479 auto Inst = dyn_cast<Instruction>(U); 2480 if (!Inst) 2481 return false; 2482 2483 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2484 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2485 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2486 return false; 2487 UsersToVisit.push_back(U); 2488 } else if (const ShuffleVectorInst *ShufInst = 2489 dyn_cast<ShuffleVectorInst>(U)) { 2490 // Detect the following pattern: A ShuffleVector instruction together 2491 // with a reduction that do partial reduction on the first and second 2492 // ElemNumToReduce / 2 elements, and store the result in 2493 // ElemNumToReduce / 2 elements in another vector. 2494 2495 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2496 if (ResultElements < ElemNum) 2497 return false; 2498 2499 if (ElemNumToReduce == 1) 2500 return false; 2501 if (!isa<UndefValue>(U->getOperand(1))) 2502 return false; 2503 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2504 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2505 return false; 2506 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2507 if (ShufInst->getMaskValue(i) != -1) 2508 return false; 2509 2510 // There is only one user of this ShuffleVector instruction, which 2511 // must be a reduction operation. 2512 if (!U->hasOneUse()) 2513 return false; 2514 2515 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2516 if (!U2 || U2->getOpcode() != OpCode) 2517 return false; 2518 2519 // Check operands of the reduction operation. 2520 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2521 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2522 UsersToVisit.push_back(U2); 2523 ElemNumToReduce /= 2; 2524 } else 2525 return false; 2526 } else if (isa<ExtractElementInst>(U)) { 2527 // At this moment we should have reduced all elements in the vector. 2528 if (ElemNumToReduce != 1) 2529 return false; 2530 2531 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2532 if (!Val || Val->getZExtValue() != 0) 2533 return false; 2534 2535 ReduxExtracted = true; 2536 } else 2537 return false; 2538 } 2539 } 2540 return ReduxExtracted; 2541 } 2542 2543 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2544 SDValue Op1 = getValue(I.getOperand(0)); 2545 SDValue Op2 = getValue(I.getOperand(1)); 2546 2547 bool nuw = false; 2548 bool nsw = false; 2549 bool exact = false; 2550 bool vec_redux = false; 2551 FastMathFlags FMF; 2552 2553 if (const OverflowingBinaryOperator *OFBinOp = 2554 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2555 nuw = OFBinOp->hasNoUnsignedWrap(); 2556 nsw = OFBinOp->hasNoSignedWrap(); 2557 } 2558 if (const PossiblyExactOperator *ExactOp = 2559 dyn_cast<const PossiblyExactOperator>(&I)) 2560 exact = ExactOp->isExact(); 2561 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2562 FMF = FPOp->getFastMathFlags(); 2563 2564 if (isVectorReductionOp(&I)) { 2565 vec_redux = true; 2566 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2567 } 2568 2569 SDNodeFlags Flags; 2570 Flags.setExact(exact); 2571 Flags.setNoSignedWrap(nsw); 2572 Flags.setNoUnsignedWrap(nuw); 2573 Flags.setVectorReduction(vec_redux); 2574 if (EnableFMFInDAG) { 2575 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2576 Flags.setNoInfs(FMF.noInfs()); 2577 Flags.setNoNaNs(FMF.noNaNs()); 2578 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2579 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2580 } 2581 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2582 Op1, Op2, &Flags); 2583 setValue(&I, BinNodeValue); 2584 } 2585 2586 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2587 SDValue Op1 = getValue(I.getOperand(0)); 2588 SDValue Op2 = getValue(I.getOperand(1)); 2589 2590 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2591 Op2.getValueType(), DAG.getDataLayout()); 2592 2593 // Coerce the shift amount to the right type if we can. 2594 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2595 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2596 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2597 SDLoc DL = getCurSDLoc(); 2598 2599 // If the operand is smaller than the shift count type, promote it. 2600 if (ShiftSize > Op2Size) 2601 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2602 2603 // If the operand is larger than the shift count type but the shift 2604 // count type has enough bits to represent any shift value, truncate 2605 // it now. This is a common case and it exposes the truncate to 2606 // optimization early. 2607 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2608 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2609 // Otherwise we'll need to temporarily settle for some other convenient 2610 // type. Type legalization will make adjustments once the shiftee is split. 2611 else 2612 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2613 } 2614 2615 bool nuw = false; 2616 bool nsw = false; 2617 bool exact = false; 2618 2619 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2620 2621 if (const OverflowingBinaryOperator *OFBinOp = 2622 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2623 nuw = OFBinOp->hasNoUnsignedWrap(); 2624 nsw = OFBinOp->hasNoSignedWrap(); 2625 } 2626 if (const PossiblyExactOperator *ExactOp = 2627 dyn_cast<const PossiblyExactOperator>(&I)) 2628 exact = ExactOp->isExact(); 2629 } 2630 SDNodeFlags Flags; 2631 Flags.setExact(exact); 2632 Flags.setNoSignedWrap(nsw); 2633 Flags.setNoUnsignedWrap(nuw); 2634 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2635 &Flags); 2636 setValue(&I, Res); 2637 } 2638 2639 void SelectionDAGBuilder::visitSDiv(const User &I) { 2640 SDValue Op1 = getValue(I.getOperand(0)); 2641 SDValue Op2 = getValue(I.getOperand(1)); 2642 2643 SDNodeFlags Flags; 2644 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2645 cast<PossiblyExactOperator>(&I)->isExact()); 2646 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2647 Op2, &Flags)); 2648 } 2649 2650 void SelectionDAGBuilder::visitICmp(const User &I) { 2651 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2652 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2653 predicate = IC->getPredicate(); 2654 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2655 predicate = ICmpInst::Predicate(IC->getPredicate()); 2656 SDValue Op1 = getValue(I.getOperand(0)); 2657 SDValue Op2 = getValue(I.getOperand(1)); 2658 ISD::CondCode Opcode = getICmpCondCode(predicate); 2659 2660 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2661 I.getType()); 2662 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2663 } 2664 2665 void SelectionDAGBuilder::visitFCmp(const User &I) { 2666 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2667 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2668 predicate = FC->getPredicate(); 2669 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2670 predicate = FCmpInst::Predicate(FC->getPredicate()); 2671 SDValue Op1 = getValue(I.getOperand(0)); 2672 SDValue Op2 = getValue(I.getOperand(1)); 2673 ISD::CondCode Condition = getFCmpCondCode(predicate); 2674 2675 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2676 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2677 // further optimization, but currently FMF is only applicable to binary nodes. 2678 if (TM.Options.NoNaNsFPMath) 2679 Condition = getFCmpCodeWithoutNaN(Condition); 2680 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2681 I.getType()); 2682 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2683 } 2684 2685 void SelectionDAGBuilder::visitSelect(const User &I) { 2686 SmallVector<EVT, 4> ValueVTs; 2687 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2688 ValueVTs); 2689 unsigned NumValues = ValueVTs.size(); 2690 if (NumValues == 0) return; 2691 2692 SmallVector<SDValue, 4> Values(NumValues); 2693 SDValue Cond = getValue(I.getOperand(0)); 2694 SDValue LHSVal = getValue(I.getOperand(1)); 2695 SDValue RHSVal = getValue(I.getOperand(2)); 2696 auto BaseOps = {Cond}; 2697 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2698 ISD::VSELECT : ISD::SELECT; 2699 2700 // Min/max matching is only viable if all output VTs are the same. 2701 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2702 EVT VT = ValueVTs[0]; 2703 LLVMContext &Ctx = *DAG.getContext(); 2704 auto &TLI = DAG.getTargetLoweringInfo(); 2705 2706 // We care about the legality of the operation after it has been type 2707 // legalized. 2708 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2709 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2710 VT = TLI.getTypeToTransformTo(Ctx, VT); 2711 2712 // If the vselect is legal, assume we want to leave this as a vector setcc + 2713 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2714 // min/max is legal on the scalar type. 2715 bool UseScalarMinMax = VT.isVector() && 2716 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2717 2718 Value *LHS, *RHS; 2719 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2720 ISD::NodeType Opc = ISD::DELETED_NODE; 2721 switch (SPR.Flavor) { 2722 case SPF_UMAX: Opc = ISD::UMAX; break; 2723 case SPF_UMIN: Opc = ISD::UMIN; break; 2724 case SPF_SMAX: Opc = ISD::SMAX; break; 2725 case SPF_SMIN: Opc = ISD::SMIN; break; 2726 case SPF_FMINNUM: 2727 switch (SPR.NaNBehavior) { 2728 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2729 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2730 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2731 case SPNB_RETURNS_ANY: { 2732 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2733 Opc = ISD::FMINNUM; 2734 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2735 Opc = ISD::FMINNAN; 2736 else if (UseScalarMinMax) 2737 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2738 ISD::FMINNUM : ISD::FMINNAN; 2739 break; 2740 } 2741 } 2742 break; 2743 case SPF_FMAXNUM: 2744 switch (SPR.NaNBehavior) { 2745 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2746 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2747 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2748 case SPNB_RETURNS_ANY: 2749 2750 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2751 Opc = ISD::FMAXNUM; 2752 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2753 Opc = ISD::FMAXNAN; 2754 else if (UseScalarMinMax) 2755 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2756 ISD::FMAXNUM : ISD::FMAXNAN; 2757 break; 2758 } 2759 break; 2760 default: break; 2761 } 2762 2763 if (Opc != ISD::DELETED_NODE && 2764 (TLI.isOperationLegalOrCustom(Opc, VT) || 2765 (UseScalarMinMax && 2766 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2767 // If the underlying comparison instruction is used by any other 2768 // instruction, the consumed instructions won't be destroyed, so it is 2769 // not profitable to convert to a min/max. 2770 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2771 OpCode = Opc; 2772 LHSVal = getValue(LHS); 2773 RHSVal = getValue(RHS); 2774 BaseOps = {}; 2775 } 2776 } 2777 2778 for (unsigned i = 0; i != NumValues; ++i) { 2779 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2780 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2781 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2782 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2783 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2784 Ops); 2785 } 2786 2787 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2788 DAG.getVTList(ValueVTs), Values)); 2789 } 2790 2791 void SelectionDAGBuilder::visitTrunc(const User &I) { 2792 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2793 SDValue N = getValue(I.getOperand(0)); 2794 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2795 I.getType()); 2796 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2797 } 2798 2799 void SelectionDAGBuilder::visitZExt(const User &I) { 2800 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2801 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2802 SDValue N = getValue(I.getOperand(0)); 2803 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2804 I.getType()); 2805 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2806 } 2807 2808 void SelectionDAGBuilder::visitSExt(const User &I) { 2809 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2810 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2811 SDValue N = getValue(I.getOperand(0)); 2812 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2813 I.getType()); 2814 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2815 } 2816 2817 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2818 // FPTrunc is never a no-op cast, no need to check 2819 SDValue N = getValue(I.getOperand(0)); 2820 SDLoc dl = getCurSDLoc(); 2821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2822 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2823 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2824 DAG.getTargetConstant( 2825 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2826 } 2827 2828 void SelectionDAGBuilder::visitFPExt(const User &I) { 2829 // FPExt is never a no-op cast, no need to check 2830 SDValue N = getValue(I.getOperand(0)); 2831 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2832 I.getType()); 2833 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2834 } 2835 2836 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2837 // FPToUI is never a no-op cast, no need to check 2838 SDValue N = getValue(I.getOperand(0)); 2839 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2840 I.getType()); 2841 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2842 } 2843 2844 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2845 // FPToSI is never a no-op cast, no need to check 2846 SDValue N = getValue(I.getOperand(0)); 2847 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2848 I.getType()); 2849 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2850 } 2851 2852 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2853 // UIToFP is never a no-op cast, no need to check 2854 SDValue N = getValue(I.getOperand(0)); 2855 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2856 I.getType()); 2857 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2858 } 2859 2860 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2861 // SIToFP is never a no-op cast, no need to check 2862 SDValue N = getValue(I.getOperand(0)); 2863 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2864 I.getType()); 2865 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2866 } 2867 2868 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2869 // What to do depends on the size of the integer and the size of the pointer. 2870 // We can either truncate, zero extend, or no-op, accordingly. 2871 SDValue N = getValue(I.getOperand(0)); 2872 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2873 I.getType()); 2874 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2875 } 2876 2877 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2878 // What to do depends on the size of the integer and the size of the pointer. 2879 // We can either truncate, zero extend, or no-op, accordingly. 2880 SDValue N = getValue(I.getOperand(0)); 2881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2882 I.getType()); 2883 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2884 } 2885 2886 void SelectionDAGBuilder::visitBitCast(const User &I) { 2887 SDValue N = getValue(I.getOperand(0)); 2888 SDLoc dl = getCurSDLoc(); 2889 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2890 I.getType()); 2891 2892 // BitCast assures us that source and destination are the same size so this is 2893 // either a BITCAST or a no-op. 2894 if (DestVT != N.getValueType()) 2895 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2896 DestVT, N)); // convert types. 2897 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2898 // might fold any kind of constant expression to an integer constant and that 2899 // is not what we are looking for. Only regcognize a bitcast of a genuine 2900 // constant integer as an opaque constant. 2901 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2902 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2903 /*isOpaque*/true)); 2904 else 2905 setValue(&I, N); // noop cast. 2906 } 2907 2908 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2910 const Value *SV = I.getOperand(0); 2911 SDValue N = getValue(SV); 2912 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2913 2914 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2915 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2916 2917 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2918 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2919 2920 setValue(&I, N); 2921 } 2922 2923 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2925 SDValue InVec = getValue(I.getOperand(0)); 2926 SDValue InVal = getValue(I.getOperand(1)); 2927 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2928 TLI.getVectorIdxTy(DAG.getDataLayout())); 2929 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2930 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2931 InVec, InVal, InIdx)); 2932 } 2933 2934 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2936 SDValue InVec = getValue(I.getOperand(0)); 2937 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2938 TLI.getVectorIdxTy(DAG.getDataLayout())); 2939 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2940 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2941 InVec, InIdx)); 2942 } 2943 2944 // Utility for visitShuffleVector - Return true if every element in Mask, 2945 // beginning from position Pos and ending in Pos+Size, falls within the 2946 // specified sequential range [L, L+Pos). or is undef. 2947 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2948 unsigned Pos, unsigned Size, int Low) { 2949 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2950 if (Mask[i] >= 0 && Mask[i] != Low) 2951 return false; 2952 return true; 2953 } 2954 2955 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2956 SDValue Src1 = getValue(I.getOperand(0)); 2957 SDValue Src2 = getValue(I.getOperand(1)); 2958 2959 SmallVector<int, 8> Mask; 2960 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2961 unsigned MaskNumElts = Mask.size(); 2962 2963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2964 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2965 EVT SrcVT = Src1.getValueType(); 2966 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2967 2968 if (SrcNumElts == MaskNumElts) { 2969 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2970 &Mask[0])); 2971 return; 2972 } 2973 2974 // Normalize the shuffle vector since mask and vector length don't match. 2975 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2976 // Mask is longer than the source vectors and is a multiple of the source 2977 // vectors. We can use concatenate vector to make the mask and vectors 2978 // lengths match. 2979 if (SrcNumElts*2 == MaskNumElts) { 2980 // First check for Src1 in low and Src2 in high 2981 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2982 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2983 // The shuffle is concatenating two vectors together. 2984 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2985 VT, Src1, Src2)); 2986 return; 2987 } 2988 // Then check for Src2 in low and Src1 in high 2989 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2990 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2991 // The shuffle is concatenating two vectors together. 2992 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2993 VT, Src2, Src1)); 2994 return; 2995 } 2996 } 2997 2998 // Pad both vectors with undefs to make them the same length as the mask. 2999 unsigned NumConcat = MaskNumElts / SrcNumElts; 3000 bool Src1U = Src1.isUndef(); 3001 bool Src2U = Src2.isUndef(); 3002 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3003 3004 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3005 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3006 MOps1[0] = Src1; 3007 MOps2[0] = Src2; 3008 3009 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3010 getCurSDLoc(), VT, MOps1); 3011 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3012 getCurSDLoc(), VT, MOps2); 3013 3014 // Readjust mask for new input vector length. 3015 SmallVector<int, 8> MappedOps; 3016 for (unsigned i = 0; i != MaskNumElts; ++i) { 3017 int Idx = Mask[i]; 3018 if (Idx >= (int)SrcNumElts) 3019 Idx -= SrcNumElts - MaskNumElts; 3020 MappedOps.push_back(Idx); 3021 } 3022 3023 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3024 &MappedOps[0])); 3025 return; 3026 } 3027 3028 if (SrcNumElts > MaskNumElts) { 3029 // Analyze the access pattern of the vector to see if we can extract 3030 // two subvectors and do the shuffle. The analysis is done by calculating 3031 // the range of elements the mask access on both vectors. 3032 int MinRange[2] = { static_cast<int>(SrcNumElts), 3033 static_cast<int>(SrcNumElts)}; 3034 int MaxRange[2] = {-1, -1}; 3035 3036 for (unsigned i = 0; i != MaskNumElts; ++i) { 3037 int Idx = Mask[i]; 3038 unsigned Input = 0; 3039 if (Idx < 0) 3040 continue; 3041 3042 if (Idx >= (int)SrcNumElts) { 3043 Input = 1; 3044 Idx -= SrcNumElts; 3045 } 3046 if (Idx > MaxRange[Input]) 3047 MaxRange[Input] = Idx; 3048 if (Idx < MinRange[Input]) 3049 MinRange[Input] = Idx; 3050 } 3051 3052 // Check if the access is smaller than the vector size and can we find 3053 // a reasonable extract index. 3054 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3055 // Extract. 3056 int StartIdx[2]; // StartIdx to extract from 3057 for (unsigned Input = 0; Input < 2; ++Input) { 3058 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3059 RangeUse[Input] = 0; // Unused 3060 StartIdx[Input] = 0; 3061 continue; 3062 } 3063 3064 // Find a good start index that is a multiple of the mask length. Then 3065 // see if the rest of the elements are in range. 3066 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3067 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3068 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3069 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3070 } 3071 3072 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3073 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3074 return; 3075 } 3076 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3077 // Extract appropriate subvector and generate a vector shuffle 3078 for (unsigned Input = 0; Input < 2; ++Input) { 3079 SDValue &Src = Input == 0 ? Src1 : Src2; 3080 if (RangeUse[Input] == 0) 3081 Src = DAG.getUNDEF(VT); 3082 else { 3083 SDLoc dl = getCurSDLoc(); 3084 Src = DAG.getNode( 3085 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3086 DAG.getConstant(StartIdx[Input], dl, 3087 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3088 } 3089 } 3090 3091 // Calculate new mask. 3092 SmallVector<int, 8> MappedOps; 3093 for (unsigned i = 0; i != MaskNumElts; ++i) { 3094 int Idx = Mask[i]; 3095 if (Idx >= 0) { 3096 if (Idx < (int)SrcNumElts) 3097 Idx -= StartIdx[0]; 3098 else 3099 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3100 } 3101 MappedOps.push_back(Idx); 3102 } 3103 3104 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3105 &MappedOps[0])); 3106 return; 3107 } 3108 } 3109 3110 // We can't use either concat vectors or extract subvectors so fall back to 3111 // replacing the shuffle with extract and build vector. 3112 // to insert and build vector. 3113 EVT EltVT = VT.getVectorElementType(); 3114 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3115 SDLoc dl = getCurSDLoc(); 3116 SmallVector<SDValue,8> Ops; 3117 for (unsigned i = 0; i != MaskNumElts; ++i) { 3118 int Idx = Mask[i]; 3119 SDValue Res; 3120 3121 if (Idx < 0) { 3122 Res = DAG.getUNDEF(EltVT); 3123 } else { 3124 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3125 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3126 3127 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3128 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3129 } 3130 3131 Ops.push_back(Res); 3132 } 3133 3134 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3135 } 3136 3137 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3138 const Value *Op0 = I.getOperand(0); 3139 const Value *Op1 = I.getOperand(1); 3140 Type *AggTy = I.getType(); 3141 Type *ValTy = Op1->getType(); 3142 bool IntoUndef = isa<UndefValue>(Op0); 3143 bool FromUndef = isa<UndefValue>(Op1); 3144 3145 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3146 3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3148 SmallVector<EVT, 4> AggValueVTs; 3149 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3150 SmallVector<EVT, 4> ValValueVTs; 3151 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3152 3153 unsigned NumAggValues = AggValueVTs.size(); 3154 unsigned NumValValues = ValValueVTs.size(); 3155 SmallVector<SDValue, 4> Values(NumAggValues); 3156 3157 // Ignore an insertvalue that produces an empty object 3158 if (!NumAggValues) { 3159 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3160 return; 3161 } 3162 3163 SDValue Agg = getValue(Op0); 3164 unsigned i = 0; 3165 // Copy the beginning value(s) from the original aggregate. 3166 for (; i != LinearIndex; ++i) 3167 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3168 SDValue(Agg.getNode(), Agg.getResNo() + i); 3169 // Copy values from the inserted value(s). 3170 if (NumValValues) { 3171 SDValue Val = getValue(Op1); 3172 for (; i != LinearIndex + NumValValues; ++i) 3173 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3174 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3175 } 3176 // Copy remaining value(s) from the original aggregate. 3177 for (; i != NumAggValues; ++i) 3178 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3179 SDValue(Agg.getNode(), Agg.getResNo() + i); 3180 3181 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3182 DAG.getVTList(AggValueVTs), Values)); 3183 } 3184 3185 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3186 const Value *Op0 = I.getOperand(0); 3187 Type *AggTy = Op0->getType(); 3188 Type *ValTy = I.getType(); 3189 bool OutOfUndef = isa<UndefValue>(Op0); 3190 3191 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3192 3193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3194 SmallVector<EVT, 4> ValValueVTs; 3195 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3196 3197 unsigned NumValValues = ValValueVTs.size(); 3198 3199 // Ignore a extractvalue that produces an empty object 3200 if (!NumValValues) { 3201 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3202 return; 3203 } 3204 3205 SmallVector<SDValue, 4> Values(NumValValues); 3206 3207 SDValue Agg = getValue(Op0); 3208 // Copy out the selected value(s). 3209 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3210 Values[i - LinearIndex] = 3211 OutOfUndef ? 3212 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3213 SDValue(Agg.getNode(), Agg.getResNo() + i); 3214 3215 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3216 DAG.getVTList(ValValueVTs), Values)); 3217 } 3218 3219 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3220 Value *Op0 = I.getOperand(0); 3221 // Note that the pointer operand may be a vector of pointers. Take the scalar 3222 // element which holds a pointer. 3223 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3224 SDValue N = getValue(Op0); 3225 SDLoc dl = getCurSDLoc(); 3226 3227 // Normalize Vector GEP - all scalar operands should be converted to the 3228 // splat vector. 3229 unsigned VectorWidth = I.getType()->isVectorTy() ? 3230 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3231 3232 if (VectorWidth && !N.getValueType().isVector()) { 3233 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3234 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3235 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3236 } 3237 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3238 GTI != E; ++GTI) { 3239 const Value *Idx = GTI.getOperand(); 3240 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3241 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3242 if (Field) { 3243 // N = N + Offset 3244 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3245 3246 // In an inbouds GEP with an offset that is nonnegative even when 3247 // interpreted as signed, assume there is no unsigned overflow. 3248 SDNodeFlags Flags; 3249 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3250 Flags.setNoUnsignedWrap(true); 3251 3252 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3253 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3254 } 3255 } else { 3256 MVT PtrTy = 3257 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3258 unsigned PtrSize = PtrTy.getSizeInBits(); 3259 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3260 3261 // If this is a scalar constant or a splat vector of constants, 3262 // handle it quickly. 3263 const auto *CI = dyn_cast<ConstantInt>(Idx); 3264 if (!CI && isa<ConstantDataVector>(Idx) && 3265 cast<ConstantDataVector>(Idx)->getSplatValue()) 3266 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3267 3268 if (CI) { 3269 if (CI->isZero()) 3270 continue; 3271 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3272 SDValue OffsVal = VectorWidth ? 3273 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3274 DAG.getConstant(Offs, dl, PtrTy); 3275 3276 // In an inbouds GEP with an offset that is nonnegative even when 3277 // interpreted as signed, assume there is no unsigned overflow. 3278 SDNodeFlags Flags; 3279 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3280 Flags.setNoUnsignedWrap(true); 3281 3282 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3283 continue; 3284 } 3285 3286 // N = N + Idx * ElementSize; 3287 SDValue IdxN = getValue(Idx); 3288 3289 if (!IdxN.getValueType().isVector() && VectorWidth) { 3290 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3291 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3292 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3293 } 3294 // If the index is smaller or larger than intptr_t, truncate or extend 3295 // it. 3296 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3297 3298 // If this is a multiply by a power of two, turn it into a shl 3299 // immediately. This is a very common case. 3300 if (ElementSize != 1) { 3301 if (ElementSize.isPowerOf2()) { 3302 unsigned Amt = ElementSize.logBase2(); 3303 IdxN = DAG.getNode(ISD::SHL, dl, 3304 N.getValueType(), IdxN, 3305 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3306 } else { 3307 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3308 IdxN = DAG.getNode(ISD::MUL, dl, 3309 N.getValueType(), IdxN, Scale); 3310 } 3311 } 3312 3313 N = DAG.getNode(ISD::ADD, dl, 3314 N.getValueType(), N, IdxN); 3315 } 3316 } 3317 3318 setValue(&I, N); 3319 } 3320 3321 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3322 // If this is a fixed sized alloca in the entry block of the function, 3323 // allocate it statically on the stack. 