1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 442 DAG.getVectorIdxConstant(0, DL)); 443 } 444 445 // Vector/Vector bitcast. 446 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 450 "Cannot handle this kind of promotion"); 451 // Promoted vector extract 452 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 453 454 } 455 456 // Trivial bitcast if the types are the same size and the destination 457 // vector type is legal. 458 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 459 TLI.isTypeLegal(ValueVT)) 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 462 if (ValueVT.getVectorNumElements() != 1) { 463 // Certain ABIs require that vectors are passed as integers. For vectors 464 // are the same size, this is an obvious bitcast. 465 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 466 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 467 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 468 // Bitcast Val back the original type and extract the corresponding 469 // vector we want. 470 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 471 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 472 ValueVT.getVectorElementType(), Elts); 473 Val = DAG.getBitcast(WiderVecType, Val); 474 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 475 DAG.getVectorIdxConstant(0, DL)); 476 } 477 478 diagnosePossiblyInvalidConstraint( 479 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 480 return DAG.getUNDEF(ValueVT); 481 } 482 483 // Handle cases such as i8 -> <1 x i1> 484 EVT ValueSVT = ValueVT.getVectorElementType(); 485 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 486 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 487 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 488 else 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 Optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 506 SDValue *Parts, unsigned NumParts, MVT PartVT, 507 const Value *V, 508 Optional<CallingConv::ID> CallConv = None, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 EVT ValueVT = Val.getValueType(); 511 512 // Handle the vector case separately. 513 if (ValueVT.isVector()) 514 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 515 CallConv); 516 517 unsigned PartBits = PartVT.getSizeInBits(); 518 unsigned OrigNumParts = NumParts; 519 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 520 "Copying to an illegal type!"); 521 522 if (NumParts == 0) 523 return; 524 525 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 526 EVT PartEVT = PartVT; 527 if (PartEVT == ValueVT) { 528 assert(NumParts == 1 && "No-op copy with multiple parts!"); 529 Parts[0] = Val; 530 return; 531 } 532 533 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 534 // If the parts cover more bits than the value has, promote the value. 535 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 536 assert(NumParts == 1 && "Do not know what to promote to!"); 537 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 538 } else { 539 if (ValueVT.isFloatingPoint()) { 540 // FP values need to be bitcast, then extended if they are being put 541 // into a larger container. 542 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 543 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 544 } 545 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 546 ValueVT.isInteger() && 547 "Unknown mismatch!"); 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 549 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 550 if (PartVT == MVT::x86mmx) 551 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 552 } 553 } else if (PartBits == ValueVT.getSizeInBits()) { 554 // Different types of the same size. 555 assert(NumParts == 1 && PartEVT != ValueVT); 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 558 // If the parts cover less bits than value has, truncate the value. 559 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 560 ValueVT.isInteger() && 561 "Unknown mismatch!"); 562 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 563 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 564 if (PartVT == MVT::x86mmx) 565 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 566 } 567 568 // The value may have changed - recompute ValueVT. 569 ValueVT = Val.getValueType(); 570 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 571 "Failed to tile the value with PartVT!"); 572 573 if (NumParts == 1) { 574 if (PartEVT != ValueVT) { 575 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 576 "scalar-to-vector conversion failed"); 577 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 578 } 579 580 Parts[0] = Val; 581 return; 582 } 583 584 // Expand the value into multiple parts. 585 if (NumParts & (NumParts - 1)) { 586 // The number of parts is not a power of 2. Split off and copy the tail. 587 assert(PartVT.isInteger() && ValueVT.isInteger() && 588 "Do not know what to expand to!"); 589 unsigned RoundParts = 1 << Log2_32(NumParts); 590 unsigned RoundBits = RoundParts * PartBits; 591 unsigned OddParts = NumParts - RoundParts; 592 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 593 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 594 595 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 596 CallConv); 597 598 if (DAG.getDataLayout().isBigEndian()) 599 // The odd parts were reversed by getCopyToParts - unreverse them. 600 std::reverse(Parts + RoundParts, Parts + NumParts); 601 602 NumParts = RoundParts; 603 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 604 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 605 } 606 607 // The number of parts is a power of 2. Repeatedly bisect the value using 608 // EXTRACT_ELEMENT. 609 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 610 EVT::getIntegerVT(*DAG.getContext(), 611 ValueVT.getSizeInBits()), 612 Val); 613 614 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 615 for (unsigned i = 0; i < NumParts; i += StepSize) { 616 unsigned ThisBits = StepSize * PartBits / 2; 617 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 618 SDValue &Part0 = Parts[i]; 619 SDValue &Part1 = Parts[i+StepSize/2]; 620 621 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 622 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 623 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 625 626 if (ThisBits == PartBits && ThisVT != PartVT) { 627 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 628 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 629 } 630 } 631 } 632 633 if (DAG.getDataLayout().isBigEndian()) 634 std::reverse(Parts, Parts + OrigNumParts); 635 } 636 637 static SDValue widenVectorToPartType(SelectionDAG &DAG, 638 SDValue Val, const SDLoc &DL, EVT PartVT) { 639 if (!PartVT.isVector()) 640 return SDValue(); 641 642 EVT ValueVT = Val.getValueType(); 643 unsigned PartNumElts = PartVT.getVectorNumElements(); 644 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 645 if (PartNumElts > ValueNumElts && 646 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 647 EVT ElementVT = PartVT.getVectorElementType(); 648 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 649 // undef elements. 650 SmallVector<SDValue, 16> Ops; 651 DAG.ExtractVectorElements(Val, Ops); 652 SDValue EltUndef = DAG.getUNDEF(ElementVT); 653 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 654 Ops.push_back(EltUndef); 655 656 // FIXME: Use CONCAT for 2x -> 4x. 657 return DAG.getBuildVector(PartVT, DL, Ops); 658 } 659 660 return SDValue(); 661 } 662 663 /// getCopyToPartsVector - Create a series of nodes that contain the specified 664 /// value split into legal parts. 665 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 666 SDValue Val, SDValue *Parts, unsigned NumParts, 667 MVT PartVT, const Value *V, 668 Optional<CallingConv::ID> CallConv) { 669 EVT ValueVT = Val.getValueType(); 670 assert(ValueVT.isVector() && "Not a vector"); 671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 672 const bool IsABIRegCopy = CallConv.hasValue(); 673 674 if (NumParts == 1) { 675 EVT PartEVT = PartVT; 676 if (PartEVT == ValueVT) { 677 // Nothing to do. 678 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 679 // Bitconvert vector->vector case. 680 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 681 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 682 Val = Widened; 683 } else if (PartVT.isVector() && 684 PartEVT.getVectorElementType().bitsGE( 685 ValueVT.getVectorElementType()) && 686 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 687 688 // Promoted vector extract 689 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 690 } else { 691 if (ValueVT.getVectorNumElements() == 1) { 692 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 693 DAG.getVectorIdxConstant(0, DL)); 694 } else { 695 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 696 "lossy conversion of vector to scalar type"); 697 EVT IntermediateType = 698 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 699 Val = DAG.getBitcast(IntermediateType, Val); 700 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 701 } 702 } 703 704 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 705 Parts[0] = Val; 706 return; 707 } 708 709 // Handle a multi-element vector. 710 EVT IntermediateVT; 711 MVT RegisterVT; 712 unsigned NumIntermediates; 713 unsigned NumRegs; 714 if (IsABIRegCopy) { 715 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 716 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 717 NumIntermediates, RegisterVT); 718 } else { 719 NumRegs = 720 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 721 NumIntermediates, RegisterVT); 722 } 723 724 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 725 NumParts = NumRegs; // Silence a compiler warning. 726 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 727 728 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 729 IntermediateVT.getVectorNumElements() : 1; 730 731 // Convert the vector to the appropriate type if necessary. 732 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 733 734 EVT BuiltVectorTy = EVT::getVectorVT( 735 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 736 if (ValueVT != BuiltVectorTy) { 737 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 738 Val = Widened; 739 740 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 741 } 742 743 // Split the vector into intermediate operands. 744 SmallVector<SDValue, 8> Ops(NumIntermediates); 745 for (unsigned i = 0; i != NumIntermediates; ++i) { 746 if (IntermediateVT.isVector()) { 747 Ops[i] = 748 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 749 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 750 } else { 751 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 752 DAG.getVectorIdxConstant(i, DL)); 753 } 754 } 755 756 // Split the intermediate operands into legal parts. 757 if (NumParts == NumIntermediates) { 758 // If the register was not expanded, promote or copy the value, 759 // as appropriate. 760 for (unsigned i = 0; i != NumParts; ++i) 761 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 762 } else if (NumParts > 0) { 763 // If the intermediate type was expanded, split each the value into 764 // legal parts. 765 assert(NumIntermediates != 0 && "division by zero"); 766 assert(NumParts % NumIntermediates == 0 && 767 "Must expand into a divisible number of parts!"); 768 unsigned Factor = NumParts / NumIntermediates; 769 for (unsigned i = 0; i != NumIntermediates; ++i) 770 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 771 CallConv); 772 } 773 } 774 775 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 776 EVT valuevt, Optional<CallingConv::ID> CC) 777 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 778 RegCount(1, regs.size()), CallConv(CC) {} 779 780 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 781 const DataLayout &DL, unsigned Reg, Type *Ty, 782 Optional<CallingConv::ID> CC) { 783 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 784 785 CallConv = CC; 786 787 for (EVT ValueVT : ValueVTs) { 788 unsigned NumRegs = 789 isABIMangled() 790 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 791 : TLI.getNumRegisters(Context, ValueVT); 792 MVT RegisterVT = 793 isABIMangled() 794 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 795 : TLI.getRegisterType(Context, ValueVT); 796 for (unsigned i = 0; i != NumRegs; ++i) 797 Regs.push_back(Reg + i); 798 RegVTs.push_back(RegisterVT); 799 RegCount.push_back(NumRegs); 800 Reg += NumRegs; 801 } 802 } 803 804 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 805 FunctionLoweringInfo &FuncInfo, 806 const SDLoc &dl, SDValue &Chain, 807 SDValue *Flag, const Value *V) const { 808 // A Value with type {} or [0 x %t] needs no registers. 809 if (ValueVTs.empty()) 810 return SDValue(); 811 812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 813 814 // Assemble the legal parts into the final values. 815 SmallVector<SDValue, 4> Values(ValueVTs.size()); 816 SmallVector<SDValue, 8> Parts; 817 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 818 // Copy the legal parts from the registers. 819 EVT ValueVT = ValueVTs[Value]; 820 unsigned NumRegs = RegCount[Value]; 821 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 822 *DAG.getContext(), 823 CallConv.getValue(), RegVTs[Value]) 824 : RegVTs[Value]; 825 826 Parts.resize(NumRegs); 827 for (unsigned i = 0; i != NumRegs; ++i) { 828 SDValue P; 829 if (!Flag) { 830 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 831 } else { 832 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 833 *Flag = P.getValue(2); 834 } 835 836 Chain = P.getValue(1); 837 Parts[i] = P; 838 839 // If the source register was virtual and if we know something about it, 840 // add an assert node. 841 if (!Register::isVirtualRegister(Regs[Part + i]) || 842 !RegisterVT.isInteger()) 843 continue; 844 845 const FunctionLoweringInfo::LiveOutInfo *LOI = 846 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 847 if (!LOI) 848 continue; 849 850 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 851 unsigned NumSignBits = LOI->NumSignBits; 852 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 853 854 if (NumZeroBits == RegSize) { 855 // The current value is a zero. 856 // Explicitly express that as it would be easier for 857 // optimizations to kick in. 858 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 859 continue; 860 } 861 862 // FIXME: We capture more information than the dag can represent. For 863 // now, just use the tightest assertzext/assertsext possible. 864 bool isSExt; 865 EVT FromVT(MVT::Other); 866 if (NumZeroBits) { 867 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 868 isSExt = false; 869 } else if (NumSignBits > 1) { 870 FromVT = 871 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 872 isSExt = true; 873 } else { 874 continue; 875 } 876 // Add an assertion node. 877 assert(FromVT != MVT::Other); 878 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 879 RegisterVT, P, DAG.getValueType(FromVT)); 880 } 881 882 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 883 RegisterVT, ValueVT, V, CallConv); 884 Part += NumRegs; 885 Parts.clear(); 886 } 887 888 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 889 } 890 891 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 892 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 893 const Value *V, 894 ISD::NodeType PreferredExtendType) const { 895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 896 ISD::NodeType ExtendKind = PreferredExtendType; 897 898 // Get the list of the values's legal parts. 899 unsigned NumRegs = Regs.size(); 900 SmallVector<SDValue, 8> Parts(NumRegs); 901 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 902 unsigned NumParts = RegCount[Value]; 903 904 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 905 *DAG.getContext(), 906 CallConv.getValue(), RegVTs[Value]) 907 : RegVTs[Value]; 908 909 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 910 ExtendKind = ISD::ZERO_EXTEND; 911 912 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 913 NumParts, RegisterVT, V, CallConv, ExtendKind); 914 Part += NumParts; 915 } 916 917 // Copy the parts into the registers. 918 SmallVector<SDValue, 8> Chains(NumRegs); 919 for (unsigned i = 0; i != NumRegs; ++i) { 920 SDValue Part; 921 if (!Flag) { 922 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 923 } else { 924 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 925 *Flag = Part.getValue(1); 926 } 927 928 Chains[i] = Part.getValue(0); 929 } 930 931 if (NumRegs == 1 || Flag) 932 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 933 // flagged to it. That is the CopyToReg nodes and the user are considered 934 // a single scheduling unit. If we create a TokenFactor and return it as 935 // chain, then the TokenFactor is both a predecessor (operand) of the 936 // user as well as a successor (the TF operands are flagged to the user). 937 // c1, f1 = CopyToReg 938 // c2, f2 = CopyToReg 939 // c3 = TokenFactor c1, c2 940 // ... 941 // = op c3, ..., f2 942 Chain = Chains[NumRegs-1]; 943 else 944 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 945 } 946 947 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 948 unsigned MatchingIdx, const SDLoc &dl, 949 SelectionDAG &DAG, 950 std::vector<SDValue> &Ops) const { 951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 952 953 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 954 if (HasMatching) 955 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 956 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 957 // Put the register class of the virtual registers in the flag word. That 958 // way, later passes can recompute register class constraints for inline 959 // assembly as well as normal instructions. 960 // Don't do this for tied operands that can use the regclass information 961 // from the def. 962 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 963 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 964 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 965 } 966 967 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 968 Ops.push_back(Res); 969 970 if (Code == InlineAsm::Kind_Clobber) { 971 // Clobbers should always have a 1:1 mapping with registers, and may 972 // reference registers that have illegal (e.g. vector) types. Hence, we 973 // shouldn't try to apply any sort of splitting logic to them. 974 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 975 "No 1:1 mapping from clobbers to regs?"); 976 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 977 (void)SP; 978 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 979 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 980 assert( 981 (Regs[I] != SP || 982 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 983 "If we clobbered the stack pointer, MFI should know about it."); 984 } 985 return; 986 } 987 988 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 989 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 990 MVT RegisterVT = RegVTs[Value]; 991 for (unsigned i = 0; i != NumRegs; ++i) { 992 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 993 unsigned TheReg = Regs[Reg++]; 994 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 995 } 996 } 997 } 998 999 SmallVector<std::pair<unsigned, unsigned>, 4> 1000 RegsForValue::getRegsAndSizes() const { 1001 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1002 unsigned I = 0; 1003 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1004 unsigned RegCount = std::get<0>(CountAndVT); 1005 MVT RegisterVT = std::get<1>(CountAndVT); 1006 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1007 for (unsigned E = I + RegCount; I != E; ++I) 1008 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1009 } 1010 return OutVec; 1011 } 1012 1013 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1014 const TargetLibraryInfo *li) { 1015 AA = aa; 1016 GFI = gfi; 1017 LibInfo = li; 1018 DL = &DAG.getDataLayout(); 1019 Context = DAG.getContext(); 1020 LPadToCallSiteMap.clear(); 1021 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1022 } 1023 1024 void SelectionDAGBuilder::clear() { 1025 NodeMap.clear(); 1026 UnusedArgNodeMap.clear(); 1027 PendingLoads.clear(); 1028 PendingExports.clear(); 1029 PendingConstrainedFP.clear(); 1030 PendingConstrainedFPStrict.clear(); 1031 CurInst = nullptr; 1032 HasTailCall = false; 1033 SDNodeOrder = LowestSDNodeOrder; 1034 StatepointLowering.clear(); 1035 } 1036 1037 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1038 DanglingDebugInfoMap.clear(); 1039 } 1040 1041 // Update DAG root to include dependencies on Pending chains. 1042 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (Pending.empty()) 1046 return Root; 1047 1048 // Add current root to PendingChains, unless we already indirectly 1049 // depend on it. 1050 if (Root.getOpcode() != ISD::EntryToken) { 1051 unsigned i = 0, e = Pending.size(); 1052 for (; i != e; ++i) { 1053 assert(Pending[i].getNode()->getNumOperands() > 1); 1054 if (Pending[i].getNode()->getOperand(0) == Root) 1055 break; // Don't add the root if we already indirectly depend on it. 1056 } 1057 1058 if (i == e) 1059 Pending.push_back(Root); 1060 } 1061 1062 if (Pending.size() == 1) 1063 Root = Pending[0]; 1064 else 1065 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1066 1067 DAG.setRoot(Root); 1068 Pending.clear(); 1069 return Root; 1070 } 1071 1072 SDValue SelectionDAGBuilder::getMemoryRoot() { 1073 return updateRoot(PendingLoads); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getRoot() { 1077 // Chain up all pending constrained intrinsics together with all 1078 // pending loads, by simply appending them to PendingLoads and 1079 // then calling getMemoryRoot(). 1080 PendingLoads.reserve(PendingLoads.size() + 1081 PendingConstrainedFP.size() + 1082 PendingConstrainedFPStrict.size()); 1083 PendingLoads.append(PendingConstrainedFP.begin(), 1084 PendingConstrainedFP.end()); 1085 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1086 PendingConstrainedFPStrict.end()); 1087 PendingConstrainedFP.clear(); 1088 PendingConstrainedFPStrict.clear(); 1089 return getMemoryRoot(); 1090 } 1091 1092 SDValue SelectionDAGBuilder::getControlRoot() { 1093 // We need to emit pending fpexcept.strict constrained intrinsics, 1094 // so append them to the PendingExports list. 1095 PendingExports.append(PendingConstrainedFPStrict.begin(), 1096 PendingConstrainedFPStrict.end()); 1097 PendingConstrainedFPStrict.clear(); 1098 return updateRoot(PendingExports); 1099 } 1100 1101 void SelectionDAGBuilder::visit(const Instruction &I) { 1102 // Set up outgoing PHI node register values before emitting the terminator. 1103 if (I.isTerminator()) { 1104 HandlePHINodesInSuccessorBlocks(I.getParent()); 1105 } 1106 1107 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1108 if (!isa<DbgInfoIntrinsic>(I)) 1109 ++SDNodeOrder; 1110 1111 CurInst = &I; 1112 1113 visit(I.getOpcode(), I); 1114 1115 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1116 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1117 // maps to this instruction. 1118 // TODO: We could handle all flags (nsw, etc) here. 1119 // TODO: If an IR instruction maps to >1 node, only the final node will have 1120 // flags set. 1121 if (SDNode *Node = getNodeForIRValue(&I)) { 1122 SDNodeFlags IncomingFlags; 1123 IncomingFlags.copyFMF(*FPMO); 1124 if (!Node->getFlags().isDefined()) 1125 Node->setFlags(IncomingFlags); 1126 else 1127 Node->intersectFlagsWith(IncomingFlags); 1128 } 1129 } 1130 // Constrained FP intrinsics with fpexcept.ignore should also get 1131 // the NoFPExcept flag. 1132 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I)) 1133 if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore) 1134 if (SDNode *Node = getNodeForIRValue(&I)) { 1135 SDNodeFlags Flags = Node->getFlags(); 1136 Flags.setNoFPExcept(true); 1137 Node->setFlags(Flags); 1138 } 1139 1140 if (!I.isTerminator() && !HasTailCall && 1141 !isStatepoint(&I)) // statepoints handle their exports internally 1142 CopyToExportRegsIfNeeded(&I); 1143 1144 CurInst = nullptr; 1145 } 1146 1147 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1148 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1149 } 1150 1151 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1152 // Note: this doesn't use InstVisitor, because it has to work with 1153 // ConstantExpr's in addition to instructions. 1154 switch (Opcode) { 1155 default: llvm_unreachable("Unknown instruction type encountered!"); 1156 // Build the switch statement using the Instruction.def file. 1157 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1158 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1159 #include "llvm/IR/Instruction.def" 1160 } 1161 } 1162 1163 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1164 const DIExpression *Expr) { 1165 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1166 const DbgValueInst *DI = DDI.getDI(); 1167 DIVariable *DanglingVariable = DI->getVariable(); 1168 DIExpression *DanglingExpr = DI->getExpression(); 1169 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1170 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1171 return true; 1172 } 1173 return false; 1174 }; 1175 1176 for (auto &DDIMI : DanglingDebugInfoMap) { 1177 DanglingDebugInfoVector &DDIV = DDIMI.second; 1178 1179 // If debug info is to be dropped, run it through final checks to see 1180 // whether it can be salvaged. 1181 for (auto &DDI : DDIV) 1182 if (isMatchingDbgValue(DDI)) 1183 salvageUnresolvedDbgValue(DDI); 1184 1185 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1186 } 1187 } 1188 1189 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1190 // generate the debug data structures now that we've seen its definition. 1191 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1192 SDValue Val) { 1193 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1194 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1195 return; 1196 1197 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1198 for (auto &DDI : DDIV) { 1199 const DbgValueInst *DI = DDI.getDI(); 1200 assert(DI && "Ill-formed DanglingDebugInfo"); 1201 DebugLoc dl = DDI.getdl(); 1202 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1203 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1204 DILocalVariable *Variable = DI->getVariable(); 1205 DIExpression *Expr = DI->getExpression(); 1206 assert(Variable->isValidLocationForIntrinsic(dl) && 1207 "Expected inlined-at fields to agree"); 1208 SDDbgValue *SDV; 1209 if (Val.getNode()) { 1210 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1211 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1212 // we couldn't resolve it directly when examining the DbgValue intrinsic 1213 // in the first place we should not be more successful here). Unless we 1214 // have some test case that prove this to be correct we should avoid 1215 // calling EmitFuncArgumentDbgValue here. 1216 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1217 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1218 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1219 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1220 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1221 // inserted after the definition of Val when emitting the instructions 1222 // after ISel. An alternative could be to teach 1223 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1224 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1225 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1226 << ValSDNodeOrder << "\n"); 1227 SDV = getDbgValue(Val, Variable, Expr, dl, 1228 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1229 DAG.AddDbgValue(SDV, Val.getNode(), false); 1230 } else 1231 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1232 << "in EmitFuncArgumentDbgValue\n"); 1233 } else { 1234 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1235 auto Undef = 1236 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1237 auto SDV = 1238 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1239 DAG.AddDbgValue(SDV, nullptr, false); 1240 } 1241 } 1242 DDIV.clear(); 1243 } 1244 1245 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1246 Value *V = DDI.getDI()->getValue(); 1247 DILocalVariable *Var = DDI.getDI()->getVariable(); 1248 DIExpression *Expr = DDI.getDI()->getExpression(); 1249 DebugLoc DL = DDI.getdl(); 1250 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1251 unsigned SDOrder = DDI.getSDNodeOrder(); 1252 1253 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1254 // that DW_OP_stack_value is desired. 1255 assert(isa<DbgValueInst>(DDI.getDI())); 1256 bool StackValue = true; 1257 1258 // Can this Value can be encoded without any further work? 1259 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1260 return; 1261 1262 // Attempt to salvage back through as many instructions as possible. Bail if 1263 // a non-instruction is seen, such as a constant expression or global 1264 // variable. FIXME: Further work could recover those too. 1265 while (isa<Instruction>(V)) { 1266 Instruction &VAsInst = *cast<Instruction>(V); 1267 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1268 1269 // If we cannot salvage any further, and haven't yet found a suitable debug 1270 // expression, bail out. 1271 if (!NewExpr) 1272 break; 1273 1274 // New value and expr now represent this debuginfo. 1275 V = VAsInst.getOperand(0); 1276 Expr = NewExpr; 1277 1278 // Some kind of simplification occurred: check whether the operand of the 1279 // salvaged debug expression can be encoded in this DAG. 1280 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1281 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1282 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1283 return; 1284 } 1285 } 1286 1287 // This was the final opportunity to salvage this debug information, and it 1288 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1289 // any earlier variable location. 1290 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1291 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1292 DAG.AddDbgValue(SDV, nullptr, false); 1293 1294 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1295 << "\n"); 1296 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1297 << "\n"); 1298 } 1299 1300 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1301 DIExpression *Expr, DebugLoc dl, 1302 DebugLoc InstDL, unsigned Order) { 1303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1304 SDDbgValue *SDV; 1305 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1306 isa<ConstantPointerNull>(V)) { 1307 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1308 DAG.AddDbgValue(SDV, nullptr, false); 1309 return true; 1310 } 1311 1312 // If the Value is a frame index, we can create a FrameIndex debug value 1313 // without relying on the DAG at all. 1314 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1315 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1316 if (SI != FuncInfo.StaticAllocaMap.end()) { 1317 auto SDV = 1318 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1319 /*IsIndirect*/ false, dl, SDNodeOrder); 1320 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1321 // is still available even if the SDNode gets optimized out. 1322 DAG.AddDbgValue(SDV, nullptr, false); 1323 return true; 1324 } 1325 } 1326 1327 // Do not use getValue() in here; we don't want to generate code at 1328 // this point if it hasn't been done yet. 1329 SDValue N = NodeMap[V]; 1330 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1331 N = UnusedArgNodeMap[V]; 1332 if (N.getNode()) { 1333 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1334 return true; 1335 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, N.getNode(), false); 1337 return true; 1338 } 1339 1340 // Special rules apply for the first dbg.values of parameter variables in a 1341 // function. Identify them by the fact they reference Argument Values, that 1342 // they're parameters, and they are parameters of the current function. We 1343 // need to let them dangle until they get an SDNode. 1344 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1345 !InstDL.getInlinedAt(); 1346 if (!IsParamOfFunc) { 1347 // The value is not used in this block yet (or it would have an SDNode). 1348 // We still want the value to appear for the user if possible -- if it has 1349 // an associated VReg, we can refer to that instead. 1350 auto VMI = FuncInfo.ValueMap.find(V); 1351 if (VMI != FuncInfo.ValueMap.end()) { 1352 unsigned Reg = VMI->second; 1353 // If this is a PHI node, it may be split up into several MI PHI nodes 1354 // (in FunctionLoweringInfo::set). 1355 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1356 V->getType(), None); 1357 if (RFV.occupiesMultipleRegs()) { 1358 unsigned Offset = 0; 1359 unsigned BitsToDescribe = 0; 1360 if (auto VarSize = Var->getSizeInBits()) 1361 BitsToDescribe = *VarSize; 1362 if (auto Fragment = Expr->getFragmentInfo()) 1363 BitsToDescribe = Fragment->SizeInBits; 1364 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1365 unsigned RegisterSize = RegAndSize.second; 1366 // Bail out if all bits are described already. 1367 if (Offset >= BitsToDescribe) 1368 break; 1369 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1370 ? BitsToDescribe - Offset 1371 : RegisterSize; 1372 auto FragmentExpr = DIExpression::createFragmentExpression( 1373 Expr, Offset, FragmentSize); 1374 if (!FragmentExpr) 1375 continue; 1376 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1377 false, dl, SDNodeOrder); 1378 DAG.AddDbgValue(SDV, nullptr, false); 1379 Offset += RegisterSize; 1380 } 1381 } else { 1382 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1383 DAG.AddDbgValue(SDV, nullptr, false); 1384 } 1385 return true; 1386 } 1387 } 1388 1389 return false; 1390 } 1391 1392 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1393 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1394 for (auto &Pair : DanglingDebugInfoMap) 1395 for (auto &DDI : Pair.second) 1396 salvageUnresolvedDbgValue(DDI); 1397 clearDanglingDebugInfo(); 1398 } 1399 1400 /// getCopyFromRegs - If there was virtual register allocated for the value V 1401 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1402 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1403 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1404 SDValue Result; 1405 1406 if (It != FuncInfo.ValueMap.end()) { 1407 unsigned InReg = It->second; 1408 1409 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1410 DAG.getDataLayout(), InReg, Ty, 1411 None); // This is not an ABI copy. 1412 SDValue Chain = DAG.getEntryNode(); 1413 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1414 V); 1415 resolveDanglingDebugInfo(V, Result); 1416 } 1417 1418 return Result; 1419 } 1420 1421 /// getValue - Return an SDValue for the given Value. 1422 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1423 // If we already have an SDValue for this value, use it. It's important 1424 // to do this first, so that we don't create a CopyFromReg if we already 1425 // have a regular SDValue. 1426 SDValue &N = NodeMap[V]; 1427 if (N.getNode()) return N; 1428 1429 // If there's a virtual register allocated and initialized for this 1430 // value, use it. 1431 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1432 return copyFromReg; 1433 1434 // Otherwise create a new SDValue and remember it. 1435 SDValue Val = getValueImpl(V); 1436 NodeMap[V] = Val; 1437 resolveDanglingDebugInfo(V, Val); 1438 return Val; 1439 } 1440 1441 // Return true if SDValue exists for the given Value 1442 bool SelectionDAGBuilder::findValue(const Value *V) const { 1443 return (NodeMap.find(V) != NodeMap.end()) || 1444 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1445 } 1446 1447 /// getNonRegisterValue - Return an SDValue for the given Value, but 1448 /// don't look in FuncInfo.ValueMap for a virtual register. 1449 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1450 // If we already have an SDValue for this value, use it. 1451 SDValue &N = NodeMap[V]; 1452 if (N.getNode()) { 1453 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1454 // Remove the debug location from the node as the node is about to be used 1455 // in a location which may differ from the original debug location. This 1456 // is relevant to Constant and ConstantFP nodes because they can appear 1457 // as constant expressions inside PHI nodes. 1458 N->setDebugLoc(DebugLoc()); 1459 } 1460 return N; 1461 } 1462 1463 // Otherwise create a new SDValue and remember it. 1464 SDValue Val = getValueImpl(V); 1465 NodeMap[V] = Val; 1466 resolveDanglingDebugInfo(V, Val); 1467 return Val; 1468 } 1469 1470 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1471 /// Create an SDValue for the given value. 1472 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1474 1475 if (const Constant *C = dyn_cast<Constant>(V)) { 1476 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1477 1478 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1479 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1480 1481 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1482 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1483 1484 if (isa<ConstantPointerNull>(C)) { 1485 unsigned AS = V->getType()->getPointerAddressSpace(); 1486 return DAG.getConstant(0, getCurSDLoc(), 1487 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1488 } 1489 1490 if (match(C, m_VScale(DAG.getDataLayout()))) 1491 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1492 1493 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1494 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1495 1496 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1497 return DAG.getUNDEF(VT); 1498 1499 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1500 visit(CE->getOpcode(), *CE); 1501 SDValue N1 = NodeMap[V]; 1502 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1503 return N1; 1504 } 1505 1506 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1507 SmallVector<SDValue, 4> Constants; 1508 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1509 OI != OE; ++OI) { 1510 SDNode *Val = getValue(*OI).getNode(); 1511 // If the operand is an empty aggregate, there are no values. 1512 if (!Val) continue; 1513 // Add each leaf value from the operand to the Constants list 1514 // to form a flattened list of all the values. 1515 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1516 Constants.push_back(SDValue(Val, i)); 1517 } 1518 1519 return DAG.getMergeValues(Constants, getCurSDLoc()); 1520 } 1521 1522 if (const ConstantDataSequential *CDS = 1523 dyn_cast<ConstantDataSequential>(C)) { 1524 SmallVector<SDValue, 4> Ops; 1525 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1526 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1527 // Add each leaf value from the operand to the Constants list 1528 // to form a flattened list of all the values. 1529 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1530 Ops.push_back(SDValue(Val, i)); 1531 } 1532 1533 if (isa<ArrayType>(CDS->getType())) 1534 return DAG.getMergeValues(Ops, getCurSDLoc()); 1535 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1536 } 1537 1538 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1539 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1540 "Unknown struct or array constant!"); 1541 1542 SmallVector<EVT, 4> ValueVTs; 1543 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1544 unsigned NumElts = ValueVTs.size(); 1545 if (NumElts == 0) 1546 return SDValue(); // empty struct 1547 SmallVector<SDValue, 4> Constants(NumElts); 1548 for (unsigned i = 0; i != NumElts; ++i) { 1549 EVT EltVT = ValueVTs[i]; 1550 if (isa<UndefValue>(C)) 1551 Constants[i] = DAG.getUNDEF(EltVT); 1552 else if (EltVT.isFloatingPoint()) 1553 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1554 else 1555 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1556 } 1557 1558 return DAG.getMergeValues(Constants, getCurSDLoc()); 1559 } 1560 1561 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1562 return DAG.getBlockAddress(BA, VT); 1563 1564 VectorType *VecTy = cast<VectorType>(V->getType()); 1565 unsigned NumElements = VecTy->getNumElements(); 1566 1567 // Now that we know the number and type of the elements, get that number of 1568 // elements into the Ops array based on what kind of constant it is. 1569 SmallVector<SDValue, 16> Ops; 1570 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1571 for (unsigned i = 0; i != NumElements; ++i) 1572 Ops.push_back(getValue(CV->getOperand(i))); 1573 } else { 1574 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1575 EVT EltVT = 1576 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1577 1578 SDValue Op; 1579 if (EltVT.isFloatingPoint()) 1580 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1581 else 1582 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1583 Ops.assign(NumElements, Op); 1584 } 1585 1586 // Create a BUILD_VECTOR node. 1587 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1588 } 1589 1590 // If this is a static alloca, generate it as the frameindex instead of 1591 // computation. 1592 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1593 DenseMap<const AllocaInst*, int>::iterator SI = 1594 FuncInfo.StaticAllocaMap.find(AI); 1595 if (SI != FuncInfo.StaticAllocaMap.end()) 1596 return DAG.getFrameIndex(SI->second, 1597 TLI.getFrameIndexTy(DAG.getDataLayout())); 1598 } 1599 1600 // If this is an instruction which fast-isel has deferred, select it now. 1601 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1602 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1603 1604 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1605 Inst->getType(), getABIRegCopyCC(V)); 1606 SDValue Chain = DAG.getEntryNode(); 1607 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1608 } 1609 1610 llvm_unreachable("Can't get register for value!"); 1611 } 1612 1613 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1614 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1615 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1616 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1617 bool IsSEH = isAsynchronousEHPersonality(Pers); 1618 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1619 if (!IsSEH) 1620 CatchPadMBB->setIsEHScopeEntry(); 1621 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1622 if (IsMSVCCXX || IsCoreCLR) 1623 CatchPadMBB->setIsEHFuncletEntry(); 1624 } 1625 1626 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1627 // Update machine-CFG edge. 1628 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1629 FuncInfo.MBB->addSuccessor(TargetMBB); 1630 1631 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1632 bool IsSEH = isAsynchronousEHPersonality(Pers); 1633 if (IsSEH) { 1634 // If this is not a fall-through branch or optimizations are switched off, 1635 // emit the branch. 1636 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1637 TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1639 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1640 return; 1641 } 1642 1643 // Figure out the funclet membership for the catchret's successor. 1644 // This will be used by the FuncletLayout pass to determine how to order the 1645 // BB's. 1646 // A 'catchret' returns to the outer scope's color. 1647 Value *ParentPad = I.getCatchSwitchParentPad(); 1648 const BasicBlock *SuccessorColor; 1649 if (isa<ConstantTokenNone>(ParentPad)) 1650 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1651 else 1652 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1653 assert(SuccessorColor && "No parent funclet for catchret!"); 1654 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1655 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1656 1657 // Create the terminator node. 1658 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1659 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1660 DAG.getBasicBlock(SuccessorColorMBB)); 1661 DAG.setRoot(Ret); 1662 } 1663 1664 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1665 // Don't emit any special code for the cleanuppad instruction. It just marks 1666 // the start of an EH scope/funclet. 1667 FuncInfo.MBB->setIsEHScopeEntry(); 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 if (Pers != EHPersonality::Wasm_CXX) { 1670 FuncInfo.MBB->setIsEHFuncletEntry(); 1671 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1672 } 1673 } 1674 1675 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1676 // the control flow always stops at the single catch pad, as it does for a 1677 // cleanup pad. In case the exception caught is not of the types the catch pad 1678 // catches, it will be rethrown by a rethrow. 1679 static void findWasmUnwindDestinations( 1680 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1681 BranchProbability Prob, 1682 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1683 &UnwindDests) { 1684 while (EHPadBB) { 1685 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1686 if (isa<CleanupPadInst>(Pad)) { 1687 // Stop on cleanup pads. 1688 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1689 UnwindDests.back().first->setIsEHScopeEntry(); 1690 break; 1691 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1692 // Add the catchpad handlers to the possible destinations. We don't 1693 // continue to the unwind destination of the catchswitch for wasm. 1694 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1696 UnwindDests.back().first->setIsEHScopeEntry(); 1697 } 1698 break; 1699 } else { 1700 continue; 1701 } 1702 } 1703 } 1704 1705 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1706 /// many places it could ultimately go. In the IR, we have a single unwind 1707 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1708 /// This function skips over imaginary basic blocks that hold catchswitch 1709 /// instructions, and finds all the "real" machine 1710 /// basic block destinations. As those destinations may not be successors of 1711 /// EHPadBB, here we also calculate the edge probability to those destinations. 1712 /// The passed-in Prob is the edge probability to EHPadBB. 1713 static void findUnwindDestinations( 1714 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1715 BranchProbability Prob, 1716 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1717 &UnwindDests) { 1718 EHPersonality Personality = 1719 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1720 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1721 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1722 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1723 bool IsSEH = isAsynchronousEHPersonality(Personality); 1724 1725 if (IsWasmCXX) { 1726 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1727 assert(UnwindDests.size() <= 1 && 1728 "There should be at most one unwind destination for wasm"); 1729 return; 1730 } 1731 1732 while (EHPadBB) { 1733 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1734 BasicBlock *NewEHPadBB = nullptr; 1735 if (isa<LandingPadInst>(Pad)) { 1736 // Stop on landingpads. They are not funclets. 1737 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1738 break; 1739 } else if (isa<CleanupPadInst>(Pad)) { 1740 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1741 // personalities. 