xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 0bada7ce6c12d904495bf504c9f56aa6583186e6)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts =
219           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
326   // then truncating.
327   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
328       ValueVT.bitsLT(PartEVT)) {
329     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
330     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
331   }
332 
333   report_fatal_error("Unknown mismatch in getCopyFromParts!");
334 }
335 
336 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
337                                               const Twine &ErrMsg) {
338   const Instruction *I = dyn_cast_or_null<Instruction>(V);
339   if (!V)
340     return Ctx.emitError(ErrMsg);
341 
342   const char *AsmError = ", possible invalid constraint for vector type";
343   if (const CallInst *CI = dyn_cast<CallInst>(I))
344     if (isa<InlineAsm>(CI->getCalledValue()))
345       return Ctx.emitError(I, ErrMsg + AsmError);
346 
347   return Ctx.emitError(I, ErrMsg);
348 }
349 
350 /// getCopyFromPartsVector - Create a value that contains the specified legal
351 /// parts combined into the value they represent.  If the parts combine to a
352 /// type larger than ValueVT then AssertOp can be used to specify whether the
353 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
354 /// ValueVT (ISD::AssertSext).
355 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
356                                       const SDValue *Parts, unsigned NumParts,
357                                       MVT PartVT, EVT ValueVT, const Value *V,
358                                       Optional<CallingConv::ID> CallConv) {
359   assert(ValueVT.isVector() && "Not a vector value");
360   assert(NumParts > 0 && "No parts to assemble!");
361   const bool IsABIRegCopy = CallConv.hasValue();
362 
363   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
364   SDValue Val = Parts[0];
365 
366   // Handle a multi-element vector.
367   if (NumParts > 1) {
368     EVT IntermediateVT;
369     MVT RegisterVT;
370     unsigned NumIntermediates;
371     unsigned NumRegs;
372 
373     if (IsABIRegCopy) {
374       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
375           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
376           NumIntermediates, RegisterVT);
377     } else {
378       NumRegs =
379           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
380                                      NumIntermediates, RegisterVT);
381     }
382 
383     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
384     NumParts = NumRegs; // Silence a compiler warning.
385     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
386     assert(RegisterVT.getSizeInBits() ==
387            Parts[0].getSimpleValueType().getSizeInBits() &&
388            "Part type sizes don't match!");
389 
390     // Assemble the parts into intermediate operands.
391     SmallVector<SDValue, 8> Ops(NumIntermediates);
392     if (NumIntermediates == NumParts) {
393       // If the register was not expanded, truncate or copy the value,
394       // as appropriate.
395       for (unsigned i = 0; i != NumParts; ++i)
396         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
397                                   PartVT, IntermediateVT, V);
398     } else if (NumParts > 0) {
399       // If the intermediate type was expanded, build the intermediate
400       // operands from the parts.
401       assert(NumParts % NumIntermediates == 0 &&
402              "Must expand into a divisible number of parts!");
403       unsigned Factor = NumParts / NumIntermediates;
404       for (unsigned i = 0; i != NumIntermediates; ++i)
405         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
406                                   PartVT, IntermediateVT, V);
407     }
408 
409     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
410     // intermediate operands.
411     EVT BuiltVectorTy =
412         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
413                          (IntermediateVT.isVector()
414                               ? IntermediateVT.getVectorNumElements() * NumParts
415                               : NumIntermediates));
416     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
417                                                 : ISD::BUILD_VECTOR,
418                       DL, BuiltVectorTy, Ops);
419   }
420 
421   // There is now one part, held in Val.  Correct it to match ValueVT.
422   EVT PartEVT = Val.getValueType();
423 
424   if (PartEVT == ValueVT)
425     return Val;
426 
427   if (PartEVT.isVector()) {
428     // If the element type of the source/dest vectors are the same, but the
429     // parts vector has more elements than the value vector, then we have a
430     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
431     // elements we want.
432     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
433       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
434              "Cannot narrow, it would be a lossy transformation");
435       return DAG.getNode(
436           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
437           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
438     }
439 
440     // Vector/Vector bitcast.
441     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443 
444     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
445       "Cannot handle this kind of promotion");
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448 
449   }
450 
451   // Trivial bitcast if the types are the same size and the destination
452   // vector type is legal.
453   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
454       TLI.isTypeLegal(ValueVT))
455     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
456 
457   if (ValueVT.getVectorNumElements() != 1) {
458      // Certain ABIs require that vectors are passed as integers. For vectors
459      // are the same size, this is an obvious bitcast.
460      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
461        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
463        // Bitcast Val back the original type and extract the corresponding
464        // vector we want.
465        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
466        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
467                                            ValueVT.getVectorElementType(), Elts);
468        Val = DAG.getBitcast(WiderVecType, Val);
469        return DAG.getNode(
470            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
471            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
472      }
473 
474      diagnosePossiblyInvalidConstraint(
475          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
476      return DAG.getUNDEF(ValueVT);
477   }
478 
479   // Handle cases such as i8 -> <1 x i1>
480   EVT ValueSVT = ValueVT.getVectorElementType();
481   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
482     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
483                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
484 
485   return DAG.getBuildVector(ValueVT, DL, Val);
486 }
487 
488 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
489                                  SDValue Val, SDValue *Parts, unsigned NumParts,
490                                  MVT PartVT, const Value *V,
491                                  Optional<CallingConv::ID> CallConv);
492 
493 /// getCopyToParts - Create a series of nodes that contain the specified value
494 /// split into legal parts.  If the parts contain more bits than Val, then, for
495 /// integers, ExtendKind can be used to specify how to generate the extra bits.
496 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
497                            SDValue *Parts, unsigned NumParts, MVT PartVT,
498                            const Value *V,
499                            Optional<CallingConv::ID> CallConv = None,
500                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
501   EVT ValueVT = Val.getValueType();
502 
503   // Handle the vector case separately.
504   if (ValueVT.isVector())
505     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
506                                 CallConv);
507 
508   unsigned PartBits = PartVT.getSizeInBits();
509   unsigned OrigNumParts = NumParts;
510   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
511          "Copying to an illegal type!");
512 
513   if (NumParts == 0)
514     return;
515 
516   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
517   EVT PartEVT = PartVT;
518   if (PartEVT == ValueVT) {
519     assert(NumParts == 1 && "No-op copy with multiple parts!");
520     Parts[0] = Val;
521     return;
522   }
523 
524   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
525     // If the parts cover more bits than the value has, promote the value.
526     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
527       assert(NumParts == 1 && "Do not know what to promote to!");
528       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
529     } else {
530       if (ValueVT.isFloatingPoint()) {
531         // FP values need to be bitcast, then extended if they are being put
532         // into a larger container.
533         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
534         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
535       }
536       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
537              ValueVT.isInteger() &&
538              "Unknown mismatch!");
539       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
540       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
541       if (PartVT == MVT::x86mmx)
542         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
543     }
544   } else if (PartBits == ValueVT.getSizeInBits()) {
545     // Different types of the same size.
546     assert(NumParts == 1 && PartEVT != ValueVT);
547     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
549     // If the parts cover less bits than value has, truncate the value.
550     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
551            ValueVT.isInteger() &&
552            "Unknown mismatch!");
553     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
554     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
555     if (PartVT == MVT::x86mmx)
556       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557   }
558 
559   // The value may have changed - recompute ValueVT.
560   ValueVT = Val.getValueType();
561   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
562          "Failed to tile the value with PartVT!");
563 
564   if (NumParts == 1) {
565     if (PartEVT != ValueVT) {
566       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
567                                         "scalar-to-vector conversion failed");
568       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569     }
570 
571     Parts[0] = Val;
572     return;
573   }
574 
575   // Expand the value into multiple parts.
576   if (NumParts & (NumParts - 1)) {
577     // The number of parts is not a power of 2.  Split off and copy the tail.
578     assert(PartVT.isInteger() && ValueVT.isInteger() &&
579            "Do not know what to expand to!");
580     unsigned RoundParts = 1 << Log2_32(NumParts);
581     unsigned RoundBits = RoundParts * PartBits;
582     unsigned OddParts = NumParts - RoundParts;
583     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
584       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
585 
586     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
587                    CallConv);
588 
589     if (DAG.getDataLayout().isBigEndian())
590       // The odd parts were reversed by getCopyToParts - unreverse them.
591       std::reverse(Parts + RoundParts, Parts + NumParts);
592 
593     NumParts = RoundParts;
594     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
595     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
596   }
597 
598   // The number of parts is a power of 2.  Repeatedly bisect the value using
599   // EXTRACT_ELEMENT.
600   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
601                          EVT::getIntegerVT(*DAG.getContext(),
602                                            ValueVT.getSizeInBits()),
603                          Val);
604 
605   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
606     for (unsigned i = 0; i < NumParts; i += StepSize) {
607       unsigned ThisBits = StepSize * PartBits / 2;
608       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
609       SDValue &Part0 = Parts[i];
610       SDValue &Part1 = Parts[i+StepSize/2];
611 
612       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
613                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
614       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
616 
617       if (ThisBits == PartBits && ThisVT != PartVT) {
618         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
619         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
620       }
621     }
622   }
623 
624   if (DAG.getDataLayout().isBigEndian())
625     std::reverse(Parts, Parts + OrigNumParts);
626 }
627 
628 static SDValue widenVectorToPartType(SelectionDAG &DAG,
629                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
630   if (!PartVT.isVector())
631     return SDValue();
632 
633   EVT ValueVT = Val.getValueType();
634   unsigned PartNumElts = PartVT.getVectorNumElements();
635   unsigned ValueNumElts = ValueVT.getVectorNumElements();
636   if (PartNumElts > ValueNumElts &&
637       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
638     EVT ElementVT = PartVT.getVectorElementType();
639     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
640     // undef elements.
641     SmallVector<SDValue, 16> Ops;
642     DAG.ExtractVectorElements(Val, Ops);
643     SDValue EltUndef = DAG.getUNDEF(ElementVT);
644     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
645       Ops.push_back(EltUndef);
646 
647     // FIXME: Use CONCAT for 2x -> 4x.
648     return DAG.getBuildVector(PartVT, DL, Ops);
649   }
650 
651   return SDValue();
652 }
653 
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
657                                  SDValue Val, SDValue *Parts, unsigned NumParts,
658                                  MVT PartVT, const Value *V,
659                                  Optional<CallingConv::ID> CallConv) {
660   EVT ValueVT = Val.getValueType();
661   assert(ValueVT.isVector() && "Not a vector");
662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
663   const bool IsABIRegCopy = CallConv.hasValue();
664 
665   if (NumParts == 1) {
666     EVT PartEVT = PartVT;
667     if (PartEVT == ValueVT) {
668       // Nothing to do.
669     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
670       // Bitconvert vector->vector case.
671       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
672     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
673       Val = Widened;
674     } else if (PartVT.isVector() &&
675                PartEVT.getVectorElementType().bitsGE(
676                  ValueVT.getVectorElementType()) &&
677                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
678 
679       // Promoted vector extract
680       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681     } else {
682       if (ValueVT.getVectorNumElements() == 1) {
683         Val = DAG.getNode(
684             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
685             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
686       } else {
687         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
688                "lossy conversion of vector to scalar type");
689         EVT IntermediateType =
690             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
691         Val = DAG.getBitcast(IntermediateType, Val);
692         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
693       }
694     }
695 
696     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
697     Parts[0] = Val;
698     return;
699   }
700 
701   // Handle a multi-element vector.
702   EVT IntermediateVT;
703   MVT RegisterVT;
704   unsigned NumIntermediates;
705   unsigned NumRegs;
706   if (IsABIRegCopy) {
707     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
708         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
709         NumIntermediates, RegisterVT);
710   } else {
711     NumRegs =
712         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
713                                    NumIntermediates, RegisterVT);
714   }
715 
716   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
717   NumParts = NumRegs; // Silence a compiler warning.
718   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
719 
720   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
721     IntermediateVT.getVectorNumElements() : 1;
722 
723   // Convert the vector to the appropiate type if necessary.
724   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
725 
726   EVT BuiltVectorTy = EVT::getVectorVT(
727       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
728   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
729   if (ValueVT != BuiltVectorTy) {
730     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
731       Val = Widened;
732 
733     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
734   }
735 
736   // Split the vector into intermediate operands.
737   SmallVector<SDValue, 8> Ops(NumIntermediates);
738   for (unsigned i = 0; i != NumIntermediates; ++i) {
739     if (IntermediateVT.isVector()) {
740       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
741                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
742     } else {
743       Ops[i] = DAG.getNode(
744           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
745           DAG.getConstant(i, DL, IdxVT));
746     }
747   }
748 
749   // Split the intermediate operands into legal parts.
750   if (NumParts == NumIntermediates) {
751     // If the register was not expanded, promote or copy the value,
752     // as appropriate.
753     for (unsigned i = 0; i != NumParts; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
755   } else if (NumParts > 0) {
756     // If the intermediate type was expanded, split each the value into
757     // legal parts.
758     assert(NumIntermediates != 0 && "division by zero");
759     assert(NumParts % NumIntermediates == 0 &&
760            "Must expand into a divisible number of parts!");
761     unsigned Factor = NumParts / NumIntermediates;
762     for (unsigned i = 0; i != NumIntermediates; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
764                      CallConv);
765   }
766 }
767 
768 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
769                            EVT valuevt, Optional<CallingConv::ID> CC)
770     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
771       RegCount(1, regs.size()), CallConv(CC) {}
772 
773 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
774                            const DataLayout &DL, unsigned Reg, Type *Ty,
775                            Optional<CallingConv::ID> CC) {
776   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
777 
778   CallConv = CC;
779 
780   for (EVT ValueVT : ValueVTs) {
781     unsigned NumRegs =
782         isABIMangled()
783             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
784             : TLI.getNumRegisters(Context, ValueVT);
785     MVT RegisterVT =
786         isABIMangled()
787             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
788             : TLI.getRegisterType(Context, ValueVT);
789     for (unsigned i = 0; i != NumRegs; ++i)
790       Regs.push_back(Reg + i);
791     RegVTs.push_back(RegisterVT);
792     RegCount.push_back(NumRegs);
793     Reg += NumRegs;
794   }
795 }
796 
797 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
798                                       FunctionLoweringInfo &FuncInfo,
799                                       const SDLoc &dl, SDValue &Chain,
800                                       SDValue *Flag, const Value *V) const {
801   // A Value with type {} or [0 x %t] needs no registers.
802   if (ValueVTs.empty())
803     return SDValue();
804 
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   // Assemble the legal parts into the final values.
808   SmallVector<SDValue, 4> Values(ValueVTs.size());
809   SmallVector<SDValue, 8> Parts;
810   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
811     // Copy the legal parts from the registers.
812     EVT ValueVT = ValueVTs[Value];
813     unsigned NumRegs = RegCount[Value];
814     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
815                                           *DAG.getContext(),
816                                           CallConv.getValue(), RegVTs[Value])
817                                     : RegVTs[Value];
818 
819     Parts.resize(NumRegs);
820     for (unsigned i = 0; i != NumRegs; ++i) {
821       SDValue P;
822       if (!Flag) {
823         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
824       } else {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
826         *Flag = P.getValue(2);
827       }
828 
829       Chain = P.getValue(1);
830       Parts[i] = P;
831 
832       // If the source register was virtual and if we know something about it,
833       // add an assert node.
834       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
835           !RegisterVT.isInteger())
836         continue;
837 
838       const FunctionLoweringInfo::LiveOutInfo *LOI =
839         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
840       if (!LOI)
841         continue;
842 
843       unsigned RegSize = RegisterVT.getScalarSizeInBits();
844       unsigned NumSignBits = LOI->NumSignBits;
845       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
846 
847       if (NumZeroBits == RegSize) {
848         // The current value is a zero.
849         // Explicitly express that as it would be easier for
850         // optimizations to kick in.
851         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
852         continue;
853       }
854 
855       // FIXME: We capture more information than the dag can represent.  For
856       // now, just use the tightest assertzext/assertsext possible.
857       bool isSExt;
858       EVT FromVT(MVT::Other);
859       if (NumZeroBits) {
860         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
861         isSExt = false;
862       } else if (NumSignBits > 1) {
863         FromVT =
864             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
865         isSExt = true;
866       } else {
867         continue;
868       }
869       // Add an assertion node.
870       assert(FromVT != MVT::Other);
871       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
872                              RegisterVT, P, DAG.getValueType(FromVT));
873     }
874 
875     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
876                                      RegisterVT, ValueVT, V, CallConv);
877     Part += NumRegs;
878     Parts.clear();
879   }
880 
881   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
882 }
883 
884 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
885                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
886                                  const Value *V,
887                                  ISD::NodeType PreferredExtendType) const {
888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
889   ISD::NodeType ExtendKind = PreferredExtendType;
890 
891   // Get the list of the values's legal parts.
892   unsigned NumRegs = Regs.size();
893   SmallVector<SDValue, 8> Parts(NumRegs);
894   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
895     unsigned NumParts = RegCount[Value];
896 
897     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
898                                           *DAG.getContext(),
899                                           CallConv.getValue(), RegVTs[Value])
900                                     : RegVTs[Value];
901 
902     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
903       ExtendKind = ISD::ZERO_EXTEND;
904 
905     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
906                    NumParts, RegisterVT, V, CallConv, ExtendKind);
907     Part += NumParts;
908   }
909 
910   // Copy the parts into the registers.
911   SmallVector<SDValue, 8> Chains(NumRegs);
912   for (unsigned i = 0; i != NumRegs; ++i) {
913     SDValue Part;
914     if (!Flag) {
915       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
916     } else {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
918       *Flag = Part.getValue(1);
919     }
920 
921     Chains[i] = Part.getValue(0);
922   }
923 
924   if (NumRegs == 1 || Flag)
925     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
926     // flagged to it. That is the CopyToReg nodes and the user are considered
927     // a single scheduling unit. If we create a TokenFactor and return it as
928     // chain, then the TokenFactor is both a predecessor (operand) of the
929     // user as well as a successor (the TF operands are flagged to the user).
930     // c1, f1 = CopyToReg
931     // c2, f2 = CopyToReg
932     // c3     = TokenFactor c1, c2
933     // ...
934     //        = op c3, ..., f2
935     Chain = Chains[NumRegs-1];
936   else
937     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
938 }
939 
940 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
941                                         unsigned MatchingIdx, const SDLoc &dl,
942                                         SelectionDAG &DAG,
943                                         std::vector<SDValue> &Ops) const {
944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
945 
946   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
947   if (HasMatching)
948     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
949   else if (!Regs.empty() &&
950            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
951     // Put the register class of the virtual registers in the flag word.  That
952     // way, later passes can recompute register class constraints for inline
953     // assembly as well as normal instructions.
954     // Don't do this for tied operands that can use the regclass information
955     // from the def.
956     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
957     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
958     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
959   }
960 
961   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
962   Ops.push_back(Res);
963 
964   if (Code == InlineAsm::Kind_Clobber) {
965     // Clobbers should always have a 1:1 mapping with registers, and may
966     // reference registers that have illegal (e.g. vector) types. Hence, we
967     // shouldn't try to apply any sort of splitting logic to them.
968     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
969            "No 1:1 mapping from clobbers to regs?");
970     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
971     (void)SP;
972     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
973       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
974       assert(
975           (Regs[I] != SP ||
976            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
977           "If we clobbered the stack pointer, MFI should know about it.");
978     }
979     return;
980   }
981 
982   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
983     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
984     MVT RegisterVT = RegVTs[Value];
985     for (unsigned i = 0; i != NumRegs; ++i) {
986       assert(Reg < Regs.size() && "Mismatch in # registers expected");
987       unsigned TheReg = Regs[Reg++];
988       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
989     }
990   }
991 }
992 
993 SmallVector<std::pair<unsigned, unsigned>, 4>
994 RegsForValue::getRegsAndSizes() const {
995   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
996   unsigned I = 0;
997   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
998     unsigned RegCount = std::get<0>(CountAndVT);
999     MVT RegisterVT = std::get<1>(CountAndVT);
1000     unsigned RegisterSize = RegisterVT.getSizeInBits();
1001     for (unsigned E = I + RegCount; I != E; ++I)
1002       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1003   }
1004   return OutVec;
1005 }
1006 
1007 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1008                                const TargetLibraryInfo *li) {
1009   AA = aa;
1010   GFI = gfi;
1011   LibInfo = li;
1012   DL = &DAG.getDataLayout();
1013   Context = DAG.getContext();
1014   LPadToCallSiteMap.clear();
1015 }
1016 
1017 void SelectionDAGBuilder::clear() {
1018   NodeMap.clear();
1019   UnusedArgNodeMap.clear();
1020   PendingLoads.clear();
1021   PendingExports.clear();
1022   CurInst = nullptr;
1023   HasTailCall = false;
1024   SDNodeOrder = LowestSDNodeOrder;
1025   StatepointLowering.clear();
1026 }
1027 
1028 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1029   DanglingDebugInfoMap.clear();
1030 }
1031 
1032 SDValue SelectionDAGBuilder::getRoot() {
1033   if (PendingLoads.empty())
1034     return DAG.getRoot();
1035 
1036   if (PendingLoads.size() == 1) {
1037     SDValue Root = PendingLoads[0];
1038     DAG.setRoot(Root);
1039     PendingLoads.clear();
1040     return Root;
1041   }
1042 
1043   // Otherwise, we have to make a token factor node.
1044   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1045   PendingLoads.clear();
1046   DAG.setRoot(Root);
1047   return Root;
1048 }
1049 
1050 SDValue SelectionDAGBuilder::getControlRoot() {
1051   SDValue Root = DAG.getRoot();
1052 
1053   if (PendingExports.empty())
1054     return Root;
1055 
1056   // Turn all of the CopyToReg chains into one factored node.
1057   if (Root.getOpcode() != ISD::EntryToken) {
1058     unsigned i = 0, e = PendingExports.size();
1059     for (; i != e; ++i) {
1060       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1061       if (PendingExports[i].getNode()->getOperand(0) == Root)
1062         break;  // Don't add the root if we already indirectly depend on it.
1063     }
1064 
1065     if (i == e)
1066       PendingExports.push_back(Root);
1067   }
1068 
1069   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1070                      PendingExports);
1071   PendingExports.clear();
1072   DAG.setRoot(Root);
1073   return Root;
1074 }
1075 
1076 void SelectionDAGBuilder::visit(const Instruction &I) {
1077   // Set up outgoing PHI node register values before emitting the terminator.
1078   if (I.isTerminator()) {
1079     HandlePHINodesInSuccessorBlocks(I.getParent());
1080   }
1081 
1082   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1083   if (!isa<DbgInfoIntrinsic>(I))
1084     ++SDNodeOrder;
1085 
1086   CurInst = &I;
1087 
1088   visit(I.getOpcode(), I);
1089 
1090   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1091     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1092     // maps to this instruction.
1093     // TODO: We could handle all flags (nsw, etc) here.
1094     // TODO: If an IR instruction maps to >1 node, only the final node will have
1095     //       flags set.
1096     if (SDNode *Node = getNodeForIRValue(&I)) {
1097       SDNodeFlags IncomingFlags;
1098       IncomingFlags.copyFMF(*FPMO);
1099       if (!Node->getFlags().isDefined())
1100         Node->setFlags(IncomingFlags);
1101       else
1102         Node->intersectFlagsWith(IncomingFlags);
1103     }
1104   }
1105 
1106   if (!I.isTerminator() && !HasTailCall &&
1107       !isStatepoint(&I)) // statepoints handle their exports internally
1108     CopyToExportRegsIfNeeded(&I);
1109 
1110   CurInst = nullptr;
1111 }
1112 
1113 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1114   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1115 }
1116 
1117 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1118   // Note: this doesn't use InstVisitor, because it has to work with
1119   // ConstantExpr's in addition to instructions.
1120   switch (Opcode) {
1121   default: llvm_unreachable("Unknown instruction type encountered!");
1122     // Build the switch statement using the Instruction.def file.
1123 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1124     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1125 #include "llvm/IR/Instruction.def"
1126   }
1127 }
1128 
1129 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1130                                                 const DIExpression *Expr) {
1131   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1132     const DbgValueInst *DI = DDI.getDI();
1133     DIVariable *DanglingVariable = DI->getVariable();
1134     DIExpression *DanglingExpr = DI->getExpression();
1135     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1136       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1137       return true;
1138     }
1139     return false;
1140   };
1141 
1142   for (auto &DDIMI : DanglingDebugInfoMap) {
1143     DanglingDebugInfoVector &DDIV = DDIMI.second;
1144 
1145     // If debug info is to be dropped, run it through final checks to see
1146     // whether it can be salvaged.
1147     for (auto &DDI : DDIV)
1148       if (isMatchingDbgValue(DDI))
1149         salvageUnresolvedDbgValue(DDI);
1150 
1151     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1152   }
1153 }
1154 
1155 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1156 // generate the debug data structures now that we've seen its definition.
1157 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1158                                                    SDValue Val) {
1159   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1160   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1161     return;
1162 
1163   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1164   for (auto &DDI : DDIV) {
1165     const DbgValueInst *DI = DDI.getDI();
1166     assert(DI && "Ill-formed DanglingDebugInfo");
1167     DebugLoc dl = DDI.getdl();
1168     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1169     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1170     DILocalVariable *Variable = DI->getVariable();
1171     DIExpression *Expr = DI->getExpression();
1172     assert(Variable->isValidLocationForIntrinsic(dl) &&
1173            "Expected inlined-at fields to agree");
1174     SDDbgValue *SDV;
1175     if (Val.getNode()) {
1176       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1177       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1178       // we couldn't resolve it directly when examining the DbgValue intrinsic
1179       // in the first place we should not be more successful here). Unless we
1180       // have some test case that prove this to be correct we should avoid
1181       // calling EmitFuncArgumentDbgValue here.
1182       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1183         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1184                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1185         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1186         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1187         // inserted after the definition of Val when emitting the instructions
1188         // after ISel. An alternative could be to teach
1189         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1190         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1191                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1192                    << ValSDNodeOrder << "\n");
1193         SDV = getDbgValue(Val, Variable, Expr, dl,
1194                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1195         DAG.AddDbgValue(SDV, Val.getNode(), false);
1196       } else
1197         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1198                           << "in EmitFuncArgumentDbgValue\n");
1199     } else {
1200       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1201       auto Undef =
1202           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1203       auto SDV =
1204           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1205       DAG.AddDbgValue(SDV, nullptr, false);
1206     }
1207   }
1208   DDIV.clear();
1209 }
1210 
1211 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1212   Value *V = DDI.getDI()->getValue();
1213   DILocalVariable *Var = DDI.getDI()->getVariable();
1214   DIExpression *Expr = DDI.getDI()->getExpression();
1215   DebugLoc DL = DDI.getdl();
1216   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1217   unsigned SDOrder = DDI.getSDNodeOrder();
1218 
1219   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1220   // that DW_OP_stack_value is desired.
1221   assert(isa<DbgValueInst>(DDI.getDI()));
1222   bool StackValue = true;
1223 
1224   // Can this Value can be encoded without any further work?
1225   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1226     return;
1227 
1228   // Attempt to salvage back through as many instructions as possible. Bail if
1229   // a non-instruction is seen, such as a constant expression or global
1230   // variable. FIXME: Further work could recover those too.
1231   while (isa<Instruction>(V)) {
1232     Instruction &VAsInst = *cast<Instruction>(V);
1233     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1234 
1235     // If we cannot salvage any further, and haven't yet found a suitable debug
1236     // expression, bail out.
1237     if (!NewExpr)
1238       break;
1239 
1240     // New value and expr now represent this debuginfo.
1241     V = VAsInst.getOperand(0);
1242     Expr = NewExpr;
1243 
1244     // Some kind of simplification occurred: check whether the operand of the
1245     // salvaged debug expression can be encoded in this DAG.
1246     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1247       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1248                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1249       return;
1250     }
1251   }
1252 
1253   // This was the final opportunity to salvage this debug information, and it
1254   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1255   // any earlier variable location.
1256   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1257   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1258   DAG.AddDbgValue(SDV, nullptr, false);
1259 
1260   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1261                     << "\n");
1262   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1263                     << "\n");
1264 }
1265 
1266 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1267                                            DIExpression *Expr, DebugLoc dl,
1268                                            DebugLoc InstDL, unsigned Order) {
1269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1270   SDDbgValue *SDV;
1271   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1272       isa<ConstantPointerNull>(V)) {
1273     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1274     DAG.AddDbgValue(SDV, nullptr, false);
1275     return true;
1276   }
1277 
1278   // If the Value is a frame index, we can create a FrameIndex debug value
1279   // without relying on the DAG at all.
1280   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1281     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1282     if (SI != FuncInfo.StaticAllocaMap.end()) {
1283       auto SDV =
1284           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1285                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1286       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1287       // is still available even if the SDNode gets optimized out.
1288       DAG.AddDbgValue(SDV, nullptr, false);
1289       return true;
1290     }
1291   }
1292 
1293   // Do not use getValue() in here; we don't want to generate code at
1294   // this point if it hasn't been done yet.
1295   SDValue N = NodeMap[V];
1296   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1297     N = UnusedArgNodeMap[V];
1298   if (N.getNode()) {
1299     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1300       return true;
1301     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1302     DAG.AddDbgValue(SDV, N.getNode(), false);
1303     return true;
1304   }
1305 
1306   // Special rules apply for the first dbg.values of parameter variables in a
1307   // function. Identify them by the fact they reference Argument Values, that
1308   // they're parameters, and they are parameters of the current function. We
1309   // need to let them dangle until they get an SDNode.
1310   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1311                        !InstDL.getInlinedAt();
1312   if (!IsParamOfFunc) {
1313     // The value is not used in this block yet (or it would have an SDNode).
1314     // We still want the value to appear for the user if possible -- if it has
1315     // an associated VReg, we can refer to that instead.
1316     auto VMI = FuncInfo.ValueMap.find(V);
1317     if (VMI != FuncInfo.ValueMap.end()) {
1318       unsigned Reg = VMI->second;
1319       // If this is a PHI node, it may be split up into several MI PHI nodes
1320       // (in FunctionLoweringInfo::set).
1321       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1322                        V->getType(), None);
1323       if (RFV.occupiesMultipleRegs()) {
1324         unsigned Offset = 0;
1325         unsigned BitsToDescribe = 0;
1326         if (auto VarSize = Var->getSizeInBits())
1327           BitsToDescribe = *VarSize;
1328         if (auto Fragment = Expr->getFragmentInfo())
1329           BitsToDescribe = Fragment->SizeInBits;
1330         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1331           unsigned RegisterSize = RegAndSize.second;
1332           // Bail out if all bits are described already.
1333           if (Offset >= BitsToDescribe)
1334             break;
1335           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1336               ? BitsToDescribe - Offset
1337               : RegisterSize;
1338           auto FragmentExpr = DIExpression::createFragmentExpression(
1339               Expr, Offset, FragmentSize);
1340           if (!FragmentExpr)
1341               continue;
1342           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1343                                     false, dl, SDNodeOrder);
1344           DAG.AddDbgValue(SDV, nullptr, false);
1345           Offset += RegisterSize;
1346         }
1347       } else {
1348         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1349         DAG.AddDbgValue(SDV, nullptr, false);
1350       }
1351       return true;
1352     }
1353   }
1354 
1355   return false;
1356 }
1357 
1358 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1359   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1360   for (auto &Pair : DanglingDebugInfoMap)
1361     for (auto &DDI : Pair.second)
1362       salvageUnresolvedDbgValue(DDI);
1363   clearDanglingDebugInfo();
1364 }
1365 
1366 /// getCopyFromRegs - If there was virtual register allocated for the value V
1367 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1368 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1369   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1370   SDValue Result;
1371 
1372   if (It != FuncInfo.ValueMap.end()) {
1373     unsigned InReg = It->second;
1374 
1375     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1376                      DAG.getDataLayout(), InReg, Ty,
1377                      None); // This is not an ABI copy.
1378     SDValue Chain = DAG.getEntryNode();
1379     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1380                                  V);
1381     resolveDanglingDebugInfo(V, Result);
1382   }
1383 
1384   return Result;
1385 }
1386 
1387 /// getValue - Return an SDValue for the given Value.
1388 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1389   // If we already have an SDValue for this value, use it. It's important
1390   // to do this first, so that we don't create a CopyFromReg if we already
1391   // have a regular SDValue.
1392   SDValue &N = NodeMap[V];
1393   if (N.getNode()) return N;
1394 
1395   // If there's a virtual register allocated and initialized for this
1396   // value, use it.
1397   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1398     return copyFromReg;
1399 
1400   // Otherwise create a new SDValue and remember it.
1401   SDValue Val = getValueImpl(V);
1402   NodeMap[V] = Val;
1403   resolveDanglingDebugInfo(V, Val);
1404   return Val;
1405 }
1406 
1407 // Return true if SDValue exists for the given Value
1408 bool SelectionDAGBuilder::findValue(const Value *V) const {
1409   return (NodeMap.find(V) != NodeMap.end()) ||
1410     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1411 }
1412 
1413 /// getNonRegisterValue - Return an SDValue for the given Value, but
1414 /// don't look in FuncInfo.ValueMap for a virtual register.
1415 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1416   // If we already have an SDValue for this value, use it.
1417   SDValue &N = NodeMap[V];
1418   if (N.getNode()) {
1419     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1420       // Remove the debug location from the node as the node is about to be used
1421       // in a location which may differ from the original debug location.  This
1422       // is relevant to Constant and ConstantFP nodes because they can appear
1423       // as constant expressions inside PHI nodes.
1424       N->setDebugLoc(DebugLoc());
1425     }
1426     return N;
1427   }
1428 
1429   // Otherwise create a new SDValue and remember it.
1430   SDValue Val = getValueImpl(V);
1431   NodeMap[V] = Val;
1432   resolveDanglingDebugInfo(V, Val);
1433   return Val;
1434 }
1435 
1436 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1437 /// Create an SDValue for the given value.
1438 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1440 
1441   if (const Constant *C = dyn_cast<Constant>(V)) {
1442     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1443 
1444     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1445       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1446 
1447     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1448       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1449 
1450     if (isa<ConstantPointerNull>(C)) {
1451       unsigned AS = V->getType()->getPointerAddressSpace();
1452       return DAG.getConstant(0, getCurSDLoc(),
1453                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1454     }
1455 
1456     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1457       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1458 
1459     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1460       return DAG.getUNDEF(VT);
1461 
1462     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1463       visit(CE->getOpcode(), *CE);
1464       SDValue N1 = NodeMap[V];
1465       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1466       return N1;
1467     }
1468 
1469     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1470       SmallVector<SDValue, 4> Constants;
1471       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1472            OI != OE; ++OI) {
1473         SDNode *Val = getValue(*OI).getNode();
1474         // If the operand is an empty aggregate, there are no values.
1475         if (!Val) continue;
1476         // Add each leaf value from the operand to the Constants list
1477         // to form a flattened list of all the values.
1478         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1479           Constants.push_back(SDValue(Val, i));
1480       }
1481 
1482       return DAG.getMergeValues(Constants, getCurSDLoc());
1483     }
1484 
1485     if (const ConstantDataSequential *CDS =
1486           dyn_cast<ConstantDataSequential>(C)) {
1487       SmallVector<SDValue, 4> Ops;
1488       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1489         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1490         // Add each leaf value from the operand to the Constants list
1491         // to form a flattened list of all the values.
1492         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1493           Ops.push_back(SDValue(Val, i));
1494       }
1495 
1496       if (isa<ArrayType>(CDS->getType()))
1497         return DAG.getMergeValues(Ops, getCurSDLoc());
1498       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1499     }
1500 
1501     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1502       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1503              "Unknown struct or array constant!");
1504 
1505       SmallVector<EVT, 4> ValueVTs;
1506       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1507       unsigned NumElts = ValueVTs.size();
1508       if (NumElts == 0)
1509         return SDValue(); // empty struct
1510       SmallVector<SDValue, 4> Constants(NumElts);
1511       for (unsigned i = 0; i != NumElts; ++i) {
1512         EVT EltVT = ValueVTs[i];
1513         if (isa<UndefValue>(C))
1514           Constants[i] = DAG.getUNDEF(EltVT);
1515         else if (EltVT.isFloatingPoint())
1516           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1517         else
1518           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1519       }
1520 
1521       return DAG.getMergeValues(Constants, getCurSDLoc());
1522     }
1523 
1524     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1525       return DAG.getBlockAddress(BA, VT);
1526 
1527     VectorType *VecTy = cast<VectorType>(V->getType());
1528     unsigned NumElements = VecTy->getNumElements();
1529 
1530     // Now that we know the number and type of the elements, get that number of
1531     // elements into the Ops array based on what kind of constant it is.
1532     SmallVector<SDValue, 16> Ops;
1533     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1534       for (unsigned i = 0; i != NumElements; ++i)
1535         Ops.push_back(getValue(CV->getOperand(i)));
1536     } else {
1537       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1538       EVT EltVT =
1539           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1540 
1541       SDValue Op;
1542       if (EltVT.isFloatingPoint())
1543         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1544       else
1545         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1546       Ops.assign(NumElements, Op);
1547     }
1548 
1549     // Create a BUILD_VECTOR node.
1550     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1551   }
1552 
1553   // If this is a static alloca, generate it as the frameindex instead of
1554   // computation.