3324 if (FuncInfo.StaticAllocaMap.count(&I)) 3325 return; // getValue will auto-populate this. 3326 3327 SDLoc dl = getCurSDLoc(); 3328 Type *Ty = I.getAllocatedType(); 3329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3330 auto &DL = DAG.getDataLayout(); 3331 uint64_t TySize = DL.getTypeAllocSize(Ty); 3332 unsigned Align = 3333 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3334 3335 SDValue AllocSize = getValue(I.getArraySize()); 3336 3337 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3338 if (AllocSize.getValueType() != IntPtr) 3339 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3340 3341 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3342 AllocSize, 3343 DAG.getConstant(TySize, dl, IntPtr)); 3344 3345 // Handle alignment. If the requested alignment is less than or equal to 3346 // the stack alignment, ignore it. If the size is greater than or equal to 3347 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3348 unsigned StackAlign = 3349 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3350 if (Align <= StackAlign) 3351 Align = 0; 3352 3353 // Round the size of the allocation up to the stack alignment size 3354 // by add SA-1 to the size. This doesn't overflow because we're computing 3355 // an address inside an alloca. 3356 SDNodeFlags Flags; 3357 Flags.setNoUnsignedWrap(true); 3358 AllocSize = DAG.getNode(ISD::ADD, dl, 3359 AllocSize.getValueType(), AllocSize, 3360 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3361 3362 // Mask out the low bits for alignment purposes. 3363 AllocSize = DAG.getNode(ISD::AND, dl, 3364 AllocSize.getValueType(), AllocSize, 3365 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3366 dl)); 3367 3368 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3369 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3370 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3371 setValue(&I, DSA); 3372 DAG.setRoot(DSA.getValue(1)); 3373 3374 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3375 } 3376 3377 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3378 if (I.isAtomic()) 3379 return visitAtomicLoad(I); 3380 3381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3382 const Value *SV = I.getOperand(0); 3383 if (TLI.supportSwiftError()) { 3384 // Swifterror values can come from either a function parameter with 3385 // swifterror attribute or an alloca with swifterror attribute. 3386 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3387 if (Arg->hasSwiftErrorAttr()) 3388 return visitLoadFromSwiftError(I); 3389 } 3390 3391 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3392 if (Alloca->isSwiftError()) 3393 return visitLoadFromSwiftError(I); 3394 } 3395 } 3396 3397 SDValue Ptr = getValue(SV); 3398 3399 Type *Ty = I.getType(); 3400 3401 bool isVolatile = I.isVolatile(); 3402 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3403 3404 // The IR notion of invariant_load only guarantees that all *non-faulting* 3405 // invariant loads result in the same value. The MI notion of invariant load 3406 // guarantees that the load can be legally moved to any location within its 3407 // containing function. The MI notion of invariant_load is stronger than the 3408 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3409 // with a guarantee that the location being loaded from is dereferenceable 3410 // throughout the function's lifetime. 3411 3412 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3413 isDereferenceablePointer(SV, DAG.getDataLayout()); 3414 unsigned Alignment = I.getAlignment(); 3415 3416 AAMDNodes AAInfo; 3417 I.getAAMetadata(AAInfo); 3418 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3419 3420 SmallVector<EVT, 4> ValueVTs; 3421 SmallVector<uint64_t, 4> Offsets; 3422 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3423 unsigned NumValues = ValueVTs.size(); 3424 if (NumValues == 0) 3425 return; 3426 3427 SDValue Root; 3428 bool ConstantMemory = false; 3429 if (isVolatile || NumValues > MaxParallelChains) 3430 // Serialize volatile loads with other side effects. 3431 Root = getRoot(); 3432 else if (AA->pointsToConstantMemory(MemoryLocation( 3433 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3434 // Do not serialize (non-volatile) loads of constant memory with anything. 3435 Root = DAG.getEntryNode(); 3436 ConstantMemory = true; 3437 } else { 3438 // Do not serialize non-volatile loads against each other. 3439 Root = DAG.getRoot(); 3440 } 3441 3442 SDLoc dl = getCurSDLoc(); 3443 3444 if (isVolatile) 3445 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3446 3447 // An aggregate load cannot wrap around the address space, so offsets to its 3448 // parts don't wrap either. 3449 SDNodeFlags Flags; 3450 Flags.setNoUnsignedWrap(true); 3451 3452 SmallVector<SDValue, 4> Values(NumValues); 3453 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3454 EVT PtrVT = Ptr.getValueType(); 3455 unsigned ChainI = 0; 3456 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3457 // Serializing loads here may result in excessive register pressure, and 3458 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3459 // could recover a bit by hoisting nodes upward in the chain by recognizing 3460 // they are side-effect free or do not alias. The optimizer should really 3461 // avoid this case by converting large object/array copies to llvm.memcpy 3462 // (MaxParallelChains should always remain as failsafe). 3463 if (ChainI == MaxParallelChains) { 3464 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3465 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3466 makeArrayRef(Chains.data(), ChainI)); 3467 Root = Chain; 3468 ChainI = 0; 3469 } 3470 SDValue A = DAG.getNode(ISD::ADD, dl, 3471 PtrVT, Ptr, 3472 DAG.getConstant(Offsets[i], dl, PtrVT), 3473 &Flags); 3474 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3475 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3476 isNonTemporal, isInvariant, Alignment, AAInfo, 3477 Ranges); 3478 3479 Values[i] = L; 3480 Chains[ChainI] = L.getValue(1); 3481 } 3482 3483 if (!ConstantMemory) { 3484 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3485 makeArrayRef(Chains.data(), ChainI)); 3486 if (isVolatile) 3487 DAG.setRoot(Chain); 3488 else 3489 PendingLoads.push_back(Chain); 3490 } 3491 3492 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3493 DAG.getVTList(ValueVTs), Values)); 3494 } 3495 3496 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3498 assert(TLI.supportSwiftError() && 3499 "call visitStoreToSwiftError when backend supports swifterror"); 3500 3501 SmallVector<EVT, 4> ValueVTs; 3502 SmallVector<uint64_t, 4> Offsets; 3503 const Value *SrcV = I.getOperand(0); 3504 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3505 SrcV->getType(), ValueVTs, &Offsets); 3506 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3507 "expect a single EVT for swifterror"); 3508 3509 SDValue Src = getValue(SrcV); 3510 // Create a virtual register, then update the virtual register. 3511 auto &DL = DAG.getDataLayout(); 3512 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3513 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3514 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3515 // Chain can be getRoot or getControlRoot. 3516 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3517 SDValue(Src.getNode(), Src.getResNo())); 3518 DAG.setRoot(CopyNode); 3519 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3520 } 3521 3522 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3523 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3524 "call visitLoadFromSwiftError when backend supports swifterror"); 3525 3526 assert(!I.isVolatile() && 3527 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3528 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3529 "Support volatile, non temporal, invariant for load_from_swift_error"); 3530 3531 const Value *SV = I.getOperand(0); 3532 Type *Ty = I.getType(); 3533 AAMDNodes AAInfo; 3534 I.getAAMetadata(AAInfo); 3535 assert(!AA->pointsToConstantMemory(MemoryLocation( 3536 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3537 "load_from_swift_error should not be constant memory"); 3538 3539 SmallVector<EVT, 4> ValueVTs; 3540 SmallVector<uint64_t, 4> Offsets; 3541 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3542 ValueVTs, &Offsets); 3543 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3544 "expect a single EVT for swifterror"); 3545 3546 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3547 SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(), 3548 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV), 3549 ValueVTs[0]); 3550 3551 setValue(&I, L); 3552 } 3553 3554 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3555 if (I.isAtomic()) 3556 return visitAtomicStore(I); 3557 3558 const Value *SrcV = I.getOperand(0); 3559 const Value *PtrV = I.getOperand(1); 3560 3561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3562 if (TLI.supportSwiftError()) { 3563 // Swifterror values can come from either a function parameter with 3564 // swifterror attribute or an alloca with swifterror attribute. 3565 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3566 if (Arg->hasSwiftErrorAttr()) 3567 return visitStoreToSwiftError(I); 3568 } 3569 3570 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3571 if (Alloca->isSwiftError()) 3572 return visitStoreToSwiftError(I); 3573 } 3574 } 3575 3576 SmallVector<EVT, 4> ValueVTs; 3577 SmallVector<uint64_t, 4> Offsets; 3578 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3579 SrcV->getType(), ValueVTs, &Offsets); 3580 unsigned NumValues = ValueVTs.size(); 3581 if (NumValues == 0) 3582 return; 3583 3584 // Get the lowered operands. Note that we do this after 3585 // checking if NumResults is zero, because with zero results 3586 // the operands won't have values in the map. 3587 SDValue Src = getValue(SrcV); 3588 SDValue Ptr = getValue(PtrV); 3589 3590 SDValue Root = getRoot(); 3591 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3592 EVT PtrVT = Ptr.getValueType(); 3593 bool isVolatile = I.isVolatile(); 3594 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3595 unsigned Alignment = I.getAlignment(); 3596 SDLoc dl = getCurSDLoc(); 3597 3598 AAMDNodes AAInfo; 3599 I.getAAMetadata(AAInfo); 3600 3601 // An aggregate load cannot wrap around the address space, so offsets to its 3602 // parts don't wrap either. 3603 SDNodeFlags Flags; 3604 Flags.setNoUnsignedWrap(true); 3605 3606 unsigned ChainI = 0; 3607 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3608 // See visitLoad comments. 3609 if (ChainI == MaxParallelChains) { 3610 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3611 makeArrayRef(Chains.data(), ChainI)); 3612 Root = Chain; 3613 ChainI = 0; 3614 } 3615 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3616 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3617 SDValue St = DAG.getStore(Root, dl, 3618 SDValue(Src.getNode(), Src.getResNo() + i), 3619 Add, MachinePointerInfo(PtrV, Offsets[i]), 3620 isVolatile, isNonTemporal, Alignment, AAInfo); 3621 Chains[ChainI] = St; 3622 } 3623 3624 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3625 makeArrayRef(Chains.data(), ChainI)); 3626 DAG.setRoot(StoreNode); 3627 } 3628 3629 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3630 SDLoc sdl = getCurSDLoc(); 3631 3632 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3633 Value *PtrOperand = I.getArgOperand(1); 3634 SDValue Ptr = getValue(PtrOperand); 3635 SDValue Src0 = getValue(I.getArgOperand(0)); 3636 SDValue Mask = getValue(I.getArgOperand(3)); 3637 EVT VT = Src0.getValueType(); 3638 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3639 if (!Alignment) 3640 Alignment = DAG.getEVTAlignment(VT); 3641 3642 AAMDNodes AAInfo; 3643 I.getAAMetadata(AAInfo); 3644 3645 MachineMemOperand *MMO = 3646 DAG.getMachineFunction(). 3647 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3648 MachineMemOperand::MOStore, VT.getStoreSize(), 3649 Alignment, AAInfo); 3650 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3651 MMO, false); 3652 DAG.setRoot(StoreNode); 3653 setValue(&I, StoreNode); 3654 } 3655 3656 // Get a uniform base for the Gather/Scatter intrinsic. 3657 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3658 // We try to represent it as a base pointer + vector of indices. 3659 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3660 // The first operand of the GEP may be a single pointer or a vector of pointers 3661 // Example: 3662 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3663 // or 3664 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3665 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3666 // 3667 // When the first GEP operand is a single pointer - it is the uniform base we 3668 // are looking for. If first operand of the GEP is a splat vector - we 3669 // extract the spalt value and use it as a uniform base. 3670 // In all other cases the function returns 'false'. 3671 // 3672 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3673 SelectionDAGBuilder* SDB) { 3674 3675 SelectionDAG& DAG = SDB->DAG; 3676 LLVMContext &Context = *DAG.getContext(); 3677 3678 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3679 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3680 if (!GEP || GEP->getNumOperands() > 2) 3681 return false; 3682 3683 const Value *GEPPtr = GEP->getPointerOperand(); 3684 if (!GEPPtr->getType()->isVectorTy()) 3685 Ptr = GEPPtr; 3686 else if (!(Ptr = getSplatValue(GEPPtr))) 3687 return false; 3688 3689 Value *IndexVal = GEP->getOperand(1); 3690 3691 // The operands of the GEP may be defined in another basic block. 3692 // In this case we'll not find nodes for the operands. 3693 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3694 return false; 3695 3696 Base = SDB->getValue(Ptr); 3697 Index = SDB->getValue(IndexVal); 3698 3699 // Suppress sign extension. 3700 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3701 if (SDB->findValue(Sext->getOperand(0))) { 3702 IndexVal = Sext->getOperand(0); 3703 Index = SDB->getValue(IndexVal); 3704 } 3705 } 3706 if (!Index.getValueType().isVector()) { 3707 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3708 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3709 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3710 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3711 } 3712 return true; 3713 } 3714 3715 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3716 SDLoc sdl = getCurSDLoc(); 3717 3718 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3719 const Value *Ptr = I.getArgOperand(1); 3720 SDValue Src0 = getValue(I.getArgOperand(0)); 3721 SDValue Mask = getValue(I.getArgOperand(3)); 3722 EVT VT = Src0.getValueType(); 3723 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3724 if (!Alignment) 3725 Alignment = DAG.getEVTAlignment(VT); 3726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3727 3728 AAMDNodes AAInfo; 3729 I.getAAMetadata(AAInfo); 3730 3731 SDValue Base; 3732 SDValue Index; 3733 const Value *BasePtr = Ptr; 3734 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3735 3736 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3737 MachineMemOperand *MMO = DAG.getMachineFunction(). 3738 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3739 MachineMemOperand::MOStore, VT.getStoreSize(), 3740 Alignment, AAInfo); 3741 if (!UniformBase) { 3742 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3743 Index = getValue(Ptr); 3744 } 3745 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3746 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3747 Ops, MMO); 3748 DAG.setRoot(Scatter); 3749 setValue(&I, Scatter); 3750 } 3751 3752 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3753 SDLoc sdl = getCurSDLoc(); 3754 3755 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3756 Value *PtrOperand = I.getArgOperand(0); 3757 SDValue Ptr = getValue(PtrOperand); 3758 SDValue Src0 = getValue(I.getArgOperand(3)); 3759 SDValue Mask = getValue(I.getArgOperand(2)); 3760 3761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3762 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3763 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3764 if (!Alignment) 3765 Alignment = DAG.getEVTAlignment(VT); 3766 3767 AAMDNodes AAInfo; 3768 I.getAAMetadata(AAInfo); 3769 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3770 3771 SDValue InChain = DAG.getRoot(); 3772 if (AA->pointsToConstantMemory(MemoryLocation( 3773 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3774 AAInfo))) { 3775 // Do not serialize (non-volatile) loads of constant memory with anything. 3776 InChain = DAG.getEntryNode(); 3777 } 3778 3779 MachineMemOperand *MMO = 3780 DAG.getMachineFunction(). 3781 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3782 MachineMemOperand::MOLoad, VT.getStoreSize(), 3783 Alignment, AAInfo, Ranges); 3784 3785 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3786 ISD::NON_EXTLOAD); 3787 SDValue OutChain = Load.getValue(1); 3788 DAG.setRoot(OutChain); 3789 setValue(&I, Load); 3790 } 3791 3792 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3793 SDLoc sdl = getCurSDLoc(); 3794 3795 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3796 const Value *Ptr = I.getArgOperand(0); 3797 SDValue Src0 = getValue(I.getArgOperand(3)); 3798 SDValue Mask = getValue(I.getArgOperand(2)); 3799 3800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3801 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3802 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3803 if (!Alignment) 3804 Alignment = DAG.getEVTAlignment(VT); 3805 3806 AAMDNodes AAInfo; 3807 I.getAAMetadata(AAInfo); 3808 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3809 3810 SDValue Root = DAG.getRoot(); 3811 SDValue Base; 3812 SDValue Index; 3813 const Value *BasePtr = Ptr; 3814 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3815 bool ConstantMemory = false; 3816 if (UniformBase && 3817 AA->pointsToConstantMemory(MemoryLocation( 3818 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3819 AAInfo))) { 3820 // Do not serialize (non-volatile) loads of constant memory with anything. 3821 Root = DAG.getEntryNode(); 3822 ConstantMemory = true; 3823 } 3824 3825 MachineMemOperand *MMO = 3826 DAG.getMachineFunction(). 3827 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3828 MachineMemOperand::MOLoad, VT.getStoreSize(), 3829 Alignment, AAInfo, Ranges); 3830 3831 if (!UniformBase) { 3832 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3833 Index = getValue(Ptr); 3834 } 3835 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3836 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3837 Ops, MMO); 3838 3839 SDValue OutChain = Gather.getValue(1); 3840 if (!ConstantMemory) 3841 PendingLoads.push_back(OutChain); 3842 setValue(&I, Gather); 3843 } 3844 3845 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3846 SDLoc dl = getCurSDLoc(); 3847 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3848 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3849 SynchronizationScope Scope = I.getSynchScope(); 3850 3851 SDValue InChain = getRoot(); 3852 3853 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3854 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3855 SDValue L = DAG.getAtomicCmpSwap( 3856 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3857 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3858 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3859 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3860 3861 SDValue OutChain = L.getValue(2); 3862 3863 setValue(&I, L); 3864 DAG.setRoot(OutChain); 3865 } 3866 3867 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3868 SDLoc dl = getCurSDLoc(); 3869 ISD::NodeType NT; 3870 switch (I.getOperation()) { 3871 default: llvm_unreachable("Unknown atomicrmw operation"); 3872 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3873 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3874 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3875 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3876 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3877 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3878 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3879 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3880 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3881 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3882 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3883 } 3884 AtomicOrdering Order = I.getOrdering(); 3885 SynchronizationScope Scope = I.getSynchScope(); 3886 3887 SDValue InChain = getRoot(); 3888 3889 SDValue L = 3890 DAG.getAtomic(NT, dl, 3891 getValue(I.getValOperand()).getSimpleValueType(), 3892 InChain, 3893 getValue(I.getPointerOperand()), 3894 getValue(I.getValOperand()), 3895 I.getPointerOperand(), 3896 /* Alignment=*/ 0, Order, Scope); 3897 3898 SDValue OutChain = L.getValue(1); 3899 3900 setValue(&I, L); 3901 DAG.setRoot(OutChain); 3902 } 3903 3904 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3905 SDLoc dl = getCurSDLoc(); 3906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3907 SDValue Ops[3]; 3908 Ops[0] = getRoot(); 3909 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3910 TLI.getPointerTy(DAG.getDataLayout())); 3911 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3912 TLI.getPointerTy(DAG.getDataLayout())); 3913 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3914 } 3915 3916 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3917 SDLoc dl = getCurSDLoc(); 3918 AtomicOrdering Order = I.getOrdering(); 3919 SynchronizationScope Scope = I.getSynchScope(); 3920 3921 SDValue InChain = getRoot(); 3922 3923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3924 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3925 3926 if (I.getAlignment() < VT.getSizeInBits() / 8) 3927 report_fatal_error("Cannot generate unaligned atomic load"); 3928 3929 MachineMemOperand *MMO = 3930 DAG.getMachineFunction(). 3931 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3932 MachineMemOperand::MOVolatile | 3933 MachineMemOperand::MOLoad, 3934 VT.getStoreSize(), 3935 I.getAlignment() ? I.getAlignment() : 3936 DAG.getEVTAlignment(VT)); 3937 3938 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3939 SDValue L = 3940 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3941 getValue(I.getPointerOperand()), MMO, 3942 Order, Scope); 3943 3944 SDValue OutChain = L.getValue(1); 3945 3946 setValue(&I, L); 3947 DAG.setRoot(OutChain); 3948 } 3949 3950 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3951 SDLoc dl = getCurSDLoc(); 3952 3953 AtomicOrdering Order = I.getOrdering(); 3954 SynchronizationScope Scope = I.getSynchScope(); 3955 3956 SDValue InChain = getRoot(); 3957 3958 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3959 EVT VT = 3960 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3961 3962 if (I.getAlignment() < VT.getSizeInBits() / 8) 3963 report_fatal_error("Cannot generate unaligned atomic store"); 3964 3965 SDValue OutChain = 3966 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3967 InChain, 3968 getValue(I.getPointerOperand()), 3969 getValue(I.getValueOperand()), 3970 I.getPointerOperand(), I.getAlignment(), 3971 Order, Scope); 3972 3973 DAG.setRoot(OutChain); 3974 } 3975 3976 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3977 /// node. 3978 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3979 unsigned Intrinsic) { 3980 bool HasChain = !I.doesNotAccessMemory(); 3981 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3982 3983 // Build the operand list. 3984 SmallVector<SDValue, 8> Ops; 3985 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3986 if (OnlyLoad) { 3987 // We don't need to serialize loads against other loads. 3988 Ops.push_back(DAG.getRoot()); 3989 } else { 3990 Ops.push_back(getRoot()); 3991 } 3992 } 3993 3994 // Info is set by getTgtMemInstrinsic 3995 TargetLowering::IntrinsicInfo Info; 3996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3997 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3998 3999 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4000 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4001 Info.opc == ISD::INTRINSIC_W_CHAIN) 4002 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4003 TLI.getPointerTy(DAG.getDataLayout()))); 4004 4005 // Add all operands of the call to the operand list. 4006 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4007 SDValue Op = getValue(I.getArgOperand(i)); 4008 Ops.push_back(Op); 4009 } 4010 4011 SmallVector<EVT, 4> ValueVTs; 4012 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4013 4014 if (HasChain) 4015 ValueVTs.push_back(MVT::Other); 4016 4017 SDVTList VTs = DAG.getVTList(ValueVTs); 4018 4019 // Create the node. 4020 SDValue Result; 4021 if (IsTgtIntrinsic) { 4022 // This is target intrinsic that touches memory 4023 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4024 VTs, Ops, Info.memVT, 4025 MachinePointerInfo(Info.ptrVal, Info.offset), 4026 Info.align, Info.vol, 4027 Info.readMem, Info.writeMem, Info.size); 4028 } else if (!HasChain) { 4029 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4030 } else if (!I.getType()->isVoidTy()) { 4031 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4032 } else { 4033 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4034 } 4035 4036 if (HasChain) { 4037 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4038 if (OnlyLoad) 4039 PendingLoads.push_back(Chain); 4040 else 4041 DAG.setRoot(Chain); 4042 } 4043 4044 if (!I.getType()->isVoidTy()) { 4045 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4046 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4047 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4048 } else 4049 Result = lowerRangeToAssertZExt(DAG, I, Result); 4050 4051 setValue(&I, Result); 4052 } 4053 } 4054 4055 /// GetSignificand - Get the significand and build it into a floating-point 4056 /// number with exponent of 1: 4057 /// 4058 /// Op = (Op & 0x007fffff) | 0x3f800000; 4059 /// 4060 /// where Op is the hexadecimal representation of floating point value. 4061 static SDValue 4062 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 4063 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4064 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4065 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4066 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4067 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4068 } 4069 4070 /// GetExponent - Get the exponent: 4071 /// 4072 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4073 /// 4074 /// where Op is the hexadecimal representation of floating point value. 4075 static SDValue 4076 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 4077 SDLoc dl) { 4078 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4079 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4080 SDValue t1 = DAG.getNode( 4081 ISD::SRL, dl, MVT::i32, t0, 4082 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4083 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4084 DAG.getConstant(127, dl, MVT::i32)); 4085 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4086 } 4087 4088 /// getF32Constant - Get 32-bit floating point constant. 4089 static SDValue 4090 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 4091 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 4092 MVT::f32); 4093 } 4094 4095 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 4096 SelectionDAG &DAG) { 4097 // TODO: What fast-math-flags should be set on the floating-point nodes? 4098 4099 // IntegerPartOfX = ((int32_t)(t0); 4100 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4101 4102 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4103 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4104 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4105 4106 // IntegerPartOfX <<= 23; 4107 IntegerPartOfX = DAG.getNode( 4108 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4109 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4110 DAG.getDataLayout()))); 4111 4112 SDValue TwoToFractionalPartOfX; 4113 if (LimitFloatPrecision <= 6) { 4114 // For floating-point precision of 6: 4115 // 4116 // TwoToFractionalPartOfX = 4117 // 0.997535578f + 4118 // (0.735607626f + 0.252464424f * x) * x; 4119 // 4120 // error 0.0144103317, which is 6 bits 4121 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4122 getF32Constant(DAG, 0x3e814304, dl)); 4123 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4124 getF32Constant(DAG, 0x3f3c50c8, dl)); 4125 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4126 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4127 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4128 } else if (LimitFloatPrecision <= 12) { 4129 // For floating-point precision of 12: 4130 // 4131 // TwoToFractionalPartOfX = 4132 // 0.999892986f + 4133 // (0.696457318f + 4134 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4135 // 4136 // error 0.000107046256, which is 13 to 14 bits 4137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4138 getF32Constant(DAG, 0x3da235e3, dl)); 4139 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4140 getF32Constant(DAG, 0x3e65b8f3, dl)); 4141 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4142 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4143 getF32Constant(DAG, 0x3f324b07, dl)); 4144 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4145 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4146 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4147 } else { // LimitFloatPrecision <= 18 4148 // For floating-point precision of 18: 4149 // 4150 // TwoToFractionalPartOfX = 4151 // 0.999999982f + 4152 // (0.693148872f + 4153 // (0.240227044f + 4154 // (0.554906021e-1f + 4155 // (0.961591928e-2f + 4156 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4157 // error 2.47208000*10^(-7), which is better than 18 bits 4158 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4159 getF32Constant(DAG, 0x3924b03e, dl)); 4160 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4161 getF32Constant(DAG, 0x3ab24b87, dl)); 4162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4163 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4164 getF32Constant(DAG, 0x3c1d8c17, dl)); 4165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4166 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4167 getF32Constant(DAG, 0x3d634a1d, dl)); 4168 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4169 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4170 getF32Constant(DAG, 0x3e75fe14, dl)); 4171 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4172 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4173 getF32Constant(DAG, 0x3f317234, dl)); 4174 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4175 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4176 getF32Constant(DAG, 0x3f800000, dl)); 4177 } 4178 4179 // Add the exponent into the result in integer domain. 