1742 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1743 UnwindDests.back().first->setIsEHScopeEntry(); 1744 UnwindDests.back().first->setIsEHFuncletEntry(); 1745 break; 1746 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1747 // Add the catchpad handlers to the possible destinations. 1748 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1750 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1751 if (IsMSVCCXX || IsCoreCLR) 1752 UnwindDests.back().first->setIsEHFuncletEntry(); 1753 if (!IsSEH) 1754 UnwindDests.back().first->setIsEHScopeEntry(); 1755 } 1756 NewEHPadBB = CatchSwitch->getUnwindDest(); 1757 } else { 1758 continue; 1759 } 1760 1761 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1762 if (BPI && NewEHPadBB) 1763 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1764 EHPadBB = NewEHPadBB; 1765 } 1766 } 1767 1768 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1769 // Update successor info. 1770 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1771 auto UnwindDest = I.getUnwindDest(); 1772 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1773 BranchProbability UnwindDestProb = 1774 (BPI && UnwindDest) 1775 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1776 : BranchProbability::getZero(); 1777 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1778 for (auto &UnwindDest : UnwindDests) { 1779 UnwindDest.first->setIsEHPad(); 1780 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1781 } 1782 FuncInfo.MBB->normalizeSuccProbs(); 1783 1784 // Create the terminator node. 1785 SDValue Ret = 1786 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1787 DAG.setRoot(Ret); 1788 } 1789 1790 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1791 report_fatal_error("visitCatchSwitch not yet implemented!"); 1792 } 1793 1794 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1796 auto &DL = DAG.getDataLayout(); 1797 SDValue Chain = getControlRoot(); 1798 SmallVector<ISD::OutputArg, 8> Outs; 1799 SmallVector<SDValue, 8> OutVals; 1800 1801 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1802 // lower 1803 // 1804 // %val = call <ty> @llvm.experimental.deoptimize() 1805 // ret <ty> %val 1806 // 1807 // differently. 1808 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1809 LowerDeoptimizingReturn(); 1810 return; 1811 } 1812 1813 if (!FuncInfo.CanLowerReturn) { 1814 unsigned DemoteReg = FuncInfo.DemoteRegister; 1815 const Function *F = I.getParent()->getParent(); 1816 1817 // Emit a store of the return value through the virtual register. 1818 // Leave Outs empty so that LowerReturn won't try to load return 1819 // registers the usual way. 1820 SmallVector<EVT, 1> PtrValueVTs; 1821 ComputeValueVTs(TLI, DL, 1822 F->getReturnType()->getPointerTo( 1823 DAG.getDataLayout().getAllocaAddrSpace()), 1824 PtrValueVTs); 1825 1826 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1827 DemoteReg, PtrValueVTs[0]); 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 SmallVector<EVT, 4> ValueVTs, MemVTs; 1831 SmallVector<uint64_t, 4> Offsets; 1832 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1833 &Offsets); 1834 unsigned NumValues = ValueVTs.size(); 1835 1836 SmallVector<SDValue, 4> Chains(NumValues); 1837 for (unsigned i = 0; i != NumValues; ++i) { 1838 // An aggregate return value cannot wrap around the address space, so 1839 // offsets to its parts don't wrap either. 1840 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1841 1842 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1843 if (MemVTs[i] != ValueVTs[i]) 1844 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1845 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1846 // FIXME: better loc info would be nice. 1847 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1848 } 1849 1850 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1851 MVT::Other, Chains); 1852 } else if (I.getNumOperands() != 0) { 1853 SmallVector<EVT, 4> ValueVTs; 1854 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1855 unsigned NumValues = ValueVTs.size(); 1856 if (NumValues) { 1857 SDValue RetOp = getValue(I.getOperand(0)); 1858 1859 const Function *F = I.getParent()->getParent(); 1860 1861 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1862 I.getOperand(0)->getType(), F->getCallingConv(), 1863 /*IsVarArg*/ false); 1864 1865 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1866 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1867 Attribute::SExt)) 1868 ExtendKind = ISD::SIGN_EXTEND; 1869 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1870 Attribute::ZExt)) 1871 ExtendKind = ISD::ZERO_EXTEND; 1872 1873 LLVMContext &Context = F->getContext(); 1874 bool RetInReg = F->getAttributes().hasAttribute( 1875 AttributeList::ReturnIndex, Attribute::InReg); 1876 1877 for (unsigned j = 0; j != NumValues; ++j) { 1878 EVT VT = ValueVTs[j]; 1879 1880 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1881 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1882 1883 CallingConv::ID CC = F->getCallingConv(); 1884 1885 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1886 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1887 SmallVector<SDValue, 4> Parts(NumParts); 1888 getCopyToParts(DAG, getCurSDLoc(), 1889 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1890 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1891 1892 // 'inreg' on function refers to return value 1893 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1894 if (RetInReg) 1895 Flags.setInReg(); 1896 1897 if (I.getOperand(0)->getType()->isPointerTy()) { 1898 Flags.setPointer(); 1899 Flags.setPointerAddrSpace( 1900 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1901 } 1902 1903 if (NeedsRegBlock) { 1904 Flags.setInConsecutiveRegs(); 1905 if (j == NumValues - 1) 1906 Flags.setInConsecutiveRegsLast(); 1907 } 1908 1909 // Propagate extension type if any 1910 if (ExtendKind == ISD::SIGN_EXTEND) 1911 Flags.setSExt(); 1912 else if (ExtendKind == ISD::ZERO_EXTEND) 1913 Flags.setZExt(); 1914 1915 for (unsigned i = 0; i < NumParts; ++i) { 1916 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1917 VT, /*isfixed=*/true, 0, 0)); 1918 OutVals.push_back(Parts[i]); 1919 } 1920 } 1921 } 1922 } 1923 1924 // Push in swifterror virtual register as the last element of Outs. This makes 1925 // sure swifterror virtual register will be returned in the swifterror 1926 // physical register. 1927 const Function *F = I.getParent()->getParent(); 1928 if (TLI.supportSwiftError() && 1929 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1930 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1931 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1932 Flags.setSwiftError(); 1933 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1934 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1935 true /*isfixed*/, 1 /*origidx*/, 1936 0 /*partOffs*/)); 1937 // Create SDNode for the swifterror virtual register. 1938 OutVals.push_back( 1939 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1940 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1941 EVT(TLI.getPointerTy(DL)))); 1942 } 1943 1944 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1945 CallingConv::ID CallConv = 1946 DAG.getMachineFunction().getFunction().getCallingConv(); 1947 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1948 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1949 1950 // Verify that the target's LowerReturn behaved as expected. 1951 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1952 "LowerReturn didn't return a valid chain!"); 1953 1954 // Update the DAG with the new chain value resulting from return lowering. 1955 DAG.setRoot(Chain); 1956 } 1957 1958 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1959 /// created for it, emit nodes to copy the value into the virtual 1960 /// registers. 1961 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1962 // Skip empty types 1963 if (V->getType()->isEmptyTy()) 1964 return; 1965 1966 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1967 if (VMI != FuncInfo.ValueMap.end()) { 1968 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1969 CopyValueToVirtualRegister(V, VMI->second); 1970 } 1971 } 1972 1973 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1974 /// the current basic block, add it to ValueMap now so that we'll get a 1975 /// CopyTo/FromReg. 1976 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1977 // No need to export constants. 1978 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1979 1980 // Already exported? 1981 if (FuncInfo.isExportedInst(V)) return; 1982 1983 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1984 CopyValueToVirtualRegister(V, Reg); 1985 } 1986 1987 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1988 const BasicBlock *FromBB) { 1989 // The operands of the setcc have to be in this block. We don't know 1990 // how to export them from some other block. 1991 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1992 // Can export from current BB. 1993 if (VI->getParent() == FromBB) 1994 return true; 1995 1996 // Is already exported, noop. 1997 return FuncInfo.isExportedInst(V); 1998 } 1999 2000 // If this is an argument, we can export it if the BB is the entry block or 2001 // if it is already exported. 2002 if (isa<Argument>(V)) { 2003 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2004 return true; 2005 2006 // Otherwise, can only export this if it is already exported. 2007 return FuncInfo.isExportedInst(V); 2008 } 2009 2010 // Otherwise, constants can always be exported. 2011 return true; 2012 } 2013 2014 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2015 BranchProbability 2016 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2017 const MachineBasicBlock *Dst) const { 2018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2019 const BasicBlock *SrcBB = Src->getBasicBlock(); 2020 const BasicBlock *DstBB = Dst->getBasicBlock(); 2021 if (!BPI) { 2022 // If BPI is not available, set the default probability as 1 / N, where N is 2023 // the number of successors. 2024 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2025 return BranchProbability(1, SuccSize); 2026 } 2027 return BPI->getEdgeProbability(SrcBB, DstBB); 2028 } 2029 2030 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2031 MachineBasicBlock *Dst, 2032 BranchProbability Prob) { 2033 if (!FuncInfo.BPI) 2034 Src->addSuccessorWithoutProb(Dst); 2035 else { 2036 if (Prob.isUnknown()) 2037 Prob = getEdgeProbability(Src, Dst); 2038 Src->addSuccessor(Dst, Prob); 2039 } 2040 } 2041 2042 static bool InBlock(const Value *V, const BasicBlock *BB) { 2043 if (const Instruction *I = dyn_cast<Instruction>(V)) 2044 return I->getParent() == BB; 2045 return true; 2046 } 2047 2048 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2049 /// This function emits a branch and is used at the leaves of an OR or an 2050 /// AND operator tree. 2051 void 2052 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2053 MachineBasicBlock *TBB, 2054 MachineBasicBlock *FBB, 2055 MachineBasicBlock *CurBB, 2056 MachineBasicBlock *SwitchBB, 2057 BranchProbability TProb, 2058 BranchProbability FProb, 2059 bool InvertCond) { 2060 const BasicBlock *BB = CurBB->getBasicBlock(); 2061 2062 // If the leaf of the tree is a comparison, merge the condition into 2063 // the caseblock. 2064 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2065 // The operands of the cmp have to be in this block. We don't know 2066 // how to export them from some other block. If this is the first block 2067 // of the sequence, no exporting is needed. 2068 if (CurBB == SwitchBB || 2069 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2070 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2071 ISD::CondCode Condition; 2072 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2073 ICmpInst::Predicate Pred = 2074 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2075 Condition = getICmpCondCode(Pred); 2076 } else { 2077 const FCmpInst *FC = cast<FCmpInst>(Cond); 2078 FCmpInst::Predicate Pred = 2079 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2080 Condition = getFCmpCondCode(Pred); 2081 if (TM.Options.NoNaNsFPMath) 2082 Condition = getFCmpCodeWithoutNaN(Condition); 2083 } 2084 2085 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2086 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2087 SL->SwitchCases.push_back(CB); 2088 return; 2089 } 2090 } 2091 2092 // Create a CaseBlock record representing this branch. 2093 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2094 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2095 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2096 SL->SwitchCases.push_back(CB); 2097 } 2098 2099 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2100 MachineBasicBlock *TBB, 2101 MachineBasicBlock *FBB, 2102 MachineBasicBlock *CurBB, 2103 MachineBasicBlock *SwitchBB, 2104 Instruction::BinaryOps Opc, 2105 BranchProbability TProb, 2106 BranchProbability FProb, 2107 bool InvertCond) { 2108 // Skip over not part of the tree and remember to invert op and operands at 2109 // next level. 2110 Value *NotCond; 2111 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2112 InBlock(NotCond, CurBB->getBasicBlock())) { 2113 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2114 !InvertCond); 2115 return; 2116 } 2117 2118 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2119 // Compute the effective opcode for Cond, taking into account whether it needs 2120 // to be inverted, e.g. 2121 // and (not (or A, B)), C 2122 // gets lowered as 2123 // and (and (not A, not B), C) 2124 unsigned BOpc = 0; 2125 if (BOp) { 2126 BOpc = BOp->getOpcode(); 2127 if (InvertCond) { 2128 if (BOpc == Instruction::And) 2129 BOpc = Instruction::Or; 2130 else if (BOpc == Instruction::Or) 2131 BOpc = Instruction::And; 2132 } 2133 } 2134 2135 // If this node is not part of the or/and tree, emit it as a branch. 2136 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2137 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2138 BOp->getParent() != CurBB->getBasicBlock() || 2139 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2140 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2141 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2142 TProb, FProb, InvertCond); 2143 return; 2144 } 2145 2146 // Create TmpBB after CurBB. 2147 MachineFunction::iterator BBI(CurBB); 2148 MachineFunction &MF = DAG.getMachineFunction(); 2149 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2150 CurBB->getParent()->insert(++BBI, TmpBB); 2151 2152 if (Opc == Instruction::Or) { 2153 // Codegen X | Y as: 2154 // BB1: 2155 // jmp_if_X TBB 2156 // jmp TmpBB 2157 // TmpBB: 2158 // jmp_if_Y TBB 2159 // jmp FBB 2160 // 2161 2162 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2163 // The requirement is that 2164 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2165 // = TrueProb for original BB. 2166 // Assuming the original probabilities are A and B, one choice is to set 2167 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2168 // A/(1+B) and 2B/(1+B). This choice assumes that 2169 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2170 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2171 // TmpBB, but the math is more complicated. 2172 2173 auto NewTrueProb = TProb / 2; 2174 auto NewFalseProb = TProb / 2 + FProb; 2175 // Emit the LHS condition. 2176 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2177 NewTrueProb, NewFalseProb, InvertCond); 2178 2179 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2180 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2181 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2182 // Emit the RHS condition into TmpBB. 2183 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2184 Probs[0], Probs[1], InvertCond); 2185 } else { 2186 assert(Opc == Instruction::And && "Unknown merge op!"); 2187 // Codegen X & Y as: 2188 // BB1: 2189 // jmp_if_X TmpBB 2190 // jmp FBB 2191 // TmpBB: 2192 // jmp_if_Y TBB 2193 // jmp FBB 2194 // 2195 // This requires creation of TmpBB after CurBB. 2196 2197 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2198 // The requirement is that 2199 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2200 // = FalseProb for original BB. 2201 // Assuming the original probabilities are A and B, one choice is to set 2202 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2203 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2204 // TrueProb for BB1 * FalseProb for TmpBB. 2205 2206 auto NewTrueProb = TProb + FProb / 2; 2207 auto NewFalseProb = FProb / 2; 2208 // Emit the LHS condition. 2209 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2210 NewTrueProb, NewFalseProb, InvertCond); 2211 2212 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2213 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2214 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2215 // Emit the RHS condition into TmpBB. 2216 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2217 Probs[0], Probs[1], InvertCond); 2218 } 2219 } 2220 2221 /// If the set of cases should be emitted as a series of branches, return true. 2222 /// If we should emit this as a bunch of and/or'd together conditions, return 2223 /// false. 2224 bool 2225 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2226 if (Cases.size() != 2) return true; 2227 2228 // If this is two comparisons of the same values or'd or and'd together, they 2229 // will get folded into a single comparison, so don't emit two blocks. 2230 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2231 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2232 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2233 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2234 return false; 2235 } 2236 2237 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2238 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2239 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2240 Cases[0].CC == Cases[1].CC && 2241 isa<Constant>(Cases[0].CmpRHS) && 2242 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2243 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2244 return false; 2245 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2246 return false; 2247 } 2248 2249 return true; 2250 } 2251 2252 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2253 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2254 2255 // Update machine-CFG edges. 2256 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2257 2258 if (I.isUnconditional()) { 2259 // Update machine-CFG edges. 2260 BrMBB->addSuccessor(Succ0MBB); 2261 2262 // If this is not a fall-through branch or optimizations are switched off, 2263 // emit the branch. 2264 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2265 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2266 MVT::Other, getControlRoot(), 2267 DAG.getBasicBlock(Succ0MBB))); 2268 2269 return; 2270 } 2271 2272 // If this condition is one of the special cases we handle, do special stuff 2273 // now. 2274 const Value *CondVal = I.getCondition(); 2275 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2276 2277 // If this is a series of conditions that are or'd or and'd together, emit 2278 // this as a sequence of branches instead of setcc's with and/or operations. 2279 // As long as jumps are not expensive, this should improve performance. 2280 // For example, instead of something like: 2281 // cmp A, B 2282 // C = seteq 2283 // cmp D, E 2284 // F = setle 2285 // or C, F 2286 // jnz foo 2287 // Emit: 2288 // cmp A, B 2289 // je foo 2290 // cmp D, E 2291 // jle foo 2292 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2293 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2294 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2295 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2296 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2297 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2298 Opcode, 2299 getEdgeProbability(BrMBB, Succ0MBB), 2300 getEdgeProbability(BrMBB, Succ1MBB), 2301 /*InvertCond=*/false); 2302 // If the compares in later blocks need to use values not currently 2303 // exported from this block, export them now. This block should always 2304 // be the first entry. 2305 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2306 2307 // Allow some cases to be rejected. 2308 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2309 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2310 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2311 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2312 } 2313 2314 // Emit the branch for this block. 2315 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2316 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2317 return; 2318 } 2319 2320 // Okay, we decided not to do this, remove any inserted MBB's and clear 2321 // SwitchCases. 2322 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2323 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2324 2325 SL->SwitchCases.clear(); 2326 } 2327 } 2328 2329 // Create a CaseBlock record representing this branch. 2330 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2331 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2332 2333 // Use visitSwitchCase to actually insert the fast branch sequence for this 2334 // cond branch. 2335 visitSwitchCase(CB, BrMBB); 2336 } 2337 2338 /// visitSwitchCase - Emits the necessary code to represent a single node in 2339 /// the binary search tree resulting from lowering a switch instruction. 2340 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2341 MachineBasicBlock *SwitchBB) { 2342 SDValue Cond; 2343 SDValue CondLHS = getValue(CB.CmpLHS); 2344 SDLoc dl = CB.DL; 2345 2346 if (CB.CC == ISD::SETTRUE) { 2347 // Branch or fall through to TrueBB. 2348 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2349 SwitchBB->normalizeSuccProbs(); 2350 if (CB.TrueBB != NextBlock(SwitchBB)) { 2351 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2352 DAG.getBasicBlock(CB.TrueBB))); 2353 } 2354 return; 2355 } 2356 2357 auto &TLI = DAG.getTargetLoweringInfo(); 2358 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2359 2360 // Build the setcc now. 2361 if (!CB.CmpMHS) { 2362 // Fold "(X == true)" to X and "(X == false)" to !X to 2363 // handle common cases produced by branch lowering. 2364 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2365 CB.CC == ISD::SETEQ) 2366 Cond = CondLHS; 2367 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2368 CB.CC == ISD::SETEQ) { 2369 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2370 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2371 } else { 2372 SDValue CondRHS = getValue(CB.CmpRHS); 2373 2374 // If a pointer's DAG type is larger than its memory type then the DAG 2375 // values are zero-extended. This breaks signed comparisons so truncate 2376 // back to the underlying type before doing the compare. 2377 if (CondLHS.getValueType() != MemVT) { 2378 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2379 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2380 } 2381 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2382 } 2383 } else { 2384 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2385 2386 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2387 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2388 2389 SDValue CmpOp = getValue(CB.CmpMHS); 2390 EVT VT = CmpOp.getValueType(); 2391 2392 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2393 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2394 ISD::SETLE); 2395 } else { 2396 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2397 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2398 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2399 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2400 } 2401 } 2402 2403 // Update successor info 2404 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2405 // TrueBB and FalseBB are always different unless the incoming IR is 2406 // degenerate. This only happens when running llc on weird IR. 2407 if (CB.TrueBB != CB.FalseBB) 2408 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2409 SwitchBB->normalizeSuccProbs(); 2410 2411 // If the lhs block is the next block, invert the condition so that we can 2412 // fall through to the lhs instead of the rhs block. 2413 if (CB.TrueBB == NextBlock(SwitchBB)) { 2414 std::swap(CB.TrueBB, CB.FalseBB); 2415 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2416 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2417 } 2418 2419 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2420 MVT::Other, getControlRoot(), Cond, 2421 DAG.getBasicBlock(CB.TrueBB)); 2422 2423 // Insert the false branch. Do this even if it's a fall through branch, 2424 // this makes it easier to do DAG optimizations which require inverting 2425 // the branch condition. 2426 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2427 DAG.getBasicBlock(CB.FalseBB)); 2428 2429 DAG.setRoot(BrCond); 2430 } 2431 2432 /// visitJumpTable - Emit JumpTable node in the current MBB 2433 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2434 // Emit the code for the jump table 2435 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2436 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2437 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2438 JT.Reg, PTy); 2439 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2440 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2441 MVT::Other, Index.getValue(1), 2442 Table, Index); 2443 DAG.setRoot(BrJumpTable); 2444 } 2445 2446 /// visitJumpTableHeader - This function emits necessary code to produce index 2447 /// in the JumpTable from switch case. 2448 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2449 JumpTableHeader &JTH, 2450 MachineBasicBlock *SwitchBB) { 2451 SDLoc dl = getCurSDLoc(); 2452 2453 // Subtract the lowest switch case value from the value being switched on. 2454 SDValue SwitchOp = getValue(JTH.SValue); 2455 EVT VT = SwitchOp.getValueType(); 2456 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2457 DAG.getConstant(JTH.First, dl, VT)); 2458 2459 // The SDNode we just created, which holds the value being switched on minus 2460 // the smallest case value, needs to be copied to a virtual register so it 2461 // can be used as an index into the jump table in a subsequent basic block. 2462 // This value may be smaller or larger than the target's pointer type, and 2463 // therefore require extension or truncating. 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2466 2467 unsigned JumpTableReg = 2468 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2469 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2470 JumpTableReg, SwitchOp); 2471 JT.Reg = JumpTableReg; 2472 2473 if (!JTH.OmitRangeCheck) { 2474 // Emit the range check for the jump table, and branch to the default block 2475 // for the switch statement if the value being switched on exceeds the 2476 // largest case in the switch. 2477 SDValue CMP = DAG.getSetCC( 2478 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2479 Sub.getValueType()), 2480 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2481 2482 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2483 MVT::Other, CopyTo, CMP, 2484 DAG.getBasicBlock(JT.Default)); 2485 2486 // Avoid emitting unnecessary branches to the next block. 2487 if (JT.MBB != NextBlock(SwitchBB)) 2488 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2489 DAG.getBasicBlock(JT.MBB)); 2490 2491 DAG.setRoot(BrCond); 2492 } else { 2493 // Avoid emitting unnecessary branches to the next block. 2494 if (JT.MBB != NextBlock(SwitchBB)) 2495 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2496 DAG.getBasicBlock(JT.MBB))); 2497 else 2498 DAG.setRoot(CopyTo); 2499 } 2500 } 2501 2502 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2503 /// variable if there exists one. 2504 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2505 SDValue &Chain) { 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 MachineFunction &MF = DAG.getMachineFunction(); 2510 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2511 MachineSDNode *Node = 2512 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2513 if (Global) { 2514 MachinePointerInfo MPInfo(Global); 2515 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2516 MachineMemOperand::MODereferenceable; 2517 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2518 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2519 DAG.setNodeMemRefs(Node, {MemRef}); 2520 } 2521 if (PtrTy != PtrMemTy) 2522 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2523 return SDValue(Node, 0); 2524 } 2525 2526 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2527 /// tail spliced into a stack protector check success bb. 2528 /// 2529 /// For a high level explanation of how this fits into the stack protector 2530 /// generation see the comment on the declaration of class 2531 /// StackProtectorDescriptor. 2532 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2533 MachineBasicBlock *ParentBB) { 2534 2535 // First create the loads to the guard/stack slot for the comparison. 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2538 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2539 2540 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2541 int FI = MFI.getStackProtectorIndex(); 2542 2543 SDValue Guard; 2544 SDLoc dl = getCurSDLoc(); 2545 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2546 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2547 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2548 2549 // Generate code to load the content of the guard slot. 2550 SDValue GuardVal = DAG.getLoad( 2551 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2553 MachineMemOperand::MOVolatile); 2554 2555 if (TLI.useStackGuardXorFP()) 2556 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2557 2558 // Retrieve guard check function, nullptr if instrumentation is inlined. 2559 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2560 // The target provides a guard check function to validate the guard value. 2561 // Generate a call to that function with the content of the guard slot as 2562 // argument. 2563 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2564 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2565 2566 TargetLowering::ArgListTy Args; 2567 TargetLowering::ArgListEntry Entry; 2568 Entry.Node = GuardVal; 2569 Entry.Ty = FnTy->getParamType(0); 2570 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2571 Entry.IsInReg = true; 2572 Args.push_back(Entry); 2573 2574 TargetLowering::CallLoweringInfo CLI(DAG); 2575 CLI.setDebugLoc(getCurSDLoc()) 2576 .setChain(DAG.getEntryNode()) 2577 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2578 getValue(GuardCheckFn), std::move(Args)); 2579 2580 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2581 DAG.setRoot(Result.second); 2582 return; 2583 } 2584 2585 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2586 // Otherwise, emit a volatile load to retrieve the stack guard value. 2587 SDValue Chain = DAG.getEntryNode(); 2588 if (TLI.useLoadStackGuardNode()) { 2589 Guard = getLoadStackGuard(DAG, dl, Chain); 2590 } else { 2591 const Value *IRGuard = TLI.getSDagStackGuard(M); 2592 SDValue GuardPtr = getValue(IRGuard); 2593 2594 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2595 MachinePointerInfo(IRGuard, 0), Align, 2596 MachineMemOperand::MOVolatile); 2597 } 2598 2599 // Perform the comparison via a subtract/getsetcc. 2600 EVT VT = Guard.getValueType(); 2601 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2602 2603 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2604 *DAG.getContext(), 2605 Sub.getValueType()), 2606 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2607 2608 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2609 // branch to failure MBB. 2610 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2611 MVT::Other, GuardVal.getOperand(0), 2612 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2613 // Otherwise branch to success MBB. 2614 SDValue Br = DAG.getNode(ISD::BR, dl, 2615 MVT::Other, BrCond, 2616 DAG.getBasicBlock(SPD.getSuccessMBB())); 2617 2618 DAG.setRoot(Br); 2619 } 2620 2621 /// Codegen the failure basic block for a stack protector check. 2622 /// 2623 /// A failure stack protector machine basic block consists simply of a call to 2624 /// __stack_chk_fail(). 2625 /// 2626 /// For a high level explanation of how this fits into the stack protector 2627 /// generation see the comment on the declaration of class 2628 /// StackProtectorDescriptor. 2629 void 2630 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2631 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2632 TargetLowering::MakeLibCallOptions CallOptions; 2633 CallOptions.setDiscardResult(true); 2634 SDValue Chain = 2635 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2636 None, CallOptions, getCurSDLoc()).second; 2637 // On PS4, the "return address" must still be within the calling function, 2638 // even if it's at the very end, so emit an explicit TRAP here. 2639 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2640 if (TM.getTargetTriple().isPS4CPU()) 2641 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2642 2643 DAG.setRoot(Chain); 2644 } 2645 2646 /// visitBitTestHeader - This function emits necessary code to produce value 2647 /// suitable for "bit tests" 2648 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2649 MachineBasicBlock *SwitchBB) { 2650 SDLoc dl = getCurSDLoc(); 2651 2652 // Subtract the minimum value. 2653 SDValue SwitchOp = getValue(B.SValue); 2654 EVT VT = SwitchOp.getValueType(); 2655 SDValue RangeSub = 2656 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2657 2658 // Determine the type of the test operands. 2659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2660 bool UsePtrType = false; 2661 if (!TLI.isTypeLegal(VT)) { 2662 UsePtrType = true; 2663 } else { 2664 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2665 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2666 // Switch table case range are encoded into series of masks. 2667 // Just use pointer type, it's guaranteed to fit. 2668 UsePtrType = true; 2669 break; 2670 } 2671 } 2672 SDValue Sub = RangeSub; 2673 if (UsePtrType) { 2674 VT = TLI.getPointerTy(DAG.getDataLayout()); 2675 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2676 } 2677 2678 B.RegVT = VT.getSimpleVT(); 2679 B.Reg = FuncInfo.CreateReg(B.RegVT); 2680 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2681 2682 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2683 2684 if (!B.OmitRangeCheck) 2685 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2686 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2687 SwitchBB->normalizeSuccProbs(); 2688 2689 SDValue Root = CopyTo; 2690 if (!B.OmitRangeCheck) { 2691 // Conditional branch to the default block. 2692 SDValue RangeCmp = DAG.getSetCC(dl, 2693 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2694 RangeSub.getValueType()), 2695 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2696 ISD::SETUGT); 2697 2698 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2699 DAG.getBasicBlock(B.Default)); 2700 } 2701 2702 // Avoid emitting unnecessary branches to the next block. 2703 if (MBB != NextBlock(SwitchBB)) 2704 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2705 2706 DAG.setRoot(Root); 2707 } 2708 2709 /// visitBitTestCase - this function produces one "bit test" 2710 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2711 MachineBasicBlock* NextMBB, 2712 BranchProbability BranchProbToNext, 2713 unsigned Reg, 2714 BitTestCase &B, 2715 MachineBasicBlock *SwitchBB) { 2716 SDLoc dl = getCurSDLoc(); 2717 MVT VT = BB.RegVT; 2718 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2719 SDValue Cmp; 2720 unsigned PopCount = countPopulation(B.Mask); 2721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2722 if (PopCount == 1) { 2723 // Testing for a single bit; just compare the shift count with what it 2724 // would need to be to shift a 1 bit in that position. 2725 Cmp = DAG.getSetCC( 2726 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2727 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2728 ISD::SETEQ); 2729 } else if (PopCount == BB.Range) { 2730 // There is only one zero bit in the range, test for it directly. 2731 Cmp = DAG.getSetCC( 2732 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2733 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2734 ISD::SETNE); 2735 } else { 2736 // Make desired shift 2737 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2738 DAG.getConstant(1, dl, VT), ShiftOp); 2739 2740 // Emit bit tests and jumps 2741 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2742 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2743 Cmp = DAG.getSetCC( 2744 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2745 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2746 } 2747 2748 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2749 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2750 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2751 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2752 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2753 // one as they are relative probabilities (and thus work more like weights), 2754 // and hence we need to normalize them to let the sum of them become one. 2755 SwitchBB->normalizeSuccProbs(); 2756 2757 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2758 MVT::Other, getControlRoot(), 2759 Cmp, DAG.getBasicBlock(B.TargetBB)); 2760 2761 // Avoid emitting unnecessary branches to the next block. 2762 if (NextMBB != NextBlock(SwitchBB)) 2763 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2764 DAG.getBasicBlock(NextMBB)); 2765 2766 DAG.setRoot(BrAnd); 2767 } 2768 2769 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2770 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2771 2772 // Retrieve successors. Look through artificial IR level blocks like 2773 // catchswitch for successors. 2774 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2775 const BasicBlock *EHPadBB = I.getSuccessor(1); 2776 2777 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2778 // have to do anything here to lower funclet bundles. 2779 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2780 LLVMContext::OB_funclet, 2781 LLVMContext::OB_cfguardtarget}) && 2782 "Cannot lower invokes with arbitrary operand bundles yet!"); 2783 2784 const Value *Callee(I.getCalledValue()); 2785 const Function *Fn = dyn_cast<Function>(Callee); 2786 if (isa<InlineAsm>(Callee)) 2787 visitInlineAsm(&I); 2788 else if (Fn && Fn->isIntrinsic()) { 2789 switch (Fn->getIntrinsicID()) { 2790 default: 2791 llvm_unreachable("Cannot invoke this intrinsic"); 2792 case Intrinsic::donothing: 2793 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2794 break; 2795 case Intrinsic::experimental_patchpoint_void: 2796 case Intrinsic::experimental_patchpoint_i64: 2797 visitPatchpoint(&I, EHPadBB); 2798 break; 2799 case Intrinsic::experimental_gc_statepoint: 2800 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2801 break; 2802 case Intrinsic::wasm_rethrow_in_catch: { 2803 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2804 // special because it can be invoked, so we manually lower it to a DAG 2805 // node here. 2806 SmallVector<SDValue, 8> Ops; 2807 Ops.push_back(getRoot()); // inchain 2808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2809 Ops.push_back( 2810 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2811 TLI.getPointerTy(DAG.getDataLayout()))); 2812 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2813 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2814 break; 2815 } 2816 } 2817 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2818 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2819 // Eventually we will support lowering the @llvm.experimental.deoptimize 2820 // intrinsic, and right now there are no plans to support other intrinsics 2821 // with deopt state. 2822 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2823 } else { 2824 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2825 } 2826 2827 // If the value of the invoke is used outside of its defining block, make it 2828 // available as a virtual register. 2829 // We already took care of the exported value for the statepoint instruction 2830 // during call to the LowerStatepoint. 2831 if (!isStatepoint(I)) { 2832 CopyToExportRegsIfNeeded(&I); 2833 } 2834 2835 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2836 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2837 BranchProbability EHPadBBProb = 2838 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2839 : BranchProbability::getZero(); 2840 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2841 2842 // Update successor info. 2843 addSuccessorWithProb(InvokeMBB, Return); 2844 for (auto &UnwindDest : UnwindDests) { 2845 UnwindDest.first->setIsEHPad(); 2846 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2847 } 2848 InvokeMBB->normalizeSuccProbs(); 2849 2850 // Drop into normal successor. 2851 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2852 DAG.getBasicBlock(Return))); 2853 } 2854 2855 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2856 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2857 2858 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2859 // have to do anything here to lower funclet bundles. 2860 assert(!I.hasOperandBundlesOtherThan( 2861 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2862 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2863 2864 assert(isa<InlineAsm>(I.getCalledValue()) && 2865 "Only know how to handle inlineasm callbr"); 2866 visitInlineAsm(&I); 2867 2868 // Retrieve successors. 2869 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2870 2871 // Update successor info. 2872 addSuccessorWithProb(CallBrMBB, Return); 2873 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2874 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2875 addSuccessorWithProb(CallBrMBB, Target); 2876 } 2877 CallBrMBB->normalizeSuccProbs(); 2878 2879 // Drop into default successor. 2880 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2881 MVT::Other, getControlRoot(), 2882 DAG.getBasicBlock(Return))); 2883 } 2884 2885 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2886 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2887 } 2888 2889 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2890 assert(FuncInfo.MBB->isEHPad() && 2891 "Call to landingpad not in landing pad!"); 2892 2893 // If there aren't registers to copy the values into (e.g., during SjLj 2894 // exceptions), then don't bother to create these DAG nodes. 2895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2896 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2897 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2898 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2899 return; 2900 2901 // If landingpad's return type is token type, we don't create DAG nodes 2902 // for its exception pointer and selector value. The extraction of exception 2903 // pointer or selector value from token type landingpads is not currently 2904 // supported. 2905 if (LP.getType()->isTokenTy()) 2906 return; 2907 2908 SmallVector<EVT, 2> ValueVTs; 2909 SDLoc dl = getCurSDLoc(); 2910 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2911 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2912 2913 // Get the two live-in registers as SDValues. The physregs have already been 2914 // copied into virtual registers. 2915 SDValue Ops[2]; 2916 if (FuncInfo.ExceptionPointerVirtReg) { 2917 Ops[0] = DAG.getZExtOrTrunc( 2918 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2919 FuncInfo.ExceptionPointerVirtReg, 2920 TLI.getPointerTy(DAG.getDataLayout())), 2921 dl, ValueVTs[0]); 2922 } else { 2923 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2924 } 2925 Ops[1] = DAG.getZExtOrTrunc( 2926 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2927 FuncInfo.ExceptionSelectorVirtReg, 2928 TLI.getPointerTy(DAG.getDataLayout())), 2929 dl, ValueVTs[1]); 2930 2931 // Merge into one. 2932 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2933 DAG.getVTList(ValueVTs), Ops); 2934 setValue(&LP, Res); 2935 } 2936 2937 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2938 MachineBasicBlock *Last) { 2939 // Update JTCases. 2940 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2941 if (SL->JTCases[i].first.HeaderBB == First) 2942 SL->JTCases[i].first.HeaderBB = Last; 2943 2944 // Update BitTestCases. 2945 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2946 if (SL->BitTestCases[i].Parent == First) 2947 SL->BitTestCases[i].Parent = Last; 2948 } 2949 2950 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2951 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2952 2953 // Update machine-CFG edges with unique successors. 2954 SmallSet<BasicBlock*, 32> Done; 2955 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2956 BasicBlock *BB = I.getSuccessor(i); 2957 bool Inserted = Done.insert(BB).second; 2958 if (!Inserted) 2959 continue; 2960 2961 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2962 addSuccessorWithProb(IndirectBrMBB, Succ); 2963 } 2964 IndirectBrMBB->normalizeSuccProbs(); 2965 2966 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2967 MVT::Other, getControlRoot(), 2968 getValue(I.getAddress()))); 2969 } 2970 2971 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2972 if (!DAG.getTarget().Options.TrapUnreachable) 2973 return; 2974 2975 // We may be able to ignore unreachable behind a noreturn call. 2976 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2977 const BasicBlock &BB = *I.getParent(); 2978 if (&I != &BB.front()) { 2979 BasicBlock::const_iterator PredI = 2980 std::prev(BasicBlock::const_iterator(&I)); 2981 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2982 if (Call->doesNotReturn()) 2983 return; 2984 } 2985 } 2986 } 2987 2988 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2989 } 2990 2991 void SelectionDAGBuilder::visitFSub(const User &I) { 2992 // -0.0 - X --> fneg 2993 Type *Ty = I.getType(); 2994 if (isa<Constant>(I.getOperand(0)) && 2995 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2996 SDValue Op2 = getValue(I.getOperand(1)); 2997 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2998 Op2.getValueType(), Op2)); 2999 return; 3000 } 3001 3002 visitBinary(I, ISD::FSUB); 3003 } 3004 3005 /// Checks if the given instruction performs a vector reduction, in which case 3006 /// we have the freedom to alter the elements in the result as long as the 3007 /// reduction of them stays unchanged. 3008 static bool isVectorReductionOp(const User *I) { 3009 const Instruction *Inst = dyn_cast<Instruction>(I); 3010 if (!Inst || !Inst->getType()->isVectorTy()) 3011 return false; 3012 3013 auto OpCode = Inst->getOpcode(); 3014 switch (OpCode) { 3015 case Instruction::Add: 3016 case Instruction::Mul: 3017 case Instruction::And: 3018 case Instruction::Or: 3019 case Instruction::Xor: 3020 break; 3021 case Instruction::FAdd: 3022 case Instruction::FMul: 3023 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3024 if (FPOp->getFastMathFlags().isFast()) 3025 break; 3026 LLVM_FALLTHROUGH; 3027 default: 3028 return false; 3029 } 3030 3031 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3032 // Ensure the reduction size is a power of 2. 