1555   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1556     DenseMap<const AllocaInst*, int>::iterator SI =
1557       FuncInfo.StaticAllocaMap.find(AI);
1558     if (SI != FuncInfo.StaticAllocaMap.end())
1559       return DAG.getFrameIndex(SI->second,
1560                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1561   }
1562 
1563   // If this is an instruction which fast-isel has deferred, select it now.
1564   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1565     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1566 
1567     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1568                      Inst->getType(), getABIRegCopyCC(V));
1569     SDValue Chain = DAG.getEntryNode();
1570     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1571   }
1572 
1573   llvm_unreachable("Can't get register for value!");
1574 }
1575 
1576 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1577   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1578   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1579   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1580   bool IsSEH = isAsynchronousEHPersonality(Pers);
1581   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1582   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1583   if (!IsSEH)
1584     CatchPadMBB->setIsEHScopeEntry();
1585   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1586   if (IsMSVCCXX || IsCoreCLR)
1587     CatchPadMBB->setIsEHFuncletEntry();
1588   // Wasm does not need catchpads anymore
1589   if (!IsWasmCXX)
1590     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1591                             getControlRoot()));
1592 }
1593 
1594 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1595   // Update machine-CFG edge.
1596   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1597   FuncInfo.MBB->addSuccessor(TargetMBB);
1598 
1599   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1600   bool IsSEH = isAsynchronousEHPersonality(Pers);
1601   if (IsSEH) {
1602     // If this is not a fall-through branch or optimizations are switched off,
1603     // emit the branch.
1604     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1605         TM.getOptLevel() == CodeGenOpt::None)
1606       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1607                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1608     return;
1609   }
1610 
1611   // Figure out the funclet membership for the catchret's successor.
1612   // This will be used by the FuncletLayout pass to determine how to order the
1613   // BB's.
1614   // A 'catchret' returns to the outer scope's color.
1615   Value *ParentPad = I.getCatchSwitchParentPad();
1616   const BasicBlock *SuccessorColor;
1617   if (isa<ConstantTokenNone>(ParentPad))
1618     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1619   else
1620     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1621   assert(SuccessorColor && "No parent funclet for catchret!");
1622   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1623   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1624 
1625   // Create the terminator node.
1626   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1627                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1628                             DAG.getBasicBlock(SuccessorColorMBB));
1629   DAG.setRoot(Ret);
1630 }
1631 
1632 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1633   // Don't emit any special code for the cleanuppad instruction. It just marks
1634   // the start of an EH scope/funclet.
1635   FuncInfo.MBB->setIsEHScopeEntry();
1636   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1637   if (Pers != EHPersonality::Wasm_CXX) {
1638     FuncInfo.MBB->setIsEHFuncletEntry();
1639     FuncInfo.MBB->setIsCleanupFuncletEntry();
1640   }
1641 }
1642 
1643 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1644 // the control flow always stops at the single catch pad, as it does for a
1645 // cleanup pad. In case the exception caught is not of the types the catch pad
1646 // catches, it will be rethrown by a rethrow.
1647 static void findWasmUnwindDestinations(
1648     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1649     BranchProbability Prob,
1650     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1651         &UnwindDests) {
1652   while (EHPadBB) {
1653     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1654     if (isa<CleanupPadInst>(Pad)) {
1655       // Stop on cleanup pads.
1656       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1657       UnwindDests.back().first->setIsEHScopeEntry();
1658       break;
1659     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1660       // Add the catchpad handlers to the possible destinations. We don't
1661       // continue to the unwind destination of the catchswitch for wasm.
1662       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1663         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1664         UnwindDests.back().first->setIsEHScopeEntry();
1665       }
1666       break;
1667     } else {
1668       continue;
1669     }
1670   }
1671 }
1672 
1673 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1674 /// many places it could ultimately go. In the IR, we have a single unwind
1675 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1676 /// This function skips over imaginary basic blocks that hold catchswitch
1677 /// instructions, and finds all the "real" machine
1678 /// basic block destinations. As those destinations may not be successors of
1679 /// EHPadBB, here we also calculate the edge probability to those destinations.
1680 /// The passed-in Prob is the edge probability to EHPadBB.
1681 static void findUnwindDestinations(
1682     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1683     BranchProbability Prob,
1684     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1685         &UnwindDests) {
1686   EHPersonality Personality =
1687     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1688   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1689   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1690   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1691   bool IsSEH = isAsynchronousEHPersonality(Personality);
1692 
1693   if (IsWasmCXX) {
1694     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1695     assert(UnwindDests.size() <= 1 &&
1696            "There should be at most one unwind destination for wasm");
1697     return;
1698   }
1699 
1700   while (EHPadBB) {
1701     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1702     BasicBlock *NewEHPadBB = nullptr;
1703     if (isa<LandingPadInst>(Pad)) {
1704       // Stop on landingpads. They are not funclets.
1705       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1706       break;
1707     } else if (isa<CleanupPadInst>(Pad)) {
1708       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1709       // personalities.
1710       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1711       UnwindDests.back().first->setIsEHScopeEntry();
1712       UnwindDests.back().first->setIsEHFuncletEntry();
1713       break;
1714     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1715       // Add the catchpad handlers to the possible destinations.
1716       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1717         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1718         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1719         if (IsMSVCCXX || IsCoreCLR)
1720           UnwindDests.back().first->setIsEHFuncletEntry();
1721         if (!IsSEH)
1722           UnwindDests.back().first->setIsEHScopeEntry();
1723       }
1724       NewEHPadBB = CatchSwitch->getUnwindDest();
1725     } else {
1726       continue;
1727     }
1728 
1729     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1730     if (BPI && NewEHPadBB)
1731       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1732     EHPadBB = NewEHPadBB;
1733   }
1734 }
1735 
1736 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1737   // Update successor info.
1738   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1739   auto UnwindDest = I.getUnwindDest();
1740   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1741   BranchProbability UnwindDestProb =
1742       (BPI && UnwindDest)
1743           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1744           : BranchProbability::getZero();
1745   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1746   for (auto &UnwindDest : UnwindDests) {
1747     UnwindDest.first->setIsEHPad();
1748     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1749   }
1750   FuncInfo.MBB->normalizeSuccProbs();
1751 
1752   // Create the terminator node.
1753   SDValue Ret =
1754       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1755   DAG.setRoot(Ret);
1756 }
1757 
1758 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1759   report_fatal_error("visitCatchSwitch not yet implemented!");
1760 }
1761 
1762 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1764   auto &DL = DAG.getDataLayout();
1765   SDValue Chain = getControlRoot();
1766   SmallVector<ISD::OutputArg, 8> Outs;
1767   SmallVector<SDValue, 8> OutVals;
1768 
1769   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1770   // lower
1771   //
1772   //   %val = call <ty> @llvm.experimental.deoptimize()
1773   //   ret <ty> %val
1774   //
1775   // differently.
1776   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1777     LowerDeoptimizingReturn();
1778     return;
1779   }
1780 
1781   if (!FuncInfo.CanLowerReturn) {
1782     unsigned DemoteReg = FuncInfo.DemoteRegister;
1783     const Function *F = I.getParent()->getParent();
1784 
1785     // Emit a store of the return value through the virtual register.
1786     // Leave Outs empty so that LowerReturn won't try to load return
1787     // registers the usual way.
1788     SmallVector<EVT, 1> PtrValueVTs;
1789     ComputeValueVTs(TLI, DL,
1790                     F->getReturnType()->getPointerTo(
1791                         DAG.getDataLayout().getAllocaAddrSpace()),
1792                     PtrValueVTs);
1793 
1794     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1795                                         DemoteReg, PtrValueVTs[0]);
1796     SDValue RetOp = getValue(I.getOperand(0));
1797 
1798     SmallVector<EVT, 4> ValueVTs, MemVTs;
1799     SmallVector<uint64_t, 4> Offsets;
1800     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1801                     &Offsets);
1802     unsigned NumValues = ValueVTs.size();
1803 
1804     SmallVector<SDValue, 4> Chains(NumValues);
1805     for (unsigned i = 0; i != NumValues; ++i) {
1806       // An aggregate return value cannot wrap around the address space, so
1807       // offsets to its parts don't wrap either.
1808       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1809 
1810       SDValue Val = RetOp.getValue(i);
1811       if (MemVTs[i] != ValueVTs[i])
1812         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1813       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1814           // FIXME: better loc info would be nice.
1815           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1816     }
1817 
1818     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1819                         MVT::Other, Chains);
1820   } else if (I.getNumOperands() != 0) {
1821     SmallVector<EVT, 4> ValueVTs;
1822     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1823     unsigned NumValues = ValueVTs.size();
1824     if (NumValues) {
1825       SDValue RetOp = getValue(I.getOperand(0));
1826 
1827       const Function *F = I.getParent()->getParent();
1828 
1829       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1830           I.getOperand(0)->getType(), F->getCallingConv(),
1831           /*IsVarArg*/ false);
1832 
1833       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1834       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1835                                           Attribute::SExt))
1836         ExtendKind = ISD::SIGN_EXTEND;
1837       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1838                                                Attribute::ZExt))
1839         ExtendKind = ISD::ZERO_EXTEND;
1840 
1841       LLVMContext &Context = F->getContext();
1842       bool RetInReg = F->getAttributes().hasAttribute(
1843           AttributeList::ReturnIndex, Attribute::InReg);
1844 
1845       for (unsigned j = 0; j != NumValues; ++j) {
1846         EVT VT = ValueVTs[j];
1847 
1848         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1849           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1850 
1851         CallingConv::ID CC = F->getCallingConv();
1852 
1853         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1854         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1855         SmallVector<SDValue, 4> Parts(NumParts);
1856         getCopyToParts(DAG, getCurSDLoc(),
1857                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1858                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1859 
1860         // 'inreg' on function refers to return value
1861         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1862         if (RetInReg)
1863           Flags.setInReg();
1864 
1865         if (I.getOperand(0)->getType()->isPointerTy()) {
1866           Flags.setPointer();
1867           Flags.setPointerAddrSpace(
1868               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1869         }
1870 
1871         if (NeedsRegBlock) {
1872           Flags.setInConsecutiveRegs();
1873           if (j == NumValues - 1)
1874             Flags.setInConsecutiveRegsLast();
1875         }
1876 
1877         // Propagate extension type if any
1878         if (ExtendKind == ISD::SIGN_EXTEND)
1879           Flags.setSExt();
1880         else if (ExtendKind == ISD::ZERO_EXTEND)
1881           Flags.setZExt();
1882 
1883         for (unsigned i = 0; i < NumParts; ++i) {
1884           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1885                                         VT, /*isfixed=*/true, 0, 0));
1886           OutVals.push_back(Parts[i]);
1887         }
1888       }
1889     }
1890   }
1891 
1892   // Push in swifterror virtual register as the last element of Outs. This makes
1893   // sure swifterror virtual register will be returned in the swifterror
1894   // physical register.
1895   const Function *F = I.getParent()->getParent();
1896   if (TLI.supportSwiftError() &&
1897       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1898     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1899     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1900     Flags.setSwiftError();
1901     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1902                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1903                                   true /*isfixed*/, 1 /*origidx*/,
1904                                   0 /*partOffs*/));
1905     // Create SDNode for the swifterror virtual register.
1906     OutVals.push_back(
1907         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1908                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1909                         EVT(TLI.getPointerTy(DL))));
1910   }
1911 
1912   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1913   CallingConv::ID CallConv =
1914     DAG.getMachineFunction().getFunction().getCallingConv();
1915   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1916       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1917 
1918   // Verify that the target's LowerReturn behaved as expected.
1919   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1920          "LowerReturn didn't return a valid chain!");
1921 
1922   // Update the DAG with the new chain value resulting from return lowering.
1923   DAG.setRoot(Chain);
1924 }
1925 
1926 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1927 /// created for it, emit nodes to copy the value into the virtual
1928 /// registers.
1929 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1930   // Skip empty types
1931   if (V->getType()->isEmptyTy())
1932     return;
1933 
1934   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1935   if (VMI != FuncInfo.ValueMap.end()) {
1936     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1937     CopyValueToVirtualRegister(V, VMI->second);
1938   }
1939 }
1940 
1941 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1942 /// the current basic block, add it to ValueMap now so that we'll get a
1943 /// CopyTo/FromReg.
1944 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1945   // No need to export constants.
1946   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1947 
1948   // Already exported?
1949   if (FuncInfo.isExportedInst(V)) return;
1950 
1951   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1952   CopyValueToVirtualRegister(V, Reg);
1953 }
1954 
1955 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1956                                                      const BasicBlock *FromBB) {
1957   // The operands of the setcc have to be in this block.  We don't know
1958   // how to export them from some other block.
1959   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1960     // Can export from current BB.
1961     if (VI->getParent() == FromBB)
1962       return true;
1963 
1964     // Is already exported, noop.
1965     return FuncInfo.isExportedInst(V);
1966   }
1967 
1968   // If this is an argument, we can export it if the BB is the entry block or
1969   // if it is already exported.
1970   if (isa<Argument>(V)) {
1971     if (FromBB == &FromBB->getParent()->getEntryBlock())
1972       return true;
1973 
1974     // Otherwise, can only export this if it is already exported.
1975     return FuncInfo.isExportedInst(V);
1976   }
1977 
1978   // Otherwise, constants can always be exported.
1979   return true;
1980 }
1981 
1982 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1983 BranchProbability
1984 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1985                                         const MachineBasicBlock *Dst) const {
1986   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1987   const BasicBlock *SrcBB = Src->getBasicBlock();
1988   const BasicBlock *DstBB = Dst->getBasicBlock();
1989   if (!BPI) {
1990     // If BPI is not available, set the default probability as 1 / N, where N is
1991     // the number of successors.
1992     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1993     return BranchProbability(1, SuccSize);
1994   }
1995   return BPI->getEdgeProbability(SrcBB, DstBB);
1996 }
1997 
1998 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1999                                                MachineBasicBlock *Dst,
2000                                                BranchProbability Prob) {
2001   if (!FuncInfo.BPI)
2002     Src->addSuccessorWithoutProb(Dst);
2003   else {
2004     if (Prob.isUnknown())
2005       Prob = getEdgeProbability(Src, Dst);
2006     Src->addSuccessor(Dst, Prob);
2007   }
2008 }
2009 
2010 static bool InBlock(const Value *V, const BasicBlock *BB) {
2011   if (const Instruction *I = dyn_cast<Instruction>(V))
2012     return I->getParent() == BB;
2013   return true;
2014 }
2015 
2016 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2017 /// This function emits a branch and is used at the leaves of an OR or an
2018 /// AND operator tree.
2019 void
2020 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2021                                                   MachineBasicBlock *TBB,
2022                                                   MachineBasicBlock *FBB,
2023                                                   MachineBasicBlock *CurBB,
2024                                                   MachineBasicBlock *SwitchBB,
2025                                                   BranchProbability TProb,
2026                                                   BranchProbability FProb,
2027                                                   bool InvertCond) {
2028   const BasicBlock *BB = CurBB->getBasicBlock();
2029 
2030   // If the leaf of the tree is a comparison, merge the condition into
2031   // the caseblock.
2032   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2033     // The operands of the cmp have to be in this block.  We don't know
2034     // how to export them from some other block.  If this is the first block
2035     // of the sequence, no exporting is needed.
2036     if (CurBB == SwitchBB ||
2037         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2038          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2039       ISD::CondCode Condition;
2040       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2041         ICmpInst::Predicate Pred =
2042             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2043         Condition = getICmpCondCode(Pred);
2044       } else {
2045         const FCmpInst *FC = cast<FCmpInst>(Cond);
2046         FCmpInst::Predicate Pred =
2047             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2048         Condition = getFCmpCondCode(Pred);
2049         if (TM.Options.NoNaNsFPMath)
2050           Condition = getFCmpCodeWithoutNaN(Condition);
2051       }
2052 
2053       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2054                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2055       SwitchCases.push_back(CB);
2056       return;
2057     }
2058   }
2059 
2060   // Create a CaseBlock record representing this branch.
2061   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2062   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2063                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2064   SwitchCases.push_back(CB);
2065 }
2066 
2067 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2068                                                MachineBasicBlock *TBB,
2069                                                MachineBasicBlock *FBB,
2070                                                MachineBasicBlock *CurBB,
2071                                                MachineBasicBlock *SwitchBB,
2072                                                Instruction::BinaryOps Opc,
2073                                                BranchProbability TProb,
2074                                                BranchProbability FProb,
2075                                                bool InvertCond) {
2076   // Skip over not part of the tree and remember to invert op and operands at
2077   // next level.
2078   Value *NotCond;
2079   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2080       InBlock(NotCond, CurBB->getBasicBlock())) {
2081     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2082                          !InvertCond);
2083     return;
2084   }
2085 
2086   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2087   // Compute the effective opcode for Cond, taking into account whether it needs
2088   // to be inverted, e.g.
2089   //   and (not (or A, B)), C
2090   // gets lowered as
2091   //   and (and (not A, not B), C)
2092   unsigned BOpc = 0;
2093   if (BOp) {
2094     BOpc = BOp->getOpcode();
2095     if (InvertCond) {
2096       if (BOpc == Instruction::And)
2097         BOpc = Instruction::Or;
2098       else if (BOpc == Instruction::Or)
2099         BOpc = Instruction::And;
2100     }
2101   }
2102 
2103   // If this node is not part of the or/and tree, emit it as a branch.
2104   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2105       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2106       BOp->getParent() != CurBB->getBasicBlock() ||
2107       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2108       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2109     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2110                                  TProb, FProb, InvertCond);
2111     return;
2112   }
2113 
2114   //  Create TmpBB after CurBB.
2115   MachineFunction::iterator BBI(CurBB);
2116   MachineFunction &MF = DAG.getMachineFunction();
2117   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2118   CurBB->getParent()->insert(++BBI, TmpBB);
2119 
2120   if (Opc == Instruction::Or) {
2121     // Codegen X | Y as:
2122     // BB1:
2123     //   jmp_if_X TBB
2124     //   jmp TmpBB
2125     // TmpBB:
2126     //   jmp_if_Y TBB
2127     //   jmp FBB
2128     //
2129 
2130     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2131     // The requirement is that
2132     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2133     //     = TrueProb for original BB.
2134     // Assuming the original probabilities are A and B, one choice is to set
2135     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2136     // A/(1+B) and 2B/(1+B). This choice assumes that
2137     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2138     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2139     // TmpBB, but the math is more complicated.
2140 
2141     auto NewTrueProb = TProb / 2;
2142     auto NewFalseProb = TProb / 2 + FProb;
2143     // Emit the LHS condition.
2144     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2145                          NewTrueProb, NewFalseProb, InvertCond);
2146 
2147     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2148     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2149     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2150     // Emit the RHS condition into TmpBB.
2151     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2152                          Probs[0], Probs[1], InvertCond);
2153   } else {
2154     assert(Opc == Instruction::And && "Unknown merge op!");
2155     // Codegen X & Y as:
2156     // BB1:
2157     //   jmp_if_X TmpBB
2158     //   jmp FBB
2159     // TmpBB:
2160     //   jmp_if_Y TBB
2161     //   jmp FBB
2162     //
2163     //  This requires creation of TmpBB after CurBB.
2164 
2165     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2166     // The requirement is that
2167     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2168     //     = FalseProb for original BB.
2169     // Assuming the original probabilities are A and B, one choice is to set
2170     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2171     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2172     // TrueProb for BB1 * FalseProb for TmpBB.
2173 
2174     auto NewTrueProb = TProb + FProb / 2;
2175     auto NewFalseProb = FProb / 2;
2176     // Emit the LHS condition.
2177     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2178                          NewTrueProb, NewFalseProb, InvertCond);
2179 
2180     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2181     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2182     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2183     // Emit the RHS condition into TmpBB.
2184     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2185                          Probs[0], Probs[1], InvertCond);
2186   }
2187 }
2188 
2189 /// If the set of cases should be emitted as a series of branches, return true.
2190 /// If we should emit this as a bunch of and/or'd together conditions, return
2191 /// false.
2192 bool
2193 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2194   if (Cases.size() != 2) return true;
2195 
2196   // If this is two comparisons of the same values or'd or and'd together, they
2197   // will get folded into a single comparison, so don't emit two blocks.
2198   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2199        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2200       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2201        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2202     return false;
2203   }
2204 
2205   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2206   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2207   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2208       Cases[0].CC == Cases[1].CC &&
2209       isa<Constant>(Cases[0].CmpRHS) &&
2210       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2211     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2212       return false;
2213     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2214       return false;
2215   }
2216 
2217   return true;
2218 }
2219 
2220 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2221   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2222 
2223   // Update machine-CFG edges.
2224   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2225 
2226   if (I.isUnconditional()) {
2227     // Update machine-CFG edges.
2228     BrMBB->addSuccessor(Succ0MBB);
2229 
2230     // If this is not a fall-through branch or optimizations are switched off,
2231     // emit the branch.
2232     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2233       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2234                               MVT::Other, getControlRoot(),
2235                               DAG.getBasicBlock(Succ0MBB)));
2236 
2237     return;
2238   }
2239 
2240   // If this condition is one of the special cases we handle, do special stuff
2241   // now.
2242   const Value *CondVal = I.getCondition();
2243   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2244 
2245   // If this is a series of conditions that are or'd or and'd together, emit
2246   // this as a sequence of branches instead of setcc's with and/or operations.
2247   // As long as jumps are not expensive, this should improve performance.
2248   // For example, instead of something like:
2249   //     cmp A, B
2250   //     C = seteq
2251   //     cmp D, E
2252   //     F = setle
2253   //     or C, F
2254   //     jnz foo
2255   // Emit:
2256   //     cmp A, B
2257   //     je foo
2258   //     cmp D, E
2259   //     jle foo
2260   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2261     Instruction::BinaryOps Opcode = BOp->getOpcode();
2262     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2263         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2264         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2265       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2266                            Opcode,
2267                            getEdgeProbability(BrMBB, Succ0MBB),
2268                            getEdgeProbability(BrMBB, Succ1MBB),
2269                            /*InvertCond=*/false);
2270       // If the compares in later blocks need to use values not currently
2271       // exported from this block, export them now.  This block should always
2272       // be the first entry.
2273       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2274 
2275       // Allow some cases to be rejected.
2276       if (ShouldEmitAsBranches(SwitchCases)) {
2277         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2278           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2279           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2280         }
2281 
2282         // Emit the branch for this block.
2283         visitSwitchCase(SwitchCases[0], BrMBB);
2284         SwitchCases.erase(SwitchCases.begin());
2285         return;
2286       }
2287 
2288       // Okay, we decided not to do this, remove any inserted MBB's and clear
2289       // SwitchCases.
2290       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2291         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2292 
2293       SwitchCases.clear();
2294     }
2295   }
2296 
2297   // Create a CaseBlock record representing this branch.
2298   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2299                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2300 
2301   // Use visitSwitchCase to actually insert the fast branch sequence for this
2302   // cond branch.
2303   visitSwitchCase(CB, BrMBB);
2304 }
2305 
2306 /// visitSwitchCase - Emits the necessary code to represent a single node in
2307 /// the binary search tree resulting from lowering a switch instruction.
2308 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2309                                           MachineBasicBlock *SwitchBB) {
2310   SDValue Cond;
2311   SDValue CondLHS = getValue(CB.CmpLHS);
2312   SDLoc dl = CB.DL;
2313 
2314   if (CB.CC == ISD::SETTRUE) {
2315     // Branch or fall through to TrueBB.
2316     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2317     SwitchBB->normalizeSuccProbs();
2318     if (CB.TrueBB != NextBlock(SwitchBB)) {
2319       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2320                               DAG.getBasicBlock(CB.TrueBB)));
2321     }
2322     return;
2323   }
2324 
2325   auto &TLI = DAG.getTargetLoweringInfo();
2326   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2327 
2328   // Build the setcc now.
2329   if (!CB.CmpMHS) {
2330     // Fold "(X == true)" to X and "(X == false)" to !X to
2331     // handle common cases produced by branch lowering.
2332     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2333         CB.CC == ISD::SETEQ)
2334       Cond = CondLHS;
2335     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2336              CB.CC == ISD::SETEQ) {
2337       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2338       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2339     } else {
2340       SDValue CondRHS = getValue(CB.CmpRHS);
2341 
2342       // If a pointer's DAG type is larger than its memory type then the DAG
2343       // values are zero-extended. This breaks signed comparisons so truncate
2344       // back to the underlying type before doing the compare.
2345       if (CondLHS.getValueType() != MemVT) {
2346         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2347         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2348       }
2349       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2350     }
2351   } else {
2352     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2353 
2354     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2355     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2356 
2357     SDValue CmpOp = getValue(CB.CmpMHS);
2358     EVT VT = CmpOp.getValueType();
2359 
2360     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2361       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2362                           ISD::SETLE);
2363     } else {
2364       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2365                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2366       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2367                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2368     }
2369   }
2370 
2371   // Update successor info
2372   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2373   // TrueBB and FalseBB are always different unless the incoming IR is
2374   // degenerate. This only happens when running llc on weird IR.
2375   if (CB.TrueBB != CB.FalseBB)
2376     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2377   SwitchBB->normalizeSuccProbs();
2378 
2379   // If the lhs block is the next block, invert the condition so that we can
2380   // fall through to the lhs instead of the rhs block.
2381   if (CB.TrueBB == NextBlock(SwitchBB)) {
2382     std::swap(CB.TrueBB, CB.FalseBB);
2383     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2384     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2385   }
2386 
2387   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2388                                MVT::Other, getControlRoot(), Cond,
2389                                DAG.getBasicBlock(CB.TrueBB));
2390 
2391   // Insert the false branch. Do this even if it's a fall through branch,
2392   // this makes it easier to do DAG optimizations which require inverting
2393   // the branch condition.
2394   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2395                        DAG.getBasicBlock(CB.FalseBB));
2396 
2397   DAG.setRoot(BrCond);
2398 }
2399 
2400 /// visitJumpTable - Emit JumpTable node in the current MBB
2401 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2402   // Emit the code for the jump table
2403   assert(JT.Reg != -1U && "Should lower JT Header first!");
2404   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2405   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2406                                      JT.Reg, PTy);
2407   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2408   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2409                                     MVT::Other, Index.getValue(1),
2410                                     Table, Index);
2411   DAG.setRoot(BrJumpTable);
2412 }
2413 
2414 /// visitJumpTableHeader - This function emits necessary code to produce index
2415 /// in the JumpTable from switch case.
2416 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2417                                                JumpTableHeader &JTH,
2418                                                MachineBasicBlock *SwitchBB) {
2419   SDLoc dl = getCurSDLoc();
2420 
2421   // Subtract the lowest switch case value from the value being switched on.
2422   SDValue SwitchOp = getValue(JTH.SValue);
2423   EVT VT = SwitchOp.getValueType();
2424   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2425                             DAG.getConstant(JTH.First, dl, VT));
2426 
2427   // The SDNode we just created, which holds the value being switched on minus
2428   // the smallest case value, needs to be copied to a virtual register so it
2429   // can be used as an index into the jump table in a subsequent basic block.
2430   // This value may be smaller or larger than the target's pointer type, and
2431   // therefore require extension or truncating.
2432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2433   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2434 
2435   unsigned JumpTableReg =
2436       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2437   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2438                                     JumpTableReg, SwitchOp);
2439   JT.Reg = JumpTableReg;
2440 
2441   if (!JTH.OmitRangeCheck) {
2442     // Emit the range check for the jump table, and branch to the default block
2443     // for the switch statement if the value being switched on exceeds the
2444     // largest case in the switch.
2445     SDValue CMP = DAG.getSetCC(
2446         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2447                                    Sub.getValueType()),
2448         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2449 
2450     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2451                                  MVT::Other, CopyTo, CMP,
2452                                  DAG.getBasicBlock(JT.Default));
2453 
2454     // Avoid emitting unnecessary branches to the next block.
2455     if (JT.MBB != NextBlock(SwitchBB))
2456       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2457                            DAG.getBasicBlock(JT.MBB));
2458 
2459     DAG.setRoot(BrCond);
2460   } else {
2461     // Avoid emitting unnecessary branches to the next block.
2462     if (JT.MBB != NextBlock(SwitchBB))
2463       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2464                               DAG.getBasicBlock(JT.MBB)));
2465     else
2466       DAG.setRoot(CopyTo);
2467   }
2468 }
2469 
2470 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2471 /// variable if there exists one.
2472 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2473                                  SDValue &Chain) {
2474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2475   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2476   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2477   MachineFunction &MF = DAG.getMachineFunction();
2478   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2479   MachineSDNode *Node =
2480       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2481   if (Global) {
2482     MachinePointerInfo MPInfo(Global);
2483     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2484                  MachineMemOperand::MODereferenceable;
2485     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2486         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2487     DAG.setNodeMemRefs(Node, {MemRef});
2488   }
2489   if (PtrTy != PtrMemTy)
2490     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2491   return SDValue(Node, 0);
2492 }
2493 
2494 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2495 /// tail spliced into a stack protector check success bb.
2496 ///
2497 /// For a high level explanation of how this fits into the stack protector
2498 /// generation see the comment on the declaration of class
2499 /// StackProtectorDescriptor.
2500 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2501                                                   MachineBasicBlock *ParentBB) {
2502 
2503   // First create the loads to the guard/stack slot for the comparison.
2504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2505   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2506   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2507 
2508   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2509   int FI = MFI.getStackProtectorIndex();
2510 
2511   SDValue Guard;
2512   SDLoc dl = getCurSDLoc();
2513   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2514   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2515   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2516 
2517   // Generate code to load the content of the guard slot.
2518   SDValue GuardVal = DAG.getLoad(
2519       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2520       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2521       MachineMemOperand::MOVolatile);
2522 
2523   if (TLI.useStackGuardXorFP())
2524     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2525 
2526   // Retrieve guard check function, nullptr if instrumentation is inlined.
2527   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2528     // The target provides a guard check function to validate the guard value.
2529     // Generate a call to that function with the content of the guard slot as
2530     // argument.
2531     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2532     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2533 
2534     TargetLowering::ArgListTy Args;
2535     TargetLowering::ArgListEntry Entry;
2536     Entry.Node = GuardVal;
2537     Entry.Ty = FnTy->getParamType(0);
2538     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2539       Entry.IsInReg = true;
2540     Args.push_back(Entry);
2541 
2542     TargetLowering::CallLoweringInfo CLI(DAG);
2543     CLI.setDebugLoc(getCurSDLoc())
2544         .setChain(DAG.getEntryNode())
2545         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2546                    getValue(GuardCheckFn), std::move(Args));
2547 
2548     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2549     DAG.setRoot(Result.second);
2550     return;
2551   }
2552 
2553   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2554   // Otherwise, emit a volatile load to retrieve the stack guard value.
2555   SDValue Chain = DAG.getEntryNode();
2556   if (TLI.useLoadStackGuardNode()) {
2557     Guard = getLoadStackGuard(DAG, dl, Chain);
2558   } else {
2559     const Value *IRGuard = TLI.getSDagStackGuard(M);
2560     SDValue GuardPtr = getValue(IRGuard);
2561 
2562     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2563                         MachinePointerInfo(IRGuard, 0), Align,
2564                         MachineMemOperand::MOVolatile);
2565   }
2566 
2567   // Perform the comparison via a subtract/getsetcc.
2568   EVT VT = Guard.getValueType();
2569   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2570 
2571   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2572                                                         *DAG.getContext(),
2573                                                         Sub.getValueType()),
2574                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2575 
2576   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2577   // branch to failure MBB.
2578   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2579                                MVT::Other, GuardVal.getOperand(0),
2580                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2581   // Otherwise branch to success MBB.
2582   SDValue Br = DAG.getNode(ISD::BR, dl,
2583                            MVT::Other, BrCond,
2584                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2585 
2586   DAG.setRoot(Br);
2587 }
2588 
2589 /// Codegen the failure basic block for a stack protector check.
2590 ///
2591 /// A failure stack protector machine basic block consists simply of a call to
2592 /// __stack_chk_fail().
2593 ///
2594 /// For a high level explanation of how this fits into the stack protector
2595 /// generation see the comment on the declaration of class
2596 /// StackProtectorDescriptor.
2597 void
2598 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2600   SDValue Chain =
2601       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2602                       None, false, getCurSDLoc(), false, false).second;
2603   // On PS4, the "return address" must still be within the calling function,
2604   // even if it's at the very end, so emit an explicit TRAP here.
2605   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2606   if (TM.getTargetTriple().isPS4CPU())
2607     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2608 
2609   DAG.setRoot(Chain);
2610 }
2611 
2612 /// visitBitTestHeader - This function emits necessary code to produce value
2613 /// suitable for "bit tests"
2614 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2615                                              MachineBasicBlock *SwitchBB) {
2616   SDLoc dl = getCurSDLoc();
2617 
2618   // Subtract the minimum value
2619   SDValue SwitchOp = getValue(B.SValue);
2620   EVT VT = SwitchOp.getValueType();
2621   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2622                             DAG.getConstant(B.First, dl, VT));
2623 
2624   // Check range
2625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2626   SDValue RangeCmp = DAG.getSetCC(
2627       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2628                                  Sub.getValueType()),
2629       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2630 
2631   // Determine the type of the test operands.
2632   bool UsePtrType = false;
2633   if (!TLI.isTypeLegal(VT))
2634     UsePtrType = true;
2635   else {
2636     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2637       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2638         // Switch table case range are encoded into series of masks.
2639         // Just use pointer type, it's guaranteed to fit.
2640         UsePtrType = true;
2641         break;
2642       }
2643   }
2644   if (UsePtrType) {
2645     VT = TLI.getPointerTy(DAG.getDataLayout());
2646     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2647   }
2648 
2649   B.RegVT = VT.getSimpleVT();
2650   B.Reg = FuncInfo.CreateReg(B.RegVT);
2651   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2652 
2653   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2654 
2655   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2656   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2657   SwitchBB->normalizeSuccProbs();
2658 
2659   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2660                                 MVT::Other, CopyTo, RangeCmp,
2661                                 DAG.getBasicBlock(B.Default));
2662 
2663   // Avoid emitting unnecessary branches to the next block.
2664   if (MBB != NextBlock(SwitchBB))
2665     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2666                           DAG.getBasicBlock(MBB));
2667 
2668   DAG.setRoot(BrRange);
2669 }
2670 
2671 /// visitBitTestCase - this function produces one "bit test"
2672 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2673                                            MachineBasicBlock* NextMBB,
2674                                            BranchProbability BranchProbToNext,
2675                                            unsigned Reg,
2676                                            BitTestCase &B,
2677                                            MachineBasicBlock *SwitchBB) {
2678   SDLoc dl = getCurSDLoc();
2679   MVT VT = BB.RegVT;
2680   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2681   SDValue Cmp;
2682   unsigned PopCount = countPopulation(B.Mask);
2683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2684   if (PopCount == 1) {
2685     // Testing for a single bit; just compare the shift count with what it
2686     // would need to be to shift a 1 bit in that position.
2687     Cmp = DAG.getSetCC(
2688         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2689         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2690         ISD::SETEQ);
2691   } else if (PopCount == BB.Range) {
2692     // There is only one zero bit in the range, test for it directly.
2693     Cmp = DAG.getSetCC(
2694         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2695         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2696         ISD::SETNE);
2697   } else {
2698     // Make desired shift
2699     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2700                                     DAG.getConstant(1, dl, VT), ShiftOp);
2701 
2702     // Emit bit tests and jumps
2703     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2704                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2705     Cmp = DAG.getSetCC(
2706         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2707         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2708   }
2709 
2710   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2711   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2712   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2713   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2714   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2715   // one as they are relative probabilities (and thus work more like weights),
2716   // and hence we need to normalize them to let the sum of them become one.
2717   SwitchBB->normalizeSuccProbs();
2718 
2719   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2720                               MVT::Other, getControlRoot(),
2721                               Cmp, DAG.getBasicBlock(B.TargetBB));
2722 
2723   // Avoid emitting unnecessary branches to the next block.
2724   if (NextMBB != NextBlock(SwitchBB))
2725     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2726                         DAG.getBasicBlock(NextMBB));
2727 
2728   DAG.setRoot(BrAnd);
2729 }
2730 
2731 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2732   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2733 
2734   // Retrieve successors. Look through artificial IR level blocks like
2735   // catchswitch for successors.
2736   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2737   const BasicBlock *EHPadBB = I.getSuccessor(1);
2738 
2739   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2740   // have to do anything here to lower funclet bundles.
2741   assert(!I.hasOperandBundlesOtherThan(
2742              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2743          "Cannot lower invokes with arbitrary operand bundles yet!");
2744 
2745   const Value *Callee(I.getCalledValue());
2746   const Function *Fn = dyn_cast<Function>(Callee);
2747   if (isa<InlineAsm>(Callee))
2748     visitInlineAsm(&I);
2749   else if (Fn && Fn->isIntrinsic()) {
2750     switch (Fn->getIntrinsicID()) {
2751     default:
2752       llvm_unreachable("Cannot invoke this intrinsic");
2753     case Intrinsic::donothing:
2754       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2755       break;
2756     case Intrinsic::experimental_patchpoint_void:
2757     case Intrinsic::experimental_patchpoint_i64:
2758       visitPatchpoint(&I, EHPadBB);
2759       break;
2760     case Intrinsic::experimental_gc_statepoint:
2761       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2762       break;
2763     case Intrinsic::wasm_rethrow_in_catch: {
2764       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2765       // special because it can be invoked, so we manually lower it to a DAG
2766       // node here.