4180 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4181 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4182 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4183 } 4184 4185 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4186 /// limited-precision mode. 4187 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4188 const TargetLowering &TLI) { 4189 if (Op.getValueType() == MVT::f32 && 4190 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4191 4192 // Put the exponent in the right bit position for later addition to the 4193 // final result: 4194 // 4195 // #define LOG2OFe 1.4426950f 4196 // t0 = Op * LOG2OFe 4197 4198 // TODO: What fast-math-flags should be set here? 4199 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4200 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4201 return getLimitedPrecisionExp2(t0, dl, DAG); 4202 } 4203 4204 // No special expansion. 4205 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4206 } 4207 4208 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4209 /// limited-precision mode. 4210 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4211 const TargetLowering &TLI) { 4212 4213 // TODO: What fast-math-flags should be set on the floating-point nodes? 4214 4215 if (Op.getValueType() == MVT::f32 && 4216 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4217 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4218 4219 // Scale the exponent by log(2) [0.69314718f]. 4220 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4221 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4222 getF32Constant(DAG, 0x3f317218, dl)); 4223 4224 // Get the significand and build it into a floating-point number with 4225 // exponent of 1. 4226 SDValue X = GetSignificand(DAG, Op1, dl); 4227 4228 SDValue LogOfMantissa; 4229 if (LimitFloatPrecision <= 6) { 4230 // For floating-point precision of 6: 4231 // 4232 // LogofMantissa = 4233 // -1.1609546f + 4234 // (1.4034025f - 0.23903021f * x) * x; 4235 // 4236 // error 0.0034276066, which is better than 8 bits 4237 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4238 getF32Constant(DAG, 0xbe74c456, dl)); 4239 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4240 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4241 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4242 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4243 getF32Constant(DAG, 0x3f949a29, dl)); 4244 } else if (LimitFloatPrecision <= 12) { 4245 // For floating-point precision of 12: 4246 // 4247 // LogOfMantissa = 4248 // -1.7417939f + 4249 // (2.8212026f + 4250 // (-1.4699568f + 4251 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4252 // 4253 // error 0.000061011436, which is 14 bits 4254 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4255 getF32Constant(DAG, 0xbd67b6d6, dl)); 4256 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4257 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4259 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4260 getF32Constant(DAG, 0x3fbc278b, dl)); 4261 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4262 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4263 getF32Constant(DAG, 0x40348e95, dl)); 4264 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4265 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4266 getF32Constant(DAG, 0x3fdef31a, dl)); 4267 } else { // LimitFloatPrecision <= 18 4268 // For floating-point precision of 18: 4269 // 4270 // LogOfMantissa = 4271 // -2.1072184f + 4272 // (4.2372794f + 4273 // (-3.7029485f + 4274 // (2.2781945f + 4275 // (-0.87823314f + 4276 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4277 // 4278 // error 0.0000023660568, which is better than 18 bits 4279 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4280 getF32Constant(DAG, 0xbc91e5ac, dl)); 4281 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4282 getF32Constant(DAG, 0x3e4350aa, dl)); 4283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4284 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4285 getF32Constant(DAG, 0x3f60d3e3, dl)); 4286 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4287 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4288 getF32Constant(DAG, 0x4011cdf0, dl)); 4289 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4290 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4291 getF32Constant(DAG, 0x406cfd1c, dl)); 4292 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4293 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4294 getF32Constant(DAG, 0x408797cb, dl)); 4295 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4296 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4297 getF32Constant(DAG, 0x4006dcab, dl)); 4298 } 4299 4300 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4301 } 4302 4303 // No special expansion. 4304 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4305 } 4306 4307 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4308 /// limited-precision mode. 4309 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4310 const TargetLowering &TLI) { 4311 4312 // TODO: What fast-math-flags should be set on the floating-point nodes? 4313 4314 if (Op.getValueType() == MVT::f32 && 4315 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4316 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4317 4318 // Get the exponent. 4319 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4320 4321 // Get the significand and build it into a floating-point number with 4322 // exponent of 1. 4323 SDValue X = GetSignificand(DAG, Op1, dl); 4324 4325 // Different possible minimax approximations of significand in 4326 // floating-point for various degrees of accuracy over [1,2]. 4327 SDValue Log2ofMantissa; 4328 if (LimitFloatPrecision <= 6) { 4329 // For floating-point precision of 6: 4330 // 4331 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4332 // 4333 // error 0.0049451742, which is more than 7 bits 4334 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4335 getF32Constant(DAG, 0xbeb08fe0, dl)); 4336 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4337 getF32Constant(DAG, 0x40019463, dl)); 4338 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4339 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4340 getF32Constant(DAG, 0x3fd6633d, dl)); 4341 } else if (LimitFloatPrecision <= 12) { 4342 // For floating-point precision of 12: 4343 // 4344 // Log2ofMantissa = 4345 // -2.51285454f + 4346 // (4.07009056f + 4347 // (-2.12067489f + 4348 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4349 // 4350 // error 0.0000876136000, which is better than 13 bits 4351 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4352 getF32Constant(DAG, 0xbda7262e, dl)); 4353 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4354 getF32Constant(DAG, 0x3f25280b, dl)); 4355 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4356 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4357 getF32Constant(DAG, 0x4007b923, dl)); 4358 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4359 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4360 getF32Constant(DAG, 0x40823e2f, dl)); 4361 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4362 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4363 getF32Constant(DAG, 0x4020d29c, dl)); 4364 } else { // LimitFloatPrecision <= 18 4365 // For floating-point precision of 18: 4366 // 4367 // Log2ofMantissa = 4368 // -3.0400495f + 4369 // (6.1129976f + 4370 // (-5.3420409f + 4371 // (3.2865683f + 4372 // (-1.2669343f + 4373 // (0.27515199f - 4374 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4375 // 4376 // error 0.0000018516, which is better than 18 bits 4377 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4378 getF32Constant(DAG, 0xbcd2769e, dl)); 4379 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4380 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4381 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4382 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4383 getF32Constant(DAG, 0x3fa22ae7, dl)); 4384 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4385 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4386 getF32Constant(DAG, 0x40525723, dl)); 4387 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4388 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4389 getF32Constant(DAG, 0x40aaf200, dl)); 4390 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4391 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4392 getF32Constant(DAG, 0x40c39dad, dl)); 4393 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4394 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4395 getF32Constant(DAG, 0x4042902c, dl)); 4396 } 4397 4398 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4399 } 4400 4401 // No special expansion. 4402 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4403 } 4404 4405 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4406 /// limited-precision mode. 4407 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4408 const TargetLowering &TLI) { 4409 4410 // TODO: What fast-math-flags should be set on the floating-point nodes? 4411 4412 if (Op.getValueType() == MVT::f32 && 4413 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4414 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4415 4416 // Scale the exponent by log10(2) [0.30102999f]. 4417 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4418 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4419 getF32Constant(DAG, 0x3e9a209a, dl)); 4420 4421 // Get the significand and build it into a floating-point number with 4422 // exponent of 1. 4423 SDValue X = GetSignificand(DAG, Op1, dl); 4424 4425 SDValue Log10ofMantissa; 4426 if (LimitFloatPrecision <= 6) { 4427 // For floating-point precision of 6: 4428 // 4429 // Log10ofMantissa = 4430 // -0.50419619f + 4431 // (0.60948995f - 0.10380950f * x) * x; 4432 // 4433 // error 0.0014886165, which is 6 bits 4434 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4435 getF32Constant(DAG, 0xbdd49a13, dl)); 4436 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4437 getF32Constant(DAG, 0x3f1c0789, dl)); 4438 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4439 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4440 getF32Constant(DAG, 0x3f011300, dl)); 4441 } else if (LimitFloatPrecision <= 12) { 4442 // For floating-point precision of 12: 4443 // 4444 // Log10ofMantissa = 4445 // -0.64831180f + 4446 // (0.91751397f + 4447 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4448 // 4449 // error 0.00019228036, which is better than 12 bits 4450 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4451 getF32Constant(DAG, 0x3d431f31, dl)); 4452 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4453 getF32Constant(DAG, 0x3ea21fb2, dl)); 4454 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4455 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4456 getF32Constant(DAG, 0x3f6ae232, dl)); 4457 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4458 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4459 getF32Constant(DAG, 0x3f25f7c3, dl)); 4460 } else { // LimitFloatPrecision <= 18 4461 // For floating-point precision of 18: 4462 // 4463 // Log10ofMantissa = 4464 // -0.84299375f + 4465 // (1.5327582f + 4466 // (-1.0688956f + 4467 // (0.49102474f + 4468 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4469 // 4470 // error 0.0000037995730, which is better than 18 bits 4471 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4472 getF32Constant(DAG, 0x3c5d51ce, dl)); 4473 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4474 getF32Constant(DAG, 0x3e00685a, dl)); 4475 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4476 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4477 getF32Constant(DAG, 0x3efb6798, dl)); 4478 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4479 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4480 getF32Constant(DAG, 0x3f88d192, dl)); 4481 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4482 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4483 getF32Constant(DAG, 0x3fc4316c, dl)); 4484 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4485 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4486 getF32Constant(DAG, 0x3f57ce70, dl)); 4487 } 4488 4489 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4490 } 4491 4492 // No special expansion. 4493 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4494 } 4495 4496 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4497 /// limited-precision mode. 4498 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4499 const TargetLowering &TLI) { 4500 if (Op.getValueType() == MVT::f32 && 4501 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4502 return getLimitedPrecisionExp2(Op, dl, DAG); 4503 4504 // No special expansion. 4505 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4506 } 4507 4508 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4509 /// limited-precision mode with x == 10.0f. 4510 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4511 SelectionDAG &DAG, const TargetLowering &TLI) { 4512 bool IsExp10 = false; 4513 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4514 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4515 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4516 APFloat Ten(10.0f); 4517 IsExp10 = LHSC->isExactlyValue(Ten); 4518 } 4519 } 4520 4521 // TODO: What fast-math-flags should be set on the FMUL node? 4522 if (IsExp10) { 4523 // Put the exponent in the right bit position for later addition to the 4524 // final result: 4525 // 4526 // #define LOG2OF10 3.3219281f 4527 // t0 = Op * LOG2OF10; 4528 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4529 getF32Constant(DAG, 0x40549a78, dl)); 4530 return getLimitedPrecisionExp2(t0, dl, DAG); 4531 } 4532 4533 // No special expansion. 4534 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4535 } 4536 4537 4538 /// ExpandPowI - Expand a llvm.powi intrinsic. 4539 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4540 SelectionDAG &DAG) { 4541 // If RHS is a constant, we can expand this out to a multiplication tree, 4542 // otherwise we end up lowering to a call to __powidf2 (for example). When 4543 // optimizing for size, we only want to do this if the expansion would produce 4544 // a small number of multiplies, otherwise we do the full expansion. 4545 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4546 // Get the exponent as a positive value. 4547 unsigned Val = RHSC->getSExtValue(); 4548 if ((int)Val < 0) Val = -Val; 4549 4550 // powi(x, 0) -> 1.0 4551 if (Val == 0) 4552 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4553 4554 const Function *F = DAG.getMachineFunction().getFunction(); 4555 if (!F->optForSize() || 4556 // If optimizing for size, don't insert too many multiplies. 4557 // This inserts up to 5 multiplies. 4558 countPopulation(Val) + Log2_32(Val) < 7) { 4559 // We use the simple binary decomposition method to generate the multiply 4560 // sequence. There are more optimal ways to do this (for example, 4561 // powi(x,15) generates one more multiply than it should), but this has 4562 // the benefit of being both really simple and much better than a libcall. 4563 SDValue Res; // Logically starts equal to 1.0 4564 SDValue CurSquare = LHS; 4565 // TODO: Intrinsics should have fast-math-flags that propagate to these 4566 // nodes. 4567 while (Val) { 4568 if (Val & 1) { 4569 if (Res.getNode()) 4570 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4571 else 4572 Res = CurSquare; // 1.0*CurSquare. 4573 } 4574 4575 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4576 CurSquare, CurSquare); 4577 Val >>= 1; 4578 } 4579 4580 // If the original was negative, invert the result, producing 1/(x*x*x). 4581 if (RHSC->getSExtValue() < 0) 4582 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4583 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4584 return Res; 4585 } 4586 } 4587 4588 // Otherwise, expand to a libcall. 4589 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4590 } 4591 4592 // getUnderlyingArgReg - Find underlying register used for a truncated or 4593 // bitcasted argument. 4594 static unsigned getUnderlyingArgReg(const SDValue &N) { 4595 switch (N.getOpcode()) { 4596 case ISD::CopyFromReg: 4597 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4598 case ISD::BITCAST: 4599 case ISD::AssertZext: 4600 case ISD::AssertSext: 4601 case ISD::TRUNCATE: 4602 return getUnderlyingArgReg(N.getOperand(0)); 4603 default: 4604 return 0; 4605 } 4606 } 4607 4608 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4609 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4610 /// At the end of instruction selection, they will be inserted to the entry BB. 4611 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4612 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4613 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4614 const Argument *Arg = dyn_cast<Argument>(V); 4615 if (!Arg) 4616 return false; 4617 4618 MachineFunction &MF = DAG.getMachineFunction(); 4619 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4620 4621 // Ignore inlined function arguments here. 4622 // 4623 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4624 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4625 return false; 4626 4627 Optional<MachineOperand> Op; 4628 // Some arguments' frame index is recorded during argument lowering. 4629 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4630 Op = MachineOperand::CreateFI(FI); 4631 4632 if (!Op && N.getNode()) { 4633 unsigned Reg = getUnderlyingArgReg(N); 4634 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4635 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4636 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4637 if (PR) 4638 Reg = PR; 4639 } 4640 if (Reg) 4641 Op = MachineOperand::CreateReg(Reg, false); 4642 } 4643 4644 if (!Op) { 4645 // Check if ValueMap has reg number. 4646 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4647 if (VMI != FuncInfo.ValueMap.end()) 4648 Op = MachineOperand::CreateReg(VMI->second, false); 4649 } 4650 4651 if (!Op && N.getNode()) 4652 // Check if frame index is available. 4653 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4654 if (FrameIndexSDNode *FINode = 4655 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4656 Op = MachineOperand::CreateFI(FINode->getIndex()); 4657 4658 if (!Op) 4659 return false; 4660 4661 assert(Variable->isValidLocationForIntrinsic(DL) && 4662 "Expected inlined-at fields to agree"); 4663 if (Op->isReg()) 4664 FuncInfo.ArgDbgValues.push_back( 4665 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4666 Op->getReg(), Offset, Variable, Expr)); 4667 else 4668 FuncInfo.ArgDbgValues.push_back( 4669 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4670 .addOperand(*Op) 4671 .addImm(Offset) 4672 .addMetadata(Variable) 4673 .addMetadata(Expr)); 4674 4675 return true; 4676 } 4677 4678 // VisualStudio defines setjmp as _setjmp 4679 #if defined(_MSC_VER) && defined(setjmp) && \ 4680 !defined(setjmp_undefined_for_msvc) 4681 # pragma push_macro("setjmp") 4682 # undef setjmp 4683 # define setjmp_undefined_for_msvc 4684 #endif 4685 4686 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4687 /// we want to emit this as a call to a named external function, return the name 4688 /// otherwise lower it and return null. 4689 const char * 4690 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4692 SDLoc sdl = getCurSDLoc(); 4693 DebugLoc dl = getCurDebugLoc(); 4694 SDValue Res; 4695 4696 switch (Intrinsic) { 4697 default: 4698 // By default, turn this into a target intrinsic node. 4699 visitTargetIntrinsic(I, Intrinsic); 4700 return nullptr; 4701 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4702 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4703 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4704 case Intrinsic::returnaddress: 4705 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4706 TLI.getPointerTy(DAG.getDataLayout()), 4707 getValue(I.getArgOperand(0)))); 4708 return nullptr; 4709 case Intrinsic::frameaddress: 4710 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4711 TLI.getPointerTy(DAG.getDataLayout()), 4712 getValue(I.getArgOperand(0)))); 4713 return nullptr; 4714 case Intrinsic::read_register: { 4715 Value *Reg = I.getArgOperand(0); 4716 SDValue Chain = getRoot(); 4717 SDValue RegName = 4718 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4719 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4720 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4721 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4722 setValue(&I, Res); 4723 DAG.setRoot(Res.getValue(1)); 4724 return nullptr; 4725 } 4726 case Intrinsic::write_register: { 4727 Value *Reg = I.getArgOperand(0); 4728 Value *RegValue = I.getArgOperand(1); 4729 SDValue Chain = getRoot(); 4730 SDValue RegName = 4731 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4732 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4733 RegName, getValue(RegValue))); 4734 return nullptr; 4735 } 4736 case Intrinsic::setjmp: 4737 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4738 case Intrinsic::longjmp: 4739 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4740 case Intrinsic::memcpy: { 4741 SDValue Op1 = getValue(I.getArgOperand(0)); 4742 SDValue Op2 = getValue(I.getArgOperand(1)); 4743 SDValue Op3 = getValue(I.getArgOperand(2)); 4744 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4745 if (!Align) 4746 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4747 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4748 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4749 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4750 false, isTC, 4751 MachinePointerInfo(I.getArgOperand(0)), 4752 MachinePointerInfo(I.getArgOperand(1))); 4753 updateDAGForMaybeTailCall(MC); 4754 return nullptr; 4755 } 4756 case Intrinsic::memset: { 4757 SDValue Op1 = getValue(I.getArgOperand(0)); 4758 SDValue Op2 = getValue(I.getArgOperand(1)); 4759 SDValue Op3 = getValue(I.getArgOperand(2)); 4760 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4761 if (!Align) 4762 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4763 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4764 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4765 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4766 isTC, MachinePointerInfo(I.getArgOperand(0))); 4767 updateDAGForMaybeTailCall(MS); 4768 return nullptr; 4769 } 4770 case Intrinsic::memmove: { 4771 SDValue Op1 = getValue(I.getArgOperand(0)); 4772 SDValue Op2 = getValue(I.getArgOperand(1)); 4773 SDValue Op3 = getValue(I.getArgOperand(2)); 4774 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4775 if (!Align) 4776 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4777 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4778 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4779 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4780 isTC, MachinePointerInfo(I.getArgOperand(0)), 4781 MachinePointerInfo(I.getArgOperand(1))); 4782 updateDAGForMaybeTailCall(MM); 4783 return nullptr; 4784 } 4785 case Intrinsic::dbg_declare: { 4786 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4787 DILocalVariable *Variable = DI.getVariable(); 4788 DIExpression *Expression = DI.getExpression(); 4789 const Value *Address = DI.getAddress(); 4790 assert(Variable && "Missing variable"); 4791 if (!Address) { 4792 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4793 return nullptr; 4794 } 4795 4796 // Check if address has undef value. 4797 if (isa<UndefValue>(Address) || 4798 (Address->use_empty() && !isa<Argument>(Address))) { 4799 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4800 return nullptr; 4801 } 4802 4803 SDValue &N = NodeMap[Address]; 4804 if (!N.getNode() && isa<Argument>(Address)) 4805 // Check unused arguments map. 4806 N = UnusedArgNodeMap[Address]; 4807 SDDbgValue *SDV; 4808 if (N.getNode()) { 4809 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4810 Address = BCI->getOperand(0); 4811 // Parameters are handled specially. 4812 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4813 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4814 if (isParameter && FINode) { 4815 // Byval parameter. We have a frame index at this point. 4816 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4817 FINode->getIndex(), 0, dl, SDNodeOrder); 4818 } else if (isa<Argument>(Address)) { 4819 // Address is an argument, so try to emit its dbg value using 4820 // virtual register info from the FuncInfo.ValueMap. 4821 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4822 N); 4823 return nullptr; 4824 } else { 4825 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4826 true, 0, dl, SDNodeOrder); 4827 } 4828 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4829 } else { 4830 // If Address is an argument then try to emit its dbg value using 4831 // virtual register info from the FuncInfo.ValueMap. 4832 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4833 N)) { 4834 // If variable is pinned by a alloca in dominating bb then 4835 // use StaticAllocaMap. 4836 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4837 if (AI->getParent() != DI.getParent()) { 4838 DenseMap<const AllocaInst*, int>::iterator SI = 4839 FuncInfo.StaticAllocaMap.find(AI); 4840 if (SI != FuncInfo.StaticAllocaMap.end()) { 4841 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4842 0, dl, SDNodeOrder); 4843 DAG.AddDbgValue(SDV, nullptr, false); 4844 return nullptr; 4845 } 4846 } 4847 } 4848 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4849 } 4850 } 4851 return nullptr; 4852 } 4853 case Intrinsic::dbg_value: { 4854 const DbgValueInst &DI = cast<DbgValueInst>(I); 4855 assert(DI.getVariable() && "Missing variable"); 4856 4857 DILocalVariable *Variable = DI.getVariable(); 4858 DIExpression *Expression = DI.getExpression(); 4859 uint64_t Offset = DI.getOffset(); 4860 const Value *V = DI.getValue(); 4861 if (!V) 4862 return nullptr; 4863 4864 SDDbgValue *SDV; 4865 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4866 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4867 SDNodeOrder); 4868 DAG.AddDbgValue(SDV, nullptr, false); 4869 } else { 4870 // Do not use getValue() in here; we don't want to generate code at 4871 // this point if it hasn't been done yet. 4872 SDValue N = NodeMap[V]; 4873 if (!N.getNode() && isa<Argument>(V)) 4874 // Check unused arguments map. 4875 N = UnusedArgNodeMap[V]; 4876 if (N.getNode()) { 4877 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4878 false, N)) { 4879 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4880 false, Offset, dl, SDNodeOrder); 4881 DAG.AddDbgValue(SDV, N.getNode(), false); 4882 } 4883 } else if (!V->use_empty() ) { 4884 // Do not call getValue(V) yet, as we don't want to generate code. 4885 // Remember it for later. 4886 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4887 DanglingDebugInfoMap[V] = DDI; 4888 } else { 4889 // We may expand this to cover more cases. One case where we have no 4890 // data available is an unreferenced parameter. 4891 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4892 } 4893 } 4894 4895 // Build a debug info table entry. 4896 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4897 V = BCI->getOperand(0); 4898 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4899 // Don't handle byval struct arguments or VLAs, for example. 4900 if (!AI) { 4901 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4902 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4903 return nullptr; 4904 } 4905 DenseMap<const AllocaInst*, int>::iterator SI = 4906 FuncInfo.StaticAllocaMap.find(AI); 4907 if (SI == FuncInfo.StaticAllocaMap.end()) 4908 return nullptr; // VLAs. 4909 return nullptr; 4910 } 4911 4912 case Intrinsic::eh_typeid_for: { 4913 // Find the type id for the given typeinfo. 