3033 if (!isPowerOf2_32(ElemNum)) 3034 return false; 3035 3036 unsigned ElemNumToReduce = ElemNum; 3037 3038 // Do DFS search on the def-use chain from the given instruction. We only 3039 // allow four kinds of operations during the search until we reach the 3040 // instruction that extracts the first element from the vector: 3041 // 3042 // 1. The reduction operation of the same opcode as the given instruction. 3043 // 3044 // 2. PHI node. 3045 // 3046 // 3. ShuffleVector instruction together with a reduction operation that 3047 // does a partial reduction. 3048 // 3049 // 4. ExtractElement that extracts the first element from the vector, and we 3050 // stop searching the def-use chain here. 3051 // 3052 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3053 // from 1-3 to the stack to continue the DFS. The given instruction is not 3054 // a reduction operation if we meet any other instructions other than those 3055 // listed above. 3056 3057 SmallVector<const User *, 16> UsersToVisit{Inst}; 3058 SmallPtrSet<const User *, 16> Visited; 3059 bool ReduxExtracted = false; 3060 3061 while (!UsersToVisit.empty()) { 3062 auto User = UsersToVisit.back(); 3063 UsersToVisit.pop_back(); 3064 if (!Visited.insert(User).second) 3065 continue; 3066 3067 for (const auto *U : User->users()) { 3068 auto Inst = dyn_cast<Instruction>(U); 3069 if (!Inst) 3070 return false; 3071 3072 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3073 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3074 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3075 return false; 3076 UsersToVisit.push_back(U); 3077 } else if (const ShuffleVectorInst *ShufInst = 3078 dyn_cast<ShuffleVectorInst>(U)) { 3079 // Detect the following pattern: A ShuffleVector instruction together 3080 // with a reduction that do partial reduction on the first and second 3081 // ElemNumToReduce / 2 elements, and store the result in 3082 // ElemNumToReduce / 2 elements in another vector. 3083 3084 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3085 if (ResultElements < ElemNum) 3086 return false; 3087 3088 if (ElemNumToReduce == 1) 3089 return false; 3090 if (!isa<UndefValue>(U->getOperand(1))) 3091 return false; 3092 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3093 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3094 return false; 3095 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3096 if (ShufInst->getMaskValue(i) != -1) 3097 return false; 3098 3099 // There is only one user of this ShuffleVector instruction, which 3100 // must be a reduction operation. 3101 if (!U->hasOneUse()) 3102 return false; 3103 3104 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3105 if (!U2 || U2->getOpcode() != OpCode) 3106 return false; 3107 3108 // Check operands of the reduction operation. 3109 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3110 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3111 UsersToVisit.push_back(U2); 3112 ElemNumToReduce /= 2; 3113 } else 3114 return false; 3115 } else if (isa<ExtractElementInst>(U)) { 3116 // At this moment we should have reduced all elements in the vector. 3117 if (ElemNumToReduce != 1) 3118 return false; 3119 3120 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3121 if (!Val || !Val->isZero()) 3122 return false; 3123 3124 ReduxExtracted = true; 3125 } else 3126 return false; 3127 } 3128 } 3129 return ReduxExtracted; 3130 } 3131 3132 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3133 SDNodeFlags Flags; 3134 3135 SDValue Op = getValue(I.getOperand(0)); 3136 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3137 Op, Flags); 3138 setValue(&I, UnNodeValue); 3139 } 3140 3141 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3142 SDNodeFlags Flags; 3143 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3144 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3145 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3146 } 3147 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3148 Flags.setExact(ExactOp->isExact()); 3149 } 3150 if (isVectorReductionOp(&I)) { 3151 Flags.setVectorReduction(true); 3152 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3153 3154 // If no flags are set we will propagate the incoming flags, if any flags 3155 // are set, we will intersect them with the incoming flag and so we need to 3156 // copy the FMF flags here. 3157 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { 3158 Flags.copyFMF(*FPOp); 3159 } 3160 } 3161 3162 SDValue Op1 = getValue(I.getOperand(0)); 3163 SDValue Op2 = getValue(I.getOperand(1)); 3164 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3165 Op1, Op2, Flags); 3166 setValue(&I, BinNodeValue); 3167 } 3168 3169 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3170 SDValue Op1 = getValue(I.getOperand(0)); 3171 SDValue Op2 = getValue(I.getOperand(1)); 3172 3173 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3174 Op1.getValueType(), DAG.getDataLayout()); 3175 3176 // Coerce the shift amount to the right type if we can. 3177 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3178 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3179 unsigned Op2Size = Op2.getValueSizeInBits(); 3180 SDLoc DL = getCurSDLoc(); 3181 3182 // If the operand is smaller than the shift count type, promote it. 3183 if (ShiftSize > Op2Size) 3184 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3185 3186 // If the operand is larger than the shift count type but the shift 3187 // count type has enough bits to represent any shift value, truncate 3188 // it now. This is a common case and it exposes the truncate to 3189 // optimization early. 3190 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3191 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3192 // Otherwise we'll need to temporarily settle for some other convenient 3193 // type. Type legalization will make adjustments once the shiftee is split. 3194 else 3195 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3196 } 3197 3198 bool nuw = false; 3199 bool nsw = false; 3200 bool exact = false; 3201 3202 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3203 3204 if (const OverflowingBinaryOperator *OFBinOp = 3205 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3206 nuw = OFBinOp->hasNoUnsignedWrap(); 3207 nsw = OFBinOp->hasNoSignedWrap(); 3208 } 3209 if (const PossiblyExactOperator *ExactOp = 3210 dyn_cast<const PossiblyExactOperator>(&I)) 3211 exact = ExactOp->isExact(); 3212 } 3213 SDNodeFlags Flags; 3214 Flags.setExact(exact); 3215 Flags.setNoSignedWrap(nsw); 3216 Flags.setNoUnsignedWrap(nuw); 3217 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3218 Flags); 3219 setValue(&I, Res); 3220 } 3221 3222 void SelectionDAGBuilder::visitSDiv(const User &I) { 3223 SDValue Op1 = getValue(I.getOperand(0)); 3224 SDValue Op2 = getValue(I.getOperand(1)); 3225 3226 SDNodeFlags Flags; 3227 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3228 cast<PossiblyExactOperator>(&I)->isExact()); 3229 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3230 Op2, Flags)); 3231 } 3232 3233 void SelectionDAGBuilder::visitICmp(const User &I) { 3234 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3235 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3236 predicate = IC->getPredicate(); 3237 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3238 predicate = ICmpInst::Predicate(IC->getPredicate()); 3239 SDValue Op1 = getValue(I.getOperand(0)); 3240 SDValue Op2 = getValue(I.getOperand(1)); 3241 ISD::CondCode Opcode = getICmpCondCode(predicate); 3242 3243 auto &TLI = DAG.getTargetLoweringInfo(); 3244 EVT MemVT = 3245 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3246 3247 // If a pointer's DAG type is larger than its memory type then the DAG values 3248 // are zero-extended. This breaks signed comparisons so truncate back to the 3249 // underlying type before doing the compare. 3250 if (Op1.getValueType() != MemVT) { 3251 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3252 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3253 } 3254 3255 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3256 I.getType()); 3257 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3258 } 3259 3260 void SelectionDAGBuilder::visitFCmp(const User &I) { 3261 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3262 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3263 predicate = FC->getPredicate(); 3264 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3265 predicate = FCmpInst::Predicate(FC->getPredicate()); 3266 SDValue Op1 = getValue(I.getOperand(0)); 3267 SDValue Op2 = getValue(I.getOperand(1)); 3268 3269 ISD::CondCode Condition = getFCmpCondCode(predicate); 3270 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3271 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3272 Condition = getFCmpCodeWithoutNaN(Condition); 3273 3274 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3275 I.getType()); 3276 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3277 } 3278 3279 // Check if the condition of the select has one use or two users that are both 3280 // selects with the same condition. 3281 static bool hasOnlySelectUsers(const Value *Cond) { 3282 return llvm::all_of(Cond->users(), [](const Value *V) { 3283 return isa<SelectInst>(V); 3284 }); 3285 } 3286 3287 void SelectionDAGBuilder::visitSelect(const User &I) { 3288 SmallVector<EVT, 4> ValueVTs; 3289 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3290 ValueVTs); 3291 unsigned NumValues = ValueVTs.size(); 3292 if (NumValues == 0) return; 3293 3294 SmallVector<SDValue, 4> Values(NumValues); 3295 SDValue Cond = getValue(I.getOperand(0)); 3296 SDValue LHSVal = getValue(I.getOperand(1)); 3297 SDValue RHSVal = getValue(I.getOperand(2)); 3298 auto BaseOps = {Cond}; 3299 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3300 ISD::VSELECT : ISD::SELECT; 3301 3302 bool IsUnaryAbs = false; 3303 3304 // Min/max matching is only viable if all output VTs are the same. 3305 if (is_splat(ValueVTs)) { 3306 EVT VT = ValueVTs[0]; 3307 LLVMContext &Ctx = *DAG.getContext(); 3308 auto &TLI = DAG.getTargetLoweringInfo(); 3309 3310 // We care about the legality of the operation after it has been type 3311 // legalized. 3312 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3313 VT = TLI.getTypeToTransformTo(Ctx, VT); 3314 3315 // If the vselect is legal, assume we want to leave this as a vector setcc + 3316 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3317 // min/max is legal on the scalar type. 3318 bool UseScalarMinMax = VT.isVector() && 3319 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3320 3321 Value *LHS, *RHS; 3322 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3323 ISD::NodeType Opc = ISD::DELETED_NODE; 3324 switch (SPR.Flavor) { 3325 case SPF_UMAX: Opc = ISD::UMAX; break; 3326 case SPF_UMIN: Opc = ISD::UMIN; break; 3327 case SPF_SMAX: Opc = ISD::SMAX; break; 3328 case SPF_SMIN: Opc = ISD::SMIN; break; 3329 case SPF_FMINNUM: 3330 switch (SPR.NaNBehavior) { 3331 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3332 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3333 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3334 case SPNB_RETURNS_ANY: { 3335 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3336 Opc = ISD::FMINNUM; 3337 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3338 Opc = ISD::FMINIMUM; 3339 else if (UseScalarMinMax) 3340 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3341 ISD::FMINNUM : ISD::FMINIMUM; 3342 break; 3343 } 3344 } 3345 break; 3346 case SPF_FMAXNUM: 3347 switch (SPR.NaNBehavior) { 3348 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3349 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3350 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3351 case SPNB_RETURNS_ANY: 3352 3353 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3354 Opc = ISD::FMAXNUM; 3355 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3356 Opc = ISD::FMAXIMUM; 3357 else if (UseScalarMinMax) 3358 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3359 ISD::FMAXNUM : ISD::FMAXIMUM; 3360 break; 3361 } 3362 break; 3363 case SPF_ABS: 3364 IsUnaryAbs = true; 3365 Opc = ISD::ABS; 3366 break; 3367 case SPF_NABS: 3368 // TODO: we need to produce sub(0, abs(X)). 3369 default: break; 3370 } 3371 3372 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3373 (TLI.isOperationLegalOrCustom(Opc, VT) || 3374 (UseScalarMinMax && 3375 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3376 // If the underlying comparison instruction is used by any other 3377 // instruction, the consumed instructions won't be destroyed, so it is 3378 // not profitable to convert to a min/max. 3379 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3380 OpCode = Opc; 3381 LHSVal = getValue(LHS); 3382 RHSVal = getValue(RHS); 3383 BaseOps = {}; 3384 } 3385 3386 if (IsUnaryAbs) { 3387 OpCode = Opc; 3388 LHSVal = getValue(LHS); 3389 BaseOps = {}; 3390 } 3391 } 3392 3393 if (IsUnaryAbs) { 3394 for (unsigned i = 0; i != NumValues; ++i) { 3395 Values[i] = 3396 DAG.getNode(OpCode, getCurSDLoc(), 3397 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3398 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3399 } 3400 } else { 3401 for (unsigned i = 0; i != NumValues; ++i) { 3402 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3403 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3404 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3405 Values[i] = DAG.getNode( 3406 OpCode, getCurSDLoc(), 3407 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3408 } 3409 } 3410 3411 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3412 DAG.getVTList(ValueVTs), Values)); 3413 } 3414 3415 void SelectionDAGBuilder::visitTrunc(const User &I) { 3416 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3417 SDValue N = getValue(I.getOperand(0)); 3418 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3419 I.getType()); 3420 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3421 } 3422 3423 void SelectionDAGBuilder::visitZExt(const User &I) { 3424 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3425 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3426 SDValue N = getValue(I.getOperand(0)); 3427 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3428 I.getType()); 3429 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3430 } 3431 3432 void SelectionDAGBuilder::visitSExt(const User &I) { 3433 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3434 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3435 SDValue N = getValue(I.getOperand(0)); 3436 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3437 I.getType()); 3438 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3439 } 3440 3441 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3442 // FPTrunc is never a no-op cast, no need to check 3443 SDValue N = getValue(I.getOperand(0)); 3444 SDLoc dl = getCurSDLoc(); 3445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3446 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3447 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3448 DAG.getTargetConstant( 3449 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3450 } 3451 3452 void SelectionDAGBuilder::visitFPExt(const User &I) { 3453 // FPExt is never a no-op cast, no need to check 3454 SDValue N = getValue(I.getOperand(0)); 3455 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3456 I.getType()); 3457 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3458 } 3459 3460 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3461 // FPToUI is never a no-op cast, no need to check 3462 SDValue N = getValue(I.getOperand(0)); 3463 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3464 I.getType()); 3465 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3466 } 3467 3468 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3469 // FPToSI is never a no-op cast, no need to check 3470 SDValue N = getValue(I.getOperand(0)); 3471 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3472 I.getType()); 3473 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3474 } 3475 3476 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3477 // UIToFP is never a no-op cast, no need to check 3478 SDValue N = getValue(I.getOperand(0)); 3479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3480 I.getType()); 3481 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3482 } 3483 3484 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3485 // SIToFP is never a no-op cast, no need to check 3486 SDValue N = getValue(I.getOperand(0)); 3487 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3488 I.getType()); 3489 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3490 } 3491 3492 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3493 // What to do depends on the size of the integer and the size of the pointer. 3494 // We can either truncate, zero extend, or no-op, accordingly. 3495 SDValue N = getValue(I.getOperand(0)); 3496 auto &TLI = DAG.getTargetLoweringInfo(); 3497 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3498 I.getType()); 3499 EVT PtrMemVT = 3500 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3501 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3502 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3503 setValue(&I, N); 3504 } 3505 3506 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3507 // What to do depends on the size of the integer and the size of the pointer. 3508 // We can either truncate, zero extend, or no-op, accordingly. 3509 SDValue N = getValue(I.getOperand(0)); 3510 auto &TLI = DAG.getTargetLoweringInfo(); 3511 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3512 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3513 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3514 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3515 setValue(&I, N); 3516 } 3517 3518 void SelectionDAGBuilder::visitBitCast(const User &I) { 3519 SDValue N = getValue(I.getOperand(0)); 3520 SDLoc dl = getCurSDLoc(); 3521 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3522 I.getType()); 3523 3524 // BitCast assures us that source and destination are the same size so this is 3525 // either a BITCAST or a no-op. 3526 if (DestVT != N.getValueType()) 3527 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3528 DestVT, N)); // convert types. 3529 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3530 // might fold any kind of constant expression to an integer constant and that 3531 // is not what we are looking for. Only recognize a bitcast of a genuine 3532 // constant integer as an opaque constant. 3533 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3534 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3535 /*isOpaque*/true)); 3536 else 3537 setValue(&I, N); // noop cast. 3538 } 3539 3540 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3542 const Value *SV = I.getOperand(0); 3543 SDValue N = getValue(SV); 3544 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3545 3546 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3547 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3548 3549 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3550 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3551 3552 setValue(&I, N); 3553 } 3554 3555 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3557 SDValue InVec = getValue(I.getOperand(0)); 3558 SDValue InVal = getValue(I.getOperand(1)); 3559 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3560 TLI.getVectorIdxTy(DAG.getDataLayout())); 3561 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3562 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3563 InVec, InVal, InIdx)); 3564 } 3565 3566 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3567 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3568 SDValue InVec = getValue(I.getOperand(0)); 3569 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3570 TLI.getVectorIdxTy(DAG.getDataLayout())); 3571 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3572 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3573 InVec, InIdx)); 3574 } 3575 3576 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3577 SDValue Src1 = getValue(I.getOperand(0)); 3578 SDValue Src2 = getValue(I.getOperand(1)); 3579 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3580 SDLoc DL = getCurSDLoc(); 3581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3582 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3583 EVT SrcVT = Src1.getValueType(); 3584 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3585 3586 if (MaskV->isNullValue() && VT.isScalableVector()) { 3587 // Canonical splat form of first element of first input vector. 3588 SDValue FirstElt = 3589 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3590 DAG.getVectorIdxConstant(0, DL)); 3591 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3592 return; 3593 } 3594 3595 // For now, we only handle splats for scalable vectors. 3596 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3597 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3598 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3599 3600 SmallVector<int, 8> Mask; 3601 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3602 unsigned MaskNumElts = Mask.size(); 3603 3604 if (SrcNumElts == MaskNumElts) { 3605 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3606 return; 3607 } 3608 3609 // Normalize the shuffle vector since mask and vector length don't match. 3610 if (SrcNumElts < MaskNumElts) { 3611 // Mask is longer than the source vectors. We can use concatenate vector to 3612 // make the mask and vectors lengths match. 3613 3614 if (MaskNumElts % SrcNumElts == 0) { 3615 // Mask length is a multiple of the source vector length. 3616 // Check if the shuffle is some kind of concatenation of the input 3617 // vectors. 3618 unsigned NumConcat = MaskNumElts / SrcNumElts; 3619 bool IsConcat = true; 3620 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3621 for (unsigned i = 0; i != MaskNumElts; ++i) { 3622 int Idx = Mask[i]; 3623 if (Idx < 0) 3624 continue; 3625 // Ensure the indices in each SrcVT sized piece are sequential and that 3626 // the same source is used for the whole piece. 3627 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3628 (ConcatSrcs[i / SrcNumElts] >= 0 && 3629 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3630 IsConcat = false; 3631 break; 3632 } 3633 // Remember which source this index came from. 3634 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3635 } 3636 3637 // The shuffle is concatenating multiple vectors together. Just emit 3638 // a CONCAT_VECTORS operation. 3639 if (IsConcat) { 3640 SmallVector<SDValue, 8> ConcatOps; 3641 for (auto Src : ConcatSrcs) { 3642 if (Src < 0) 3643 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3644 else if (Src == 0) 3645 ConcatOps.push_back(Src1); 3646 else 3647 ConcatOps.push_back(Src2); 3648 } 3649 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3650 return; 3651 } 3652 } 3653 3654 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3655 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3656 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3657 PaddedMaskNumElts); 3658 3659 // Pad both vectors with undefs to make them the same length as the mask. 3660 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3661 3662 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3663 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3664 MOps1[0] = Src1; 3665 MOps2[0] = Src2; 3666 3667 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3668 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3669 3670 // Readjust mask for new input vector length. 3671 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3672 for (unsigned i = 0; i != MaskNumElts; ++i) { 3673 int Idx = Mask[i]; 3674 if (Idx >= (int)SrcNumElts) 3675 Idx -= SrcNumElts - PaddedMaskNumElts; 3676 MappedOps[i] = Idx; 3677 } 3678 3679 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3680 3681 // If the concatenated vector was padded, extract a subvector with the 3682 // correct number of elements. 3683 if (MaskNumElts != PaddedMaskNumElts) 3684 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3685 DAG.getVectorIdxConstant(0, DL)); 3686 3687 setValue(&I, Result); 3688 return; 3689 } 3690 3691 if (SrcNumElts > MaskNumElts) { 3692 // Analyze the access pattern of the vector to see if we can extract 3693 // two subvectors and do the shuffle. 3694 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3695 bool CanExtract = true; 3696 for (int Idx : Mask) { 3697 unsigned Input = 0; 3698 if (Idx < 0) 3699 continue; 3700 3701 if (Idx >= (int)SrcNumElts) { 3702 Input = 1; 3703 Idx -= SrcNumElts; 3704 } 3705 3706 // If all the indices come from the same MaskNumElts sized portion of 3707 // the sources we can use extract. Also make sure the extract wouldn't 3708 // extract past the end of the source. 3709 int NewStartIdx = alignDown(Idx, MaskNumElts); 3710 if (NewStartIdx + MaskNumElts > SrcNumElts || 3711 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3712 CanExtract = false; 3713 // Make sure we always update StartIdx as we use it to track if all 3714 // elements are undef. 3715 StartIdx[Input] = NewStartIdx; 3716 } 3717 3718 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3719 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3720 return; 3721 } 3722 if (CanExtract) { 3723 // Extract appropriate subvector and generate a vector shuffle 3724 for (unsigned Input = 0; Input < 2; ++Input) { 3725 SDValue &Src = Input == 0 ? Src1 : Src2; 3726 if (StartIdx[Input] < 0) 3727 Src = DAG.getUNDEF(VT); 3728 else { 3729 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3730 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3731 } 3732 } 3733 3734 // Calculate new mask. 3735 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3736 for (int &Idx : MappedOps) { 3737 if (Idx >= (int)SrcNumElts) 3738 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3739 else if (Idx >= 0) 3740 Idx -= StartIdx[0]; 3741 } 3742 3743 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3744 return; 3745 } 3746 } 3747 3748 // We can't use either concat vectors or extract subvectors so fall back to 3749 // replacing the shuffle with extract and build vector. 3750 // to insert and build vector. 3751 EVT EltVT = VT.getVectorElementType(); 3752 SmallVector<SDValue,8> Ops; 3753 for (int Idx : Mask) { 3754 SDValue Res; 3755 3756 if (Idx < 0) { 3757 Res = DAG.getUNDEF(EltVT); 3758 } else { 3759 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3760 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3761 3762 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3763 DAG.getVectorIdxConstant(Idx, DL)); 3764 } 3765 3766 Ops.push_back(Res); 3767 } 3768 3769 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3770 } 3771 3772 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3773 ArrayRef<unsigned> Indices; 3774 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3775 Indices = IV->getIndices(); 3776 else 3777 Indices = cast<ConstantExpr>(&I)->getIndices(); 3778 3779 const Value *Op0 = I.getOperand(0); 3780 const Value *Op1 = I.getOperand(1); 3781 Type *AggTy = I.getType(); 3782 Type *ValTy = Op1->getType(); 3783 bool IntoUndef = isa<UndefValue>(Op0); 3784 bool FromUndef = isa<UndefValue>(Op1); 3785 3786 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3787 3788 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3789 SmallVector<EVT, 4> AggValueVTs; 3790 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3791 SmallVector<EVT, 4> ValValueVTs; 3792 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3793 3794 unsigned NumAggValues = AggValueVTs.size(); 3795 unsigned NumValValues = ValValueVTs.size(); 3796 SmallVector<SDValue, 4> Values(NumAggValues); 3797 3798 // Ignore an insertvalue that produces an empty object 3799 if (!NumAggValues) { 3800 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3801 return; 3802 } 3803 3804 SDValue Agg = getValue(Op0); 3805 unsigned i = 0; 3806 // Copy the beginning value(s) from the original aggregate. 3807 for (; i != LinearIndex; ++i) 3808 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3809 SDValue(Agg.getNode(), Agg.getResNo() + i); 3810 // Copy values from the inserted value(s). 3811 if (NumValValues) { 3812 SDValue Val = getValue(Op1); 3813 for (; i != LinearIndex + NumValValues; ++i) 3814 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3815 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3816 } 3817 // Copy remaining value(s) from the original aggregate. 3818 for (; i != NumAggValues; ++i) 3819 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3820 SDValue(Agg.getNode(), Agg.getResNo() + i); 3821 3822 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3823 DAG.getVTList(AggValueVTs), Values)); 3824 } 3825 3826 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3827 ArrayRef<unsigned> Indices; 3828 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3829 Indices = EV->getIndices(); 3830 else 3831 Indices = cast<ConstantExpr>(&I)->getIndices(); 3832 3833 const Value *Op0 = I.getOperand(0); 3834 Type *AggTy = Op0->getType(); 3835 Type *ValTy = I.getType(); 3836 bool OutOfUndef = isa<UndefValue>(Op0); 3837 3838 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3839 3840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3841 SmallVector<EVT, 4> ValValueVTs; 3842 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3843 3844 unsigned NumValValues = ValValueVTs.size(); 3845 3846 // Ignore a extractvalue that produces an empty object 3847 if (!NumValValues) { 3848 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3849 return; 3850 } 3851 3852 SmallVector<SDValue, 4> Values(NumValValues); 3853 3854 SDValue Agg = getValue(Op0); 3855 // Copy out the selected value(s). 3856 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3857 Values[i - LinearIndex] = 3858 OutOfUndef ? 3859 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3860 SDValue(Agg.getNode(), Agg.getResNo() + i); 3861 3862 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3863 DAG.getVTList(ValValueVTs), Values)); 3864 } 3865 3866 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3867 Value *Op0 = I.getOperand(0); 3868 // Note that the pointer operand may be a vector of pointers. Take the scalar 3869 // element which holds a pointer. 3870 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3871 SDValue N = getValue(Op0); 3872 SDLoc dl = getCurSDLoc(); 3873 auto &TLI = DAG.getTargetLoweringInfo(); 3874 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3875 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3876 3877 // Normalize Vector GEP - all scalar operands should be converted to the 3878 // splat vector. 3879 unsigned VectorWidth = I.getType()->isVectorTy() ? 3880 I.getType()->getVectorNumElements() : 0; 3881 3882 if (VectorWidth && !N.getValueType().isVector()) { 3883 LLVMContext &Context = *DAG.getContext(); 3884 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3885 N = DAG.getSplatBuildVector(VT, dl, N); 3886 } 3887 3888 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3889 GTI != E; ++GTI) { 3890 const Value *Idx = GTI.getOperand(); 3891 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3892 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3893 if (Field) { 3894 // N = N + Offset 3895 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3896 3897 // In an inbounds GEP with an offset that is nonnegative even when 3898 // interpreted as signed, assume there is no unsigned overflow. 3899 SDNodeFlags Flags; 3900 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3901 Flags.setNoUnsignedWrap(true); 3902 3903 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3904 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3905 } 3906 } else { 3907 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3908 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3909 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3910 3911 // If this is a scalar constant or a splat vector of constants, 3912 // handle it quickly. 3913 const auto *C = dyn_cast<Constant>(Idx); 3914 if (C && isa<VectorType>(C->getType())) 3915 C = C->getSplatValue(); 3916 3917 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3918 if (CI->isZero()) 3919 continue; 3920 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3921 LLVMContext &Context = *DAG.getContext(); 3922 SDValue OffsVal = VectorWidth ? 3923 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3924 DAG.getConstant(Offs, dl, IdxTy); 3925 3926 // In an inbounds GEP with an offset that is nonnegative even when 3927 // interpreted as signed, assume there is no unsigned overflow. 3928 SDNodeFlags Flags; 3929 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3930 Flags.setNoUnsignedWrap(true); 3931 3932 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3933 3934 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3935 continue; 3936 } 3937 3938 // N = N + Idx * ElementSize; 3939 SDValue IdxN = getValue(Idx); 3940 3941 if (!IdxN.getValueType().isVector() && VectorWidth) { 3942 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3943 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3944 } 3945 3946 // If the index is smaller or larger than intptr_t, truncate or extend 3947 // it. 3948 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3949 3950 // If this is a multiply by a power of two, turn it into a shl 3951 // immediately. This is a very common case. 3952 if (ElementSize != 1) { 3953 if (ElementSize.isPowerOf2()) { 3954 unsigned Amt = ElementSize.logBase2(); 3955 IdxN = DAG.getNode(ISD::SHL, dl, 3956 N.getValueType(), IdxN, 3957 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3958 } else { 3959 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3960 IdxN.getValueType()); 3961 IdxN = DAG.getNode(ISD::MUL, dl, 3962 N.getValueType(), IdxN, Scale); 3963 } 3964 } 3965 3966 N = DAG.getNode(ISD::ADD, dl, 3967 N.getValueType(), N, IdxN); 3968 } 3969 } 3970 3971 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3972 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3973 3974 setValue(&I, N); 3975 } 3976 3977 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3978 // If this is a fixed sized alloca in the entry block of the function, 3979 // allocate it statically on the stack. 3980 if (FuncInfo.StaticAllocaMap.count(&I)) 3981 return; // getValue will auto-populate this. 3982 3983 SDLoc dl = getCurSDLoc(); 3984 Type *Ty = I.getAllocatedType(); 3985 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3986 auto &DL = DAG.getDataLayout(); 3987 uint64_t TySize = DL.getTypeAllocSize(Ty); 3988 unsigned Align = 3989 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3990 3991 SDValue AllocSize = getValue(I.getArraySize()); 3992 3993 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3994 if (AllocSize.getValueType() != IntPtr) 3995 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3996 3997 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3998 AllocSize, 3999 DAG.getConstant(TySize, dl, IntPtr)); 4000 4001 // Handle alignment. If the requested alignment is less than or equal to 4002 // the stack alignment, ignore it. If the size is greater than or equal to 4003 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4004 unsigned StackAlign = 4005 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 4006 if (Align <= StackAlign) 4007 Align = 0; 4008 4009 // Round the size of the allocation up to the stack alignment size 4010 // by add SA-1 to the size. This doesn't overflow because we're computing 4011 // an address inside an alloca. 4012 SDNodeFlags Flags; 4013 Flags.setNoUnsignedWrap(true); 4014 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4015 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 4016 4017 // Mask out the low bits for alignment purposes. 4018 AllocSize = 4019 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4020 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4021 4022 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4023 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4024 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4025 setValue(&I, DSA); 4026 DAG.setRoot(DSA.getValue(1)); 4027 4028 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4029 } 4030 4031 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4032 if (I.isAtomic()) 4033 return visitAtomicLoad(I); 4034 4035 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4036 const Value *SV = I.getOperand(0); 4037 if (TLI.supportSwiftError()) { 4038 // Swifterror values can come from either a function parameter with 4039 // swifterror attribute or an alloca with swifterror attribute. 4040 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4041 if (Arg->hasSwiftErrorAttr()) 4042 return visitLoadFromSwiftError(I); 4043 } 4044 4045 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4046 if (Alloca->isSwiftError()) 4047 return visitLoadFromSwiftError(I); 4048 } 4049 } 4050 4051 SDValue Ptr = getValue(SV); 4052 4053 Type *Ty = I.getType(); 4054 unsigned Alignment = I.getAlignment(); 4055 4056 AAMDNodes AAInfo; 4057 I.getAAMetadata(AAInfo); 4058 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4059 4060 SmallVector<EVT, 4> ValueVTs, MemVTs; 4061 SmallVector<uint64_t, 4> Offsets; 4062 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4063 unsigned NumValues = ValueVTs.size(); 4064 if (NumValues == 0) 4065 return; 4066 4067 bool isVolatile = I.isVolatile(); 4068 4069 SDValue Root; 4070 bool ConstantMemory = false; 4071 if (isVolatile) 4072 // Serialize volatile loads with other side effects. 4073 Root = getRoot(); 4074 else if (NumValues > MaxParallelChains) 4075 Root = getMemoryRoot(); 4076 else if (AA && 4077 AA->pointsToConstantMemory(MemoryLocation( 4078 SV, 4079 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4080 AAInfo))) { 4081 // Do not serialize (non-volatile) loads of constant memory with anything. 4082 Root = DAG.getEntryNode(); 4083 ConstantMemory = true; 4084 } else { 4085 // Do not serialize non-volatile loads against each other. 4086 Root = DAG.getRoot(); 4087 } 4088 4089 SDLoc dl = getCurSDLoc(); 4090 4091 if (isVolatile) 4092 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4093 4094 // An aggregate load cannot wrap around the address space, so offsets to its 4095 // parts don't wrap either. 4096 SDNodeFlags Flags; 4097 Flags.setNoUnsignedWrap(true); 4098 4099 SmallVector<SDValue, 4> Values(NumValues); 4100 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4101 EVT PtrVT = Ptr.getValueType(); 4102 4103 MachineMemOperand::Flags MMOFlags 4104 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4105 4106 unsigned ChainI = 0; 4107 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4108 // Serializing loads here may result in excessive register pressure, and 4109 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4110 // could recover a bit by hoisting nodes upward in the chain by recognizing 4111 // they are side-effect free or do not alias. The optimizer should really 4112 // avoid this case by converting large object/array copies to llvm.memcpy 4113 // (MaxParallelChains should always remain as failsafe). 4114 if (ChainI == MaxParallelChains) { 4115 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4116 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4117 makeArrayRef(Chains.data(), ChainI)); 4118 Root = Chain; 4119 ChainI = 0; 4120 } 4121 SDValue A = DAG.getNode(ISD::ADD, dl, 4122 PtrVT, Ptr, 4123 DAG.getConstant(Offsets[i], dl, PtrVT), 4124 Flags); 4125 4126 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4127 MachinePointerInfo(SV, Offsets[i]), Alignment, 4128 MMOFlags, AAInfo, Ranges); 4129 Chains[ChainI] = L.getValue(1); 4130 4131 if (MemVTs[i] != ValueVTs[i]) 4132 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4133 4134 Values[i] = L; 4135 } 4136 4137 if (!ConstantMemory) { 4138 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4139 makeArrayRef(Chains.data(), ChainI)); 4140 if (isVolatile) 4141 DAG.setRoot(Chain); 4142 else 4143 PendingLoads.push_back(Chain); 4144 } 4145 4146 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4147 DAG.getVTList(ValueVTs), Values)); 4148 } 4149 4150 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4151 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4152 "call visitStoreToSwiftError when backend supports swifterror"); 4153 4154 SmallVector<EVT, 4> ValueVTs; 4155 SmallVector<uint64_t, 4> Offsets; 4156 const Value *SrcV = I.getOperand(0); 4157 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4158 SrcV->getType(), ValueVTs, &Offsets); 4159 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4160 "expect a single EVT for swifterror"); 4161 4162 SDValue Src = getValue(SrcV); 4163 // Create a virtual register, then update the virtual register. 4164 Register VReg = 4165 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4166 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4167 // Chain can be getRoot or getControlRoot. 4168 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4169 SDValue(Src.getNode(), Src.getResNo())); 4170 DAG.setRoot(CopyNode); 4171 } 4172 4173 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4174 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4175 "call visitLoadFromSwiftError when backend supports swifterror"); 4176 4177 assert(!I.isVolatile() && 4178 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4179 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4180 "Support volatile, non temporal, invariant for load_from_swift_error"); 4181 4182 const Value *SV = I.getOperand(0); 4183 Type *Ty = I.getType(); 4184 AAMDNodes AAInfo; 4185 I.getAAMetadata(AAInfo); 4186 assert( 4187 (!AA || 4188 !AA->pointsToConstantMemory(MemoryLocation( 4189 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4190 AAInfo))) && 4191 "load_from_swift_error should not be constant memory"); 4192 4193 SmallVector<EVT, 4> ValueVTs; 4194 SmallVector<uint64_t, 4> Offsets; 4195 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4196 ValueVTs, &Offsets); 4197 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4198 "expect a single EVT for swifterror"); 4199 4200 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4201 SDValue L = DAG.getCopyFromReg( 4202 getRoot(), getCurSDLoc(), 4203 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4204 4205 setValue(&I, L); 4206 } 4207 4208 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4209 if (I.isAtomic()) 4210 return visitAtomicStore(I); 4211 4212 const Value *SrcV = I.getOperand(0); 4213 const Value *PtrV = I.getOperand(1); 4214 4215 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4216 if (TLI.supportSwiftError()) { 4217 // Swifterror values can come from either a function parameter with 4218 // swifterror attribute or an alloca with swifterror attribute. 4219 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4220 if (Arg->hasSwiftErrorAttr()) 4221 return visitStoreToSwiftError(I); 4222 } 4223 4224 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4225 if (Alloca->isSwiftError()) 4226 return visitStoreToSwiftError(I); 4227 } 4228 } 4229 4230 SmallVector<EVT, 4> ValueVTs, MemVTs; 4231 SmallVector<uint64_t, 4> Offsets; 4232 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4233 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4234 unsigned NumValues = ValueVTs.size(); 4235 if (NumValues == 0) 4236 return; 4237 4238 // Get the lowered operands. Note that we do this after 4239 // checking if NumResults is zero, because with zero results 4240 // the operands won't have values in the map. 4241 SDValue Src = getValue(SrcV); 4242 SDValue Ptr = getValue(PtrV); 4243 4244 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4245 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4246 SDLoc dl = getCurSDLoc(); 4247 unsigned Alignment = I.getAlignment(); 4248 AAMDNodes AAInfo; 4249 I.getAAMetadata(AAInfo); 4250 4251 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4252 4253 // An aggregate load cannot wrap around the address space, so offsets to its 4254 // parts don't wrap either. 4255 SDNodeFlags Flags; 4256 Flags.setNoUnsignedWrap(true); 4257 4258 unsigned ChainI = 0; 4259 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4260 // See visitLoad comments. 4261 if (ChainI == MaxParallelChains) { 4262 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4263 makeArrayRef(Chains.data(), ChainI)); 4264 Root = Chain; 4265 ChainI = 0; 4266 } 4267 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4268 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4269 if (MemVTs[i] != ValueVTs[i]) 4270 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4271 SDValue St = 4272 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4273 Alignment, MMOFlags, AAInfo); 4274 Chains[ChainI] = St; 4275 } 4276 4277 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4278 makeArrayRef(Chains.data(), ChainI)); 4279 DAG.setRoot(StoreNode); 4280 } 4281 4282 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4283 bool IsCompressing) { 4284 SDLoc sdl = getCurSDLoc(); 4285 4286 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4287 unsigned& Alignment) { 4288 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4289 Src0 = I.getArgOperand(0); 4290 Ptr = I.getArgOperand(1); 4291 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4292 Mask = I.getArgOperand(3); 4293 }; 4294 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4295 unsigned& Alignment) { 4296 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4297 Src0 = I.getArgOperand(0); 4298 Ptr = I.getArgOperand(1); 4299 Mask = I.getArgOperand(2); 4300 Alignment = 0; 4301 }; 4302 4303 Value *PtrOperand, *MaskOperand, *Src0Operand; 4304 unsigned Alignment; 4305 if (IsCompressing) 4306 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4307 else 4308 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4309 4310 SDValue Ptr = getValue(PtrOperand); 4311 SDValue Src0 = getValue(Src0Operand); 4312 SDValue Mask = getValue(MaskOperand); 4313 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4314 4315 EVT VT = Src0.getValueType(); 4316 if (!Alignment) 4317 Alignment = DAG.getEVTAlignment(VT); 4318 4319 AAMDNodes AAInfo; 4320 I.getAAMetadata(AAInfo); 4321 4322 MachineMemOperand *MMO = 4323 DAG.getMachineFunction(). 4324 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4325 MachineMemOperand::MOStore, 4326 // TODO: Make MachineMemOperands aware of scalable 4327 // vectors. 4328 VT.getStoreSize().getKnownMinSize(), 4329 Alignment, AAInfo); 4330 SDValue StoreNode = 4331 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4332 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4333 DAG.setRoot(StoreNode); 4334 setValue(&I, StoreNode); 4335 } 4336 4337 // Get a uniform base for the Gather/Scatter intrinsic. 4338 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4339 // We try to represent it as a base pointer + vector of indices. 