2767       SmallVector<SDValue, 8> Ops;
2768       Ops.push_back(getRoot()); // inchain
2769       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2770       Ops.push_back(
2771           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2772                                 TLI.getPointerTy(DAG.getDataLayout())));
2773       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2774       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2775       break;
2776     }
2777     }
2778   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2779     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2780     // Eventually we will support lowering the @llvm.experimental.deoptimize
2781     // intrinsic, and right now there are no plans to support other intrinsics
2782     // with deopt state.
2783     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2784   } else {
2785     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2786   }
2787 
2788   // If the value of the invoke is used outside of its defining block, make it
2789   // available as a virtual register.
2790   // We already took care of the exported value for the statepoint instruction
2791   // during call to the LowerStatepoint.
2792   if (!isStatepoint(I)) {
2793     CopyToExportRegsIfNeeded(&I);
2794   }
2795 
2796   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2797   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2798   BranchProbability EHPadBBProb =
2799       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2800           : BranchProbability::getZero();
2801   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2802 
2803   // Update successor info.
2804   addSuccessorWithProb(InvokeMBB, Return);
2805   for (auto &UnwindDest : UnwindDests) {
2806     UnwindDest.first->setIsEHPad();
2807     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2808   }
2809   InvokeMBB->normalizeSuccProbs();
2810 
2811   // Drop into normal successor.
2812   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2813                           DAG.getBasicBlock(Return)));
2814 }
2815 
2816 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2817   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2818 
2819   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2820   // have to do anything here to lower funclet bundles.
2821   assert(!I.hasOperandBundlesOtherThan(
2822              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2823          "Cannot lower callbrs with arbitrary operand bundles yet!");
2824 
2825   assert(isa<InlineAsm>(I.getCalledValue()) &&
2826          "Only know how to handle inlineasm callbr");
2827   visitInlineAsm(&I);
2828 
2829   // Retrieve successors.
2830   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2831 
2832   // Update successor info.
2833   addSuccessorWithProb(CallBrMBB, Return);
2834   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2835     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2836     addSuccessorWithProb(CallBrMBB, Target);
2837   }
2838   CallBrMBB->normalizeSuccProbs();
2839 
2840   // Drop into default successor.
2841   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2842                           MVT::Other, getControlRoot(),
2843                           DAG.getBasicBlock(Return)));
2844 }
2845 
2846 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2847   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2848 }
2849 
2850 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2851   assert(FuncInfo.MBB->isEHPad() &&
2852          "Call to landingpad not in landing pad!");
2853 
2854   // If there aren't registers to copy the values into (e.g., during SjLj
2855   // exceptions), then don't bother to create these DAG nodes.
2856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2857   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2858   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2859       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2860     return;
2861 
2862   // If landingpad's return type is token type, we don't create DAG nodes
2863   // for its exception pointer and selector value. The extraction of exception
2864   // pointer or selector value from token type landingpads is not currently
2865   // supported.
2866   if (LP.getType()->isTokenTy())
2867     return;
2868 
2869   SmallVector<EVT, 2> ValueVTs;
2870   SDLoc dl = getCurSDLoc();
2871   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2872   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2873 
2874   // Get the two live-in registers as SDValues. The physregs have already been
2875   // copied into virtual registers.
2876   SDValue Ops[2];
2877   if (FuncInfo.ExceptionPointerVirtReg) {
2878     Ops[0] = DAG.getZExtOrTrunc(
2879         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2880                            FuncInfo.ExceptionPointerVirtReg,
2881                            TLI.getPointerTy(DAG.getDataLayout())),
2882         dl, ValueVTs[0]);
2883   } else {
2884     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2885   }
2886   Ops[1] = DAG.getZExtOrTrunc(
2887       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2888                          FuncInfo.ExceptionSelectorVirtReg,
2889                          TLI.getPointerTy(DAG.getDataLayout())),
2890       dl, ValueVTs[1]);
2891 
2892   // Merge into one.
2893   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2894                             DAG.getVTList(ValueVTs), Ops);
2895   setValue(&LP, Res);
2896 }
2897 
2898 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2899 #ifndef NDEBUG
2900   for (const CaseCluster &CC : Clusters)
2901     assert(CC.Low == CC.High && "Input clusters must be single-case");
2902 #endif
2903 
2904   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2905     return a.Low->getValue().slt(b.Low->getValue());
2906   });
2907 
2908   // Merge adjacent clusters with the same destination.
2909   const unsigned N = Clusters.size();
2910   unsigned DstIndex = 0;
2911   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2912     CaseCluster &CC = Clusters[SrcIndex];
2913     const ConstantInt *CaseVal = CC.Low;
2914     MachineBasicBlock *Succ = CC.MBB;
2915 
2916     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2917         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2918       // If this case has the same successor and is a neighbour, merge it into
2919       // the previous cluster.
2920       Clusters[DstIndex - 1].High = CaseVal;
2921       Clusters[DstIndex - 1].Prob += CC.Prob;
2922     } else {
2923       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2924                    sizeof(Clusters[SrcIndex]));
2925     }
2926   }
2927   Clusters.resize(DstIndex);
2928 }
2929 
2930 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2931                                            MachineBasicBlock *Last) {
2932   // Update JTCases.
2933   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2934     if (JTCases[i].first.HeaderBB == First)
2935       JTCases[i].first.HeaderBB = Last;
2936 
2937   // Update BitTestCases.
2938   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2939     if (BitTestCases[i].Parent == First)
2940       BitTestCases[i].Parent = Last;
2941 }
2942 
2943 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2944   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2945 
2946   // Update machine-CFG edges with unique successors.
2947   SmallSet<BasicBlock*, 32> Done;
2948   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2949     BasicBlock *BB = I.getSuccessor(i);
2950     bool Inserted = Done.insert(BB).second;
2951     if (!Inserted)
2952         continue;
2953 
2954     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2955     addSuccessorWithProb(IndirectBrMBB, Succ);
2956   }
2957   IndirectBrMBB->normalizeSuccProbs();
2958 
2959   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2960                           MVT::Other, getControlRoot(),
2961                           getValue(I.getAddress())));
2962 }
2963 
2964 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2965   if (!DAG.getTarget().Options.TrapUnreachable)
2966     return;
2967 
2968   // We may be able to ignore unreachable behind a noreturn call.
2969   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2970     const BasicBlock &BB = *I.getParent();
2971     if (&I != &BB.front()) {
2972       BasicBlock::const_iterator PredI =
2973         std::prev(BasicBlock::const_iterator(&I));
2974       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2975         if (Call->doesNotReturn())
2976           return;
2977       }
2978     }
2979   }
2980 
2981   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2982 }
2983 
2984 void SelectionDAGBuilder::visitFSub(const User &I) {
2985   // -0.0 - X --> fneg
2986   Type *Ty = I.getType();
2987   if (isa<Constant>(I.getOperand(0)) &&
2988       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2989     SDValue Op2 = getValue(I.getOperand(1));
2990     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2991                              Op2.getValueType(), Op2));
2992     return;
2993   }
2994 
2995   visitBinary(I, ISD::FSUB);
2996 }
2997 
2998 /// Checks if the given instruction performs a vector reduction, in which case
2999 /// we have the freedom to alter the elements in the result as long as the
3000 /// reduction of them stays unchanged.
3001 static bool isVectorReductionOp(const User *I) {
3002   const Instruction *Inst = dyn_cast<Instruction>(I);
3003   if (!Inst || !Inst->getType()->isVectorTy())
3004     return false;
3005 
3006   auto OpCode = Inst->getOpcode();
3007   switch (OpCode) {
3008   case Instruction::Add:
3009   case Instruction::Mul:
3010   case Instruction::And:
3011   case Instruction::Or:
3012   case Instruction::Xor:
3013     break;
3014   case Instruction::FAdd:
3015   case Instruction::FMul:
3016     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3017       if (FPOp->getFastMathFlags().isFast())
3018         break;
3019     LLVM_FALLTHROUGH;
3020   default:
3021     return false;
3022   }
3023 
3024   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3025   // Ensure the reduction size is a power of 2.
3026   if (!isPowerOf2_32(ElemNum))
3027     return false;
3028 
3029   unsigned ElemNumToReduce = ElemNum;
3030 
3031   // Do DFS search on the def-use chain from the given instruction. We only
3032   // allow four kinds of operations during the search until we reach the
3033   // instruction that extracts the first element from the vector:
3034   //
3035   //   1. The reduction operation of the same opcode as the given instruction.
3036   //
3037   //   2. PHI node.
3038   //
3039   //   3. ShuffleVector instruction together with a reduction operation that
3040   //      does a partial reduction.
3041   //
3042   //   4. ExtractElement that extracts the first element from the vector, and we
3043   //      stop searching the def-use chain here.
3044   //
3045   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3046   // from 1-3 to the stack to continue the DFS. The given instruction is not
3047   // a reduction operation if we meet any other instructions other than those
3048   // listed above.
3049 
3050   SmallVector<const User *, 16> UsersToVisit{Inst};
3051   SmallPtrSet<const User *, 16> Visited;
3052   bool ReduxExtracted = false;
3053 
3054   while (!UsersToVisit.empty()) {
3055     auto User = UsersToVisit.back();
3056     UsersToVisit.pop_back();
3057     if (!Visited.insert(User).second)
3058       continue;
3059 
3060     for (const auto &U : User->users()) {
3061       auto Inst = dyn_cast<Instruction>(U);
3062       if (!Inst)
3063         return false;
3064 
3065       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3066         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3067           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3068             return false;
3069         UsersToVisit.push_back(U);
3070       } else if (const ShuffleVectorInst *ShufInst =
3071                      dyn_cast<ShuffleVectorInst>(U)) {
3072         // Detect the following pattern: A ShuffleVector instruction together
3073         // with a reduction that do partial reduction on the first and second
3074         // ElemNumToReduce / 2 elements, and store the result in
3075         // ElemNumToReduce / 2 elements in another vector.
3076 
3077         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3078         if (ResultElements < ElemNum)
3079           return false;
3080 
3081         if (ElemNumToReduce == 1)
3082           return false;
3083         if (!isa<UndefValue>(U->getOperand(1)))
3084           return false;
3085         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3086           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3087             return false;
3088         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3089           if (ShufInst->getMaskValue(i) != -1)
3090             return false;
3091 
3092         // There is only one user of this ShuffleVector instruction, which
3093         // must be a reduction operation.
3094         if (!U->hasOneUse())
3095           return false;
3096 
3097         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3098         if (!U2 || U2->getOpcode() != OpCode)
3099           return false;
3100 
3101         // Check operands of the reduction operation.
3102         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3103             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3104           UsersToVisit.push_back(U2);
3105           ElemNumToReduce /= 2;
3106         } else
3107           return false;
3108       } else if (isa<ExtractElementInst>(U)) {
3109         // At this moment we should have reduced all elements in the vector.
3110         if (ElemNumToReduce != 1)
3111           return false;
3112 
3113         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3114         if (!Val || !Val->isZero())
3115           return false;
3116 
3117         ReduxExtracted = true;
3118       } else
3119         return false;
3120     }
3121   }
3122   return ReduxExtracted;
3123 }
3124 
3125 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3126   SDNodeFlags Flags;
3127 
3128   SDValue Op = getValue(I.getOperand(0));
3129   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3130                                     Op, Flags);
3131   setValue(&I, UnNodeValue);
3132 }
3133 
3134 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3135   SDNodeFlags Flags;
3136   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3137     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3138     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3139   }
3140   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3141     Flags.setExact(ExactOp->isExact());
3142   }
3143   if (isVectorReductionOp(&I)) {
3144     Flags.setVectorReduction(true);
3145     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3146   }
3147 
3148   SDValue Op1 = getValue(I.getOperand(0));
3149   SDValue Op2 = getValue(I.getOperand(1));
3150   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3151                                      Op1, Op2, Flags);
3152   setValue(&I, BinNodeValue);
3153 }
3154 
3155 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3156   SDValue Op1 = getValue(I.getOperand(0));
3157   SDValue Op2 = getValue(I.getOperand(1));
3158 
3159   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3160       Op1.getValueType(), DAG.getDataLayout());
3161 
3162   // Coerce the shift amount to the right type if we can.
3163   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3164     unsigned ShiftSize = ShiftTy.getSizeInBits();
3165     unsigned Op2Size = Op2.getValueSizeInBits();
3166     SDLoc DL = getCurSDLoc();
3167 
3168     // If the operand is smaller than the shift count type, promote it.
3169     if (ShiftSize > Op2Size)
3170       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3171 
3172     // If the operand is larger than the shift count type but the shift
3173     // count type has enough bits to represent any shift value, truncate
3174     // it now. This is a common case and it exposes the truncate to
3175     // optimization early.
3176     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3177       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3178     // Otherwise we'll need to temporarily settle for some other convenient
3179     // type.  Type legalization will make adjustments once the shiftee is split.
3180     else
3181       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3182   }
3183 
3184   bool nuw = false;
3185   bool nsw = false;
3186   bool exact = false;
3187 
3188   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3189 
3190     if (const OverflowingBinaryOperator *OFBinOp =
3191             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3192       nuw = OFBinOp->hasNoUnsignedWrap();
3193       nsw = OFBinOp->hasNoSignedWrap();
3194     }
3195     if (const PossiblyExactOperator *ExactOp =
3196             dyn_cast<const PossiblyExactOperator>(&I))
3197       exact = ExactOp->isExact();
3198   }
3199   SDNodeFlags Flags;
3200   Flags.setExact(exact);
3201   Flags.setNoSignedWrap(nsw);
3202   Flags.setNoUnsignedWrap(nuw);
3203   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3204                             Flags);
3205   setValue(&I, Res);
3206 }
3207 
3208 void SelectionDAGBuilder::visitSDiv(const User &I) {
3209   SDValue Op1 = getValue(I.getOperand(0));
3210   SDValue Op2 = getValue(I.getOperand(1));
3211 
3212   SDNodeFlags Flags;
3213   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3214                  cast<PossiblyExactOperator>(&I)->isExact());
3215   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3216                            Op2, Flags));
3217 }
3218 
3219 void SelectionDAGBuilder::visitICmp(const User &I) {
3220   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3221   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3222     predicate = IC->getPredicate();
3223   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3224     predicate = ICmpInst::Predicate(IC->getPredicate());
3225   SDValue Op1 = getValue(I.getOperand(0));
3226   SDValue Op2 = getValue(I.getOperand(1));
3227   ISD::CondCode Opcode = getICmpCondCode(predicate);
3228 
3229   auto &TLI = DAG.getTargetLoweringInfo();
3230   EVT MemVT =
3231       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3232 
3233   // If a pointer's DAG type is larger than its memory type then the DAG values
3234   // are zero-extended. This breaks signed comparisons so truncate back to the
3235   // underlying type before doing the compare.
3236   if (Op1.getValueType() != MemVT) {
3237     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3238     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3239   }
3240 
3241   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3242                                                         I.getType());
3243   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3244 }
3245 
3246 void SelectionDAGBuilder::visitFCmp(const User &I) {
3247   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3248   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3249     predicate = FC->getPredicate();
3250   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3251     predicate = FCmpInst::Predicate(FC->getPredicate());
3252   SDValue Op1 = getValue(I.getOperand(0));
3253   SDValue Op2 = getValue(I.getOperand(1));
3254 
3255   ISD::CondCode Condition = getFCmpCondCode(predicate);
3256   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3257   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3258     Condition = getFCmpCodeWithoutNaN(Condition);
3259 
3260   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3261                                                         I.getType());
3262   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3263 }
3264 
3265 // Check if the condition of the select has one use or two users that are both
3266 // selects with the same condition.
3267 static bool hasOnlySelectUsers(const Value *Cond) {
3268   return llvm::all_of(Cond->users(), [](const Value *V) {
3269     return isa<SelectInst>(V);
3270   });
3271 }
3272 
3273 void SelectionDAGBuilder::visitSelect(const User &I) {
3274   SmallVector<EVT, 4> ValueVTs;
3275   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3276                   ValueVTs);
3277   unsigned NumValues = ValueVTs.size();
3278   if (NumValues == 0) return;
3279 
3280   SmallVector<SDValue, 4> Values(NumValues);
3281   SDValue Cond     = getValue(I.getOperand(0));
3282   SDValue LHSVal   = getValue(I.getOperand(1));
3283   SDValue RHSVal   = getValue(I.getOperand(2));
3284   auto BaseOps = {Cond};
3285   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3286     ISD::VSELECT : ISD::SELECT;
3287 
3288   bool IsUnaryAbs = false;
3289 
3290   // Min/max matching is only viable if all output VTs are the same.
3291   if (is_splat(ValueVTs)) {
3292     EVT VT = ValueVTs[0];
3293     LLVMContext &Ctx = *DAG.getContext();
3294     auto &TLI = DAG.getTargetLoweringInfo();
3295 
3296     // We care about the legality of the operation after it has been type
3297     // legalized.
3298     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3299            VT != TLI.getTypeToTransformTo(Ctx, VT))
3300       VT = TLI.getTypeToTransformTo(Ctx, VT);
3301 
3302     // If the vselect is legal, assume we want to leave this as a vector setcc +
3303     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3304     // min/max is legal on the scalar type.
3305     bool UseScalarMinMax = VT.isVector() &&
3306       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3307 
3308     Value *LHS, *RHS;
3309     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3310     ISD::NodeType Opc = ISD::DELETED_NODE;
3311     switch (SPR.Flavor) {
3312     case SPF_UMAX:    Opc = ISD::UMAX; break;
3313     case SPF_UMIN:    Opc = ISD::UMIN; break;
3314     case SPF_SMAX:    Opc = ISD::SMAX; break;
3315     case SPF_SMIN:    Opc = ISD::SMIN; break;
3316     case SPF_FMINNUM:
3317       switch (SPR.NaNBehavior) {
3318       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3319       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3320       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3321       case SPNB_RETURNS_ANY: {
3322         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3323           Opc = ISD::FMINNUM;
3324         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3325           Opc = ISD::FMINIMUM;
3326         else if (UseScalarMinMax)
3327           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3328             ISD::FMINNUM : ISD::FMINIMUM;
3329         break;
3330       }
3331       }
3332       break;
3333     case SPF_FMAXNUM:
3334       switch (SPR.NaNBehavior) {
3335       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3336       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3337       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3338       case SPNB_RETURNS_ANY:
3339 
3340         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3341           Opc = ISD::FMAXNUM;
3342         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3343           Opc = ISD::FMAXIMUM;
3344         else if (UseScalarMinMax)
3345           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3346             ISD::FMAXNUM : ISD::FMAXIMUM;
3347         break;
3348       }
3349       break;
3350     case SPF_ABS:
3351       IsUnaryAbs = true;
3352       Opc = ISD::ABS;
3353       break;
3354     case SPF_NABS:
3355       // TODO: we need to produce sub(0, abs(X)).
3356     default: break;
3357     }
3358 
3359     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3360         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3361          (UseScalarMinMax &&
3362           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3363         // If the underlying comparison instruction is used by any other
3364         // instruction, the consumed instructions won't be destroyed, so it is
3365         // not profitable to convert to a min/max.
3366         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3367       OpCode = Opc;
3368       LHSVal = getValue(LHS);
3369       RHSVal = getValue(RHS);
3370       BaseOps = {};
3371     }
3372 
3373     if (IsUnaryAbs) {
3374       OpCode = Opc;
3375       LHSVal = getValue(LHS);
3376       BaseOps = {};
3377     }
3378   }
3379 
3380   if (IsUnaryAbs) {
3381     for (unsigned i = 0; i != NumValues; ++i) {
3382       Values[i] =
3383           DAG.getNode(OpCode, getCurSDLoc(),
3384                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3385                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3386     }
3387   } else {
3388     for (unsigned i = 0; i != NumValues; ++i) {
3389       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3390       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3391       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3392       Values[i] = DAG.getNode(
3393           OpCode, getCurSDLoc(),
3394           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3395     }
3396   }
3397 
3398   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3399                            DAG.getVTList(ValueVTs), Values));
3400 }
3401 
3402 void SelectionDAGBuilder::visitTrunc(const User &I) {
3403   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3404   SDValue N = getValue(I.getOperand(0));
3405   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3406                                                         I.getType());
3407   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3408 }
3409 
3410 void SelectionDAGBuilder::visitZExt(const User &I) {
3411   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3412   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3413   SDValue N = getValue(I.getOperand(0));
3414   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3415                                                         I.getType());
3416   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3417 }
3418 
3419 void SelectionDAGBuilder::visitSExt(const User &I) {
3420   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3421   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3422   SDValue N = getValue(I.getOperand(0));
3423   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3424                                                         I.getType());
3425   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3426 }
3427 
3428 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3429   // FPTrunc is never a no-op cast, no need to check
3430   SDValue N = getValue(I.getOperand(0));
3431   SDLoc dl = getCurSDLoc();
3432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3433   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3434   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3435                            DAG.getTargetConstant(
3436                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3437 }
3438 
3439 void SelectionDAGBuilder::visitFPExt(const User &I) {
3440   // FPExt is never a no-op cast, no need to check
3441   SDValue N = getValue(I.getOperand(0));
3442   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3443                                                         I.getType());
3444   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3445 }
3446 
3447 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3448   // FPToUI is never a no-op cast, no need to check
3449   SDValue N = getValue(I.getOperand(0));
3450   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3451                                                         I.getType());
3452   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3453 }
3454 
3455 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3456   // FPToSI is never a no-op cast, no need to check
3457   SDValue N = getValue(I.getOperand(0));
3458   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3459                                                         I.getType());
3460   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3461 }
3462 
3463 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3464   // UIToFP is never a no-op cast, no need to check
3465   SDValue N = getValue(I.getOperand(0));
3466   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3467                                                         I.getType());
3468   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3469 }
3470 
3471 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3472   // SIToFP is never a no-op cast, no need to check
3473   SDValue N = getValue(I.getOperand(0));
3474   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3475                                                         I.getType());
3476   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3477 }
3478 
3479 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3480   // What to do depends on the size of the integer and the size of the pointer.
3481   // We can either truncate, zero extend, or no-op, accordingly.
3482   SDValue N = getValue(I.getOperand(0));
3483   auto &TLI = DAG.getTargetLoweringInfo();
3484   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3485                                                         I.getType());
3486   EVT PtrMemVT =
3487       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3488   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3489   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3490   setValue(&I, N);
3491 }
3492 
3493 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3494   // What to do depends on the size of the integer and the size of the pointer.
3495   // We can either truncate, zero extend, or no-op, accordingly.
3496   SDValue N = getValue(I.getOperand(0));
3497   auto &TLI = DAG.getTargetLoweringInfo();
3498   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3499   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3500   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3501   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3502   setValue(&I, N);
3503 }
3504 
3505 void SelectionDAGBuilder::visitBitCast(const User &I) {
3506   SDValue N = getValue(I.getOperand(0));
3507   SDLoc dl = getCurSDLoc();
3508   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3509                                                         I.getType());
3510 
3511   // BitCast assures us that source and destination are the same size so this is
3512   // either a BITCAST or a no-op.
3513   if (DestVT != N.getValueType())
3514     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3515                              DestVT, N)); // convert types.
3516   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3517   // might fold any kind of constant expression to an integer constant and that
3518   // is not what we are looking for. Only recognize a bitcast of a genuine
3519   // constant integer as an opaque constant.
3520   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3521     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3522                                  /*isOpaque*/true));
3523   else
3524     setValue(&I, N);            // noop cast.
3525 }
3526 
3527 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3529   const Value *SV = I.getOperand(0);
3530   SDValue N = getValue(SV);
3531   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3532 
3533   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3534   unsigned DestAS = I.getType()->getPointerAddressSpace();
3535 
3536   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3537     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3538 
3539   setValue(&I, N);
3540 }
3541 
3542 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544   SDValue InVec = getValue(I.getOperand(0));
3545   SDValue InVal = getValue(I.getOperand(1));
3546   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3547                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3548   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3549                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3550                            InVec, InVal, InIdx));
3551 }
3552 
3553 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3554   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3555   SDValue InVec = getValue(I.getOperand(0));
3556   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3557                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3558   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3559                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3560                            InVec, InIdx));
3561 }
3562 
3563 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3564   SDValue Src1 = getValue(I.getOperand(0));
3565   SDValue Src2 = getValue(I.getOperand(1));
3566   SDLoc DL = getCurSDLoc();
3567 
3568   SmallVector<int, 8> Mask;
3569   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3570   unsigned MaskNumElts = Mask.size();
3571 
3572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3573   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3574   EVT SrcVT = Src1.getValueType();
3575   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3576 
3577   if (SrcNumElts == MaskNumElts) {
3578     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3579     return;
3580   }
3581 
3582   // Normalize the shuffle vector since mask and vector length don't match.
3583   if (SrcNumElts < MaskNumElts) {
3584     // Mask is longer than the source vectors. We can use concatenate vector to
3585     // make the mask and vectors lengths match.
3586 
3587     if (MaskNumElts % SrcNumElts == 0) {
3588       // Mask length is a multiple of the source vector length.
3589       // Check if the shuffle is some kind of concatenation of the input
3590       // vectors.
3591       unsigned NumConcat = MaskNumElts / SrcNumElts;
3592       bool IsConcat = true;
3593       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3594       for (unsigned i = 0; i != MaskNumElts; ++i) {
3595         int Idx = Mask[i];
3596         if (Idx < 0)
3597           continue;
3598         // Ensure the indices in each SrcVT sized piece are sequential and that
3599         // the same source is used for the whole piece.
3600         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3601             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3602              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3603           IsConcat = false;
3604           break;
3605         }
3606         // Remember which source this index came from.
3607         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3608       }
3609 
3610       // The shuffle is concatenating multiple vectors together. Just emit
3611       // a CONCAT_VECTORS operation.
3612       if (IsConcat) {
3613         SmallVector<SDValue, 8> ConcatOps;
3614         for (auto Src : ConcatSrcs) {
3615           if (Src < 0)
3616             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3617           else if (Src == 0)
3618             ConcatOps.push_back(Src1);
3619           else
3620             ConcatOps.push_back(Src2);
3621         }
3622         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3623         return;
3624       }
3625     }
3626 
3627     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3628     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3629     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3630                                     PaddedMaskNumElts);
3631 
3632     // Pad both vectors with undefs to make them the same length as the mask.
3633     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3634 
3635     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3636     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3637     MOps1[0] = Src1;
3638     MOps2[0] = Src2;
3639 
3640     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3641     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3642 
3643     // Readjust mask for new input vector length.
3644     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3645     for (unsigned i = 0; i != MaskNumElts; ++i) {
3646       int Idx = Mask[i];
3647       if (Idx >= (int)SrcNumElts)
3648         Idx -= SrcNumElts - PaddedMaskNumElts;
3649       MappedOps[i] = Idx;
3650     }
3651 
3652     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3653 
3654     // If the concatenated vector was padded, extract a subvector with the
3655     // correct number of elements.
3656     if (MaskNumElts != PaddedMaskNumElts)
3657       Result = DAG.getNode(
3658           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3659           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3660 
3661     setValue(&I, Result);
3662     return;
3663   }
3664 
3665   if (SrcNumElts > MaskNumElts) {
3666     // Analyze the access pattern of the vector to see if we can extract
3667     // two subvectors and do the shuffle.
3668     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3669     bool CanExtract = true;
3670     for (int Idx : Mask) {
3671       unsigned Input = 0;
3672       if (Idx < 0)
3673         continue;
3674 
3675       if (Idx >= (int)SrcNumElts) {
3676         Input = 1;
3677         Idx -= SrcNumElts;
3678       }
3679 
3680       // If all the indices come from the same MaskNumElts sized portion of
3681       // the sources we can use extract. Also make sure the extract wouldn't
3682       // extract past the end of the source.
3683       int NewStartIdx = alignDown(Idx, MaskNumElts);
3684       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3685           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3686         CanExtract = false;
3687       // Make sure we always update StartIdx as we use it to track if all
3688       // elements are undef.
3689       StartIdx[Input] = NewStartIdx;
3690     }
3691 
3692     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3693       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3694       return;
3695     }
3696     if (CanExtract) {
3697       // Extract appropriate subvector and generate a vector shuffle
3698       for (unsigned Input = 0; Input < 2; ++Input) {
3699         SDValue &Src = Input == 0 ? Src1 : Src2;
3700         if (StartIdx[Input] < 0)
3701           Src = DAG.getUNDEF(VT);
3702         else {
3703           Src = DAG.getNode(
3704               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3705               DAG.getConstant(StartIdx[Input], DL,
3706                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3707         }
3708       }
3709 
3710       // Calculate new mask.
3711       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3712       for (int &Idx : MappedOps) {
3713         if (Idx >= (int)SrcNumElts)
3714           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3715         else if (Idx >= 0)
3716           Idx -= StartIdx[0];
3717       }
3718 
3719       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3720       return;
3721     }
3722   }
3723 
3724   // We can't use either concat vectors or extract subvectors so fall back to
3725   // replacing the shuffle with extract and build vector.
3726   // to insert and build vector.
3727   EVT EltVT = VT.getVectorElementType();
3728   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3729   SmallVector<SDValue,8> Ops;
3730   for (int Idx : Mask) {
3731     SDValue Res;
3732 
3733     if (Idx < 0) {
3734       Res = DAG.getUNDEF(EltVT);
3735     } else {
3736       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3737       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3738 
3739       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3740                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3741     }
3742 
3743     Ops.push_back(Res);
3744   }
3745 
3746   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3747 }
3748 
3749 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3750   ArrayRef<unsigned> Indices;
3751   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3752     Indices = IV->getIndices();
3753   else
3754     Indices = cast<ConstantExpr>(&I)->getIndices();
3755 
3756   const Value *Op0 = I.getOperand(0);
3757   const Value *Op1 = I.getOperand(1);
3758   Type *AggTy = I.getType();
3759   Type *ValTy = Op1->getType();
3760   bool IntoUndef = isa<UndefValue>(Op0);
3761   bool FromUndef = isa<UndefValue>(Op1);
3762 
3763   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3764 
3765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3766   SmallVector<EVT, 4> AggValueVTs;
3767   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3768   SmallVector<EVT, 4> ValValueVTs;
3769   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3770 
3771   unsigned NumAggValues = AggValueVTs.size();
3772   unsigned NumValValues = ValValueVTs.size();
3773   SmallVector<SDValue, 4> Values(NumAggValues);
3774 
3775   // Ignore an insertvalue that produces an empty object
3776   if (!NumAggValues) {
3777     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3778     return;
3779   }
3780 
3781   SDValue Agg = getValue(Op0);
3782   unsigned i = 0;
3783   // Copy the beginning value(s) from the original aggregate.
3784   for (; i != LinearIndex; ++i)
3785     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3786                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3787   // Copy values from the inserted value(s).
3788   if (NumValValues) {
3789     SDValue Val = getValue(Op1);
3790     for (; i != LinearIndex + NumValValues; ++i)
3791       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3792                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3793   }
3794   // Copy remaining value(s) from the original aggregate.
3795   for (; i != NumAggValues; ++i)
3796     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3797                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3798 
3799   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3800                            DAG.getVTList(AggValueVTs), Values));
3801 }
3802 
3803 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3804   ArrayRef<unsigned> Indices;
3805   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3806     Indices = EV->getIndices();
3807   else
3808     Indices = cast<ConstantExpr>(&I)->getIndices();
3809 
3810   const Value *Op0 = I.getOperand(0);
3811   Type *AggTy = Op0->getType();
3812   Type *ValTy = I.getType();
3813   bool OutOfUndef = isa<UndefValue>(Op0);
3814 
3815   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3816 
3817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3818   SmallVector<EVT, 4> ValValueVTs;
3819   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3820 
3821   unsigned NumValValues = ValValueVTs.size();
3822 
3823   // Ignore a extractvalue that produces an empty object
3824   if (!NumValValues) {
3825     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3826     return;
3827   }
3828 
3829   SmallVector<SDValue, 4> Values(NumValValues);
3830 
3831   SDValue Agg = getValue(Op0);
3832   // Copy out the selected value(s).
3833   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3834     Values[i - LinearIndex] =
3835       OutOfUndef ?
3836         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3837         SDValue(Agg.getNode(), Agg.getResNo() + i);
3838 
3839   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3840                            DAG.getVTList(ValValueVTs), Values));
3841 }
3842 
3843 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3844   Value *Op0 = I.getOperand(0);
3845   // Note that the pointer operand may be a vector of pointers. Take the scalar
3846   // element which holds a pointer.
3847   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3848   SDValue N = getValue(Op0);
3849   SDLoc dl = getCurSDLoc();
3850   auto &TLI = DAG.getTargetLoweringInfo();
3851   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3852   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3853 
3854   // Normalize Vector GEP - all scalar operands should be converted to the
3855   // splat vector.
3856   unsigned VectorWidth = I.getType()->isVectorTy() ?
3857     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3858 
3859   if (VectorWidth && !N.getValueType().isVector()) {
3860     LLVMContext &Context = *DAG.getContext();
3861     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3862     N = DAG.getSplatBuildVector(VT, dl, N);
3863   }
3864 
3865   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3866        GTI != E; ++GTI) {
3867     const Value *Idx = GTI.getOperand();
3868     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3869       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3870       if (Field) {
3871         // N = N + Offset
3872         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3873 
3874         // In an inbounds GEP with an offset that is nonnegative even when
3875         // interpreted as signed, assume there is no unsigned overflow.
3876         SDNodeFlags Flags;
3877         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3878           Flags.setNoUnsignedWrap(true);
3879 
3880         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3881                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3882       }
3883     } else {
3884       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3885       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3886       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3887 
3888       // If this is a scalar constant or a splat vector of constants,
3889       // handle it quickly.
3890       const auto *CI = dyn_cast<ConstantInt>(Idx);
3891       if (!CI && isa<ConstantDataVector>(Idx) &&
3892           cast<ConstantDataVector>(Idx)->getSplatValue())
3893         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3894 
3895       if (CI) {
3896         if (CI->isZero())
3897           continue;
3898         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3899         LLVMContext &Context = *DAG.getContext();
3900         SDValue OffsVal = VectorWidth ?
3901           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3902           DAG.getConstant(Offs, dl, IdxTy);
3903 
3904         // In an inbouds GEP with an offset that is nonnegative even when
3905         // interpreted as signed, assume there is no unsigned overflow.
3906         SDNodeFlags Flags;
3907         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3908           Flags.setNoUnsignedWrap(true);
3909 
3910         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3911 
3912         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3913         continue;
3914       }
3915 
3916       // N = N + Idx * ElementSize;
3917       SDValue IdxN = getValue(Idx);
3918 
3919       if (!IdxN.getValueType().isVector() && VectorWidth) {
3920         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3921         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3922       }
3923 
3924       // If the index is smaller or larger than intptr_t, truncate or extend
3925       // it.
3926       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3927 
3928       // If this is a multiply by a power of two, turn it into a shl
3929       // immediately.  This is a very common case.
3930       if (ElementSize != 1) {
3931         if (ElementSize.isPowerOf2()) {
3932           unsigned Amt = ElementSize.logBase2();
3933           IdxN = DAG.getNode(ISD::SHL, dl,
3934                              N.getValueType(), IdxN,
3935                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3936         } else {
3937           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3938                                           IdxN.getValueType());
3939           IdxN = DAG.getNode(ISD::MUL, dl,
3940                              N.getValueType(), IdxN, Scale);
3941         }
3942       }
3943 
3944       N = DAG.getNode(ISD::ADD, dl,
3945                       N.getValueType(), N, IdxN);
3946     }
3947   }
3948 
3949   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3950     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3951 
3952   setValue(&I, N);
3953 }
3954 
3955 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3956   // If this is a fixed sized alloca in the entry block of the function,
3957   // allocate it statically on the stack.
3958   if (FuncInfo.StaticAllocaMap.count(&I))
3959     return;   // getValue will auto-populate this.
3960 
3961   SDLoc dl = getCurSDLoc();
3962   Type *Ty = I.getAllocatedType();
3963   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3964   auto &DL = DAG.getDataLayout();
3965   uint64_t TySize = DL.getTypeAllocSize(Ty);
3966   unsigned Align =
3967       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3968 
3969   SDValue AllocSize = getValue(I.getArraySize());
3970 
3971   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3972   if (AllocSize.getValueType() != IntPtr)
3973     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3974 
3975   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3976                           AllocSize,
3977                           DAG.getConstant(TySize, dl, IntPtr));
3978 
3979   // Handle alignment.  If the requested alignment is less than or equal to
3980   // the stack alignment, ignore it.  If the size is greater than or equal to
3981   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3982   unsigned StackAlign =
3983       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3984   if (Align <= StackAlign)
3985     Align = 0;
3986 
3987   // Round the size of the allocation up to the stack alignment size
3988   // by add SA-1 to the size. This doesn't overflow because we're computing
3989   // an address inside an alloca.
3990   SDNodeFlags Flags;
3991   Flags.setNoUnsignedWrap(true);
3992   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3993                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3994 
3995   // Mask out the low bits for alignment purposes.