4914 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4915 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4916 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4917 setValue(&I, Res); 4918 return nullptr; 4919 } 4920 4921 case Intrinsic::eh_return_i32: 4922 case Intrinsic::eh_return_i64: 4923 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4924 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4925 MVT::Other, 4926 getControlRoot(), 4927 getValue(I.getArgOperand(0)), 4928 getValue(I.getArgOperand(1)))); 4929 return nullptr; 4930 case Intrinsic::eh_unwind_init: 4931 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4932 return nullptr; 4933 case Intrinsic::eh_dwarf_cfa: { 4934 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4935 TLI.getPointerTy(DAG.getDataLayout())); 4936 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4937 CfaArg.getValueType(), 4938 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4939 CfaArg.getValueType()), 4940 CfaArg); 4941 SDValue FA = DAG.getNode( 4942 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4943 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4944 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4945 FA, Offset)); 4946 return nullptr; 4947 } 4948 case Intrinsic::eh_sjlj_callsite: { 4949 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4950 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4951 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4952 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4953 4954 MMI.setCurrentCallSite(CI->getZExtValue()); 4955 return nullptr; 4956 } 4957 case Intrinsic::eh_sjlj_functioncontext: { 4958 // Get and store the index of the function context. 4959 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4960 AllocaInst *FnCtx = 4961 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4962 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4963 MFI->setFunctionContextIndex(FI); 4964 return nullptr; 4965 } 4966 case Intrinsic::eh_sjlj_setjmp: { 4967 SDValue Ops[2]; 4968 Ops[0] = getRoot(); 4969 Ops[1] = getValue(I.getArgOperand(0)); 4970 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4971 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4972 setValue(&I, Op.getValue(0)); 4973 DAG.setRoot(Op.getValue(1)); 4974 return nullptr; 4975 } 4976 case Intrinsic::eh_sjlj_longjmp: { 4977 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4978 getRoot(), getValue(I.getArgOperand(0)))); 4979 return nullptr; 4980 } 4981 case Intrinsic::eh_sjlj_setup_dispatch: { 4982 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4983 getRoot())); 4984 return nullptr; 4985 } 4986 4987 case Intrinsic::masked_gather: 4988 visitMaskedGather(I); 4989 return nullptr; 4990 case Intrinsic::masked_load: 4991 visitMaskedLoad(I); 4992 return nullptr; 4993 case Intrinsic::masked_scatter: 4994 visitMaskedScatter(I); 4995 return nullptr; 4996 case Intrinsic::masked_store: 4997 visitMaskedStore(I); 4998 return nullptr; 4999 case Intrinsic::x86_mmx_pslli_w: 5000 case Intrinsic::x86_mmx_pslli_d: 5001 case Intrinsic::x86_mmx_pslli_q: 5002 case Intrinsic::x86_mmx_psrli_w: 5003 case Intrinsic::x86_mmx_psrli_d: 5004 case Intrinsic::x86_mmx_psrli_q: 5005 case Intrinsic::x86_mmx_psrai_w: 5006 case Intrinsic::x86_mmx_psrai_d: { 5007 SDValue ShAmt = getValue(I.getArgOperand(1)); 5008 if (isa<ConstantSDNode>(ShAmt)) { 5009 visitTargetIntrinsic(I, Intrinsic); 5010 return nullptr; 5011 } 5012 unsigned NewIntrinsic = 0; 5013 EVT ShAmtVT = MVT::v2i32; 5014 switch (Intrinsic) { 5015 case Intrinsic::x86_mmx_pslli_w: 5016 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5017 break; 5018 case Intrinsic::x86_mmx_pslli_d: 5019 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5020 break; 5021 case Intrinsic::x86_mmx_pslli_q: 5022 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5023 break; 5024 case Intrinsic::x86_mmx_psrli_w: 5025 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5026 break; 5027 case Intrinsic::x86_mmx_psrli_d: 5028 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5029 break; 5030 case Intrinsic::x86_mmx_psrli_q: 5031 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5032 break; 5033 case Intrinsic::x86_mmx_psrai_w: 5034 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5035 break; 5036 case Intrinsic::x86_mmx_psrai_d: 5037 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5038 break; 5039 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5040 } 5041 5042 // The vector shift intrinsics with scalars uses 32b shift amounts but 5043 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5044 // to be zero. 5045 // We must do this early because v2i32 is not a legal type. 5046 SDValue ShOps[2]; 5047 ShOps[0] = ShAmt; 5048 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5049 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5050 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5051 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5052 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5053 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5054 getValue(I.getArgOperand(0)), ShAmt); 5055 setValue(&I, Res); 5056 return nullptr; 5057 } 5058 case Intrinsic::convertff: 5059 case Intrinsic::convertfsi: 5060 case Intrinsic::convertfui: 5061 case Intrinsic::convertsif: 5062 case Intrinsic::convertuif: 5063 case Intrinsic::convertss: 5064 case Intrinsic::convertsu: 5065 case Intrinsic::convertus: 5066 case Intrinsic::convertuu: { 5067 ISD::CvtCode Code = ISD::CVT_INVALID; 5068 switch (Intrinsic) { 5069 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5070 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5071 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5072 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5073 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5074 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5075 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5076 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5077 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5078 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5079 } 5080 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5081 const Value *Op1 = I.getArgOperand(0); 5082 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5083 DAG.getValueType(DestVT), 5084 DAG.getValueType(getValue(Op1).getValueType()), 5085 getValue(I.getArgOperand(1)), 5086 getValue(I.getArgOperand(2)), 5087 Code); 5088 setValue(&I, Res); 5089 return nullptr; 5090 } 5091 case Intrinsic::powi: 5092 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5093 getValue(I.getArgOperand(1)), DAG)); 5094 return nullptr; 5095 case Intrinsic::log: 5096 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5097 return nullptr; 5098 case Intrinsic::log2: 5099 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5100 return nullptr; 5101 case Intrinsic::log10: 5102 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5103 return nullptr; 5104 case Intrinsic::exp: 5105 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5106 return nullptr; 5107 case Intrinsic::exp2: 5108 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5109 return nullptr; 5110 case Intrinsic::pow: 5111 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5112 getValue(I.getArgOperand(1)), DAG, TLI)); 5113 return nullptr; 5114 case Intrinsic::sqrt: 5115 case Intrinsic::fabs: 5116 case Intrinsic::sin: 5117 case Intrinsic::cos: 5118 case Intrinsic::floor: 5119 case Intrinsic::ceil: 5120 case Intrinsic::trunc: 5121 case Intrinsic::rint: 5122 case Intrinsic::nearbyint: 5123 case Intrinsic::round: 5124 case Intrinsic::canonicalize: { 5125 unsigned Opcode; 5126 switch (Intrinsic) { 5127 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5128 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5129 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5130 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5131 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5132 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5133 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5134 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5135 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5136 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5137 case Intrinsic::round: Opcode = ISD::FROUND; break; 5138 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5139 } 5140 5141 setValue(&I, DAG.getNode(Opcode, sdl, 5142 getValue(I.getArgOperand(0)).getValueType(), 5143 getValue(I.getArgOperand(0)))); 5144 return nullptr; 5145 } 5146 case Intrinsic::minnum: { 5147 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5148 unsigned Opc = 5149 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5150 ? ISD::FMINNAN 5151 : ISD::FMINNUM; 5152 setValue(&I, DAG.getNode(Opc, sdl, VT, 5153 getValue(I.getArgOperand(0)), 5154 getValue(I.getArgOperand(1)))); 5155 return nullptr; 5156 } 5157 case Intrinsic::maxnum: { 5158 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5159 unsigned Opc = 5160 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5161 ? ISD::FMAXNAN 5162 : ISD::FMAXNUM; 5163 setValue(&I, DAG.getNode(Opc, sdl, VT, 5164 getValue(I.getArgOperand(0)), 5165 getValue(I.getArgOperand(1)))); 5166 return nullptr; 5167 } 5168 case Intrinsic::copysign: 5169 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5170 getValue(I.getArgOperand(0)).getValueType(), 5171 getValue(I.getArgOperand(0)), 5172 getValue(I.getArgOperand(1)))); 5173 return nullptr; 5174 case Intrinsic::fma: 5175 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5176 getValue(I.getArgOperand(0)).getValueType(), 5177 getValue(I.getArgOperand(0)), 5178 getValue(I.getArgOperand(1)), 5179 getValue(I.getArgOperand(2)))); 5180 return nullptr; 5181 case Intrinsic::fmuladd: { 5182 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5183 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5184 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5185 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5186 getValue(I.getArgOperand(0)).getValueType(), 5187 getValue(I.getArgOperand(0)), 5188 getValue(I.getArgOperand(1)), 5189 getValue(I.getArgOperand(2)))); 5190 } else { 5191 // TODO: Intrinsic calls should have fast-math-flags. 5192 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5193 getValue(I.getArgOperand(0)).getValueType(), 5194 getValue(I.getArgOperand(0)), 5195 getValue(I.getArgOperand(1))); 5196 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5197 getValue(I.getArgOperand(0)).getValueType(), 5198 Mul, 5199 getValue(I.getArgOperand(2))); 5200 setValue(&I, Add); 5201 } 5202 return nullptr; 5203 } 5204 case Intrinsic::convert_to_fp16: 5205 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5206 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5207 getValue(I.getArgOperand(0)), 5208 DAG.getTargetConstant(0, sdl, 5209 MVT::i32)))); 5210 return nullptr; 5211 case Intrinsic::convert_from_fp16: 5212 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5213 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5214 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5215 getValue(I.getArgOperand(0))))); 5216 return nullptr; 5217 case Intrinsic::pcmarker: { 5218 SDValue Tmp = getValue(I.getArgOperand(0)); 5219 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5220 return nullptr; 5221 } 5222 case Intrinsic::readcyclecounter: { 5223 SDValue Op = getRoot(); 5224 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5225 DAG.getVTList(MVT::i64, MVT::Other), Op); 5226 setValue(&I, Res); 5227 DAG.setRoot(Res.getValue(1)); 5228 return nullptr; 5229 } 5230 case Intrinsic::bitreverse: 5231 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5232 getValue(I.getArgOperand(0)).getValueType(), 5233 getValue(I.getArgOperand(0)))); 5234 return nullptr; 5235 case Intrinsic::bswap: 5236 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5237 getValue(I.getArgOperand(0)).getValueType(), 5238 getValue(I.getArgOperand(0)))); 5239 return nullptr; 5240 case Intrinsic::cttz: { 5241 SDValue Arg = getValue(I.getArgOperand(0)); 5242 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5243 EVT Ty = Arg.getValueType(); 5244 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5245 sdl, Ty, Arg)); 5246 return nullptr; 5247 } 5248 case Intrinsic::ctlz: { 5249 SDValue Arg = getValue(I.getArgOperand(0)); 5250 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5251 EVT Ty = Arg.getValueType(); 5252 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5253 sdl, Ty, Arg)); 5254 return nullptr; 5255 } 5256 case Intrinsic::ctpop: { 5257 SDValue Arg = getValue(I.getArgOperand(0)); 5258 EVT Ty = Arg.getValueType(); 5259 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5260 return nullptr; 5261 } 5262 case Intrinsic::stacksave: { 5263 SDValue Op = getRoot(); 5264 Res = DAG.getNode( 5265 ISD::STACKSAVE, sdl, 5266 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5267 setValue(&I, Res); 5268 DAG.setRoot(Res.getValue(1)); 5269 return nullptr; 5270 } 5271 case Intrinsic::stackrestore: { 5272 Res = getValue(I.getArgOperand(0)); 5273 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5274 return nullptr; 5275 } 5276 case Intrinsic::get_dynamic_area_offset: { 5277 SDValue Op = getRoot(); 5278 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5279 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5280 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5281 // target. 5282 if (PtrTy != ResTy) 5283 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5284 " intrinsic!"); 5285 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5286 Op); 5287 DAG.setRoot(Op); 5288 setValue(&I, Res); 5289 return nullptr; 5290 } 5291 case Intrinsic::stackprotector: { 5292 // Emit code into the DAG to store the stack guard onto the stack. 5293 MachineFunction &MF = DAG.getMachineFunction(); 5294 MachineFrameInfo *MFI = MF.getFrameInfo(); 5295 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5296 SDValue Src, Chain = getRoot(); 5297 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5298 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5299 5300 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5301 // global variable __stack_chk_guard. 5302 if (!GV) 5303 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5304 if (BC->getOpcode() == Instruction::BitCast) 5305 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5306 5307 if (GV && TLI.useLoadStackGuardNode()) { 5308 // Emit a LOAD_STACK_GUARD node. 5309 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5310 sdl, PtrTy, Chain); 5311 MachinePointerInfo MPInfo(GV); 5312 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5313 unsigned Flags = MachineMemOperand::MOLoad | 5314 MachineMemOperand::MOInvariant; 5315 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5316 PtrTy.getSizeInBits() / 8, 5317 DAG.getEVTAlignment(PtrTy)); 5318 Node->setMemRefs(MemRefs, MemRefs + 1); 5319 5320 // Copy the guard value to a virtual register so that it can be 5321 // retrieved in the epilogue. 5322 Src = SDValue(Node, 0); 5323 const TargetRegisterClass *RC = 5324 TLI.getRegClassFor(Src.getSimpleValueType()); 5325 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5326 5327 SPDescriptor.setGuardReg(Reg); 5328 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5329 } else { 5330 Src = getValue(I.getArgOperand(0)); // The guard's value. 5331 } 5332 5333 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5334 5335 int FI = FuncInfo.StaticAllocaMap[Slot]; 5336 MFI->setStackProtectorIndex(FI); 5337 5338 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5339 5340 // Store the stack protector onto the stack. 5341 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5342 DAG.getMachineFunction(), FI), 5343 true, false, 0); 5344 setValue(&I, Res); 5345 DAG.setRoot(Res); 5346 return nullptr; 5347 } 5348 case Intrinsic::objectsize: { 5349 // If we don't know by now, we're never going to know. 5350 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5351 5352 assert(CI && "Non-constant type in __builtin_object_size?"); 5353 5354 SDValue Arg = getValue(I.getCalledValue()); 5355 EVT Ty = Arg.getValueType(); 5356 5357 if (CI->isZero()) 5358 Res = DAG.getConstant(-1ULL, sdl, Ty); 5359 else 5360 Res = DAG.getConstant(0, sdl, Ty); 5361 5362 setValue(&I, Res); 5363 return nullptr; 5364 } 5365 case Intrinsic::annotation: 5366 case Intrinsic::ptr_annotation: 5367 // Drop the intrinsic, but forward the value 5368 setValue(&I, getValue(I.getOperand(0))); 5369 return nullptr; 5370 case Intrinsic::assume: 5371 case Intrinsic::var_annotation: 5372 // Discard annotate attributes and assumptions 5373 return nullptr; 5374 5375 case Intrinsic::init_trampoline: { 5376 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5377 5378 SDValue Ops[6]; 5379 Ops[0] = getRoot(); 5380 Ops[1] = getValue(I.getArgOperand(0)); 5381 Ops[2] = getValue(I.getArgOperand(1)); 5382 Ops[3] = getValue(I.getArgOperand(2)); 5383 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5384 Ops[5] = DAG.getSrcValue(F); 5385 5386 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5387 5388 DAG.setRoot(Res); 5389 return nullptr; 5390 } 5391 case Intrinsic::adjust_trampoline: { 5392 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5393 TLI.getPointerTy(DAG.getDataLayout()), 5394 getValue(I.getArgOperand(0)))); 5395 return nullptr; 5396 } 5397 case Intrinsic::gcroot: { 5398 MachineFunction &MF = DAG.getMachineFunction(); 5399 const Function *F = MF.getFunction(); 5400 (void)F; 5401 assert(F->hasGC() && 5402 "only valid in functions with gc specified, enforced by Verifier"); 5403 assert(GFI && "implied by previous"); 5404 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5405 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5406 5407 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5408 GFI->addStackRoot(FI->getIndex(), TypeMap); 5409 return nullptr; 5410 } 5411 case Intrinsic::gcread: 5412 case Intrinsic::gcwrite: 5413 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5414 case Intrinsic::flt_rounds: 5415 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5416 return nullptr; 5417 5418 case Intrinsic::expect: { 5419 // Just replace __builtin_expect(exp, c) with EXP. 5420 setValue(&I, getValue(I.getArgOperand(0))); 5421 return nullptr; 5422 } 5423 5424 case Intrinsic::debugtrap: 5425 case Intrinsic::trap: { 5426 StringRef TrapFuncName = 5427 I.getAttributes() 5428 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5429 .getValueAsString(); 5430 if (TrapFuncName.empty()) { 5431 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5432 ISD::TRAP : ISD::DEBUGTRAP; 5433 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5434 return nullptr; 5435 } 5436 TargetLowering::ArgListTy Args; 5437 5438 TargetLowering::CallLoweringInfo CLI(DAG); 5439 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5440 CallingConv::C, I.getType(), 5441 DAG.getExternalSymbol(TrapFuncName.data(), 5442 TLI.getPointerTy(DAG.getDataLayout())), 5443 std::move(Args), 0); 5444 5445 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5446 DAG.setRoot(Result.second); 5447 return nullptr; 5448 } 5449 5450 case Intrinsic::uadd_with_overflow: 5451 case Intrinsic::sadd_with_overflow: 5452 case Intrinsic::usub_with_overflow: 5453 case Intrinsic::ssub_with_overflow: 5454 case Intrinsic::umul_with_overflow: 5455 case Intrinsic::smul_with_overflow: { 5456 ISD::NodeType Op; 5457 switch (Intrinsic) { 5458 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5459 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5460 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5461 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5462 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5463 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5464 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5465 } 5466 SDValue Op1 = getValue(I.getArgOperand(0)); 5467 SDValue Op2 = getValue(I.getArgOperand(1)); 5468 5469 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5470 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5471 return nullptr; 5472 } 5473 case Intrinsic::prefetch: { 5474 SDValue Ops[5]; 5475 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5476 Ops[0] = getRoot(); 5477 Ops[1] = getValue(I.getArgOperand(0)); 5478 Ops[2] = getValue(I.getArgOperand(1)); 5479 Ops[3] = getValue(I.getArgOperand(2)); 5480 Ops[4] = getValue(I.getArgOperand(3)); 5481 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5482 DAG.getVTList(MVT::Other), Ops, 5483 EVT::getIntegerVT(*Context, 8), 5484 MachinePointerInfo(I.getArgOperand(0)), 5485 0, /* align */ 5486 false, /* volatile */ 5487 rw==0, /* read */ 5488 rw==1)); /* write */ 5489 return nullptr; 5490 } 5491 case Intrinsic::lifetime_start: 5492 case Intrinsic::lifetime_end: { 5493 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5494 // Stack coloring is not enabled in O0, discard region information. 5495 if (TM.getOptLevel() == CodeGenOpt::None) 5496 return nullptr; 5497 5498 SmallVector<Value *, 4> Allocas; 5499 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5500 5501 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5502 E = Allocas.end(); Object != E; ++Object) { 5503 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5504 5505 // Could not find an Alloca. 5506 if (!LifetimeObject) 5507 continue; 5508 5509 // First check that the Alloca is static, otherwise it won't have a 5510 // valid frame index. 5511 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5512 if (SI == FuncInfo.StaticAllocaMap.end()) 5513 return nullptr; 5514 5515 int FI = SI->second; 5516 5517 SDValue Ops[2]; 5518 Ops[0] = getRoot(); 5519 Ops[1] = 5520 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5521 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5522 5523 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5524 DAG.setRoot(Res); 5525 } 5526 return nullptr; 5527 } 5528 case Intrinsic::invariant_start: 5529 // Discard region information. 5530 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5531 return nullptr; 5532 case Intrinsic::invariant_end: 5533 // Discard region information. 5534 return nullptr; 5535 case Intrinsic::clear_cache: 5536 return TLI.getClearCacheBuiltinName(); 5537 case Intrinsic::donothing: 5538 // ignore 5539 return nullptr; 5540 case Intrinsic::experimental_stackmap: { 5541 visitStackmap(I); 5542 return nullptr; 5543 } 5544 case Intrinsic::experimental_patchpoint_void: 5545 case Intrinsic::experimental_patchpoint_i64: { 5546 visitPatchpoint(&I); 5547 return nullptr; 5548 } 5549 case Intrinsic::experimental_gc_statepoint: { 5550 LowerStatepoint(ImmutableStatepoint(&I)); 5551 return nullptr; 5552 } 5553 case Intrinsic::experimental_gc_result: { 5554 visitGCResult(cast<GCResultInst>(I)); 5555 return nullptr; 5556 } 5557 case Intrinsic::experimental_gc_relocate: { 5558 visitGCRelocate(cast<GCRelocateInst>(I)); 5559 return nullptr; 5560 } 5561 case Intrinsic::instrprof_increment: 5562 llvm_unreachable("instrprof failed to lower an increment"); 5563 case Intrinsic::instrprof_value_profile: 5564 llvm_unreachable("instrprof failed to lower a value profiling call"); 5565 case Intrinsic::localescape: { 5566 MachineFunction &MF = DAG.getMachineFunction(); 5567 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5568 5569 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5570 // is the same on all targets. 5571 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5572 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5573 if (isa<ConstantPointerNull>(Arg)) 5574 continue; // Skip null pointers. They represent a hole in index space. 5575 AllocaInst *Slot = cast<AllocaInst>(Arg); 5576 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5577 "can only escape static allocas"); 5578 int FI = FuncInfo.StaticAllocaMap[Slot]; 5579 MCSymbol *FrameAllocSym = 5580 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5581 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5582 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5583 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5584 .addSym(FrameAllocSym) 5585 .addFrameIndex(FI); 5586 } 5587 5588 return nullptr; 5589 } 5590 5591 case Intrinsic::localrecover: { 5592 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5593 MachineFunction &MF = DAG.getMachineFunction(); 5594 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5595 5596 // Get the symbol that defines the frame offset. 5597 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5598 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5599 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5600 MCSymbol *FrameAllocSym = 5601 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5602 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5603 5604 // Create a MCSymbol for the label to avoid any target lowering 5605 // that would make this PC relative. 5606 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5607 SDValue OffsetVal = 5608 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5609 5610 // Add the offset to the FP. 5611 Value *FP = I.getArgOperand(1); 5612 SDValue FPVal = getValue(FP); 5613 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5614 setValue(&I, Add); 5615 5616 return nullptr; 5617 } 5618 5619 case Intrinsic::eh_exceptionpointer: 5620 case Intrinsic::eh_exceptioncode: { 5621 // Get the exception pointer vreg, copy from it, and resize it to fit. 5622 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5623 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5624 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5625 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5626 SDValue N = 5627 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5628 if (Intrinsic == Intrinsic::eh_exceptioncode) 5629 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5630 setValue(&I, N); 5631 return nullptr; 5632 } 5633 5634 case Intrinsic::experimental_deoptimize: 5635 LowerDeoptimizeCall(&I); 5636 return nullptr; 5637 } 5638 } 5639 5640 std::pair<SDValue, SDValue> 5641 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5642 const BasicBlock *EHPadBB) { 5643 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5644 MCSymbol *BeginLabel = nullptr; 5645 5646 if (EHPadBB) { 5647 // Insert a label before the invoke call to mark the try range. This can be 5648 // used to detect deletion of the invoke via the MachineModuleInfo. 5649 BeginLabel = MMI.getContext().createTempSymbol(); 5650 5651 // For SjLj, keep track of which landing pads go with which invokes 5652 // so as to maintain the ordering of pads in the LSDA. 5653 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5654 if (CallSiteIndex) { 5655 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5656 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5657 5658 // Now that the call site is handled, stop tracking it. 5659 MMI.setCurrentCallSite(0); 5660 } 5661 5662 // Both PendingLoads and PendingExports must be flushed here; 5663 // this call might not return. 5664 (void)getRoot(); 5665 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5666 5667 CLI.setChain(getRoot()); 5668 } 5669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5670 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5671 5672 assert((CLI.IsTailCall || Result.second.getNode()) && 5673 "Non-null chain expected with non-tail call!"); 5674 assert((Result.second.getNode() || !Result.first.getNode()) && 5675 "Null value expected with tail call!"); 5676 5677 if (!Result.second.getNode()) { 5678 // As a special case, a null chain means that a tail call has been emitted 5679 // and the DAG root is already updated. 5680 HasTailCall = true; 5681 5682 // Since there's no actual continuation from this block, nothing can be 5683 // relying on us setting vregs for them. 5684 PendingExports.clear(); 5685 } else { 5686 DAG.setRoot(Result.second); 5687 } 5688 5689 if (EHPadBB) { 5690 // Insert a label at the end of the invoke call to mark the try range. This 5691 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5692 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5693 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5694 5695 // Inform MachineModuleInfo of range. 5696 if (MMI.hasEHFunclets()) { 5697 assert(CLI.CS); 5698 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5699 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5700 BeginLabel, EndLabel); 5701 } else { 5702 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5703 } 5704 } 5705 5706 return Result; 5707 } 5708 5709 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5710 bool isTailCall, 5711 const BasicBlock *EHPadBB) { 5712 auto &DL = DAG.getDataLayout(); 5713 FunctionType *FTy = CS.getFunctionType(); 5714 Type *RetTy = CS.getType(); 5715 5716 TargetLowering::ArgListTy Args; 5717 TargetLowering::ArgListEntry Entry; 5718 Args.reserve(CS.arg_size()); 5719 5720 const Value *SwiftErrorVal = nullptr; 5721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5722 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5723 i != e; ++i) { 5724 const Value *V = *i; 5725 5726 // Skip empty types 5727 if (V->getType()->isEmptyTy()) 5728 continue; 5729 5730 SDValue ArgNode = getValue(V); 5731 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5732 5733 // Skip the first return-type Attribute to get to params. 5734 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5735 5736 // Use swifterror virtual register as input to the call. 5737 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5738 SwiftErrorVal = V; 5739 // We find the virtual register for the actual swifterror argument. 5740 // Instead of using the Value, we use the virtual register instead. 5741 Entry.Node = DAG.getRegister( 5742 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V), 5743 EVT(TLI.getPointerTy(DL))); 5744 } 5745 5746 Args.push_back(Entry); 5747 5748 // If we have an explicit sret argument that is an Instruction, (i.e., it 5749 // might point to function-local memory), we can't meaningfully tail-call. 5750 if (Entry.isSRet && isa<Instruction>(V)) 5751 isTailCall = false; 5752 } 5753 5754 // Check if target-independent constraints permit a tail call here. 5755 // Target-dependent constraints are checked within TLI->LowerCallTo. 5756 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5757 isTailCall = false; 5758 5759 TargetLowering::CallLoweringInfo CLI(DAG); 5760 CLI.setDebugLoc(getCurSDLoc()) 5761 .setChain(getRoot()) 5762 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5763 .setTailCall(isTailCall) 5764 .setConvergent(CS.isConvergent()); 5765 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5766 5767 if (Result.first.getNode()) { 5768 const Instruction *Inst = CS.getInstruction(); 5769 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5770 setValue(Inst, Result.first); 5771 } 5772 5773 // The last element of CLI.InVals has the SDValue for swifterror return. 