4340 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4341 // The first operand of the GEP may be a single pointer or a vector of pointers 4342 // Example: 4343 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4344 // or 4345 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4346 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4347 // 4348 // When the first GEP operand is a single pointer - it is the uniform base we 4349 // are looking for. If first operand of the GEP is a splat vector - we 4350 // extract the splat value and use it as a uniform base. 4351 // In all other cases the function returns 'false'. 4352 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4353 ISD::MemIndexType &IndexType, SDValue &Scale, 4354 SelectionDAGBuilder *SDB) { 4355 SelectionDAG& DAG = SDB->DAG; 4356 LLVMContext &Context = *DAG.getContext(); 4357 4358 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4359 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4360 if (!GEP) 4361 return false; 4362 4363 const Value *GEPPtr = GEP->getPointerOperand(); 4364 if (!GEPPtr->getType()->isVectorTy()) 4365 Ptr = GEPPtr; 4366 else if (!(Ptr = getSplatValue(GEPPtr))) 4367 return false; 4368 4369 unsigned FinalIndex = GEP->getNumOperands() - 1; 4370 Value *IndexVal = GEP->getOperand(FinalIndex); 4371 gep_type_iterator GTI = gep_type_begin(*GEP); 4372 4373 // Ensure all the other indices are 0. 4374 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4375 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4376 if (!C) 4377 return false; 4378 if (isa<VectorType>(C->getType())) 4379 C = C->getSplatValue(); 4380 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4381 if (!CI || !CI->isZero()) 4382 return false; 4383 } 4384 4385 // The operands of the GEP may be defined in another basic block. 4386 // In this case we'll not find nodes for the operands. 4387 if (!SDB->findValue(Ptr)) 4388 return false; 4389 Constant *C = dyn_cast<Constant>(IndexVal); 4390 if (!C && !SDB->findValue(IndexVal)) 4391 return false; 4392 4393 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4394 const DataLayout &DL = DAG.getDataLayout(); 4395 StructType *STy = GTI.getStructTypeOrNull(); 4396 4397 if (STy) { 4398 const StructLayout *SL = DL.getStructLayout(STy); 4399 if (isa<VectorType>(C->getType())) { 4400 C = C->getSplatValue(); 4401 // FIXME: If getSplatValue may return nullptr for a structure? 4402 // If not, the following check can be removed. 4403 if (!C) 4404 return false; 4405 } 4406 auto *CI = cast<ConstantInt>(C); 4407 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4408 Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), 4409 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4410 } else { 4411 Scale = DAG.getTargetConstant( 4412 DL.getTypeAllocSize(GEP->getResultElementType()), 4413 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4414 Index = SDB->getValue(IndexVal); 4415 } 4416 Base = SDB->getValue(Ptr); 4417 IndexType = ISD::SIGNED_SCALED; 4418 4419 if (STy || !Index.getValueType().isVector()) { 4420 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4421 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4422 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4423 } 4424 return true; 4425 } 4426 4427 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4428 SDLoc sdl = getCurSDLoc(); 4429 4430 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4431 const Value *Ptr = I.getArgOperand(1); 4432 SDValue Src0 = getValue(I.getArgOperand(0)); 4433 SDValue Mask = getValue(I.getArgOperand(3)); 4434 EVT VT = Src0.getValueType(); 4435 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4436 if (!Alignment) 4437 Alignment = DAG.getEVTAlignment(VT); 4438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4439 4440 AAMDNodes AAInfo; 4441 I.getAAMetadata(AAInfo); 4442 4443 SDValue Base; 4444 SDValue Index; 4445 ISD::MemIndexType IndexType; 4446 SDValue Scale; 4447 const Value *BasePtr = Ptr; 4448 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4449 this); 4450 4451 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4452 MachineMemOperand *MMO = DAG.getMachineFunction(). 4453 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4454 MachineMemOperand::MOStore, 4455 // TODO: Make MachineMemOperands aware of scalable 4456 // vectors. 4457 VT.getStoreSize().getKnownMinSize(), 4458 Alignment, AAInfo); 4459 if (!UniformBase) { 4460 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4461 Index = getValue(Ptr); 4462 IndexType = ISD::SIGNED_SCALED; 4463 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4464 } 4465 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4466 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4467 Ops, MMO, IndexType); 4468 DAG.setRoot(Scatter); 4469 setValue(&I, Scatter); 4470 } 4471 4472 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4473 SDLoc sdl = getCurSDLoc(); 4474 4475 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4476 unsigned& Alignment) { 4477 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4478 Ptr = I.getArgOperand(0); 4479 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4480 Mask = I.getArgOperand(2); 4481 Src0 = I.getArgOperand(3); 4482 }; 4483 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4484 unsigned& Alignment) { 4485 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4486 Ptr = I.getArgOperand(0); 4487 Alignment = 0; 4488 Mask = I.getArgOperand(1); 4489 Src0 = I.getArgOperand(2); 4490 }; 4491 4492 Value *PtrOperand, *MaskOperand, *Src0Operand; 4493 unsigned Alignment; 4494 if (IsExpanding) 4495 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4496 else 4497 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4498 4499 SDValue Ptr = getValue(PtrOperand); 4500 SDValue Src0 = getValue(Src0Operand); 4501 SDValue Mask = getValue(MaskOperand); 4502 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4503 4504 EVT VT = Src0.getValueType(); 4505 if (!Alignment) 4506 Alignment = DAG.getEVTAlignment(VT); 4507 4508 AAMDNodes AAInfo; 4509 I.getAAMetadata(AAInfo); 4510 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4511 4512 // Do not serialize masked loads of constant memory with anything. 4513 MemoryLocation ML; 4514 if (VT.isScalableVector()) 4515 ML = MemoryLocation(PtrOperand); 4516 else 4517 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4518 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4519 AAInfo); 4520 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4521 4522 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4523 4524 MachineMemOperand *MMO = 4525 DAG.getMachineFunction(). 4526 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4527 MachineMemOperand::MOLoad, 4528 // TODO: Make MachineMemOperands aware of scalable 4529 // vectors. 4530 VT.getStoreSize().getKnownMinSize(), 4531 Alignment, AAInfo, Ranges); 4532 4533 SDValue Load = 4534 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4535 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4536 if (AddToChain) 4537 PendingLoads.push_back(Load.getValue(1)); 4538 setValue(&I, Load); 4539 } 4540 4541 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4542 SDLoc sdl = getCurSDLoc(); 4543 4544 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4545 const Value *Ptr = I.getArgOperand(0); 4546 SDValue Src0 = getValue(I.getArgOperand(3)); 4547 SDValue Mask = getValue(I.getArgOperand(2)); 4548 4549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4550 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4551 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4552 if (!Alignment) 4553 Alignment = DAG.getEVTAlignment(VT); 4554 4555 AAMDNodes AAInfo; 4556 I.getAAMetadata(AAInfo); 4557 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4558 4559 SDValue Root = DAG.getRoot(); 4560 SDValue Base; 4561 SDValue Index; 4562 ISD::MemIndexType IndexType; 4563 SDValue Scale; 4564 const Value *BasePtr = Ptr; 4565 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4566 this); 4567 bool ConstantMemory = false; 4568 if (UniformBase && AA && 4569 AA->pointsToConstantMemory( 4570 MemoryLocation(BasePtr, 4571 LocationSize::precise( 4572 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4573 AAInfo))) { 4574 // Do not serialize (non-volatile) loads of constant memory with anything. 4575 Root = DAG.getEntryNode(); 4576 ConstantMemory = true; 4577 } 4578 4579 MachineMemOperand *MMO = 4580 DAG.getMachineFunction(). 4581 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4582 MachineMemOperand::MOLoad, 4583 // TODO: Make MachineMemOperands aware of scalable 4584 // vectors. 4585 VT.getStoreSize().getKnownMinSize(), 4586 Alignment, AAInfo, Ranges); 4587 4588 if (!UniformBase) { 4589 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4590 Index = getValue(Ptr); 4591 IndexType = ISD::SIGNED_SCALED; 4592 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4593 } 4594 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4595 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4596 Ops, MMO, IndexType); 4597 4598 SDValue OutChain = Gather.getValue(1); 4599 if (!ConstantMemory) 4600 PendingLoads.push_back(OutChain); 4601 setValue(&I, Gather); 4602 } 4603 4604 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4605 SDLoc dl = getCurSDLoc(); 4606 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4607 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4608 SyncScope::ID SSID = I.getSyncScopeID(); 4609 4610 SDValue InChain = getRoot(); 4611 4612 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4613 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4614 4615 auto Alignment = DAG.getEVTAlignment(MemVT); 4616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4617 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4618 4619 MachineFunction &MF = DAG.getMachineFunction(); 4620 MachineMemOperand *MMO = 4621 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4622 Flags, MemVT.getStoreSize(), Alignment, 4623 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4624 FailureOrdering); 4625 4626 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4627 dl, MemVT, VTs, InChain, 4628 getValue(I.getPointerOperand()), 4629 getValue(I.getCompareOperand()), 4630 getValue(I.getNewValOperand()), MMO); 4631 4632 SDValue OutChain = L.getValue(2); 4633 4634 setValue(&I, L); 4635 DAG.setRoot(OutChain); 4636 } 4637 4638 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4639 SDLoc dl = getCurSDLoc(); 4640 ISD::NodeType NT; 4641 switch (I.getOperation()) { 4642 default: llvm_unreachable("Unknown atomicrmw operation"); 4643 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4644 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4645 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4646 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4647 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4648 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4649 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4650 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4651 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4652 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4653 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4654 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4655 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4656 } 4657 AtomicOrdering Ordering = I.getOrdering(); 4658 SyncScope::ID SSID = I.getSyncScopeID(); 4659 4660 SDValue InChain = getRoot(); 4661 4662 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4663 auto Alignment = DAG.getEVTAlignment(MemVT); 4664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4665 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4666 4667 MachineFunction &MF = DAG.getMachineFunction(); 4668 MachineMemOperand *MMO = 4669 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4670 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4671 nullptr, SSID, Ordering); 4672 4673 SDValue L = 4674 DAG.getAtomic(NT, dl, MemVT, InChain, 4675 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4676 MMO); 4677 4678 SDValue OutChain = L.getValue(1); 4679 4680 setValue(&I, L); 4681 DAG.setRoot(OutChain); 4682 } 4683 4684 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4685 SDLoc dl = getCurSDLoc(); 4686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4687 SDValue Ops[3]; 4688 Ops[0] = getRoot(); 4689 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4690 TLI.getFenceOperandTy(DAG.getDataLayout())); 4691 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4692 TLI.getFenceOperandTy(DAG.getDataLayout())); 4693 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4694 } 4695 4696 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4697 SDLoc dl = getCurSDLoc(); 4698 AtomicOrdering Order = I.getOrdering(); 4699 SyncScope::ID SSID = I.getSyncScopeID(); 4700 4701 SDValue InChain = getRoot(); 4702 4703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4704 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4705 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4706 4707 if (!TLI.supportsUnalignedAtomics() && 4708 I.getAlignment() < MemVT.getSizeInBits() / 8) 4709 report_fatal_error("Cannot generate unaligned atomic load"); 4710 4711 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4712 4713 MachineMemOperand *MMO = 4714 DAG.getMachineFunction(). 4715 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4716 Flags, MemVT.getStoreSize(), 4717 I.getAlignment() ? I.getAlignment() : 4718 DAG.getEVTAlignment(MemVT), 4719 AAMDNodes(), nullptr, SSID, Order); 4720 4721 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4722 4723 SDValue Ptr = getValue(I.getPointerOperand()); 4724 4725 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4726 // TODO: Once this is better exercised by tests, it should be merged with 4727 // the normal path for loads to prevent future divergence. 4728 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4729 if (MemVT != VT) 4730 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4731 4732 setValue(&I, L); 4733 SDValue OutChain = L.getValue(1); 4734 if (!I.isUnordered()) 4735 DAG.setRoot(OutChain); 4736 else 4737 PendingLoads.push_back(OutChain); 4738 return; 4739 } 4740 4741 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4742 Ptr, MMO); 4743 4744 SDValue OutChain = L.getValue(1); 4745 if (MemVT != VT) 4746 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4747 4748 setValue(&I, L); 4749 DAG.setRoot(OutChain); 4750 } 4751 4752 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4753 SDLoc dl = getCurSDLoc(); 4754 4755 AtomicOrdering Ordering = I.getOrdering(); 4756 SyncScope::ID SSID = I.getSyncScopeID(); 4757 4758 SDValue InChain = getRoot(); 4759 4760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4761 EVT MemVT = 4762 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4763 4764 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4765 report_fatal_error("Cannot generate unaligned atomic store"); 4766 4767 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4768 4769 MachineFunction &MF = DAG.getMachineFunction(); 4770 MachineMemOperand *MMO = 4771 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4772 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4773 nullptr, SSID, Ordering); 4774 4775 SDValue Val = getValue(I.getValueOperand()); 4776 if (Val.getValueType() != MemVT) 4777 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4778 SDValue Ptr = getValue(I.getPointerOperand()); 4779 4780 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4781 // TODO: Once this is better exercised by tests, it should be merged with 4782 // the normal path for stores to prevent future divergence. 4783 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4784 DAG.setRoot(S); 4785 return; 4786 } 4787 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4788 Ptr, Val, MMO); 4789 4790 4791 DAG.setRoot(OutChain); 4792 } 4793 4794 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4795 /// node. 4796 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4797 unsigned Intrinsic) { 4798 // Ignore the callsite's attributes. A specific call site may be marked with 4799 // readnone, but the lowering code will expect the chain based on the 4800 // definition. 4801 const Function *F = I.getCalledFunction(); 4802 bool HasChain = !F->doesNotAccessMemory(); 4803 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4804 4805 // Build the operand list. 4806 SmallVector<SDValue, 8> Ops; 4807 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4808 if (OnlyLoad) { 4809 // We don't need to serialize loads against other loads. 4810 Ops.push_back(DAG.getRoot()); 4811 } else { 4812 Ops.push_back(getRoot()); 4813 } 4814 } 4815 4816 // Info is set by getTgtMemInstrinsic 4817 TargetLowering::IntrinsicInfo Info; 4818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4819 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4820 DAG.getMachineFunction(), 4821 Intrinsic); 4822 4823 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4824 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4825 Info.opc == ISD::INTRINSIC_W_CHAIN) 4826 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4827 TLI.getPointerTy(DAG.getDataLayout()))); 4828 4829 // Add all operands of the call to the operand list. 4830 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4831 const Value *Arg = I.getArgOperand(i); 4832 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4833 Ops.push_back(getValue(Arg)); 4834 continue; 4835 } 4836 4837 // Use TargetConstant instead of a regular constant for immarg. 4838 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4839 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4840 assert(CI->getBitWidth() <= 64 && 4841 "large intrinsic immediates not handled"); 4842 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4843 } else { 4844 Ops.push_back( 4845 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4846 } 4847 } 4848 4849 SmallVector<EVT, 4> ValueVTs; 4850 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4851 4852 if (HasChain) 4853 ValueVTs.push_back(MVT::Other); 4854 4855 SDVTList VTs = DAG.getVTList(ValueVTs); 4856 4857 // Create the node. 4858 SDValue Result; 4859 if (IsTgtIntrinsic) { 4860 // This is target intrinsic that touches memory 4861 AAMDNodes AAInfo; 4862 I.getAAMetadata(AAInfo); 4863 Result = DAG.getMemIntrinsicNode( 4864 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4865 MachinePointerInfo(Info.ptrVal, Info.offset), 4866 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4867 } else if (!HasChain) { 4868 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4869 } else if (!I.getType()->isVoidTy()) { 4870 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4871 } else { 4872 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4873 } 4874 4875 if (HasChain) { 4876 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4877 if (OnlyLoad) 4878 PendingLoads.push_back(Chain); 4879 else 4880 DAG.setRoot(Chain); 4881 } 4882 4883 if (!I.getType()->isVoidTy()) { 4884 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4885 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4886 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4887 } else 4888 Result = lowerRangeToAssertZExt(DAG, I, Result); 4889 4890 setValue(&I, Result); 4891 } 4892 } 4893 4894 /// GetSignificand - Get the significand and build it into a floating-point 4895 /// number with exponent of 1: 4896 /// 4897 /// Op = (Op & 0x007fffff) | 0x3f800000; 4898 /// 4899 /// where Op is the hexadecimal representation of floating point value. 4900 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4901 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4902 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4903 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4904 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4905 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4906 } 4907 4908 /// GetExponent - Get the exponent: 4909 /// 4910 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4911 /// 4912 /// where Op is the hexadecimal representation of floating point value. 4913 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4914 const TargetLowering &TLI, const SDLoc &dl) { 4915 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4916 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4917 SDValue t1 = DAG.getNode( 4918 ISD::SRL, dl, MVT::i32, t0, 4919 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4920 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4921 DAG.getConstant(127, dl, MVT::i32)); 4922 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4923 } 4924 4925 /// getF32Constant - Get 32-bit floating point constant. 4926 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4927 const SDLoc &dl) { 4928 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4929 MVT::f32); 4930 } 4931 4932 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4933 SelectionDAG &DAG) { 4934 // TODO: What fast-math-flags should be set on the floating-point nodes? 4935 4936 // IntegerPartOfX = ((int32_t)(t0); 4937 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4938 4939 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4940 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4941 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4942 4943 // IntegerPartOfX <<= 23; 4944 IntegerPartOfX = DAG.getNode( 4945 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4946 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4947 DAG.getDataLayout()))); 4948 4949 SDValue TwoToFractionalPartOfX; 4950 if (LimitFloatPrecision <= 6) { 4951 // For floating-point precision of 6: 4952 // 4953 // TwoToFractionalPartOfX = 4954 // 0.997535578f + 4955 // (0.735607626f + 0.252464424f * x) * x; 4956 // 4957 // error 0.0144103317, which is 6 bits 4958 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4959 getF32Constant(DAG, 0x3e814304, dl)); 4960 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4961 getF32Constant(DAG, 0x3f3c50c8, dl)); 4962 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4963 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4964 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4965 } else if (LimitFloatPrecision <= 12) { 4966 // For floating-point precision of 12: 4967 // 4968 // TwoToFractionalPartOfX = 4969 // 0.999892986f + 4970 // (0.696457318f + 4971 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4972 // 4973 // error 0.000107046256, which is 13 to 14 bits 4974 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4975 getF32Constant(DAG, 0x3da235e3, dl)); 4976 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4977 getF32Constant(DAG, 0x3e65b8f3, dl)); 4978 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4979 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4980 getF32Constant(DAG, 0x3f324b07, dl)); 4981 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4982 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4983 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4984 } else { // LimitFloatPrecision <= 18 4985 // For floating-point precision of 18: 4986 // 4987 // TwoToFractionalPartOfX = 4988 // 0.999999982f + 4989 // (0.693148872f + 4990 // (0.240227044f + 4991 // (0.554906021e-1f + 4992 // (0.961591928e-2f + 4993 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4994 // error 2.47208000*10^(-7), which is better than 18 bits 4995 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4996 getF32Constant(DAG, 0x3924b03e, dl)); 4997 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4998 getF32Constant(DAG, 0x3ab24b87, dl)); 4999 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5000 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5001 getF32Constant(DAG, 0x3c1d8c17, dl)); 5002 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5003 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5004 getF32Constant(DAG, 0x3d634a1d, dl)); 5005 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5006 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5007 getF32Constant(DAG, 0x3e75fe14, dl)); 5008 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5009 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5010 getF32Constant(DAG, 0x3f317234, dl)); 5011 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5012 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5013 getF32Constant(DAG, 0x3f800000, dl)); 5014 } 5015 5016 // Add the exponent into the result in integer domain. 5017 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5018 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5019 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5020 } 5021 5022 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5023 /// limited-precision mode. 5024 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5025 const TargetLowering &TLI) { 5026 if (Op.getValueType() == MVT::f32 && 5027 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5028 5029 // Put the exponent in the right bit position for later addition to the 5030 // final result: 5031 // 5032 // t0 = Op * log2(e) 5033 5034 // TODO: What fast-math-flags should be set here? 5035 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5036 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5037 return getLimitedPrecisionExp2(t0, dl, DAG); 5038 } 5039 5040 // No special expansion. 5041 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5042 } 5043 5044 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5045 /// limited-precision mode. 5046 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5047 const TargetLowering &TLI) { 5048 // TODO: What fast-math-flags should be set on the floating-point nodes? 5049 5050 if (Op.getValueType() == MVT::f32 && 5051 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5052 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5053 5054 // Scale the exponent by log(2). 5055 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5056 SDValue LogOfExponent = 5057 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5058 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5059 5060 // Get the significand and build it into a floating-point number with 5061 // exponent of 1. 5062 SDValue X = GetSignificand(DAG, Op1, dl); 5063 5064 SDValue LogOfMantissa; 5065 if (LimitFloatPrecision <= 6) { 5066 // For floating-point precision of 6: 5067 // 5068 // LogofMantissa = 5069 // -1.1609546f + 5070 // (1.4034025f - 0.23903021f * x) * x; 5071 // 5072 // error 0.0034276066, which is better than 8 bits 5073 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5074 getF32Constant(DAG, 0xbe74c456, dl)); 5075 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5076 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5077 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5078 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5079 getF32Constant(DAG, 0x3f949a29, dl)); 5080 } else if (LimitFloatPrecision <= 12) { 5081 // For floating-point precision of 12: 5082 // 5083 // LogOfMantissa = 5084 // -1.7417939f + 5085 // (2.8212026f + 5086 // (-1.4699568f + 5087 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5088 // 5089 // error 0.000061011436, which is 14 bits 5090 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5091 getF32Constant(DAG, 0xbd67b6d6, dl)); 5092 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5093 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5094 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5095 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5096 getF32Constant(DAG, 0x3fbc278b, dl)); 5097 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5098 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5099 getF32Constant(DAG, 0x40348e95, dl)); 5100 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5101 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5102 getF32Constant(DAG, 0x3fdef31a, dl)); 5103 } else { // LimitFloatPrecision <= 18 5104 // For floating-point precision of 18: 5105 // 5106 // LogOfMantissa = 5107 // -2.1072184f + 5108 // (4.2372794f + 5109 // (-3.7029485f + 5110 // (2.2781945f + 5111 // (-0.87823314f + 5112 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5113 // 5114 // error 0.0000023660568, which is better than 18 bits 5115 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5116 getF32Constant(DAG, 0xbc91e5ac, dl)); 5117 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5118 getF32Constant(DAG, 0x3e4350aa, dl)); 5119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5120 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5121 getF32Constant(DAG, 0x3f60d3e3, dl)); 5122 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5123 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5124 getF32Constant(DAG, 0x4011cdf0, dl)); 5125 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5126 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5127 getF32Constant(DAG, 0x406cfd1c, dl)); 5128 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5129 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5130 getF32Constant(DAG, 0x408797cb, dl)); 5131 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5132 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5133 getF32Constant(DAG, 0x4006dcab, dl)); 5134 } 5135 5136 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5137 } 5138 5139 // No special expansion. 5140 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5141 } 5142 5143 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5144 /// limited-precision mode. 5145 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5146 const TargetLowering &TLI) { 5147 // TODO: What fast-math-flags should be set on the floating-point nodes? 5148 5149 if (Op.getValueType() == MVT::f32 && 5150 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5151 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5152 5153 // Get the exponent. 5154 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5155 5156 // Get the significand and build it into a floating-point number with 5157 // exponent of 1. 5158 SDValue X = GetSignificand(DAG, Op1, dl); 5159 5160 // Different possible minimax approximations of significand in 5161 // floating-point for various degrees of accuracy over [1,2]. 5162 SDValue Log2ofMantissa; 5163 if (LimitFloatPrecision <= 6) { 5164 // For floating-point precision of 6: 5165 // 5166 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5167 // 5168 // error 0.0049451742, which is more than 7 bits 5169 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5170 getF32Constant(DAG, 0xbeb08fe0, dl)); 5171 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5172 getF32Constant(DAG, 0x40019463, dl)); 5173 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5174 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5175 getF32Constant(DAG, 0x3fd6633d, dl)); 5176 } else if (LimitFloatPrecision <= 12) { 5177 // For floating-point precision of 12: 5178 // 5179 // Log2ofMantissa = 5180 // -2.51285454f + 5181 // (4.07009056f + 5182 // (-2.12067489f + 5183 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5184 // 5185 // error 0.0000876136000, which is better than 13 bits 5186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5187 getF32Constant(DAG, 0xbda7262e, dl)); 5188 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5189 getF32Constant(DAG, 0x3f25280b, dl)); 5190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5191 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5192 getF32Constant(DAG, 0x4007b923, dl)); 5193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5194 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5195 getF32Constant(DAG, 0x40823e2f, dl)); 5196 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5197 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5198 getF32Constant(DAG, 0x4020d29c, dl)); 5199 } else { // LimitFloatPrecision <= 18 5200 // For floating-point precision of 18: 5201 // 5202 // Log2ofMantissa = 5203 // -3.0400495f + 5204 // (6.1129976f + 5205 // (-5.3420409f + 5206 // (3.2865683f + 5207 // (-1.2669343f + 5208 // (0.27515199f - 5209 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5210 // 5211 // error 0.0000018516, which is better than 18 bits 5212 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5213 getF32Constant(DAG, 0xbcd2769e, dl)); 5214 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5215 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5216 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5217 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5218 getF32Constant(DAG, 0x3fa22ae7, dl)); 5219 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5220 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5221 getF32Constant(DAG, 0x40525723, dl)); 5222 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5223 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5224 getF32Constant(DAG, 0x40aaf200, dl)); 5225 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5226 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5227 getF32Constant(DAG, 0x40c39dad, dl)); 5228 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5229 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5230 getF32Constant(DAG, 0x4042902c, dl)); 5231 } 5232 5233 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5234 } 5235 5236 // No special expansion. 5237 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5238 } 5239 5240 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5241 /// limited-precision mode. 5242 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5243 const TargetLowering &TLI) { 5244 // TODO: What fast-math-flags should be set on the floating-point nodes? 5245 5246 if (Op.getValueType() == MVT::f32 && 5247 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5248 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5249 5250 // Scale the exponent by log10(2) [0.30102999f]. 5251 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5252 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5253 getF32Constant(DAG, 0x3e9a209a, dl)); 5254 5255 // Get the significand and build it into a floating-point number with 5256 // exponent of 1. 5257 SDValue X = GetSignificand(DAG, Op1, dl); 5258 5259 SDValue Log10ofMantissa; 5260 if (LimitFloatPrecision <= 6) { 5261 // For floating-point precision of 6: 5262 // 5263 // Log10ofMantissa = 5264 // -0.50419619f + 5265 // (0.60948995f - 0.10380950f * x) * x; 5266 // 5267 // error 0.0014886165, which is 6 bits 5268 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5269 getF32Constant(DAG, 0xbdd49a13, dl)); 5270 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5271 getF32Constant(DAG, 0x3f1c0789, dl)); 5272 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5273 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5274 getF32Constant(DAG, 0x3f011300, dl)); 5275 } else if (LimitFloatPrecision <= 12) { 5276 // For floating-point precision of 12: 5277 // 5278 // Log10ofMantissa = 5279 // -0.64831180f + 5280 // (0.91751397f + 5281 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5282 // 5283 // error 0.00019228036, which is better than 12 bits 5284 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5285 getF32Constant(DAG, 0x3d431f31, dl)); 5286 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5287 getF32Constant(DAG, 0x3ea21fb2, dl)); 5288 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5289 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5290 getF32Constant(DAG, 0x3f6ae232, dl)); 5291 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5292 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5293 getF32Constant(DAG, 0x3f25f7c3, dl)); 5294 } else { // LimitFloatPrecision <= 18 5295 // For floating-point precision of 18: 5296 // 5297 // Log10ofMantissa = 5298 // -0.84299375f + 5299 // (1.5327582f + 5300 // (-1.0688956f + 5301 // (0.49102474f + 5302 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5303 // 5304 // error 0.0000037995730, which is better than 18 bits 5305 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5306 getF32Constant(DAG, 0x3c5d51ce, dl)); 5307 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5308 getF32Constant(DAG, 0x3e00685a, dl)); 5309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5310 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5311 getF32Constant(DAG, 0x3efb6798, dl)); 5312 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5313 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5314 getF32Constant(DAG, 0x3f88d192, dl)); 5315 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5316 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5317 getF32Constant(DAG, 0x3fc4316c, dl)); 5318 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5319 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5320 getF32Constant(DAG, 0x3f57ce70, dl)); 5321 } 5322 5323 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5324 } 5325 5326 // No special expansion. 5327 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5328 } 5329 5330 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5331 /// limited-precision mode. 5332 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5333 const TargetLowering &TLI) { 5334 if (Op.getValueType() == MVT::f32 && 5335 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5336 return getLimitedPrecisionExp2(Op, dl, DAG); 5337 5338 // No special expansion. 5339 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5340 } 5341 5342 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5343 /// limited-precision mode with x == 10.0f. 5344 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5345 SelectionDAG &DAG, const TargetLowering &TLI) { 5346 bool IsExp10 = false; 5347 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5348 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5349 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5350 APFloat Ten(10.0f); 5351 IsExp10 = LHSC->isExactlyValue(Ten); 5352 } 5353 } 5354 5355 // TODO: What fast-math-flags should be set on the FMUL node? 5356 if (IsExp10) { 5357 // Put the exponent in the right bit position for later addition to the 5358 // final result: 5359 // 5360 // #define LOG2OF10 3.3219281f 5361 // t0 = Op * LOG2OF10; 5362 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5363 getF32Constant(DAG, 0x40549a78, dl)); 5364 return getLimitedPrecisionExp2(t0, dl, DAG); 5365 } 5366 5367 // No special expansion. 5368 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5369 } 5370 5371 /// ExpandPowI - Expand a llvm.powi intrinsic. 5372 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5373 SelectionDAG &DAG) { 5374 // If RHS is a constant, we can expand this out to a multiplication tree, 5375 // otherwise we end up lowering to a call to __powidf2 (for example). When 5376 // optimizing for size, we only want to do this if the expansion would produce 5377 // a small number of multiplies, otherwise we do the full expansion. 5378 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5379 // Get the exponent as a positive value. 5380 unsigned Val = RHSC->getSExtValue(); 5381 if ((int)Val < 0) Val = -Val; 5382 5383 // powi(x, 0) -> 1.0 5384 if (Val == 0) 5385 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5386 5387 bool OptForSize = DAG.shouldOptForSize(); 5388 if (!OptForSize || 5389 // If optimizing for size, don't insert too many multiplies. 5390 // This inserts up to 5 multiplies. 5391 countPopulation(Val) + Log2_32(Val) < 7) { 5392 // We use the simple binary decomposition method to generate the multiply 5393 // sequence. There are more optimal ways to do this (for example, 5394 // powi(x,15) generates one more multiply than it should), but this has 5395 // the benefit of being both really simple and much better than a libcall. 5396 SDValue Res; // Logically starts equal to 1.0 5397 SDValue CurSquare = LHS; 5398 // TODO: Intrinsics should have fast-math-flags that propagate to these 5399 // nodes. 5400 while (Val) { 5401 if (Val & 1) { 5402 if (Res.getNode()) 5403 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5404 else 5405 Res = CurSquare; // 1.0*CurSquare. 5406 } 5407 5408 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5409 CurSquare, CurSquare); 5410 Val >>= 1; 5411 } 5412 5413 // If the original was negative, invert the result, producing 1/(x*x*x). 5414 if (RHSC->getSExtValue() < 0) 5415 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5416 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5417 return Res; 5418 } 5419 } 5420 5421 // Otherwise, expand to a libcall. 5422 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5423 } 5424 5425 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5426 SDValue LHS, SDValue RHS, SDValue Scale, 5427 SelectionDAG &DAG, const TargetLowering &TLI) { 5428 EVT VT = LHS.getValueType(); 5429 bool Signed = Opcode == ISD::SDIVFIX; 5430 LLVMContext &Ctx = *DAG.getContext(); 5431 5432 // If the type is legal but the operation isn't, this node might survive all 5433 // the way to operation legalization. If we end up there and we do not have 5434 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5435 // node. 5436 5437 // Coax the legalizer into expanding the node during type legalization instead 5438 // by bumping the size by one bit. This will force it to Promote, enabling the 5439 // early expansion and avoiding the need to expand later. 5440 5441 // We don't have to do this if Scale is 0; that can always be expanded. 5442 5443 // FIXME: We wouldn't have to do this (or any of the early 5444 // expansion/promotion) if it was possible to expand a libcall of an 5445 // illegal type during operation legalization. But it's not, so things 5446 // get a bit hacky. 5447 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5448 if (ScaleInt > 0 && 5449 (TLI.isTypeLegal(VT) || 5450 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5451 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5452 Opcode, VT, ScaleInt); 5453 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5454 EVT PromVT; 5455 if (VT.isScalarInteger()) 5456 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5457 else if (VT.isVector()) { 5458 PromVT = VT.getVectorElementType(); 5459 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5460 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5461 } else 5462 llvm_unreachable("Wrong VT for DIVFIX?"); 5463 if (Signed) { 5464 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5465 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5466 } else { 5467 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5468 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5469 } 5470 // TODO: Saturation. 5471 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5472 return DAG.getZExtOrTrunc(Res, DL, VT); 5473 } 5474 } 5475 5476 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5477 } 5478 5479 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5480 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5481 static void 5482 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5483 const SDValue &N) { 5484 switch (N.getOpcode()) { 5485 case ISD::CopyFromReg: { 5486 SDValue Op = N.getOperand(1); 5487 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5488 Op.getValueType().getSizeInBits()); 5489 return; 5490 } 5491 case ISD::BITCAST: 5492 case ISD::AssertZext: 5493 case ISD::AssertSext: 5494 case ISD::TRUNCATE: 5495 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5496 return; 5497 case ISD::BUILD_PAIR: 5498 case ISD::BUILD_VECTOR: 5499 case ISD::CONCAT_VECTORS: 5500 for (SDValue Op : N->op_values()) 5501 getUnderlyingArgRegs(Regs, Op); 5502 return; 5503 default: 5504 return; 5505 } 5506 } 5507 5508 /// If the DbgValueInst is a dbg_value of a function argument, create the 5509 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5510 /// instruction selection, they will be inserted to the entry BB. 5511 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5512 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5513 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5514 const Argument *Arg = dyn_cast<Argument>(V); 5515 if (!Arg) 5516 return false; 5517 5518 if (!IsDbgDeclare) { 5519 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5520 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5521 // the entry block. 5522 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5523 if (!IsInEntryBlock) 5524 return false; 5525 5526 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5527 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5528 // variable that also is a param. 5529 // 5530 // Although, if we are at the top of the entry block already, we can still 5531 // emit using ArgDbgValue. This might catch some situations when the 5532 // dbg.value refers to an argument that isn't used in the entry block, so 5533 // any CopyToReg node would be optimized out and the only way to express 5534 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5535 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5536 // we should only emit as ArgDbgValue if the Variable is an argument to the 5537 // current function, and the dbg.value intrinsic is found in the entry 5538 // block. 5539 bool VariableIsFunctionInputArg = Variable->isParameter() && 5540 !DL->getInlinedAt(); 5541 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5542 if (!IsInPrologue && !VariableIsFunctionInputArg) 5543 return false; 5544 5545 // Here we assume that a function argument on IR level only can be used to 5546 // describe one input parameter on source level. If we for example have 5547 // source code like this 5548 // 5549 // struct A { long x, y; }; 5550 // void foo(struct A a, long b) { 5551 // ... 5552 // b = a.x; 5553 // ... 5554 // } 5555 // 5556 // and IR like this 5557 // 5558 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5559 // entry: 5560 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5561 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5562 // call void @llvm.dbg.value(metadata i32 %b, "b", 5563 // ... 5564 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5565 // ... 5566 // 5567 // then the last dbg.value is describing a parameter "b" using a value that 5568 // is an argument. But since we already has used %a1 to describe a parameter 5569 // we should not handle that last dbg.value here (that would result in an 5570 // incorrect hoisting of the DBG_VALUE to the function entry). 5571 // Notice that we allow one dbg.value per IR level argument, to accommodate 5572 // for the situation with fragments above. 5573 if (VariableIsFunctionInputArg) { 5574 unsigned ArgNo = Arg->getArgNo(); 5575 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5576 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5577 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5578 return false; 5579 FuncInfo.DescribedArgs.set(ArgNo); 5580 } 5581 } 5582 5583 MachineFunction &MF = DAG.getMachineFunction(); 5584 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5585 5586 bool IsIndirect = false; 5587 Optional<MachineOperand> Op; 5588 // Some arguments' frame index is recorded during argument lowering. 