3996   AllocSize =
3997       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3998                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3999 
4000   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
4001   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4002   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4003   setValue(&I, DSA);
4004   DAG.setRoot(DSA.getValue(1));
4005 
4006   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4007 }
4008 
4009 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4010   if (I.isAtomic())
4011     return visitAtomicLoad(I);
4012 
4013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4014   const Value *SV = I.getOperand(0);
4015   if (TLI.supportSwiftError()) {
4016     // Swifterror values can come from either a function parameter with
4017     // swifterror attribute or an alloca with swifterror attribute.
4018     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4019       if (Arg->hasSwiftErrorAttr())
4020         return visitLoadFromSwiftError(I);
4021     }
4022 
4023     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4024       if (Alloca->isSwiftError())
4025         return visitLoadFromSwiftError(I);
4026     }
4027   }
4028 
4029   SDValue Ptr = getValue(SV);
4030 
4031   Type *Ty = I.getType();
4032 
4033   bool isVolatile = I.isVolatile();
4034   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
4035   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
4036   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
4037   unsigned Alignment = I.getAlignment();
4038 
4039   AAMDNodes AAInfo;
4040   I.getAAMetadata(AAInfo);
4041   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4042 
4043   SmallVector<EVT, 4> ValueVTs, MemVTs;
4044   SmallVector<uint64_t, 4> Offsets;
4045   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4046   unsigned NumValues = ValueVTs.size();
4047   if (NumValues == 0)
4048     return;
4049 
4050   SDValue Root;
4051   bool ConstantMemory = false;
4052   if (isVolatile || NumValues > MaxParallelChains)
4053     // Serialize volatile loads with other side effects.
4054     Root = getRoot();
4055   else if (AA &&
4056            AA->pointsToConstantMemory(MemoryLocation(
4057                SV,
4058                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4059                AAInfo))) {
4060     // Do not serialize (non-volatile) loads of constant memory with anything.
4061     Root = DAG.getEntryNode();
4062     ConstantMemory = true;
4063   } else {
4064     // Do not serialize non-volatile loads against each other.
4065     Root = DAG.getRoot();
4066   }
4067 
4068   SDLoc dl = getCurSDLoc();
4069 
4070   if (isVolatile)
4071     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4072 
4073   // An aggregate load cannot wrap around the address space, so offsets to its
4074   // parts don't wrap either.
4075   SDNodeFlags Flags;
4076   Flags.setNoUnsignedWrap(true);
4077 
4078   SmallVector<SDValue, 4> Values(NumValues);
4079   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4080   EVT PtrVT = Ptr.getValueType();
4081   unsigned ChainI = 0;
4082   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4083     // Serializing loads here may result in excessive register pressure, and
4084     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4085     // could recover a bit by hoisting nodes upward in the chain by recognizing
4086     // they are side-effect free or do not alias. The optimizer should really
4087     // avoid this case by converting large object/array copies to llvm.memcpy
4088     // (MaxParallelChains should always remain as failsafe).
4089     if (ChainI == MaxParallelChains) {
4090       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4091       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4092                                   makeArrayRef(Chains.data(), ChainI));
4093       Root = Chain;
4094       ChainI = 0;
4095     }
4096     SDValue A = DAG.getNode(ISD::ADD, dl,
4097                             PtrVT, Ptr,
4098                             DAG.getConstant(Offsets[i], dl, PtrVT),
4099                             Flags);
4100     auto MMOFlags = MachineMemOperand::MONone;
4101     if (isVolatile)
4102       MMOFlags |= MachineMemOperand::MOVolatile;
4103     if (isNonTemporal)
4104       MMOFlags |= MachineMemOperand::MONonTemporal;
4105     if (isInvariant)
4106       MMOFlags |= MachineMemOperand::MOInvariant;
4107     if (isDereferenceable)
4108       MMOFlags |= MachineMemOperand::MODereferenceable;
4109     MMOFlags |= TLI.getMMOFlags(I);
4110 
4111     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4112                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4113                             MMOFlags, AAInfo, Ranges);
4114     Chains[ChainI] = L.getValue(1);
4115 
4116     if (MemVTs[i] != ValueVTs[i])
4117       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4118 
4119     Values[i] = L;
4120   }
4121 
4122   if (!ConstantMemory) {
4123     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4124                                 makeArrayRef(Chains.data(), ChainI));
4125     if (isVolatile)
4126       DAG.setRoot(Chain);
4127     else
4128       PendingLoads.push_back(Chain);
4129   }
4130 
4131   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4132                            DAG.getVTList(ValueVTs), Values));
4133 }
4134 
4135 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4136   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4137          "call visitStoreToSwiftError when backend supports swifterror");
4138 
4139   SmallVector<EVT, 4> ValueVTs;
4140   SmallVector<uint64_t, 4> Offsets;
4141   const Value *SrcV = I.getOperand(0);
4142   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4143                   SrcV->getType(), ValueVTs, &Offsets);
4144   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4145          "expect a single EVT for swifterror");
4146 
4147   SDValue Src = getValue(SrcV);
4148   // Create a virtual register, then update the virtual register.
4149   unsigned VReg; bool CreatedVReg;
4150   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4151   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4152   // Chain can be getRoot or getControlRoot.
4153   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4154                                       SDValue(Src.getNode(), Src.getResNo()));
4155   DAG.setRoot(CopyNode);
4156   if (CreatedVReg)
4157     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4158 }
4159 
4160 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4161   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4162          "call visitLoadFromSwiftError when backend supports swifterror");
4163 
4164   assert(!I.isVolatile() &&
4165          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4166          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4167          "Support volatile, non temporal, invariant for load_from_swift_error");
4168 
4169   const Value *SV = I.getOperand(0);
4170   Type *Ty = I.getType();
4171   AAMDNodes AAInfo;
4172   I.getAAMetadata(AAInfo);
4173   assert(
4174       (!AA ||
4175        !AA->pointsToConstantMemory(MemoryLocation(
4176            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4177            AAInfo))) &&
4178       "load_from_swift_error should not be constant memory");
4179 
4180   SmallVector<EVT, 4> ValueVTs;
4181   SmallVector<uint64_t, 4> Offsets;
4182   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4183                   ValueVTs, &Offsets);
4184   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4185          "expect a single EVT for swifterror");
4186 
4187   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4188   SDValue L = DAG.getCopyFromReg(
4189       getRoot(), getCurSDLoc(),
4190       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4191       ValueVTs[0]);
4192 
4193   setValue(&I, L);
4194 }
4195 
4196 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4197   if (I.isAtomic())
4198     return visitAtomicStore(I);
4199 
4200   const Value *SrcV = I.getOperand(0);
4201   const Value *PtrV = I.getOperand(1);
4202 
4203   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4204   if (TLI.supportSwiftError()) {
4205     // Swifterror values can come from either a function parameter with
4206     // swifterror attribute or an alloca with swifterror attribute.
4207     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4208       if (Arg->hasSwiftErrorAttr())
4209         return visitStoreToSwiftError(I);
4210     }
4211 
4212     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4213       if (Alloca->isSwiftError())
4214         return visitStoreToSwiftError(I);
4215     }
4216   }
4217 
4218   SmallVector<EVT, 4> ValueVTs, MemVTs;
4219   SmallVector<uint64_t, 4> Offsets;
4220   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4221                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4222   unsigned NumValues = ValueVTs.size();
4223   if (NumValues == 0)
4224     return;
4225 
4226   // Get the lowered operands. Note that we do this after
4227   // checking if NumResults is zero, because with zero results
4228   // the operands won't have values in the map.
4229   SDValue Src = getValue(SrcV);
4230   SDValue Ptr = getValue(PtrV);
4231 
4232   SDValue Root = getRoot();
4233   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4234   SDLoc dl = getCurSDLoc();
4235   EVT PtrVT = Ptr.getValueType();
4236   unsigned Alignment = I.getAlignment();
4237   AAMDNodes AAInfo;
4238   I.getAAMetadata(AAInfo);
4239 
4240   auto MMOFlags = MachineMemOperand::MONone;
4241   if (I.isVolatile())
4242     MMOFlags |= MachineMemOperand::MOVolatile;
4243   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4244     MMOFlags |= MachineMemOperand::MONonTemporal;
4245   MMOFlags |= TLI.getMMOFlags(I);
4246 
4247   // An aggregate load cannot wrap around the address space, so offsets to its
4248   // parts don't wrap either.
4249   SDNodeFlags Flags;
4250   Flags.setNoUnsignedWrap(true);
4251 
4252   unsigned ChainI = 0;
4253   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4254     // See visitLoad comments.
4255     if (ChainI == MaxParallelChains) {
4256       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4257                                   makeArrayRef(Chains.data(), ChainI));
4258       Root = Chain;
4259       ChainI = 0;
4260     }
4261     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4262                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4263     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4264     if (MemVTs[i] != ValueVTs[i])
4265       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4266     SDValue St =
4267         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4268                      Alignment, MMOFlags, AAInfo);
4269     Chains[ChainI] = St;
4270   }
4271 
4272   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4273                                   makeArrayRef(Chains.data(), ChainI));
4274   DAG.setRoot(StoreNode);
4275 }
4276 
4277 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4278                                            bool IsCompressing) {
4279   SDLoc sdl = getCurSDLoc();
4280 
4281   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4282                            unsigned& Alignment) {
4283     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4284     Src0 = I.getArgOperand(0);
4285     Ptr = I.getArgOperand(1);
4286     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4287     Mask = I.getArgOperand(3);
4288   };
4289   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4290                            unsigned& Alignment) {
4291     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4292     Src0 = I.getArgOperand(0);
4293     Ptr = I.getArgOperand(1);
4294     Mask = I.getArgOperand(2);
4295     Alignment = 0;
4296   };
4297 
4298   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4299   unsigned Alignment;
4300   if (IsCompressing)
4301     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4302   else
4303     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4304 
4305   SDValue Ptr = getValue(PtrOperand);
4306   SDValue Src0 = getValue(Src0Operand);
4307   SDValue Mask = getValue(MaskOperand);
4308 
4309   EVT VT = Src0.getValueType();
4310   if (!Alignment)
4311     Alignment = DAG.getEVTAlignment(VT);
4312 
4313   AAMDNodes AAInfo;
4314   I.getAAMetadata(AAInfo);
4315 
4316   MachineMemOperand *MMO =
4317     DAG.getMachineFunction().
4318     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4319                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4320                           Alignment, AAInfo);
4321   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4322                                          MMO, false /* Truncating */,
4323                                          IsCompressing);
4324   DAG.setRoot(StoreNode);
4325   setValue(&I, StoreNode);
4326 }
4327 
4328 // Get a uniform base for the Gather/Scatter intrinsic.
4329 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4330 // We try to represent it as a base pointer + vector of indices.
4331 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4332 // The first operand of the GEP may be a single pointer or a vector of pointers
4333 // Example:
4334 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4335 //  or
4336 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4337 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4338 //
4339 // When the first GEP operand is a single pointer - it is the uniform base we
4340 // are looking for. If first operand of the GEP is a splat vector - we
4341 // extract the splat value and use it as a uniform base.
4342 // In all other cases the function returns 'false'.
4343 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4344                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4345   SelectionDAG& DAG = SDB->DAG;
4346   LLVMContext &Context = *DAG.getContext();
4347 
4348   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4349   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4350   if (!GEP)
4351     return false;
4352 
4353   const Value *GEPPtr = GEP->getPointerOperand();
4354   if (!GEPPtr->getType()->isVectorTy())
4355     Ptr = GEPPtr;
4356   else if (!(Ptr = getSplatValue(GEPPtr)))
4357     return false;
4358 
4359   unsigned FinalIndex = GEP->getNumOperands() - 1;
4360   Value *IndexVal = GEP->getOperand(FinalIndex);
4361 
4362   // Ensure all the other indices are 0.
4363   for (unsigned i = 1; i < FinalIndex; ++i) {
4364     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4365     if (!C || !C->isZero())
4366       return false;
4367   }
4368 
4369   // The operands of the GEP may be defined in another basic block.
4370   // In this case we'll not find nodes for the operands.
4371   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4372     return false;
4373 
4374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4375   const DataLayout &DL = DAG.getDataLayout();
4376   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4377                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4378   Base = SDB->getValue(Ptr);
4379   Index = SDB->getValue(IndexVal);
4380 
4381   if (!Index.getValueType().isVector()) {
4382     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4383     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4384     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4385   }
4386   return true;
4387 }
4388 
4389 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4390   SDLoc sdl = getCurSDLoc();
4391 
4392   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4393   const Value *Ptr = I.getArgOperand(1);
4394   SDValue Src0 = getValue(I.getArgOperand(0));
4395   SDValue Mask = getValue(I.getArgOperand(3));
4396   EVT VT = Src0.getValueType();
4397   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4398   if (!Alignment)
4399     Alignment = DAG.getEVTAlignment(VT);
4400   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4401 
4402   AAMDNodes AAInfo;
4403   I.getAAMetadata(AAInfo);
4404 
4405   SDValue Base;
4406   SDValue Index;
4407   SDValue Scale;
4408   const Value *BasePtr = Ptr;
4409   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4410 
4411   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4412   MachineMemOperand *MMO = DAG.getMachineFunction().
4413     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4414                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4415                          Alignment, AAInfo);
4416   if (!UniformBase) {
4417     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4418     Index = getValue(Ptr);
4419     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4420   }
4421   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4422   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4423                                          Ops, MMO);
4424   DAG.setRoot(Scatter);
4425   setValue(&I, Scatter);
4426 }
4427 
4428 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4429   SDLoc sdl = getCurSDLoc();
4430 
4431   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4432                            unsigned& Alignment) {
4433     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4434     Ptr = I.getArgOperand(0);
4435     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4436     Mask = I.getArgOperand(2);
4437     Src0 = I.getArgOperand(3);
4438   };
4439   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4440                            unsigned& Alignment) {
4441     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4442     Ptr = I.getArgOperand(0);
4443     Alignment = 0;
4444     Mask = I.getArgOperand(1);
4445     Src0 = I.getArgOperand(2);
4446   };
4447 
4448   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4449   unsigned Alignment;
4450   if (IsExpanding)
4451     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4452   else
4453     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4454 
4455   SDValue Ptr = getValue(PtrOperand);
4456   SDValue Src0 = getValue(Src0Operand);
4457   SDValue Mask = getValue(MaskOperand);
4458 
4459   EVT VT = Src0.getValueType();
4460   if (!Alignment)
4461     Alignment = DAG.getEVTAlignment(VT);
4462 
4463   AAMDNodes AAInfo;
4464   I.getAAMetadata(AAInfo);
4465   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4466 
4467   // Do not serialize masked loads of constant memory with anything.
4468   bool AddToChain =
4469       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4470                  PtrOperand,
4471                  LocationSize::precise(
4472                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4473                  AAInfo));
4474   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4475 
4476   MachineMemOperand *MMO =
4477     DAG.getMachineFunction().
4478     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4479                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4480                           Alignment, AAInfo, Ranges);
4481 
4482   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4483                                    ISD::NON_EXTLOAD, IsExpanding);
4484   if (AddToChain)
4485     PendingLoads.push_back(Load.getValue(1));
4486   setValue(&I, Load);
4487 }
4488 
4489 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4490   SDLoc sdl = getCurSDLoc();
4491 
4492   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4493   const Value *Ptr = I.getArgOperand(0);
4494   SDValue Src0 = getValue(I.getArgOperand(3));
4495   SDValue Mask = getValue(I.getArgOperand(2));
4496 
4497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4498   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4499   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4500   if (!Alignment)
4501     Alignment = DAG.getEVTAlignment(VT);
4502 
4503   AAMDNodes AAInfo;
4504   I.getAAMetadata(AAInfo);
4505   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4506 
4507   SDValue Root = DAG.getRoot();
4508   SDValue Base;
4509   SDValue Index;
4510   SDValue Scale;
4511   const Value *BasePtr = Ptr;
4512   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4513   bool ConstantMemory = false;
4514   if (UniformBase && AA &&
4515       AA->pointsToConstantMemory(
4516           MemoryLocation(BasePtr,
4517                          LocationSize::precise(
4518                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4519                          AAInfo))) {
4520     // Do not serialize (non-volatile) loads of constant memory with anything.
4521     Root = DAG.getEntryNode();
4522     ConstantMemory = true;
4523   }
4524 
4525   MachineMemOperand *MMO =
4526     DAG.getMachineFunction().
4527     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4528                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4529                          Alignment, AAInfo, Ranges);
4530 
4531   if (!UniformBase) {
4532     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4533     Index = getValue(Ptr);
4534     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4535   }
4536   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4537   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4538                                        Ops, MMO);
4539 
4540   SDValue OutChain = Gather.getValue(1);
4541   if (!ConstantMemory)
4542     PendingLoads.push_back(OutChain);
4543   setValue(&I, Gather);
4544 }
4545 
4546 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4547   SDLoc dl = getCurSDLoc();
4548   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4549   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4550   SyncScope::ID SSID = I.getSyncScopeID();
4551 
4552   SDValue InChain = getRoot();
4553 
4554   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4555   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4556 
4557   auto Alignment = DAG.getEVTAlignment(MemVT);
4558 
4559   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4560   if (I.isVolatile())
4561     Flags |= MachineMemOperand::MOVolatile;
4562   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4563 
4564   MachineFunction &MF = DAG.getMachineFunction();
4565   MachineMemOperand *MMO =
4566     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4567                             Flags, MemVT.getStoreSize(), Alignment,
4568                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4569                             FailureOrdering);
4570 
4571   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4572                                    dl, MemVT, VTs, InChain,
4573                                    getValue(I.getPointerOperand()),
4574                                    getValue(I.getCompareOperand()),
4575                                    getValue(I.getNewValOperand()), MMO);
4576 
4577   SDValue OutChain = L.getValue(2);
4578 
4579   setValue(&I, L);
4580   DAG.setRoot(OutChain);
4581 }
4582 
4583 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4584   SDLoc dl = getCurSDLoc();
4585   ISD::NodeType NT;
4586   switch (I.getOperation()) {
4587   default: llvm_unreachable("Unknown atomicrmw operation");
4588   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4589   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4590   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4591   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4592   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4593   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4594   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4595   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4596   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4597   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4598   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4599   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4600   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4601   }
4602   AtomicOrdering Ordering = I.getOrdering();
4603   SyncScope::ID SSID = I.getSyncScopeID();
4604 
4605   SDValue InChain = getRoot();
4606 
4607   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4608   auto Alignment = DAG.getEVTAlignment(MemVT);
4609 
4610   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4611   if (I.isVolatile())
4612     Flags |= MachineMemOperand::MOVolatile;
4613   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4614 
4615   MachineFunction &MF = DAG.getMachineFunction();
4616   MachineMemOperand *MMO =
4617     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4618                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4619                             nullptr, SSID, Ordering);
4620 
4621   SDValue L =
4622     DAG.getAtomic(NT, dl, MemVT, InChain,
4623                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4624                   MMO);
4625 
4626   SDValue OutChain = L.getValue(1);
4627 
4628   setValue(&I, L);
4629   DAG.setRoot(OutChain);
4630 }
4631 
4632 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4633   SDLoc dl = getCurSDLoc();
4634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4635   SDValue Ops[3];
4636   Ops[0] = getRoot();
4637   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4638                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4639   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4640                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4641   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4642 }
4643 
4644 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4645   SDLoc dl = getCurSDLoc();
4646   AtomicOrdering Order = I.getOrdering();
4647   SyncScope::ID SSID = I.getSyncScopeID();
4648 
4649   SDValue InChain = getRoot();
4650 
4651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4652   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4653   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4654 
4655   if (!TLI.supportsUnalignedAtomics() &&
4656       I.getAlignment() < MemVT.getSizeInBits() / 8)
4657     report_fatal_error("Cannot generate unaligned atomic load");
4658 
4659   auto Flags = MachineMemOperand::MOLoad;
4660   if (I.isVolatile())
4661     Flags |= MachineMemOperand::MOVolatile;
4662   if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr)
4663     Flags |= MachineMemOperand::MOInvariant;
4664   if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout()))
4665     Flags |= MachineMemOperand::MODereferenceable;
4666 
4667   Flags |= TLI.getMMOFlags(I);
4668 
4669   MachineMemOperand *MMO =
4670       DAG.getMachineFunction().
4671       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4672                            Flags, MemVT.getStoreSize(),
4673                            I.getAlignment() ? I.getAlignment() :
4674                                               DAG.getEVTAlignment(MemVT),
4675                            AAMDNodes(), nullptr, SSID, Order);
4676 
4677   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4678   SDValue L =
4679       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4680                     getValue(I.getPointerOperand()), MMO);
4681 
4682   SDValue OutChain = L.getValue(1);
4683   if (MemVT != VT)
4684     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4685 
4686   setValue(&I, L);
4687   DAG.setRoot(OutChain);
4688 }
4689 
4690 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4691   SDLoc dl = getCurSDLoc();
4692 
4693   AtomicOrdering Ordering = I.getOrdering();
4694   SyncScope::ID SSID = I.getSyncScopeID();
4695 
4696   SDValue InChain = getRoot();
4697 
4698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4699   EVT MemVT =
4700       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4701 
4702   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4703     report_fatal_error("Cannot generate unaligned atomic store");
4704 
4705   auto Flags = MachineMemOperand::MOStore;
4706   if (I.isVolatile())
4707     Flags |= MachineMemOperand::MOVolatile;
4708   Flags |= TLI.getMMOFlags(I);
4709 
4710   MachineFunction &MF = DAG.getMachineFunction();
4711   MachineMemOperand *MMO =
4712     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4713                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4714                             nullptr, SSID, Ordering);
4715 
4716   SDValue Val = getValue(I.getValueOperand());
4717   if (Val.getValueType() != MemVT)
4718     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4719 
4720   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4721                                    getValue(I.getPointerOperand()), Val, MMO);
4722 
4723 
4724   DAG.setRoot(OutChain);
4725 }
4726 
4727 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4728 /// node.
4729 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4730                                                unsigned Intrinsic) {
4731   // Ignore the callsite's attributes. A specific call site may be marked with
4732   // readnone, but the lowering code will expect the chain based on the
4733   // definition.
4734   const Function *F = I.getCalledFunction();
4735   bool HasChain = !F->doesNotAccessMemory();
4736   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4737 
4738   // Build the operand list.
4739   SmallVector<SDValue, 8> Ops;
4740   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4741     if (OnlyLoad) {
4742       // We don't need to serialize loads against other loads.
4743       Ops.push_back(DAG.getRoot());
4744     } else {
4745       Ops.push_back(getRoot());
4746     }
4747   }
4748 
4749   // Info is set by getTgtMemInstrinsic
4750   TargetLowering::IntrinsicInfo Info;
4751   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4752   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4753                                                DAG.getMachineFunction(),
4754                                                Intrinsic);
4755 
4756   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4757   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4758       Info.opc == ISD::INTRINSIC_W_CHAIN)
4759     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4760                                         TLI.getPointerTy(DAG.getDataLayout())));
4761 
4762   // Add all operands of the call to the operand list.
4763   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4764     SDValue Op = getValue(I.getArgOperand(i));
4765     Ops.push_back(Op);
4766   }
4767 
4768   SmallVector<EVT, 4> ValueVTs;
4769   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4770 
4771   if (HasChain)
4772     ValueVTs.push_back(MVT::Other);
4773 
4774   SDVTList VTs = DAG.getVTList(ValueVTs);
4775 
4776   // Create the node.
4777   SDValue Result;
4778   if (IsTgtIntrinsic) {
4779     // This is target intrinsic that touches memory
4780     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4781       Ops, Info.memVT,
4782       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4783       Info.flags, Info.size);
4784   } else if (!HasChain) {
4785     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4786   } else if (!I.getType()->isVoidTy()) {
4787     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4788   } else {
4789     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4790   }
4791 
4792   if (HasChain) {
4793     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4794     if (OnlyLoad)
4795       PendingLoads.push_back(Chain);
4796     else
4797       DAG.setRoot(Chain);
4798   }
4799 
4800   if (!I.getType()->isVoidTy()) {
4801     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4802       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4803       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4804     } else
4805       Result = lowerRangeToAssertZExt(DAG, I, Result);
4806 
4807     setValue(&I, Result);
4808   }
4809 }
4810 
4811 /// GetSignificand - Get the significand and build it into a floating-point
4812 /// number with exponent of 1:
4813 ///
4814 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4815 ///
4816 /// where Op is the hexadecimal representation of floating point value.
4817 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4818   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4819                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4820   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4821                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4822   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4823 }
4824 
4825 /// GetExponent - Get the exponent:
4826 ///
4827 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4828 ///
4829 /// where Op is the hexadecimal representation of floating point value.
4830 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4831                            const TargetLowering &TLI, const SDLoc &dl) {
4832   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4833                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4834   SDValue t1 = DAG.getNode(
4835       ISD::SRL, dl, MVT::i32, t0,
4836       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4837   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4838                            DAG.getConstant(127, dl, MVT::i32));
4839   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4840 }
4841 
4842 /// getF32Constant - Get 32-bit floating point constant.
4843 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4844                               const SDLoc &dl) {
4845   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4846                            MVT::f32);
4847 }
4848 
4849 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4850                                        SelectionDAG &DAG) {
4851   // TODO: What fast-math-flags should be set on the floating-point nodes?
4852 
4853   //   IntegerPartOfX = ((int32_t)(t0);
4854   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4855 
4856   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4857   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4858   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4859 
4860   //   IntegerPartOfX <<= 23;
4861   IntegerPartOfX = DAG.getNode(
4862       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4863       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4864                                   DAG.getDataLayout())));
4865 
4866   SDValue TwoToFractionalPartOfX;
4867   if (LimitFloatPrecision <= 6) {
4868     // For floating-point precision of 6:
4869     //
4870     //   TwoToFractionalPartOfX =
4871     //     0.997535578f +
4872     //       (0.735607626f + 0.252464424f * x) * x;
4873     //
4874     // error 0.0144103317, which is 6 bits
4875     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4876                              getF32Constant(DAG, 0x3e814304, dl));
4877     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4878                              getF32Constant(DAG, 0x3f3c50c8, dl));
4879     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4880     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4881                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4882   } else if (LimitFloatPrecision <= 12) {
4883     // For floating-point precision of 12:
4884     //
4885     //   TwoToFractionalPartOfX =
4886     //     0.999892986f +
4887     //       (0.696457318f +
4888     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4889     //
4890     // error 0.000107046256, which is 13 to 14 bits
4891     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4892                              getF32Constant(DAG, 0x3da235e3, dl));
4893     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4894                              getF32Constant(DAG, 0x3e65b8f3, dl));
4895     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4896     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4897                              getF32Constant(DAG, 0x3f324b07, dl));
4898     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4899     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4900                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4901   } else { // LimitFloatPrecision <= 18
4902     // For floating-point precision of 18:
4903     //
4904     //   TwoToFractionalPartOfX =
4905     //     0.999999982f +
4906     //       (0.693148872f +
4907     //         (0.240227044f +
4908     //           (0.554906021e-1f +
4909     //             (0.961591928e-2f +
4910     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4911     // error 2.47208000*10^(-7), which is better than 18 bits
4912     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4913                              getF32Constant(DAG, 0x3924b03e, dl));
4914     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4915                              getF32Constant(DAG, 0x3ab24b87, dl));
4916     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4917     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4918                              getF32Constant(DAG, 0x3c1d8c17, dl));
4919     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4920     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4921                              getF32Constant(DAG, 0x3d634a1d, dl));
4922     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4923     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4924                              getF32Constant(DAG, 0x3e75fe14, dl));
4925     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4926     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4927                               getF32Constant(DAG, 0x3f317234, dl));
4928     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4929     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4930                                          getF32Constant(DAG, 0x3f800000, dl));
4931   }
4932 
4933   // Add the exponent into the result in integer domain.
4934   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4935   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4936                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4937 }
4938 
4939 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4940 /// limited-precision mode.
4941 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4942                          const TargetLowering &TLI) {
4943   if (Op.getValueType() == MVT::f32 &&
4944       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4945 
4946     // Put the exponent in the right bit position for later addition to the
4947     // final result:
4948     //
4949     //   #define LOG2OFe 1.4426950f
4950     //   t0 = Op * LOG2OFe
4951 
4952     // TODO: What fast-math-flags should be set here?
4953     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4954                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4955     return getLimitedPrecisionExp2(t0, dl, DAG);
4956   }
4957 
4958   // No special expansion.
4959   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4960 }
4961 
4962 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4963 /// limited-precision mode.
4964 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4965                          const TargetLowering &TLI) {
4966   // TODO: What fast-math-flags should be set on the floating-point nodes?
4967 
4968   if (Op.getValueType() == MVT::f32 &&
4969       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4970     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4971 
4972     // Scale the exponent by log(2) [0.69314718f].
4973     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4974     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4975                                         getF32Constant(DAG, 0x3f317218, dl));
4976 
4977     // Get the significand and build it into a floating-point number with
4978     // exponent of 1.
4979     SDValue X = GetSignificand(DAG, Op1, dl);
4980 
4981     SDValue LogOfMantissa;
4982     if (LimitFloatPrecision <= 6) {
4983       // For floating-point precision of 6:
4984       //
4985       //   LogofMantissa =
4986       //     -1.1609546f +
4987       //       (1.4034025f - 0.23903021f * x) * x;
4988       //
4989       // error 0.0034276066, which is better than 8 bits
4990       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4991                                getF32Constant(DAG, 0xbe74c456, dl));
4992       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4993                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4994       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4995       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4996                                   getF32Constant(DAG, 0x3f949a29, dl));
4997     } else if (LimitFloatPrecision <= 12) {
4998       // For floating-point precision of 12:
4999       //
5000       //   LogOfMantissa =
5001       //     -1.7417939f +
5002       //       (2.8212026f +
5003       //         (-1.4699568f +
5004       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5005       //
5006       // error 0.000061011436, which is 14 bits
5007       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5008                                getF32Constant(DAG, 0xbd67b6d6, dl));
5009       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5010                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5011       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5012       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5013                                getF32Constant(DAG, 0x3fbc278b, dl));
5014       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5015       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5016                                getF32Constant(DAG, 0x40348e95, dl));
5017       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5018       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5019                                   getF32Constant(DAG, 0x3fdef31a, dl));
5020     } else { // LimitFloatPrecision <= 18
5021       // For floating-point precision of 18:
5022       //
5023       //   LogOfMantissa =
5024       //     -2.1072184f +
5025       //       (4.2372794f +
5026       //         (-3.7029485f +
5027       //           (2.2781945f +
5028       //             (-0.87823314f +
5029       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5030       //
5031       // error 0.0000023660568, which is better than 18 bits
5032       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5033                                getF32Constant(DAG, 0xbc91e5ac, dl));
5034       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5035                                getF32Constant(DAG, 0x3e4350aa, dl));
5036       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5037       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5038                                getF32Constant(DAG, 0x3f60d3e3, dl));
5039       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5040       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5041                                getF32Constant(DAG, 0x4011cdf0, dl));
5042       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5043       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5044                                getF32Constant(DAG, 0x406cfd1c, dl));
5045       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5046       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5047                                getF32Constant(DAG, 0x408797cb, dl));
5048       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5049       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5050                                   getF32Constant(DAG, 0x4006dcab, dl));
5051     }
5052 
5053     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5054   }
5055 
5056   // No special expansion.
5057   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5058 }
5059 
5060 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5061 /// limited-precision mode.
5062 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5063                           const TargetLowering &TLI) {
5064   // TODO: What fast-math-flags should be set on the floating-point nodes?
5065 
5066   if (Op.getValueType() == MVT::f32 &&
5067       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5068     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5069 
5070     // Get the exponent.
5071     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5072 
5073     // Get the significand and build it into a floating-point number with
5074     // exponent of 1.
5075     SDValue X = GetSignificand(DAG, Op1, dl);
5076 
5077     // Different possible minimax approximations of significand in
5078     // floating-point for various degrees of accuracy over [1,2].
5079     SDValue Log2ofMantissa;
5080     if (LimitFloatPrecision <= 6) {
5081       // For floating-point precision of 6:
5082       //
5083       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5084       //
5085       // error 0.0049451742, which is more than 7 bits
5086       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5087                                getF32Constant(DAG, 0xbeb08fe0, dl));
5088       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5089                                getF32Constant(DAG, 0x40019463, dl));
5090       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5091       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5092                                    getF32Constant(DAG, 0x3fd6633d, dl));
5093     } else if (LimitFloatPrecision <= 12) {
5094       // For floating-point precision of 12:
5095       //
5096       //   Log2ofMantissa =
5097       //     -2.51285454f +
5098       //       (4.07009056f +
5099       //         (-2.12067489f +
5100       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5101       //
5102       // error 0.0000876136000, which is better than 13 bits
5103       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5104                                getF32Constant(DAG, 0xbda7262e, dl));
5105       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5106                                getF32Constant(DAG, 0x3f25280b, dl));
5107       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5108       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5109                                getF32Constant(DAG, 0x4007b923, dl));
5110       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5111       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5112                                getF32Constant(DAG, 0x40823e2f, dl));
5113       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5114       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5115                                    getF32Constant(DAG, 0x4020d29c, dl));
5116     } else { // LimitFloatPrecision <= 18
5117       // For floating-point precision of 18:
5118       //
5119       //   Log2ofMantissa =
5120       //     -3.0400495f +
5121       //       (6.1129976f +
5122       //         (-5.3420409f +
5123       //           (3.2865683f +
5124       //             (-1.2669343f +
5125       //               (0.27515199f -
5126       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5127       //
5128       // error 0.0000018516, which is better than 18 bits
5129       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5130                                getF32Constant(DAG, 0xbcd2769e, dl));
5131       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5132                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5133       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5134       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5135                                getF32Constant(DAG, 0x3fa22ae7, dl));
5136       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5137       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5138                                getF32Constant(DAG, 0x40525723, dl));
5139       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5140       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5141                                getF32Constant(DAG, 0x40aaf200, dl));
5142       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5143       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5144                                getF32Constant(DAG, 0x40c39dad, dl));
5145       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5146       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5147                                    getF32Constant(DAG, 0x4042902c, dl));
5148     }
5149 
5150     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5151   }
5152 
5153   // No special expansion.
5154   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5155 }
5156 
5157 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5158 /// limited-precision mode.
5159 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5160                            const TargetLowering &TLI) {
5161   // TODO: What fast-math-flags should be set on the floating-point nodes?
5162 
5163   if (Op.getValueType() == MVT::f32 &&
5164       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5165     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5166 
5167     // Scale the exponent by log10(2) [0.30102999f].
5168     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5169     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5170                                         getF32Constant(DAG, 0x3e9a209a, dl));
5171 
5172     // Get the significand and build it into a floating-point number with
5173     // exponent of 1.
5174     SDValue X = GetSignificand(DAG, Op1, dl);
5175 
5176     SDValue Log10ofMantissa;
5177     if (LimitFloatPrecision <= 6) {
5178       // For floating-point precision of 6:
5179       //
5180       //   Log10ofMantissa =
5181       //     -0.50419619f +
5182       //       (0.60948995f - 0.10380950f * x) * x;
5183       //
5184       // error 0.0014886165, which is 6 bits
5185       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5186                                getF32Constant(DAG, 0xbdd49a13, dl));
5187       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5188                                getF32Constant(DAG, 0x3f1c0789, dl));
5189       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5190       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5191                                     getF32Constant(DAG, 0x3f011300, dl));
5192     } else if (LimitFloatPrecision <= 12) {
5193       // For floating-point precision of 12:
5194       //
5195       //   Log10ofMantissa =
5196       //     -0.64831180f +
5197       //       (0.91751397f +
5198       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5199       //
5200       // error 0.00019228036, which is better than 12 bits
5201       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5202                                getF32Constant(DAG, 0x3d431f31, dl));
5203       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5204                                getF32Constant(DAG, 0x3ea21fb2, dl));
5205       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5206       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5207                                getF32Constant(DAG, 0x3f6ae232, dl));
5208       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5209       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5210                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5211     } else { // LimitFloatPrecision <= 18
5212       // For floating-point precision of 18:
5213       //
5214       //   Log10ofMantissa =
5215       //     -0.84299375f +
5216       //       (1.5327582f +
5217       //         (-1.0688956f +
5218       //           (0.49102474f +
5219       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5220       //
5221       // error 0.0000037995730, which is better than 18 bits
5222       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5223                                getF32Constant(DAG, 0x3c5d51ce, dl));
5224       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5225                                getF32Constant(DAG, 0x3e00685a, dl));
5226       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5227       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5228                                getF32Constant(DAG, 0x3efb6798, dl));
5229       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5230       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5231                                getF32Constant(DAG, 0x3f88d192, dl));
5232       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5233       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5234                                getF32Constant(DAG, 0x3fc4316c, dl));
5235       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5236       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5237                                     getF32Constant(DAG, 0x3f57ce70, dl));
5238     }
5239 
5240     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5241   }
5242 
5243   // No special expansion.
5244   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5245 }
5246 
5247 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5248 /// limited-precision mode.
5249 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5250                           const TargetLowering &TLI) {
5251   if (Op.getValueType() == MVT::f32 &&
5252       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5253     return getLimitedPrecisionExp2(Op, dl, DAG);
5254 
5255   // No special expansion.
5256   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5257 }
5258 
5259 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5260 /// limited-precision mode with x == 10.0f.
5261 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5262                          SelectionDAG &DAG, const TargetLowering &TLI) {
5263   bool IsExp10 = false;
5264   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5265       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5266     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5267       APFloat Ten(10.0f);
5268       IsExp10 = LHSC->isExactlyValue(Ten);
5269     }
5270   }
5271 
5272   // TODO: What fast-math-flags should be set on the FMUL node?