5774 // Here we copy it to a virtual register and update SwiftErrorMap for 5775 // book-keeping. 5776 if (SwiftErrorVal && TLI.supportSwiftError()) { 5777 // Get the last element of InVals. 5778 SDValue Src = CLI.InVals.back(); 5779 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5780 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5781 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5782 // We update the virtual register for the actual swifterror argument. 5783 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5784 DAG.setRoot(CopyNode); 5785 } 5786 } 5787 5788 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5789 /// value is equal or not-equal to zero. 5790 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5791 for (const User *U : V->users()) { 5792 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5793 if (IC->isEquality()) 5794 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5795 if (C->isNullValue()) 5796 continue; 5797 // Unknown instruction. 5798 return false; 5799 } 5800 return true; 5801 } 5802 5803 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5804 Type *LoadTy, 5805 SelectionDAGBuilder &Builder) { 5806 5807 // Check to see if this load can be trivially constant folded, e.g. if the 5808 // input is from a string literal. 5809 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5810 // Cast pointer to the type we really want to load. 5811 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5812 PointerType::getUnqual(LoadTy)); 5813 5814 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5815 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5816 return Builder.getValue(LoadCst); 5817 } 5818 5819 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5820 // still constant memory, the input chain can be the entry node. 5821 SDValue Root; 5822 bool ConstantMemory = false; 5823 5824 // Do not serialize (non-volatile) loads of constant memory with anything. 5825 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5826 Root = Builder.DAG.getEntryNode(); 5827 ConstantMemory = true; 5828 } else { 5829 // Do not serialize non-volatile loads against each other. 5830 Root = Builder.DAG.getRoot(); 5831 } 5832 5833 SDValue Ptr = Builder.getValue(PtrVal); 5834 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5835 Ptr, MachinePointerInfo(PtrVal), 5836 false /*volatile*/, 5837 false /*nontemporal*/, 5838 false /*isinvariant*/, 1 /* align=1 */); 5839 5840 if (!ConstantMemory) 5841 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5842 return LoadVal; 5843 } 5844 5845 /// processIntegerCallValue - Record the value for an instruction that 5846 /// produces an integer result, converting the type where necessary. 5847 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5848 SDValue Value, 5849 bool IsSigned) { 5850 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5851 I.getType(), true); 5852 if (IsSigned) 5853 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5854 else 5855 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5856 setValue(&I, Value); 5857 } 5858 5859 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5860 /// If so, return true and lower it, otherwise return false and it will be 5861 /// lowered like a normal call. 5862 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5863 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5864 if (I.getNumArgOperands() != 3) 5865 return false; 5866 5867 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5868 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5869 !I.getArgOperand(2)->getType()->isIntegerTy() || 5870 !I.getType()->isIntegerTy()) 5871 return false; 5872 5873 const Value *Size = I.getArgOperand(2); 5874 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5875 if (CSize && CSize->getZExtValue() == 0) { 5876 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5877 I.getType(), true); 5878 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5879 return true; 5880 } 5881 5882 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5883 std::pair<SDValue, SDValue> Res = 5884 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5885 getValue(LHS), getValue(RHS), getValue(Size), 5886 MachinePointerInfo(LHS), 5887 MachinePointerInfo(RHS)); 5888 if (Res.first.getNode()) { 5889 processIntegerCallValue(I, Res.first, true); 5890 PendingLoads.push_back(Res.second); 5891 return true; 5892 } 5893 5894 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5895 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5896 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5897 bool ActuallyDoIt = true; 5898 MVT LoadVT; 5899 Type *LoadTy; 5900 switch (CSize->getZExtValue()) { 5901 default: 5902 LoadVT = MVT::Other; 5903 LoadTy = nullptr; 5904 ActuallyDoIt = false; 5905 break; 5906 case 2: 5907 LoadVT = MVT::i16; 5908 LoadTy = Type::getInt16Ty(CSize->getContext()); 5909 break; 5910 case 4: 5911 LoadVT = MVT::i32; 5912 LoadTy = Type::getInt32Ty(CSize->getContext()); 5913 break; 5914 case 8: 5915 LoadVT = MVT::i64; 5916 LoadTy = Type::getInt64Ty(CSize->getContext()); 5917 break; 5918 /* 5919 case 16: 5920 LoadVT = MVT::v4i32; 5921 LoadTy = Type::getInt32Ty(CSize->getContext()); 5922 LoadTy = VectorType::get(LoadTy, 4); 5923 break; 5924 */ 5925 } 5926 5927 // This turns into unaligned loads. We only do this if the target natively 5928 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5929 // we'll only produce a small number of byte loads. 5930 5931 // Require that we can find a legal MVT, and only do this if the target 5932 // supports unaligned loads of that type. Expanding into byte loads would 5933 // bloat the code. 5934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5935 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5936 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5937 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5938 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5939 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5940 // TODO: Check alignment of src and dest ptrs. 5941 if (!TLI.isTypeLegal(LoadVT) || 5942 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5943 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5944 ActuallyDoIt = false; 5945 } 5946 5947 if (ActuallyDoIt) { 5948 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5949 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5950 5951 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5952 ISD::SETNE); 5953 processIntegerCallValue(I, Res, false); 5954 return true; 5955 } 5956 } 5957 5958 5959 return false; 5960 } 5961 5962 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5963 /// form. If so, return true and lower it, otherwise return false and it 5964 /// will be lowered like a normal call. 5965 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5966 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5967 if (I.getNumArgOperands() != 3) 5968 return false; 5969 5970 const Value *Src = I.getArgOperand(0); 5971 const Value *Char = I.getArgOperand(1); 5972 const Value *Length = I.getArgOperand(2); 5973 if (!Src->getType()->isPointerTy() || 5974 !Char->getType()->isIntegerTy() || 5975 !Length->getType()->isIntegerTy() || 5976 !I.getType()->isPointerTy()) 5977 return false; 5978 5979 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5980 std::pair<SDValue, SDValue> Res = 5981 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5982 getValue(Src), getValue(Char), getValue(Length), 5983 MachinePointerInfo(Src)); 5984 if (Res.first.getNode()) { 5985 setValue(&I, Res.first); 5986 PendingLoads.push_back(Res.second); 5987 return true; 5988 } 5989 5990 return false; 5991 } 5992 5993 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5994 /// optimized form. If so, return true and lower it, otherwise return false 5995 /// and it will be lowered like a normal call. 5996 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5997 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5998 if (I.getNumArgOperands() != 2) 5999 return false; 6000 6001 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6002 if (!Arg0->getType()->isPointerTy() || 6003 !Arg1->getType()->isPointerTy() || 6004 !I.getType()->isPointerTy()) 6005 return false; 6006 6007 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6008 std::pair<SDValue, SDValue> Res = 6009 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6010 getValue(Arg0), getValue(Arg1), 6011 MachinePointerInfo(Arg0), 6012 MachinePointerInfo(Arg1), isStpcpy); 6013 if (Res.first.getNode()) { 6014 setValue(&I, Res.first); 6015 DAG.setRoot(Res.second); 6016 return true; 6017 } 6018 6019 return false; 6020 } 6021 6022 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6023 /// If so, return true and lower it, otherwise return false and it will be 6024 /// lowered like a normal call. 6025 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6026 // Verify that the prototype makes sense. int strcmp(void*,void*) 6027 if (I.getNumArgOperands() != 2) 6028 return false; 6029 6030 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6031 if (!Arg0->getType()->isPointerTy() || 6032 !Arg1->getType()->isPointerTy() || 6033 !I.getType()->isIntegerTy()) 6034 return false; 6035 6036 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6037 std::pair<SDValue, SDValue> Res = 6038 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6039 getValue(Arg0), getValue(Arg1), 6040 MachinePointerInfo(Arg0), 6041 MachinePointerInfo(Arg1)); 6042 if (Res.first.getNode()) { 6043 processIntegerCallValue(I, Res.first, true); 6044 PendingLoads.push_back(Res.second); 6045 return true; 6046 } 6047 6048 return false; 6049 } 6050 6051 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6052 /// form. If so, return true and lower it, otherwise return false and it 6053 /// will be lowered like a normal call. 6054 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6055 // Verify that the prototype makes sense. size_t strlen(char *) 6056 if (I.getNumArgOperands() != 1) 6057 return false; 6058 6059 const Value *Arg0 = I.getArgOperand(0); 6060 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6061 return false; 6062 6063 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6064 std::pair<SDValue, SDValue> Res = 6065 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6066 getValue(Arg0), MachinePointerInfo(Arg0)); 6067 if (Res.first.getNode()) { 6068 processIntegerCallValue(I, Res.first, false); 6069 PendingLoads.push_back(Res.second); 6070 return true; 6071 } 6072 6073 return false; 6074 } 6075 6076 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6077 /// form. If so, return true and lower it, otherwise return false and it 6078 /// will be lowered like a normal call. 6079 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6080 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6081 if (I.getNumArgOperands() != 2) 6082 return false; 6083 6084 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6085 if (!Arg0->getType()->isPointerTy() || 6086 !Arg1->getType()->isIntegerTy() || 6087 !I.getType()->isIntegerTy()) 6088 return false; 6089 6090 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6091 std::pair<SDValue, SDValue> Res = 6092 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6093 getValue(Arg0), getValue(Arg1), 6094 MachinePointerInfo(Arg0)); 6095 if (Res.first.getNode()) { 6096 processIntegerCallValue(I, Res.first, false); 6097 PendingLoads.push_back(Res.second); 6098 return true; 6099 } 6100 6101 return false; 6102 } 6103 6104 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6105 /// operation (as expected), translate it to an SDNode with the specified opcode 6106 /// and return true. 6107 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6108 unsigned Opcode) { 6109 // Sanity check that it really is a unary floating-point call. 6110 if (I.getNumArgOperands() != 1 || 6111 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6112 I.getType() != I.getArgOperand(0)->getType() || 6113 !I.onlyReadsMemory()) 6114 return false; 6115 6116 SDValue Tmp = getValue(I.getArgOperand(0)); 6117 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6118 return true; 6119 } 6120 6121 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6122 /// operation (as expected), translate it to an SDNode with the specified opcode 6123 /// and return true. 6124 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6125 unsigned Opcode) { 6126 // Sanity check that it really is a binary floating-point call. 6127 if (I.getNumArgOperands() != 2 || 6128 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6129 I.getType() != I.getArgOperand(0)->getType() || 6130 I.getType() != I.getArgOperand(1)->getType() || 6131 !I.onlyReadsMemory()) 6132 return false; 6133 6134 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6135 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6136 EVT VT = Tmp0.getValueType(); 6137 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6138 return true; 6139 } 6140 6141 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6142 // Handle inline assembly differently. 6143 if (isa<InlineAsm>(I.getCalledValue())) { 6144 visitInlineAsm(&I); 6145 return; 6146 } 6147 6148 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6149 ComputeUsesVAFloatArgument(I, &MMI); 6150 6151 const char *RenameFn = nullptr; 6152 if (Function *F = I.getCalledFunction()) { 6153 if (F->isDeclaration()) { 6154 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6155 if (unsigned IID = II->getIntrinsicID(F)) { 6156 RenameFn = visitIntrinsicCall(I, IID); 6157 if (!RenameFn) 6158 return; 6159 } 6160 } 6161 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6162 RenameFn = visitIntrinsicCall(I, IID); 6163 if (!RenameFn) 6164 return; 6165 } 6166 } 6167 6168 // Check for well-known libc/libm calls. If the function is internal, it 6169 // can't be a library call. 6170 LibFunc::Func Func; 6171 if (!F->hasLocalLinkage() && F->hasName() && 6172 LibInfo->getLibFunc(F->getName(), Func) && 6173 LibInfo->hasOptimizedCodeGen(Func)) { 6174 switch (Func) { 6175 default: break; 6176 case LibFunc::copysign: 6177 case LibFunc::copysignf: 6178 case LibFunc::copysignl: 6179 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6180 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6181 I.getType() == I.getArgOperand(0)->getType() && 6182 I.getType() == I.getArgOperand(1)->getType() && 6183 I.onlyReadsMemory()) { 6184 SDValue LHS = getValue(I.getArgOperand(0)); 6185 SDValue RHS = getValue(I.getArgOperand(1)); 6186 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6187 LHS.getValueType(), LHS, RHS)); 6188 return; 6189 } 6190 break; 6191 case LibFunc::fabs: 6192 case LibFunc::fabsf: 6193 case LibFunc::fabsl: 6194 if (visitUnaryFloatCall(I, ISD::FABS)) 6195 return; 6196 break; 6197 case LibFunc::fmin: 6198 case LibFunc::fminf: 6199 case LibFunc::fminl: 6200 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6201 return; 6202 break; 6203 case LibFunc::fmax: 6204 case LibFunc::fmaxf: 6205 case LibFunc::fmaxl: 6206 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6207 return; 6208 break; 6209 case LibFunc::sin: 6210 case LibFunc::sinf: 6211 case LibFunc::sinl: 6212 if (visitUnaryFloatCall(I, ISD::FSIN)) 6213 return; 6214 break; 6215 case LibFunc::cos: 6216 case LibFunc::cosf: 6217 case LibFunc::cosl: 6218 if (visitUnaryFloatCall(I, ISD::FCOS)) 6219 return; 6220 break; 6221 case LibFunc::sqrt: 6222 case LibFunc::sqrtf: 6223 case LibFunc::sqrtl: 6224 case LibFunc::sqrt_finite: 6225 case LibFunc::sqrtf_finite: 6226 case LibFunc::sqrtl_finite: 6227 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6228 return; 6229 break; 6230 case LibFunc::floor: 6231 case LibFunc::floorf: 6232 case LibFunc::floorl: 6233 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6234 return; 6235 break; 6236 case LibFunc::nearbyint: 6237 case LibFunc::nearbyintf: 6238 case LibFunc::nearbyintl: 6239 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6240 return; 6241 break; 6242 case LibFunc::ceil: 6243 case LibFunc::ceilf: 6244 case LibFunc::ceill: 6245 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6246 return; 6247 break; 6248 case LibFunc::rint: 6249 case LibFunc::rintf: 6250 case LibFunc::rintl: 6251 if (visitUnaryFloatCall(I, ISD::FRINT)) 6252 return; 6253 break; 6254 case LibFunc::round: 6255 case LibFunc::roundf: 6256 case LibFunc::roundl: 6257 if (visitUnaryFloatCall(I, ISD::FROUND)) 6258 return; 6259 break; 6260 case LibFunc::trunc: 6261 case LibFunc::truncf: 6262 case LibFunc::truncl: 6263 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6264 return; 6265 break; 6266 case LibFunc::log2: 6267 case LibFunc::log2f: 6268 case LibFunc::log2l: 6269 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6270 return; 6271 break; 6272 case LibFunc::exp2: 6273 case LibFunc::exp2f: 6274 case LibFunc::exp2l: 6275 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6276 return; 6277 break; 6278 case LibFunc::memcmp: 6279 if (visitMemCmpCall(I)) 6280 return; 6281 break; 6282 case LibFunc::memchr: 6283 if (visitMemChrCall(I)) 6284 return; 6285 break; 6286 case LibFunc::strcpy: 6287 if (visitStrCpyCall(I, false)) 6288 return; 6289 break; 6290 case LibFunc::stpcpy: 6291 if (visitStrCpyCall(I, true)) 6292 return; 6293 break; 6294 case LibFunc::strcmp: 6295 if (visitStrCmpCall(I)) 6296 return; 6297 break; 6298 case LibFunc::strlen: 6299 if (visitStrLenCall(I)) 6300 return; 6301 break; 6302 case LibFunc::strnlen: 6303 if (visitStrNLenCall(I)) 6304 return; 6305 break; 6306 } 6307 } 6308 } 6309 6310 SDValue Callee; 6311 if (!RenameFn) 6312 Callee = getValue(I.getCalledValue()); 6313 else 6314 Callee = DAG.getExternalSymbol( 6315 RenameFn, 6316 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6317 6318 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6319 // have to do anything here to lower funclet bundles. 6320 assert(!I.hasOperandBundlesOtherThan( 6321 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6322 "Cannot lower calls with arbitrary operand bundles!"); 6323 6324 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6325 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6326 else 6327 // Check if we can potentially perform a tail call. More detailed checking 6328 // is be done within LowerCallTo, after more information about the call is 6329 // known. 6330 LowerCallTo(&I, Callee, I.isTailCall()); 6331 } 6332 6333 namespace { 6334 6335 /// AsmOperandInfo - This contains information for each constraint that we are 6336 /// lowering. 6337 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6338 public: 6339 /// CallOperand - If this is the result output operand or a clobber 6340 /// this is null, otherwise it is the incoming operand to the CallInst. 6341 /// This gets modified as the asm is processed. 6342 SDValue CallOperand; 6343 6344 /// AssignedRegs - If this is a register or register class operand, this 6345 /// contains the set of register corresponding to the operand. 6346 RegsForValue AssignedRegs; 6347 6348 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6349 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6350 } 6351 6352 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6353 /// corresponds to. If there is no Value* for this operand, it returns 6354 /// MVT::Other. 6355 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6356 const DataLayout &DL) const { 6357 if (!CallOperandVal) return MVT::Other; 6358 6359 if (isa<BasicBlock>(CallOperandVal)) 6360 return TLI.getPointerTy(DL); 6361 6362 llvm::Type *OpTy = CallOperandVal->getType(); 6363 6364 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6365 // If this is an indirect operand, the operand is a pointer to the 6366 // accessed type. 6367 if (isIndirect) { 6368 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6369 if (!PtrTy) 6370 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6371 OpTy = PtrTy->getElementType(); 6372 } 6373 6374 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6375 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6376 if (STy->getNumElements() == 1) 6377 OpTy = STy->getElementType(0); 6378 6379 // If OpTy is not a single value, it may be a struct/union that we 6380 // can tile with integers. 6381 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6382 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6383 switch (BitSize) { 6384 default: break; 6385 case 1: 6386 case 8: 6387 case 16: 6388 case 32: 6389 case 64: 6390 case 128: 6391 OpTy = IntegerType::get(Context, BitSize); 6392 break; 6393 } 6394 } 6395 6396 return TLI.getValueType(DL, OpTy, true); 6397 } 6398 }; 6399 6400 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6401 6402 } // end anonymous namespace 6403 6404 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6405 /// specified operand. We prefer to assign virtual registers, to allow the 6406 /// register allocator to handle the assignment process. However, if the asm 6407 /// uses features that we can't model on machineinstrs, we have SDISel do the 6408 /// allocation. This produces generally horrible, but correct, code. 6409 /// 6410 /// OpInfo describes the operand. 6411 /// 6412 static void GetRegistersForValue(SelectionDAG &DAG, 6413 const TargetLowering &TLI, 6414 SDLoc DL, 6415 SDISelAsmOperandInfo &OpInfo) { 6416 LLVMContext &Context = *DAG.getContext(); 6417 6418 MachineFunction &MF = DAG.getMachineFunction(); 6419 SmallVector<unsigned, 4> Regs; 6420 6421 // If this is a constraint for a single physreg, or a constraint for a 6422 // register class, find it. 6423 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6424 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6425 OpInfo.ConstraintCode, 6426 OpInfo.ConstraintVT); 6427 6428 unsigned NumRegs = 1; 6429 if (OpInfo.ConstraintVT != MVT::Other) { 6430 // If this is a FP input in an integer register (or visa versa) insert a bit 6431 // cast of the input value. More generally, handle any case where the input 6432 // value disagrees with the register class we plan to stick this in. 6433 if (OpInfo.Type == InlineAsm::isInput && 6434 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6435 // Try to convert to the first EVT that the reg class contains. If the 6436 // types are identical size, use a bitcast to convert (e.g. two differing 6437 // vector types). 6438 MVT RegVT = *PhysReg.second->vt_begin(); 6439 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6440 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6441 RegVT, OpInfo.CallOperand); 6442 OpInfo.ConstraintVT = RegVT; 6443 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6444 // If the input is a FP value and we want it in FP registers, do a 6445 // bitcast to the corresponding integer type. This turns an f64 value 6446 // into i64, which can be passed with two i32 values on a 32-bit 6447 // machine. 6448 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6449 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6450 RegVT, OpInfo.CallOperand); 6451 OpInfo.ConstraintVT = RegVT; 6452 } 6453 } 6454 6455 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6456 } 6457 6458 MVT RegVT; 6459 EVT ValueVT = OpInfo.ConstraintVT; 6460 6461 // If this is a constraint for a specific physical register, like {r17}, 6462 // assign it now. 6463 if (unsigned AssignedReg = PhysReg.first) { 6464 const TargetRegisterClass *RC = PhysReg.second; 6465 if (OpInfo.ConstraintVT == MVT::Other) 6466 ValueVT = *RC->vt_begin(); 6467 6468 // Get the actual register value type. This is important, because the user 6469 // may have asked for (e.g.) the AX register in i32 type. We need to 6470 // remember that AX is actually i16 to get the right extension. 6471 RegVT = *RC->vt_begin(); 6472 6473 // This is a explicit reference to a physical register. 6474 Regs.push_back(AssignedReg); 6475 6476 // If this is an expanded reference, add the rest of the regs to Regs. 6477 if (NumRegs != 1) { 6478 TargetRegisterClass::iterator I = RC->begin(); 6479 for (; *I != AssignedReg; ++I) 6480 assert(I != RC->end() && "Didn't find reg!"); 6481 6482 // Already added the first reg. 6483 --NumRegs; ++I; 6484 for (; NumRegs; --NumRegs, ++I) { 6485 assert(I != RC->end() && "Ran out of registers to allocate!"); 6486 Regs.push_back(*I); 6487 } 6488 } 6489 6490 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6491 return; 6492 } 6493 6494 // Otherwise, if this was a reference to an LLVM register class, create vregs 6495 // for this reference. 6496 if (const TargetRegisterClass *RC = PhysReg.second) { 6497 RegVT = *RC->vt_begin(); 6498 if (OpInfo.ConstraintVT == MVT::Other) 6499 ValueVT = RegVT; 6500 6501 // Create the appropriate number of virtual registers. 6502 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6503 for (; NumRegs; --NumRegs) 6504 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6505 6506 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6507 return; 6508 } 6509 6510 // Otherwise, we couldn't allocate enough registers for this. 6511 } 6512 6513 /// visitInlineAsm - Handle a call to an InlineAsm object. 6514 /// 6515 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6516 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6517 6518 /// ConstraintOperands - Information about all of the constraints. 6519 SDISelAsmOperandInfoVector ConstraintOperands; 6520 6521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6522 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6523 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6524 6525 bool hasMemory = false; 6526 6527 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6528 unsigned ResNo = 0; // ResNo - The result number of the next output. 6529 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6530 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6531 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6532 6533 MVT OpVT = MVT::Other; 6534 6535 // Compute the value type for each operand. 6536 switch (OpInfo.Type) { 6537 case InlineAsm::isOutput: 6538 // Indirect outputs just consume an argument. 6539 if (OpInfo.isIndirect) { 6540 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6541 break; 6542 } 6543 6544 // The return value of the call is this value. As such, there is no 6545 // corresponding argument. 6546 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6547 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6548 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6549 STy->getElementType(ResNo)); 6550 } else { 6551 assert(ResNo == 0 && "Asm only has one result!"); 6552 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6553 } 6554 ++ResNo; 6555 break; 6556 case InlineAsm::isInput: 6557 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6558 break; 6559 case InlineAsm::isClobber: 6560 // Nothing to do. 6561 break; 6562 } 6563 6564 // If this is an input or an indirect output, process the call argument. 6565 // BasicBlocks are labels, currently appearing only in asm's. 6566 if (OpInfo.CallOperandVal) { 6567 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6568 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6569 } else { 6570 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6571 } 6572 6573 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6574 DAG.getDataLayout()).getSimpleVT(); 6575 } 6576 6577 OpInfo.ConstraintVT = OpVT; 6578 6579 // Indirect operand accesses access memory. 6580 if (OpInfo.isIndirect) 6581 hasMemory = true; 6582 else { 6583 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6584 TargetLowering::ConstraintType 6585 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6586 if (CType == TargetLowering::C_Memory) { 6587 hasMemory = true; 6588 break; 6589 } 6590 } 6591 } 6592 } 6593 6594 SDValue Chain, Flag; 6595 6596 // We won't need to flush pending loads if this asm doesn't touch 6597 // memory and is nonvolatile. 6598 if (hasMemory || IA->hasSideEffects()) 6599 Chain = getRoot(); 6600 else 6601 Chain = DAG.getRoot(); 6602 6603 // Second pass over the constraints: compute which constraint option to use 6604 // and assign registers to constraints that want a specific physreg. 6605 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6606 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6607 6608 // If this is an output operand with a matching input operand, look up the 6609 // matching input. If their types mismatch, e.g. one is an integer, the 6610 // other is floating point, or their sizes are different, flag it as an 6611 // error. 6612 if (OpInfo.hasMatchingInput()) { 6613 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6614 6615 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6616 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6617 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6618 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6619 OpInfo.ConstraintVT); 6620 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6621 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6622 Input.ConstraintVT); 6623 if ((OpInfo.ConstraintVT.isInteger() != 6624 Input.ConstraintVT.isInteger()) || 6625 (MatchRC.second != InputRC.second)) { 6626 report_fatal_error("Unsupported asm: input constraint" 6627 " with a matching output constraint of" 6628 " incompatible type!"); 6629 } 6630 Input.ConstraintVT = OpInfo.ConstraintVT; 6631 } 6632 } 6633 6634 // Compute the constraint code and ConstraintType to use. 6635 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6636 6637 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6638 OpInfo.Type == InlineAsm::isClobber) 6639 continue; 6640 6641 // If this is a memory input, and if the operand is not indirect, do what we 6642 // need to to provide an address for the memory input. 