5589 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5590 if (FI != std::numeric_limits<int>::max()) 5591 Op = MachineOperand::CreateFI(FI); 5592 5593 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5594 if (!Op && N.getNode()) { 5595 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5596 Register Reg; 5597 if (ArgRegsAndSizes.size() == 1) 5598 Reg = ArgRegsAndSizes.front().first; 5599 5600 if (Reg && Reg.isVirtual()) { 5601 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5602 Register PR = RegInfo.getLiveInPhysReg(Reg); 5603 if (PR) 5604 Reg = PR; 5605 } 5606 if (Reg) { 5607 Op = MachineOperand::CreateReg(Reg, false); 5608 IsIndirect = IsDbgDeclare; 5609 } 5610 } 5611 5612 if (!Op && N.getNode()) { 5613 // Check if frame index is available. 5614 SDValue LCandidate = peekThroughBitcasts(N); 5615 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5616 if (FrameIndexSDNode *FINode = 5617 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5618 Op = MachineOperand::CreateFI(FINode->getIndex()); 5619 } 5620 5621 if (!Op) { 5622 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5623 auto splitMultiRegDbgValue 5624 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5625 unsigned Offset = 0; 5626 for (auto RegAndSize : SplitRegs) { 5627 // If the expression is already a fragment, the current register 5628 // offset+size might extend beyond the fragment. In this case, only 5629 // the register bits that are inside the fragment are relevant. 5630 int RegFragmentSizeInBits = RegAndSize.second; 5631 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5632 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5633 // The register is entirely outside the expression fragment, 5634 // so is irrelevant for debug info. 5635 if (Offset >= ExprFragmentSizeInBits) 5636 break; 5637 // The register is partially outside the expression fragment, only 5638 // the low bits within the fragment are relevant for debug info. 5639 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5640 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5641 } 5642 } 5643 5644 auto FragmentExpr = DIExpression::createFragmentExpression( 5645 Expr, Offset, RegFragmentSizeInBits); 5646 Offset += RegAndSize.second; 5647 // If a valid fragment expression cannot be created, the variable's 5648 // correct value cannot be determined and so it is set as Undef. 5649 if (!FragmentExpr) { 5650 SDDbgValue *SDV = DAG.getConstantDbgValue( 5651 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5652 DAG.AddDbgValue(SDV, nullptr, false); 5653 continue; 5654 } 5655 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5656 FuncInfo.ArgDbgValues.push_back( 5657 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5658 RegAndSize.first, Variable, *FragmentExpr)); 5659 } 5660 }; 5661 5662 // Check if ValueMap has reg number. 5663 DenseMap<const Value *, unsigned>::const_iterator 5664 VMI = FuncInfo.ValueMap.find(V); 5665 if (VMI != FuncInfo.ValueMap.end()) { 5666 const auto &TLI = DAG.getTargetLoweringInfo(); 5667 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5668 V->getType(), getABIRegCopyCC(V)); 5669 if (RFV.occupiesMultipleRegs()) { 5670 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5671 return true; 5672 } 5673 5674 Op = MachineOperand::CreateReg(VMI->second, false); 5675 IsIndirect = IsDbgDeclare; 5676 } else if (ArgRegsAndSizes.size() > 1) { 5677 // This was split due to the calling convention, and no virtual register 5678 // mapping exists for the value. 5679 splitMultiRegDbgValue(ArgRegsAndSizes); 5680 return true; 5681 } 5682 } 5683 5684 if (!Op) 5685 return false; 5686 5687 assert(Variable->isValidLocationForIntrinsic(DL) && 5688 "Expected inlined-at fields to agree"); 5689 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5690 FuncInfo.ArgDbgValues.push_back( 5691 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5692 *Op, Variable, Expr)); 5693 5694 return true; 5695 } 5696 5697 /// Return the appropriate SDDbgValue based on N. 5698 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5699 DILocalVariable *Variable, 5700 DIExpression *Expr, 5701 const DebugLoc &dl, 5702 unsigned DbgSDNodeOrder) { 5703 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5704 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5705 // stack slot locations. 5706 // 5707 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5708 // debug values here after optimization: 5709 // 5710 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5711 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5712 // 5713 // Both describe the direct values of their associated variables. 5714 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5715 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5716 } 5717 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5718 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5719 } 5720 5721 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5722 switch (Intrinsic) { 5723 case Intrinsic::smul_fix: 5724 return ISD::SMULFIX; 5725 case Intrinsic::umul_fix: 5726 return ISD::UMULFIX; 5727 case Intrinsic::smul_fix_sat: 5728 return ISD::SMULFIXSAT; 5729 case Intrinsic::umul_fix_sat: 5730 return ISD::UMULFIXSAT; 5731 case Intrinsic::sdiv_fix: 5732 return ISD::SDIVFIX; 5733 case Intrinsic::udiv_fix: 5734 return ISD::UDIVFIX; 5735 default: 5736 llvm_unreachable("Unhandled fixed point intrinsic"); 5737 } 5738 } 5739 5740 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5741 const char *FunctionName) { 5742 assert(FunctionName && "FunctionName must not be nullptr"); 5743 SDValue Callee = DAG.getExternalSymbol( 5744 FunctionName, 5745 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5746 LowerCallTo(&I, Callee, I.isTailCall()); 5747 } 5748 5749 /// Lower the call to the specified intrinsic function. 5750 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5751 unsigned Intrinsic) { 5752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5753 SDLoc sdl = getCurSDLoc(); 5754 DebugLoc dl = getCurDebugLoc(); 5755 SDValue Res; 5756 5757 switch (Intrinsic) { 5758 default: 5759 // By default, turn this into a target intrinsic node. 5760 visitTargetIntrinsic(I, Intrinsic); 5761 return; 5762 case Intrinsic::vscale: { 5763 match(&I, m_VScale(DAG.getDataLayout())); 5764 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5765 setValue(&I, 5766 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5767 return; 5768 } 5769 case Intrinsic::vastart: visitVAStart(I); return; 5770 case Intrinsic::vaend: visitVAEnd(I); return; 5771 case Intrinsic::vacopy: visitVACopy(I); return; 5772 case Intrinsic::returnaddress: 5773 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5774 TLI.getPointerTy(DAG.getDataLayout()), 5775 getValue(I.getArgOperand(0)))); 5776 return; 5777 case Intrinsic::addressofreturnaddress: 5778 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5779 TLI.getPointerTy(DAG.getDataLayout()))); 5780 return; 5781 case Intrinsic::sponentry: 5782 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5783 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5784 return; 5785 case Intrinsic::frameaddress: 5786 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5787 TLI.getFrameIndexTy(DAG.getDataLayout()), 5788 getValue(I.getArgOperand(0)))); 5789 return; 5790 case Intrinsic::read_register: { 5791 Value *Reg = I.getArgOperand(0); 5792 SDValue Chain = getRoot(); 5793 SDValue RegName = 5794 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5795 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5796 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5797 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5798 setValue(&I, Res); 5799 DAG.setRoot(Res.getValue(1)); 5800 return; 5801 } 5802 case Intrinsic::write_register: { 5803 Value *Reg = I.getArgOperand(0); 5804 Value *RegValue = I.getArgOperand(1); 5805 SDValue Chain = getRoot(); 5806 SDValue RegName = 5807 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5808 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5809 RegName, getValue(RegValue))); 5810 return; 5811 } 5812 case Intrinsic::memcpy: { 5813 const auto &MCI = cast<MemCpyInst>(I); 5814 SDValue Op1 = getValue(I.getArgOperand(0)); 5815 SDValue Op2 = getValue(I.getArgOperand(1)); 5816 SDValue Op3 = getValue(I.getArgOperand(2)); 5817 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5818 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5819 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5820 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5821 bool isVol = MCI.isVolatile(); 5822 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5823 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5824 // node. 5825 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5826 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5827 /* AlwaysInline */ false, isTC, 5828 MachinePointerInfo(I.getArgOperand(0)), 5829 MachinePointerInfo(I.getArgOperand(1))); 5830 updateDAGForMaybeTailCall(MC); 5831 return; 5832 } 5833 case Intrinsic::memcpy_inline: { 5834 const auto &MCI = cast<MemCpyInlineInst>(I); 5835 SDValue Dst = getValue(I.getArgOperand(0)); 5836 SDValue Src = getValue(I.getArgOperand(1)); 5837 SDValue Size = getValue(I.getArgOperand(2)); 5838 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5839 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5840 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5841 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5842 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5843 bool isVol = MCI.isVolatile(); 5844 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5845 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5846 // node. 5847 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5848 /* AlwaysInline */ true, isTC, 5849 MachinePointerInfo(I.getArgOperand(0)), 5850 MachinePointerInfo(I.getArgOperand(1))); 5851 updateDAGForMaybeTailCall(MC); 5852 return; 5853 } 5854 case Intrinsic::memset: { 5855 const auto &MSI = cast<MemSetInst>(I); 5856 SDValue Op1 = getValue(I.getArgOperand(0)); 5857 SDValue Op2 = getValue(I.getArgOperand(1)); 5858 SDValue Op3 = getValue(I.getArgOperand(2)); 5859 // @llvm.memset defines 0 and 1 to both mean no alignment. 5860 Align Alignment = MSI.getDestAlign().valueOrOne(); 5861 bool isVol = MSI.isVolatile(); 5862 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5863 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5864 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5865 MachinePointerInfo(I.getArgOperand(0))); 5866 updateDAGForMaybeTailCall(MS); 5867 return; 5868 } 5869 case Intrinsic::memmove: { 5870 const auto &MMI = cast<MemMoveInst>(I); 5871 SDValue Op1 = getValue(I.getArgOperand(0)); 5872 SDValue Op2 = getValue(I.getArgOperand(1)); 5873 SDValue Op3 = getValue(I.getArgOperand(2)); 5874 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5875 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5876 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5877 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5878 bool isVol = MMI.isVolatile(); 5879 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5880 // FIXME: Support passing different dest/src alignments to the memmove DAG 5881 // node. 5882 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5883 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5884 isTC, MachinePointerInfo(I.getArgOperand(0)), 5885 MachinePointerInfo(I.getArgOperand(1))); 5886 updateDAGForMaybeTailCall(MM); 5887 return; 5888 } 5889 case Intrinsic::memcpy_element_unordered_atomic: { 5890 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5891 SDValue Dst = getValue(MI.getRawDest()); 5892 SDValue Src = getValue(MI.getRawSource()); 5893 SDValue Length = getValue(MI.getLength()); 5894 5895 unsigned DstAlign = MI.getDestAlignment(); 5896 unsigned SrcAlign = MI.getSourceAlignment(); 5897 Type *LengthTy = MI.getLength()->getType(); 5898 unsigned ElemSz = MI.getElementSizeInBytes(); 5899 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5900 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5901 SrcAlign, Length, LengthTy, ElemSz, isTC, 5902 MachinePointerInfo(MI.getRawDest()), 5903 MachinePointerInfo(MI.getRawSource())); 5904 updateDAGForMaybeTailCall(MC); 5905 return; 5906 } 5907 case Intrinsic::memmove_element_unordered_atomic: { 5908 auto &MI = cast<AtomicMemMoveInst>(I); 5909 SDValue Dst = getValue(MI.getRawDest()); 5910 SDValue Src = getValue(MI.getRawSource()); 5911 SDValue Length = getValue(MI.getLength()); 5912 5913 unsigned DstAlign = MI.getDestAlignment(); 5914 unsigned SrcAlign = MI.getSourceAlignment(); 5915 Type *LengthTy = MI.getLength()->getType(); 5916 unsigned ElemSz = MI.getElementSizeInBytes(); 5917 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5918 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5919 SrcAlign, Length, LengthTy, ElemSz, isTC, 5920 MachinePointerInfo(MI.getRawDest()), 5921 MachinePointerInfo(MI.getRawSource())); 5922 updateDAGForMaybeTailCall(MC); 5923 return; 5924 } 5925 case Intrinsic::memset_element_unordered_atomic: { 5926 auto &MI = cast<AtomicMemSetInst>(I); 5927 SDValue Dst = getValue(MI.getRawDest()); 5928 SDValue Val = getValue(MI.getValue()); 5929 SDValue Length = getValue(MI.getLength()); 5930 5931 unsigned DstAlign = MI.getDestAlignment(); 5932 Type *LengthTy = MI.getLength()->getType(); 5933 unsigned ElemSz = MI.getElementSizeInBytes(); 5934 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5935 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5936 LengthTy, ElemSz, isTC, 5937 MachinePointerInfo(MI.getRawDest())); 5938 updateDAGForMaybeTailCall(MC); 5939 return; 5940 } 5941 case Intrinsic::dbg_addr: 5942 case Intrinsic::dbg_declare: { 5943 const auto &DI = cast<DbgVariableIntrinsic>(I); 5944 DILocalVariable *Variable = DI.getVariable(); 5945 DIExpression *Expression = DI.getExpression(); 5946 dropDanglingDebugInfo(Variable, Expression); 5947 assert(Variable && "Missing variable"); 5948 5949 // Check if address has undef value. 5950 const Value *Address = DI.getVariableLocation(); 5951 if (!Address || isa<UndefValue>(Address) || 5952 (Address->use_empty() && !isa<Argument>(Address))) { 5953 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5954 return; 5955 } 5956 5957 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5958 5959 // Check if this variable can be described by a frame index, typically 5960 // either as a static alloca or a byval parameter. 5961 int FI = std::numeric_limits<int>::max(); 5962 if (const auto *AI = 5963 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5964 if (AI->isStaticAlloca()) { 5965 auto I = FuncInfo.StaticAllocaMap.find(AI); 5966 if (I != FuncInfo.StaticAllocaMap.end()) 5967 FI = I->second; 5968 } 5969 } else if (const auto *Arg = dyn_cast<Argument>( 5970 Address->stripInBoundsConstantOffsets())) { 5971 FI = FuncInfo.getArgumentFrameIndex(Arg); 5972 } 5973 5974 // llvm.dbg.addr is control dependent and always generates indirect 5975 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5976 // the MachineFunction variable table. 5977 if (FI != std::numeric_limits<int>::max()) { 5978 if (Intrinsic == Intrinsic::dbg_addr) { 5979 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5980 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5981 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5982 } 5983 return; 5984 } 5985 5986 SDValue &N = NodeMap[Address]; 5987 if (!N.getNode() && isa<Argument>(Address)) 5988 // Check unused arguments map. 5989 N = UnusedArgNodeMap[Address]; 5990 SDDbgValue *SDV; 5991 if (N.getNode()) { 5992 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5993 Address = BCI->getOperand(0); 5994 // Parameters are handled specially. 5995 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5996 if (isParameter && FINode) { 5997 // Byval parameter. We have a frame index at this point. 5998 SDV = 5999 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6000 /*IsIndirect*/ true, dl, SDNodeOrder); 6001 } else if (isa<Argument>(Address)) { 6002 // Address is an argument, so try to emit its dbg value using 6003 // virtual register info from the FuncInfo.ValueMap. 6004 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6005 return; 6006 } else { 6007 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6008 true, dl, SDNodeOrder); 6009 } 6010 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 6011 } else { 6012 // If Address is an argument then try to emit its dbg value using 6013 // virtual register info from the FuncInfo.ValueMap. 6014 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6015 N)) { 6016 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 6017 } 6018 } 6019 return; 6020 } 6021 case Intrinsic::dbg_label: { 6022 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6023 DILabel *Label = DI.getLabel(); 6024 assert(Label && "Missing label"); 6025 6026 SDDbgLabel *SDV; 6027 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6028 DAG.AddDbgLabel(SDV); 6029 return; 6030 } 6031 case Intrinsic::dbg_value: { 6032 const DbgValueInst &DI = cast<DbgValueInst>(I); 6033 assert(DI.getVariable() && "Missing variable"); 6034 6035 DILocalVariable *Variable = DI.getVariable(); 6036 DIExpression *Expression = DI.getExpression(); 6037 dropDanglingDebugInfo(Variable, Expression); 6038 const Value *V = DI.getValue(); 6039 if (!V) 6040 return; 6041 6042 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 6043 SDNodeOrder)) 6044 return; 6045 6046 // TODO: Dangling debug info will eventually either be resolved or produce 6047 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 6048 // between the original dbg.value location and its resolved DBG_VALUE, which 6049 // we should ideally fill with an extra Undef DBG_VALUE. 6050 6051 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 6052 return; 6053 } 6054 6055 case Intrinsic::eh_typeid_for: { 6056 // Find the type id for the given typeinfo. 6057 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6058 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6059 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6060 setValue(&I, Res); 6061 return; 6062 } 6063 6064 case Intrinsic::eh_return_i32: 6065 case Intrinsic::eh_return_i64: 6066 DAG.getMachineFunction().setCallsEHReturn(true); 6067 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6068 MVT::Other, 6069 getControlRoot(), 6070 getValue(I.getArgOperand(0)), 6071 getValue(I.getArgOperand(1)))); 6072 return; 6073 case Intrinsic::eh_unwind_init: 6074 DAG.getMachineFunction().setCallsUnwindInit(true); 6075 return; 6076 case Intrinsic::eh_dwarf_cfa: 6077 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6078 TLI.getPointerTy(DAG.getDataLayout()), 6079 getValue(I.getArgOperand(0)))); 6080 return; 6081 case Intrinsic::eh_sjlj_callsite: { 6082 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6083 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6084 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6085 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6086 6087 MMI.setCurrentCallSite(CI->getZExtValue()); 6088 return; 6089 } 6090 case Intrinsic::eh_sjlj_functioncontext: { 6091 // Get and store the index of the function context. 6092 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6093 AllocaInst *FnCtx = 6094 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6095 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6096 MFI.setFunctionContextIndex(FI); 6097 return; 6098 } 6099 case Intrinsic::eh_sjlj_setjmp: { 6100 SDValue Ops[2]; 6101 Ops[0] = getRoot(); 6102 Ops[1] = getValue(I.getArgOperand(0)); 6103 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6104 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6105 setValue(&I, Op.getValue(0)); 6106 DAG.setRoot(Op.getValue(1)); 6107 return; 6108 } 6109 case Intrinsic::eh_sjlj_longjmp: 6110 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6111 getRoot(), getValue(I.getArgOperand(0)))); 6112 return; 6113 case Intrinsic::eh_sjlj_setup_dispatch: 6114 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6115 getRoot())); 6116 return; 6117 case Intrinsic::masked_gather: 6118 visitMaskedGather(I); 6119 return; 6120 case Intrinsic::masked_load: 6121 visitMaskedLoad(I); 6122 return; 6123 case Intrinsic::masked_scatter: 6124 visitMaskedScatter(I); 6125 return; 6126 case Intrinsic::masked_store: 6127 visitMaskedStore(I); 6128 return; 6129 case Intrinsic::masked_expandload: 6130 visitMaskedLoad(I, true /* IsExpanding */); 6131 return; 6132 case Intrinsic::masked_compressstore: 6133 visitMaskedStore(I, true /* IsCompressing */); 6134 return; 6135 case Intrinsic::powi: 6136 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6137 getValue(I.getArgOperand(1)), DAG)); 6138 return; 6139 case Intrinsic::log: 6140 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6141 return; 6142 case Intrinsic::log2: 6143 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6144 return; 6145 case Intrinsic::log10: 6146 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6147 return; 6148 case Intrinsic::exp: 6149 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6150 return; 6151 case Intrinsic::exp2: 6152 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6153 return; 6154 case Intrinsic::pow: 6155 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6156 getValue(I.getArgOperand(1)), DAG, TLI)); 6157 return; 6158 case Intrinsic::sqrt: 6159 case Intrinsic::fabs: 6160 case Intrinsic::sin: 6161 case Intrinsic::cos: 6162 case Intrinsic::floor: 6163 case Intrinsic::ceil: 6164 case Intrinsic::trunc: 6165 case Intrinsic::rint: 6166 case Intrinsic::nearbyint: 6167 case Intrinsic::round: 6168 case Intrinsic::canonicalize: { 6169 unsigned Opcode; 6170 switch (Intrinsic) { 6171 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6172 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6173 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6174 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6175 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6176 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6177 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6178 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6179 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6180 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6181 case Intrinsic::round: Opcode = ISD::FROUND; break; 6182 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6183 } 6184 6185 setValue(&I, DAG.getNode(Opcode, sdl, 6186 getValue(I.getArgOperand(0)).getValueType(), 6187 getValue(I.getArgOperand(0)))); 6188 return; 6189 } 6190 case Intrinsic::lround: 6191 case Intrinsic::llround: 6192 case Intrinsic::lrint: 6193 case Intrinsic::llrint: { 6194 unsigned Opcode; 6195 switch (Intrinsic) { 6196 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6197 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6198 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6199 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6200 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6201 } 6202 6203 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6204 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6205 getValue(I.getArgOperand(0)))); 6206 return; 6207 } 6208 case Intrinsic::minnum: 6209 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6210 getValue(I.getArgOperand(0)).getValueType(), 6211 getValue(I.getArgOperand(0)), 6212 getValue(I.getArgOperand(1)))); 6213 return; 6214 case Intrinsic::maxnum: 6215 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6216 getValue(I.getArgOperand(0)).getValueType(), 6217 getValue(I.getArgOperand(0)), 6218 getValue(I.getArgOperand(1)))); 6219 return; 6220 case Intrinsic::minimum: 6221 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6222 getValue(I.getArgOperand(0)).getValueType(), 6223 getValue(I.getArgOperand(0)), 6224 getValue(I.getArgOperand(1)))); 6225 return; 6226 case Intrinsic::maximum: 6227 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6228 getValue(I.getArgOperand(0)).getValueType(), 6229 getValue(I.getArgOperand(0)), 6230 getValue(I.getArgOperand(1)))); 6231 return; 6232 case Intrinsic::copysign: 6233 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6234 getValue(I.getArgOperand(0)).getValueType(), 6235 getValue(I.getArgOperand(0)), 6236 getValue(I.getArgOperand(1)))); 6237 return; 6238 case Intrinsic::fma: 6239 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6240 getValue(I.getArgOperand(0)).getValueType(), 6241 getValue(I.getArgOperand(0)), 6242 getValue(I.getArgOperand(1)), 6243 getValue(I.getArgOperand(2)))); 6244 return; 6245 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6246 case Intrinsic::INTRINSIC: 6247 #include "llvm/IR/ConstrainedOps.def" 6248 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6249 return; 6250 case Intrinsic::fmuladd: { 6251 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6252 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6253 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6254 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6255 getValue(I.getArgOperand(0)).getValueType(), 6256 getValue(I.getArgOperand(0)), 6257 getValue(I.getArgOperand(1)), 6258 getValue(I.getArgOperand(2)))); 6259 } else { 6260 // TODO: Intrinsic calls should have fast-math-flags. 6261 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6262 getValue(I.getArgOperand(0)).getValueType(), 6263 getValue(I.getArgOperand(0)), 6264 getValue(I.getArgOperand(1))); 6265 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6266 getValue(I.getArgOperand(0)).getValueType(), 6267 Mul, 6268 getValue(I.getArgOperand(2))); 6269 setValue(&I, Add); 6270 } 6271 return; 6272 } 6273 case Intrinsic::convert_to_fp16: 6274 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6275 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6276 getValue(I.getArgOperand(0)), 6277 DAG.getTargetConstant(0, sdl, 6278 MVT::i32)))); 6279 return; 6280 case Intrinsic::convert_from_fp16: 6281 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6282 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6283 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6284 getValue(I.getArgOperand(0))))); 6285 return; 6286 case Intrinsic::pcmarker: { 6287 SDValue Tmp = getValue(I.getArgOperand(0)); 6288 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6289 return; 6290 } 6291 case Intrinsic::readcyclecounter: { 6292 SDValue Op = getRoot(); 6293 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6294 DAG.getVTList(MVT::i64, MVT::Other), Op); 6295 setValue(&I, Res); 6296 DAG.setRoot(Res.getValue(1)); 6297 return; 6298 } 6299 case Intrinsic::bitreverse: 6300 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6301 getValue(I.getArgOperand(0)).getValueType(), 6302 getValue(I.getArgOperand(0)))); 6303 return; 6304 case Intrinsic::bswap: 6305 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6306 getValue(I.getArgOperand(0)).getValueType(), 6307 getValue(I.getArgOperand(0)))); 6308 return; 6309 case Intrinsic::cttz: { 6310 SDValue Arg = getValue(I.getArgOperand(0)); 6311 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6312 EVT Ty = Arg.getValueType(); 6313 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6314 sdl, Ty, Arg)); 6315 return; 6316 } 6317 case Intrinsic::ctlz: { 6318 SDValue Arg = getValue(I.getArgOperand(0)); 6319 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6320 EVT Ty = Arg.getValueType(); 6321 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6322 sdl, Ty, Arg)); 6323 return; 6324 } 6325 case Intrinsic::ctpop: { 6326 SDValue Arg = getValue(I.getArgOperand(0)); 6327 EVT Ty = Arg.getValueType(); 6328 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6329 return; 6330 } 6331 case Intrinsic::fshl: 6332 case Intrinsic::fshr: { 6333 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6334 SDValue X = getValue(I.getArgOperand(0)); 6335 SDValue Y = getValue(I.getArgOperand(1)); 6336 SDValue Z = getValue(I.getArgOperand(2)); 6337 EVT VT = X.getValueType(); 6338 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6339 SDValue Zero = DAG.getConstant(0, sdl, VT); 6340 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6341 6342 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6343 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6344 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6345 return; 6346 } 6347 6348 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6349 // avoid the select that is necessary in the general case to filter out 6350 // the 0-shift possibility that leads to UB. 6351 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6352 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6353 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6354 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6355 return; 6356 } 6357 6358 // Some targets only rotate one way. Try the opposite direction. 6359 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6360 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6361 // Negate the shift amount because it is safe to ignore the high bits. 6362 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6363 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6364 return; 6365 } 6366 6367 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6368 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6369 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6370 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6371 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6372 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6373 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6374 return; 6375 } 6376 6377 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6378 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6379 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6380 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6381 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6382 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6383 6384 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6385 // and that is undefined. We must compare and select to avoid UB. 6386 EVT CCVT = MVT::i1; 6387 if (VT.isVector()) 6388 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6389 6390 // For fshl, 0-shift returns the 1st arg (X). 6391 // For fshr, 0-shift returns the 2nd arg (Y). 6392 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6393 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6394 return; 6395 } 6396 case Intrinsic::sadd_sat: { 6397 SDValue Op1 = getValue(I.getArgOperand(0)); 6398 SDValue Op2 = getValue(I.getArgOperand(1)); 6399 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6400 return; 6401 } 6402 case Intrinsic::uadd_sat: { 6403 SDValue Op1 = getValue(I.getArgOperand(0)); 6404 SDValue Op2 = getValue(I.getArgOperand(1)); 6405 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6406 return; 6407 } 6408 case Intrinsic::ssub_sat: { 6409 SDValue Op1 = getValue(I.getArgOperand(0)); 6410 SDValue Op2 = getValue(I.getArgOperand(1)); 6411 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6412 return; 6413 } 6414 case Intrinsic::usub_sat: { 6415 SDValue Op1 = getValue(I.getArgOperand(0)); 6416 SDValue Op2 = getValue(I.getArgOperand(1)); 6417 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6418 return; 6419 } 6420 case Intrinsic::smul_fix: 6421 case Intrinsic::umul_fix: 6422 case Intrinsic::smul_fix_sat: 6423 case Intrinsic::umul_fix_sat: { 6424 SDValue Op1 = getValue(I.getArgOperand(0)); 6425 SDValue Op2 = getValue(I.getArgOperand(1)); 6426 SDValue Op3 = getValue(I.getArgOperand(2)); 6427 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6428 Op1.getValueType(), Op1, Op2, Op3)); 6429 return; 6430 } 6431 case Intrinsic::sdiv_fix: 6432 case Intrinsic::udiv_fix: { 6433 SDValue Op1 = getValue(I.getArgOperand(0)); 6434 SDValue Op2 = getValue(I.getArgOperand(1)); 6435 SDValue Op3 = getValue(I.getArgOperand(2)); 6436 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6437 Op1, Op2, Op3, DAG, TLI)); 6438 return; 6439 } 6440 case Intrinsic::stacksave: { 6441 SDValue Op = getRoot(); 6442 Res = DAG.getNode( 6443 ISD::STACKSAVE, sdl, 6444 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6445 setValue(&I, Res); 6446 DAG.setRoot(Res.getValue(1)); 6447 return; 6448 } 6449 case Intrinsic::stackrestore: 6450 Res = getValue(I.getArgOperand(0)); 6451 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6452 return; 6453 case Intrinsic::get_dynamic_area_offset: { 6454 SDValue Op = getRoot(); 6455 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6456 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6457 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6458 // target. 6459 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6460 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6461 " intrinsic!"); 6462 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6463 Op); 6464 DAG.setRoot(Op); 6465 setValue(&I, Res); 6466 return; 6467 } 6468 case Intrinsic::stackguard: { 6469 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6470 MachineFunction &MF = DAG.getMachineFunction(); 6471 const Module &M = *MF.getFunction().getParent(); 6472 SDValue Chain = getRoot(); 6473 if (TLI.useLoadStackGuardNode()) { 6474 Res = getLoadStackGuard(DAG, sdl, Chain); 6475 } else { 6476 const Value *Global = TLI.getSDagStackGuard(M); 6477 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6478 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6479 MachinePointerInfo(Global, 0), Align, 6480 MachineMemOperand::MOVolatile); 6481 } 6482 if (TLI.useStackGuardXorFP()) 6483 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6484 DAG.setRoot(Chain); 6485 setValue(&I, Res); 6486 return; 6487 } 6488 case Intrinsic::stackprotector: { 6489 // Emit code into the DAG to store the stack guard onto the stack. 6490 MachineFunction &MF = DAG.getMachineFunction(); 6491 MachineFrameInfo &MFI = MF.getFrameInfo(); 6492 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6493 SDValue Src, Chain = getRoot(); 6494 6495 if (TLI.useLoadStackGuardNode()) 6496 Src = getLoadStackGuard(DAG, sdl, Chain); 6497 else 6498 Src = getValue(I.getArgOperand(0)); // The guard's value. 6499 6500 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6501 6502 int FI = FuncInfo.StaticAllocaMap[Slot]; 6503 MFI.setStackProtectorIndex(FI); 6504 6505 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6506 6507 // Store the stack protector onto the stack. 6508 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6509 DAG.getMachineFunction(), FI), 6510 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6511 setValue(&I, Res); 6512 DAG.setRoot(Res); 6513 return; 6514 } 6515 case Intrinsic::objectsize: 6516 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6517 6518 case Intrinsic::is_constant: 6519 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6520 6521 case Intrinsic::annotation: 6522 case Intrinsic::ptr_annotation: 6523 case Intrinsic::launder_invariant_group: 6524 case Intrinsic::strip_invariant_group: 6525 // Drop the intrinsic, but forward the value 6526 setValue(&I, getValue(I.getOperand(0))); 6527 return; 6528 case Intrinsic::assume: 6529 case Intrinsic::var_annotation: 6530 case Intrinsic::sideeffect: 6531 // Discard annotate attributes, assumptions, and artificial side-effects. 6532 return; 6533 6534 case Intrinsic::codeview_annotation: { 6535 // Emit a label associated with this metadata. 6536 MachineFunction &MF = DAG.getMachineFunction(); 6537 MCSymbol *Label = 6538 MF.getMMI().getContext().createTempSymbol("annotation", true); 6539 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6540 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6541 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6542 DAG.setRoot(Res); 6543 return; 6544 } 6545 6546 case Intrinsic::init_trampoline: { 6547 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6548 6549 SDValue Ops[6]; 6550 Ops[0] = getRoot(); 6551 Ops[1] = getValue(I.getArgOperand(0)); 6552 Ops[2] = getValue(I.getArgOperand(1)); 6553 Ops[3] = getValue(I.getArgOperand(2)); 6554 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6555 Ops[5] = DAG.getSrcValue(F); 6556 6557 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6558 6559 DAG.setRoot(Res); 6560 return; 6561 } 6562 case Intrinsic::adjust_trampoline: 6563 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6564 TLI.getPointerTy(DAG.getDataLayout()), 6565 getValue(I.getArgOperand(0)))); 6566 return; 6567 case Intrinsic::gcroot: { 6568 assert(DAG.getMachineFunction().getFunction().hasGC() && 6569 "only valid in functions with gc specified, enforced by Verifier"); 6570 assert(GFI && "implied by previous"); 6571 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6572 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6573 6574 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6575 GFI->addStackRoot(FI->getIndex(), TypeMap); 6576 return; 6577 } 6578 case Intrinsic::gcread: 6579 case Intrinsic::gcwrite: 6580 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6581 case Intrinsic::flt_rounds: 6582 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6583 return; 6584 6585 case Intrinsic::expect: 6586 // Just replace __builtin_expect(exp, c) with EXP. 6587 setValue(&I, getValue(I.getArgOperand(0))); 6588 return; 6589 6590 case Intrinsic::debugtrap: 6591 case Intrinsic::trap: { 6592 StringRef TrapFuncName = 6593 I.getAttributes() 6594 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6595 .getValueAsString(); 6596 if (TrapFuncName.empty()) { 6597 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6598 ISD::TRAP : ISD::DEBUGTRAP; 6599 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6600 return; 6601 } 6602 TargetLowering::ArgListTy Args; 6603 6604 TargetLowering::CallLoweringInfo CLI(DAG); 6605 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6606 CallingConv::C, I.getType(), 6607 DAG.getExternalSymbol(TrapFuncName.data(), 6608 TLI.getPointerTy(DAG.getDataLayout())), 6609 std::move(Args)); 6610 6611 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6612 DAG.setRoot(Result.second); 6613 return; 6614 } 6615 6616 case Intrinsic::uadd_with_overflow: 6617 case Intrinsic::sadd_with_overflow: 6618 case Intrinsic::usub_with_overflow: 6619 case Intrinsic::ssub_with_overflow: 6620 case Intrinsic::umul_with_overflow: 6621 case Intrinsic::smul_with_overflow: { 6622 ISD::NodeType Op; 6623 switch (Intrinsic) { 6624 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6625 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6626 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6627 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6628 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6629 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6630 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6631 } 6632 SDValue Op1 = getValue(I.getArgOperand(0)); 6633 SDValue Op2 = getValue(I.getArgOperand(1)); 6634 6635 EVT ResultVT = Op1.getValueType(); 6636 EVT OverflowVT = MVT::i1; 6637 if (ResultVT.isVector()) 6638 OverflowVT = EVT::getVectorVT( 6639 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6640 6641 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6642 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6643 return; 6644 } 6645 case Intrinsic::prefetch: { 6646 SDValue Ops[5]; 6647 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6648 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6649 Ops[0] = DAG.getRoot(); 6650 Ops[1] = getValue(I.getArgOperand(0)); 6651 Ops[2] = getValue(I.getArgOperand(1)); 6652 Ops[3] = getValue(I.getArgOperand(2)); 6653 Ops[4] = getValue(I.getArgOperand(3)); 6654 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6655 DAG.getVTList(MVT::Other), Ops, 6656 EVT::getIntegerVT(*Context, 8), 6657 MachinePointerInfo(I.getArgOperand(0)), 6658 0, /* align */ 6659 Flags); 6660 6661 // Chain the prefetch in parallell with any pending loads, to stay out of 6662 // the way of later optimizations. 6663 PendingLoads.push_back(Result); 6664 Result = getRoot(); 6665 DAG.setRoot(Result); 6666 return; 6667 } 6668 case Intrinsic::lifetime_start: 6669 case Intrinsic::lifetime_end: { 6670 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6671 // Stack coloring is not enabled in O0, discard region information. 6672 if (TM.getOptLevel() == CodeGenOpt::None) 6673 return; 6674 6675 const int64_t ObjectSize = 6676 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6677 Value *const ObjectPtr = I.getArgOperand(1); 6678 SmallVector<const Value *, 4> Allocas; 6679 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6680 6681 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6682 E = Allocas.end(); Object != E; ++Object) { 6683 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6684 6685 // Could not find an Alloca. 6686 if (!LifetimeObject) 6687 continue; 6688 6689 // First check that the Alloca is static, otherwise it won't have a 6690 // valid frame index. 6691 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6692 if (SI == FuncInfo.StaticAllocaMap.end()) 6693 return; 6694 6695 const int FrameIndex = SI->second; 6696 int64_t Offset; 6697 if (GetPointerBaseWithConstantOffset( 6698 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6699 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6700 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6701 Offset); 6702 DAG.setRoot(Res); 6703 } 6704 return; 6705 } 6706 case Intrinsic::invariant_start: 6707 // Discard region information. 6708 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6709 return; 6710 case Intrinsic::invariant_end: 6711 // Discard region information. 6712 return; 6713 case Intrinsic::clear_cache: 6714 /// FunctionName may be null. 6715 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6716 lowerCallToExternalSymbol(I, FunctionName); 6717 return; 6718 case Intrinsic::donothing: 6719 // ignore 6720 return; 6721 case Intrinsic::experimental_stackmap: 6722 visitStackmap(I); 6723 return; 6724 case Intrinsic::experimental_patchpoint_void: 6725 case Intrinsic::experimental_patchpoint_i64: 6726 visitPatchpoint(&I); 6727 return; 6728 case Intrinsic::experimental_gc_statepoint: 6729 LowerStatepoint(ImmutableStatepoint(&I)); 6730 return; 6731 case Intrinsic::experimental_gc_result: 6732 visitGCResult(cast<GCResultInst>(I)); 6733 return; 6734 case Intrinsic::experimental_gc_relocate: 6735 visitGCRelocate(cast<GCRelocateInst>(I)); 6736 return; 6737 case Intrinsic::instrprof_increment: 6738 llvm_unreachable("instrprof failed to lower an increment"); 6739 case Intrinsic::instrprof_value_profile: 6740 llvm_unreachable("instrprof failed to lower a value profiling call"); 6741 case Intrinsic::localescape: { 6742 MachineFunction &MF = DAG.getMachineFunction(); 6743 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6744 6745 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6746 // is the same on all targets. 6747 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6748 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6749 if (isa<ConstantPointerNull>(Arg)) 6750 continue; // Skip null pointers. They represent a hole in index space. 6751 AllocaInst *Slot = cast<AllocaInst>(Arg); 6752 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6753 "can only escape static allocas"); 6754 int FI = FuncInfo.StaticAllocaMap[Slot]; 6755 MCSymbol *FrameAllocSym = 6756 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6757 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6759 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6760 .addSym(FrameAllocSym) 6761 .addFrameIndex(FI); 6762 } 6763 6764 return; 6765 } 6766 6767 case Intrinsic::localrecover: { 6768 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6769 MachineFunction &MF = DAG.getMachineFunction(); 6770 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6771 6772 // Get the symbol that defines the frame offset. 6773 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6774 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6775 unsigned IdxVal = 6776 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6777 MCSymbol *FrameAllocSym = 6778 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6779 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6780 6781 // Create a MCSymbol for the label to avoid any target lowering 6782 // that would make this PC relative. 6783 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6784 SDValue OffsetVal = 6785 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6786 6787 // Add the offset to the FP. 6788 Value *FP = I.getArgOperand(1); 6789 SDValue FPVal = getValue(FP); 6790 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6791 setValue(&I, Add); 6792 6793 return; 6794 } 6795 6796 case Intrinsic::eh_exceptionpointer: 6797 case Intrinsic::eh_exceptioncode: { 6798 // Get the exception pointer vreg, copy from it, and resize it to fit. 6799 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6800 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6801 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6802 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6803 SDValue N = 6804 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6805 if (Intrinsic == Intrinsic::eh_exceptioncode) 6806 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6807 setValue(&I, N); 6808 return; 6809 } 6810 case Intrinsic::xray_customevent: { 6811 // Here we want to make sure that the intrinsic behaves as if it has a 6812 // specific calling convention, and only for x86_64. 6813 // FIXME: Support other platforms later. 6814 const auto &Triple = DAG.getTarget().getTargetTriple(); 6815 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6816 return; 6817 6818 SDLoc DL = getCurSDLoc(); 6819 SmallVector<SDValue, 8> Ops; 6820 6821 // We want to say that we always want the arguments in registers. 6822 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6823 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6824 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6825 SDValue Chain = getRoot(); 6826 Ops.push_back(LogEntryVal); 6827 Ops.push_back(StrSizeVal); 6828 Ops.push_back(Chain); 6829 6830 // We need to enforce the calling convention for the callsite, so that 6831 // argument ordering is enforced correctly, and that register allocation can 6832 // see that some registers may be assumed clobbered and have to preserve 6833 // them across calls to the intrinsic. 6834 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6835 DL, NodeTys, Ops); 6836 SDValue patchableNode = SDValue(MN, 0); 6837 DAG.setRoot(patchableNode); 6838 setValue(&I, patchableNode); 6839 return; 6840 } 6841 case Intrinsic::xray_typedevent: { 6842 // Here we want to make sure that the intrinsic behaves as if it has a 6843 // specific calling convention, and only for x86_64. 6844 // FIXME: Support other platforms later. 6845 const auto &Triple = DAG.getTarget().getTargetTriple(); 6846 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6847 return; 6848 6849 SDLoc DL = getCurSDLoc(); 6850 SmallVector<SDValue, 8> Ops; 6851 6852 // We want to say that we always want the arguments in registers. 6853 // It's unclear to me how manipulating the selection DAG here forces callers 6854 // to provide arguments in registers instead of on the stack. 