5273   if (IsExp10) {
5274     // Put the exponent in the right bit position for later addition to the
5275     // final result:
5276     //
5277     //   #define LOG2OF10 3.3219281f
5278     //   t0 = Op * LOG2OF10;
5279     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5280                              getF32Constant(DAG, 0x40549a78, dl));
5281     return getLimitedPrecisionExp2(t0, dl, DAG);
5282   }
5283 
5284   // No special expansion.
5285   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5286 }
5287 
5288 /// ExpandPowI - Expand a llvm.powi intrinsic.
5289 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5290                           SelectionDAG &DAG) {
5291   // If RHS is a constant, we can expand this out to a multiplication tree,
5292   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5293   // optimizing for size, we only want to do this if the expansion would produce
5294   // a small number of multiplies, otherwise we do the full expansion.
5295   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5296     // Get the exponent as a positive value.
5297     unsigned Val = RHSC->getSExtValue();
5298     if ((int)Val < 0) Val = -Val;
5299 
5300     // powi(x, 0) -> 1.0
5301     if (Val == 0)
5302       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5303 
5304     const Function &F = DAG.getMachineFunction().getFunction();
5305     if (!F.hasOptSize() ||
5306         // If optimizing for size, don't insert too many multiplies.
5307         // This inserts up to 5 multiplies.
5308         countPopulation(Val) + Log2_32(Val) < 7) {
5309       // We use the simple binary decomposition method to generate the multiply
5310       // sequence.  There are more optimal ways to do this (for example,
5311       // powi(x,15) generates one more multiply than it should), but this has
5312       // the benefit of being both really simple and much better than a libcall.
5313       SDValue Res;  // Logically starts equal to 1.0
5314       SDValue CurSquare = LHS;
5315       // TODO: Intrinsics should have fast-math-flags that propagate to these
5316       // nodes.
5317       while (Val) {
5318         if (Val & 1) {
5319           if (Res.getNode())
5320             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5321           else
5322             Res = CurSquare;  // 1.0*CurSquare.
5323         }
5324 
5325         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5326                                 CurSquare, CurSquare);
5327         Val >>= 1;
5328       }
5329 
5330       // If the original was negative, invert the result, producing 1/(x*x*x).
5331       if (RHSC->getSExtValue() < 0)
5332         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5333                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5334       return Res;
5335     }
5336   }
5337 
5338   // Otherwise, expand to a libcall.
5339   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5340 }
5341 
5342 // getUnderlyingArgReg - Find underlying register used for a truncated or
5343 // bitcasted argument.
5344 static unsigned getUnderlyingArgReg(const SDValue &N) {
5345   switch (N.getOpcode()) {
5346   case ISD::CopyFromReg:
5347     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5348   case ISD::BITCAST:
5349   case ISD::AssertZext:
5350   case ISD::AssertSext:
5351   case ISD::TRUNCATE:
5352     return getUnderlyingArgReg(N.getOperand(0));
5353   default:
5354     return 0;
5355   }
5356 }
5357 
5358 /// If the DbgValueInst is a dbg_value of a function argument, create the
5359 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5360 /// instruction selection, they will be inserted to the entry BB.
5361 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5362     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5363     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5364   const Argument *Arg = dyn_cast<Argument>(V);
5365   if (!Arg)
5366     return false;
5367 
5368   if (!IsDbgDeclare) {
5369     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5370     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5371     // the entry block.
5372     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5373     if (!IsInEntryBlock)
5374       return false;
5375 
5376     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5377     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5378     // variable that also is a param.
5379     //
5380     // Although, if we are at the top of the entry block already, we can still
5381     // emit using ArgDbgValue. This might catch some situations when the
5382     // dbg.value refers to an argument that isn't used in the entry block, so
5383     // any CopyToReg node would be optimized out and the only way to express
5384     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5385     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5386     // we should only emit as ArgDbgValue if the Variable is an argument to the
5387     // current function, and the dbg.value intrinsic is found in the entry
5388     // block.
5389     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5390         !DL->getInlinedAt();
5391     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5392     if (!IsInPrologue && !VariableIsFunctionInputArg)
5393       return false;
5394 
5395     // Here we assume that a function argument on IR level only can be used to
5396     // describe one input parameter on source level. If we for example have
5397     // source code like this
5398     //
5399     //    struct A { long x, y; };
5400     //    void foo(struct A a, long b) {
5401     //      ...
5402     //      b = a.x;
5403     //      ...
5404     //    }
5405     //
5406     // and IR like this
5407     //
5408     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5409     //  entry:
5410     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5411     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5412     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5413     //    ...
5414     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5415     //    ...
5416     //
5417     // then the last dbg.value is describing a parameter "b" using a value that
5418     // is an argument. But since we already has used %a1 to describe a parameter
5419     // we should not handle that last dbg.value here (that would result in an
5420     // incorrect hoisting of the DBG_VALUE to the function entry).
5421     // Notice that we allow one dbg.value per IR level argument, to accomodate
5422     // for the situation with fragments above.
5423     if (VariableIsFunctionInputArg) {
5424       unsigned ArgNo = Arg->getArgNo();
5425       if (ArgNo >= FuncInfo.DescribedArgs.size())
5426         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5427       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5428         return false;
5429       FuncInfo.DescribedArgs.set(ArgNo);
5430     }
5431   }
5432 
5433   MachineFunction &MF = DAG.getMachineFunction();
5434   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5435 
5436   bool IsIndirect = false;
5437   Optional<MachineOperand> Op;
5438   // Some arguments' frame index is recorded during argument lowering.
5439   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5440   if (FI != std::numeric_limits<int>::max())
5441     Op = MachineOperand::CreateFI(FI);
5442 
5443   if (!Op && N.getNode()) {
5444     unsigned Reg = getUnderlyingArgReg(N);
5445     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5446       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5447       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5448       if (PR)
5449         Reg = PR;
5450     }
5451     if (Reg) {
5452       Op = MachineOperand::CreateReg(Reg, false);
5453       IsIndirect = IsDbgDeclare;
5454     }
5455   }
5456 
5457   if (!Op && N.getNode()) {
5458     // Check if frame index is available.
5459     SDValue LCandidate = peekThroughBitcasts(N);
5460     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5461       if (FrameIndexSDNode *FINode =
5462           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5463         Op = MachineOperand::CreateFI(FINode->getIndex());
5464   }
5465 
5466   if (!Op) {
5467     // Check if ValueMap has reg number.
5468     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5469     if (VMI != FuncInfo.ValueMap.end()) {
5470       const auto &TLI = DAG.getTargetLoweringInfo();
5471       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5472                        V->getType(), getABIRegCopyCC(V));
5473       if (RFV.occupiesMultipleRegs()) {
5474         unsigned Offset = 0;
5475         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5476           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5477           auto FragmentExpr = DIExpression::createFragmentExpression(
5478               Expr, Offset, RegAndSize.second);
5479           if (!FragmentExpr)
5480             continue;
5481           FuncInfo.ArgDbgValues.push_back(
5482               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5483                       Op->getReg(), Variable, *FragmentExpr));
5484           Offset += RegAndSize.second;
5485         }
5486         return true;
5487       }
5488       Op = MachineOperand::CreateReg(VMI->second, false);
5489       IsIndirect = IsDbgDeclare;
5490     }
5491   }
5492 
5493   if (!Op)
5494     return false;
5495 
5496   assert(Variable->isValidLocationForIntrinsic(DL) &&
5497          "Expected inlined-at fields to agree");
5498   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5499   FuncInfo.ArgDbgValues.push_back(
5500       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5501               *Op, Variable, Expr));
5502 
5503   return true;
5504 }
5505 
5506 /// Return the appropriate SDDbgValue based on N.
5507 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5508                                              DILocalVariable *Variable,
5509                                              DIExpression *Expr,
5510                                              const DebugLoc &dl,
5511                                              unsigned DbgSDNodeOrder) {
5512   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5513     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5514     // stack slot locations.
5515     //
5516     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5517     // debug values here after optimization:
5518     //
5519     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5520     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5521     //
5522     // Both describe the direct values of their associated variables.
5523     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5524                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5525   }
5526   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5527                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5528 }
5529 
5530 // VisualStudio defines setjmp as _setjmp
5531 #if defined(_MSC_VER) && defined(setjmp) && \
5532                          !defined(setjmp_undefined_for_msvc)
5533 #  pragma push_macro("setjmp")
5534 #  undef setjmp
5535 #  define setjmp_undefined_for_msvc
5536 #endif
5537 
5538 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5539   switch (Intrinsic) {
5540   case Intrinsic::smul_fix:
5541     return ISD::SMULFIX;
5542   case Intrinsic::umul_fix:
5543     return ISD::UMULFIX;
5544   default:
5545     llvm_unreachable("Unhandled fixed point intrinsic");
5546   }
5547 }
5548 
5549 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5550                                            const char *FunctionName) {
5551   assert(FunctionName && "FunctionName must not be nullptr");
5552   SDValue Callee = DAG.getExternalSymbol(
5553       FunctionName,
5554       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5555   LowerCallTo(&I, Callee, I.isTailCall());
5556 }
5557 
5558 /// Lower the call to the specified intrinsic function.
5559 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5560                                              unsigned Intrinsic) {
5561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5562   SDLoc sdl = getCurSDLoc();
5563   DebugLoc dl = getCurDebugLoc();
5564   SDValue Res;
5565 
5566   switch (Intrinsic) {
5567   default:
5568     // By default, turn this into a target intrinsic node.
5569     visitTargetIntrinsic(I, Intrinsic);
5570     return;
5571   case Intrinsic::vastart:  visitVAStart(I); return;
5572   case Intrinsic::vaend:    visitVAEnd(I); return;
5573   case Intrinsic::vacopy:   visitVACopy(I); return;
5574   case Intrinsic::returnaddress:
5575     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5576                              TLI.getPointerTy(DAG.getDataLayout()),
5577                              getValue(I.getArgOperand(0))));
5578     return;
5579   case Intrinsic::addressofreturnaddress:
5580     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5581                              TLI.getPointerTy(DAG.getDataLayout())));
5582     return;
5583   case Intrinsic::sponentry:
5584     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5585                              TLI.getPointerTy(DAG.getDataLayout())));
5586     return;
5587   case Intrinsic::frameaddress:
5588     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5589                              TLI.getPointerTy(DAG.getDataLayout()),
5590                              getValue(I.getArgOperand(0))));
5591     return;
5592   case Intrinsic::read_register: {
5593     Value *Reg = I.getArgOperand(0);
5594     SDValue Chain = getRoot();
5595     SDValue RegName =
5596         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5597     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5598     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5599       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5600     setValue(&I, Res);
5601     DAG.setRoot(Res.getValue(1));
5602     return;
5603   }
5604   case Intrinsic::write_register: {
5605     Value *Reg = I.getArgOperand(0);
5606     Value *RegValue = I.getArgOperand(1);
5607     SDValue Chain = getRoot();
5608     SDValue RegName =
5609         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5610     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5611                             RegName, getValue(RegValue)));
5612     return;
5613   }
5614   case Intrinsic::setjmp:
5615     lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5616     return;
5617   case Intrinsic::longjmp:
5618     lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5619     return;
5620   case Intrinsic::memcpy: {
5621     const auto &MCI = cast<MemCpyInst>(I);
5622     SDValue Op1 = getValue(I.getArgOperand(0));
5623     SDValue Op2 = getValue(I.getArgOperand(1));
5624     SDValue Op3 = getValue(I.getArgOperand(2));
5625     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5626     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5627     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5628     unsigned Align = MinAlign(DstAlign, SrcAlign);
5629     bool isVol = MCI.isVolatile();
5630     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5631     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5632     // node.
5633     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5634                                false, isTC,
5635                                MachinePointerInfo(I.getArgOperand(0)),
5636                                MachinePointerInfo(I.getArgOperand(1)));
5637     updateDAGForMaybeTailCall(MC);
5638     return;
5639   }
5640   case Intrinsic::memset: {
5641     const auto &MSI = cast<MemSetInst>(I);
5642     SDValue Op1 = getValue(I.getArgOperand(0));
5643     SDValue Op2 = getValue(I.getArgOperand(1));
5644     SDValue Op3 = getValue(I.getArgOperand(2));
5645     // @llvm.memset defines 0 and 1 to both mean no alignment.
5646     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5647     bool isVol = MSI.isVolatile();
5648     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5649     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5650                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5651     updateDAGForMaybeTailCall(MS);
5652     return;
5653   }
5654   case Intrinsic::memmove: {
5655     const auto &MMI = cast<MemMoveInst>(I);
5656     SDValue Op1 = getValue(I.getArgOperand(0));
5657     SDValue Op2 = getValue(I.getArgOperand(1));
5658     SDValue Op3 = getValue(I.getArgOperand(2));
5659     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5660     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5661     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5662     unsigned Align = MinAlign(DstAlign, SrcAlign);
5663     bool isVol = MMI.isVolatile();
5664     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5665     // FIXME: Support passing different dest/src alignments to the memmove DAG
5666     // node.
5667     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5668                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5669                                 MachinePointerInfo(I.getArgOperand(1)));
5670     updateDAGForMaybeTailCall(MM);
5671     return;
5672   }
5673   case Intrinsic::memcpy_element_unordered_atomic: {
5674     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5675     SDValue Dst = getValue(MI.getRawDest());
5676     SDValue Src = getValue(MI.getRawSource());
5677     SDValue Length = getValue(MI.getLength());
5678 
5679     unsigned DstAlign = MI.getDestAlignment();
5680     unsigned SrcAlign = MI.getSourceAlignment();
5681     Type *LengthTy = MI.getLength()->getType();
5682     unsigned ElemSz = MI.getElementSizeInBytes();
5683     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5684     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5685                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5686                                      MachinePointerInfo(MI.getRawDest()),
5687                                      MachinePointerInfo(MI.getRawSource()));
5688     updateDAGForMaybeTailCall(MC);
5689     return;
5690   }
5691   case Intrinsic::memmove_element_unordered_atomic: {
5692     auto &MI = cast<AtomicMemMoveInst>(I);
5693     SDValue Dst = getValue(MI.getRawDest());
5694     SDValue Src = getValue(MI.getRawSource());
5695     SDValue Length = getValue(MI.getLength());
5696 
5697     unsigned DstAlign = MI.getDestAlignment();
5698     unsigned SrcAlign = MI.getSourceAlignment();
5699     Type *LengthTy = MI.getLength()->getType();
5700     unsigned ElemSz = MI.getElementSizeInBytes();
5701     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5702     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5703                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5704                                       MachinePointerInfo(MI.getRawDest()),
5705                                       MachinePointerInfo(MI.getRawSource()));
5706     updateDAGForMaybeTailCall(MC);
5707     return;
5708   }
5709   case Intrinsic::memset_element_unordered_atomic: {
5710     auto &MI = cast<AtomicMemSetInst>(I);
5711     SDValue Dst = getValue(MI.getRawDest());
5712     SDValue Val = getValue(MI.getValue());
5713     SDValue Length = getValue(MI.getLength());
5714 
5715     unsigned DstAlign = MI.getDestAlignment();
5716     Type *LengthTy = MI.getLength()->getType();
5717     unsigned ElemSz = MI.getElementSizeInBytes();
5718     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5719     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5720                                      LengthTy, ElemSz, isTC,
5721                                      MachinePointerInfo(MI.getRawDest()));
5722     updateDAGForMaybeTailCall(MC);
5723     return;
5724   }
5725   case Intrinsic::dbg_addr:
5726   case Intrinsic::dbg_declare: {
5727     const auto &DI = cast<DbgVariableIntrinsic>(I);
5728     DILocalVariable *Variable = DI.getVariable();
5729     DIExpression *Expression = DI.getExpression();
5730     dropDanglingDebugInfo(Variable, Expression);
5731     assert(Variable && "Missing variable");
5732 
5733     // Check if address has undef value.
5734     const Value *Address = DI.getVariableLocation();
5735     if (!Address || isa<UndefValue>(Address) ||
5736         (Address->use_empty() && !isa<Argument>(Address))) {
5737       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5738       return;
5739     }
5740 
5741     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5742 
5743     // Check if this variable can be described by a frame index, typically
5744     // either as a static alloca or a byval parameter.
5745     int FI = std::numeric_limits<int>::max();
5746     if (const auto *AI =
5747             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5748       if (AI->isStaticAlloca()) {
5749         auto I = FuncInfo.StaticAllocaMap.find(AI);
5750         if (I != FuncInfo.StaticAllocaMap.end())
5751           FI = I->second;
5752       }
5753     } else if (const auto *Arg = dyn_cast<Argument>(
5754                    Address->stripInBoundsConstantOffsets())) {
5755       FI = FuncInfo.getArgumentFrameIndex(Arg);
5756     }
5757 
5758     // llvm.dbg.addr is control dependent and always generates indirect
5759     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5760     // the MachineFunction variable table.
5761     if (FI != std::numeric_limits<int>::max()) {
5762       if (Intrinsic == Intrinsic::dbg_addr) {
5763         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5764             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5765         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5766       }
5767       return;
5768     }
5769 
5770     SDValue &N = NodeMap[Address];
5771     if (!N.getNode() && isa<Argument>(Address))
5772       // Check unused arguments map.
5773       N = UnusedArgNodeMap[Address];
5774     SDDbgValue *SDV;
5775     if (N.getNode()) {
5776       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5777         Address = BCI->getOperand(0);
5778       // Parameters are handled specially.
5779       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5780       if (isParameter && FINode) {
5781         // Byval parameter. We have a frame index at this point.
5782         SDV =
5783             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5784                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5785       } else if (isa<Argument>(Address)) {
5786         // Address is an argument, so try to emit its dbg value using
5787         // virtual register info from the FuncInfo.ValueMap.
5788         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5789         return;
5790       } else {
5791         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5792                               true, dl, SDNodeOrder);
5793       }
5794       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5795     } else {
5796       // If Address is an argument then try to emit its dbg value using
5797       // virtual register info from the FuncInfo.ValueMap.
5798       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5799                                     N)) {
5800         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5801       }
5802     }
5803     return;
5804   }
5805   case Intrinsic::dbg_label: {
5806     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5807     DILabel *Label = DI.getLabel();
5808     assert(Label && "Missing label");
5809 
5810     SDDbgLabel *SDV;
5811     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5812     DAG.AddDbgLabel(SDV);
5813     return;
5814   }
5815   case Intrinsic::dbg_value: {
5816     const DbgValueInst &DI = cast<DbgValueInst>(I);
5817     assert(DI.getVariable() && "Missing variable");
5818 
5819     DILocalVariable *Variable = DI.getVariable();
5820     DIExpression *Expression = DI.getExpression();
5821     dropDanglingDebugInfo(Variable, Expression);
5822     const Value *V = DI.getValue();
5823     if (!V)
5824       return;
5825 
5826     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5827         SDNodeOrder))
5828       return;
5829 
5830     // TODO: Dangling debug info will eventually either be resolved or produce
5831     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5832     // between the original dbg.value location and its resolved DBG_VALUE, which
5833     // we should ideally fill with an extra Undef DBG_VALUE.
5834 
5835     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5836     return;
5837   }
5838 
5839   case Intrinsic::eh_typeid_for: {
5840     // Find the type id for the given typeinfo.
5841     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5842     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5843     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5844     setValue(&I, Res);
5845     return;
5846   }
5847 
5848   case Intrinsic::eh_return_i32:
5849   case Intrinsic::eh_return_i64:
5850     DAG.getMachineFunction().setCallsEHReturn(true);
5851     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5852                             MVT::Other,
5853                             getControlRoot(),
5854                             getValue(I.getArgOperand(0)),
5855                             getValue(I.getArgOperand(1))));
5856     return;
5857   case Intrinsic::eh_unwind_init:
5858     DAG.getMachineFunction().setCallsUnwindInit(true);
5859     return;
5860   case Intrinsic::eh_dwarf_cfa:
5861     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5862                              TLI.getPointerTy(DAG.getDataLayout()),
5863                              getValue(I.getArgOperand(0))));
5864     return;
5865   case Intrinsic::eh_sjlj_callsite: {
5866     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5867     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5868     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5869     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5870 
5871     MMI.setCurrentCallSite(CI->getZExtValue());
5872     return;
5873   }
5874   case Intrinsic::eh_sjlj_functioncontext: {
5875     // Get and store the index of the function context.
5876     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5877     AllocaInst *FnCtx =
5878       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5879     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5880     MFI.setFunctionContextIndex(FI);
5881     return;
5882   }
5883   case Intrinsic::eh_sjlj_setjmp: {
5884     SDValue Ops[2];
5885     Ops[0] = getRoot();
5886     Ops[1] = getValue(I.getArgOperand(0));
5887     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5888                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5889     setValue(&I, Op.getValue(0));
5890     DAG.setRoot(Op.getValue(1));
5891     return;
5892   }
5893   case Intrinsic::eh_sjlj_longjmp:
5894     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5895                             getRoot(), getValue(I.getArgOperand(0))));
5896     return;
5897   case Intrinsic::eh_sjlj_setup_dispatch:
5898     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5899                             getRoot()));
5900     return;
5901   case Intrinsic::masked_gather:
5902     visitMaskedGather(I);
5903     return;
5904   case Intrinsic::masked_load:
5905     visitMaskedLoad(I);
5906     return;
5907   case Intrinsic::masked_scatter:
5908     visitMaskedScatter(I);
5909     return;
5910   case Intrinsic::masked_store:
5911     visitMaskedStore(I);
5912     return;
5913   case Intrinsic::masked_expandload:
5914     visitMaskedLoad(I, true /* IsExpanding */);
5915     return;
5916   case Intrinsic::masked_compressstore:
5917     visitMaskedStore(I, true /* IsCompressing */);
5918     return;
5919   case Intrinsic::x86_mmx_pslli_w:
5920   case Intrinsic::x86_mmx_pslli_d:
5921   case Intrinsic::x86_mmx_pslli_q:
5922   case Intrinsic::x86_mmx_psrli_w:
5923   case Intrinsic::x86_mmx_psrli_d:
5924   case Intrinsic::x86_mmx_psrli_q:
5925   case Intrinsic::x86_mmx_psrai_w:
5926   case Intrinsic::x86_mmx_psrai_d: {
5927     SDValue ShAmt = getValue(I.getArgOperand(1));
5928     if (isa<ConstantSDNode>(ShAmt)) {
5929       visitTargetIntrinsic(I, Intrinsic);
5930       return;
5931     }
5932     unsigned NewIntrinsic = 0;
5933     EVT ShAmtVT = MVT::v2i32;
5934     switch (Intrinsic) {
5935     case Intrinsic::x86_mmx_pslli_w:
5936       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5937       break;
5938     case Intrinsic::x86_mmx_pslli_d:
5939       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5940       break;
5941     case Intrinsic::x86_mmx_pslli_q:
5942       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5943       break;
5944     case Intrinsic::x86_mmx_psrli_w:
5945       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5946       break;
5947     case Intrinsic::x86_mmx_psrli_d:
5948       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5949       break;
5950     case Intrinsic::x86_mmx_psrli_q:
5951       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5952       break;
5953     case Intrinsic::x86_mmx_psrai_w:
5954       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5955       break;
5956     case Intrinsic::x86_mmx_psrai_d:
5957       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5958       break;
5959     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5960     }
5961 
5962     // The vector shift intrinsics with scalars uses 32b shift amounts but
5963     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5964     // to be zero.
5965     // We must do this early because v2i32 is not a legal type.
5966     SDValue ShOps[2];
5967     ShOps[0] = ShAmt;
5968     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5969     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5970     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5971     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5972     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5973                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5974                        getValue(I.getArgOperand(0)), ShAmt);
5975     setValue(&I, Res);
5976     return;
5977   }
5978   case Intrinsic::powi:
5979     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5980                             getValue(I.getArgOperand(1)), DAG));
5981     return;
5982   case Intrinsic::log:
5983     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5984     return;
5985   case Intrinsic::log2:
5986     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5987     return;
5988   case Intrinsic::log10:
5989     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5990     return;
5991   case Intrinsic::exp:
5992     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5993     return;
5994   case Intrinsic::exp2:
5995     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5996     return;
5997   case Intrinsic::pow:
5998     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5999                            getValue(I.getArgOperand(1)), DAG, TLI));
6000     return;
6001   case Intrinsic::sqrt:
6002   case Intrinsic::fabs:
6003   case Intrinsic::sin:
6004   case Intrinsic::cos:
6005   case Intrinsic::floor:
6006   case Intrinsic::ceil:
6007   case Intrinsic::trunc:
6008   case Intrinsic::rint:
6009   case Intrinsic::nearbyint:
6010   case Intrinsic::round:
6011   case Intrinsic::canonicalize: {
6012     unsigned Opcode;
6013     switch (Intrinsic) {
6014     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6015     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6016     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6017     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6018     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6019     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6020     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6021     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6022     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6023     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6024     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6025     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6026     }
6027 
6028     setValue(&I, DAG.getNode(Opcode, sdl,
6029                              getValue(I.getArgOperand(0)).getValueType(),
6030                              getValue(I.getArgOperand(0))));
6031     return;
6032   }
6033   case Intrinsic::lround:
6034   case Intrinsic::llround: {
6035     unsigned Opcode;
6036     switch (Intrinsic) {
6037     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6038     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6039     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6040     }
6041 
6042     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6043     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6044                              getValue(I.getArgOperand(0))));
6045     return;
6046   }
6047   case Intrinsic::minnum: {
6048     auto VT = getValue(I.getArgOperand(0)).getValueType();
6049     unsigned Opc =
6050         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
6051             ? ISD::FMINIMUM
6052             : ISD::FMINNUM;
6053     setValue(&I, DAG.getNode(Opc, sdl, VT,
6054                              getValue(I.getArgOperand(0)),
6055                              getValue(I.getArgOperand(1))));
6056     return;
6057   }
6058   case Intrinsic::maxnum: {
6059     auto VT = getValue(I.getArgOperand(0)).getValueType();
6060     unsigned Opc =
6061         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
6062             ? ISD::FMAXIMUM
6063             : ISD::FMAXNUM;
6064     setValue(&I, DAG.getNode(Opc, sdl, VT,
6065                              getValue(I.getArgOperand(0)),
6066                              getValue(I.getArgOperand(1))));
6067     return;
6068   }
6069   case Intrinsic::minimum:
6070     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6071                              getValue(I.getArgOperand(0)).getValueType(),
6072                              getValue(I.getArgOperand(0)),
6073                              getValue(I.getArgOperand(1))));
6074     return;
6075   case Intrinsic::maximum:
6076     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6077                              getValue(I.getArgOperand(0)).getValueType(),
6078                              getValue(I.getArgOperand(0)),
6079                              getValue(I.getArgOperand(1))));
6080     return;
6081   case Intrinsic::copysign:
6082     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6083                              getValue(I.getArgOperand(0)).getValueType(),
6084                              getValue(I.getArgOperand(0)),
6085                              getValue(I.getArgOperand(1))));
6086     return;
6087   case Intrinsic::fma:
6088     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6089                              getValue(I.getArgOperand(0)).getValueType(),
6090                              getValue(I.getArgOperand(0)),
6091                              getValue(I.getArgOperand(1)),
6092                              getValue(I.getArgOperand(2))));
6093     return;
6094   case Intrinsic::experimental_constrained_fadd:
6095   case Intrinsic::experimental_constrained_fsub:
6096   case Intrinsic::experimental_constrained_fmul:
6097   case Intrinsic::experimental_constrained_fdiv:
6098   case Intrinsic::experimental_constrained_frem:
6099   case Intrinsic::experimental_constrained_fma:
6100   case Intrinsic::experimental_constrained_fptrunc:
6101   case Intrinsic::experimental_constrained_fpext:
6102   case Intrinsic::experimental_constrained_sqrt:
6103   case Intrinsic::experimental_constrained_pow:
6104   case Intrinsic::experimental_constrained_powi:
6105   case Intrinsic::experimental_constrained_sin:
6106   case Intrinsic::experimental_constrained_cos:
6107   case Intrinsic::experimental_constrained_exp:
6108   case Intrinsic::experimental_constrained_exp2:
6109   case Intrinsic::experimental_constrained_log:
6110   case Intrinsic::experimental_constrained_log10:
6111   case Intrinsic::experimental_constrained_log2:
6112   case Intrinsic::experimental_constrained_rint:
6113   case Intrinsic::experimental_constrained_nearbyint:
6114   case Intrinsic::experimental_constrained_maxnum:
6115   case Intrinsic::experimental_constrained_minnum:
6116   case Intrinsic::experimental_constrained_ceil:
6117   case Intrinsic::experimental_constrained_floor:
6118   case Intrinsic::experimental_constrained_round:
6119   case Intrinsic::experimental_constrained_trunc:
6120     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6121     return;
6122   case Intrinsic::fmuladd: {
6123     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6124     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6125         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6126       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6127                                getValue(I.getArgOperand(0)).getValueType(),
6128                                getValue(I.getArgOperand(0)),
6129                                getValue(I.getArgOperand(1)),
6130                                getValue(I.getArgOperand(2))));
6131     } else {
6132       // TODO: Intrinsic calls should have fast-math-flags.
6133       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6134                                 getValue(I.getArgOperand(0)).getValueType(),
6135                                 getValue(I.getArgOperand(0)),
6136                                 getValue(I.getArgOperand(1)));
6137       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6138                                 getValue(I.getArgOperand(0)).getValueType(),
6139                                 Mul,
6140                                 getValue(I.getArgOperand(2)));
6141       setValue(&I, Add);
6142     }
6143     return;
6144   }
6145   case Intrinsic::convert_to_fp16:
6146     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6147                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6148                                          getValue(I.getArgOperand(0)),
6149                                          DAG.getTargetConstant(0, sdl,
6150                                                                MVT::i32))));
6151     return;
6152   case Intrinsic::convert_from_fp16:
6153     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6154                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6155                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6156                                          getValue(I.getArgOperand(0)))));
6157     return;
6158   case Intrinsic::pcmarker: {
6159     SDValue Tmp = getValue(I.getArgOperand(0));
6160     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6161     return;
6162   }
6163   case Intrinsic::readcyclecounter: {
6164     SDValue Op = getRoot();
6165     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6166                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6167     setValue(&I, Res);
6168     DAG.setRoot(Res.getValue(1));
6169     return;
6170   }
6171   case Intrinsic::bitreverse:
6172     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6173                              getValue(I.getArgOperand(0)).getValueType(),
6174                              getValue(I.getArgOperand(0))));
6175     return;
6176   case Intrinsic::bswap:
6177     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6178                              getValue(I.getArgOperand(0)).getValueType(),
6179                              getValue(I.getArgOperand(0))));
6180     return;
6181   case Intrinsic::cttz: {
6182     SDValue Arg = getValue(I.getArgOperand(0));
6183     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6184     EVT Ty = Arg.getValueType();
6185     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6186                              sdl, Ty, Arg));
6187     return;
6188   }
6189   case Intrinsic::ctlz: {
6190     SDValue Arg = getValue(I.getArgOperand(0));
6191     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6192     EVT Ty = Arg.getValueType();
6193     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6194                              sdl, Ty, Arg));
6195     return;
6196   }
6197   case Intrinsic::ctpop: {
6198     SDValue Arg = getValue(I.getArgOperand(0));
6199     EVT Ty = Arg.getValueType();
6200     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6201     return;
6202   }
6203   case Intrinsic::fshl:
6204   case Intrinsic::fshr: {
6205     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6206     SDValue X = getValue(I.getArgOperand(0));
6207     SDValue Y = getValue(I.getArgOperand(1));
6208     SDValue Z = getValue(I.getArgOperand(2));
6209     EVT VT = X.getValueType();
6210     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6211     SDValue Zero = DAG.getConstant(0, sdl, VT);
6212     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6213 
6214     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6215     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6216       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6217       return;
6218     }
6219 
6220     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6221     // avoid the select that is necessary in the general case to filter out
6222     // the 0-shift possibility that leads to UB.
6223     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6224       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6225       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6226         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6227         return;
6228       }
6229 
6230       // Some targets only rotate one way. Try the opposite direction.
6231       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6232       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6233         // Negate the shift amount because it is safe to ignore the high bits.
6234         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6235         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6236         return;
6237       }
6238 
6239       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6240       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6241       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6242       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6243       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6244       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6245       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6246       return;
6247     }
6248 
6249     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6250     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6251     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6252     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6253     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6254     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6255 
6256     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6257     // and that is undefined. We must compare and select to avoid UB.
6258     EVT CCVT = MVT::i1;
6259     if (VT.isVector())
6260       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6261 
6262     // For fshl, 0-shift returns the 1st arg (X).
6263     // For fshr, 0-shift returns the 2nd arg (Y).
6264     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6265     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6266     return;
6267   }
6268   case Intrinsic::sadd_sat: {
6269     SDValue Op1 = getValue(I.getArgOperand(0));
6270     SDValue Op2 = getValue(I.getArgOperand(1));
6271     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6272     return;
6273   }
6274   case Intrinsic::uadd_sat: {
6275     SDValue Op1 = getValue(I.getArgOperand(0));
6276     SDValue Op2 = getValue(I.getArgOperand(1));
6277     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6278     return;
6279   }
6280   case Intrinsic::ssub_sat: {
6281     SDValue Op1 = getValue(I.getArgOperand(0));
6282     SDValue Op2 = getValue(I.getArgOperand(1));
6283     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6284     return;
6285   }
6286   case Intrinsic::usub_sat: {
6287     SDValue Op1 = getValue(I.getArgOperand(0));
6288     SDValue Op2 = getValue(I.getArgOperand(1));
6289     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6290     return;
6291   }
6292   case Intrinsic::smul_fix:
6293   case Intrinsic::umul_fix: {
6294     SDValue Op1 = getValue(I.getArgOperand(0));
6295     SDValue Op2 = getValue(I.getArgOperand(1));
6296     SDValue Op3 = getValue(I.getArgOperand(2));
6297     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6298                              Op1.getValueType(), Op1, Op2, Op3));
6299     return;
6300   }
6301   case Intrinsic::smul_fix_sat: {
6302     SDValue Op1 = getValue(I.getArgOperand(0));
6303     SDValue Op2 = getValue(I.getArgOperand(1));
6304     SDValue Op3 = getValue(I.getArgOperand(2));
6305     setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6306                              Op3));
6307     return;
6308   }
6309   case Intrinsic::stacksave: {
6310     SDValue Op = getRoot();
6311     Res = DAG.getNode(
6312         ISD::STACKSAVE, sdl,
6313         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6314     setValue(&I, Res);
6315     DAG.setRoot(Res.getValue(1));
6316     return;
6317   }
6318   case Intrinsic::stackrestore:
6319     Res = getValue(I.getArgOperand(0));
6320     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6321     return;
6322   case Intrinsic::get_dynamic_area_offset: {
6323     SDValue Op = getRoot();
6324     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6325     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6326     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6327     // target.
6328     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6329       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6330                          " intrinsic!");
6331     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6332                       Op);
6333     DAG.setRoot(Op);
6334     setValue(&I, Res);
6335     return;
6336   }
6337   case Intrinsic::stackguard: {
6338     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6339     MachineFunction &MF = DAG.getMachineFunction();
6340     const Module &M = *MF.getFunction().getParent();
6341     SDValue Chain = getRoot();
6342     if (TLI.useLoadStackGuardNode()) {
6343       Res = getLoadStackGuard(DAG, sdl, Chain);
6344     } else {
6345       const Value *Global = TLI.getSDagStackGuard(M);
6346       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6347       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6348                         MachinePointerInfo(Global, 0), Align,
6349                         MachineMemOperand::MOVolatile);
6350     }
6351     if (TLI.useStackGuardXorFP())
6352       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6353     DAG.setRoot(Chain);
6354     setValue(&I, Res);
6355     return;
6356   }
6357   case Intrinsic::stackprotector: {
6358     // Emit code into the DAG to store the stack guard onto the stack.
6359     MachineFunction &MF = DAG.getMachineFunction();
6360     MachineFrameInfo &MFI = MF.getFrameInfo();
6361     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6362     SDValue Src, Chain = getRoot();
6363 
6364     if (TLI.useLoadStackGuardNode())
6365       Src = getLoadStackGuard(DAG, sdl, Chain);
6366     else
6367       Src = getValue(I.getArgOperand(0));   // The guard's value.
6368 
6369     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6370 
6371     int FI = FuncInfo.StaticAllocaMap[Slot];
6372     MFI.setStackProtectorIndex(FI);
6373 
6374     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6375 
6376     // Store the stack protector onto the stack.
6377     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6378                                                  DAG.getMachineFunction(), FI),
6379                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6380     setValue(&I, Res);
6381     DAG.setRoot(Res);
6382     return;
6383   }
6384   case Intrinsic::objectsize: {
6385     // If we don't know by now, we're never going to know.
6386     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6387 
6388     assert(CI && "Non-constant type in __builtin_object_size?");
6389 
6390     SDValue Arg = getValue(I.getCalledValue());
6391     EVT Ty = Arg.getValueType();
6392 
6393     if (CI->isZero())
6394       Res = DAG.getConstant(-1ULL, sdl, Ty);
6395     else
6396       Res = DAG.getConstant(0, sdl, Ty);
6397 
6398     setValue(&I, Res);
6399     return;
6400   }
6401 
6402   case Intrinsic::is_constant:
6403     // If this wasn't constant-folded away by now, then it's not a
6404     // constant.