6643 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6644 !OpInfo.isIndirect) { 6645 assert((OpInfo.isMultipleAlternative || 6646 (OpInfo.Type == InlineAsm::isInput)) && 6647 "Can only indirectify direct input operands!"); 6648 6649 // Memory operands really want the address of the value. If we don't have 6650 // an indirect input, put it in the constpool if we can, otherwise spill 6651 // it to a stack slot. 6652 // TODO: This isn't quite right. We need to handle these according to 6653 // the addressing mode that the constraint wants. Also, this may take 6654 // an additional register for the computation and we don't want that 6655 // either. 6656 6657 // If the operand is a float, integer, or vector constant, spill to a 6658 // constant pool entry to get its address. 6659 const Value *OpVal = OpInfo.CallOperandVal; 6660 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6661 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6662 OpInfo.CallOperand = DAG.getConstantPool( 6663 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6664 } else { 6665 // Otherwise, create a stack slot and emit a store to it before the 6666 // asm. 6667 Type *Ty = OpVal->getType(); 6668 auto &DL = DAG.getDataLayout(); 6669 uint64_t TySize = DL.getTypeAllocSize(Ty); 6670 unsigned Align = DL.getPrefTypeAlignment(Ty); 6671 MachineFunction &MF = DAG.getMachineFunction(); 6672 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6673 SDValue StackSlot = 6674 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6675 Chain = DAG.getStore( 6676 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6677 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6678 false, false, 0); 6679 OpInfo.CallOperand = StackSlot; 6680 } 6681 6682 // There is no longer a Value* corresponding to this operand. 6683 OpInfo.CallOperandVal = nullptr; 6684 6685 // It is now an indirect operand. 6686 OpInfo.isIndirect = true; 6687 } 6688 6689 // If this constraint is for a specific register, allocate it before 6690 // anything else. 6691 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6692 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6693 } 6694 6695 // Second pass - Loop over all of the operands, assigning virtual or physregs 6696 // to register class operands. 6697 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6698 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6699 6700 // C_Register operands have already been allocated, Other/Memory don't need 6701 // to be. 6702 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6703 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6704 } 6705 6706 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6707 std::vector<SDValue> AsmNodeOperands; 6708 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6709 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6710 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6711 6712 // If we have a !srcloc metadata node associated with it, we want to attach 6713 // this to the ultimately generated inline asm machineinstr. To do this, we 6714 // pass in the third operand as this (potentially null) inline asm MDNode. 6715 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6716 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6717 6718 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6719 // bits as operand 3. 6720 unsigned ExtraInfo = 0; 6721 if (IA->hasSideEffects()) 6722 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6723 if (IA->isAlignStack()) 6724 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6725 // Set the asm dialect. 6726 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6727 6728 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6729 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6730 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6731 6732 // Compute the constraint code and ConstraintType to use. 6733 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6734 6735 // Ideally, we would only check against memory constraints. However, the 6736 // meaning of an other constraint can be target-specific and we can't easily 6737 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6738 // for other constriants as well. 6739 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6740 OpInfo.ConstraintType == TargetLowering::C_Other) { 6741 if (OpInfo.Type == InlineAsm::isInput) 6742 ExtraInfo |= InlineAsm::Extra_MayLoad; 6743 else if (OpInfo.Type == InlineAsm::isOutput) 6744 ExtraInfo |= InlineAsm::Extra_MayStore; 6745 else if (OpInfo.Type == InlineAsm::isClobber) 6746 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6747 } 6748 } 6749 6750 AsmNodeOperands.push_back(DAG.getTargetConstant( 6751 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6752 6753 // Loop over all of the inputs, copying the operand values into the 6754 // appropriate registers and processing the output regs. 6755 RegsForValue RetValRegs; 6756 6757 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6758 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6759 6760 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6761 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6762 6763 switch (OpInfo.Type) { 6764 case InlineAsm::isOutput: { 6765 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6766 OpInfo.ConstraintType != TargetLowering::C_Register) { 6767 // Memory output, or 'other' output (e.g. 'X' constraint). 6768 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6769 6770 unsigned ConstraintID = 6771 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6772 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6773 "Failed to convert memory constraint code to constraint id."); 6774 6775 // Add information to the INLINEASM node to know about this output. 6776 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6777 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6778 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6779 MVT::i32)); 6780 AsmNodeOperands.push_back(OpInfo.CallOperand); 6781 break; 6782 } 6783 6784 // Otherwise, this is a register or register class output. 6785 6786 // Copy the output from the appropriate register. Find a register that 6787 // we can use. 6788 if (OpInfo.AssignedRegs.Regs.empty()) { 6789 LLVMContext &Ctx = *DAG.getContext(); 6790 Ctx.emitError(CS.getInstruction(), 6791 "couldn't allocate output register for constraint '" + 6792 Twine(OpInfo.ConstraintCode) + "'"); 6793 return; 6794 } 6795 6796 // If this is an indirect operand, store through the pointer after the 6797 // asm. 6798 if (OpInfo.isIndirect) { 6799 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6800 OpInfo.CallOperandVal)); 6801 } else { 6802 // This is the result value of the call. 6803 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6804 // Concatenate this output onto the outputs list. 6805 RetValRegs.append(OpInfo.AssignedRegs); 6806 } 6807 6808 // Add information to the INLINEASM node to know that this register is 6809 // set. 6810 OpInfo.AssignedRegs 6811 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6812 ? InlineAsm::Kind_RegDefEarlyClobber 6813 : InlineAsm::Kind_RegDef, 6814 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6815 break; 6816 } 6817 case InlineAsm::isInput: { 6818 SDValue InOperandVal = OpInfo.CallOperand; 6819 6820 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6821 // If this is required to match an output register we have already set, 6822 // just use its register. 6823 unsigned OperandNo = OpInfo.getMatchedOperand(); 6824 6825 // Scan until we find the definition we already emitted of this operand. 6826 // When we find it, create a RegsForValue operand. 6827 unsigned CurOp = InlineAsm::Op_FirstOperand; 6828 for (; OperandNo; --OperandNo) { 6829 // Advance to the next operand. 6830 unsigned OpFlag = 6831 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6832 assert((InlineAsm::isRegDefKind(OpFlag) || 6833 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6834 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6835 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6836 } 6837 6838 unsigned OpFlag = 6839 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6840 if (InlineAsm::isRegDefKind(OpFlag) || 6841 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6842 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6843 if (OpInfo.isIndirect) { 6844 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6845 LLVMContext &Ctx = *DAG.getContext(); 6846 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6847 " don't know how to handle tied " 6848 "indirect register inputs"); 6849 return; 6850 } 6851 6852 RegsForValue MatchedRegs; 6853 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6854 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6855 MatchedRegs.RegVTs.push_back(RegVT); 6856 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6857 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6858 i != e; ++i) { 6859 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6860 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6861 else { 6862 LLVMContext &Ctx = *DAG.getContext(); 6863 Ctx.emitError(CS.getInstruction(), 6864 "inline asm error: This value" 6865 " type register class is not natively supported!"); 6866 return; 6867 } 6868 } 6869 SDLoc dl = getCurSDLoc(); 6870 // Use the produced MatchedRegs object to 6871 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6872 Chain, &Flag, CS.getInstruction()); 6873 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6874 true, OpInfo.getMatchedOperand(), dl, 6875 DAG, AsmNodeOperands); 6876 break; 6877 } 6878 6879 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6880 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6881 "Unexpected number of operands"); 6882 // Add information to the INLINEASM node to know about this input. 6883 // See InlineAsm.h isUseOperandTiedToDef. 6884 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6885 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6886 OpInfo.getMatchedOperand()); 6887 AsmNodeOperands.push_back(DAG.getTargetConstant( 6888 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6889 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6890 break; 6891 } 6892 6893 // Treat indirect 'X' constraint as memory. 6894 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6895 OpInfo.isIndirect) 6896 OpInfo.ConstraintType = TargetLowering::C_Memory; 6897 6898 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6899 std::vector<SDValue> Ops; 6900 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6901 Ops, DAG); 6902 if (Ops.empty()) { 6903 LLVMContext &Ctx = *DAG.getContext(); 6904 Ctx.emitError(CS.getInstruction(), 6905 "invalid operand for inline asm constraint '" + 6906 Twine(OpInfo.ConstraintCode) + "'"); 6907 return; 6908 } 6909 6910 // Add information to the INLINEASM node to know about this input. 6911 unsigned ResOpType = 6912 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6913 AsmNodeOperands.push_back(DAG.getTargetConstant( 6914 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6915 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6916 break; 6917 } 6918 6919 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6920 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6921 assert(InOperandVal.getValueType() == 6922 TLI.getPointerTy(DAG.getDataLayout()) && 6923 "Memory operands expect pointer values"); 6924 6925 unsigned ConstraintID = 6926 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6927 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6928 "Failed to convert memory constraint code to constraint id."); 6929 6930 // Add information to the INLINEASM node to know about this input. 6931 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6932 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6933 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6934 getCurSDLoc(), 6935 MVT::i32)); 6936 AsmNodeOperands.push_back(InOperandVal); 6937 break; 6938 } 6939 6940 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6941 OpInfo.ConstraintType == TargetLowering::C_Register) && 6942 "Unknown constraint type!"); 6943 6944 // TODO: Support this. 6945 if (OpInfo.isIndirect) { 6946 LLVMContext &Ctx = *DAG.getContext(); 6947 Ctx.emitError(CS.getInstruction(), 6948 "Don't know how to handle indirect register inputs yet " 6949 "for constraint '" + 6950 Twine(OpInfo.ConstraintCode) + "'"); 6951 return; 6952 } 6953 6954 // Copy the input into the appropriate registers. 6955 if (OpInfo.AssignedRegs.Regs.empty()) { 6956 LLVMContext &Ctx = *DAG.getContext(); 6957 Ctx.emitError(CS.getInstruction(), 6958 "couldn't allocate input reg for constraint '" + 6959 Twine(OpInfo.ConstraintCode) + "'"); 6960 return; 6961 } 6962 6963 SDLoc dl = getCurSDLoc(); 6964 6965 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6966 Chain, &Flag, CS.getInstruction()); 6967 6968 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6969 dl, DAG, AsmNodeOperands); 6970 break; 6971 } 6972 case InlineAsm::isClobber: { 6973 // Add the clobbered value to the operand list, so that the register 6974 // allocator is aware that the physreg got clobbered. 6975 if (!OpInfo.AssignedRegs.Regs.empty()) 6976 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6977 false, 0, getCurSDLoc(), DAG, 6978 AsmNodeOperands); 6979 break; 6980 } 6981 } 6982 } 6983 6984 // Finish up input operands. Set the input chain and add the flag last. 6985 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6986 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6987 6988 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6989 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6990 Flag = Chain.getValue(1); 6991 6992 // If this asm returns a register value, copy the result from that register 6993 // and set it as the value of the call. 6994 if (!RetValRegs.Regs.empty()) { 6995 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6996 Chain, &Flag, CS.getInstruction()); 6997 6998 // FIXME: Why don't we do this for inline asms with MRVs? 6999 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7000 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7001 7002 // If any of the results of the inline asm is a vector, it may have the 7003 // wrong width/num elts. This can happen for register classes that can 7004 // contain multiple different value types. The preg or vreg allocated may 7005 // not have the same VT as was expected. Convert it to the right type 7006 // with bit_convert. 7007 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7008 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7009 ResultType, Val); 7010 7011 } else if (ResultType != Val.getValueType() && 7012 ResultType.isInteger() && Val.getValueType().isInteger()) { 7013 // If a result value was tied to an input value, the computed result may 7014 // have a wider width than the expected result. Extract the relevant 7015 // portion. 7016 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7017 } 7018 7019 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7020 } 7021 7022 setValue(CS.getInstruction(), Val); 7023 // Don't need to use this as a chain in this case. 7024 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7025 return; 7026 } 7027 7028 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7029 7030 // Process indirect outputs, first output all of the flagged copies out of 7031 // physregs. 7032 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7033 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7034 const Value *Ptr = IndirectStoresToEmit[i].second; 7035 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7036 Chain, &Flag, IA); 7037 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7038 } 7039 7040 // Emit the non-flagged stores from the physregs. 7041 SmallVector<SDValue, 8> OutChains; 7042 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7043 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 7044 StoresToEmit[i].first, 7045 getValue(StoresToEmit[i].second), 7046 MachinePointerInfo(StoresToEmit[i].second), 7047 false, false, 0); 7048 OutChains.push_back(Val); 7049 } 7050 7051 if (!OutChains.empty()) 7052 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7053 7054 DAG.setRoot(Chain); 7055 } 7056 7057 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7058 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7059 MVT::Other, getRoot(), 7060 getValue(I.getArgOperand(0)), 7061 DAG.getSrcValue(I.getArgOperand(0)))); 7062 } 7063 7064 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7066 const DataLayout &DL = DAG.getDataLayout(); 7067 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7068 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7069 DAG.getSrcValue(I.getOperand(0)), 7070 DL.getABITypeAlignment(I.getType())); 7071 setValue(&I, V); 7072 DAG.setRoot(V.getValue(1)); 7073 } 7074 7075 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7076 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7077 MVT::Other, getRoot(), 7078 getValue(I.getArgOperand(0)), 7079 DAG.getSrcValue(I.getArgOperand(0)))); 7080 } 7081 7082 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7083 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7084 MVT::Other, getRoot(), 7085 getValue(I.getArgOperand(0)), 7086 getValue(I.getArgOperand(1)), 7087 DAG.getSrcValue(I.getArgOperand(0)), 7088 DAG.getSrcValue(I.getArgOperand(1)))); 7089 } 7090 7091 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7092 const Instruction &I, 7093 SDValue Op) { 7094 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7095 if (!Range) 7096 return Op; 7097 7098 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 7099 if (!Lo->isNullValue()) 7100 return Op; 7101 7102 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 7103 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 7104 7105 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7106 7107 SDLoc SL = getCurSDLoc(); 7108 7109 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 7110 Op, DAG.getValueType(SmallVT)); 7111 unsigned NumVals = Op.getNode()->getNumValues(); 7112 if (NumVals == 1) 7113 return ZExt; 7114 7115 SmallVector<SDValue, 4> Ops; 7116 7117 Ops.push_back(ZExt); 7118 for (unsigned I = 1; I != NumVals; ++I) 7119 Ops.push_back(Op.getValue(I)); 7120 7121 return DAG.getMergeValues(Ops, SL); 7122 } 7123 7124 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7125 /// the call being lowered. 7126 /// 7127 /// This is a helper for lowering intrinsics that follow a target calling 7128 /// convention or require stack pointer adjustment. Only a subset of the 7129 /// intrinsic's operands need to participate in the calling convention. 7130 void SelectionDAGBuilder::populateCallLoweringInfo( 7131 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7132 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7133 bool IsPatchPoint) { 7134 TargetLowering::ArgListTy Args; 7135 Args.reserve(NumArgs); 7136 7137 // Populate the argument list. 7138 // Attributes for args start at offset 1, after the return attribute. 7139 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7140 ArgI != ArgE; ++ArgI) { 7141 const Value *V = CS->getOperand(ArgI); 7142 7143 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7144 7145 TargetLowering::ArgListEntry Entry; 7146 Entry.Node = getValue(V); 7147 Entry.Ty = V->getType(); 7148 Entry.setAttributes(&CS, AttrI); 7149 Args.push_back(Entry); 7150 } 7151 7152 CLI.setDebugLoc(getCurSDLoc()) 7153 .setChain(getRoot()) 7154 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), 7155 NumArgs) 7156 .setDiscardResult(CS->use_empty()) 7157 .setIsPatchPoint(IsPatchPoint); 7158 } 7159 7160 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7161 /// or patchpoint target node's operand list. 7162 /// 7163 /// Constants are converted to TargetConstants purely as an optimization to 7164 /// avoid constant materialization and register allocation. 7165 /// 7166 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7167 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7168 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7169 /// address materialization and register allocation, but may also be required 7170 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7171 /// alloca in the entry block, then the runtime may assume that the alloca's 7172 /// StackMap location can be read immediately after compilation and that the 7173 /// location is valid at any point during execution (this is similar to the 7174 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7175 /// only available in a register, then the runtime would need to trap when 7176 /// execution reaches the StackMap in order to read the alloca's location. 7177 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7178 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 7179 SelectionDAGBuilder &Builder) { 7180 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7181 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7182 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7183 Ops.push_back( 7184 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7185 Ops.push_back( 7186 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7187 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7188 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7189 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7190 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7191 } else 7192 Ops.push_back(OpVal); 7193 } 7194 } 7195 7196 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7197 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7198 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7199 // [live variables...]) 7200 7201 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7202 7203 SDValue Chain, InFlag, Callee, NullPtr; 7204 SmallVector<SDValue, 32> Ops; 7205 7206 SDLoc DL = getCurSDLoc(); 7207 Callee = getValue(CI.getCalledValue()); 7208 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7209 7210 // The stackmap intrinsic only records the live variables (the arguemnts 7211 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7212 // intrinsic, this won't be lowered to a function call. This means we don't 7213 // have to worry about calling conventions and target specific lowering code. 7214 // Instead we perform the call lowering right here. 7215 // 7216 // chain, flag = CALLSEQ_START(chain, 0) 7217 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7218 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7219 // 7220 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7221 InFlag = Chain.getValue(1); 7222 7223 // Add the <id> and <numBytes> constants. 7224 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7225 Ops.push_back(DAG.getTargetConstant( 7226 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7227 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7228 Ops.push_back(DAG.getTargetConstant( 7229 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7230 MVT::i32)); 7231 7232 // Push live variables for the stack map. 7233 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7234 7235 // We are not pushing any register mask info here on the operands list, 7236 // because the stackmap doesn't clobber anything. 7237 7238 // Push the chain and the glue flag. 7239 Ops.push_back(Chain); 7240 Ops.push_back(InFlag); 7241 7242 // Create the STACKMAP node. 7243 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7244 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7245 Chain = SDValue(SM, 0); 7246 InFlag = Chain.getValue(1); 7247 7248 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7249 7250 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7251 7252 // Set the root to the target-lowered call chain. 7253 DAG.setRoot(Chain); 7254 7255 // Inform the Frame Information that we have a stackmap in this function. 7256 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7257 } 7258 7259 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7260 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7261 const BasicBlock *EHPadBB) { 7262 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7263 // i32 <numBytes>, 7264 // i8* <target>, 7265 // i32 <numArgs>, 7266 // [Args...], 7267 // [live variables...]) 7268 7269 CallingConv::ID CC = CS.getCallingConv(); 7270 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7271 bool HasDef = !CS->getType()->isVoidTy(); 7272 SDLoc dl = getCurSDLoc(); 7273 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7274 7275 // Handle immediate and symbolic callees. 7276 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7277 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7278 /*isTarget=*/true); 7279 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7280 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7281 SDLoc(SymbolicCallee), 7282 SymbolicCallee->getValueType(0)); 7283 7284 // Get the real number of arguments participating in the call <numArgs> 7285 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7286 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7287 7288 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7289 // Intrinsics include all meta-operands up to but not including CC. 7290 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7291 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7292 "Not enough arguments provided to the patchpoint intrinsic"); 7293 7294 // For AnyRegCC the arguments are lowered later on manually. 7295 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7296 Type *ReturnTy = 7297 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7298 7299 TargetLowering::CallLoweringInfo CLI(DAG); 7300 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7301 true); 7302 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7303 7304 SDNode *CallEnd = Result.second.getNode(); 7305 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7306 CallEnd = CallEnd->getOperand(0).getNode(); 7307 7308 /// Get a call instruction from the call sequence chain. 7309 /// Tail calls are not allowed. 7310 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7311 "Expected a callseq node."); 7312 SDNode *Call = CallEnd->getOperand(0).getNode(); 7313 bool HasGlue = Call->getGluedNode(); 7314 7315 // Replace the target specific call node with the patchable intrinsic. 7316 SmallVector<SDValue, 8> Ops; 7317 7318 // Add the <id> and <numBytes> constants. 7319 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7320 Ops.push_back(DAG.getTargetConstant( 7321 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7322 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7323 Ops.push_back(DAG.getTargetConstant( 7324 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7325 MVT::i32)); 7326 7327 // Add the callee. 7328 Ops.push_back(Callee); 7329 7330 // Adjust <numArgs> to account for any arguments that have been passed on the 7331 // stack instead. 7332 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7333 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7334 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7335 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7336 7337 // Add the calling convention 7338 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7339 7340 // Add the arguments we omitted previously. The register allocator should 7341 // place these in any free register. 7342 if (IsAnyRegCC) 7343 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7344 Ops.push_back(getValue(CS.getArgument(i))); 7345 7346 // Push the arguments from the call instruction up to the register mask. 7347 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7348 Ops.append(Call->op_begin() + 2, e); 7349 7350 // Push live variables for the stack map. 7351 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7352 7353 // Push the register mask info. 7354 if (HasGlue) 7355 Ops.push_back(*(Call->op_end()-2)); 7356 else 7357 Ops.push_back(*(Call->op_end()-1)); 7358 7359 // Push the chain (this is originally the first operand of the call, but 7360 // becomes now the last or second to last operand). 7361 Ops.push_back(*(Call->op_begin())); 7362 7363 // Push the glue flag (last operand). 7364 if (HasGlue) 7365 Ops.push_back(*(Call->op_end()-1)); 7366 7367 SDVTList NodeTys; 7368 if (IsAnyRegCC && HasDef) { 7369 // Create the return types based on the intrinsic definition 7370 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7371 SmallVector<EVT, 3> ValueVTs; 7372 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7373 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7374 7375 // There is always a chain and a glue type at the end 7376 ValueVTs.push_back(MVT::Other); 7377 ValueVTs.push_back(MVT::Glue); 7378 NodeTys = DAG.getVTList(ValueVTs); 7379 } else 7380 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7381 7382 // Replace the target specific call node with a PATCHPOINT node. 7383 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7384 dl, NodeTys, Ops); 7385 7386 // Update the NodeMap. 7387 if (HasDef) { 7388 if (IsAnyRegCC) 7389 setValue(CS.getInstruction(), SDValue(MN, 0)); 7390 else 7391 setValue(CS.getInstruction(), Result.first); 7392 } 7393 7394 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7395 // call sequence. Furthermore the location of the chain and glue can change 7396 // when the AnyReg calling convention is used and the intrinsic returns a 7397 // value. 7398 if (IsAnyRegCC && HasDef) { 7399 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7400 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7401 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7402 } else 7403 DAG.ReplaceAllUsesWith(Call, MN); 7404 DAG.DeleteNode(Call); 7405 7406 // Inform the Frame Information that we have a patchpoint in this function. 7407 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7408 } 7409 7410 /// Returns an AttributeSet representing the attributes applied to the return 7411 /// value of the given call. 7412 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7413 SmallVector<Attribute::AttrKind, 2> Attrs; 7414 if (CLI.RetSExt) 7415 Attrs.push_back(Attribute::SExt); 7416 if (CLI.RetZExt) 7417 Attrs.push_back(Attribute::ZExt); 7418 if (CLI.IsInReg) 7419 Attrs.push_back(Attribute::InReg); 7420 7421 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7422 Attrs); 7423 } 7424 7425 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7426 /// implementation, which just calls LowerCall. 