6855 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6856 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6857 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6858 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6859 SDValue Chain = getRoot(); 6860 Ops.push_back(LogTypeId); 6861 Ops.push_back(LogEntryVal); 6862 Ops.push_back(StrSizeVal); 6863 Ops.push_back(Chain); 6864 6865 // We need to enforce the calling convention for the callsite, so that 6866 // argument ordering is enforced correctly, and that register allocation can 6867 // see that some registers may be assumed clobbered and have to preserve 6868 // them across calls to the intrinsic. 6869 MachineSDNode *MN = DAG.getMachineNode( 6870 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6871 SDValue patchableNode = SDValue(MN, 0); 6872 DAG.setRoot(patchableNode); 6873 setValue(&I, patchableNode); 6874 return; 6875 } 6876 case Intrinsic::experimental_deoptimize: 6877 LowerDeoptimizeCall(&I); 6878 return; 6879 6880 case Intrinsic::experimental_vector_reduce_v2_fadd: 6881 case Intrinsic::experimental_vector_reduce_v2_fmul: 6882 case Intrinsic::experimental_vector_reduce_add: 6883 case Intrinsic::experimental_vector_reduce_mul: 6884 case Intrinsic::experimental_vector_reduce_and: 6885 case Intrinsic::experimental_vector_reduce_or: 6886 case Intrinsic::experimental_vector_reduce_xor: 6887 case Intrinsic::experimental_vector_reduce_smax: 6888 case Intrinsic::experimental_vector_reduce_smin: 6889 case Intrinsic::experimental_vector_reduce_umax: 6890 case Intrinsic::experimental_vector_reduce_umin: 6891 case Intrinsic::experimental_vector_reduce_fmax: 6892 case Intrinsic::experimental_vector_reduce_fmin: 6893 visitVectorReduce(I, Intrinsic); 6894 return; 6895 6896 case Intrinsic::icall_branch_funnel: { 6897 SmallVector<SDValue, 16> Ops; 6898 Ops.push_back(getValue(I.getArgOperand(0))); 6899 6900 int64_t Offset; 6901 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6902 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6903 if (!Base) 6904 report_fatal_error( 6905 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6906 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6907 6908 struct BranchFunnelTarget { 6909 int64_t Offset; 6910 SDValue Target; 6911 }; 6912 SmallVector<BranchFunnelTarget, 8> Targets; 6913 6914 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6915 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6916 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6917 if (ElemBase != Base) 6918 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6919 "to the same GlobalValue"); 6920 6921 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6922 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6923 if (!GA) 6924 report_fatal_error( 6925 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6926 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6927 GA->getGlobal(), getCurSDLoc(), 6928 Val.getValueType(), GA->getOffset())}); 6929 } 6930 llvm::sort(Targets, 6931 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6932 return T1.Offset < T2.Offset; 6933 }); 6934 6935 for (auto &T : Targets) { 6936 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6937 Ops.push_back(T.Target); 6938 } 6939 6940 Ops.push_back(DAG.getRoot()); // Chain 6941 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6942 getCurSDLoc(), MVT::Other, Ops), 6943 0); 6944 DAG.setRoot(N); 6945 setValue(&I, N); 6946 HasTailCall = true; 6947 return; 6948 } 6949 6950 case Intrinsic::wasm_landingpad_index: 6951 // Information this intrinsic contained has been transferred to 6952 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6953 // delete it now. 6954 return; 6955 6956 case Intrinsic::aarch64_settag: 6957 case Intrinsic::aarch64_settag_zero: { 6958 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6959 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6960 SDValue Val = TSI.EmitTargetCodeForSetTag( 6961 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6962 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6963 ZeroMemory); 6964 DAG.setRoot(Val); 6965 setValue(&I, Val); 6966 return; 6967 } 6968 case Intrinsic::ptrmask: { 6969 SDValue Ptr = getValue(I.getOperand(0)); 6970 SDValue Const = getValue(I.getOperand(1)); 6971 6972 EVT DestVT = 6973 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6974 6975 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6976 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6977 return; 6978 } 6979 } 6980 } 6981 6982 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6983 const ConstrainedFPIntrinsic &FPI) { 6984 SDLoc sdl = getCurSDLoc(); 6985 6986 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6987 SmallVector<EVT, 4> ValueVTs; 6988 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6989 ValueVTs.push_back(MVT::Other); // Out chain 6990 6991 // We do not need to serialize constrained FP intrinsics against 6992 // each other or against (nonvolatile) loads, so they can be 6993 // chained like loads. 6994 SDValue Chain = DAG.getRoot(); 6995 SmallVector<SDValue, 4> Opers; 6996 Opers.push_back(Chain); 6997 if (FPI.isUnaryOp()) { 6998 Opers.push_back(getValue(FPI.getArgOperand(0))); 6999 } else if (FPI.isTernaryOp()) { 7000 Opers.push_back(getValue(FPI.getArgOperand(0))); 7001 Opers.push_back(getValue(FPI.getArgOperand(1))); 7002 Opers.push_back(getValue(FPI.getArgOperand(2))); 7003 } else { 7004 Opers.push_back(getValue(FPI.getArgOperand(0))); 7005 Opers.push_back(getValue(FPI.getArgOperand(1))); 7006 } 7007 7008 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7009 assert(Result.getNode()->getNumValues() == 2); 7010 7011 // Push node to the appropriate list so that future instructions can be 7012 // chained up correctly. 7013 SDValue OutChain = Result.getValue(1); 7014 switch (EB) { 7015 case fp::ExceptionBehavior::ebIgnore: 7016 // The only reason why ebIgnore nodes still need to be chained is that 7017 // they might depend on the current rounding mode, and therefore must 7018 // not be moved across instruction that may change that mode. 7019 LLVM_FALLTHROUGH; 7020 case fp::ExceptionBehavior::ebMayTrap: 7021 // These must not be moved across calls or instructions that may change 7022 // floating-point exception masks. 7023 PendingConstrainedFP.push_back(OutChain); 7024 break; 7025 case fp::ExceptionBehavior::ebStrict: 7026 // These must not be moved across calls or instructions that may change 7027 // floating-point exception masks or read floating-point exception flags. 7028 // In addition, they cannot be optimized out even if unused. 7029 PendingConstrainedFPStrict.push_back(OutChain); 7030 break; 7031 } 7032 }; 7033 7034 SDVTList VTs = DAG.getVTList(ValueVTs); 7035 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7036 7037 unsigned Opcode; 7038 switch (FPI.getIntrinsicID()) { 7039 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7040 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7041 case Intrinsic::INTRINSIC: \ 7042 Opcode = ISD::STRICT_##DAGN; \ 7043 break; 7044 #include "llvm/IR/ConstrainedOps.def" 7045 case Intrinsic::experimental_constrained_fmuladd: { 7046 Opcode = ISD::STRICT_FMA; 7047 // Break fmuladd into fmul and fadd. 7048 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7049 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7050 ValueVTs[0])) { 7051 Opers.pop_back(); 7052 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers); 7053 pushOutChain(Mul, EB); 7054 Opcode = ISD::STRICT_FADD; 7055 Opers.clear(); 7056 Opers.push_back(Mul.getValue(1)); 7057 Opers.push_back(Mul.getValue(0)); 7058 Opers.push_back(getValue(FPI.getArgOperand(2))); 7059 } 7060 break; 7061 } 7062 } 7063 7064 // A few strict DAG nodes carry additional operands that are not 7065 // set up by the default code above. 7066 switch (Opcode) { 7067 default: break; 7068 case ISD::STRICT_FP_ROUND: 7069 Opers.push_back( 7070 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7071 break; 7072 case ISD::STRICT_FSETCC: 7073 case ISD::STRICT_FSETCCS: { 7074 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7075 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7076 break; 7077 } 7078 } 7079 7080 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 7081 pushOutChain(Result, EB); 7082 7083 SDValue FPResult = Result.getValue(0); 7084 setValue(&FPI, FPResult); 7085 } 7086 7087 std::pair<SDValue, SDValue> 7088 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7089 const BasicBlock *EHPadBB) { 7090 MachineFunction &MF = DAG.getMachineFunction(); 7091 MachineModuleInfo &MMI = MF.getMMI(); 7092 MCSymbol *BeginLabel = nullptr; 7093 7094 if (EHPadBB) { 7095 // Insert a label before the invoke call to mark the try range. This can be 7096 // used to detect deletion of the invoke via the MachineModuleInfo. 7097 BeginLabel = MMI.getContext().createTempSymbol(); 7098 7099 // For SjLj, keep track of which landing pads go with which invokes 7100 // so as to maintain the ordering of pads in the LSDA. 7101 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7102 if (CallSiteIndex) { 7103 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7104 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7105 7106 // Now that the call site is handled, stop tracking it. 7107 MMI.setCurrentCallSite(0); 7108 } 7109 7110 // Both PendingLoads and PendingExports must be flushed here; 7111 // this call might not return. 7112 (void)getRoot(); 7113 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7114 7115 CLI.setChain(getRoot()); 7116 } 7117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7118 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7119 7120 assert((CLI.IsTailCall || Result.second.getNode()) && 7121 "Non-null chain expected with non-tail call!"); 7122 assert((Result.second.getNode() || !Result.first.getNode()) && 7123 "Null value expected with tail call!"); 7124 7125 if (!Result.second.getNode()) { 7126 // As a special case, a null chain means that a tail call has been emitted 7127 // and the DAG root is already updated. 7128 HasTailCall = true; 7129 7130 // Since there's no actual continuation from this block, nothing can be 7131 // relying on us setting vregs for them. 7132 PendingExports.clear(); 7133 } else { 7134 DAG.setRoot(Result.second); 7135 } 7136 7137 if (EHPadBB) { 7138 // Insert a label at the end of the invoke call to mark the try range. This 7139 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7140 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7141 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7142 7143 // Inform MachineModuleInfo of range. 7144 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7145 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7146 // actually use outlined funclets and their LSDA info style. 7147 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7148 assert(CLI.CS); 7149 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7150 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7151 BeginLabel, EndLabel); 7152 } else if (!isScopedEHPersonality(Pers)) { 7153 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7154 } 7155 } 7156 7157 return Result; 7158 } 7159 7160 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7161 bool isTailCall, 7162 const BasicBlock *EHPadBB) { 7163 auto &DL = DAG.getDataLayout(); 7164 FunctionType *FTy = CS.getFunctionType(); 7165 Type *RetTy = CS.getType(); 7166 7167 TargetLowering::ArgListTy Args; 7168 Args.reserve(CS.arg_size()); 7169 7170 const Value *SwiftErrorVal = nullptr; 7171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7172 7173 if (isTailCall) { 7174 // Avoid emitting tail calls in functions with the disable-tail-calls 7175 // attribute. 7176 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7177 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7178 "true") 7179 isTailCall = false; 7180 7181 // We can't tail call inside a function with a swifterror argument. Lowering 7182 // does not support this yet. It would have to move into the swifterror 7183 // register before the call. 7184 if (TLI.supportSwiftError() && 7185 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7186 isTailCall = false; 7187 } 7188 7189 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7190 i != e; ++i) { 7191 TargetLowering::ArgListEntry Entry; 7192 const Value *V = *i; 7193 7194 // Skip empty types 7195 if (V->getType()->isEmptyTy()) 7196 continue; 7197 7198 SDValue ArgNode = getValue(V); 7199 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7200 7201 Entry.setAttributes(&CS, i - CS.arg_begin()); 7202 7203 // Use swifterror virtual register as input to the call. 7204 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7205 SwiftErrorVal = V; 7206 // We find the virtual register for the actual swifterror argument. 7207 // Instead of using the Value, we use the virtual register instead. 7208 Entry.Node = DAG.getRegister( 7209 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7210 EVT(TLI.getPointerTy(DL))); 7211 } 7212 7213 Args.push_back(Entry); 7214 7215 // If we have an explicit sret argument that is an Instruction, (i.e., it 7216 // might point to function-local memory), we can't meaningfully tail-call. 7217 if (Entry.IsSRet && isa<Instruction>(V)) 7218 isTailCall = false; 7219 } 7220 7221 // If call site has a cfguardtarget operand bundle, create and add an 7222 // additional ArgListEntry. 7223 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7224 TargetLowering::ArgListEntry Entry; 7225 Value *V = Bundle->Inputs[0]; 7226 SDValue ArgNode = getValue(V); 7227 Entry.Node = ArgNode; 7228 Entry.Ty = V->getType(); 7229 Entry.IsCFGuardTarget = true; 7230 Args.push_back(Entry); 7231 } 7232 7233 // Check if target-independent constraints permit a tail call here. 7234 // Target-dependent constraints are checked within TLI->LowerCallTo. 7235 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7236 isTailCall = false; 7237 7238 // Disable tail calls if there is an swifterror argument. Targets have not 7239 // been updated to support tail calls. 7240 if (TLI.supportSwiftError() && SwiftErrorVal) 7241 isTailCall = false; 7242 7243 TargetLowering::CallLoweringInfo CLI(DAG); 7244 CLI.setDebugLoc(getCurSDLoc()) 7245 .setChain(getRoot()) 7246 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7247 .setTailCall(isTailCall) 7248 .setConvergent(CS.isConvergent()); 7249 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7250 7251 if (Result.first.getNode()) { 7252 const Instruction *Inst = CS.getInstruction(); 7253 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7254 setValue(Inst, Result.first); 7255 } 7256 7257 // The last element of CLI.InVals has the SDValue for swifterror return. 7258 // Here we copy it to a virtual register and update SwiftErrorMap for 7259 // book-keeping. 7260 if (SwiftErrorVal && TLI.supportSwiftError()) { 7261 // Get the last element of InVals. 7262 SDValue Src = CLI.InVals.back(); 7263 Register VReg = SwiftError.getOrCreateVRegDefAt( 7264 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7265 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7266 DAG.setRoot(CopyNode); 7267 } 7268 } 7269 7270 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7271 SelectionDAGBuilder &Builder) { 7272 // Check to see if this load can be trivially constant folded, e.g. if the 7273 // input is from a string literal. 7274 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7275 // Cast pointer to the type we really want to load. 7276 Type *LoadTy = 7277 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7278 if (LoadVT.isVector()) 7279 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7280 7281 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7282 PointerType::getUnqual(LoadTy)); 7283 7284 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7285 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7286 return Builder.getValue(LoadCst); 7287 } 7288 7289 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7290 // still constant memory, the input chain can be the entry node. 7291 SDValue Root; 7292 bool ConstantMemory = false; 7293 7294 // Do not serialize (non-volatile) loads of constant memory with anything. 7295 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7296 Root = Builder.DAG.getEntryNode(); 7297 ConstantMemory = true; 7298 } else { 7299 // Do not serialize non-volatile loads against each other. 7300 Root = Builder.DAG.getRoot(); 7301 } 7302 7303 SDValue Ptr = Builder.getValue(PtrVal); 7304 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7305 Ptr, MachinePointerInfo(PtrVal), 7306 /* Alignment = */ 1); 7307 7308 if (!ConstantMemory) 7309 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7310 return LoadVal; 7311 } 7312 7313 /// Record the value for an instruction that produces an integer result, 7314 /// converting the type where necessary. 7315 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7316 SDValue Value, 7317 bool IsSigned) { 7318 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7319 I.getType(), true); 7320 if (IsSigned) 7321 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7322 else 7323 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7324 setValue(&I, Value); 7325 } 7326 7327 /// See if we can lower a memcmp call into an optimized form. If so, return 7328 /// true and lower it. Otherwise return false, and it will be lowered like a 7329 /// normal call. 7330 /// The caller already checked that \p I calls the appropriate LibFunc with a 7331 /// correct prototype. 7332 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7333 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7334 const Value *Size = I.getArgOperand(2); 7335 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7336 if (CSize && CSize->getZExtValue() == 0) { 7337 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7338 I.getType(), true); 7339 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7340 return true; 7341 } 7342 7343 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7344 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7345 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7346 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7347 if (Res.first.getNode()) { 7348 processIntegerCallValue(I, Res.first, true); 7349 PendingLoads.push_back(Res.second); 7350 return true; 7351 } 7352 7353 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7354 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7355 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7356 return false; 7357 7358 // If the target has a fast compare for the given size, it will return a 7359 // preferred load type for that size. Require that the load VT is legal and 7360 // that the target supports unaligned loads of that type. Otherwise, return 7361 // INVALID. 7362 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7364 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7365 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7366 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7367 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7368 // TODO: Check alignment of src and dest ptrs. 7369 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7370 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7371 if (!TLI.isTypeLegal(LVT) || 7372 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7373 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7374 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7375 } 7376 7377 return LVT; 7378 }; 7379 7380 // This turns into unaligned loads. We only do this if the target natively 7381 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7382 // we'll only produce a small number of byte loads. 7383 MVT LoadVT; 7384 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7385 switch (NumBitsToCompare) { 7386 default: 7387 return false; 7388 case 16: 7389 LoadVT = MVT::i16; 7390 break; 7391 case 32: 7392 LoadVT = MVT::i32; 7393 break; 7394 case 64: 7395 case 128: 7396 case 256: 7397 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7398 break; 7399 } 7400 7401 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7402 return false; 7403 7404 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7405 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7406 7407 // Bitcast to a wide integer type if the loads are vectors. 7408 if (LoadVT.isVector()) { 7409 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7410 LoadL = DAG.getBitcast(CmpVT, LoadL); 7411 LoadR = DAG.getBitcast(CmpVT, LoadR); 7412 } 7413 7414 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7415 processIntegerCallValue(I, Cmp, false); 7416 return true; 7417 } 7418 7419 /// See if we can lower a memchr call into an optimized form. If so, return 7420 /// true and lower it. Otherwise return false, and it will be lowered like a 7421 /// normal call. 7422 /// The caller already checked that \p I calls the appropriate LibFunc with a 7423 /// correct prototype. 7424 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7425 const Value *Src = I.getArgOperand(0); 7426 const Value *Char = I.getArgOperand(1); 7427 const Value *Length = I.getArgOperand(2); 7428 7429 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7430 std::pair<SDValue, SDValue> Res = 7431 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7432 getValue(Src), getValue(Char), getValue(Length), 7433 MachinePointerInfo(Src)); 7434 if (Res.first.getNode()) { 7435 setValue(&I, Res.first); 7436 PendingLoads.push_back(Res.second); 7437 return true; 7438 } 7439 7440 return false; 7441 } 7442 7443 /// See if we can lower a mempcpy call into an optimized form. If so, return 7444 /// true and lower it. Otherwise return false, and it will be lowered like a 7445 /// normal call. 7446 /// The caller already checked that \p I calls the appropriate LibFunc with a 7447 /// correct prototype. 7448 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7449 SDValue Dst = getValue(I.getArgOperand(0)); 7450 SDValue Src = getValue(I.getArgOperand(1)); 7451 SDValue Size = getValue(I.getArgOperand(2)); 7452 7453 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7454 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7455 // DAG::getMemcpy needs Alignment to be defined. 7456 Align Alignment = assumeAligned(std::min(DstAlign, SrcAlign)); 7457 7458 bool isVol = false; 7459 SDLoc sdl = getCurSDLoc(); 7460 7461 // In the mempcpy context we need to pass in a false value for isTailCall 7462 // because the return pointer needs to be adjusted by the size of 7463 // the copied memory. 7464 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7465 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7466 /*isTailCall=*/false, 7467 MachinePointerInfo(I.getArgOperand(0)), 7468 MachinePointerInfo(I.getArgOperand(1))); 7469 assert(MC.getNode() != nullptr && 7470 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7471 DAG.setRoot(MC); 7472 7473 // Check if Size needs to be truncated or extended. 7474 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7475 7476 // Adjust return pointer to point just past the last dst byte. 7477 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7478 Dst, Size); 7479 setValue(&I, DstPlusSize); 7480 return true; 7481 } 7482 7483 /// See if we can lower a strcpy call into an optimized form. If so, return 7484 /// true and lower it, otherwise return false and it will be lowered like a 7485 /// normal call. 7486 /// The caller already checked that \p I calls the appropriate LibFunc with a 7487 /// correct prototype. 7488 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7489 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7490 7491 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7492 std::pair<SDValue, SDValue> Res = 7493 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7494 getValue(Arg0), getValue(Arg1), 7495 MachinePointerInfo(Arg0), 7496 MachinePointerInfo(Arg1), isStpcpy); 7497 if (Res.first.getNode()) { 7498 setValue(&I, Res.first); 7499 DAG.setRoot(Res.second); 7500 return true; 7501 } 7502 7503 return false; 7504 } 7505 7506 /// See if we can lower a strcmp call into an optimized form. If so, return 7507 /// true and lower it, otherwise return false and it will be lowered like a 7508 /// normal call. 7509 /// The caller already checked that \p I calls the appropriate LibFunc with a 7510 /// correct prototype. 7511 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7512 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7513 7514 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7515 std::pair<SDValue, SDValue> Res = 7516 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7517 getValue(Arg0), getValue(Arg1), 7518 MachinePointerInfo(Arg0), 7519 MachinePointerInfo(Arg1)); 7520 if (Res.first.getNode()) { 7521 processIntegerCallValue(I, Res.first, true); 7522 PendingLoads.push_back(Res.second); 7523 return true; 7524 } 7525 7526 return false; 7527 } 7528 7529 /// See if we can lower a strlen call into an optimized form. If so, return 7530 /// true and lower it, otherwise return false and it will be lowered like a 7531 /// normal call. 7532 /// The caller already checked that \p I calls the appropriate LibFunc with a 7533 /// correct prototype. 7534 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7535 const Value *Arg0 = I.getArgOperand(0); 7536 7537 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7538 std::pair<SDValue, SDValue> Res = 7539 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7540 getValue(Arg0), MachinePointerInfo(Arg0)); 7541 if (Res.first.getNode()) { 7542 processIntegerCallValue(I, Res.first, false); 7543 PendingLoads.push_back(Res.second); 7544 return true; 7545 } 7546 7547 return false; 7548 } 7549 7550 /// See if we can lower a strnlen call into an optimized form. If so, return 7551 /// true and lower it, otherwise return false and it will be lowered like a 7552 /// normal call. 7553 /// The caller already checked that \p I calls the appropriate LibFunc with a 7554 /// correct prototype. 7555 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7556 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7557 7558 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7559 std::pair<SDValue, SDValue> Res = 7560 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7561 getValue(Arg0), getValue(Arg1), 7562 MachinePointerInfo(Arg0)); 7563 if (Res.first.getNode()) { 7564 processIntegerCallValue(I, Res.first, false); 7565 PendingLoads.push_back(Res.second); 7566 return true; 7567 } 7568 7569 return false; 7570 } 7571 7572 /// See if we can lower a unary floating-point operation into an SDNode with 7573 /// the specified Opcode. If so, return true and lower it, otherwise return 7574 /// false and it will be lowered like a normal call. 7575 /// The caller already checked that \p I calls the appropriate LibFunc with a 7576 /// correct prototype. 7577 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7578 unsigned Opcode) { 7579 // We already checked this call's prototype; verify it doesn't modify errno. 7580 if (!I.onlyReadsMemory()) 7581 return false; 7582 7583 SDValue Tmp = getValue(I.getArgOperand(0)); 7584 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7585 return true; 7586 } 7587 7588 /// See if we can lower a binary floating-point operation into an SDNode with 7589 /// the specified Opcode. If so, return true and lower it. Otherwise return 7590 /// false, and it will be lowered like a normal call. 7591 /// The caller already checked that \p I calls the appropriate LibFunc with a 7592 /// correct prototype. 7593 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7594 unsigned Opcode) { 7595 // We already checked this call's prototype; verify it doesn't modify errno. 7596 if (!I.onlyReadsMemory()) 7597 return false; 7598 7599 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7600 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7601 EVT VT = Tmp0.getValueType(); 7602 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7603 return true; 7604 } 7605 7606 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7607 // Handle inline assembly differently. 7608 if (isa<InlineAsm>(I.getCalledValue())) { 7609 visitInlineAsm(&I); 7610 return; 7611 } 7612 7613 if (Function *F = I.getCalledFunction()) { 7614 if (F->isDeclaration()) { 7615 // Is this an LLVM intrinsic or a target-specific intrinsic? 7616 unsigned IID = F->getIntrinsicID(); 7617 if (!IID) 7618 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7619 IID = II->getIntrinsicID(F); 7620 7621 if (IID) { 7622 visitIntrinsicCall(I, IID); 7623 return; 7624 } 7625 } 7626 7627 // Check for well-known libc/libm calls. If the function is internal, it 7628 // can't be a library call. Don't do the check if marked as nobuiltin for 7629 // some reason or the call site requires strict floating point semantics. 7630 LibFunc Func; 7631 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7632 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7633 LibInfo->hasOptimizedCodeGen(Func)) { 7634 switch (Func) { 7635 default: break; 7636 case LibFunc_copysign: 7637 case LibFunc_copysignf: 7638 case LibFunc_copysignl: 7639 // We already checked this call's prototype; verify it doesn't modify 7640 // errno. 7641 if (I.onlyReadsMemory()) { 7642 SDValue LHS = getValue(I.getArgOperand(0)); 7643 SDValue RHS = getValue(I.getArgOperand(1)); 7644 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7645 LHS.getValueType(), LHS, RHS)); 7646 return; 7647 } 7648 break; 7649 case LibFunc_fabs: 7650 case LibFunc_fabsf: 7651 case LibFunc_fabsl: 7652 if (visitUnaryFloatCall(I, ISD::FABS)) 7653 return; 7654 break; 7655 case LibFunc_fmin: 7656 case LibFunc_fminf: 7657 case LibFunc_fminl: 7658 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7659 return; 7660 break; 7661 case LibFunc_fmax: 7662 case LibFunc_fmaxf: 7663 case LibFunc_fmaxl: 7664 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7665 return; 7666 break; 7667 case LibFunc_sin: 7668 case LibFunc_sinf: 7669 case LibFunc_sinl: 7670 if (visitUnaryFloatCall(I, ISD::FSIN)) 7671 return; 7672 break; 7673 case LibFunc_cos: 7674 case LibFunc_cosf: 7675 case LibFunc_cosl: 7676 if (visitUnaryFloatCall(I, ISD::FCOS)) 7677 return; 7678 break; 7679 case LibFunc_sqrt: 7680 case LibFunc_sqrtf: 7681 case LibFunc_sqrtl: 7682 case LibFunc_sqrt_finite: 7683 case LibFunc_sqrtf_finite: 7684 case LibFunc_sqrtl_finite: 7685 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7686 return; 7687 break; 7688 case LibFunc_floor: 7689 case LibFunc_floorf: 7690 case LibFunc_floorl: 7691 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7692 return; 7693 break; 7694 case LibFunc_nearbyint: 7695 case LibFunc_nearbyintf: 7696 case LibFunc_nearbyintl: 7697 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7698 return; 7699 break; 7700 case LibFunc_ceil: 7701 case LibFunc_ceilf: 7702 case LibFunc_ceill: 7703 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7704 return; 7705 break; 7706 case LibFunc_rint: 7707 case LibFunc_rintf: 7708 case LibFunc_rintl: 7709 if (visitUnaryFloatCall(I, ISD::FRINT)) 7710 return; 7711 break; 7712 case LibFunc_round: 7713 case LibFunc_roundf: 7714 case LibFunc_roundl: 7715 if (visitUnaryFloatCall(I, ISD::FROUND)) 7716 return; 7717 break; 7718 case LibFunc_trunc: 7719 case LibFunc_truncf: 7720 case LibFunc_truncl: 7721 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7722 return; 7723 break; 7724 case LibFunc_log2: 7725 case LibFunc_log2f: 7726 case LibFunc_log2l: 7727 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7728 return; 7729 break; 7730 case LibFunc_exp2: 7731 case LibFunc_exp2f: 7732 case LibFunc_exp2l: 7733 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7734 return; 7735 break; 7736 case LibFunc_memcmp: 7737 if (visitMemCmpCall(I)) 7738 return; 7739 break; 7740 case LibFunc_mempcpy: 7741 if (visitMemPCpyCall(I)) 7742 return; 7743 break; 7744 case LibFunc_memchr: 7745 if (visitMemChrCall(I)) 7746 return; 7747 break; 7748 case LibFunc_strcpy: 7749 if (visitStrCpyCall(I, false)) 7750 return; 7751 break; 7752 case LibFunc_stpcpy: 7753 if (visitStrCpyCall(I, true)) 7754 return; 7755 break; 7756 case LibFunc_strcmp: 7757 if (visitStrCmpCall(I)) 7758 return; 7759 break; 7760 case LibFunc_strlen: 7761 if (visitStrLenCall(I)) 7762 return; 7763 break; 7764 case LibFunc_strnlen: 7765 if (visitStrNLenCall(I)) 7766 return; 7767 break; 7768 } 7769 } 7770 } 7771 7772 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7773 // have to do anything here to lower funclet bundles. 7774 // CFGuardTarget bundles are lowered in LowerCallTo. 7775 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7776 LLVMContext::OB_funclet, 7777 LLVMContext::OB_cfguardtarget}) && 7778 "Cannot lower calls with arbitrary operand bundles!"); 7779 7780 SDValue Callee = getValue(I.getCalledValue()); 7781 7782 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7783 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7784 else 7785 // Check if we can potentially perform a tail call. More detailed checking 7786 // is be done within LowerCallTo, after more information about the call is 7787 // known. 7788 LowerCallTo(&I, Callee, I.isTailCall()); 7789 } 7790 7791 namespace { 7792 7793 /// AsmOperandInfo - This contains information for each constraint that we are 7794 /// lowering. 7795 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7796 public: 7797 /// CallOperand - If this is the result output operand or a clobber 7798 /// this is null, otherwise it is the incoming operand to the CallInst. 7799 /// This gets modified as the asm is processed. 7800 SDValue CallOperand; 7801 7802 /// AssignedRegs - If this is a register or register class operand, this 7803 /// contains the set of register corresponding to the operand. 7804 RegsForValue AssignedRegs; 7805 7806 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7807 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7808 } 7809 7810 /// Whether or not this operand accesses memory 7811 bool hasMemory(const TargetLowering &TLI) const { 7812 // Indirect operand accesses access memory. 7813 if (isIndirect) 7814 return true; 7815 7816 for (const auto &Code : Codes) 7817 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7818 return true; 7819 7820 return false; 7821 } 7822 7823 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7824 /// corresponds to. If there is no Value* for this operand, it returns 7825 /// MVT::Other. 7826 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7827 const DataLayout &DL) const { 7828 if (!CallOperandVal) return MVT::Other; 7829 7830 if (isa<BasicBlock>(CallOperandVal)) 7831 return TLI.getPointerTy(DL); 7832 7833 llvm::Type *OpTy = CallOperandVal->getType(); 7834 7835 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7836 // If this is an indirect operand, the operand is a pointer to the 7837 // accessed type. 7838 if (isIndirect) { 7839 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7840 if (!PtrTy) 7841 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7842 OpTy = PtrTy->getElementType(); 7843 } 7844 7845 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7846 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7847 if (STy->getNumElements() == 1) 7848 OpTy = STy->getElementType(0); 7849 7850 // If OpTy is not a single value, it may be a struct/union that we 7851 // can tile with integers. 7852 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7853 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7854 switch (BitSize) { 7855 default: break; 7856 case 1: 7857 case 8: 7858 case 16: 7859 case 32: 7860 case 64: 7861 case 128: 7862 OpTy = IntegerType::get(Context, BitSize); 7863 break; 7864 } 7865 } 7866 7867 return TLI.getValueType(DL, OpTy, true); 7868 } 7869 }; 7870 7871 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7872 7873 } // end anonymous namespace 7874 7875 /// Make sure that the output operand \p OpInfo and its corresponding input 7876 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7877 /// out). 7878 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7879 SDISelAsmOperandInfo &MatchingOpInfo, 7880 SelectionDAG &DAG) { 7881 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7882 return; 7883 7884 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7885 const auto &TLI = DAG.getTargetLoweringInfo(); 7886 7887 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7888 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7889 OpInfo.ConstraintVT); 7890 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7891 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7892 MatchingOpInfo.ConstraintVT); 7893 if ((OpInfo.ConstraintVT.isInteger() != 7894 MatchingOpInfo.ConstraintVT.isInteger()) || 7895 (MatchRC.second != InputRC.second)) { 7896 // FIXME: error out in a more elegant fashion 7897 report_fatal_error("Unsupported asm: input constraint" 7898 " with a matching output constraint of" 7899 " incompatible type!"); 7900 } 7901 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7902 } 7903 7904 /// Get a direct memory input to behave well as an indirect operand. 7905 /// This may introduce stores, hence the need for a \p Chain. 7906 /// \return The (possibly updated) chain. 7907 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7908 SDISelAsmOperandInfo &OpInfo, 7909 SelectionDAG &DAG) { 7910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7911 7912 // If we don't have an indirect input, put it in the constpool if we can, 7913 // otherwise spill it to a stack slot. 7914 // TODO: This isn't quite right. We need to handle these according to 7915 // the addressing mode that the constraint wants. Also, this may take 7916 // an additional register for the computation and we don't want that 7917 // either. 7918 7919 // If the operand is a float, integer, or vector constant, spill to a 7920 // constant pool entry to get its address. 7921 const Value *OpVal = OpInfo.CallOperandVal; 7922 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7923 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7924 OpInfo.CallOperand = DAG.getConstantPool( 7925 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7926 return Chain; 7927 } 7928 7929 // Otherwise, create a stack slot and emit a store to it before the asm. 7930 Type *Ty = OpVal->getType(); 7931 auto &DL = DAG.getDataLayout(); 7932 uint64_t TySize = DL.getTypeAllocSize(Ty); 7933 unsigned Align = DL.getPrefTypeAlignment(Ty); 7934 MachineFunction &MF = DAG.getMachineFunction(); 7935 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7936 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7937 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7938 MachinePointerInfo::getFixedStack(MF, SSFI), 7939 TLI.getMemValueType(DL, Ty)); 7940 OpInfo.CallOperand = StackSlot; 7941 7942 return Chain; 7943 } 7944 7945 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7946 /// specified operand. We prefer to assign virtual registers, to allow the 7947 /// register allocator to handle the assignment process. However, if the asm 7948 /// uses features that we can't model on machineinstrs, we have SDISel do the 7949 /// allocation. This produces generally horrible, but correct, code. 7950 /// 7951 /// OpInfo describes the operand 7952 /// RefOpInfo describes the matching operand if any, the operand otherwise 7953 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7954 SDISelAsmOperandInfo &OpInfo, 7955 SDISelAsmOperandInfo &RefOpInfo) { 7956 LLVMContext &Context = *DAG.getContext(); 7957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7958 7959 MachineFunction &MF = DAG.getMachineFunction(); 7960 SmallVector<unsigned, 4> Regs; 7961 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7962 7963 // No work to do for memory operations. 7964 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7965 return; 7966 7967 // If this is a constraint for a single physreg, or a constraint for a 7968 // register class, find it. 7969 unsigned AssignedReg; 7970 const TargetRegisterClass *RC; 7971 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7972 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7973 // RC is unset only on failure. Return immediately. 7974 if (!RC) 7975 return; 7976 7977 // Get the actual register value type. This is important, because the user 7978 // may have asked for (e.g.) the AX register in i32 type. We need to 7979 // remember that AX is actually i16 to get the right extension. 7980 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7981 7982 if (OpInfo.ConstraintVT != MVT::Other) { 7983 // If this is an FP operand in an integer register (or visa versa), or more 7984 // generally if the operand value disagrees with the register class we plan 7985 // to stick it in, fix the operand type. 7986 // 7987 // If this is an input value, the bitcast to the new type is done now. 7988 // Bitcast for output value is done at the end of visitInlineAsm(). 7989 if ((OpInfo.Type == InlineAsm::isOutput || 7990 OpInfo.Type == InlineAsm::isInput) && 7991 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7992 // Try to convert to the first EVT that the reg class contains. If the 7993 // types are identical size, use a bitcast to convert (e.g. two differing 7994 // vector types). Note: output bitcast is done at the end of 7995 // visitInlineAsm(). 7996 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7997 // Exclude indirect inputs while they are unsupported because the code 7998 // to perform the load is missing and thus OpInfo.CallOperand still 7999 // refers to the input address rather than the pointed-to value. 8000 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8001 OpInfo.CallOperand = 8002 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8003 OpInfo.ConstraintVT = RegVT; 8004 // If the operand is an FP value and we want it in integer registers, 8005 // use the corresponding integer type. This turns an f64 value into 8006 // i64, which can be passed with two i32 values on a 32-bit machine. 8007 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8008 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8009 if (OpInfo.Type == InlineAsm::isInput) 8010 OpInfo.CallOperand = 8011 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8012 OpInfo.ConstraintVT = VT; 8013 } 8014 } 8015 } 8016 8017 // No need to allocate a matching input constraint since the constraint it's 8018 // matching to has already been allocated. 8019 if (OpInfo.isMatchingInputConstraint()) 8020 return; 8021 8022 EVT ValueVT = OpInfo.ConstraintVT; 8023 if (OpInfo.ConstraintVT == MVT::Other) 8024 ValueVT = RegVT; 8025 8026 // Initialize NumRegs. 8027 unsigned NumRegs = 1; 8028 if (OpInfo.ConstraintVT != MVT::Other) 8029 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8030 8031 // If this is a constraint for a specific physical register, like {r17}, 8032 // assign it now. 8033 8034 // If this associated to a specific register, initialize iterator to correct 8035 // place. If virtual, make sure we have enough registers 8036 8037 // Initialize iterator if necessary 8038 TargetRegisterClass::iterator I = RC->begin(); 8039 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8040 8041 // Do not check for single registers. 8042 if (AssignedReg) { 8043 for (; *I != AssignedReg; ++I) 8044 assert(I != RC->end() && "AssignedReg should be member of RC"); 8045 } 8046 8047 for (; NumRegs; --NumRegs, ++I) { 8048 assert(I != RC->end() && "Ran out of registers to allocate!"); 8049 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8050 Regs.push_back(R); 8051 } 8052 8053 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8054 } 8055 8056 static unsigned 8057 findMatchingInlineAsmOperand(unsigned OperandNo, 8058 const std::vector<SDValue> &AsmNodeOperands) { 8059 // Scan until we find the definition we already emitted of this operand. 8060 unsigned CurOp = InlineAsm::Op_FirstOperand; 8061 for (; OperandNo; --OperandNo) { 8062 // Advance to the next operand. 8063 unsigned OpFlag = 8064 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8065 assert((InlineAsm::isRegDefKind(OpFlag) || 8066 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8067 InlineAsm::isMemKind(OpFlag)) && 8068 "Skipped past definitions?"); 8069 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8070 } 8071 return CurOp; 8072 } 8073 8074 namespace { 8075 8076 class ExtraFlags { 8077 unsigned Flags = 0; 8078 8079 public: 8080 explicit ExtraFlags(ImmutableCallSite CS) { 8081 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8082 if (IA->hasSideEffects()) 8083 Flags |= InlineAsm::Extra_HasSideEffects; 8084 if (IA->isAlignStack()) 8085 Flags |= InlineAsm::Extra_IsAlignStack; 8086 if (CS.isConvergent()) 8087 Flags |= InlineAsm::Extra_IsConvergent; 8088 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8089 } 8090 8091 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8092 // Ideally, we would only check against memory constraints. However, the 8093 // meaning of an Other constraint can be target-specific and we can't easily 8094 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8095 // for Other constraints as well. 8096 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8097 OpInfo.ConstraintType == TargetLowering::C_Other) { 8098 if (OpInfo.Type == InlineAsm::isInput) 8099 Flags |= InlineAsm::Extra_MayLoad; 8100 else if (OpInfo.Type == InlineAsm::isOutput) 8101 Flags |= InlineAsm::Extra_MayStore; 8102 else if (OpInfo.Type == InlineAsm::isClobber) 8103 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8104 } 8105 } 8106 8107 unsigned get() const { return Flags; } 8108 }; 8109 8110 } // end anonymous namespace 8111 8112 /// visitInlineAsm - Handle a call to an InlineAsm object. 8113 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8114 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8115 8116 /// ConstraintOperands - Information about all of the constraints. 8117 SDISelAsmOperandInfoVector ConstraintOperands; 8118 8119 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8120 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8121 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8122 8123 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8124 // AsmDialect, MayLoad, MayStore). 8125 bool HasSideEffect = IA->hasSideEffects(); 8126 ExtraFlags ExtraInfo(CS); 8127 8128 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8129 unsigned ResNo = 0; // ResNo - The result number of the next output. 8130 for (auto &T : TargetConstraints) { 8131 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8132 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8133 8134 // Compute the value type for each operand. 8135 if (OpInfo.Type == InlineAsm::isInput || 8136 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8137 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8138 8139 // Process the call argument. BasicBlocks are labels, currently appearing 8140 // only in asm's. 8141 const Instruction *I = CS.getInstruction(); 8142 if (isa<CallBrInst>(I) && 8143 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8144 cast<CallBrInst>(I)->getNumIndirectDests())) { 8145 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8146 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8147 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8148 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8149 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8150 } else { 8151 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8152 } 8153 8154 OpInfo.ConstraintVT = 8155 OpInfo 8156 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8157 .getSimpleVT(); 8158 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8159 // The return value of the call is this value. As such, there is no 8160 // corresponding argument. 