6405     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6406     return;
6407 
6408   case Intrinsic::annotation:
6409   case Intrinsic::ptr_annotation:
6410   case Intrinsic::launder_invariant_group:
6411   case Intrinsic::strip_invariant_group:
6412     // Drop the intrinsic, but forward the value
6413     setValue(&I, getValue(I.getOperand(0)));
6414     return;
6415   case Intrinsic::assume:
6416   case Intrinsic::var_annotation:
6417   case Intrinsic::sideeffect:
6418     // Discard annotate attributes, assumptions, and artificial side-effects.
6419     return;
6420 
6421   case Intrinsic::codeview_annotation: {
6422     // Emit a label associated with this metadata.
6423     MachineFunction &MF = DAG.getMachineFunction();
6424     MCSymbol *Label =
6425         MF.getMMI().getContext().createTempSymbol("annotation", true);
6426     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6427     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6428     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6429     DAG.setRoot(Res);
6430     return;
6431   }
6432 
6433   case Intrinsic::init_trampoline: {
6434     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6435 
6436     SDValue Ops[6];
6437     Ops[0] = getRoot();
6438     Ops[1] = getValue(I.getArgOperand(0));
6439     Ops[2] = getValue(I.getArgOperand(1));
6440     Ops[3] = getValue(I.getArgOperand(2));
6441     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6442     Ops[5] = DAG.getSrcValue(F);
6443 
6444     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6445 
6446     DAG.setRoot(Res);
6447     return;
6448   }
6449   case Intrinsic::adjust_trampoline:
6450     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6451                              TLI.getPointerTy(DAG.getDataLayout()),
6452                              getValue(I.getArgOperand(0))));
6453     return;
6454   case Intrinsic::gcroot: {
6455     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6456            "only valid in functions with gc specified, enforced by Verifier");
6457     assert(GFI && "implied by previous");
6458     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6459     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6460 
6461     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6462     GFI->addStackRoot(FI->getIndex(), TypeMap);
6463     return;
6464   }
6465   case Intrinsic::gcread:
6466   case Intrinsic::gcwrite:
6467     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6468   case Intrinsic::flt_rounds:
6469     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6470     return;
6471 
6472   case Intrinsic::expect:
6473     // Just replace __builtin_expect(exp, c) with EXP.
6474     setValue(&I, getValue(I.getArgOperand(0)));
6475     return;
6476 
6477   case Intrinsic::debugtrap:
6478   case Intrinsic::trap: {
6479     StringRef TrapFuncName =
6480         I.getAttributes()
6481             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6482             .getValueAsString();
6483     if (TrapFuncName.empty()) {
6484       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6485         ISD::TRAP : ISD::DEBUGTRAP;
6486       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6487       return;
6488     }
6489     TargetLowering::ArgListTy Args;
6490 
6491     TargetLowering::CallLoweringInfo CLI(DAG);
6492     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6493         CallingConv::C, I.getType(),
6494         DAG.getExternalSymbol(TrapFuncName.data(),
6495                               TLI.getPointerTy(DAG.getDataLayout())),
6496         std::move(Args));
6497 
6498     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6499     DAG.setRoot(Result.second);
6500     return;
6501   }
6502 
6503   case Intrinsic::uadd_with_overflow:
6504   case Intrinsic::sadd_with_overflow:
6505   case Intrinsic::usub_with_overflow:
6506   case Intrinsic::ssub_with_overflow:
6507   case Intrinsic::umul_with_overflow:
6508   case Intrinsic::smul_with_overflow: {
6509     ISD::NodeType Op;
6510     switch (Intrinsic) {
6511     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6512     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6513     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6514     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6515     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6516     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6517     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6518     }
6519     SDValue Op1 = getValue(I.getArgOperand(0));
6520     SDValue Op2 = getValue(I.getArgOperand(1));
6521 
6522     EVT ResultVT = Op1.getValueType();
6523     EVT OverflowVT = MVT::i1;
6524     if (ResultVT.isVector())
6525       OverflowVT = EVT::getVectorVT(
6526           *Context, OverflowVT, ResultVT.getVectorNumElements());
6527 
6528     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6529     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6530     return;
6531   }
6532   case Intrinsic::prefetch: {
6533     SDValue Ops[5];
6534     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6535     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6536     Ops[0] = DAG.getRoot();
6537     Ops[1] = getValue(I.getArgOperand(0));
6538     Ops[2] = getValue(I.getArgOperand(1));
6539     Ops[3] = getValue(I.getArgOperand(2));
6540     Ops[4] = getValue(I.getArgOperand(3));
6541     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6542                                              DAG.getVTList(MVT::Other), Ops,
6543                                              EVT::getIntegerVT(*Context, 8),
6544                                              MachinePointerInfo(I.getArgOperand(0)),
6545                                              0, /* align */
6546                                              Flags);
6547 
6548     // Chain the prefetch in parallell with any pending loads, to stay out of
6549     // the way of later optimizations.
6550     PendingLoads.push_back(Result);
6551     Result = getRoot();
6552     DAG.setRoot(Result);
6553     return;
6554   }
6555   case Intrinsic::lifetime_start:
6556   case Intrinsic::lifetime_end: {
6557     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6558     // Stack coloring is not enabled in O0, discard region information.
6559     if (TM.getOptLevel() == CodeGenOpt::None)
6560       return;
6561 
6562     const int64_t ObjectSize =
6563         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6564     Value *const ObjectPtr = I.getArgOperand(1);
6565     SmallVector<const Value *, 4> Allocas;
6566     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6567 
6568     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6569            E = Allocas.end(); Object != E; ++Object) {
6570       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6571 
6572       // Could not find an Alloca.
6573       if (!LifetimeObject)
6574         continue;
6575 
6576       // First check that the Alloca is static, otherwise it won't have a
6577       // valid frame index.
6578       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6579       if (SI == FuncInfo.StaticAllocaMap.end())
6580         return;
6581 
6582       const int FrameIndex = SI->second;
6583       int64_t Offset;
6584       if (GetPointerBaseWithConstantOffset(
6585               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6586         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6587       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6588                                 Offset);
6589       DAG.setRoot(Res);
6590     }
6591     return;
6592   }
6593   case Intrinsic::invariant_start:
6594     // Discard region information.
6595     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6596     return;
6597   case Intrinsic::invariant_end:
6598     // Discard region information.
6599     return;
6600   case Intrinsic::clear_cache:
6601     /// FunctionName may be null.
6602     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6603       lowerCallToExternalSymbol(I, FunctionName);
6604     return;
6605   case Intrinsic::donothing:
6606     // ignore
6607     return;
6608   case Intrinsic::experimental_stackmap:
6609     visitStackmap(I);
6610     return;
6611   case Intrinsic::experimental_patchpoint_void:
6612   case Intrinsic::experimental_patchpoint_i64:
6613     visitPatchpoint(&I);
6614     return;
6615   case Intrinsic::experimental_gc_statepoint:
6616     LowerStatepoint(ImmutableStatepoint(&I));
6617     return;
6618   case Intrinsic::experimental_gc_result:
6619     visitGCResult(cast<GCResultInst>(I));
6620     return;
6621   case Intrinsic::experimental_gc_relocate:
6622     visitGCRelocate(cast<GCRelocateInst>(I));
6623     return;
6624   case Intrinsic::instrprof_increment:
6625     llvm_unreachable("instrprof failed to lower an increment");
6626   case Intrinsic::instrprof_value_profile:
6627     llvm_unreachable("instrprof failed to lower a value profiling call");
6628   case Intrinsic::localescape: {
6629     MachineFunction &MF = DAG.getMachineFunction();
6630     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6631 
6632     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6633     // is the same on all targets.
6634     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6635       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6636       if (isa<ConstantPointerNull>(Arg))
6637         continue; // Skip null pointers. They represent a hole in index space.
6638       AllocaInst *Slot = cast<AllocaInst>(Arg);
6639       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6640              "can only escape static allocas");
6641       int FI = FuncInfo.StaticAllocaMap[Slot];
6642       MCSymbol *FrameAllocSym =
6643           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6644               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6645       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6646               TII->get(TargetOpcode::LOCAL_ESCAPE))
6647           .addSym(FrameAllocSym)
6648           .addFrameIndex(FI);
6649     }
6650 
6651     return;
6652   }
6653 
6654   case Intrinsic::localrecover: {
6655     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6656     MachineFunction &MF = DAG.getMachineFunction();
6657     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6658 
6659     // Get the symbol that defines the frame offset.
6660     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6661     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6662     unsigned IdxVal =
6663         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6664     MCSymbol *FrameAllocSym =
6665         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6666             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6667 
6668     // Create a MCSymbol for the label to avoid any target lowering
6669     // that would make this PC relative.
6670     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6671     SDValue OffsetVal =
6672         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6673 
6674     // Add the offset to the FP.
6675     Value *FP = I.getArgOperand(1);
6676     SDValue FPVal = getValue(FP);
6677     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6678     setValue(&I, Add);
6679 
6680     return;
6681   }
6682 
6683   case Intrinsic::eh_exceptionpointer:
6684   case Intrinsic::eh_exceptioncode: {
6685     // Get the exception pointer vreg, copy from it, and resize it to fit.
6686     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6687     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6688     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6689     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6690     SDValue N =
6691         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6692     if (Intrinsic == Intrinsic::eh_exceptioncode)
6693       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6694     setValue(&I, N);
6695     return;
6696   }
6697   case Intrinsic::xray_customevent: {
6698     // Here we want to make sure that the intrinsic behaves as if it has a
6699     // specific calling convention, and only for x86_64.
6700     // FIXME: Support other platforms later.
6701     const auto &Triple = DAG.getTarget().getTargetTriple();
6702     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6703       return;
6704 
6705     SDLoc DL = getCurSDLoc();
6706     SmallVector<SDValue, 8> Ops;
6707 
6708     // We want to say that we always want the arguments in registers.
6709     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6710     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6711     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6712     SDValue Chain = getRoot();
6713     Ops.push_back(LogEntryVal);
6714     Ops.push_back(StrSizeVal);
6715     Ops.push_back(Chain);
6716 
6717     // We need to enforce the calling convention for the callsite, so that
6718     // argument ordering is enforced correctly, and that register allocation can
6719     // see that some registers may be assumed clobbered and have to preserve
6720     // them across calls to the intrinsic.
6721     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6722                                            DL, NodeTys, Ops);
6723     SDValue patchableNode = SDValue(MN, 0);
6724     DAG.setRoot(patchableNode);
6725     setValue(&I, patchableNode);
6726     return;
6727   }
6728   case Intrinsic::xray_typedevent: {
6729     // Here we want to make sure that the intrinsic behaves as if it has a
6730     // specific calling convention, and only for x86_64.
6731     // FIXME: Support other platforms later.
6732     const auto &Triple = DAG.getTarget().getTargetTriple();
6733     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6734       return;
6735 
6736     SDLoc DL = getCurSDLoc();
6737     SmallVector<SDValue, 8> Ops;
6738 
6739     // We want to say that we always want the arguments in registers.
6740     // It's unclear to me how manipulating the selection DAG here forces callers
6741     // to provide arguments in registers instead of on the stack.
6742     SDValue LogTypeId = getValue(I.getArgOperand(0));
6743     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6744     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6745     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6746     SDValue Chain = getRoot();
6747     Ops.push_back(LogTypeId);
6748     Ops.push_back(LogEntryVal);
6749     Ops.push_back(StrSizeVal);
6750     Ops.push_back(Chain);
6751 
6752     // We need to enforce the calling convention for the callsite, so that
6753     // argument ordering is enforced correctly, and that register allocation can
6754     // see that some registers may be assumed clobbered and have to preserve
6755     // them across calls to the intrinsic.
6756     MachineSDNode *MN = DAG.getMachineNode(
6757         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6758     SDValue patchableNode = SDValue(MN, 0);
6759     DAG.setRoot(patchableNode);
6760     setValue(&I, patchableNode);
6761     return;
6762   }
6763   case Intrinsic::experimental_deoptimize:
6764     LowerDeoptimizeCall(&I);
6765     return;
6766 
6767   case Intrinsic::experimental_vector_reduce_fadd:
6768   case Intrinsic::experimental_vector_reduce_fmul:
6769   case Intrinsic::experimental_vector_reduce_add:
6770   case Intrinsic::experimental_vector_reduce_mul:
6771   case Intrinsic::experimental_vector_reduce_and:
6772   case Intrinsic::experimental_vector_reduce_or:
6773   case Intrinsic::experimental_vector_reduce_xor:
6774   case Intrinsic::experimental_vector_reduce_smax:
6775   case Intrinsic::experimental_vector_reduce_smin:
6776   case Intrinsic::experimental_vector_reduce_umax:
6777   case Intrinsic::experimental_vector_reduce_umin:
6778   case Intrinsic::experimental_vector_reduce_fmax:
6779   case Intrinsic::experimental_vector_reduce_fmin:
6780     visitVectorReduce(I, Intrinsic);
6781     return;
6782 
6783   case Intrinsic::icall_branch_funnel: {
6784     SmallVector<SDValue, 16> Ops;
6785     Ops.push_back(DAG.getRoot());
6786     Ops.push_back(getValue(I.getArgOperand(0)));
6787 
6788     int64_t Offset;
6789     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6790         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6791     if (!Base)
6792       report_fatal_error(
6793           "llvm.icall.branch.funnel operand must be a GlobalValue");
6794     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6795 
6796     struct BranchFunnelTarget {
6797       int64_t Offset;
6798       SDValue Target;
6799     };
6800     SmallVector<BranchFunnelTarget, 8> Targets;
6801 
6802     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6803       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6804           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6805       if (ElemBase != Base)
6806         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6807                            "to the same GlobalValue");
6808 
6809       SDValue Val = getValue(I.getArgOperand(Op + 1));
6810       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6811       if (!GA)
6812         report_fatal_error(
6813             "llvm.icall.branch.funnel operand must be a GlobalValue");
6814       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6815                                      GA->getGlobal(), getCurSDLoc(),
6816                                      Val.getValueType(), GA->getOffset())});
6817     }
6818     llvm::sort(Targets,
6819                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6820                  return T1.Offset < T2.Offset;
6821                });
6822 
6823     for (auto &T : Targets) {
6824       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6825       Ops.push_back(T.Target);
6826     }
6827 
6828     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6829                                  getCurSDLoc(), MVT::Other, Ops),
6830               0);
6831     DAG.setRoot(N);
6832     setValue(&I, N);
6833     HasTailCall = true;
6834     return;
6835   }
6836 
6837   case Intrinsic::wasm_landingpad_index:
6838     // Information this intrinsic contained has been transferred to
6839     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6840     // delete it now.
6841     return;
6842   }
6843 }
6844 
6845 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6846     const ConstrainedFPIntrinsic &FPI) {
6847   SDLoc sdl = getCurSDLoc();
6848   unsigned Opcode;
6849   switch (FPI.getIntrinsicID()) {
6850   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6851   case Intrinsic::experimental_constrained_fadd:
6852     Opcode = ISD::STRICT_FADD;
6853     break;
6854   case Intrinsic::experimental_constrained_fsub:
6855     Opcode = ISD::STRICT_FSUB;
6856     break;
6857   case Intrinsic::experimental_constrained_fmul:
6858     Opcode = ISD::STRICT_FMUL;
6859     break;
6860   case Intrinsic::experimental_constrained_fdiv:
6861     Opcode = ISD::STRICT_FDIV;
6862     break;
6863   case Intrinsic::experimental_constrained_frem:
6864     Opcode = ISD::STRICT_FREM;
6865     break;
6866   case Intrinsic::experimental_constrained_fma:
6867     Opcode = ISD::STRICT_FMA;
6868     break;
6869   case Intrinsic::experimental_constrained_fptrunc:
6870     Opcode = ISD::STRICT_FP_ROUND;
6871     break;
6872   case Intrinsic::experimental_constrained_fpext:
6873     Opcode = ISD::STRICT_FP_EXTEND;
6874     break;
6875   case Intrinsic::experimental_constrained_sqrt:
6876     Opcode = ISD::STRICT_FSQRT;
6877     break;
6878   case Intrinsic::experimental_constrained_pow:
6879     Opcode = ISD::STRICT_FPOW;
6880     break;
6881   case Intrinsic::experimental_constrained_powi:
6882     Opcode = ISD::STRICT_FPOWI;
6883     break;
6884   case Intrinsic::experimental_constrained_sin:
6885     Opcode = ISD::STRICT_FSIN;
6886     break;
6887   case Intrinsic::experimental_constrained_cos:
6888     Opcode = ISD::STRICT_FCOS;
6889     break;
6890   case Intrinsic::experimental_constrained_exp:
6891     Opcode = ISD::STRICT_FEXP;
6892     break;
6893   case Intrinsic::experimental_constrained_exp2:
6894     Opcode = ISD::STRICT_FEXP2;
6895     break;
6896   case Intrinsic::experimental_constrained_log:
6897     Opcode = ISD::STRICT_FLOG;
6898     break;
6899   case Intrinsic::experimental_constrained_log10:
6900     Opcode = ISD::STRICT_FLOG10;
6901     break;
6902   case Intrinsic::experimental_constrained_log2:
6903     Opcode = ISD::STRICT_FLOG2;
6904     break;
6905   case Intrinsic::experimental_constrained_rint:
6906     Opcode = ISD::STRICT_FRINT;
6907     break;
6908   case Intrinsic::experimental_constrained_nearbyint:
6909     Opcode = ISD::STRICT_FNEARBYINT;
6910     break;
6911   case Intrinsic::experimental_constrained_maxnum:
6912     Opcode = ISD::STRICT_FMAXNUM;
6913     break;
6914   case Intrinsic::experimental_constrained_minnum:
6915     Opcode = ISD::STRICT_FMINNUM;
6916     break;
6917   case Intrinsic::experimental_constrained_ceil:
6918     Opcode = ISD::STRICT_FCEIL;
6919     break;
6920   case Intrinsic::experimental_constrained_floor:
6921     Opcode = ISD::STRICT_FFLOOR;
6922     break;
6923   case Intrinsic::experimental_constrained_round:
6924     Opcode = ISD::STRICT_FROUND;
6925     break;
6926   case Intrinsic::experimental_constrained_trunc:
6927     Opcode = ISD::STRICT_FTRUNC;
6928     break;
6929   }
6930   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6931   SDValue Chain = getRoot();
6932   SmallVector<EVT, 4> ValueVTs;
6933   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6934   ValueVTs.push_back(MVT::Other); // Out chain
6935 
6936   SDVTList VTs = DAG.getVTList(ValueVTs);
6937   SDValue Result;
6938   if (Opcode == ISD::STRICT_FP_ROUND)
6939     Result = DAG.getNode(Opcode, sdl, VTs,
6940                           { Chain, getValue(FPI.getArgOperand(0)),
6941                                DAG.getTargetConstant(0, sdl,
6942                                TLI.getPointerTy(DAG.getDataLayout())) });
6943   else if (FPI.isUnaryOp())
6944     Result = DAG.getNode(Opcode, sdl, VTs,
6945                          { Chain, getValue(FPI.getArgOperand(0)) });
6946   else if (FPI.isTernaryOp())
6947     Result = DAG.getNode(Opcode, sdl, VTs,
6948                          { Chain, getValue(FPI.getArgOperand(0)),
6949                                   getValue(FPI.getArgOperand(1)),
6950                                   getValue(FPI.getArgOperand(2)) });
6951   else
6952     Result = DAG.getNode(Opcode, sdl, VTs,
6953                          { Chain, getValue(FPI.getArgOperand(0)),
6954                            getValue(FPI.getArgOperand(1))  });
6955 
6956   assert(Result.getNode()->getNumValues() == 2);
6957   SDValue OutChain = Result.getValue(1);
6958   DAG.setRoot(OutChain);
6959   SDValue FPResult = Result.getValue(0);
6960   setValue(&FPI, FPResult);
6961 }
6962 
6963 std::pair<SDValue, SDValue>
6964 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6965                                     const BasicBlock *EHPadBB) {
6966   MachineFunction &MF = DAG.getMachineFunction();
6967   MachineModuleInfo &MMI = MF.getMMI();
6968   MCSymbol *BeginLabel = nullptr;
6969 
6970   if (EHPadBB) {
6971     // Insert a label before the invoke call to mark the try range.  This can be
6972     // used to detect deletion of the invoke via the MachineModuleInfo.
6973     BeginLabel = MMI.getContext().createTempSymbol();
6974 
6975     // For SjLj, keep track of which landing pads go with which invokes
6976     // so as to maintain the ordering of pads in the LSDA.
6977     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6978     if (CallSiteIndex) {
6979       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6980       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6981 
6982       // Now that the call site is handled, stop tracking it.
6983       MMI.setCurrentCallSite(0);
6984     }
6985 
6986     // Both PendingLoads and PendingExports must be flushed here;
6987     // this call might not return.
6988     (void)getRoot();
6989     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6990 
6991     CLI.setChain(getRoot());
6992   }
6993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6994   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6995 
6996   assert((CLI.IsTailCall || Result.second.getNode()) &&
6997          "Non-null chain expected with non-tail call!");
6998   assert((Result.second.getNode() || !Result.first.getNode()) &&
6999          "Null value expected with tail call!");
7000 
7001   if (!Result.second.getNode()) {
7002     // As a special case, a null chain means that a tail call has been emitted
7003     // and the DAG root is already updated.
7004     HasTailCall = true;
7005 
7006     // Since there's no actual continuation from this block, nothing can be
7007     // relying on us setting vregs for them.
7008     PendingExports.clear();
7009   } else {
7010     DAG.setRoot(Result.second);
7011   }
7012 
7013   if (EHPadBB) {
7014     // Insert a label at the end of the invoke call to mark the try range.  This
7015     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7016     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7017     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7018 
7019     // Inform MachineModuleInfo of range.
7020     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7021     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7022     // actually use outlined funclets and their LSDA info style.
7023     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7024       assert(CLI.CS);
7025       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7026       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7027                                 BeginLabel, EndLabel);
7028     } else if (!isScopedEHPersonality(Pers)) {
7029       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7030     }
7031   }
7032 
7033   return Result;
7034 }
7035 
7036 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7037                                       bool isTailCall,
7038                                       const BasicBlock *EHPadBB) {
7039   auto &DL = DAG.getDataLayout();
7040   FunctionType *FTy = CS.getFunctionType();
7041   Type *RetTy = CS.getType();
7042 
7043   TargetLowering::ArgListTy Args;
7044   Args.reserve(CS.arg_size());
7045 
7046   const Value *SwiftErrorVal = nullptr;
7047   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7048 
7049   // We can't tail call inside a function with a swifterror argument. Lowering
7050   // does not support this yet. It would have to move into the swifterror
7051   // register before the call.
7052   auto *Caller = CS.getInstruction()->getParent()->getParent();
7053   if (TLI.supportSwiftError() &&
7054       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7055     isTailCall = false;
7056 
7057   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7058        i != e; ++i) {
7059     TargetLowering::ArgListEntry Entry;
7060     const Value *V = *i;
7061 
7062     // Skip empty types
7063     if (V->getType()->isEmptyTy())
7064       continue;
7065 
7066     SDValue ArgNode = getValue(V);
7067     Entry.Node = ArgNode; Entry.Ty = V->getType();
7068 
7069     Entry.setAttributes(&CS, i - CS.arg_begin());
7070 
7071     // Use swifterror virtual register as input to the call.
7072     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7073       SwiftErrorVal = V;
7074       // We find the virtual register for the actual swifterror argument.
7075       // Instead of using the Value, we use the virtual register instead.
7076       Entry.Node = DAG.getRegister(FuncInfo
7077                                        .getOrCreateSwiftErrorVRegUseAt(
7078                                            CS.getInstruction(), FuncInfo.MBB, V)
7079                                        .first,
7080                                    EVT(TLI.getPointerTy(DL)));
7081     }
7082 
7083     Args.push_back(Entry);
7084 
7085     // If we have an explicit sret argument that is an Instruction, (i.e., it
7086     // might point to function-local memory), we can't meaningfully tail-call.
7087     if (Entry.IsSRet && isa<Instruction>(V))
7088       isTailCall = false;
7089   }
7090 
7091   // Check if target-independent constraints permit a tail call here.
7092   // Target-dependent constraints are checked within TLI->LowerCallTo.
7093   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7094     isTailCall = false;
7095 
7096   // Disable tail calls if there is an swifterror argument. Targets have not
7097   // been updated to support tail calls.
7098   if (TLI.supportSwiftError() && SwiftErrorVal)
7099     isTailCall = false;
7100 
7101   TargetLowering::CallLoweringInfo CLI(DAG);
7102   CLI.setDebugLoc(getCurSDLoc())
7103       .setChain(getRoot())
7104       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7105       .setTailCall(isTailCall)
7106       .setConvergent(CS.isConvergent());
7107   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7108 
7109   if (Result.first.getNode()) {
7110     const Instruction *Inst = CS.getInstruction();
7111     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7112     setValue(Inst, Result.first);
7113   }
7114 
7115   // The last element of CLI.InVals has the SDValue for swifterror return.
7116   // Here we copy it to a virtual register and update SwiftErrorMap for
7117   // book-keeping.
7118   if (SwiftErrorVal && TLI.supportSwiftError()) {
7119     // Get the last element of InVals.
7120     SDValue Src = CLI.InVals.back();
7121     unsigned VReg; bool CreatedVReg;
7122     std::tie(VReg, CreatedVReg) =
7123         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
7124     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7125     // We update the virtual register for the actual swifterror argument.
7126     if (CreatedVReg)
7127       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
7128     DAG.setRoot(CopyNode);
7129   }
7130 }
7131 
7132 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7133                              SelectionDAGBuilder &Builder) {
7134   // Check to see if this load can be trivially constant folded, e.g. if the
7135   // input is from a string literal.
7136   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7137     // Cast pointer to the type we really want to load.
7138     Type *LoadTy =
7139         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7140     if (LoadVT.isVector())
7141       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7142 
7143     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7144                                          PointerType::getUnqual(LoadTy));
7145 
7146     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7147             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7148       return Builder.getValue(LoadCst);
7149   }
7150 
7151   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7152   // still constant memory, the input chain can be the entry node.
7153   SDValue Root;
7154   bool ConstantMemory = false;
7155 
7156   // Do not serialize (non-volatile) loads of constant memory with anything.
7157   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7158     Root = Builder.DAG.getEntryNode();
7159     ConstantMemory = true;
7160   } else {
7161     // Do not serialize non-volatile loads against each other.
7162     Root = Builder.DAG.getRoot();
7163   }
7164 
7165   SDValue Ptr = Builder.getValue(PtrVal);
7166   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7167                                         Ptr, MachinePointerInfo(PtrVal),
7168                                         /* Alignment = */ 1);
7169 
7170   if (!ConstantMemory)
7171     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7172   return LoadVal;
7173 }
7174 
7175 /// Record the value for an instruction that produces an integer result,
7176 /// converting the type where necessary.
7177 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7178                                                   SDValue Value,
7179                                                   bool IsSigned) {
7180   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7181                                                     I.getType(), true);
7182   if (IsSigned)
7183     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7184   else
7185     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7186   setValue(&I, Value);
7187 }
7188 
7189 /// See if we can lower a memcmp call into an optimized form. If so, return
7190 /// true and lower it. Otherwise return false, and it will be lowered like a
7191 /// normal call.
7192 /// The caller already checked that \p I calls the appropriate LibFunc with a
7193 /// correct prototype.
7194 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7195   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7196   const Value *Size = I.getArgOperand(2);
7197   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7198   if (CSize && CSize->getZExtValue() == 0) {
7199     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7200                                                           I.getType(), true);
7201     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7202     return true;
7203   }
7204 
7205   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7206   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7207       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7208       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7209   if (Res.first.getNode()) {
7210     processIntegerCallValue(I, Res.first, true);
7211     PendingLoads.push_back(Res.second);
7212     return true;
7213   }
7214 
7215   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7216   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7217   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7218     return false;
7219 
7220   // If the target has a fast compare for the given size, it will return a
7221   // preferred load type for that size. Require that the load VT is legal and
7222   // that the target supports unaligned loads of that type. Otherwise, return
7223   // INVALID.
7224   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7225     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7226     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7227     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7228       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7229       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7230       // TODO: Check alignment of src and dest ptrs.
7231       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7232       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7233       if (!TLI.isTypeLegal(LVT) ||
7234           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7235           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7236         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7237     }
7238 
7239     return LVT;
7240   };
7241 
7242   // This turns into unaligned loads. We only do this if the target natively
7243   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7244   // we'll only produce a small number of byte loads.
7245   MVT LoadVT;
7246   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7247   switch (NumBitsToCompare) {
7248   default:
7249     return false;
7250   case 16:
7251     LoadVT = MVT::i16;
7252     break;
7253   case 32:
7254     LoadVT = MVT::i32;
7255     break;
7256   case 64:
7257   case 128:
7258   case 256:
7259     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7260     break;
7261   }
7262 
7263   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7264     return false;
7265 
7266   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7267   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7268 
7269   // Bitcast to a wide integer type if the loads are vectors.
7270   if (LoadVT.isVector()) {
7271     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7272     LoadL = DAG.getBitcast(CmpVT, LoadL);
7273     LoadR = DAG.getBitcast(CmpVT, LoadR);
7274   }
7275 
7276   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7277   processIntegerCallValue(I, Cmp, false);
7278   return true;
7279 }
7280 
7281 /// See if we can lower a memchr call into an optimized form. If so, return
7282 /// true and lower it. Otherwise return false, and it will be lowered like a
7283 /// normal call.
7284 /// The caller already checked that \p I calls the appropriate LibFunc with a
7285 /// correct prototype.
7286 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7287   const Value *Src = I.getArgOperand(0);
7288   const Value *Char = I.getArgOperand(1);
7289   const Value *Length = I.getArgOperand(2);
7290 
7291   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7292   std::pair<SDValue, SDValue> Res =
7293     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7294                                 getValue(Src), getValue(Char), getValue(Length),
7295                                 MachinePointerInfo(Src));
7296   if (Res.first.getNode()) {
7297     setValue(&I, Res.first);
7298     PendingLoads.push_back(Res.second);
7299     return true;
7300   }
7301 
7302   return false;
7303 }
7304 
7305 /// See if we can lower a mempcpy call into an optimized form. If so, return
7306 /// true and lower it. Otherwise return false, and it will be lowered like a
7307 /// normal call.
7308 /// The caller already checked that \p I calls the appropriate LibFunc with a
7309 /// correct prototype.
7310 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7311   SDValue Dst = getValue(I.getArgOperand(0));
7312   SDValue Src = getValue(I.getArgOperand(1));
7313   SDValue Size = getValue(I.getArgOperand(2));
7314 
7315   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7316   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7317   unsigned Align = std::min(DstAlign, SrcAlign);
7318   if (Align == 0) // Alignment of one or both could not be inferred.
7319     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7320 
7321   bool isVol = false;
7322   SDLoc sdl = getCurSDLoc();
7323 
7324   // In the mempcpy context we need to pass in a false value for isTailCall
7325   // because the return pointer needs to be adjusted by the size of
7326   // the copied memory.
7327   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7328                              false, /*isTailCall=*/false,
7329                              MachinePointerInfo(I.getArgOperand(0)),
7330                              MachinePointerInfo(I.getArgOperand(1)));
7331   assert(MC.getNode() != nullptr &&
7332          "** memcpy should not be lowered as TailCall in mempcpy context **");
7333   DAG.setRoot(MC);
7334 
7335   // Check if Size needs to be truncated or extended.
7336   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7337 
7338   // Adjust return pointer to point just past the last dst byte.
7339   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7340                                     Dst, Size);
7341   setValue(&I, DstPlusSize);
7342   return true;
7343 }
7344 
7345 /// See if we can lower a strcpy call into an optimized form.  If so, return
7346 /// true and lower it, otherwise return false and it will be lowered like a
7347 /// normal call.
7348 /// The caller already checked that \p I calls the appropriate LibFunc with a
7349 /// correct prototype.
7350 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7351   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7352 
7353   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7354   std::pair<SDValue, SDValue> Res =
7355     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7356                                 getValue(Arg0), getValue(Arg1),
7357                                 MachinePointerInfo(Arg0),
7358                                 MachinePointerInfo(Arg1), isStpcpy);
7359   if (Res.first.getNode()) {
7360     setValue(&I, Res.first);
7361     DAG.setRoot(Res.second);
7362     return true;
7363   }
7364 
7365   return false;
7366 }
7367 
7368 /// See if we can lower a strcmp call into an optimized form.  If so, return
7369 /// true and lower it, otherwise return false and it will be lowered like a
7370 /// normal call.
7371 /// The caller already checked that \p I calls the appropriate LibFunc with a
7372 /// correct prototype.
7373 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7374   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7375 
7376   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7377   std::pair<SDValue, SDValue> Res =
7378     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7379                                 getValue(Arg0), getValue(Arg1),
7380                                 MachinePointerInfo(Arg0),
7381                                 MachinePointerInfo(Arg1));
7382   if (Res.first.getNode()) {
7383     processIntegerCallValue(I, Res.first, true);
7384     PendingLoads.push_back(Res.second);
7385     return true;
7386   }
7387 
7388   return false;
7389 }
7390 
7391 /// See if we can lower a strlen call into an optimized form.  If so, return
7392 /// true and lower it, otherwise return false and it will be lowered like a
7393 /// normal call.
7394 /// The caller already checked that \p I calls the appropriate LibFunc with a
7395 /// correct prototype.
7396 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7397   const Value *Arg0 = I.getArgOperand(0);
7398 
7399   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7400   std::pair<SDValue, SDValue> Res =
7401     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7402                                 getValue(Arg0), MachinePointerInfo(Arg0));
7403   if (Res.first.getNode()) {
7404     processIntegerCallValue(I, Res.first, false);
7405     PendingLoads.push_back(Res.second);
7406     return true;
7407   }
7408 
7409   return false;
7410 }
7411 
7412 /// See if we can lower a strnlen call into an optimized form.  If so, return
7413 /// true and lower it, otherwise return false and it will be lowered like a
7414 /// normal call.
7415 /// The caller already checked that \p I calls the appropriate LibFunc with a
7416 /// correct prototype.
7417 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7418   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7419 
7420   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7421   std::pair<SDValue, SDValue> Res =
7422     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7423                                  getValue(Arg0), getValue(Arg1),
7424                                  MachinePointerInfo(Arg0));
7425   if (Res.first.getNode()) {
7426     processIntegerCallValue(I, Res.first, false);
7427     PendingLoads.push_back(Res.second);
7428     return true;
7429   }
7430 
7431   return false;
7432 }
7433 
7434 /// See if we can lower a unary floating-point operation into an SDNode with
7435 /// the specified Opcode.  If so, return true and lower it, otherwise return
7436 /// false and it will be lowered like a normal call.
7437 /// The caller already checked that \p I calls the appropriate LibFunc with a
7438 /// correct prototype.
7439 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7440                                               unsigned Opcode) {
7441   // We already checked this call's prototype; verify it doesn't modify errno.
7442   if (!I.onlyReadsMemory())
7443     return false;
7444 
7445   SDValue Tmp = getValue(I.getArgOperand(0));
7446   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7447   return true;
7448 }
7449 
7450 /// See if we can lower a binary floating-point operation into an SDNode with
7451 /// the specified Opcode. If so, return true and lower it. Otherwise return
7452 /// false, and it will be lowered like a normal call.
7453 /// The caller already checked that \p I calls the appropriate LibFunc with a
7454 /// correct prototype.
7455 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7456                                                unsigned Opcode) {
7457   // We already checked this call's prototype; verify it doesn't modify errno.
7458   if (!I.onlyReadsMemory())
7459     return false;
7460 
7461   SDValue Tmp0 = getValue(I.getArgOperand(0));
7462   SDValue Tmp1 = getValue(I.getArgOperand(1));
7463   EVT VT = Tmp0.getValueType();
7464   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7465   return true;
7466 }
7467 
7468 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7469   // Handle inline assembly differently.
7470   if (isa<InlineAsm>(I.getCalledValue())) {
7471     visitInlineAsm(&I);
7472     return;
7473   }
7474 
7475   if (Function *F = I.getCalledFunction()) {
7476     if (F->isDeclaration()) {
7477       // Is this an LLVM intrinsic or a target-specific intrinsic?
7478       unsigned IID = F->getIntrinsicID();
7479       if (!IID)
7480         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7481           IID = II->getIntrinsicID(F);
7482 
7483       if (IID) {
7484         visitIntrinsicCall(I, IID);
7485         return;
7486       }
7487     }
7488 
7489     // Check for well-known libc/libm calls.  If the function is internal, it
7490     // can't be a library call.  Don't do the check if marked as nobuiltin for
7491     // some reason or the call site requires strict floating point semantics.
7492     LibFunc Func;
7493     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7494         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7495         LibInfo->hasOptimizedCodeGen(Func)) {
7496       switch (Func) {
7497       default: break;
7498       case LibFunc_copysign:
7499       case LibFunc_copysignf:
7500       case LibFunc_copysignl:
7501         // We already checked this call's prototype; verify it doesn't modify
7502         // errno.