7427 /// FIXME: When all targets are 7428 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7429 std::pair<SDValue, SDValue> 7430 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7431 // Handle the incoming return values from the call. 7432 CLI.Ins.clear(); 7433 Type *OrigRetTy = CLI.RetTy; 7434 SmallVector<EVT, 4> RetTys; 7435 SmallVector<uint64_t, 4> Offsets; 7436 auto &DL = CLI.DAG.getDataLayout(); 7437 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7438 7439 SmallVector<ISD::OutputArg, 4> Outs; 7440 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7441 7442 bool CanLowerReturn = 7443 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7444 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7445 7446 SDValue DemoteStackSlot; 7447 int DemoteStackIdx = -100; 7448 if (!CanLowerReturn) { 7449 // FIXME: equivalent assert? 7450 // assert(!CS.hasInAllocaArgument() && 7451 // "sret demotion is incompatible with inalloca"); 7452 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7453 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7454 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7455 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7456 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7457 7458 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7459 ArgListEntry Entry; 7460 Entry.Node = DemoteStackSlot; 7461 Entry.Ty = StackSlotPtrType; 7462 Entry.isSExt = false; 7463 Entry.isZExt = false; 7464 Entry.isInReg = false; 7465 Entry.isSRet = true; 7466 Entry.isNest = false; 7467 Entry.isByVal = false; 7468 Entry.isReturned = false; 7469 Entry.isSwiftSelf = false; 7470 Entry.isSwiftError = false; 7471 Entry.Alignment = Align; 7472 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7473 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7474 7475 // sret demotion isn't compatible with tail-calls, since the sret argument 7476 // points into the callers stack frame. 7477 CLI.IsTailCall = false; 7478 } else { 7479 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7480 EVT VT = RetTys[I]; 7481 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7482 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7483 for (unsigned i = 0; i != NumRegs; ++i) { 7484 ISD::InputArg MyFlags; 7485 MyFlags.VT = RegisterVT; 7486 MyFlags.ArgVT = VT; 7487 MyFlags.Used = CLI.IsReturnValueUsed; 7488 if (CLI.RetSExt) 7489 MyFlags.Flags.setSExt(); 7490 if (CLI.RetZExt) 7491 MyFlags.Flags.setZExt(); 7492 if (CLI.IsInReg) 7493 MyFlags.Flags.setInReg(); 7494 CLI.Ins.push_back(MyFlags); 7495 } 7496 } 7497 } 7498 7499 // We push in swifterror return as the last element of CLI.Ins. 7500 ArgListTy &Args = CLI.getArgs(); 7501 if (supportSwiftError()) { 7502 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7503 if (Args[i].isSwiftError) { 7504 ISD::InputArg MyFlags; 7505 MyFlags.VT = getPointerTy(DL); 7506 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7507 MyFlags.Flags.setSwiftError(); 7508 CLI.Ins.push_back(MyFlags); 7509 } 7510 } 7511 } 7512 7513 // Handle all of the outgoing arguments. 7514 CLI.Outs.clear(); 7515 CLI.OutVals.clear(); 7516 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7517 SmallVector<EVT, 4> ValueVTs; 7518 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7519 Type *FinalType = Args[i].Ty; 7520 if (Args[i].isByVal) 7521 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7522 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7523 FinalType, CLI.CallConv, CLI.IsVarArg); 7524 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7525 ++Value) { 7526 EVT VT = ValueVTs[Value]; 7527 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7528 SDValue Op = SDValue(Args[i].Node.getNode(), 7529 Args[i].Node.getResNo() + Value); 7530 ISD::ArgFlagsTy Flags; 7531 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7532 7533 if (Args[i].isZExt) 7534 Flags.setZExt(); 7535 if (Args[i].isSExt) 7536 Flags.setSExt(); 7537 if (Args[i].isInReg) 7538 Flags.setInReg(); 7539 if (Args[i].isSRet) 7540 Flags.setSRet(); 7541 if (Args[i].isSwiftSelf) 7542 Flags.setSwiftSelf(); 7543 if (Args[i].isSwiftError) 7544 Flags.setSwiftError(); 7545 if (Args[i].isByVal) 7546 Flags.setByVal(); 7547 if (Args[i].isInAlloca) { 7548 Flags.setInAlloca(); 7549 // Set the byval flag for CCAssignFn callbacks that don't know about 7550 // inalloca. This way we can know how many bytes we should've allocated 7551 // and how many bytes a callee cleanup function will pop. If we port 7552 // inalloca to more targets, we'll have to add custom inalloca handling 7553 // in the various CC lowering callbacks. 7554 Flags.setByVal(); 7555 } 7556 if (Args[i].isByVal || Args[i].isInAlloca) { 7557 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7558 Type *ElementTy = Ty->getElementType(); 7559 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7560 // For ByVal, alignment should come from FE. BE will guess if this 7561 // info is not there but there are cases it cannot get right. 7562 unsigned FrameAlign; 7563 if (Args[i].Alignment) 7564 FrameAlign = Args[i].Alignment; 7565 else 7566 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7567 Flags.setByValAlign(FrameAlign); 7568 } 7569 if (Args[i].isNest) 7570 Flags.setNest(); 7571 if (NeedsRegBlock) 7572 Flags.setInConsecutiveRegs(); 7573 Flags.setOrigAlign(OriginalAlignment); 7574 7575 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7576 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7577 SmallVector<SDValue, 4> Parts(NumParts); 7578 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7579 7580 if (Args[i].isSExt) 7581 ExtendKind = ISD::SIGN_EXTEND; 7582 else if (Args[i].isZExt) 7583 ExtendKind = ISD::ZERO_EXTEND; 7584 7585 // Conservatively only handle 'returned' on non-vectors for now 7586 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7587 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7588 "unexpected use of 'returned'"); 7589 // Before passing 'returned' to the target lowering code, ensure that 7590 // either the register MVT and the actual EVT are the same size or that 7591 // the return value and argument are extended in the same way; in these 7592 // cases it's safe to pass the argument register value unchanged as the 7593 // return register value (although it's at the target's option whether 7594 // to do so) 7595 // TODO: allow code generation to take advantage of partially preserved 7596 // registers rather than clobbering the entire register when the 7597 // parameter extension method is not compatible with the return 7598 // extension method 7599 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7600 (ExtendKind != ISD::ANY_EXTEND && 7601 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7602 Flags.setReturned(); 7603 } 7604 7605 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7606 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7607 7608 for (unsigned j = 0; j != NumParts; ++j) { 7609 // if it isn't first piece, alignment must be 1 7610 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7611 i < CLI.NumFixedArgs, 7612 i, j*Parts[j].getValueType().getStoreSize()); 7613 if (NumParts > 1 && j == 0) 7614 MyFlags.Flags.setSplit(); 7615 else if (j != 0) { 7616 MyFlags.Flags.setOrigAlign(1); 7617 if (j == NumParts - 1) 7618 MyFlags.Flags.setSplitEnd(); 7619 } 7620 7621 CLI.Outs.push_back(MyFlags); 7622 CLI.OutVals.push_back(Parts[j]); 7623 } 7624 7625 if (NeedsRegBlock && Value == NumValues - 1) 7626 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7627 } 7628 } 7629 7630 SmallVector<SDValue, 4> InVals; 7631 CLI.Chain = LowerCall(CLI, InVals); 7632 7633 // Update CLI.InVals to use outside of this function. 7634 CLI.InVals = InVals; 7635 7636 // Verify that the target's LowerCall behaved as expected. 7637 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7638 "LowerCall didn't return a valid chain!"); 7639 assert((!CLI.IsTailCall || InVals.empty()) && 7640 "LowerCall emitted a return value for a tail call!"); 7641 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7642 "LowerCall didn't emit the correct number of values!"); 7643 7644 // For a tail call, the return value is merely live-out and there aren't 7645 // any nodes in the DAG representing it. Return a special value to 7646 // indicate that a tail call has been emitted and no more Instructions 7647 // should be processed in the current block. 7648 if (CLI.IsTailCall) { 7649 CLI.DAG.setRoot(CLI.Chain); 7650 return std::make_pair(SDValue(), SDValue()); 7651 } 7652 7653 #ifndef NDEBUG 7654 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7655 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7656 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7657 "LowerCall emitted a value with the wrong type!"); 7658 } 7659 #endif 7660 7661 SmallVector<SDValue, 4> ReturnValues; 7662 if (!CanLowerReturn) { 7663 // The instruction result is the result of loading from the 7664 // hidden sret parameter. 7665 SmallVector<EVT, 1> PVTs; 7666 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7667 7668 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7669 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7670 EVT PtrVT = PVTs[0]; 7671 7672 unsigned NumValues = RetTys.size(); 7673 ReturnValues.resize(NumValues); 7674 SmallVector<SDValue, 4> Chains(NumValues); 7675 7676 // An aggregate return value cannot wrap around the address space, so 7677 // offsets to its parts don't wrap either. 7678 SDNodeFlags Flags; 7679 Flags.setNoUnsignedWrap(true); 7680 7681 for (unsigned i = 0; i < NumValues; ++i) { 7682 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7683 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7684 PtrVT), &Flags); 7685 SDValue L = CLI.DAG.getLoad( 7686 RetTys[i], CLI.DL, CLI.Chain, Add, 7687 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7688 DemoteStackIdx, Offsets[i]), 7689 false, false, false, 1); 7690 ReturnValues[i] = L; 7691 Chains[i] = L.getValue(1); 7692 } 7693 7694 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7695 } else { 7696 // Collect the legal value parts into potentially illegal values 7697 // that correspond to the original function's return values. 7698 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7699 if (CLI.RetSExt) 7700 AssertOp = ISD::AssertSext; 7701 else if (CLI.RetZExt) 7702 AssertOp = ISD::AssertZext; 7703 unsigned CurReg = 0; 7704 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7705 EVT VT = RetTys[I]; 7706 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7707 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7708 7709 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7710 NumRegs, RegisterVT, VT, nullptr, 7711 AssertOp)); 7712 CurReg += NumRegs; 7713 } 7714 7715 // For a function returning void, there is no return value. We can't create 7716 // such a node, so we just return a null return value in that case. In 7717 // that case, nothing will actually look at the value. 7718 if (ReturnValues.empty()) 7719 return std::make_pair(SDValue(), CLI.Chain); 7720 } 7721 7722 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7723 CLI.DAG.getVTList(RetTys), ReturnValues); 7724 return std::make_pair(Res, CLI.Chain); 7725 } 7726 7727 void TargetLowering::LowerOperationWrapper(SDNode *N, 7728 SmallVectorImpl<SDValue> &Results, 7729 SelectionDAG &DAG) const { 7730 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7731 Results.push_back(Res); 7732 } 7733 7734 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7735 llvm_unreachable("LowerOperation not implemented for this target!"); 7736 } 7737 7738 void 7739 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7740 SDValue Op = getNonRegisterValue(V); 7741 assert((Op.getOpcode() != ISD::CopyFromReg || 7742 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7743 "Copy from a reg to the same reg!"); 7744 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7745 7746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7747 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7748 V->getType()); 7749 SDValue Chain = DAG.getEntryNode(); 7750 7751 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7752 FuncInfo.PreferredExtendType.end()) 7753 ? ISD::ANY_EXTEND 7754 : FuncInfo.PreferredExtendType[V]; 7755 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7756 PendingExports.push_back(Chain); 7757 } 7758 7759 #include "llvm/CodeGen/SelectionDAGISel.h" 7760 7761 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7762 /// entry block, return true. This includes arguments used by switches, since 7763 /// the switch may expand into multiple basic blocks. 7764 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7765 // With FastISel active, we may be splitting blocks, so force creation 7766 // of virtual registers for all non-dead arguments. 7767 if (FastISel) 7768 return A->use_empty(); 7769 7770 const BasicBlock &Entry = A->getParent()->front(); 7771 for (const User *U : A->users()) 7772 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7773 return false; // Use not in entry block. 7774 7775 return true; 7776 } 7777 7778 void SelectionDAGISel::LowerArguments(const Function &F) { 7779 SelectionDAG &DAG = SDB->DAG; 7780 SDLoc dl = SDB->getCurSDLoc(); 7781 const DataLayout &DL = DAG.getDataLayout(); 7782 SmallVector<ISD::InputArg, 16> Ins; 7783 7784 if (!FuncInfo->CanLowerReturn) { 7785 // Put in an sret pointer parameter before all the other parameters. 7786 SmallVector<EVT, 1> ValueVTs; 7787 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7788 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7789 7790 // NOTE: Assuming that a pointer will never break down to more than one VT 7791 // or one register. 7792 ISD::ArgFlagsTy Flags; 7793 Flags.setSRet(); 7794 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7795 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7796 ISD::InputArg::NoArgIndex, 0); 7797 Ins.push_back(RetArg); 7798 } 7799 7800 // Set up the incoming argument description vector. 7801 unsigned Idx = 1; 7802 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7803 I != E; ++I, ++Idx) { 7804 SmallVector<EVT, 4> ValueVTs; 7805 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7806 bool isArgValueUsed = !I->use_empty(); 7807 unsigned PartBase = 0; 7808 Type *FinalType = I->getType(); 7809 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7810 FinalType = cast<PointerType>(FinalType)->getElementType(); 7811 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7812 FinalType, F.getCallingConv(), F.isVarArg()); 7813 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7814 Value != NumValues; ++Value) { 7815 EVT VT = ValueVTs[Value]; 7816 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7817 ISD::ArgFlagsTy Flags; 7818 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7819 7820 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7821 Flags.setZExt(); 7822 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7823 Flags.setSExt(); 7824 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7825 Flags.setInReg(); 7826 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7827 Flags.setSRet(); 7828 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 7829 Flags.setSwiftSelf(); 7830 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 7831 Flags.setSwiftError(); 7832 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7833 Flags.setByVal(); 7834 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7835 Flags.setInAlloca(); 7836 // Set the byval flag for CCAssignFn callbacks that don't know about 7837 // inalloca. This way we can know how many bytes we should've allocated 7838 // and how many bytes a callee cleanup function will pop. If we port 7839 // inalloca to more targets, we'll have to add custom inalloca handling 7840 // in the various CC lowering callbacks. 7841 Flags.setByVal(); 7842 } 7843 if (F.getCallingConv() == CallingConv::X86_INTR) { 7844 // IA Interrupt passes frame (1st parameter) by value in the stack. 7845 if (Idx == 1) 7846 Flags.setByVal(); 7847 } 7848 if (Flags.isByVal() || Flags.isInAlloca()) { 7849 PointerType *Ty = cast<PointerType>(I->getType()); 7850 Type *ElementTy = Ty->getElementType(); 7851 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7852 // For ByVal, alignment should be passed from FE. BE will guess if 7853 // this info is not there but there are cases it cannot get right. 7854 unsigned FrameAlign; 7855 if (F.getParamAlignment(Idx)) 7856 FrameAlign = F.getParamAlignment(Idx); 7857 else 7858 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7859 Flags.setByValAlign(FrameAlign); 7860 } 7861 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7862 Flags.setNest(); 7863 if (NeedsRegBlock) 7864 Flags.setInConsecutiveRegs(); 7865 Flags.setOrigAlign(OriginalAlignment); 7866 7867 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7868 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7869 for (unsigned i = 0; i != NumRegs; ++i) { 7870 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7871 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7872 if (NumRegs > 1 && i == 0) 7873 MyFlags.Flags.setSplit(); 7874 // if it isn't first piece, alignment must be 1 7875 else if (i > 0) { 7876 MyFlags.Flags.setOrigAlign(1); 7877 if (i == NumRegs - 1) 7878 MyFlags.Flags.setSplitEnd(); 7879 } 7880 Ins.push_back(MyFlags); 7881 } 7882 if (NeedsRegBlock && Value == NumValues - 1) 7883 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7884 PartBase += VT.getStoreSize(); 7885 } 7886 } 7887 7888 // Call the target to set up the argument values. 7889 SmallVector<SDValue, 8> InVals; 7890 SDValue NewRoot = TLI->LowerFormalArguments( 7891 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7892 7893 // Verify that the target's LowerFormalArguments behaved as expected. 7894 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7895 "LowerFormalArguments didn't return a valid chain!"); 7896 assert(InVals.size() == Ins.size() && 7897 "LowerFormalArguments didn't emit the correct number of values!"); 7898 DEBUG({ 7899 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7900 assert(InVals[i].getNode() && 7901 "LowerFormalArguments emitted a null value!"); 7902 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7903 "LowerFormalArguments emitted a value with the wrong type!"); 7904 } 7905 }); 7906 7907 // Update the DAG with the new chain value resulting from argument lowering. 7908 DAG.setRoot(NewRoot); 7909 7910 // Set up the argument values. 7911 unsigned i = 0; 7912 Idx = 1; 7913 if (!FuncInfo->CanLowerReturn) { 7914 // Create a virtual register for the sret pointer, and put in a copy 7915 // from the sret argument into it. 7916 SmallVector<EVT, 1> ValueVTs; 7917 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7918 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7919 MVT VT = ValueVTs[0].getSimpleVT(); 7920 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7921 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7922 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7923 RegVT, VT, nullptr, AssertOp); 7924 7925 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7926 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7927 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7928 FuncInfo->DemoteRegister = SRetReg; 7929 NewRoot = 7930 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7931 DAG.setRoot(NewRoot); 7932 7933 // i indexes lowered arguments. Bump it past the hidden sret argument. 7934 // Idx indexes LLVM arguments. Don't touch it. 7935 ++i; 7936 } 7937 7938 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7939 ++I, ++Idx) { 7940 SmallVector<SDValue, 4> ArgValues; 7941 SmallVector<EVT, 4> ValueVTs; 7942 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7943 unsigned NumValues = ValueVTs.size(); 7944 7945 // If this argument is unused then remember its value. It is used to generate 7946 // debugging information. 7947 if (I->use_empty() && NumValues) { 7948 SDB->setUnusedArgValue(&*I, InVals[i]); 7949 7950 // Also remember any frame index for use in FastISel. 7951 if (FrameIndexSDNode *FI = 7952 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7953 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7954 } 7955 7956 for (unsigned Val = 0; Val != NumValues; ++Val) { 7957 EVT VT = ValueVTs[Val]; 7958 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7959 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7960 7961 if (!I->use_empty()) { 7962 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7963 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7964 AssertOp = ISD::AssertSext; 7965 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7966 AssertOp = ISD::AssertZext; 7967 7968 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7969 NumParts, PartVT, VT, 7970 nullptr, AssertOp)); 7971 } 7972 7973 i += NumParts; 7974 } 7975 7976 // We don't need to do anything else for unused arguments. 7977 if (ArgValues.empty()) 7978 continue; 7979 7980 // Note down frame index. 7981 if (FrameIndexSDNode *FI = 7982 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7983 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7984 7985 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7986 SDB->getCurSDLoc()); 7987 7988 SDB->setValue(&*I, Res); 7989 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7990 if (LoadSDNode *LNode = 7991 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7992 if (FrameIndexSDNode *FI = 7993 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7994 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7995 } 7996 7997 // Update SwiftErrorMap. 7998 if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() && 7999 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) { 8000 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8001 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8002 FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg; 8003 } 8004 8005 // If this argument is live outside of the entry block, insert a copy from 8006 // wherever we got it to the vreg that other BB's will reference it as. 8007 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8008 // If we can, though, try to skip creating an unnecessary vreg. 8009 // FIXME: This isn't very clean... it would be nice to make this more 8010 // general. It's also subtly incompatible with the hacks FastISel 8011 // uses with vregs. 8012 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8013 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8014 FuncInfo->ValueMap[&*I] = Reg; 8015 continue; 8016 } 8017 } 8018 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8019 FuncInfo->InitializeRegForValue(&*I); 8020 SDB->CopyToExportRegsIfNeeded(&*I); 8021 } 8022 } 8023 8024 assert(i == InVals.size() && "Argument register count mismatch!"); 8025 8026 // Finally, if the target has anything special to do, allow it to do so. 8027 EmitFunctionEntryCode(); 8028 } 8029 8030 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8031 /// ensure constants are generated when needed. Remember the virtual registers 8032 /// that need to be added to the Machine PHI nodes as input. We cannot just 8033 /// directly add them, because expansion might result in multiple MBB's for one 8034 /// BB. As such, the start of the BB might correspond to a different MBB than 8035 /// the end. 8036 /// 8037 void 8038 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8039 const TerminatorInst *TI = LLVMBB->getTerminator(); 8040 8041 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8042 8043 // Check PHI nodes in successors that expect a value to be available from this 8044 // block. 8045 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8046 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8047 if (!isa<PHINode>(SuccBB->begin())) continue; 8048 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8049 8050 // If this terminator has multiple identical successors (common for 8051 // switches), only handle each succ once. 8052 if (!SuccsHandled.insert(SuccMBB).second) 8053 continue; 8054 8055 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8056 8057 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8058 // nodes and Machine PHI nodes, but the incoming operands have not been 8059 // emitted yet. 8060 for (BasicBlock::const_iterator I = SuccBB->begin(); 8061 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8062 // Ignore dead phi's. 8063 if (PN->use_empty()) continue; 8064 8065 // Skip empty types 8066 if (PN->getType()->isEmptyTy()) 8067 continue; 8068 8069 unsigned Reg; 8070 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8071 8072 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8073 unsigned &RegOut = ConstantsOut[C]; 8074 if (RegOut == 0) { 8075 RegOut = FuncInfo.CreateRegs(C->getType()); 8076 CopyValueToVirtualRegister(C, RegOut); 8077 } 8078 Reg = RegOut; 8079 } else { 8080 DenseMap<const Value *, unsigned>::iterator I = 8081 FuncInfo.ValueMap.find(PHIOp); 8082 if (I != FuncInfo.ValueMap.end()) 8083 Reg = I->second; 8084 else { 8085 assert(isa<AllocaInst>(PHIOp) && 8086 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8087 "Didn't codegen value into a register!??"); 8088 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8089 CopyValueToVirtualRegister(PHIOp, Reg); 8090 } 8091 } 8092 8093 // Remember that this register needs to added to the machine PHI node as 8094 // the input for this MBB. 8095 SmallVector<EVT, 4> ValueVTs; 8096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8097 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8098 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8099 EVT VT = ValueVTs[vti]; 8100 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8101 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8102 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 8103 Reg += NumRegisters; 8104 } 8105 } 8106 } 8107 8108 ConstantsOut.clear(); 8109 } 8110 8111 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8112 /// is 0. 8113 MachineBasicBlock * 8114 SelectionDAGBuilder::StackProtectorDescriptor:: 8115 AddSuccessorMBB(const BasicBlock *BB, 8116 MachineBasicBlock *ParentMBB, 8117 bool IsLikely, 8118 MachineBasicBlock *SuccMBB) { 8119 // If SuccBB has not been created yet, create it. 8120 if (!SuccMBB) { 8121 MachineFunction *MF = ParentMBB->getParent(); 8122 MachineFunction::iterator BBI(ParentMBB); 8123 SuccMBB = MF->CreateMachineBasicBlock(BB); 8124 MF->insert(++BBI, SuccMBB); 8125 } 8126 // Add it as a successor of ParentMBB. 8127 ParentMBB->addSuccessor( 8128 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8129 return SuccMBB; 8130 } 8131 8132 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8133 MachineFunction::iterator I(MBB); 8134 if (++I == FuncInfo.MF->end()) 8135 return nullptr; 8136 return &*I; 8137 } 8138 8139 /// During lowering new call nodes can be created (such as memset, etc.). 8140 /// Those will become new roots of the current DAG, but complications arise 8141 /// when they are tail calls. In such cases, the call lowering will update 8142 /// the root, but the builder still needs to know that a tail call has been 8143 /// lowered in order to avoid generating an additional return. 8144 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8145 // If the node is null, we do have a tail call. 8146 if (MaybeTC.getNode() != nullptr) 8147 DAG.setRoot(MaybeTC); 8148 else 8149 HasTailCall = true; 8150 } 8151 8152 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8153 unsigned *TotalCases, unsigned First, 8154 unsigned Last, 8155 unsigned Density) { 8156 assert(Last >= First); 8157 assert(TotalCases[Last] >= TotalCases[First]); 8158 8159 APInt LowCase = Clusters[First].Low->getValue(); 8160 APInt HighCase = Clusters[Last].High->getValue(); 8161 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8162 8163 // FIXME: A range of consecutive cases has 100% density, but only requires one 8164 // comparison to lower. We should discriminate against such consecutive ranges 8165 // in jump tables. 8166 8167 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8168 uint64_t Range = Diff + 1; 8169 8170 uint64_t NumCases = 8171 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8172 8173 assert(NumCases < UINT64_MAX / 100); 8174 assert(Range >= NumCases); 8175 8176 return NumCases * 100 >= Range * Density; 8177 } 8178 8179 static inline bool areJTsAllowed(const TargetLowering &TLI, 8180 const SwitchInst *SI) { 8181 const Function *Fn = SI->getParent()->getParent(); 8182 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8183 return false; 8184 8185 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8186 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8187 } 8188 8189 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 8190 unsigned First, unsigned Last, 8191 const SwitchInst *SI, 8192 MachineBasicBlock *DefaultMBB, 8193 CaseCluster &JTCluster) { 8194 assert(First <= Last); 8195 8196 auto Prob = BranchProbability::getZero(); 8197 unsigned NumCmps = 0; 8198 std::vector<MachineBasicBlock*> Table; 8199 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8200 8201 // Initialize probabilities in JTProbs. 8202 for (unsigned I = First; I <= Last; ++I) 8203 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8204 8205 for (unsigned I = First; I <= Last; ++I) { 8206 assert(Clusters[I].Kind == CC_Range); 8207 Prob += Clusters[I].Prob; 8208 APInt Low = Clusters[I].Low->getValue(); 8209 APInt High = Clusters[I].High->getValue(); 8210 NumCmps += (Low == High) ? 1 : 2; 8211 if (I != First) { 8212 // Fill the gap between this and the previous cluster. 8213 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 8214 assert(PreviousHigh.slt(Low)); 8215 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8216 for (uint64_t J = 0; J < Gap; J++) 8217 Table.push_back(DefaultMBB); 8218 } 8219 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8220 for (uint64_t J = 0; J < ClusterSize; ++J) 8221 Table.push_back(Clusters[I].MBB); 8222 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8223 } 8224 8225 unsigned NumDests = JTProbs.size(); 8226 if (isSuitableForBitTests(NumDests, NumCmps, 8227 Clusters[First].Low->getValue(), 8228 Clusters[Last].High->getValue())) { 8229 // Clusters[First..Last] should be lowered as bit tests instead. 