8161 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8162 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8163 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8164 DAG.getDataLayout(), STy->getElementType(ResNo)); 8165 } else { 8166 assert(ResNo == 0 && "Asm only has one result!"); 8167 OpInfo.ConstraintVT = 8168 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8169 } 8170 ++ResNo; 8171 } else { 8172 OpInfo.ConstraintVT = MVT::Other; 8173 } 8174 8175 if (!HasSideEffect) 8176 HasSideEffect = OpInfo.hasMemory(TLI); 8177 8178 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8179 // FIXME: Could we compute this on OpInfo rather than T? 8180 8181 // Compute the constraint code and ConstraintType to use. 8182 TLI.ComputeConstraintToUse(T, SDValue()); 8183 8184 if (T.ConstraintType == TargetLowering::C_Immediate && 8185 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8186 // We've delayed emitting a diagnostic like the "n" constraint because 8187 // inlining could cause an integer showing up. 8188 return emitInlineAsmError( 8189 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8190 "integer constant expression"); 8191 8192 ExtraInfo.update(T); 8193 } 8194 8195 8196 // We won't need to flush pending loads if this asm doesn't touch 8197 // memory and is nonvolatile. 8198 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8199 8200 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8201 if (IsCallBr) { 8202 // If this is a callbr we need to flush pending exports since inlineasm_br 8203 // is a terminator. We need to do this before nodes are glued to 8204 // the inlineasm_br node. 8205 Chain = getControlRoot(); 8206 } 8207 8208 // Second pass over the constraints: compute which constraint option to use. 8209 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8210 // If this is an output operand with a matching input operand, look up the 8211 // matching input. If their types mismatch, e.g. one is an integer, the 8212 // other is floating point, or their sizes are different, flag it as an 8213 // error. 8214 if (OpInfo.hasMatchingInput()) { 8215 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8216 patchMatchingInput(OpInfo, Input, DAG); 8217 } 8218 8219 // Compute the constraint code and ConstraintType to use. 8220 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8221 8222 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8223 OpInfo.Type == InlineAsm::isClobber) 8224 continue; 8225 8226 // If this is a memory input, and if the operand is not indirect, do what we 8227 // need to provide an address for the memory input. 8228 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8229 !OpInfo.isIndirect) { 8230 assert((OpInfo.isMultipleAlternative || 8231 (OpInfo.Type == InlineAsm::isInput)) && 8232 "Can only indirectify direct input operands!"); 8233 8234 // Memory operands really want the address of the value. 8235 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8236 8237 // There is no longer a Value* corresponding to this operand. 8238 OpInfo.CallOperandVal = nullptr; 8239 8240 // It is now an indirect operand. 8241 OpInfo.isIndirect = true; 8242 } 8243 8244 } 8245 8246 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8247 std::vector<SDValue> AsmNodeOperands; 8248 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8249 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8250 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8251 8252 // If we have a !srcloc metadata node associated with it, we want to attach 8253 // this to the ultimately generated inline asm machineinstr. To do this, we 8254 // pass in the third operand as this (potentially null) inline asm MDNode. 8255 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8256 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8257 8258 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8259 // bits as operand 3. 8260 AsmNodeOperands.push_back(DAG.getTargetConstant( 8261 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8262 8263 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8264 // this, assign virtual and physical registers for inputs and otput. 8265 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8266 // Assign Registers. 8267 SDISelAsmOperandInfo &RefOpInfo = 8268 OpInfo.isMatchingInputConstraint() 8269 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8270 : OpInfo; 8271 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8272 8273 switch (OpInfo.Type) { 8274 case InlineAsm::isOutput: 8275 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8276 unsigned ConstraintID = 8277 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8278 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8279 "Failed to convert memory constraint code to constraint id."); 8280 8281 // Add information to the INLINEASM node to know about this output. 8282 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8283 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8284 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8285 MVT::i32)); 8286 AsmNodeOperands.push_back(OpInfo.CallOperand); 8287 } else { 8288 // Otherwise, this outputs to a register (directly for C_Register / 8289 // C_RegisterClass, and a target-defined fashion for 8290 // C_Immediate/C_Other). Find a register that we can use. 8291 if (OpInfo.AssignedRegs.Regs.empty()) { 8292 emitInlineAsmError( 8293 CS, "couldn't allocate output register for constraint '" + 8294 Twine(OpInfo.ConstraintCode) + "'"); 8295 return; 8296 } 8297 8298 // Add information to the INLINEASM node to know that this register is 8299 // set. 8300 OpInfo.AssignedRegs.AddInlineAsmOperands( 8301 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8302 : InlineAsm::Kind_RegDef, 8303 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8304 } 8305 break; 8306 8307 case InlineAsm::isInput: { 8308 SDValue InOperandVal = OpInfo.CallOperand; 8309 8310 if (OpInfo.isMatchingInputConstraint()) { 8311 // If this is required to match an output register we have already set, 8312 // just use its register. 8313 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8314 AsmNodeOperands); 8315 unsigned OpFlag = 8316 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8317 if (InlineAsm::isRegDefKind(OpFlag) || 8318 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8319 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8320 if (OpInfo.isIndirect) { 8321 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8322 emitInlineAsmError(CS, "inline asm not supported yet:" 8323 " don't know how to handle tied " 8324 "indirect register inputs"); 8325 return; 8326 } 8327 8328 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8329 SmallVector<unsigned, 4> Regs; 8330 8331 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8332 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8333 MachineRegisterInfo &RegInfo = 8334 DAG.getMachineFunction().getRegInfo(); 8335 for (unsigned i = 0; i != NumRegs; ++i) 8336 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8337 } else { 8338 emitInlineAsmError(CS, "inline asm error: This value type register " 8339 "class is not natively supported!"); 8340 return; 8341 } 8342 8343 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8344 8345 SDLoc dl = getCurSDLoc(); 8346 // Use the produced MatchedRegs object to 8347 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8348 CS.getInstruction()); 8349 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8350 true, OpInfo.getMatchedOperand(), dl, 8351 DAG, AsmNodeOperands); 8352 break; 8353 } 8354 8355 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8356 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8357 "Unexpected number of operands"); 8358 // Add information to the INLINEASM node to know about this input. 8359 // See InlineAsm.h isUseOperandTiedToDef. 8360 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8361 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8362 OpInfo.getMatchedOperand()); 8363 AsmNodeOperands.push_back(DAG.getTargetConstant( 8364 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8365 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8366 break; 8367 } 8368 8369 // Treat indirect 'X' constraint as memory. 8370 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8371 OpInfo.isIndirect) 8372 OpInfo.ConstraintType = TargetLowering::C_Memory; 8373 8374 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8375 OpInfo.ConstraintType == TargetLowering::C_Other) { 8376 std::vector<SDValue> Ops; 8377 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8378 Ops, DAG); 8379 if (Ops.empty()) { 8380 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8381 if (isa<ConstantSDNode>(InOperandVal)) { 8382 emitInlineAsmError(CS, "value out of range for constraint '" + 8383 Twine(OpInfo.ConstraintCode) + "'"); 8384 return; 8385 } 8386 8387 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8388 Twine(OpInfo.ConstraintCode) + "'"); 8389 return; 8390 } 8391 8392 // Add information to the INLINEASM node to know about this input. 8393 unsigned ResOpType = 8394 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8395 AsmNodeOperands.push_back(DAG.getTargetConstant( 8396 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8397 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8398 break; 8399 } 8400 8401 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8402 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8403 assert(InOperandVal.getValueType() == 8404 TLI.getPointerTy(DAG.getDataLayout()) && 8405 "Memory operands expect pointer values"); 8406 8407 unsigned ConstraintID = 8408 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8409 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8410 "Failed to convert memory constraint code to constraint id."); 8411 8412 // Add information to the INLINEASM node to know about this input. 8413 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8414 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8415 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8416 getCurSDLoc(), 8417 MVT::i32)); 8418 AsmNodeOperands.push_back(InOperandVal); 8419 break; 8420 } 8421 8422 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8423 OpInfo.ConstraintType == TargetLowering::C_Register) && 8424 "Unknown constraint type!"); 8425 8426 // TODO: Support this. 8427 if (OpInfo.isIndirect) { 8428 emitInlineAsmError( 8429 CS, "Don't know how to handle indirect register inputs yet " 8430 "for constraint '" + 8431 Twine(OpInfo.ConstraintCode) + "'"); 8432 return; 8433 } 8434 8435 // Copy the input into the appropriate registers. 8436 if (OpInfo.AssignedRegs.Regs.empty()) { 8437 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8438 Twine(OpInfo.ConstraintCode) + "'"); 8439 return; 8440 } 8441 8442 SDLoc dl = getCurSDLoc(); 8443 8444 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8445 Chain, &Flag, CS.getInstruction()); 8446 8447 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8448 dl, DAG, AsmNodeOperands); 8449 break; 8450 } 8451 case InlineAsm::isClobber: 8452 // Add the clobbered value to the operand list, so that the register 8453 // allocator is aware that the physreg got clobbered. 8454 if (!OpInfo.AssignedRegs.Regs.empty()) 8455 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8456 false, 0, getCurSDLoc(), DAG, 8457 AsmNodeOperands); 8458 break; 8459 } 8460 } 8461 8462 // Finish up input operands. Set the input chain and add the flag last. 8463 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8464 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8465 8466 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8467 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8468 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8469 Flag = Chain.getValue(1); 8470 8471 // Do additional work to generate outputs. 8472 8473 SmallVector<EVT, 1> ResultVTs; 8474 SmallVector<SDValue, 1> ResultValues; 8475 SmallVector<SDValue, 8> OutChains; 8476 8477 llvm::Type *CSResultType = CS.getType(); 8478 ArrayRef<Type *> ResultTypes; 8479 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8480 ResultTypes = StructResult->elements(); 8481 else if (!CSResultType->isVoidTy()) 8482 ResultTypes = makeArrayRef(CSResultType); 8483 8484 auto CurResultType = ResultTypes.begin(); 8485 auto handleRegAssign = [&](SDValue V) { 8486 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8487 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8488 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8489 ++CurResultType; 8490 // If the type of the inline asm call site return value is different but has 8491 // same size as the type of the asm output bitcast it. One example of this 8492 // is for vectors with different width / number of elements. This can 8493 // happen for register classes that can contain multiple different value 8494 // types. The preg or vreg allocated may not have the same VT as was 8495 // expected. 8496 // 8497 // This can also happen for a return value that disagrees with the register 8498 // class it is put in, eg. a double in a general-purpose register on a 8499 // 32-bit machine. 8500 if (ResultVT != V.getValueType() && 8501 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8502 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8503 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8504 V.getValueType().isInteger()) { 8505 // If a result value was tied to an input value, the computed result 8506 // may have a wider width than the expected result. Extract the 8507 // relevant portion. 8508 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8509 } 8510 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8511 ResultVTs.push_back(ResultVT); 8512 ResultValues.push_back(V); 8513 }; 8514 8515 // Deal with output operands. 8516 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8517 if (OpInfo.Type == InlineAsm::isOutput) { 8518 SDValue Val; 8519 // Skip trivial output operands. 8520 if (OpInfo.AssignedRegs.Regs.empty()) 8521 continue; 8522 8523 switch (OpInfo.ConstraintType) { 8524 case TargetLowering::C_Register: 8525 case TargetLowering::C_RegisterClass: 8526 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8527 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8528 break; 8529 case TargetLowering::C_Immediate: 8530 case TargetLowering::C_Other: 8531 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8532 OpInfo, DAG); 8533 break; 8534 case TargetLowering::C_Memory: 8535 break; // Already handled. 8536 case TargetLowering::C_Unknown: 8537 assert(false && "Unexpected unknown constraint"); 8538 } 8539 8540 // Indirect output manifest as stores. Record output chains. 8541 if (OpInfo.isIndirect) { 8542 const Value *Ptr = OpInfo.CallOperandVal; 8543 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8544 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8545 MachinePointerInfo(Ptr)); 8546 OutChains.push_back(Store); 8547 } else { 8548 // generate CopyFromRegs to associated registers. 8549 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8550 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8551 for (const SDValue &V : Val->op_values()) 8552 handleRegAssign(V); 8553 } else 8554 handleRegAssign(Val); 8555 } 8556 } 8557 } 8558 8559 // Set results. 8560 if (!ResultValues.empty()) { 8561 assert(CurResultType == ResultTypes.end() && 8562 "Mismatch in number of ResultTypes"); 8563 assert(ResultValues.size() == ResultTypes.size() && 8564 "Mismatch in number of output operands in asm result"); 8565 8566 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8567 DAG.getVTList(ResultVTs), ResultValues); 8568 setValue(CS.getInstruction(), V); 8569 } 8570 8571 // Collect store chains. 8572 if (!OutChains.empty()) 8573 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8574 8575 // Only Update Root if inline assembly has a memory effect. 8576 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8577 DAG.setRoot(Chain); 8578 } 8579 8580 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8581 const Twine &Message) { 8582 LLVMContext &Ctx = *DAG.getContext(); 8583 Ctx.emitError(CS.getInstruction(), Message); 8584 8585 // Make sure we leave the DAG in a valid state 8586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8587 SmallVector<EVT, 1> ValueVTs; 8588 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8589 8590 if (ValueVTs.empty()) 8591 return; 8592 8593 SmallVector<SDValue, 1> Ops; 8594 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8595 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8596 8597 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8598 } 8599 8600 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8601 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8602 MVT::Other, getRoot(), 8603 getValue(I.getArgOperand(0)), 8604 DAG.getSrcValue(I.getArgOperand(0)))); 8605 } 8606 8607 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8609 const DataLayout &DL = DAG.getDataLayout(); 8610 SDValue V = DAG.getVAArg( 8611 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8612 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8613 DL.getABITypeAlignment(I.getType())); 8614 DAG.setRoot(V.getValue(1)); 8615 8616 if (I.getType()->isPointerTy()) 8617 V = DAG.getPtrExtOrTrunc( 8618 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8619 setValue(&I, V); 8620 } 8621 8622 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8623 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8624 MVT::Other, getRoot(), 8625 getValue(I.getArgOperand(0)), 8626 DAG.getSrcValue(I.getArgOperand(0)))); 8627 } 8628 8629 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8630 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8631 MVT::Other, getRoot(), 8632 getValue(I.getArgOperand(0)), 8633 getValue(I.getArgOperand(1)), 8634 DAG.getSrcValue(I.getArgOperand(0)), 8635 DAG.getSrcValue(I.getArgOperand(1)))); 8636 } 8637 8638 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8639 const Instruction &I, 8640 SDValue Op) { 8641 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8642 if (!Range) 8643 return Op; 8644 8645 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8646 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8647 return Op; 8648 8649 APInt Lo = CR.getUnsignedMin(); 8650 if (!Lo.isMinValue()) 8651 return Op; 8652 8653 APInt Hi = CR.getUnsignedMax(); 8654 unsigned Bits = std::max(Hi.getActiveBits(), 8655 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8656 8657 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8658 8659 SDLoc SL = getCurSDLoc(); 8660 8661 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8662 DAG.getValueType(SmallVT)); 8663 unsigned NumVals = Op.getNode()->getNumValues(); 8664 if (NumVals == 1) 8665 return ZExt; 8666 8667 SmallVector<SDValue, 4> Ops; 8668 8669 Ops.push_back(ZExt); 8670 for (unsigned I = 1; I != NumVals; ++I) 8671 Ops.push_back(Op.getValue(I)); 8672 8673 return DAG.getMergeValues(Ops, SL); 8674 } 8675 8676 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8677 /// the call being lowered. 8678 /// 8679 /// This is a helper for lowering intrinsics that follow a target calling 8680 /// convention or require stack pointer adjustment. Only a subset of the 8681 /// intrinsic's operands need to participate in the calling convention. 8682 void SelectionDAGBuilder::populateCallLoweringInfo( 8683 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8684 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8685 bool IsPatchPoint) { 8686 TargetLowering::ArgListTy Args; 8687 Args.reserve(NumArgs); 8688 8689 // Populate the argument list. 8690 // Attributes for args start at offset 1, after the return attribute. 8691 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8692 ArgI != ArgE; ++ArgI) { 8693 const Value *V = Call->getOperand(ArgI); 8694 8695 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8696 8697 TargetLowering::ArgListEntry Entry; 8698 Entry.Node = getValue(V); 8699 Entry.Ty = V->getType(); 8700 Entry.setAttributes(Call, ArgI); 8701 Args.push_back(Entry); 8702 } 8703 8704 CLI.setDebugLoc(getCurSDLoc()) 8705 .setChain(getRoot()) 8706 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8707 .setDiscardResult(Call->use_empty()) 8708 .setIsPatchPoint(IsPatchPoint); 8709 } 8710 8711 /// Add a stack map intrinsic call's live variable operands to a stackmap 8712 /// or patchpoint target node's operand list. 8713 /// 8714 /// Constants are converted to TargetConstants purely as an optimization to 8715 /// avoid constant materialization and register allocation. 8716 /// 8717 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8718 /// generate addess computation nodes, and so FinalizeISel can convert the 8719 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8720 /// address materialization and register allocation, but may also be required 8721 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8722 /// alloca in the entry block, then the runtime may assume that the alloca's 8723 /// StackMap location can be read immediately after compilation and that the 8724 /// location is valid at any point during execution (this is similar to the 8725 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8726 /// only available in a register, then the runtime would need to trap when 8727 /// execution reaches the StackMap in order to read the alloca's location. 8728 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8729 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8730 SelectionDAGBuilder &Builder) { 8731 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8732 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8733 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8734 Ops.push_back( 8735 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8736 Ops.push_back( 8737 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8738 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8739 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8740 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8741 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8742 } else 8743 Ops.push_back(OpVal); 8744 } 8745 } 8746 8747 /// Lower llvm.experimental.stackmap directly to its target opcode. 8748 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8749 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8750 // [live variables...]) 8751 8752 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8753 8754 SDValue Chain, InFlag, Callee, NullPtr; 8755 SmallVector<SDValue, 32> Ops; 8756 8757 SDLoc DL = getCurSDLoc(); 8758 Callee = getValue(CI.getCalledValue()); 8759 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8760 8761 // The stackmap intrinsic only records the live variables (the arguments 8762 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8763 // intrinsic, this won't be lowered to a function call. This means we don't 8764 // have to worry about calling conventions and target specific lowering code. 8765 // Instead we perform the call lowering right here. 8766 // 8767 // chain, flag = CALLSEQ_START(chain, 0, 0) 8768 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8769 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8770 // 8771 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8772 InFlag = Chain.getValue(1); 8773 8774 // Add the <id> and <numBytes> constants. 8775 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8776 Ops.push_back(DAG.getTargetConstant( 8777 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8778 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8779 Ops.push_back(DAG.getTargetConstant( 8780 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8781 MVT::i32)); 8782 8783 // Push live variables for the stack map. 8784 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8785 8786 // We are not pushing any register mask info here on the operands list, 8787 // because the stackmap doesn't clobber anything. 8788 8789 // Push the chain and the glue flag. 8790 Ops.push_back(Chain); 8791 Ops.push_back(InFlag); 8792 8793 // Create the STACKMAP node. 8794 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8795 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8796 Chain = SDValue(SM, 0); 8797 InFlag = Chain.getValue(1); 8798 8799 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8800 8801 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8802 8803 // Set the root to the target-lowered call chain. 8804 DAG.setRoot(Chain); 8805 8806 // Inform the Frame Information that we have a stackmap in this function. 8807 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8808 } 8809 8810 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8811 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8812 const BasicBlock *EHPadBB) { 8813 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8814 // i32 <numBytes>, 8815 // i8* <target>, 8816 // i32 <numArgs>, 8817 // [Args...], 8818 // [live variables...]) 8819 8820 CallingConv::ID CC = CS.getCallingConv(); 8821 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8822 bool HasDef = !CS->getType()->isVoidTy(); 8823 SDLoc dl = getCurSDLoc(); 8824 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8825 8826 // Handle immediate and symbolic callees. 8827 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8828 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8829 /*isTarget=*/true); 8830 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8831 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8832 SDLoc(SymbolicCallee), 8833 SymbolicCallee->getValueType(0)); 8834 8835 // Get the real number of arguments participating in the call <numArgs> 8836 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8837 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8838 8839 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8840 // Intrinsics include all meta-operands up to but not including CC. 8841 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8842 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8843 "Not enough arguments provided to the patchpoint intrinsic"); 8844 8845 // For AnyRegCC the arguments are lowered later on manually. 8846 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8847 Type *ReturnTy = 8848 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8849 8850 TargetLowering::CallLoweringInfo CLI(DAG); 8851 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8852 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8853 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8854 8855 SDNode *CallEnd = Result.second.getNode(); 8856 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8857 CallEnd = CallEnd->getOperand(0).getNode(); 8858 8859 /// Get a call instruction from the call sequence chain. 8860 /// Tail calls are not allowed. 8861 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8862 "Expected a callseq node."); 8863 SDNode *Call = CallEnd->getOperand(0).getNode(); 8864 bool HasGlue = Call->getGluedNode(); 8865 8866 // Replace the target specific call node with the patchable intrinsic. 8867 SmallVector<SDValue, 8> Ops; 8868 8869 // Add the <id> and <numBytes> constants. 8870 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8871 Ops.push_back(DAG.getTargetConstant( 8872 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8873 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8874 Ops.push_back(DAG.getTargetConstant( 8875 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8876 MVT::i32)); 8877 8878 // Add the callee. 8879 Ops.push_back(Callee); 8880 8881 // Adjust <numArgs> to account for any arguments that have been passed on the 8882 // stack instead. 8883 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8884 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8885 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8886 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8887 8888 // Add the calling convention 8889 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8890 8891 // Add the arguments we omitted previously. The register allocator should 8892 // place these in any free register. 8893 if (IsAnyRegCC) 8894 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8895 Ops.push_back(getValue(CS.getArgument(i))); 8896 8897 // Push the arguments from the call instruction up to the register mask. 8898 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8899 Ops.append(Call->op_begin() + 2, e); 8900 8901 // Push live variables for the stack map. 8902 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8903 8904 // Push the register mask info. 8905 if (HasGlue) 8906 Ops.push_back(*(Call->op_end()-2)); 8907 else 8908 Ops.push_back(*(Call->op_end()-1)); 8909 8910 // Push the chain (this is originally the first operand of the call, but 8911 // becomes now the last or second to last operand). 8912 Ops.push_back(*(Call->op_begin())); 8913 8914 // Push the glue flag (last operand). 8915 if (HasGlue) 8916 Ops.push_back(*(Call->op_end()-1)); 8917 8918 SDVTList NodeTys; 8919 if (IsAnyRegCC && HasDef) { 8920 // Create the return types based on the intrinsic definition 8921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8922 SmallVector<EVT, 3> ValueVTs; 8923 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8924 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8925 8926 // There is always a chain and a glue type at the end 8927 ValueVTs.push_back(MVT::Other); 8928 ValueVTs.push_back(MVT::Glue); 8929 NodeTys = DAG.getVTList(ValueVTs); 8930 } else 8931 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8932 8933 // Replace the target specific call node with a PATCHPOINT node. 8934 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8935 dl, NodeTys, Ops); 8936 8937 // Update the NodeMap. 8938 if (HasDef) { 8939 if (IsAnyRegCC) 8940 setValue(CS.getInstruction(), SDValue(MN, 0)); 8941 else 8942 setValue(CS.getInstruction(), Result.first); 8943 } 8944 8945 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8946 // call sequence. Furthermore the location of the chain and glue can change 8947 // when the AnyReg calling convention is used and the intrinsic returns a 8948 // value. 8949 if (IsAnyRegCC && HasDef) { 8950 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8951 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8952 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8953 } else 8954 DAG.ReplaceAllUsesWith(Call, MN); 8955 DAG.DeleteNode(Call); 8956 8957 // Inform the Frame Information that we have a patchpoint in this function. 8958 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8959 } 8960 8961 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8962 unsigned Intrinsic) { 8963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8964 SDValue Op1 = getValue(I.getArgOperand(0)); 8965 SDValue Op2; 8966 if (I.getNumArgOperands() > 1) 8967 Op2 = getValue(I.getArgOperand(1)); 8968 SDLoc dl = getCurSDLoc(); 8969 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8970 SDValue Res; 8971 FastMathFlags FMF; 8972 if (isa<FPMathOperator>(I)) 8973 FMF = I.getFastMathFlags(); 8974 8975 switch (Intrinsic) { 8976 case Intrinsic::experimental_vector_reduce_v2_fadd: 8977 if (FMF.allowReassoc()) 8978 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8979 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8980 else 8981 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8982 break; 8983 case Intrinsic::experimental_vector_reduce_v2_fmul: 8984 if (FMF.allowReassoc()) 8985 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8986 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8987 else 8988 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8989 break; 8990 case Intrinsic::experimental_vector_reduce_add: 8991 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8992 break; 8993 case Intrinsic::experimental_vector_reduce_mul: 8994 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8995 break; 8996 case Intrinsic::experimental_vector_reduce_and: 8997 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8998 break; 8999 case Intrinsic::experimental_vector_reduce_or: 9000 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9001 break; 9002 case Intrinsic::experimental_vector_reduce_xor: 9003 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9004 break; 9005 case Intrinsic::experimental_vector_reduce_smax: 9006 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9007 break; 9008 case Intrinsic::experimental_vector_reduce_smin: 9009 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9010 break; 9011 case Intrinsic::experimental_vector_reduce_umax: 9012 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9013 break; 9014 case Intrinsic::experimental_vector_reduce_umin: 9015 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9016 break; 9017 case Intrinsic::experimental_vector_reduce_fmax: 9018 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 9019 break; 9020 case Intrinsic::experimental_vector_reduce_fmin: 9021 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 9022 break; 9023 default: 9024 llvm_unreachable("Unhandled vector reduce intrinsic"); 9025 } 9026 setValue(&I, Res); 9027 } 9028 9029 /// Returns an AttributeList representing the attributes applied to the return 9030 /// value of the given call. 9031 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9032 SmallVector<Attribute::AttrKind, 2> Attrs; 9033 if (CLI.RetSExt) 9034 Attrs.push_back(Attribute::SExt); 9035 if (CLI.RetZExt) 9036 Attrs.push_back(Attribute::ZExt); 9037 if (CLI.IsInReg) 9038 Attrs.push_back(Attribute::InReg); 9039 9040 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9041 Attrs); 9042 } 9043 9044 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9045 /// implementation, which just calls LowerCall. 9046 /// FIXME: When all targets are 9047 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9048 std::pair<SDValue, SDValue> 9049 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9050 // Handle the incoming return values from the call. 9051 CLI.Ins.clear(); 9052 Type *OrigRetTy = CLI.RetTy; 9053 SmallVector<EVT, 4> RetTys; 9054 SmallVector<uint64_t, 4> Offsets; 9055 auto &DL = CLI.DAG.getDataLayout(); 9056 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9057 9058 if (CLI.IsPostTypeLegalization) { 9059 // If we are lowering a libcall after legalization, split the return type. 9060 SmallVector<EVT, 4> OldRetTys; 9061 SmallVector<uint64_t, 4> OldOffsets; 9062 RetTys.swap(OldRetTys); 9063 Offsets.swap(OldOffsets); 9064 9065 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9066 EVT RetVT = OldRetTys[i]; 9067 uint64_t Offset = OldOffsets[i]; 9068 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9069 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9070 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9071 RetTys.append(NumRegs, RegisterVT); 9072 for (unsigned j = 0; j != NumRegs; ++j) 9073 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9074 } 9075 } 9076 9077 SmallVector<ISD::OutputArg, 4> Outs; 9078 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9079 9080 bool CanLowerReturn = 9081 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9082 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9083 9084 SDValue DemoteStackSlot; 9085 int DemoteStackIdx = -100; 9086 if (!CanLowerReturn) { 9087 // FIXME: equivalent assert? 9088 // assert(!CS.hasInAllocaArgument() && 9089 // "sret demotion is incompatible with inalloca"); 9090 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9091 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9092 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9093 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9094 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9095 DL.getAllocaAddrSpace()); 9096 9097 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9098 ArgListEntry Entry; 9099 Entry.Node = DemoteStackSlot; 9100 Entry.Ty = StackSlotPtrType; 9101 Entry.IsSExt = false; 9102 Entry.IsZExt = false; 9103 Entry.IsInReg = false; 9104 Entry.IsSRet = true; 9105 Entry.IsNest = false; 9106 Entry.IsByVal = false; 9107 Entry.IsReturned = false; 9108 Entry.IsSwiftSelf = false; 9109 Entry.IsSwiftError = false; 9110 Entry.IsCFGuardTarget = false; 9111 Entry.Alignment = Align; 9112 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9113 CLI.NumFixedArgs += 1; 9114 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9115 9116 // sret demotion isn't compatible with tail-calls, since the sret argument 9117 // points into the callers stack frame. 9118 CLI.IsTailCall = false; 9119 } else { 9120 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9121 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9122 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9123 ISD::ArgFlagsTy Flags; 9124 if (NeedsRegBlock) { 9125 Flags.setInConsecutiveRegs(); 9126 if (I == RetTys.size() - 1) 9127 Flags.setInConsecutiveRegsLast(); 9128 } 9129 EVT VT = RetTys[I]; 9130 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9131 CLI.CallConv, VT); 9132 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9133 CLI.CallConv, VT); 9134 for (unsigned i = 0; i != NumRegs; ++i) { 9135 ISD::InputArg MyFlags; 9136 MyFlags.Flags = Flags; 9137 MyFlags.VT = RegisterVT; 9138 MyFlags.ArgVT = VT; 9139 MyFlags.Used = CLI.IsReturnValueUsed; 9140 if (CLI.RetTy->isPointerTy()) { 9141 MyFlags.Flags.setPointer(); 9142 MyFlags.Flags.setPointerAddrSpace( 9143 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9144 } 9145 if (CLI.RetSExt) 9146 MyFlags.Flags.setSExt(); 9147 if (CLI.RetZExt) 9148 MyFlags.Flags.setZExt(); 9149 if (CLI.IsInReg) 9150 MyFlags.Flags.setInReg(); 9151 CLI.Ins.push_back(MyFlags); 9152 } 9153 } 9154 } 9155 9156 // We push in swifterror return as the last element of CLI.Ins. 9157 ArgListTy &Args = CLI.getArgs(); 9158 if (supportSwiftError()) { 9159 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9160 if (Args[i].IsSwiftError) { 9161 ISD::InputArg MyFlags; 9162 MyFlags.VT = getPointerTy(DL); 9163 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9164 MyFlags.Flags.setSwiftError(); 9165 CLI.Ins.push_back(MyFlags); 9166 } 9167 } 9168 } 9169 9170 // Handle all of the outgoing arguments. 9171 CLI.Outs.clear(); 9172 CLI.OutVals.clear(); 9173 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9174 SmallVector<EVT, 4> ValueVTs; 9175 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9176 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9177 Type *FinalType = Args[i].Ty; 9178 if (Args[i].IsByVal) 9179 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9180 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9181 FinalType, CLI.CallConv, CLI.IsVarArg); 9182 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9183 ++Value) { 9184 EVT VT = ValueVTs[Value]; 9185 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9186 SDValue Op = SDValue(Args[i].Node.getNode(), 9187 Args[i].Node.getResNo() + Value); 9188 ISD::ArgFlagsTy Flags; 9189 9190 // Certain targets (such as MIPS), may have a different ABI alignment 9191 // for a type depending on the context. Give the target a chance to 9192 // specify the alignment it wants. 9193 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9194 9195 if (Args[i].Ty->isPointerTy()) { 9196 Flags.setPointer(); 9197 Flags.setPointerAddrSpace( 9198 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9199 } 9200 if (Args[i].IsZExt) 9201 Flags.setZExt(); 9202 if (Args[i].IsSExt) 9203 Flags.setSExt(); 9204 if (Args[i].IsInReg) { 9205 // If we are using vectorcall calling convention, a structure that is 9206 // passed InReg - is surely an HVA 9207 if (CLI.CallConv == CallingConv::X86_VectorCall && 9208 isa<StructType>(FinalType)) { 9209 // The first value of a structure is marked 9210 if (0 == Value) 9211 Flags.setHvaStart(); 9212 Flags.setHva(); 9213 } 9214 // Set InReg Flag 9215 Flags.setInReg(); 9216 } 9217 if (Args[i].IsSRet) 9218 Flags.setSRet(); 9219 if (Args[i].IsSwiftSelf) 9220 Flags.setSwiftSelf(); 9221 if (Args[i].IsSwiftError) 9222 Flags.setSwiftError(); 9223 if (Args[i].IsCFGuardTarget) 9224 Flags.setCFGuardTarget(); 9225 if (Args[i].IsByVal) 9226 Flags.setByVal(); 9227 if (Args[i].IsInAlloca) { 9228 Flags.setInAlloca(); 9229 // Set the byval flag for CCAssignFn callbacks that don't know about 9230 // inalloca. This way we can know how many bytes we should've allocated 9231 // and how many bytes a callee cleanup function will pop. If we port 9232 // inalloca to more targets, we'll have to add custom inalloca handling 9233 // in the various CC lowering callbacks. 9234 Flags.setByVal(); 9235 } 9236 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9237 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9238 Type *ElementTy = Ty->getElementType(); 9239 9240 unsigned FrameSize = DL.getTypeAllocSize( 9241 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9242 Flags.setByValSize(FrameSize); 9243 9244 // info is not there but there are cases it cannot get right. 9245 unsigned FrameAlign; 9246 if (Args[i].Alignment) 9247 FrameAlign = Args[i].Alignment; 9248 else 9249 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9250 Flags.setByValAlign(Align(FrameAlign)); 9251 } 9252 if (Args[i].IsNest) 9253 Flags.setNest(); 9254 if (NeedsRegBlock) 9255 Flags.setInConsecutiveRegs(); 9256 Flags.setOrigAlign(OriginalAlignment); 9257 9258 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9259 CLI.CallConv, VT); 9260 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9261 CLI.CallConv, VT); 9262 SmallVector<SDValue, 4> Parts(NumParts); 9263 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9264 9265 if (Args[i].IsSExt) 9266 ExtendKind = ISD::SIGN_EXTEND; 9267 else if (Args[i].IsZExt) 9268 ExtendKind = ISD::ZERO_EXTEND; 9269 9270 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9271 // for now. 9272 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9273 CanLowerReturn) { 9274 assert((CLI.RetTy == Args[i].Ty || 9275 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9276 CLI.RetTy->getPointerAddressSpace() == 9277 Args[i].Ty->getPointerAddressSpace())) && 9278 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9279 // Before passing 'returned' to the target lowering code, ensure that 9280 // either the register MVT and the actual EVT are the same size or that 9281 // the return value and argument are extended in the same way; in these 9282 // cases it's safe to pass the argument register value unchanged as the 9283 // return register value (although it's at the target's option whether 9284 // to do so) 9285 // TODO: allow code generation to take advantage of partially preserved 9286 // registers rather than clobbering the entire register when the 9287 // parameter extension method is not compatible with the return 9288 // extension method 9289 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9290 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9291 CLI.RetZExt == Args[i].IsZExt)) 9292 Flags.setReturned(); 9293 } 9294 9295 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9296 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9297 9298 for (unsigned j = 0; j != NumParts; ++j) { 9299 // if it isn't first piece, alignment must be 1 9300 // For scalable vectors the scalable part is currently handled 9301 // by individual targets, so we just use the known minimum size here. 9302 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9303 i < CLI.NumFixedArgs, i, 9304 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9305 if (NumParts > 1 && j == 0) 9306 MyFlags.Flags.setSplit(); 9307 else if (j != 0) { 9308 MyFlags.Flags.setOrigAlign(Align(1)); 9309 if (j == NumParts - 1) 9310 MyFlags.Flags.setSplitEnd(); 9311 } 9312 9313 CLI.Outs.push_back(MyFlags); 9314 CLI.OutVals.push_back(Parts[j]); 9315 } 9316 9317 if (NeedsRegBlock && Value == NumValues - 1) 9318 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9319 } 9320 } 9321 9322 SmallVector<SDValue, 4> InVals; 9323 CLI.Chain = LowerCall(CLI, InVals); 9324 9325 // Update CLI.InVals to use outside of this function. 9326 CLI.InVals = InVals; 9327 9328 // Verify that the target's LowerCall behaved as expected. 9329 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9330 "LowerCall didn't return a valid chain!"); 9331 assert((!CLI.IsTailCall || InVals.empty()) && 9332 "LowerCall emitted a return value for a tail call!"); 9333 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9334 "LowerCall didn't emit the correct number of values!"); 9335 9336 // For a tail call, the return value is merely live-out and there aren't 9337 // any nodes in the DAG representing it. Return a special value to 9338 // indicate that a tail call has been emitted and no more Instructions 9339 // should be processed in the current block. 9340 if (CLI.IsTailCall) { 9341 CLI.DAG.setRoot(CLI.Chain); 9342 return std::make_pair(SDValue(), SDValue()); 9343 } 9344 9345 #ifndef NDEBUG 9346 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9347 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9348 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9349 "LowerCall emitted a value with the wrong type!"); 9350 } 9351 #endif 9352 9353 SmallVector<SDValue, 4> ReturnValues; 9354 if (!CanLowerReturn) { 9355 // The instruction result is the result of loading from the 9356 // hidden sret parameter. 9357 SmallVector<EVT, 1> PVTs; 9358 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9359 9360 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9361 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9362 EVT PtrVT = PVTs[0]; 9363 9364 unsigned NumValues = RetTys.size(); 9365 ReturnValues.resize(NumValues); 9366 SmallVector<SDValue, 4> Chains(NumValues); 9367 9368 // An aggregate return value cannot wrap around the address space, so 9369 // offsets to its parts don't wrap either. 9370 SDNodeFlags Flags; 9371 Flags.setNoUnsignedWrap(true); 9372 9373 for (unsigned i = 0; i < NumValues; ++i) { 9374 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9375 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9376 PtrVT), Flags); 9377 SDValue L = CLI.DAG.getLoad( 9378 RetTys[i], CLI.DL, CLI.Chain, Add, 9379 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9380 DemoteStackIdx, Offsets[i]), 9381 /* Alignment = */ 1); 9382 ReturnValues[i] = L; 9383 Chains[i] = L.getValue(1); 9384 } 9385 9386 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9387 } else { 9388 // Collect the legal value parts into potentially illegal values 9389 // that correspond to the original function's return values. 9390 Optional<ISD::NodeType> AssertOp; 9391 if (CLI.RetSExt) 9392 AssertOp = ISD::AssertSext; 9393 else if (CLI.RetZExt) 9394 AssertOp = ISD::AssertZext; 9395 unsigned CurReg = 0; 9396 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9397 EVT VT = RetTys[I]; 9398 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9399 CLI.CallConv, VT); 9400 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9401 CLI.CallConv, VT); 9402 9403 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9404 NumRegs, RegisterVT, VT, nullptr, 9405 CLI.CallConv, AssertOp)); 9406 CurReg += NumRegs; 9407 } 9408 9409 // For a function returning void, there is no return value. We can't create 9410 // such a node, so we just return a null return value in that case. In 9411 // that case, nothing will actually look at the value. 