7503         if (I.onlyReadsMemory()) {
7504           SDValue LHS = getValue(I.getArgOperand(0));
7505           SDValue RHS = getValue(I.getArgOperand(1));
7506           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7507                                    LHS.getValueType(), LHS, RHS));
7508           return;
7509         }
7510         break;
7511       case LibFunc_fabs:
7512       case LibFunc_fabsf:
7513       case LibFunc_fabsl:
7514         if (visitUnaryFloatCall(I, ISD::FABS))
7515           return;
7516         break;
7517       case LibFunc_fmin:
7518       case LibFunc_fminf:
7519       case LibFunc_fminl:
7520         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7521           return;
7522         break;
7523       case LibFunc_fmax:
7524       case LibFunc_fmaxf:
7525       case LibFunc_fmaxl:
7526         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7527           return;
7528         break;
7529       case LibFunc_sin:
7530       case LibFunc_sinf:
7531       case LibFunc_sinl:
7532         if (visitUnaryFloatCall(I, ISD::FSIN))
7533           return;
7534         break;
7535       case LibFunc_cos:
7536       case LibFunc_cosf:
7537       case LibFunc_cosl:
7538         if (visitUnaryFloatCall(I, ISD::FCOS))
7539           return;
7540         break;
7541       case LibFunc_sqrt:
7542       case LibFunc_sqrtf:
7543       case LibFunc_sqrtl:
7544       case LibFunc_sqrt_finite:
7545       case LibFunc_sqrtf_finite:
7546       case LibFunc_sqrtl_finite:
7547         if (visitUnaryFloatCall(I, ISD::FSQRT))
7548           return;
7549         break;
7550       case LibFunc_floor:
7551       case LibFunc_floorf:
7552       case LibFunc_floorl:
7553         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7554           return;
7555         break;
7556       case LibFunc_nearbyint:
7557       case LibFunc_nearbyintf:
7558       case LibFunc_nearbyintl:
7559         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7560           return;
7561         break;
7562       case LibFunc_ceil:
7563       case LibFunc_ceilf:
7564       case LibFunc_ceill:
7565         if (visitUnaryFloatCall(I, ISD::FCEIL))
7566           return;
7567         break;
7568       case LibFunc_rint:
7569       case LibFunc_rintf:
7570       case LibFunc_rintl:
7571         if (visitUnaryFloatCall(I, ISD::FRINT))
7572           return;
7573         break;
7574       case LibFunc_round:
7575       case LibFunc_roundf:
7576       case LibFunc_roundl:
7577         if (visitUnaryFloatCall(I, ISD::FROUND))
7578           return;
7579         break;
7580       case LibFunc_trunc:
7581       case LibFunc_truncf:
7582       case LibFunc_truncl:
7583         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7584           return;
7585         break;
7586       case LibFunc_log2:
7587       case LibFunc_log2f:
7588       case LibFunc_log2l:
7589         if (visitUnaryFloatCall(I, ISD::FLOG2))
7590           return;
7591         break;
7592       case LibFunc_exp2:
7593       case LibFunc_exp2f:
7594       case LibFunc_exp2l:
7595         if (visitUnaryFloatCall(I, ISD::FEXP2))
7596           return;
7597         break;
7598       case LibFunc_memcmp:
7599         if (visitMemCmpCall(I))
7600           return;
7601         break;
7602       case LibFunc_mempcpy:
7603         if (visitMemPCpyCall(I))
7604           return;
7605         break;
7606       case LibFunc_memchr:
7607         if (visitMemChrCall(I))
7608           return;
7609         break;
7610       case LibFunc_strcpy:
7611         if (visitStrCpyCall(I, false))
7612           return;
7613         break;
7614       case LibFunc_stpcpy:
7615         if (visitStrCpyCall(I, true))
7616           return;
7617         break;
7618       case LibFunc_strcmp:
7619         if (visitStrCmpCall(I))
7620           return;
7621         break;
7622       case LibFunc_strlen:
7623         if (visitStrLenCall(I))
7624           return;
7625         break;
7626       case LibFunc_strnlen:
7627         if (visitStrNLenCall(I))
7628           return;
7629         break;
7630       }
7631     }
7632   }
7633 
7634   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7635   // have to do anything here to lower funclet bundles.
7636   assert(!I.hasOperandBundlesOtherThan(
7637              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7638          "Cannot lower calls with arbitrary operand bundles!");
7639 
7640   SDValue Callee = getValue(I.getCalledValue());
7641 
7642   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7643     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7644   else
7645     // Check if we can potentially perform a tail call. More detailed checking
7646     // is be done within LowerCallTo, after more information about the call is
7647     // known.
7648     LowerCallTo(&I, Callee, I.isTailCall());
7649 }
7650 
7651 namespace {
7652 
7653 /// AsmOperandInfo - This contains information for each constraint that we are
7654 /// lowering.
7655 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7656 public:
7657   /// CallOperand - If this is the result output operand or a clobber
7658   /// this is null, otherwise it is the incoming operand to the CallInst.
7659   /// This gets modified as the asm is processed.
7660   SDValue CallOperand;
7661 
7662   /// AssignedRegs - If this is a register or register class operand, this
7663   /// contains the set of register corresponding to the operand.
7664   RegsForValue AssignedRegs;
7665 
7666   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7667     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7668   }
7669 
7670   /// Whether or not this operand accesses memory
7671   bool hasMemory(const TargetLowering &TLI) const {
7672     // Indirect operand accesses access memory.
7673     if (isIndirect)
7674       return true;
7675 
7676     for (const auto &Code : Codes)
7677       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7678         return true;
7679 
7680     return false;
7681   }
7682 
7683   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7684   /// corresponds to.  If there is no Value* for this operand, it returns
7685   /// MVT::Other.
7686   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7687                            const DataLayout &DL) const {
7688     if (!CallOperandVal) return MVT::Other;
7689 
7690     if (isa<BasicBlock>(CallOperandVal))
7691       return TLI.getPointerTy(DL);
7692 
7693     llvm::Type *OpTy = CallOperandVal->getType();
7694 
7695     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7696     // If this is an indirect operand, the operand is a pointer to the
7697     // accessed type.
7698     if (isIndirect) {
7699       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7700       if (!PtrTy)
7701         report_fatal_error("Indirect operand for inline asm not a pointer!");
7702       OpTy = PtrTy->getElementType();
7703     }
7704 
7705     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7706     if (StructType *STy = dyn_cast<StructType>(OpTy))
7707       if (STy->getNumElements() == 1)
7708         OpTy = STy->getElementType(0);
7709 
7710     // If OpTy is not a single value, it may be a struct/union that we
7711     // can tile with integers.
7712     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7713       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7714       switch (BitSize) {
7715       default: break;
7716       case 1:
7717       case 8:
7718       case 16:
7719       case 32:
7720       case 64:
7721       case 128:
7722         OpTy = IntegerType::get(Context, BitSize);
7723         break;
7724       }
7725     }
7726 
7727     return TLI.getValueType(DL, OpTy, true);
7728   }
7729 };
7730 
7731 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7732 
7733 } // end anonymous namespace
7734 
7735 /// Make sure that the output operand \p OpInfo and its corresponding input
7736 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7737 /// out).
7738 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7739                                SDISelAsmOperandInfo &MatchingOpInfo,
7740                                SelectionDAG &DAG) {
7741   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7742     return;
7743 
7744   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7745   const auto &TLI = DAG.getTargetLoweringInfo();
7746 
7747   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7748       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7749                                        OpInfo.ConstraintVT);
7750   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7751       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7752                                        MatchingOpInfo.ConstraintVT);
7753   if ((OpInfo.ConstraintVT.isInteger() !=
7754        MatchingOpInfo.ConstraintVT.isInteger()) ||
7755       (MatchRC.second != InputRC.second)) {
7756     // FIXME: error out in a more elegant fashion
7757     report_fatal_error("Unsupported asm: input constraint"
7758                        " with a matching output constraint of"
7759                        " incompatible type!");
7760   }
7761   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7762 }
7763 
7764 /// Get a direct memory input to behave well as an indirect operand.
7765 /// This may introduce stores, hence the need for a \p Chain.
7766 /// \return The (possibly updated) chain.
7767 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7768                                         SDISelAsmOperandInfo &OpInfo,
7769                                         SelectionDAG &DAG) {
7770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7771 
7772   // If we don't have an indirect input, put it in the constpool if we can,
7773   // otherwise spill it to a stack slot.
7774   // TODO: This isn't quite right. We need to handle these according to
7775   // the addressing mode that the constraint wants. Also, this may take
7776   // an additional register for the computation and we don't want that
7777   // either.
7778 
7779   // If the operand is a float, integer, or vector constant, spill to a
7780   // constant pool entry to get its address.
7781   const Value *OpVal = OpInfo.CallOperandVal;
7782   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7783       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7784     OpInfo.CallOperand = DAG.getConstantPool(
7785         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7786     return Chain;
7787   }
7788 
7789   // Otherwise, create a stack slot and emit a store to it before the asm.
7790   Type *Ty = OpVal->getType();
7791   auto &DL = DAG.getDataLayout();
7792   uint64_t TySize = DL.getTypeAllocSize(Ty);
7793   unsigned Align = DL.getPrefTypeAlignment(Ty);
7794   MachineFunction &MF = DAG.getMachineFunction();
7795   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7796   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7797   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7798                             MachinePointerInfo::getFixedStack(MF, SSFI),
7799                             TLI.getMemValueType(DL, Ty));
7800   OpInfo.CallOperand = StackSlot;
7801 
7802   return Chain;
7803 }
7804 
7805 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7806 /// specified operand.  We prefer to assign virtual registers, to allow the
7807 /// register allocator to handle the assignment process.  However, if the asm
7808 /// uses features that we can't model on machineinstrs, we have SDISel do the
7809 /// allocation.  This produces generally horrible, but correct, code.
7810 ///
7811 ///   OpInfo describes the operand
7812 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7813 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7814                                  SDISelAsmOperandInfo &OpInfo,
7815                                  SDISelAsmOperandInfo &RefOpInfo) {
7816   LLVMContext &Context = *DAG.getContext();
7817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7818 
7819   MachineFunction &MF = DAG.getMachineFunction();
7820   SmallVector<unsigned, 4> Regs;
7821   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7822 
7823   // No work to do for memory operations.
7824   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7825     return;
7826 
7827   // If this is a constraint for a single physreg, or a constraint for a
7828   // register class, find it.
7829   unsigned AssignedReg;
7830   const TargetRegisterClass *RC;
7831   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7832       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7833   // RC is unset only on failure. Return immediately.
7834   if (!RC)
7835     return;
7836 
7837   // Get the actual register value type.  This is important, because the user
7838   // may have asked for (e.g.) the AX register in i32 type.  We need to
7839   // remember that AX is actually i16 to get the right extension.
7840   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7841 
7842   if (OpInfo.ConstraintVT != MVT::Other) {
7843     // If this is an FP operand in an integer register (or visa versa), or more
7844     // generally if the operand value disagrees with the register class we plan
7845     // to stick it in, fix the operand type.
7846     //
7847     // If this is an input value, the bitcast to the new type is done now.
7848     // Bitcast for output value is done at the end of visitInlineAsm().
7849     if ((OpInfo.Type == InlineAsm::isOutput ||
7850          OpInfo.Type == InlineAsm::isInput) &&
7851         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7852       // Try to convert to the first EVT that the reg class contains.  If the
7853       // types are identical size, use a bitcast to convert (e.g. two differing
7854       // vector types).  Note: output bitcast is done at the end of
7855       // visitInlineAsm().
7856       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7857         // Exclude indirect inputs while they are unsupported because the code
7858         // to perform the load is missing and thus OpInfo.CallOperand still
7859         // refers to the input address rather than the pointed-to value.
7860         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7861           OpInfo.CallOperand =
7862               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7863         OpInfo.ConstraintVT = RegVT;
7864         // If the operand is an FP value and we want it in integer registers,
7865         // use the corresponding integer type. This turns an f64 value into
7866         // i64, which can be passed with two i32 values on a 32-bit machine.
7867       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7868         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7869         if (OpInfo.Type == InlineAsm::isInput)
7870           OpInfo.CallOperand =
7871               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7872         OpInfo.ConstraintVT = VT;
7873       }
7874     }
7875   }
7876 
7877   // No need to allocate a matching input constraint since the constraint it's
7878   // matching to has already been allocated.
7879   if (OpInfo.isMatchingInputConstraint())
7880     return;
7881 
7882   EVT ValueVT = OpInfo.ConstraintVT;
7883   if (OpInfo.ConstraintVT == MVT::Other)
7884     ValueVT = RegVT;
7885 
7886   // Initialize NumRegs.
7887   unsigned NumRegs = 1;
7888   if (OpInfo.ConstraintVT != MVT::Other)
7889     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7890 
7891   // If this is a constraint for a specific physical register, like {r17},
7892   // assign it now.
7893 
7894   // If this associated to a specific register, initialize iterator to correct
7895   // place. If virtual, make sure we have enough registers
7896 
7897   // Initialize iterator if necessary
7898   TargetRegisterClass::iterator I = RC->begin();
7899   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7900 
7901   // Do not check for single registers.
7902   if (AssignedReg) {
7903       for (; *I != AssignedReg; ++I)
7904         assert(I != RC->end() && "AssignedReg should be member of RC");
7905   }
7906 
7907   for (; NumRegs; --NumRegs, ++I) {
7908     assert(I != RC->end() && "Ran out of registers to allocate!");
7909     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7910     Regs.push_back(R);
7911   }
7912 
7913   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7914 }
7915 
7916 static unsigned
7917 findMatchingInlineAsmOperand(unsigned OperandNo,
7918                              const std::vector<SDValue> &AsmNodeOperands) {
7919   // Scan until we find the definition we already emitted of this operand.
7920   unsigned CurOp = InlineAsm::Op_FirstOperand;
7921   for (; OperandNo; --OperandNo) {
7922     // Advance to the next operand.
7923     unsigned OpFlag =
7924         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7925     assert((InlineAsm::isRegDefKind(OpFlag) ||
7926             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7927             InlineAsm::isMemKind(OpFlag)) &&
7928            "Skipped past definitions?");
7929     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7930   }
7931   return CurOp;
7932 }
7933 
7934 namespace {
7935 
7936 class ExtraFlags {
7937   unsigned Flags = 0;
7938 
7939 public:
7940   explicit ExtraFlags(ImmutableCallSite CS) {
7941     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7942     if (IA->hasSideEffects())
7943       Flags |= InlineAsm::Extra_HasSideEffects;
7944     if (IA->isAlignStack())
7945       Flags |= InlineAsm::Extra_IsAlignStack;
7946     if (CS.isConvergent())
7947       Flags |= InlineAsm::Extra_IsConvergent;
7948     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7949   }
7950 
7951   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7952     // Ideally, we would only check against memory constraints.  However, the
7953     // meaning of an Other constraint can be target-specific and we can't easily
7954     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7955     // for Other constraints as well.
7956     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7957         OpInfo.ConstraintType == TargetLowering::C_Other) {
7958       if (OpInfo.Type == InlineAsm::isInput)
7959         Flags |= InlineAsm::Extra_MayLoad;
7960       else if (OpInfo.Type == InlineAsm::isOutput)
7961         Flags |= InlineAsm::Extra_MayStore;
7962       else if (OpInfo.Type == InlineAsm::isClobber)
7963         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7964     }
7965   }
7966 
7967   unsigned get() const { return Flags; }
7968 };
7969 
7970 } // end anonymous namespace
7971 
7972 /// visitInlineAsm - Handle a call to an InlineAsm object.
7973 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7974   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7975 
7976   /// ConstraintOperands - Information about all of the constraints.
7977   SDISelAsmOperandInfoVector ConstraintOperands;
7978 
7979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7980   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7981       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7982 
7983   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7984   // AsmDialect, MayLoad, MayStore).
7985   bool HasSideEffect = IA->hasSideEffects();
7986   ExtraFlags ExtraInfo(CS);
7987 
7988   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7989   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7990   for (auto &T : TargetConstraints) {
7991     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7992     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7993 
7994     // Compute the value type for each operand.
7995     if (OpInfo.Type == InlineAsm::isInput ||
7996         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7997       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7998 
7999       // Process the call argument. BasicBlocks are labels, currently appearing
8000       // only in asm's.
8001       const Instruction *I = CS.getInstruction();
8002       if (isa<CallBrInst>(I) &&
8003           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8004                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8005         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8006         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8007         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8008       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8009         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8010       } else {
8011         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8012       }
8013 
8014       OpInfo.ConstraintVT =
8015           OpInfo
8016               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8017               .getSimpleVT();
8018     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8019       // The return value of the call is this value.  As such, there is no
8020       // corresponding argument.
8021       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8022       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8023         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8024             DAG.getDataLayout(), STy->getElementType(ResNo));
8025       } else {
8026         assert(ResNo == 0 && "Asm only has one result!");
8027         OpInfo.ConstraintVT =
8028             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8029       }
8030       ++ResNo;
8031     } else {
8032       OpInfo.ConstraintVT = MVT::Other;
8033     }
8034 
8035     if (!HasSideEffect)
8036       HasSideEffect = OpInfo.hasMemory(TLI);
8037 
8038     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8039     // FIXME: Could we compute this on OpInfo rather than T?
8040 
8041     // Compute the constraint code and ConstraintType to use.
8042     TLI.ComputeConstraintToUse(T, SDValue());
8043 
8044     ExtraInfo.update(T);
8045   }
8046 
8047 
8048   // We won't need to flush pending loads if this asm doesn't touch
8049   // memory and is nonvolatile.
8050   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8051 
8052   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8053   if (IsCallBr) {
8054     // If this is a callbr we need to flush pending exports since inlineasm_br
8055     // is a terminator. We need to do this before nodes are glued to
8056     // the inlineasm_br node.
8057     Chain = getControlRoot();
8058   }
8059 
8060   // Second pass over the constraints: compute which constraint option to use.
8061   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8062     // If this is an output operand with a matching input operand, look up the
8063     // matching input. If their types mismatch, e.g. one is an integer, the
8064     // other is floating point, or their sizes are different, flag it as an
8065     // error.
8066     if (OpInfo.hasMatchingInput()) {
8067       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8068       patchMatchingInput(OpInfo, Input, DAG);
8069     }
8070 
8071     // Compute the constraint code and ConstraintType to use.
8072     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8073 
8074     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8075         OpInfo.Type == InlineAsm::isClobber)
8076       continue;
8077 
8078     // If this is a memory input, and if the operand is not indirect, do what we
8079     // need to provide an address for the memory input.
8080     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8081         !OpInfo.isIndirect) {
8082       assert((OpInfo.isMultipleAlternative ||
8083               (OpInfo.Type == InlineAsm::isInput)) &&
8084              "Can only indirectify direct input operands!");
8085 
8086       // Memory operands really want the address of the value.
8087       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8088 
8089       // There is no longer a Value* corresponding to this operand.
8090       OpInfo.CallOperandVal = nullptr;
8091 
8092       // It is now an indirect operand.
8093       OpInfo.isIndirect = true;
8094     }
8095 
8096   }
8097 
8098   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8099   std::vector<SDValue> AsmNodeOperands;
8100   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8101   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8102       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8103 
8104   // If we have a !srcloc metadata node associated with it, we want to attach
8105   // this to the ultimately generated inline asm machineinstr.  To do this, we
8106   // pass in the third operand as this (potentially null) inline asm MDNode.
8107   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8108   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8109 
8110   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8111   // bits as operand 3.
8112   AsmNodeOperands.push_back(DAG.getTargetConstant(
8113       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8114 
8115   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8116   // this, assign virtual and physical registers for inputs and otput.
8117   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8118     // Assign Registers.
8119     SDISelAsmOperandInfo &RefOpInfo =
8120         OpInfo.isMatchingInputConstraint()
8121             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8122             : OpInfo;
8123     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8124 
8125     switch (OpInfo.Type) {
8126     case InlineAsm::isOutput:
8127       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8128           (OpInfo.ConstraintType == TargetLowering::C_Other &&
8129            OpInfo.isIndirect)) {
8130         unsigned ConstraintID =
8131             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8132         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8133                "Failed to convert memory constraint code to constraint id.");
8134 
8135         // Add information to the INLINEASM node to know about this output.
8136         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8137         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8138         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8139                                                         MVT::i32));
8140         AsmNodeOperands.push_back(OpInfo.CallOperand);
8141         break;
8142       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
8143                   !OpInfo.isIndirect) ||
8144                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8145                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8146         // Otherwise, this outputs to a register (directly for C_Register /
8147         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
8148         // register that we can use.
8149         if (OpInfo.AssignedRegs.Regs.empty()) {
8150           emitInlineAsmError(
8151               CS, "couldn't allocate output register for constraint '" +
8152                       Twine(OpInfo.ConstraintCode) + "'");
8153           return;
8154         }
8155 
8156         // Add information to the INLINEASM node to know that this register is
8157         // set.
8158         OpInfo.AssignedRegs.AddInlineAsmOperands(
8159             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8160                                   : InlineAsm::Kind_RegDef,
8161             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8162       }
8163       break;
8164 
8165     case InlineAsm::isInput: {
8166       SDValue InOperandVal = OpInfo.CallOperand;
8167 
8168       if (OpInfo.isMatchingInputConstraint()) {
8169         // If this is required to match an output register we have already set,
8170         // just use its register.
8171         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8172                                                   AsmNodeOperands);
8173         unsigned OpFlag =
8174           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8175         if (InlineAsm::isRegDefKind(OpFlag) ||
8176             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8177           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8178           if (OpInfo.isIndirect) {
8179             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8180             emitInlineAsmError(CS, "inline asm not supported yet:"
8181                                    " don't know how to handle tied "
8182                                    "indirect register inputs");
8183             return;
8184           }
8185 
8186           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8187           SmallVector<unsigned, 4> Regs;
8188 
8189           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8190             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8191             MachineRegisterInfo &RegInfo =
8192                 DAG.getMachineFunction().getRegInfo();
8193             for (unsigned i = 0; i != NumRegs; ++i)
8194               Regs.push_back(RegInfo.createVirtualRegister(RC));
8195           } else {
8196             emitInlineAsmError(CS, "inline asm error: This value type register "
8197                                    "class is not natively supported!");
8198             return;
8199           }
8200 
8201           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8202 
8203           SDLoc dl = getCurSDLoc();
8204           // Use the produced MatchedRegs object to
8205           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8206                                     CS.getInstruction());
8207           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8208                                            true, OpInfo.getMatchedOperand(), dl,
8209                                            DAG, AsmNodeOperands);
8210           break;
8211         }
8212 
8213         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8214         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8215                "Unexpected number of operands");
8216         // Add information to the INLINEASM node to know about this input.
8217         // See InlineAsm.h isUseOperandTiedToDef.
8218         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8219         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8220                                                     OpInfo.getMatchedOperand());
8221         AsmNodeOperands.push_back(DAG.getTargetConstant(
8222             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8223         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8224         break;
8225       }
8226 
8227       // Treat indirect 'X' constraint as memory.
8228       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8229           OpInfo.isIndirect)
8230         OpInfo.ConstraintType = TargetLowering::C_Memory;
8231 
8232       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8233         std::vector<SDValue> Ops;
8234         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8235                                           Ops, DAG);
8236         if (Ops.empty()) {
8237           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8238                                      Twine(OpInfo.ConstraintCode) + "'");
8239           return;
8240         }
8241 
8242         // Add information to the INLINEASM node to know about this input.
8243         unsigned ResOpType =
8244           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8245         AsmNodeOperands.push_back(DAG.getTargetConstant(
8246             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8247         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8248         break;
8249       }
8250 
8251       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8252         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8253         assert(InOperandVal.getValueType() ==
8254                    TLI.getPointerTy(DAG.getDataLayout()) &&
8255                "Memory operands expect pointer values");
8256 
8257         unsigned ConstraintID =
8258             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8259         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8260                "Failed to convert memory constraint code to constraint id.");
8261 
8262         // Add information to the INLINEASM node to know about this input.
8263         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8264         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8265         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8266                                                         getCurSDLoc(),
8267                                                         MVT::i32));
8268         AsmNodeOperands.push_back(InOperandVal);
8269         break;
8270       }
8271 
8272       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8273               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8274              "Unknown constraint type!");
8275 
8276       // TODO: Support this.
8277       if (OpInfo.isIndirect) {
8278         emitInlineAsmError(
8279             CS, "Don't know how to handle indirect register inputs yet "
8280                 "for constraint '" +
8281                     Twine(OpInfo.ConstraintCode) + "'");
8282         return;
8283       }
8284 
8285       // Copy the input into the appropriate registers.
8286       if (OpInfo.AssignedRegs.Regs.empty()) {
8287         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8288                                    Twine(OpInfo.ConstraintCode) + "'");
8289         return;
8290       }
8291 
8292       SDLoc dl = getCurSDLoc();
8293 
8294       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8295                                         Chain, &Flag, CS.getInstruction());
8296 
8297       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8298                                                dl, DAG, AsmNodeOperands);
8299       break;
8300     }
8301     case InlineAsm::isClobber:
8302       // Add the clobbered value to the operand list, so that the register
8303       // allocator is aware that the physreg got clobbered.
8304       if (!OpInfo.AssignedRegs.Regs.empty())
8305         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8306                                                  false, 0, getCurSDLoc(), DAG,
8307                                                  AsmNodeOperands);
8308       break;
8309     }
8310   }
8311 
8312   // Finish up input operands.  Set the input chain and add the flag last.
8313   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8314   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8315 
8316   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8317   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8318                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8319   Flag = Chain.getValue(1);
8320 
8321   // Do additional work to generate outputs.
8322 
8323   SmallVector<EVT, 1> ResultVTs;
8324   SmallVector<SDValue, 1> ResultValues;
8325   SmallVector<SDValue, 8> OutChains;
8326 
8327   llvm::Type *CSResultType = CS.getType();
8328   ArrayRef<Type *> ResultTypes;
8329   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8330     ResultTypes = StructResult->elements();
8331   else if (!CSResultType->isVoidTy())
8332     ResultTypes = makeArrayRef(CSResultType);
8333 
8334   auto CurResultType = ResultTypes.begin();
8335   auto handleRegAssign = [&](SDValue V) {
8336     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8337     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8338     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8339     ++CurResultType;
8340     // If the type of the inline asm call site return value is different but has
8341     // same size as the type of the asm output bitcast it.  One example of this
8342     // is for vectors with different width / number of elements.  This can
8343     // happen for register classes that can contain multiple different value
8344     // types.  The preg or vreg allocated may not have the same VT as was
8345     // expected.
8346     //
8347     // This can also happen for a return value that disagrees with the register
8348     // class it is put in, eg. a double in a general-purpose register on a
8349     // 32-bit machine.
8350     if (ResultVT != V.getValueType() &&
8351         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8352       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8353     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8354              V.getValueType().isInteger()) {
8355       // If a result value was tied to an input value, the computed result
8356       // may have a wider width than the expected result.  Extract the
8357       // relevant portion.
8358       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8359     }
8360     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8361     ResultVTs.push_back(ResultVT);
8362     ResultValues.push_back(V);
8363   };
8364 
8365   // Deal with output operands.
8366   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8367     if (OpInfo.Type == InlineAsm::isOutput) {
8368       SDValue Val;
8369       // Skip trivial output operands.
8370       if (OpInfo.AssignedRegs.Regs.empty())
8371         continue;
8372 
8373       switch (OpInfo.ConstraintType) {
8374       case TargetLowering::C_Register:
8375       case TargetLowering::C_RegisterClass:
8376         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8377             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8378         break;
8379       case TargetLowering::C_Other:
8380         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8381                                               OpInfo, DAG);
8382         break;
8383       case TargetLowering::C_Memory:
8384         break; // Already handled.
8385       case TargetLowering::C_Unknown:
8386         assert(false && "Unexpected unknown constraint");
8387       }
8388 
8389       // Indirect output manifest as stores. Record output chains.
8390       if (OpInfo.isIndirect) {
8391         const Value *Ptr = OpInfo.CallOperandVal;
8392         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8393         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8394                                      MachinePointerInfo(Ptr));
8395         OutChains.push_back(Store);
8396       } else {
8397         // generate CopyFromRegs to associated registers.
8398         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8399         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8400           for (const SDValue &V : Val->op_values())
8401             handleRegAssign(V);
8402         } else
8403           handleRegAssign(Val);
8404       }
8405     }
8406   }
8407 
8408   // Set results.
8409   if (!ResultValues.empty()) {
8410     assert(CurResultType == ResultTypes.end() &&
8411            "Mismatch in number of ResultTypes");
8412     assert(ResultValues.size() == ResultTypes.size() &&
8413            "Mismatch in number of output operands in asm result");
8414 
8415     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8416                             DAG.getVTList(ResultVTs), ResultValues);
8417     setValue(CS.getInstruction(), V);
8418   }
8419 
8420   // Collect store chains.
8421   if (!OutChains.empty())
8422     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8423 
8424   // Only Update Root if inline assembly has a memory effect.
8425   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8426     DAG.setRoot(Chain);
8427 }
8428 
8429 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8430                                              const Twine &Message) {
8431   LLVMContext &Ctx = *DAG.getContext();
8432   Ctx.emitError(CS.getInstruction(), Message);
8433 
8434   // Make sure we leave the DAG in a valid state
8435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8436   SmallVector<EVT, 1> ValueVTs;
8437   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8438 
8439   if (ValueVTs.empty())
8440     return;
8441 
8442   SmallVector<SDValue, 1> Ops;
8443   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8444     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8445 
8446   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8447 }
8448 
8449 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8450   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8451                           MVT::Other, getRoot(),
8452                           getValue(I.getArgOperand(0)),
8453                           DAG.getSrcValue(I.getArgOperand(0))));
8454 }
8455 
8456 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8457   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8458   const DataLayout &DL = DAG.getDataLayout();
8459   SDValue V = DAG.getVAArg(
8460       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8461       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8462       DL.getABITypeAlignment(I.getType()));
8463   DAG.setRoot(V.getValue(1));
8464 
8465   if (I.getType()->isPointerTy())
8466     V = DAG.getPtrExtOrTrunc(
8467         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8468   setValue(&I, V);
8469 }
8470 
8471 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8472   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8473                           MVT::Other, getRoot(),
8474                           getValue(I.getArgOperand(0)),
8475                           DAG.getSrcValue(I.getArgOperand(0))));
8476 }
8477 
8478 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8479   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8480                           MVT::Other, getRoot(),
8481                           getValue(I.getArgOperand(0)),
8482                           getValue(I.getArgOperand(1)),
8483                           DAG.getSrcValue(I.getArgOperand(0)),
8484                           DAG.getSrcValue(I.getArgOperand(1))));
8485 }
8486 
8487 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8488                                                     const Instruction &I,
8489                                                     SDValue Op) {
8490   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8491   if (!Range)
8492     return Op;
8493 
8494   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8495   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8496     return Op;
8497 
8498   APInt Lo = CR.getUnsignedMin();
8499   if (!Lo.isMinValue())
8500     return Op;
8501 
8502   APInt Hi = CR.getUnsignedMax();
8503   unsigned Bits = std::max(Hi.getActiveBits(),
8504                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8505 
8506   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8507 
8508   SDLoc SL = getCurSDLoc();
8509 
8510   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8511                              DAG.getValueType(SmallVT));
8512   unsigned NumVals = Op.getNode()->getNumValues();
8513   if (NumVals == 1)
8514     return ZExt;
8515 
8516   SmallVector<SDValue, 4> Ops;
8517 
8518   Ops.push_back(ZExt);
8519   for (unsigned I = 1; I != NumVals; ++I)
8520     Ops.push_back(Op.getValue(I));
8521 
8522   return DAG.getMergeValues(Ops, SL);
8523 }
8524 
8525 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8526 /// the call being lowered.
8527 ///
8528 /// This is a helper for lowering intrinsics that follow a target calling
8529 /// convention or require stack pointer adjustment. Only a subset of the
8530 /// intrinsic's operands need to participate in the calling convention.
8531 void SelectionDAGBuilder::populateCallLoweringInfo(
8532     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8533     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8534     bool IsPatchPoint) {
8535   TargetLowering::ArgListTy Args;
8536   Args.reserve(NumArgs);
8537 
8538   // Populate the argument list.
8539   // Attributes for args start at offset 1, after the return attribute.
8540   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8541        ArgI != ArgE; ++ArgI) {
8542     const Value *V = Call->getOperand(ArgI);
8543 
8544     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8545 
8546     TargetLowering::ArgListEntry Entry;
8547     Entry.Node = getValue(V);
8548     Entry.Ty = V->getType();
8549     Entry.setAttributes(Call, ArgI);
8550     Args.push_back(Entry);
8551   }
8552 
8553   CLI.setDebugLoc(getCurSDLoc())
8554       .setChain(getRoot())
8555       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8556       .setDiscardResult(Call->use_empty())
8557       .setIsPatchPoint(IsPatchPoint);
8558 }
8559 
8560 /// Add a stack map intrinsic call's live variable operands to a stackmap
8561 /// or patchpoint target node's operand list.
8562 ///
8563 /// Constants are converted to TargetConstants purely as an optimization to
8564 /// avoid constant materialization and register allocation.
8565 ///
8566 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8567 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8568 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8569 /// address materialization and register allocation, but may also be required
8570 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8571 /// alloca in the entry block, then the runtime may assume that the alloca's
8572 /// StackMap location can be read immediately after compilation and that the
8573 /// location is valid at any point during execution (this is similar to the
8574 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8575 /// only available in a register, then the runtime would need to trap when
8576 /// execution reaches the StackMap in order to read the alloca's location.
8577 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8578                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8579                                 SelectionDAGBuilder &Builder) {
8580   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8581     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8582     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8583       Ops.push_back(
8584         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8585       Ops.push_back(
8586         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8587     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8588       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8589       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8590           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8591     } else
8592       Ops.push_back(OpVal);
8593   }
8594 }
8595 
8596 /// Lower llvm.experimental.stackmap directly to its target opcode.
8597 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8598   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8599   //                                  [live variables...])
8600 
8601   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8602 
8603   SDValue Chain, InFlag, Callee, NullPtr;
8604   SmallVector<SDValue, 32> Ops;
8605 
8606   SDLoc DL = getCurSDLoc();
8607   Callee = getValue(CI.getCalledValue());
8608   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8609 
8610   // The stackmap intrinsic only records the live variables (the arguemnts
8611   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8612   // intrinsic, this won't be lowered to a function call. This means we don't
8613   // have to worry about calling conventions and target specific lowering code.
8614   // Instead we perform the call lowering right here.
8615   //
8616   // chain, flag = CALLSEQ_START(chain, 0, 0)
8617   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8618   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8619   //
8620   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8621   InFlag = Chain.getValue(1);
8622 
8623   // Add the <id> and <numBytes> constants.
8624   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8625   Ops.push_back(DAG.getTargetConstant(
8626                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8627   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8628   Ops.push_back(DAG.getTargetConstant(
8629                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8630                   MVT::i32));
8631 
8632   // Push live variables for the stack map.
8633   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8634 
8635   // We are not pushing any register mask info here on the operands list,
8636   // because the stackmap doesn't clobber anything.
8637 
8638   // Push the chain and the glue flag.
8639   Ops.push_back(Chain);
8640   Ops.push_back(InFlag);
8641 
8642   // Create the STACKMAP node.
8643   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8644   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8645   Chain = SDValue(SM, 0);
8646   InFlag = Chain.getValue(1);
8647 
8648   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8649 
8650   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8651 
8652   // Set the root to the target-lowered call chain.
8653   DAG.setRoot(Chain);
8654 
8655   // Inform the Frame Information that we have a stackmap in this function.
8656   FuncInfo.MF->getFrameInfo().setHasStackMap();
8657 }
8658 
8659 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8660 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8661                                           const BasicBlock *EHPadBB) {
8662   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8663   //                                                 i32 <numBytes>,
8664   //                                                 i8* <target>,
8665   //                                                 i32 <numArgs>,
8666   //                                                 [Args...],
8667   //                                                 [live variables...])
8668 
8669   CallingConv::ID CC = CS.getCallingConv();
8670   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8671   bool HasDef = !CS->getType()->isVoidTy();
8672   SDLoc dl = getCurSDLoc();
8673   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8674 
8675   // Handle immediate and symbolic callees.
8676   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8677     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8678                                    /*isTarget=*/true);
8679   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8680     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8681                                          SDLoc(SymbolicCallee),
8682                                          SymbolicCallee->getValueType(0));
8683 
8684   // Get the real number of arguments participating in the call <numArgs>
8685   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8686   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8687 
8688   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8689   // Intrinsics include all meta-operands up to but not including CC.
8690   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8691   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8692          "Not enough arguments provided to the patchpoint intrinsic");
8693 
8694   // For AnyRegCC the arguments are lowered later on manually.
8695   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8696   Type *ReturnTy =
8697     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8698 
8699   TargetLowering::CallLoweringInfo CLI(DAG);
8700   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8701                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8702   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8703 
8704   SDNode *CallEnd = Result.second.getNode();
8705   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8706     CallEnd = CallEnd->getOperand(0).getNode();
8707 
8708   /// Get a call instruction from the call sequence chain.
8709   /// Tail calls are not allowed.