8230 return false; 8231 } 8232 8233 // Create the MBB that will load from and jump through the table. 8234 // Note: We create it here, but it's not inserted into the function yet. 8235 MachineFunction *CurMF = FuncInfo.MF; 8236 MachineBasicBlock *JumpTableMBB = 8237 CurMF->CreateMachineBasicBlock(SI->getParent()); 8238 8239 // Add successors. Note: use table order for determinism. 8240 SmallPtrSet<MachineBasicBlock *, 8> Done; 8241 for (MachineBasicBlock *Succ : Table) { 8242 if (Done.count(Succ)) 8243 continue; 8244 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8245 Done.insert(Succ); 8246 } 8247 JumpTableMBB->normalizeSuccProbs(); 8248 8249 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8250 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8251 ->createJumpTableIndex(Table); 8252 8253 // Set up the jump table info. 8254 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8255 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8256 Clusters[Last].High->getValue(), SI->getCondition(), 8257 nullptr, false); 8258 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8259 8260 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8261 JTCases.size() - 1, Prob); 8262 return true; 8263 } 8264 8265 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8266 const SwitchInst *SI, 8267 MachineBasicBlock *DefaultMBB) { 8268 #ifndef NDEBUG 8269 // Clusters must be non-empty, sorted, and only contain Range clusters. 8270 assert(!Clusters.empty()); 8271 for (CaseCluster &C : Clusters) 8272 assert(C.Kind == CC_Range); 8273 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8274 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8275 #endif 8276 8277 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8278 if (!areJTsAllowed(TLI, SI)) 8279 return; 8280 8281 const int64_t N = Clusters.size(); 8282 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8283 8284 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8285 SmallVector<unsigned, 8> TotalCases(N); 8286 8287 for (unsigned i = 0; i < N; ++i) { 8288 APInt Hi = Clusters[i].High->getValue(); 8289 APInt Lo = Clusters[i].Low->getValue(); 8290 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8291 if (i != 0) 8292 TotalCases[i] += TotalCases[i - 1]; 8293 } 8294 8295 unsigned MinDensity = JumpTableDensity; 8296 if (DefaultMBB->getParent()->getFunction()->optForSize()) 8297 MinDensity = OptsizeJumpTableDensity; 8298 if (N >= MinJumpTableSize 8299 && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) { 8300 // Cheap case: the whole range might be suitable for jump table. 8301 CaseCluster JTCluster; 8302 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8303 Clusters[0] = JTCluster; 8304 Clusters.resize(1); 8305 return; 8306 } 8307 } 8308 8309 // The algorithm below is not suitable for -O0. 8310 if (TM.getOptLevel() == CodeGenOpt::None) 8311 return; 8312 8313 // Split Clusters into minimum number of dense partitions. The algorithm uses 8314 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8315 // for the Case Statement'" (1994), but builds the MinPartitions array in 8316 // reverse order to make it easier to reconstruct the partitions in ascending 8317 // order. In the choice between two optimal partitionings, it picks the one 8318 // which yields more jump tables. 8319 8320 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8321 SmallVector<unsigned, 8> MinPartitions(N); 8322 // LastElement[i] is the last element of the partition starting at i. 8323 SmallVector<unsigned, 8> LastElement(N); 8324 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8325 SmallVector<unsigned, 8> NumTables(N); 8326 8327 // Base case: There is only one way to partition Clusters[N-1]. 8328 MinPartitions[N - 1] = 1; 8329 LastElement[N - 1] = N - 1; 8330 assert(MinJumpTableSize > 1); 8331 NumTables[N - 1] = 0; 8332 8333 // Note: loop indexes are signed to avoid underflow. 8334 for (int64_t i = N - 2; i >= 0; i--) { 8335 // Find optimal partitioning of Clusters[i..N-1]. 8336 // Baseline: Put Clusters[i] into a partition on its own. 8337 MinPartitions[i] = MinPartitions[i + 1] + 1; 8338 LastElement[i] = i; 8339 NumTables[i] = NumTables[i + 1]; 8340 8341 // Search for a solution that results in fewer partitions. 8342 for (int64_t j = N - 1; j > i; j--) { 8343 // Try building a partition from Clusters[i..j]. 8344 if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) { 8345 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8346 bool IsTable = j - i + 1 >= MinJumpTableSize; 8347 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8348 8349 // If this j leads to fewer partitions, or same number of partitions 8350 // with more lookup tables, it is a better partitioning. 8351 if (NumPartitions < MinPartitions[i] || 8352 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8353 MinPartitions[i] = NumPartitions; 8354 LastElement[i] = j; 8355 NumTables[i] = Tables; 8356 } 8357 } 8358 } 8359 } 8360 8361 // Iterate over the partitions, replacing some with jump tables in-place. 8362 unsigned DstIndex = 0; 8363 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8364 Last = LastElement[First]; 8365 assert(Last >= First); 8366 assert(DstIndex <= First); 8367 unsigned NumClusters = Last - First + 1; 8368 8369 CaseCluster JTCluster; 8370 if (NumClusters >= MinJumpTableSize && 8371 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8372 Clusters[DstIndex++] = JTCluster; 8373 } else { 8374 for (unsigned I = First; I <= Last; ++I) 8375 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8376 } 8377 } 8378 Clusters.resize(DstIndex); 8379 } 8380 8381 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8382 // FIXME: Using the pointer type doesn't seem ideal. 8383 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8384 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8385 return Range <= BW; 8386 } 8387 8388 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8389 unsigned NumCmps, 8390 const APInt &Low, 8391 const APInt &High) { 8392 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8393 // range of cases both require only one branch to lower. Just looking at the 8394 // number of clusters and destinations should be enough to decide whether to 8395 // build bit tests. 8396 8397 // To lower a range with bit tests, the range must fit the bitwidth of a 8398 // machine word. 8399 if (!rangeFitsInWord(Low, High)) 8400 return false; 8401 8402 // Decide whether it's profitable to lower this range with bit tests. Each 8403 // destination requires a bit test and branch, and there is an overall range 8404 // check branch. For a small number of clusters, separate comparisons might be 8405 // cheaper, and for many destinations, splitting the range might be better. 8406 return (NumDests == 1 && NumCmps >= 3) || 8407 (NumDests == 2 && NumCmps >= 5) || 8408 (NumDests == 3 && NumCmps >= 6); 8409 } 8410 8411 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8412 unsigned First, unsigned Last, 8413 const SwitchInst *SI, 8414 CaseCluster &BTCluster) { 8415 assert(First <= Last); 8416 if (First == Last) 8417 return false; 8418 8419 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8420 unsigned NumCmps = 0; 8421 for (int64_t I = First; I <= Last; ++I) { 8422 assert(Clusters[I].Kind == CC_Range); 8423 Dests.set(Clusters[I].MBB->getNumber()); 8424 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8425 } 8426 unsigned NumDests = Dests.count(); 8427 8428 APInt Low = Clusters[First].Low->getValue(); 8429 APInt High = Clusters[Last].High->getValue(); 8430 assert(Low.slt(High)); 8431 8432 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8433 return false; 8434 8435 APInt LowBound; 8436 APInt CmpRange; 8437 8438 const int BitWidth = DAG.getTargetLoweringInfo() 8439 .getPointerTy(DAG.getDataLayout()) 8440 .getSizeInBits(); 8441 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8442 8443 // Check if the clusters cover a contiguous range such that no value in the 8444 // range will jump to the default statement. 8445 bool ContiguousRange = true; 8446 for (int64_t I = First + 1; I <= Last; ++I) { 8447 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8448 ContiguousRange = false; 8449 break; 8450 } 8451 } 8452 8453 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8454 // Optimize the case where all the case values fit in a word without having 8455 // to subtract minValue. In this case, we can optimize away the subtraction. 8456 LowBound = APInt::getNullValue(Low.getBitWidth()); 8457 CmpRange = High; 8458 ContiguousRange = false; 8459 } else { 8460 LowBound = Low; 8461 CmpRange = High - Low; 8462 } 8463 8464 CaseBitsVector CBV; 8465 auto TotalProb = BranchProbability::getZero(); 8466 for (unsigned i = First; i <= Last; ++i) { 8467 // Find the CaseBits for this destination. 8468 unsigned j; 8469 for (j = 0; j < CBV.size(); ++j) 8470 if (CBV[j].BB == Clusters[i].MBB) 8471 break; 8472 if (j == CBV.size()) 8473 CBV.push_back( 8474 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8475 CaseBits *CB = &CBV[j]; 8476 8477 // Update Mask, Bits and ExtraProb. 8478 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8479 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8480 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8481 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8482 CB->Bits += Hi - Lo + 1; 8483 CB->ExtraProb += Clusters[i].Prob; 8484 TotalProb += Clusters[i].Prob; 8485 } 8486 8487 BitTestInfo BTI; 8488 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8489 // Sort by probability first, number of bits second. 8490 if (a.ExtraProb != b.ExtraProb) 8491 return a.ExtraProb > b.ExtraProb; 8492 return a.Bits > b.Bits; 8493 }); 8494 8495 for (auto &CB : CBV) { 8496 MachineBasicBlock *BitTestBB = 8497 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8498 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8499 } 8500 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8501 SI->getCondition(), -1U, MVT::Other, false, 8502 ContiguousRange, nullptr, nullptr, std::move(BTI), 8503 TotalProb); 8504 8505 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8506 BitTestCases.size() - 1, TotalProb); 8507 return true; 8508 } 8509 8510 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8511 const SwitchInst *SI) { 8512 // Partition Clusters into as few subsets as possible, where each subset has a 8513 // range that fits in a machine word and has <= 3 unique destinations. 8514 8515 #ifndef NDEBUG 8516 // Clusters must be sorted and contain Range or JumpTable clusters. 8517 assert(!Clusters.empty()); 8518 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8519 for (const CaseCluster &C : Clusters) 8520 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8521 for (unsigned i = 1; i < Clusters.size(); ++i) 8522 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8523 #endif 8524 8525 // The algorithm below is not suitable for -O0. 8526 if (TM.getOptLevel() == CodeGenOpt::None) 8527 return; 8528 8529 // If target does not have legal shift left, do not emit bit tests at all. 8530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8531 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8532 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8533 return; 8534 8535 int BitWidth = PTy.getSizeInBits(); 8536 const int64_t N = Clusters.size(); 8537 8538 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8539 SmallVector<unsigned, 8> MinPartitions(N); 8540 // LastElement[i] is the last element of the partition starting at i. 8541 SmallVector<unsigned, 8> LastElement(N); 8542 8543 // FIXME: This might not be the best algorithm for finding bit test clusters. 8544 8545 // Base case: There is only one way to partition Clusters[N-1]. 8546 MinPartitions[N - 1] = 1; 8547 LastElement[N - 1] = N - 1; 8548 8549 // Note: loop indexes are signed to avoid underflow. 8550 for (int64_t i = N - 2; i >= 0; --i) { 8551 // Find optimal partitioning of Clusters[i..N-1]. 8552 // Baseline: Put Clusters[i] into a partition on its own. 8553 MinPartitions[i] = MinPartitions[i + 1] + 1; 8554 LastElement[i] = i; 8555 8556 // Search for a solution that results in fewer partitions. 8557 // Note: the search is limited by BitWidth, reducing time complexity. 8558 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8559 // Try building a partition from Clusters[i..j]. 8560 8561 // Check the range. 8562 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8563 Clusters[j].High->getValue())) 8564 continue; 8565 8566 // Check nbr of destinations and cluster types. 8567 // FIXME: This works, but doesn't seem very efficient. 8568 bool RangesOnly = true; 8569 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8570 for (int64_t k = i; k <= j; k++) { 8571 if (Clusters[k].Kind != CC_Range) { 8572 RangesOnly = false; 8573 break; 8574 } 8575 Dests.set(Clusters[k].MBB->getNumber()); 8576 } 8577 if (!RangesOnly || Dests.count() > 3) 8578 break; 8579 8580 // Check if it's a better partition. 8581 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8582 if (NumPartitions < MinPartitions[i]) { 8583 // Found a better partition. 8584 MinPartitions[i] = NumPartitions; 8585 LastElement[i] = j; 8586 } 8587 } 8588 } 8589 8590 // Iterate over the partitions, replacing with bit-test clusters in-place. 8591 unsigned DstIndex = 0; 8592 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8593 Last = LastElement[First]; 8594 assert(First <= Last); 8595 assert(DstIndex <= First); 8596 8597 CaseCluster BitTestCluster; 8598 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8599 Clusters[DstIndex++] = BitTestCluster; 8600 } else { 8601 size_t NumClusters = Last - First + 1; 8602 std::memmove(&Clusters[DstIndex], &Clusters[First], 8603 sizeof(Clusters[0]) * NumClusters); 8604 DstIndex += NumClusters; 8605 } 8606 } 8607 Clusters.resize(DstIndex); 8608 } 8609 8610 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8611 MachineBasicBlock *SwitchMBB, 8612 MachineBasicBlock *DefaultMBB) { 8613 MachineFunction *CurMF = FuncInfo.MF; 8614 MachineBasicBlock *NextMBB = nullptr; 8615 MachineFunction::iterator BBI(W.MBB); 8616 if (++BBI != FuncInfo.MF->end()) 8617 NextMBB = &*BBI; 8618 8619 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8620 8621 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8622 8623 if (Size == 2 && W.MBB == SwitchMBB) { 8624 // If any two of the cases has the same destination, and if one value 8625 // is the same as the other, but has one bit unset that the other has set, 8626 // use bit manipulation to do two compares at once. For example: 8627 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8628 // TODO: This could be extended to merge any 2 cases in switches with 3 8629 // cases. 8630 // TODO: Handle cases where W.CaseBB != SwitchBB. 8631 CaseCluster &Small = *W.FirstCluster; 8632 CaseCluster &Big = *W.LastCluster; 8633 8634 if (Small.Low == Small.High && Big.Low == Big.High && 8635 Small.MBB == Big.MBB) { 8636 const APInt &SmallValue = Small.Low->getValue(); 8637 const APInt &BigValue = Big.Low->getValue(); 8638 8639 // Check that there is only one bit different. 8640 APInt CommonBit = BigValue ^ SmallValue; 8641 if (CommonBit.isPowerOf2()) { 8642 SDValue CondLHS = getValue(Cond); 8643 EVT VT = CondLHS.getValueType(); 8644 SDLoc DL = getCurSDLoc(); 8645 8646 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8647 DAG.getConstant(CommonBit, DL, VT)); 8648 SDValue Cond = DAG.getSetCC( 8649 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8650 ISD::SETEQ); 8651 8652 // Update successor info. 8653 // Both Small and Big will jump to Small.BB, so we sum up the 8654 // probabilities. 8655 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8656 if (BPI) 8657 addSuccessorWithProb( 8658 SwitchMBB, DefaultMBB, 8659 // The default destination is the first successor in IR. 8660 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8661 else 8662 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8663 8664 // Insert the true branch. 8665 SDValue BrCond = 8666 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8667 DAG.getBasicBlock(Small.MBB)); 8668 // Insert the false branch. 8669 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8670 DAG.getBasicBlock(DefaultMBB)); 8671 8672 DAG.setRoot(BrCond); 8673 return; 8674 } 8675 } 8676 } 8677 8678 if (TM.getOptLevel() != CodeGenOpt::None) { 8679 // Order cases by probability so the most likely case will be checked first. 8680 std::sort(W.FirstCluster, W.LastCluster + 1, 8681 [](const CaseCluster &a, const CaseCluster &b) { 8682 return a.Prob > b.Prob; 8683 }); 8684 8685 // Rearrange the case blocks so that the last one falls through if possible 8686 // without without changing the order of probabilities. 8687 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8688 --I; 8689 if (I->Prob > W.LastCluster->Prob) 8690 break; 8691 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8692 std::swap(*I, *W.LastCluster); 8693 break; 8694 } 8695 } 8696 } 8697 8698 // Compute total probability. 8699 BranchProbability DefaultProb = W.DefaultProb; 8700 BranchProbability UnhandledProbs = DefaultProb; 8701 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8702 UnhandledProbs += I->Prob; 8703 8704 MachineBasicBlock *CurMBB = W.MBB; 8705 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8706 MachineBasicBlock *Fallthrough; 8707 if (I == W.LastCluster) { 8708 // For the last cluster, fall through to the default destination. 8709 Fallthrough = DefaultMBB; 8710 } else { 8711 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8712 CurMF->insert(BBI, Fallthrough); 8713 // Put Cond in a virtual register to make it available from the new blocks. 8714 ExportFromCurrentBlock(Cond); 8715 } 8716 UnhandledProbs -= I->Prob; 8717 8718 switch (I->Kind) { 8719 case CC_JumpTable: { 8720 // FIXME: Optimize away range check based on pivot comparisons. 8721 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8722 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8723 8724 // The jump block hasn't been inserted yet; insert it here. 8725 MachineBasicBlock *JumpMBB = JT->MBB; 8726 CurMF->insert(BBI, JumpMBB); 8727 8728 auto JumpProb = I->Prob; 8729 auto FallthroughProb = UnhandledProbs; 8730 8731 // If the default statement is a target of the jump table, we evenly 8732 // distribute the default probability to successors of CurMBB. Also 8733 // update the probability on the edge from JumpMBB to Fallthrough. 8734 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8735 SE = JumpMBB->succ_end(); 8736 SI != SE; ++SI) { 8737 if (*SI == DefaultMBB) { 8738 JumpProb += DefaultProb / 2; 8739 FallthroughProb -= DefaultProb / 2; 8740 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8741 JumpMBB->normalizeSuccProbs(); 8742 break; 8743 } 8744 } 8745 8746 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8747 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8748 CurMBB->normalizeSuccProbs(); 8749 8750 // The jump table header will be inserted in our current block, do the 8751 // range check, and fall through to our fallthrough block. 8752 JTH->HeaderBB = CurMBB; 8753 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8754 8755 // If we're in the right place, emit the jump table header right now. 8756 if (CurMBB == SwitchMBB) { 8757 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8758 JTH->Emitted = true; 8759 } 8760 break; 8761 } 8762 case CC_BitTests: { 8763 // FIXME: Optimize away range check based on pivot comparisons. 8764 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8765 8766 // The bit test blocks haven't been inserted yet; insert them here. 8767 for (BitTestCase &BTC : BTB->Cases) 8768 CurMF->insert(BBI, BTC.ThisBB); 8769 8770 // Fill in fields of the BitTestBlock. 8771 BTB->Parent = CurMBB; 8772 BTB->Default = Fallthrough; 8773 8774 BTB->DefaultProb = UnhandledProbs; 8775 // If the cases in bit test don't form a contiguous range, we evenly 8776 // distribute the probability on the edge to Fallthrough to two 8777 // successors of CurMBB. 8778 if (!BTB->ContiguousRange) { 8779 BTB->Prob += DefaultProb / 2; 8780 BTB->DefaultProb -= DefaultProb / 2; 8781 } 8782 8783 // If we're in the right place, emit the bit test header right now. 8784 if (CurMBB == SwitchMBB) { 8785 visitBitTestHeader(*BTB, SwitchMBB); 8786 BTB->Emitted = true; 8787 } 8788 break; 8789 } 8790 case CC_Range: { 8791 const Value *RHS, *LHS, *MHS; 8792 ISD::CondCode CC; 8793 if (I->Low == I->High) { 8794 // Check Cond == I->Low. 8795 CC = ISD::SETEQ; 8796 LHS = Cond; 8797 RHS=I->Low; 8798 MHS = nullptr; 8799 } else { 8800 // Check I->Low <= Cond <= I->High. 8801 CC = ISD::SETLE; 8802 LHS = I->Low; 8803 MHS = Cond; 8804 RHS = I->High; 8805 } 8806 8807 // The false probability is the sum of all unhandled cases. 8808 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8809 UnhandledProbs); 8810 8811 if (CurMBB == SwitchMBB) 8812 visitSwitchCase(CB, SwitchMBB); 8813 else 8814 SwitchCases.push_back(CB); 8815 8816 break; 8817 } 8818 } 8819 CurMBB = Fallthrough; 8820 } 8821 } 8822 8823 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8824 CaseClusterIt First, 8825 CaseClusterIt Last) { 8826 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8827 if (X.Prob != CC.Prob) 8828 return X.Prob > CC.Prob; 8829 8830 // Ties are broken by comparing the case value. 8831 return X.Low->getValue().slt(CC.Low->getValue()); 8832 }); 8833 } 8834 8835 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8836 const SwitchWorkListItem &W, 8837 Value *Cond, 8838 MachineBasicBlock *SwitchMBB) { 8839 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8840 "Clusters not sorted?"); 8841 8842 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8843 8844 // Balance the tree based on branch probabilities to create a near-optimal (in 8845 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8846 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8847 CaseClusterIt LastLeft = W.FirstCluster; 8848 CaseClusterIt FirstRight = W.LastCluster; 8849 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8850 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8851 8852 // Move LastLeft and FirstRight towards each other from opposite directions to 8853 // find a partitioning of the clusters which balances the probability on both 8854 // sides. If LeftProb and RightProb are equal, alternate which side is 8855 // taken to ensure 0-probability nodes are distributed evenly. 8856 unsigned I = 0; 8857 while (LastLeft + 1 < FirstRight) { 8858 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8859 LeftProb += (++LastLeft)->Prob; 8860 else 8861 RightProb += (--FirstRight)->Prob; 8862 I++; 8863 } 8864 8865 for (;;) { 8866 // Our binary search tree differs from a typical BST in that ours can have up 8867 // to three values in each leaf. The pivot selection above doesn't take that 8868 // into account, which means the tree might require more nodes and be less 8869 // efficient. We compensate for this here. 8870 8871 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8872 unsigned NumRight = W.LastCluster - FirstRight + 1; 8873 8874 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8875 // If one side has less than 3 clusters, and the other has more than 3, 8876 // consider taking a cluster from the other side. 8877 8878 if (NumLeft < NumRight) { 8879 // Consider moving the first cluster on the right to the left side. 8880 CaseCluster &CC = *FirstRight; 8881 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8882 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8883 if (LeftSideRank <= RightSideRank) { 8884 // Moving the cluster to the left does not demote it. 8885 ++LastLeft; 8886 ++FirstRight; 8887 continue; 8888 } 8889 } else { 8890 assert(NumRight < NumLeft); 8891 // Consider moving the last element on the left to the right side. 8892 CaseCluster &CC = *LastLeft; 8893 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8894 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8895 if (RightSideRank <= LeftSideRank) { 8896 // Moving the cluster to the right does not demot it. 8897 --LastLeft; 8898 --FirstRight; 8899 continue; 8900 } 8901 } 8902 } 8903 break; 8904 } 8905 8906 assert(LastLeft + 1 == FirstRight); 8907 assert(LastLeft >= W.FirstCluster); 8908 assert(FirstRight <= W.LastCluster); 8909 8910 // Use the first element on the right as pivot since we will make less-than 8911 // comparisons against it. 8912 CaseClusterIt PivotCluster = FirstRight; 8913 assert(PivotCluster > W.FirstCluster); 8914 assert(PivotCluster <= W.LastCluster); 8915 8916 CaseClusterIt FirstLeft = W.FirstCluster; 8917 CaseClusterIt LastRight = W.LastCluster; 8918 8919 const ConstantInt *Pivot = PivotCluster->Low; 8920 8921 // New blocks will be inserted immediately after the current one. 8922 MachineFunction::iterator BBI(W.MBB); 8923 ++BBI; 8924 8925 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8926 // we can branch to its destination directly if it's squeezed exactly in 8927 // between the known lower bound and Pivot - 1. 8928 MachineBasicBlock *LeftMBB; 8929 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8930 FirstLeft->Low == W.GE && 8931 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8932 LeftMBB = FirstLeft->MBB; 8933 } else { 8934 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8935 FuncInfo.MF->insert(BBI, LeftMBB); 8936 WorkList.push_back( 8937 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8938 // Put Cond in a virtual register to make it available from the new blocks. 8939 ExportFromCurrentBlock(Cond); 8940 } 8941 8942 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8943 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8944 // directly if RHS.High equals the current upper bound. 8945 MachineBasicBlock *RightMBB; 8946 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8947 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8948 RightMBB = FirstRight->MBB; 8949 } else { 8950 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8951 FuncInfo.MF->insert(BBI, RightMBB); 8952 WorkList.push_back( 8953 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8954 // Put Cond in a virtual register to make it available from the new blocks. 8955 ExportFromCurrentBlock(Cond); 8956 } 8957 8958 // Create the CaseBlock record that will be used to lower the branch. 8959 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8960 LeftProb, RightProb); 8961 8962 if (W.MBB == SwitchMBB) 8963 visitSwitchCase(CB, SwitchMBB); 8964 else 8965 SwitchCases.push_back(CB); 8966 } 8967 8968 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8969 // Extract cases from the switch. 8970 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8971 CaseClusterVector Clusters; 8972 Clusters.reserve(SI.getNumCases()); 8973 for (auto I : SI.cases()) { 8974 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8975 const ConstantInt *CaseVal = I.getCaseValue(); 8976 BranchProbability Prob = 8977 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8978 : BranchProbability(1, SI.getNumCases() + 1); 8979 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8980 } 8981 8982 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8983 8984 // Cluster adjacent cases with the same destination. We do this at all 8985 // optimization levels because it's cheap to do and will make codegen faster 8986 // if there are many clusters. 8987 sortAndRangeify(Clusters); 8988 8989 if (TM.getOptLevel() != CodeGenOpt::None) { 8990 // Replace an unreachable default with the most popular destination. 8991 // FIXME: Exploit unreachable default more aggressively. 8992 bool UnreachableDefault = 8993 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8994 if (UnreachableDefault && !Clusters.empty()) { 8995 DenseMap<const BasicBlock *, unsigned> Popularity; 8996 unsigned MaxPop = 0; 8997 const BasicBlock *MaxBB = nullptr; 8998 for (auto I : SI.cases()) { 8999 const BasicBlock *BB = I.getCaseSuccessor(); 9000 if (++Popularity[BB] > MaxPop) { 9001 MaxPop = Popularity[BB]; 9002 MaxBB = BB; 9003 } 9004 } 9005 // Set new default. 9006 assert(MaxPop > 0 && MaxBB); 9007 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9008 9009 // Remove cases that were pointing to the destination that is now the 9010 // default. 9011 CaseClusterVector New; 9012 New.reserve(Clusters.size()); 9013 for (CaseCluster &CC : Clusters) { 9014 if (CC.MBB != DefaultMBB) 9015 New.push_back(CC); 9016 } 9017 Clusters = std::move(New); 9018 } 9019 } 9020 9021 // If there is only the default destination, jump there directly. 9022 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9023 if (Clusters.empty()) { 9024 SwitchMBB->addSuccessor(DefaultMBB); 9025 if (DefaultMBB != NextBlock(SwitchMBB)) { 9026 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9027 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9028 } 9029 return; 9030 } 9031 9032 findJumpTables(Clusters, &SI, DefaultMBB); 9033 findBitTestClusters(Clusters, &SI); 9034 9035 DEBUG({ 9036 dbgs() << "Case clusters: "; 9037 for (const CaseCluster &C : Clusters) { 9038 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9039 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9040 9041 C.Low->getValue().print(dbgs(), true); 9042 if (C.Low != C.High) { 9043 dbgs() << '-'; 9044 C.High->getValue().print(dbgs(), true); 9045 } 9046 dbgs() << ' '; 9047 } 9048 dbgs() << '\n'; 9049 }); 9050 9051 assert(!Clusters.empty()); 9052 SwitchWorkList WorkList; 9053 CaseClusterIt First = Clusters.begin(); 9054 CaseClusterIt Last = Clusters.end() - 1; 9055 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9056 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9057 9058 while (!WorkList.empty()) { 9059 SwitchWorkListItem W = WorkList.back(); 9060 WorkList.pop_back(); 9061 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9062 9063 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 9064 // For optimized builds, lower large range as a balanced binary tree. 9065 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9066 continue; 9067 } 9068 9069 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9070 } 9071 } 9072