9412 if (ReturnValues.empty()) 9413 return std::make_pair(SDValue(), CLI.Chain); 9414 } 9415 9416 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9417 CLI.DAG.getVTList(RetTys), ReturnValues); 9418 return std::make_pair(Res, CLI.Chain); 9419 } 9420 9421 void TargetLowering::LowerOperationWrapper(SDNode *N, 9422 SmallVectorImpl<SDValue> &Results, 9423 SelectionDAG &DAG) const { 9424 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9425 Results.push_back(Res); 9426 } 9427 9428 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9429 llvm_unreachable("LowerOperation not implemented for this target!"); 9430 } 9431 9432 void 9433 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9434 SDValue Op = getNonRegisterValue(V); 9435 assert((Op.getOpcode() != ISD::CopyFromReg || 9436 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9437 "Copy from a reg to the same reg!"); 9438 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9439 9440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9441 // If this is an InlineAsm we have to match the registers required, not the 9442 // notional registers required by the type. 9443 9444 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9445 None); // This is not an ABI copy. 9446 SDValue Chain = DAG.getEntryNode(); 9447 9448 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9449 FuncInfo.PreferredExtendType.end()) 9450 ? ISD::ANY_EXTEND 9451 : FuncInfo.PreferredExtendType[V]; 9452 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9453 PendingExports.push_back(Chain); 9454 } 9455 9456 #include "llvm/CodeGen/SelectionDAGISel.h" 9457 9458 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9459 /// entry block, return true. This includes arguments used by switches, since 9460 /// the switch may expand into multiple basic blocks. 9461 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9462 // With FastISel active, we may be splitting blocks, so force creation 9463 // of virtual registers for all non-dead arguments. 9464 if (FastISel) 9465 return A->use_empty(); 9466 9467 const BasicBlock &Entry = A->getParent()->front(); 9468 for (const User *U : A->users()) 9469 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9470 return false; // Use not in entry block. 9471 9472 return true; 9473 } 9474 9475 using ArgCopyElisionMapTy = 9476 DenseMap<const Argument *, 9477 std::pair<const AllocaInst *, const StoreInst *>>; 9478 9479 /// Scan the entry block of the function in FuncInfo for arguments that look 9480 /// like copies into a local alloca. Record any copied arguments in 9481 /// ArgCopyElisionCandidates. 9482 static void 9483 findArgumentCopyElisionCandidates(const DataLayout &DL, 9484 FunctionLoweringInfo *FuncInfo, 9485 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9486 // Record the state of every static alloca used in the entry block. Argument 9487 // allocas are all used in the entry block, so we need approximately as many 9488 // entries as we have arguments. 9489 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9490 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9491 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9492 StaticAllocas.reserve(NumArgs * 2); 9493 9494 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9495 if (!V) 9496 return nullptr; 9497 V = V->stripPointerCasts(); 9498 const auto *AI = dyn_cast<AllocaInst>(V); 9499 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9500 return nullptr; 9501 auto Iter = StaticAllocas.insert({AI, Unknown}); 9502 return &Iter.first->second; 9503 }; 9504 9505 // Look for stores of arguments to static allocas. Look through bitcasts and 9506 // GEPs to handle type coercions, as long as the alloca is fully initialized 9507 // by the store. Any non-store use of an alloca escapes it and any subsequent 9508 // unanalyzed store might write it. 9509 // FIXME: Handle structs initialized with multiple stores. 9510 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9511 // Look for stores, and handle non-store uses conservatively. 9512 const auto *SI = dyn_cast<StoreInst>(&I); 9513 if (!SI) { 9514 // We will look through cast uses, so ignore them completely. 9515 if (I.isCast()) 9516 continue; 9517 // Ignore debug info intrinsics, they don't escape or store to allocas. 9518 if (isa<DbgInfoIntrinsic>(I)) 9519 continue; 9520 // This is an unknown instruction. Assume it escapes or writes to all 9521 // static alloca operands. 9522 for (const Use &U : I.operands()) { 9523 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9524 *Info = StaticAllocaInfo::Clobbered; 9525 } 9526 continue; 9527 } 9528 9529 // If the stored value is a static alloca, mark it as escaped. 9530 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9531 *Info = StaticAllocaInfo::Clobbered; 9532 9533 // Check if the destination is a static alloca. 9534 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9535 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9536 if (!Info) 9537 continue; 9538 const AllocaInst *AI = cast<AllocaInst>(Dst); 9539 9540 // Skip allocas that have been initialized or clobbered. 9541 if (*Info != StaticAllocaInfo::Unknown) 9542 continue; 9543 9544 // Check if the stored value is an argument, and that this store fully 9545 // initializes the alloca. Don't elide copies from the same argument twice. 9546 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9547 const auto *Arg = dyn_cast<Argument>(Val); 9548 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9549 Arg->getType()->isEmptyTy() || 9550 DL.getTypeStoreSize(Arg->getType()) != 9551 DL.getTypeAllocSize(AI->getAllocatedType()) || 9552 ArgCopyElisionCandidates.count(Arg)) { 9553 *Info = StaticAllocaInfo::Clobbered; 9554 continue; 9555 } 9556 9557 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9558 << '\n'); 9559 9560 // Mark this alloca and store for argument copy elision. 9561 *Info = StaticAllocaInfo::Elidable; 9562 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9563 9564 // Stop scanning if we've seen all arguments. This will happen early in -O0 9565 // builds, which is useful, because -O0 builds have large entry blocks and 9566 // many allocas. 9567 if (ArgCopyElisionCandidates.size() == NumArgs) 9568 break; 9569 } 9570 } 9571 9572 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9573 /// ArgVal is a load from a suitable fixed stack object. 9574 static void tryToElideArgumentCopy( 9575 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9576 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9577 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9578 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9579 SDValue ArgVal, bool &ArgHasUses) { 9580 // Check if this is a load from a fixed stack object. 9581 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9582 if (!LNode) 9583 return; 9584 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9585 if (!FINode) 9586 return; 9587 9588 // Check that the fixed stack object is the right size and alignment. 9589 // Look at the alignment that the user wrote on the alloca instead of looking 9590 // at the stack object. 9591 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9592 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9593 const AllocaInst *AI = ArgCopyIter->second.first; 9594 int FixedIndex = FINode->getIndex(); 9595 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9596 int OldIndex = AllocaIndex; 9597 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9598 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9599 LLVM_DEBUG( 9600 dbgs() << " argument copy elision failed due to bad fixed stack " 9601 "object size\n"); 9602 return; 9603 } 9604 unsigned RequiredAlignment = AI->getAlignment(); 9605 if (!RequiredAlignment) { 9606 RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( 9607 AI->getAllocatedType()); 9608 } 9609 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9610 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9611 "greater than stack argument alignment (" 9612 << RequiredAlignment << " vs " 9613 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9614 return; 9615 } 9616 9617 // Perform the elision. Delete the old stack object and replace its only use 9618 // in the variable info map. Mark the stack object as mutable. 9619 LLVM_DEBUG({ 9620 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9621 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9622 << '\n'; 9623 }); 9624 MFI.RemoveStackObject(OldIndex); 9625 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9626 AllocaIndex = FixedIndex; 9627 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9628 Chains.push_back(ArgVal.getValue(1)); 9629 9630 // Avoid emitting code for the store implementing the copy. 9631 const StoreInst *SI = ArgCopyIter->second.second; 9632 ElidedArgCopyInstrs.insert(SI); 9633 9634 // Check for uses of the argument again so that we can avoid exporting ArgVal 9635 // if it is't used by anything other than the store. 9636 for (const Value *U : Arg.users()) { 9637 if (U != SI) { 9638 ArgHasUses = true; 9639 break; 9640 } 9641 } 9642 } 9643 9644 void SelectionDAGISel::LowerArguments(const Function &F) { 9645 SelectionDAG &DAG = SDB->DAG; 9646 SDLoc dl = SDB->getCurSDLoc(); 9647 const DataLayout &DL = DAG.getDataLayout(); 9648 SmallVector<ISD::InputArg, 16> Ins; 9649 9650 if (!FuncInfo->CanLowerReturn) { 9651 // Put in an sret pointer parameter before all the other parameters. 9652 SmallVector<EVT, 1> ValueVTs; 9653 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9654 F.getReturnType()->getPointerTo( 9655 DAG.getDataLayout().getAllocaAddrSpace()), 9656 ValueVTs); 9657 9658 // NOTE: Assuming that a pointer will never break down to more than one VT 9659 // or one register. 9660 ISD::ArgFlagsTy Flags; 9661 Flags.setSRet(); 9662 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9663 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9664 ISD::InputArg::NoArgIndex, 0); 9665 Ins.push_back(RetArg); 9666 } 9667 9668 // Look for stores of arguments to static allocas. Mark such arguments with a 9669 // flag to ask the target to give us the memory location of that argument if 9670 // available. 9671 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9672 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9673 ArgCopyElisionCandidates); 9674 9675 // Set up the incoming argument description vector. 9676 for (const Argument &Arg : F.args()) { 9677 unsigned ArgNo = Arg.getArgNo(); 9678 SmallVector<EVT, 4> ValueVTs; 9679 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9680 bool isArgValueUsed = !Arg.use_empty(); 9681 unsigned PartBase = 0; 9682 Type *FinalType = Arg.getType(); 9683 if (Arg.hasAttribute(Attribute::ByVal)) 9684 FinalType = Arg.getParamByValType(); 9685 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9686 FinalType, F.getCallingConv(), F.isVarArg()); 9687 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9688 Value != NumValues; ++Value) { 9689 EVT VT = ValueVTs[Value]; 9690 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9691 ISD::ArgFlagsTy Flags; 9692 9693 // Certain targets (such as MIPS), may have a different ABI alignment 9694 // for a type depending on the context. Give the target a chance to 9695 // specify the alignment it wants. 9696 const Align OriginalAlignment( 9697 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9698 9699 if (Arg.getType()->isPointerTy()) { 9700 Flags.setPointer(); 9701 Flags.setPointerAddrSpace( 9702 cast<PointerType>(Arg.getType())->getAddressSpace()); 9703 } 9704 if (Arg.hasAttribute(Attribute::ZExt)) 9705 Flags.setZExt(); 9706 if (Arg.hasAttribute(Attribute::SExt)) 9707 Flags.setSExt(); 9708 if (Arg.hasAttribute(Attribute::InReg)) { 9709 // If we are using vectorcall calling convention, a structure that is 9710 // passed InReg - is surely an HVA 9711 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9712 isa<StructType>(Arg.getType())) { 9713 // The first value of a structure is marked 9714 if (0 == Value) 9715 Flags.setHvaStart(); 9716 Flags.setHva(); 9717 } 9718 // Set InReg Flag 9719 Flags.setInReg(); 9720 } 9721 if (Arg.hasAttribute(Attribute::StructRet)) 9722 Flags.setSRet(); 9723 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9724 Flags.setSwiftSelf(); 9725 if (Arg.hasAttribute(Attribute::SwiftError)) 9726 Flags.setSwiftError(); 9727 if (Arg.hasAttribute(Attribute::ByVal)) 9728 Flags.setByVal(); 9729 if (Arg.hasAttribute(Attribute::InAlloca)) { 9730 Flags.setInAlloca(); 9731 // Set the byval flag for CCAssignFn callbacks that don't know about 9732 // inalloca. This way we can know how many bytes we should've allocated 9733 // and how many bytes a callee cleanup function will pop. If we port 9734 // inalloca to more targets, we'll have to add custom inalloca handling 9735 // in the various CC lowering callbacks. 9736 Flags.setByVal(); 9737 } 9738 if (F.getCallingConv() == CallingConv::X86_INTR) { 9739 // IA Interrupt passes frame (1st parameter) by value in the stack. 9740 if (ArgNo == 0) 9741 Flags.setByVal(); 9742 } 9743 if (Flags.isByVal() || Flags.isInAlloca()) { 9744 Type *ElementTy = Arg.getParamByValType(); 9745 9746 // For ByVal, size and alignment should be passed from FE. BE will 9747 // guess if this info is not there but there are cases it cannot get 9748 // right. 9749 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9750 Flags.setByValSize(FrameSize); 9751 9752 unsigned FrameAlign; 9753 if (Arg.getParamAlignment()) 9754 FrameAlign = Arg.getParamAlignment(); 9755 else 9756 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9757 Flags.setByValAlign(Align(FrameAlign)); 9758 } 9759 if (Arg.hasAttribute(Attribute::Nest)) 9760 Flags.setNest(); 9761 if (NeedsRegBlock) 9762 Flags.setInConsecutiveRegs(); 9763 Flags.setOrigAlign(OriginalAlignment); 9764 if (ArgCopyElisionCandidates.count(&Arg)) 9765 Flags.setCopyElisionCandidate(); 9766 if (Arg.hasAttribute(Attribute::Returned)) 9767 Flags.setReturned(); 9768 9769 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9770 *CurDAG->getContext(), F.getCallingConv(), VT); 9771 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9772 *CurDAG->getContext(), F.getCallingConv(), VT); 9773 for (unsigned i = 0; i != NumRegs; ++i) { 9774 // For scalable vectors, use the minimum size; individual targets 9775 // are responsible for handling scalable vector arguments and 9776 // return values. 9777 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9778 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9779 if (NumRegs > 1 && i == 0) 9780 MyFlags.Flags.setSplit(); 9781 // if it isn't first piece, alignment must be 1 9782 else if (i > 0) { 9783 MyFlags.Flags.setOrigAlign(Align(1)); 9784 if (i == NumRegs - 1) 9785 MyFlags.Flags.setSplitEnd(); 9786 } 9787 Ins.push_back(MyFlags); 9788 } 9789 if (NeedsRegBlock && Value == NumValues - 1) 9790 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9791 PartBase += VT.getStoreSize().getKnownMinSize(); 9792 } 9793 } 9794 9795 // Call the target to set up the argument values. 9796 SmallVector<SDValue, 8> InVals; 9797 SDValue NewRoot = TLI->LowerFormalArguments( 9798 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9799 9800 // Verify that the target's LowerFormalArguments behaved as expected. 9801 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9802 "LowerFormalArguments didn't return a valid chain!"); 9803 assert(InVals.size() == Ins.size() && 9804 "LowerFormalArguments didn't emit the correct number of values!"); 9805 LLVM_DEBUG({ 9806 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9807 assert(InVals[i].getNode() && 9808 "LowerFormalArguments emitted a null value!"); 9809 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9810 "LowerFormalArguments emitted a value with the wrong type!"); 9811 } 9812 }); 9813 9814 // Update the DAG with the new chain value resulting from argument lowering. 9815 DAG.setRoot(NewRoot); 9816 9817 // Set up the argument values. 9818 unsigned i = 0; 9819 if (!FuncInfo->CanLowerReturn) { 9820 // Create a virtual register for the sret pointer, and put in a copy 9821 // from the sret argument into it. 9822 SmallVector<EVT, 1> ValueVTs; 9823 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9824 F.getReturnType()->getPointerTo( 9825 DAG.getDataLayout().getAllocaAddrSpace()), 9826 ValueVTs); 9827 MVT VT = ValueVTs[0].getSimpleVT(); 9828 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9829 Optional<ISD::NodeType> AssertOp = None; 9830 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9831 nullptr, F.getCallingConv(), AssertOp); 9832 9833 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9834 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9835 Register SRetReg = 9836 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9837 FuncInfo->DemoteRegister = SRetReg; 9838 NewRoot = 9839 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9840 DAG.setRoot(NewRoot); 9841 9842 // i indexes lowered arguments. Bump it past the hidden sret argument. 9843 ++i; 9844 } 9845 9846 SmallVector<SDValue, 4> Chains; 9847 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9848 for (const Argument &Arg : F.args()) { 9849 SmallVector<SDValue, 4> ArgValues; 9850 SmallVector<EVT, 4> ValueVTs; 9851 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9852 unsigned NumValues = ValueVTs.size(); 9853 if (NumValues == 0) 9854 continue; 9855 9856 bool ArgHasUses = !Arg.use_empty(); 9857 9858 // Elide the copying store if the target loaded this argument from a 9859 // suitable fixed stack object. 9860 if (Ins[i].Flags.isCopyElisionCandidate()) { 9861 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9862 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9863 InVals[i], ArgHasUses); 9864 } 9865 9866 // If this argument is unused then remember its value. It is used to generate 9867 // debugging information. 9868 bool isSwiftErrorArg = 9869 TLI->supportSwiftError() && 9870 Arg.hasAttribute(Attribute::SwiftError); 9871 if (!ArgHasUses && !isSwiftErrorArg) { 9872 SDB->setUnusedArgValue(&Arg, InVals[i]); 9873 9874 // Also remember any frame index for use in FastISel. 9875 if (FrameIndexSDNode *FI = 9876 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9877 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9878 } 9879 9880 for (unsigned Val = 0; Val != NumValues; ++Val) { 9881 EVT VT = ValueVTs[Val]; 9882 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9883 F.getCallingConv(), VT); 9884 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9885 *CurDAG->getContext(), F.getCallingConv(), VT); 9886 9887 // Even an apparent 'unused' swifterror argument needs to be returned. So 9888 // we do generate a copy for it that can be used on return from the 9889 // function. 9890 if (ArgHasUses || isSwiftErrorArg) { 9891 Optional<ISD::NodeType> AssertOp; 9892 if (Arg.hasAttribute(Attribute::SExt)) 9893 AssertOp = ISD::AssertSext; 9894 else if (Arg.hasAttribute(Attribute::ZExt)) 9895 AssertOp = ISD::AssertZext; 9896 9897 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9898 PartVT, VT, nullptr, 9899 F.getCallingConv(), AssertOp)); 9900 } 9901 9902 i += NumParts; 9903 } 9904 9905 // We don't need to do anything else for unused arguments. 9906 if (ArgValues.empty()) 9907 continue; 9908 9909 // Note down frame index. 9910 if (FrameIndexSDNode *FI = 9911 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9912 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9913 9914 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9915 SDB->getCurSDLoc()); 9916 9917 SDB->setValue(&Arg, Res); 9918 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9919 // We want to associate the argument with the frame index, among 9920 // involved operands, that correspond to the lowest address. The 9921 // getCopyFromParts function, called earlier, is swapping the order of 9922 // the operands to BUILD_PAIR depending on endianness. The result of 9923 // that swapping is that the least significant bits of the argument will 9924 // be in the first operand of the BUILD_PAIR node, and the most 9925 // significant bits will be in the second operand. 9926 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9927 if (LoadSDNode *LNode = 9928 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9929 if (FrameIndexSDNode *FI = 9930 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9931 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9932 } 9933 9934 // Analyses past this point are naive and don't expect an assertion. 9935 if (Res.getOpcode() == ISD::AssertZext) 9936 Res = Res.getOperand(0); 9937 9938 // Update the SwiftErrorVRegDefMap. 9939 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9940 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9941 if (Register::isVirtualRegister(Reg)) 9942 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9943 Reg); 9944 } 9945 9946 // If this argument is live outside of the entry block, insert a copy from 9947 // wherever we got it to the vreg that other BB's will reference it as. 9948 if (Res.getOpcode() == ISD::CopyFromReg) { 9949 // If we can, though, try to skip creating an unnecessary vreg. 9950 // FIXME: This isn't very clean... it would be nice to make this more 9951 // general. 9952 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9953 if (Register::isVirtualRegister(Reg)) { 9954 FuncInfo->ValueMap[&Arg] = Reg; 9955 continue; 9956 } 9957 } 9958 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9959 FuncInfo->InitializeRegForValue(&Arg); 9960 SDB->CopyToExportRegsIfNeeded(&Arg); 9961 } 9962 } 9963 9964 if (!Chains.empty()) { 9965 Chains.push_back(NewRoot); 9966 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9967 } 9968 9969 DAG.setRoot(NewRoot); 9970 9971 assert(i == InVals.size() && "Argument register count mismatch!"); 9972 9973 // If any argument copy elisions occurred and we have debug info, update the 9974 // stale frame indices used in the dbg.declare variable info table. 9975 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9976 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9977 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9978 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9979 if (I != ArgCopyElisionFrameIndexMap.end()) 9980 VI.Slot = I->second; 9981 } 9982 } 9983 9984 // Finally, if the target has anything special to do, allow it to do so. 9985 emitFunctionEntryCode(); 9986 } 9987 9988 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9989 /// ensure constants are generated when needed. Remember the virtual registers 9990 /// that need to be added to the Machine PHI nodes as input. We cannot just 9991 /// directly add them, because expansion might result in multiple MBB's for one 9992 /// BB. As such, the start of the BB might correspond to a different MBB than 9993 /// the end. 9994 void 9995 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9996 const Instruction *TI = LLVMBB->getTerminator(); 9997 9998 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9999 10000 // Check PHI nodes in successors that expect a value to be available from this 10001 // block. 10002 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10003 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10004 if (!isa<PHINode>(SuccBB->begin())) continue; 10005 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10006 10007 // If this terminator has multiple identical successors (common for 10008 // switches), only handle each succ once. 10009 if (!SuccsHandled.insert(SuccMBB).second) 10010 continue; 10011 10012 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10013 10014 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10015 // nodes and Machine PHI nodes, but the incoming operands have not been 10016 // emitted yet. 10017 for (const PHINode &PN : SuccBB->phis()) { 10018 // Ignore dead phi's. 10019 if (PN.use_empty()) 10020 continue; 10021 10022 // Skip empty types 10023 if (PN.getType()->isEmptyTy()) 10024 continue; 10025 10026 unsigned Reg; 10027 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10028 10029 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10030 unsigned &RegOut = ConstantsOut[C]; 10031 if (RegOut == 0) { 10032 RegOut = FuncInfo.CreateRegs(C); 10033 CopyValueToVirtualRegister(C, RegOut); 10034 } 10035 Reg = RegOut; 10036 } else { 10037 DenseMap<const Value *, unsigned>::iterator I = 10038 FuncInfo.ValueMap.find(PHIOp); 10039 if (I != FuncInfo.ValueMap.end()) 10040 Reg = I->second; 10041 else { 10042 assert(isa<AllocaInst>(PHIOp) && 10043 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10044 "Didn't codegen value into a register!??"); 10045 Reg = FuncInfo.CreateRegs(PHIOp); 10046 CopyValueToVirtualRegister(PHIOp, Reg); 10047 } 10048 } 10049 10050 // Remember that this register needs to added to the machine PHI node as 10051 // the input for this MBB. 10052 SmallVector<EVT, 4> ValueVTs; 10053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10054 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10055 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10056 EVT VT = ValueVTs[vti]; 10057 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10058 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10059 FuncInfo.PHINodesToUpdate.push_back( 10060 std::make_pair(&*MBBI++, Reg + i)); 10061 Reg += NumRegisters; 10062 } 10063 } 10064 } 10065 10066 ConstantsOut.clear(); 10067 } 10068 10069 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10070 /// is 0. 10071 MachineBasicBlock * 10072 SelectionDAGBuilder::StackProtectorDescriptor:: 10073 AddSuccessorMBB(const BasicBlock *BB, 10074 MachineBasicBlock *ParentMBB, 10075 bool IsLikely, 10076 MachineBasicBlock *SuccMBB) { 10077 // If SuccBB has not been created yet, create it. 10078 if (!SuccMBB) { 10079 MachineFunction *MF = ParentMBB->getParent(); 10080 MachineFunction::iterator BBI(ParentMBB); 10081 SuccMBB = MF->CreateMachineBasicBlock(BB); 10082 MF->insert(++BBI, SuccMBB); 10083 } 10084 // Add it as a successor of ParentMBB. 10085 ParentMBB->addSuccessor( 10086 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10087 return SuccMBB; 10088 } 10089 10090 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10091 MachineFunction::iterator I(MBB); 10092 if (++I == FuncInfo.MF->end()) 10093 return nullptr; 10094 return &*I; 10095 } 10096 10097 /// During lowering new call nodes can be created (such as memset, etc.). 10098 /// Those will become new roots of the current DAG, but complications arise 10099 /// when they are tail calls. In such cases, the call lowering will update 10100 /// the root, but the builder still needs to know that a tail call has been 10101 /// lowered in order to avoid generating an additional return. 10102 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10103 // If the node is null, we do have a tail call. 10104 if (MaybeTC.getNode() != nullptr) 10105 DAG.setRoot(MaybeTC); 10106 else 10107 HasTailCall = true; 10108 } 10109 10110 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10111 MachineBasicBlock *SwitchMBB, 10112 MachineBasicBlock *DefaultMBB) { 10113 MachineFunction *CurMF = FuncInfo.MF; 10114 MachineBasicBlock *NextMBB = nullptr; 10115 MachineFunction::iterator BBI(W.MBB); 10116 if (++BBI != FuncInfo.MF->end()) 10117 NextMBB = &*BBI; 10118 10119 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10120 10121 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10122 10123 if (Size == 2 && W.MBB == SwitchMBB) { 10124 // If any two of the cases has the same destination, and if one value 10125 // is the same as the other, but has one bit unset that the other has set, 10126 // use bit manipulation to do two compares at once. For example: 10127 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10128 // TODO: This could be extended to merge any 2 cases in switches with 3 10129 // cases. 10130 // TODO: Handle cases where W.CaseBB != SwitchBB. 10131 CaseCluster &Small = *W.FirstCluster; 10132 CaseCluster &Big = *W.LastCluster; 10133 10134 if (Small.Low == Small.High && Big.Low == Big.High && 10135 Small.MBB == Big.MBB) { 10136 const APInt &SmallValue = Small.Low->getValue(); 10137 const APInt &BigValue = Big.Low->getValue(); 10138 10139 // Check that there is only one bit different. 10140 APInt CommonBit = BigValue ^ SmallValue; 10141 if (CommonBit.isPowerOf2()) { 10142 SDValue CondLHS = getValue(Cond); 10143 EVT VT = CondLHS.getValueType(); 10144 SDLoc DL = getCurSDLoc(); 10145 10146 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10147 DAG.getConstant(CommonBit, DL, VT)); 10148 SDValue Cond = DAG.getSetCC( 10149 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10150 ISD::SETEQ); 10151 10152 // Update successor info. 10153 // Both Small and Big will jump to Small.BB, so we sum up the 10154 // probabilities. 10155 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10156 if (BPI) 10157 addSuccessorWithProb( 10158 SwitchMBB, DefaultMBB, 10159 // The default destination is the first successor in IR. 10160 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10161 else 10162 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10163 10164 // Insert the true branch. 10165 SDValue BrCond = 10166 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10167 DAG.getBasicBlock(Small.MBB)); 10168 // Insert the false branch. 10169 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10170 DAG.getBasicBlock(DefaultMBB)); 10171 10172 DAG.setRoot(BrCond); 10173 return; 10174 } 10175 } 10176 } 10177 10178 if (TM.getOptLevel() != CodeGenOpt::None) { 10179 // Here, we order cases by probability so the most likely case will be 10180 // checked first. However, two clusters can have the same probability in 10181 // which case their relative ordering is non-deterministic. So we use Low 10182 // as a tie-breaker as clusters are guaranteed to never overlap. 10183 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10184 [](const CaseCluster &a, const CaseCluster &b) { 10185 return a.Prob != b.Prob ? 10186 a.Prob > b.Prob : 10187 a.Low->getValue().slt(b.Low->getValue()); 10188 }); 10189 10190 // Rearrange the case blocks so that the last one falls through if possible 10191 // without changing the order of probabilities. 10192 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10193 --I; 10194 if (I->Prob > W.LastCluster->Prob) 10195 break; 10196 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10197 std::swap(*I, *W.LastCluster); 10198 break; 10199 } 10200 } 10201 } 10202 10203 // Compute total probability. 10204 BranchProbability DefaultProb = W.DefaultProb; 10205 BranchProbability UnhandledProbs = DefaultProb; 10206 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10207 UnhandledProbs += I->Prob; 10208 10209 MachineBasicBlock *CurMBB = W.MBB; 10210 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10211 bool FallthroughUnreachable = false; 10212 MachineBasicBlock *Fallthrough; 10213 if (I == W.LastCluster) { 10214 // For the last cluster, fall through to the default destination. 10215 Fallthrough = DefaultMBB; 10216 FallthroughUnreachable = isa<UnreachableInst>( 10217 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10218 } else { 10219 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10220 CurMF->insert(BBI, Fallthrough); 10221 // Put Cond in a virtual register to make it available from the new blocks. 10222 ExportFromCurrentBlock(Cond); 10223 } 10224 UnhandledProbs -= I->Prob; 10225 10226 switch (I->Kind) { 10227 case CC_JumpTable: { 10228 // FIXME: Optimize away range check based on pivot comparisons. 10229 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10230 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10231 10232 // The jump block hasn't been inserted yet; insert it here. 10233 MachineBasicBlock *JumpMBB = JT->MBB; 10234 CurMF->insert(BBI, JumpMBB); 10235 10236 auto JumpProb = I->Prob; 10237 auto FallthroughProb = UnhandledProbs; 10238 10239 // If the default statement is a target of the jump table, we evenly 10240 // distribute the default probability to successors of CurMBB. Also 10241 // update the probability on the edge from JumpMBB to Fallthrough. 10242 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10243 SE = JumpMBB->succ_end(); 10244 SI != SE; ++SI) { 10245 if (*SI == DefaultMBB) { 10246 JumpProb += DefaultProb / 2; 10247 FallthroughProb -= DefaultProb / 2; 10248 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10249 JumpMBB->normalizeSuccProbs(); 10250 break; 10251 } 10252 } 10253 10254 if (FallthroughUnreachable) { 10255 // Skip the range check if the fallthrough block is unreachable. 10256 JTH->OmitRangeCheck = true; 10257 } 10258 10259 if (!JTH->OmitRangeCheck) 10260 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10261 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10262 CurMBB->normalizeSuccProbs(); 10263 10264 // The jump table header will be inserted in our current block, do the 10265 // range check, and fall through to our fallthrough block. 10266 JTH->HeaderBB = CurMBB; 10267 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10268 10269 // If we're in the right place, emit the jump table header right now. 10270 if (CurMBB == SwitchMBB) { 10271 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10272 JTH->Emitted = true; 10273 } 10274 break; 10275 } 10276 case CC_BitTests: { 10277 // FIXME: Optimize away range check based on pivot comparisons. 10278 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10279 10280 // The bit test blocks haven't been inserted yet; insert them here. 10281 for (BitTestCase &BTC : BTB->Cases) 10282 CurMF->insert(BBI, BTC.ThisBB); 10283 10284 // Fill in fields of the BitTestBlock. 10285 BTB->Parent = CurMBB; 10286 BTB->Default = Fallthrough; 10287 10288 BTB->DefaultProb = UnhandledProbs; 10289 // If the cases in bit test don't form a contiguous range, we evenly 10290 // distribute the probability on the edge to Fallthrough to two 10291 // successors of CurMBB. 10292 if (!BTB->ContiguousRange) { 10293 BTB->Prob += DefaultProb / 2; 10294 BTB->DefaultProb -= DefaultProb / 2; 10295 } 10296 10297 if (FallthroughUnreachable) { 10298 // Skip the range check if the fallthrough block is unreachable. 10299 BTB->OmitRangeCheck = true; 10300 } 10301 10302 // If we're in the right place, emit the bit test header right now. 10303 if (CurMBB == SwitchMBB) { 10304 visitBitTestHeader(*BTB, SwitchMBB); 10305 BTB->Emitted = true; 10306 } 10307 break; 10308 } 10309 case CC_Range: { 10310 const Value *RHS, *LHS, *MHS; 10311 ISD::CondCode CC; 10312 if (I->Low == I->High) { 10313 // Check Cond == I->Low. 10314 CC = ISD::SETEQ; 10315 LHS = Cond; 10316 RHS=I->Low; 10317 MHS = nullptr; 10318 } else { 10319 // Check I->Low <= Cond <= I->High. 10320 CC = ISD::SETLE; 10321 LHS = I->Low; 10322 MHS = Cond; 10323 RHS = I->High; 10324 } 10325 10326 // If Fallthrough is unreachable, fold away the comparison. 10327 if (FallthroughUnreachable) 10328 CC = ISD::SETTRUE; 10329 10330 // The false probability is the sum of all unhandled cases. 10331 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10332 getCurSDLoc(), I->Prob, UnhandledProbs); 10333 10334 if (CurMBB == SwitchMBB) 10335 visitSwitchCase(CB, SwitchMBB); 10336 else 10337 SL->SwitchCases.push_back(CB); 10338 10339 break; 10340 } 10341 } 10342 CurMBB = Fallthrough; 10343 } 10344 } 10345 10346 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10347 CaseClusterIt First, 10348 CaseClusterIt Last) { 10349 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10350 if (X.Prob != CC.Prob) 10351 return X.Prob > CC.Prob; 10352 10353 // Ties are broken by comparing the case value. 10354 return X.Low->getValue().slt(CC.Low->getValue()); 10355 }); 10356 } 10357 10358 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10359 const SwitchWorkListItem &W, 10360 Value *Cond, 10361 MachineBasicBlock *SwitchMBB) { 10362 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10363 "Clusters not sorted?"); 10364 10365 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10366 10367 // Balance the tree based on branch probabilities to create a near-optimal (in 10368 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10369 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10370 CaseClusterIt LastLeft = W.FirstCluster; 10371 CaseClusterIt FirstRight = W.LastCluster; 10372 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10373 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10374 10375 // Move LastLeft and FirstRight towards each other from opposite directions to 10376 // find a partitioning of the clusters which balances the probability on both 10377 // sides. If LeftProb and RightProb are equal, alternate which side is 10378 // taken to ensure 0-probability nodes are distributed evenly. 10379 unsigned I = 0; 10380 while (LastLeft + 1 < FirstRight) { 10381 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10382 LeftProb += (++LastLeft)->Prob; 10383 else 10384 RightProb += (--FirstRight)->Prob; 10385 I++; 10386 } 10387 10388 while (true) { 10389 // Our binary search tree differs from a typical BST in that ours can have up 10390 // to three values in each leaf. The pivot selection above doesn't take that 10391 // into account, which means the tree might require more nodes and be less 10392 // efficient. We compensate for this here. 10393 10394 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10395 unsigned NumRight = W.LastCluster - FirstRight + 1; 10396 10397 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10398 // If one side has less than 3 clusters, and the other has more than 3, 10399 // consider taking a cluster from the other side. 10400 10401 if (NumLeft < NumRight) { 10402 // Consider moving the first cluster on the right to the left side. 10403 CaseCluster &CC = *FirstRight; 10404 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10405 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10406 if (LeftSideRank <= RightSideRank) { 10407 // Moving the cluster to the left does not demote it. 10408 ++LastLeft; 10409 ++FirstRight; 10410 continue; 10411 } 10412 } else { 10413 assert(NumRight < NumLeft); 10414 // Consider moving the last element on the left to the right side. 10415 CaseCluster &CC = *LastLeft; 10416 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10417 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10418 if (RightSideRank <= LeftSideRank) { 10419 // Moving the cluster to the right does not demot it. 10420 --LastLeft; 10421 --FirstRight; 10422 continue; 10423 } 10424 } 10425 } 10426 break; 10427 } 10428 10429 assert(LastLeft + 1 == FirstRight); 10430 assert(LastLeft >= W.FirstCluster); 10431 assert(FirstRight <= W.LastCluster); 10432 10433 // Use the first element on the right as pivot since we will make less-than 10434 // comparisons against it. 10435 CaseClusterIt PivotCluster = FirstRight; 10436 assert(PivotCluster > W.FirstCluster); 10437 assert(PivotCluster <= W.LastCluster); 10438 10439 CaseClusterIt FirstLeft = W.FirstCluster; 10440 CaseClusterIt LastRight = W.LastCluster; 10441 10442 const ConstantInt *Pivot = PivotCluster->Low; 10443 10444 // New blocks will be inserted immediately after the current one. 10445 MachineFunction::iterator BBI(W.MBB); 10446 ++BBI; 10447 10448 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10449 // we can branch to its destination directly if it's squeezed exactly in 10450 // between the known lower bound and Pivot - 1. 10451 MachineBasicBlock *LeftMBB; 10452 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10453 FirstLeft->Low == W.GE && 10454 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10455 LeftMBB = FirstLeft->MBB; 10456 } else { 10457 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10458 FuncInfo.MF->insert(BBI, LeftMBB); 10459 WorkList.push_back( 10460 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10461 // Put Cond in a virtual register to make it available from the new blocks. 10462 ExportFromCurrentBlock(Cond); 10463 } 10464 10465 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10466 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10467 // directly if RHS.High equals the current upper bound. 10468 MachineBasicBlock *RightMBB; 10469 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10470 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10471 RightMBB = FirstRight->MBB; 10472 } else { 10473 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10474 FuncInfo.MF->insert(BBI, RightMBB); 10475 WorkList.push_back( 10476 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10477 // Put Cond in a virtual register to make it available from the new blocks. 10478 ExportFromCurrentBlock(Cond); 10479 } 10480 10481 // Create the CaseBlock record that will be used to lower the branch. 10482 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10483 getCurSDLoc(), LeftProb, RightProb); 10484 10485 if (W.MBB == SwitchMBB) 10486 visitSwitchCase(CB, SwitchMBB); 10487 else 10488 SL->SwitchCases.push_back(CB); 10489 } 10490 10491 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10492 // from the swith statement. 10493 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10494 BranchProbability PeeledCaseProb) { 10495 if (PeeledCaseProb == BranchProbability::getOne()) 10496 return BranchProbability::getZero(); 10497 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10498 10499 uint32_t Numerator = CaseProb.getNumerator(); 10500 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10501 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10502 } 10503 10504 // Try to peel the top probability case if it exceeds the threshold. 10505 // Return current MachineBasicBlock for the switch statement if the peeling 10506 // does not occur. 10507 // If the peeling is performed, return the newly created MachineBasicBlock 10508 // for the peeled switch statement. Also update Clusters to remove the peeled 10509 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10510 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10511 const SwitchInst &SI, CaseClusterVector &Clusters, 10512 BranchProbability &PeeledCaseProb) { 10513 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10514 // Don't perform if there is only one cluster or optimizing for size. 10515 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10516 TM.getOptLevel() == CodeGenOpt::None || 10517 SwitchMBB->getParent()->getFunction().hasMinSize()) 10518 return SwitchMBB; 10519 10520 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10521 unsigned PeeledCaseIndex = 0; 10522 bool SwitchPeeled = false; 10523 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10524 CaseCluster &CC = Clusters[Index]; 10525 if (CC.Prob < TopCaseProb) 10526 continue; 10527 TopCaseProb = CC.Prob; 10528 PeeledCaseIndex = Index; 10529 SwitchPeeled = true; 10530 } 10531 if (!SwitchPeeled) 10532 return SwitchMBB; 10533 10534 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10535 << TopCaseProb << "\n"); 10536 10537 // Record the MBB for the peeled switch statement. 10538 MachineFunction::iterator BBI(SwitchMBB); 10539 ++BBI; 10540 MachineBasicBlock *PeeledSwitchMBB = 10541 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10542 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10543 10544 ExportFromCurrentBlock(SI.getCondition()); 10545 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10546 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10547 nullptr, nullptr, TopCaseProb.getCompl()}; 10548 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10549 10550 Clusters.erase(PeeledCaseIt); 10551 for (CaseCluster &CC : Clusters) { 10552 LLVM_DEBUG( 10553 dbgs() << "Scale the probablity for one cluster, before scaling: " 10554 << CC.Prob << "\n"); 10555 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10556 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10557 } 10558 PeeledCaseProb = TopCaseProb; 10559 return PeeledSwitchMBB; 10560 } 10561 10562 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10563 // Extract cases from the switch. 10564 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10565 CaseClusterVector Clusters; 10566 Clusters.reserve(SI.getNumCases()); 10567 for (auto I : SI.cases()) { 10568 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10569 const ConstantInt *CaseVal = I.getCaseValue(); 10570 BranchProbability Prob = 10571 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10572 : BranchProbability(1, SI.getNumCases() + 1); 10573 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10574 } 10575 10576 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10577 10578 // Cluster adjacent cases with the same destination. We do this at all 10579 // optimization levels because it's cheap to do and will make codegen faster 10580 // if there are many clusters. 10581 sortAndRangeify(Clusters); 10582 10583 // The branch probablity of the peeled case. 10584 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10585 MachineBasicBlock *PeeledSwitchMBB = 10586 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10587 10588 // If there is only the default destination, jump there directly. 10589 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10590 if (Clusters.empty()) { 10591 assert(PeeledSwitchMBB == SwitchMBB); 10592 SwitchMBB->addSuccessor(DefaultMBB); 10593 if (DefaultMBB != NextBlock(SwitchMBB)) { 10594 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10595 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10596 } 10597 return; 10598 } 10599 10600 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10601 SL->findBitTestClusters(Clusters, &SI); 10602 10603 LLVM_DEBUG({ 10604 dbgs() << "Case clusters: "; 10605 for (const CaseCluster &C : Clusters) { 10606 if (C.Kind == CC_JumpTable) 10607 dbgs() << "JT:"; 10608 if (C.Kind == CC_BitTests) 10609 dbgs() << "BT:"; 10610 10611 C.Low->getValue().print(dbgs(), true); 10612 if (C.Low != C.High) { 10613 dbgs() << '-'; 10614 C.High->getValue().print(dbgs(), true); 10615 } 10616 dbgs() << ' '; 10617 } 10618 dbgs() << '\n'; 10619 }); 10620 10621 assert(!Clusters.empty()); 10622 SwitchWorkList WorkList; 10623 CaseClusterIt First = Clusters.begin(); 10624 CaseClusterIt Last = Clusters.end() - 1; 10625 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10626 // Scale the branchprobability for DefaultMBB if the peel occurs and 10627 // DefaultMBB is not replaced. 10628 if (PeeledCaseProb != BranchProbability::getZero() && 10629 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10630 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10631 WorkList.push_back( 10632 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10633 10634 while (!WorkList.empty()) { 10635 SwitchWorkListItem W = WorkList.back(); 10636 WorkList.pop_back(); 10637 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10638 10639 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10640 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10641 // For optimized builds, lower large range as a balanced binary tree. 10642 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10643 continue; 10644 } 10645 10646 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10647 } 10648 } 10649 10650 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10651 SDValue N = getValue(I.getOperand(0)); 10652 setValue(&I, N); 10653 } 10654