8710   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8711          "Expected a callseq node.");
8712   SDNode *Call = CallEnd->getOperand(0).getNode();
8713   bool HasGlue = Call->getGluedNode();
8714 
8715   // Replace the target specific call node with the patchable intrinsic.
8716   SmallVector<SDValue, 8> Ops;
8717 
8718   // Add the <id> and <numBytes> constants.
8719   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8720   Ops.push_back(DAG.getTargetConstant(
8721                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8722   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8723   Ops.push_back(DAG.getTargetConstant(
8724                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8725                   MVT::i32));
8726 
8727   // Add the callee.
8728   Ops.push_back(Callee);
8729 
8730   // Adjust <numArgs> to account for any arguments that have been passed on the
8731   // stack instead.
8732   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8733   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8734   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8735   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8736 
8737   // Add the calling convention
8738   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8739 
8740   // Add the arguments we omitted previously. The register allocator should
8741   // place these in any free register.
8742   if (IsAnyRegCC)
8743     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8744       Ops.push_back(getValue(CS.getArgument(i)));
8745 
8746   // Push the arguments from the call instruction up to the register mask.
8747   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8748   Ops.append(Call->op_begin() + 2, e);
8749 
8750   // Push live variables for the stack map.
8751   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8752 
8753   // Push the register mask info.
8754   if (HasGlue)
8755     Ops.push_back(*(Call->op_end()-2));
8756   else
8757     Ops.push_back(*(Call->op_end()-1));
8758 
8759   // Push the chain (this is originally the first operand of the call, but
8760   // becomes now the last or second to last operand).
8761   Ops.push_back(*(Call->op_begin()));
8762 
8763   // Push the glue flag (last operand).
8764   if (HasGlue)
8765     Ops.push_back(*(Call->op_end()-1));
8766 
8767   SDVTList NodeTys;
8768   if (IsAnyRegCC && HasDef) {
8769     // Create the return types based on the intrinsic definition
8770     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8771     SmallVector<EVT, 3> ValueVTs;
8772     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8773     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8774 
8775     // There is always a chain and a glue type at the end
8776     ValueVTs.push_back(MVT::Other);
8777     ValueVTs.push_back(MVT::Glue);
8778     NodeTys = DAG.getVTList(ValueVTs);
8779   } else
8780     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8781 
8782   // Replace the target specific call node with a PATCHPOINT node.
8783   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8784                                          dl, NodeTys, Ops);
8785 
8786   // Update the NodeMap.
8787   if (HasDef) {
8788     if (IsAnyRegCC)
8789       setValue(CS.getInstruction(), SDValue(MN, 0));
8790     else
8791       setValue(CS.getInstruction(), Result.first);
8792   }
8793 
8794   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8795   // call sequence. Furthermore the location of the chain and glue can change
8796   // when the AnyReg calling convention is used and the intrinsic returns a
8797   // value.
8798   if (IsAnyRegCC && HasDef) {
8799     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8800     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8801     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8802   } else
8803     DAG.ReplaceAllUsesWith(Call, MN);
8804   DAG.DeleteNode(Call);
8805 
8806   // Inform the Frame Information that we have a patchpoint in this function.
8807   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8808 }
8809 
8810 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8811                                             unsigned Intrinsic) {
8812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8813   SDValue Op1 = getValue(I.getArgOperand(0));
8814   SDValue Op2;
8815   if (I.getNumArgOperands() > 1)
8816     Op2 = getValue(I.getArgOperand(1));
8817   SDLoc dl = getCurSDLoc();
8818   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8819   SDValue Res;
8820   FastMathFlags FMF;
8821   if (isa<FPMathOperator>(I))
8822     FMF = I.getFastMathFlags();
8823 
8824   switch (Intrinsic) {
8825   case Intrinsic::experimental_vector_reduce_fadd:
8826     if (FMF.isFast())
8827       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8828     else
8829       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8830     break;
8831   case Intrinsic::experimental_vector_reduce_fmul:
8832     if (FMF.isFast())
8833       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8834     else
8835       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8836     break;
8837   case Intrinsic::experimental_vector_reduce_add:
8838     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8839     break;
8840   case Intrinsic::experimental_vector_reduce_mul:
8841     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8842     break;
8843   case Intrinsic::experimental_vector_reduce_and:
8844     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8845     break;
8846   case Intrinsic::experimental_vector_reduce_or:
8847     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8848     break;
8849   case Intrinsic::experimental_vector_reduce_xor:
8850     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8851     break;
8852   case Intrinsic::experimental_vector_reduce_smax:
8853     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8854     break;
8855   case Intrinsic::experimental_vector_reduce_smin:
8856     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8857     break;
8858   case Intrinsic::experimental_vector_reduce_umax:
8859     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8860     break;
8861   case Intrinsic::experimental_vector_reduce_umin:
8862     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8863     break;
8864   case Intrinsic::experimental_vector_reduce_fmax:
8865     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8866     break;
8867   case Intrinsic::experimental_vector_reduce_fmin:
8868     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8869     break;
8870   default:
8871     llvm_unreachable("Unhandled vector reduce intrinsic");
8872   }
8873   setValue(&I, Res);
8874 }
8875 
8876 /// Returns an AttributeList representing the attributes applied to the return
8877 /// value of the given call.
8878 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8879   SmallVector<Attribute::AttrKind, 2> Attrs;
8880   if (CLI.RetSExt)
8881     Attrs.push_back(Attribute::SExt);
8882   if (CLI.RetZExt)
8883     Attrs.push_back(Attribute::ZExt);
8884   if (CLI.IsInReg)
8885     Attrs.push_back(Attribute::InReg);
8886 
8887   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8888                             Attrs);
8889 }
8890 
8891 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8892 /// implementation, which just calls LowerCall.
8893 /// FIXME: When all targets are
8894 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8895 std::pair<SDValue, SDValue>
8896 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8897   // Handle the incoming return values from the call.
8898   CLI.Ins.clear();
8899   Type *OrigRetTy = CLI.RetTy;
8900   SmallVector<EVT, 4> RetTys;
8901   SmallVector<uint64_t, 4> Offsets;
8902   auto &DL = CLI.DAG.getDataLayout();
8903   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8904 
8905   if (CLI.IsPostTypeLegalization) {
8906     // If we are lowering a libcall after legalization, split the return type.
8907     SmallVector<EVT, 4> OldRetTys;
8908     SmallVector<uint64_t, 4> OldOffsets;
8909     RetTys.swap(OldRetTys);
8910     Offsets.swap(OldOffsets);
8911 
8912     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8913       EVT RetVT = OldRetTys[i];
8914       uint64_t Offset = OldOffsets[i];
8915       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8916       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8917       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8918       RetTys.append(NumRegs, RegisterVT);
8919       for (unsigned j = 0; j != NumRegs; ++j)
8920         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8921     }
8922   }
8923 
8924   SmallVector<ISD::OutputArg, 4> Outs;
8925   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8926 
8927   bool CanLowerReturn =
8928       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8929                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8930 
8931   SDValue DemoteStackSlot;
8932   int DemoteStackIdx = -100;
8933   if (!CanLowerReturn) {
8934     // FIXME: equivalent assert?
8935     // assert(!CS.hasInAllocaArgument() &&
8936     //        "sret demotion is incompatible with inalloca");
8937     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8938     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8939     MachineFunction &MF = CLI.DAG.getMachineFunction();
8940     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8941     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8942                                               DL.getAllocaAddrSpace());
8943 
8944     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8945     ArgListEntry Entry;
8946     Entry.Node = DemoteStackSlot;
8947     Entry.Ty = StackSlotPtrType;
8948     Entry.IsSExt = false;
8949     Entry.IsZExt = false;
8950     Entry.IsInReg = false;
8951     Entry.IsSRet = true;
8952     Entry.IsNest = false;
8953     Entry.IsByVal = false;
8954     Entry.IsReturned = false;
8955     Entry.IsSwiftSelf = false;
8956     Entry.IsSwiftError = false;
8957     Entry.Alignment = Align;
8958     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8959     CLI.NumFixedArgs += 1;
8960     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8961 
8962     // sret demotion isn't compatible with tail-calls, since the sret argument
8963     // points into the callers stack frame.
8964     CLI.IsTailCall = false;
8965   } else {
8966     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8967         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
8968     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8969       ISD::ArgFlagsTy Flags;
8970       if (NeedsRegBlock) {
8971         Flags.setInConsecutiveRegs();
8972         if (I == RetTys.size() - 1)
8973           Flags.setInConsecutiveRegsLast();
8974       }
8975       EVT VT = RetTys[I];
8976       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8977                                                      CLI.CallConv, VT);
8978       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8979                                                        CLI.CallConv, VT);
8980       for (unsigned i = 0; i != NumRegs; ++i) {
8981         ISD::InputArg MyFlags;
8982         MyFlags.Flags = Flags;
8983         MyFlags.VT = RegisterVT;
8984         MyFlags.ArgVT = VT;
8985         MyFlags.Used = CLI.IsReturnValueUsed;
8986         if (CLI.RetTy->isPointerTy()) {
8987           MyFlags.Flags.setPointer();
8988           MyFlags.Flags.setPointerAddrSpace(
8989               cast<PointerType>(CLI.RetTy)->getAddressSpace());
8990         }
8991         if (CLI.RetSExt)
8992           MyFlags.Flags.setSExt();
8993         if (CLI.RetZExt)
8994           MyFlags.Flags.setZExt();
8995         if (CLI.IsInReg)
8996           MyFlags.Flags.setInReg();
8997         CLI.Ins.push_back(MyFlags);
8998       }
8999     }
9000   }
9001 
9002   // We push in swifterror return as the last element of CLI.Ins.
9003   ArgListTy &Args = CLI.getArgs();
9004   if (supportSwiftError()) {
9005     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9006       if (Args[i].IsSwiftError) {
9007         ISD::InputArg MyFlags;
9008         MyFlags.VT = getPointerTy(DL);
9009         MyFlags.ArgVT = EVT(getPointerTy(DL));
9010         MyFlags.Flags.setSwiftError();
9011         CLI.Ins.push_back(MyFlags);
9012       }
9013     }
9014   }
9015 
9016   // Handle all of the outgoing arguments.
9017   CLI.Outs.clear();
9018   CLI.OutVals.clear();
9019   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9020     SmallVector<EVT, 4> ValueVTs;
9021     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9022     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9023     Type *FinalType = Args[i].Ty;
9024     if (Args[i].IsByVal)
9025       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9026     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9027         FinalType, CLI.CallConv, CLI.IsVarArg);
9028     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9029          ++Value) {
9030       EVT VT = ValueVTs[Value];
9031       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9032       SDValue Op = SDValue(Args[i].Node.getNode(),
9033                            Args[i].Node.getResNo() + Value);
9034       ISD::ArgFlagsTy Flags;
9035 
9036       // Certain targets (such as MIPS), may have a different ABI alignment
9037       // for a type depending on the context. Give the target a chance to
9038       // specify the alignment it wants.
9039       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
9040 
9041       if (Args[i].Ty->isPointerTy()) {
9042         Flags.setPointer();
9043         Flags.setPointerAddrSpace(
9044             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9045       }
9046       if (Args[i].IsZExt)
9047         Flags.setZExt();
9048       if (Args[i].IsSExt)
9049         Flags.setSExt();
9050       if (Args[i].IsInReg) {
9051         // If we are using vectorcall calling convention, a structure that is
9052         // passed InReg - is surely an HVA
9053         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9054             isa<StructType>(FinalType)) {
9055           // The first value of a structure is marked
9056           if (0 == Value)
9057             Flags.setHvaStart();
9058           Flags.setHva();
9059         }
9060         // Set InReg Flag
9061         Flags.setInReg();
9062       }
9063       if (Args[i].IsSRet)
9064         Flags.setSRet();
9065       if (Args[i].IsSwiftSelf)
9066         Flags.setSwiftSelf();
9067       if (Args[i].IsSwiftError)
9068         Flags.setSwiftError();
9069       if (Args[i].IsByVal)
9070         Flags.setByVal();
9071       if (Args[i].IsInAlloca) {
9072         Flags.setInAlloca();
9073         // Set the byval flag for CCAssignFn callbacks that don't know about
9074         // inalloca.  This way we can know how many bytes we should've allocated
9075         // and how many bytes a callee cleanup function will pop.  If we port
9076         // inalloca to more targets, we'll have to add custom inalloca handling
9077         // in the various CC lowering callbacks.
9078         Flags.setByVal();
9079       }
9080       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9081         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9082         Type *ElementTy = Ty->getElementType();
9083         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9084         // For ByVal, alignment should come from FE.  BE will guess if this
9085         // info is not there but there are cases it cannot get right.
9086         unsigned FrameAlign;
9087         if (Args[i].Alignment)
9088           FrameAlign = Args[i].Alignment;
9089         else
9090           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9091         Flags.setByValAlign(FrameAlign);
9092       }
9093       if (Args[i].IsNest)
9094         Flags.setNest();
9095       if (NeedsRegBlock)
9096         Flags.setInConsecutiveRegs();
9097       Flags.setOrigAlign(OriginalAlignment);
9098 
9099       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9100                                                  CLI.CallConv, VT);
9101       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9102                                                         CLI.CallConv, VT);
9103       SmallVector<SDValue, 4> Parts(NumParts);
9104       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9105 
9106       if (Args[i].IsSExt)
9107         ExtendKind = ISD::SIGN_EXTEND;
9108       else if (Args[i].IsZExt)
9109         ExtendKind = ISD::ZERO_EXTEND;
9110 
9111       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9112       // for now.
9113       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9114           CanLowerReturn) {
9115         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
9116                "unexpected use of 'returned'");
9117         // Before passing 'returned' to the target lowering code, ensure that
9118         // either the register MVT and the actual EVT are the same size or that
9119         // the return value and argument are extended in the same way; in these
9120         // cases it's safe to pass the argument register value unchanged as the
9121         // return register value (although it's at the target's option whether
9122         // to do so)
9123         // TODO: allow code generation to take advantage of partially preserved
9124         // registers rather than clobbering the entire register when the
9125         // parameter extension method is not compatible with the return
9126         // extension method
9127         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9128             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9129              CLI.RetZExt == Args[i].IsZExt))
9130           Flags.setReturned();
9131       }
9132 
9133       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9134                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9135 
9136       for (unsigned j = 0; j != NumParts; ++j) {
9137         // if it isn't first piece, alignment must be 1
9138         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9139                                i < CLI.NumFixedArgs,
9140                                i, j*Parts[j].getValueType().getStoreSize());
9141         if (NumParts > 1 && j == 0)
9142           MyFlags.Flags.setSplit();
9143         else if (j != 0) {
9144           MyFlags.Flags.setOrigAlign(1);
9145           if (j == NumParts - 1)
9146             MyFlags.Flags.setSplitEnd();
9147         }
9148 
9149         CLI.Outs.push_back(MyFlags);
9150         CLI.OutVals.push_back(Parts[j]);
9151       }
9152 
9153       if (NeedsRegBlock && Value == NumValues - 1)
9154         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9155     }
9156   }
9157 
9158   SmallVector<SDValue, 4> InVals;
9159   CLI.Chain = LowerCall(CLI, InVals);
9160 
9161   // Update CLI.InVals to use outside of this function.
9162   CLI.InVals = InVals;
9163 
9164   // Verify that the target's LowerCall behaved as expected.
9165   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9166          "LowerCall didn't return a valid chain!");
9167   assert((!CLI.IsTailCall || InVals.empty()) &&
9168          "LowerCall emitted a return value for a tail call!");
9169   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9170          "LowerCall didn't emit the correct number of values!");
9171 
9172   // For a tail call, the return value is merely live-out and there aren't
9173   // any nodes in the DAG representing it. Return a special value to
9174   // indicate that a tail call has been emitted and no more Instructions
9175   // should be processed in the current block.
9176   if (CLI.IsTailCall) {
9177     CLI.DAG.setRoot(CLI.Chain);
9178     return std::make_pair(SDValue(), SDValue());
9179   }
9180 
9181 #ifndef NDEBUG
9182   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9183     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9184     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9185            "LowerCall emitted a value with the wrong type!");
9186   }
9187 #endif
9188 
9189   SmallVector<SDValue, 4> ReturnValues;
9190   if (!CanLowerReturn) {
9191     // The instruction result is the result of loading from the
9192     // hidden sret parameter.
9193     SmallVector<EVT, 1> PVTs;
9194     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9195 
9196     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9197     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9198     EVT PtrVT = PVTs[0];
9199 
9200     unsigned NumValues = RetTys.size();
9201     ReturnValues.resize(NumValues);
9202     SmallVector<SDValue, 4> Chains(NumValues);
9203 
9204     // An aggregate return value cannot wrap around the address space, so
9205     // offsets to its parts don't wrap either.
9206     SDNodeFlags Flags;
9207     Flags.setNoUnsignedWrap(true);
9208 
9209     for (unsigned i = 0; i < NumValues; ++i) {
9210       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9211                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9212                                                         PtrVT), Flags);
9213       SDValue L = CLI.DAG.getLoad(
9214           RetTys[i], CLI.DL, CLI.Chain, Add,
9215           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9216                                             DemoteStackIdx, Offsets[i]),
9217           /* Alignment = */ 1);
9218       ReturnValues[i] = L;
9219       Chains[i] = L.getValue(1);
9220     }
9221 
9222     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9223   } else {
9224     // Collect the legal value parts into potentially illegal values
9225     // that correspond to the original function's return values.
9226     Optional<ISD::NodeType> AssertOp;
9227     if (CLI.RetSExt)
9228       AssertOp = ISD::AssertSext;
9229     else if (CLI.RetZExt)
9230       AssertOp = ISD::AssertZext;
9231     unsigned CurReg = 0;
9232     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9233       EVT VT = RetTys[I];
9234       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9235                                                      CLI.CallConv, VT);
9236       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9237                                                        CLI.CallConv, VT);
9238 
9239       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9240                                               NumRegs, RegisterVT, VT, nullptr,
9241                                               CLI.CallConv, AssertOp));
9242       CurReg += NumRegs;
9243     }
9244 
9245     // For a function returning void, there is no return value. We can't create
9246     // such a node, so we just return a null return value in that case. In
9247     // that case, nothing will actually look at the value.
9248     if (ReturnValues.empty())
9249       return std::make_pair(SDValue(), CLI.Chain);
9250   }
9251 
9252   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9253                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9254   return std::make_pair(Res, CLI.Chain);
9255 }
9256 
9257 void TargetLowering::LowerOperationWrapper(SDNode *N,
9258                                            SmallVectorImpl<SDValue> &Results,
9259                                            SelectionDAG &DAG) const {
9260   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9261     Results.push_back(Res);
9262 }
9263 
9264 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9265   llvm_unreachable("LowerOperation not implemented for this target!");
9266 }
9267 
9268 void
9269 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9270   SDValue Op = getNonRegisterValue(V);
9271   assert((Op.getOpcode() != ISD::CopyFromReg ||
9272           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9273          "Copy from a reg to the same reg!");
9274   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9275 
9276   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9277   // If this is an InlineAsm we have to match the registers required, not the
9278   // notional registers required by the type.
9279 
9280   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9281                    None); // This is not an ABI copy.
9282   SDValue Chain = DAG.getEntryNode();
9283 
9284   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9285                               FuncInfo.PreferredExtendType.end())
9286                                  ? ISD::ANY_EXTEND
9287                                  : FuncInfo.PreferredExtendType[V];
9288   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9289   PendingExports.push_back(Chain);
9290 }
9291 
9292 #include "llvm/CodeGen/SelectionDAGISel.h"
9293 
9294 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9295 /// entry block, return true.  This includes arguments used by switches, since
9296 /// the switch may expand into multiple basic blocks.
9297 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9298   // With FastISel active, we may be splitting blocks, so force creation
9299   // of virtual registers for all non-dead arguments.
9300   if (FastISel)
9301     return A->use_empty();
9302 
9303   const BasicBlock &Entry = A->getParent()->front();
9304   for (const User *U : A->users())
9305     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9306       return false;  // Use not in entry block.
9307 
9308   return true;
9309 }
9310 
9311 using ArgCopyElisionMapTy =
9312     DenseMap<const Argument *,
9313              std::pair<const AllocaInst *, const StoreInst *>>;
9314 
9315 /// Scan the entry block of the function in FuncInfo for arguments that look
9316 /// like copies into a local alloca. Record any copied arguments in
9317 /// ArgCopyElisionCandidates.
9318 static void
9319 findArgumentCopyElisionCandidates(const DataLayout &DL,
9320                                   FunctionLoweringInfo *FuncInfo,
9321                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9322   // Record the state of every static alloca used in the entry block. Argument
9323   // allocas are all used in the entry block, so we need approximately as many
9324   // entries as we have arguments.
9325   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9326   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9327   unsigned NumArgs = FuncInfo->Fn->arg_size();
9328   StaticAllocas.reserve(NumArgs * 2);
9329 
9330   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9331     if (!V)
9332       return nullptr;
9333     V = V->stripPointerCasts();
9334     const auto *AI = dyn_cast<AllocaInst>(V);
9335     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9336       return nullptr;
9337     auto Iter = StaticAllocas.insert({AI, Unknown});
9338     return &Iter.first->second;
9339   };
9340 
9341   // Look for stores of arguments to static allocas. Look through bitcasts and
9342   // GEPs to handle type coercions, as long as the alloca is fully initialized
9343   // by the store. Any non-store use of an alloca escapes it and any subsequent
9344   // unanalyzed store might write it.
9345   // FIXME: Handle structs initialized with multiple stores.
9346   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9347     // Look for stores, and handle non-store uses conservatively.
9348     const auto *SI = dyn_cast<StoreInst>(&I);
9349     if (!SI) {
9350       // We will look through cast uses, so ignore them completely.
9351       if (I.isCast())
9352         continue;
9353       // Ignore debug info intrinsics, they don't escape or store to allocas.
9354       if (isa<DbgInfoIntrinsic>(I))
9355         continue;
9356       // This is an unknown instruction. Assume it escapes or writes to all
9357       // static alloca operands.
9358       for (const Use &U : I.operands()) {
9359         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9360           *Info = StaticAllocaInfo::Clobbered;
9361       }
9362       continue;
9363     }
9364 
9365     // If the stored value is a static alloca, mark it as escaped.
9366     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9367       *Info = StaticAllocaInfo::Clobbered;
9368 
9369     // Check if the destination is a static alloca.
9370     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9371     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9372     if (!Info)
9373       continue;
9374     const AllocaInst *AI = cast<AllocaInst>(Dst);
9375 
9376     // Skip allocas that have been initialized or clobbered.
9377     if (*Info != StaticAllocaInfo::Unknown)
9378       continue;
9379 
9380     // Check if the stored value is an argument, and that this store fully
9381     // initializes the alloca. Don't elide copies from the same argument twice.
9382     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9383     const auto *Arg = dyn_cast<Argument>(Val);
9384     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9385         Arg->getType()->isEmptyTy() ||
9386         DL.getTypeStoreSize(Arg->getType()) !=
9387             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9388         ArgCopyElisionCandidates.count(Arg)) {
9389       *Info = StaticAllocaInfo::Clobbered;
9390       continue;
9391     }
9392 
9393     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9394                       << '\n');
9395 
9396     // Mark this alloca and store for argument copy elision.
9397     *Info = StaticAllocaInfo::Elidable;
9398     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9399 
9400     // Stop scanning if we've seen all arguments. This will happen early in -O0
9401     // builds, which is useful, because -O0 builds have large entry blocks and
9402     // many allocas.
9403     if (ArgCopyElisionCandidates.size() == NumArgs)
9404       break;
9405   }
9406 }
9407 
9408 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9409 /// ArgVal is a load from a suitable fixed stack object.
9410 static void tryToElideArgumentCopy(
9411     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9412     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9413     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9414     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9415     SDValue ArgVal, bool &ArgHasUses) {
9416   // Check if this is a load from a fixed stack object.
9417   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9418   if (!LNode)
9419     return;
9420   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9421   if (!FINode)
9422     return;
9423 
9424   // Check that the fixed stack object is the right size and alignment.
9425   // Look at the alignment that the user wrote on the alloca instead of looking
9426   // at the stack object.
9427   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9428   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9429   const AllocaInst *AI = ArgCopyIter->second.first;
9430   int FixedIndex = FINode->getIndex();
9431   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9432   int OldIndex = AllocaIndex;
9433   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9434   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9435     LLVM_DEBUG(
9436         dbgs() << "  argument copy elision failed due to bad fixed stack "
9437                   "object size\n");
9438     return;
9439   }
9440   unsigned RequiredAlignment = AI->getAlignment();
9441   if (!RequiredAlignment) {
9442     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9443         AI->getAllocatedType());
9444   }
9445   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9446     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9447                          "greater than stack argument alignment ("
9448                       << RequiredAlignment << " vs "
9449                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9450     return;
9451   }
9452 
9453   // Perform the elision. Delete the old stack object and replace its only use
9454   // in the variable info map. Mark the stack object as mutable.
9455   LLVM_DEBUG({
9456     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9457            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9458            << '\n';
9459   });
9460   MFI.RemoveStackObject(OldIndex);
9461   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9462   AllocaIndex = FixedIndex;
9463   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9464   Chains.push_back(ArgVal.getValue(1));
9465 
9466   // Avoid emitting code for the store implementing the copy.
9467   const StoreInst *SI = ArgCopyIter->second.second;
9468   ElidedArgCopyInstrs.insert(SI);
9469 
9470   // Check for uses of the argument again so that we can avoid exporting ArgVal
9471   // if it is't used by anything other than the store.
9472   for (const Value *U : Arg.users()) {
9473     if (U != SI) {
9474       ArgHasUses = true;
9475       break;
9476     }
9477   }
9478 }
9479 
9480 void SelectionDAGISel::LowerArguments(const Function &F) {
9481   SelectionDAG &DAG = SDB->DAG;
9482   SDLoc dl = SDB->getCurSDLoc();
9483   const DataLayout &DL = DAG.getDataLayout();
9484   SmallVector<ISD::InputArg, 16> Ins;
9485 
9486   if (!FuncInfo->CanLowerReturn) {
9487     // Put in an sret pointer parameter before all the other parameters.
9488     SmallVector<EVT, 1> ValueVTs;
9489     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9490                     F.getReturnType()->getPointerTo(
9491                         DAG.getDataLayout().getAllocaAddrSpace()),
9492                     ValueVTs);
9493 
9494     // NOTE: Assuming that a pointer will never break down to more than one VT
9495     // or one register.
9496     ISD::ArgFlagsTy Flags;
9497     Flags.setSRet();
9498     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9499     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9500                          ISD::InputArg::NoArgIndex, 0);
9501     Ins.push_back(RetArg);
9502   }
9503 
9504   // Look for stores of arguments to static allocas. Mark such arguments with a
9505   // flag to ask the target to give us the memory location of that argument if
9506   // available.
9507   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9508   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9509 
9510   // Set up the incoming argument description vector.
9511   for (const Argument &Arg : F.args()) {
9512     unsigned ArgNo = Arg.getArgNo();
9513     SmallVector<EVT, 4> ValueVTs;
9514     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9515     bool isArgValueUsed = !Arg.use_empty();
9516     unsigned PartBase = 0;
9517     Type *FinalType = Arg.getType();
9518     if (Arg.hasAttribute(Attribute::ByVal))
9519       FinalType = cast<PointerType>(FinalType)->getElementType();
9520     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9521         FinalType, F.getCallingConv(), F.isVarArg());
9522     for (unsigned Value = 0, NumValues = ValueVTs.size();
9523          Value != NumValues; ++Value) {
9524       EVT VT = ValueVTs[Value];
9525       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9526       ISD::ArgFlagsTy Flags;
9527 
9528       // Certain targets (such as MIPS), may have a different ABI alignment
9529       // for a type depending on the context. Give the target a chance to
9530       // specify the alignment it wants.
9531       unsigned OriginalAlignment =
9532           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9533 
9534       if (Arg.getType()->isPointerTy()) {
9535         Flags.setPointer();
9536         Flags.setPointerAddrSpace(
9537             cast<PointerType>(Arg.getType())->getAddressSpace());
9538       }
9539       if (Arg.hasAttribute(Attribute::ZExt))
9540         Flags.setZExt();
9541       if (Arg.hasAttribute(Attribute::SExt))
9542         Flags.setSExt();
9543       if (Arg.hasAttribute(Attribute::InReg)) {
9544         // If we are using vectorcall calling convention, a structure that is
9545         // passed InReg - is surely an HVA
9546         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9547             isa<StructType>(Arg.getType())) {
9548           // The first value of a structure is marked
9549           if (0 == Value)
9550             Flags.setHvaStart();
9551           Flags.setHva();
9552         }
9553         // Set InReg Flag
9554         Flags.setInReg();
9555       }
9556       if (Arg.hasAttribute(Attribute::StructRet))
9557         Flags.setSRet();
9558       if (Arg.hasAttribute(Attribute::SwiftSelf))
9559         Flags.setSwiftSelf();
9560       if (Arg.hasAttribute(Attribute::SwiftError))
9561         Flags.setSwiftError();
9562       if (Arg.hasAttribute(Attribute::ByVal))
9563         Flags.setByVal();
9564       if (Arg.hasAttribute(Attribute::InAlloca)) {
9565         Flags.setInAlloca();
9566         // Set the byval flag for CCAssignFn callbacks that don't know about
9567         // inalloca.  This way we can know how many bytes we should've allocated
9568         // and how many bytes a callee cleanup function will pop.  If we port
9569         // inalloca to more targets, we'll have to add custom inalloca handling
9570         // in the various CC lowering callbacks.
9571         Flags.setByVal();
9572       }
9573       if (F.getCallingConv() == CallingConv::X86_INTR) {
9574         // IA Interrupt passes frame (1st parameter) by value in the stack.
9575         if (ArgNo == 0)
9576           Flags.setByVal();
9577       }
9578       if (Flags.isByVal() || Flags.isInAlloca()) {
9579         PointerType *Ty = cast<PointerType>(Arg.getType());
9580         Type *ElementTy = Ty->getElementType();
9581         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9582         // For ByVal, alignment should be passed from FE.  BE will guess if
9583         // this info is not there but there are cases it cannot get right.
9584         unsigned FrameAlign;
9585         if (Arg.getParamAlignment())
9586           FrameAlign = Arg.getParamAlignment();
9587         else
9588           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9589         Flags.setByValAlign(FrameAlign);
9590       }
9591       if (Arg.hasAttribute(Attribute::Nest))
9592         Flags.setNest();
9593       if (NeedsRegBlock)
9594         Flags.setInConsecutiveRegs();
9595       Flags.setOrigAlign(OriginalAlignment);
9596       if (ArgCopyElisionCandidates.count(&Arg))
9597         Flags.setCopyElisionCandidate();
9598 
9599       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9600           *CurDAG->getContext(), F.getCallingConv(), VT);
9601       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9602           *CurDAG->getContext(), F.getCallingConv(), VT);
9603       for (unsigned i = 0; i != NumRegs; ++i) {
9604         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9605                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9606         if (NumRegs > 1 && i == 0)
9607           MyFlags.Flags.setSplit();
9608         // if it isn't first piece, alignment must be 1
9609         else if (i > 0) {
9610           MyFlags.Flags.setOrigAlign(1);
9611           if (i == NumRegs - 1)
9612             MyFlags.Flags.setSplitEnd();
9613         }
9614         Ins.push_back(MyFlags);
9615       }
9616       if (NeedsRegBlock && Value == NumValues - 1)
9617         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9618       PartBase += VT.getStoreSize();
9619     }
9620   }
9621 
9622   // Call the target to set up the argument values.
9623   SmallVector<SDValue, 8> InVals;
9624   SDValue NewRoot = TLI->LowerFormalArguments(
9625       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9626 
9627   // Verify that the target's LowerFormalArguments behaved as expected.
9628   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9629          "LowerFormalArguments didn't return a valid chain!");
9630   assert(InVals.size() == Ins.size() &&
9631          "LowerFormalArguments didn't emit the correct number of values!");
9632   LLVM_DEBUG({
9633     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9634       assert(InVals[i].getNode() &&
9635              "LowerFormalArguments emitted a null value!");
9636       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9637              "LowerFormalArguments emitted a value with the wrong type!");
9638     }
9639   });
9640 
9641   // Update the DAG with the new chain value resulting from argument lowering.
9642   DAG.setRoot(NewRoot);
9643 
9644   // Set up the argument values.
9645   unsigned i = 0;
9646   if (!FuncInfo->CanLowerReturn) {
9647     // Create a virtual register for the sret pointer, and put in a copy
9648     // from the sret argument into it.
9649     SmallVector<EVT, 1> ValueVTs;
9650     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9651                     F.getReturnType()->getPointerTo(
9652                         DAG.getDataLayout().getAllocaAddrSpace()),
9653                     ValueVTs);
9654     MVT VT = ValueVTs[0].getSimpleVT();
9655     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9656     Optional<ISD::NodeType> AssertOp = None;
9657     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9658                                         nullptr, F.getCallingConv(), AssertOp);
9659 
9660     MachineFunction& MF = SDB->DAG.getMachineFunction();
9661     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9662     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9663     FuncInfo->DemoteRegister = SRetReg;
9664     NewRoot =
9665         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9666     DAG.setRoot(NewRoot);
9667 
9668     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9669     ++i;
9670   }
9671 
9672   SmallVector<SDValue, 4> Chains;
9673   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9674   for (const Argument &Arg : F.args()) {
9675     SmallVector<SDValue, 4> ArgValues;
9676     SmallVector<EVT, 4> ValueVTs;
9677     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9678     unsigned NumValues = ValueVTs.size();
9679     if (NumValues == 0)
9680       continue;
9681 
9682     bool ArgHasUses = !Arg.use_empty();
9683 
9684     // Elide the copying store if the target loaded this argument from a
9685     // suitable fixed stack object.
9686     if (Ins[i].Flags.isCopyElisionCandidate()) {
9687       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9688                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9689                              InVals[i], ArgHasUses);
9690     }
9691 
9692     // If this argument is unused then remember its value. It is used to generate
9693     // debugging information.
9694     bool isSwiftErrorArg =
9695         TLI->supportSwiftError() &&
9696         Arg.hasAttribute(Attribute::SwiftError);
9697     if (!ArgHasUses && !isSwiftErrorArg) {
9698       SDB->setUnusedArgValue(&Arg, InVals[i]);
9699 
9700       // Also remember any frame index for use in FastISel.
9701       if (FrameIndexSDNode *FI =
9702           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9703         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9704     }
9705 
9706     for (unsigned Val = 0; Val != NumValues; ++Val) {
9707       EVT VT = ValueVTs[Val];
9708       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9709                                                       F.getCallingConv(), VT);
9710       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9711           *CurDAG->getContext(), F.getCallingConv(), VT);
9712 
9713       // Even an apparant 'unused' swifterror argument needs to be returned. So
9714       // we do generate a copy for it that can be used on return from the
9715       // function.
9716       if (ArgHasUses || isSwiftErrorArg) {
9717         Optional<ISD::NodeType> AssertOp;
9718         if (Arg.hasAttribute(Attribute::SExt))
9719           AssertOp = ISD::AssertSext;
9720         else if (Arg.hasAttribute(Attribute::ZExt))
9721           AssertOp = ISD::AssertZext;
9722 
9723         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9724                                              PartVT, VT, nullptr,
9725                                              F.getCallingConv(), AssertOp));
9726       }
9727 
9728       i += NumParts;
9729     }
9730 
9731     // We don't need to do anything else for unused arguments.
9732     if (ArgValues.empty())
9733       continue;
9734 
9735     // Note down frame index.
9736     if (FrameIndexSDNode *FI =
9737         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9738       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9739 
9740     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9741                                      SDB->getCurSDLoc());
9742 
9743     SDB->setValue(&Arg, Res);
9744     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9745       // We want to associate the argument with the frame index, among
9746       // involved operands, that correspond to the lowest address. The
9747       // getCopyFromParts function, called earlier, is swapping the order of
9748       // the operands to BUILD_PAIR depending on endianness. The result of
9749       // that swapping is that the least significant bits of the argument will
9750       // be in the first operand of the BUILD_PAIR node, and the most
9751       // significant bits will be in the second operand.
9752       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9753       if (LoadSDNode *LNode =
9754           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9755         if (FrameIndexSDNode *FI =
9756             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9757           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9758     }
9759 
9760     // Update the SwiftErrorVRegDefMap.
9761     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9762       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9763       if (TargetRegisterInfo::isVirtualRegister(Reg))
9764         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9765                                            FuncInfo->SwiftErrorArg, Reg);
9766     }
9767 
9768     // If this argument is live outside of the entry block, insert a copy from
9769     // wherever we got it to the vreg that other BB's will reference it as.
9770     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9771       // If we can, though, try to skip creating an unnecessary vreg.
9772       // FIXME: This isn't very clean... it would be nice to make this more
9773       // general.  It's also subtly incompatible with the hacks FastISel
9774       // uses with vregs.
9775       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9776       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9777         FuncInfo->ValueMap[&Arg] = Reg;
9778         continue;
9779       }
9780     }
9781     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9782       FuncInfo->InitializeRegForValue(&Arg);
9783       SDB->CopyToExportRegsIfNeeded(&Arg);
9784     }
9785   }
9786 
9787   if (!Chains.empty()) {
9788     Chains.push_back(NewRoot);
9789     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9790   }
9791 
9792   DAG.setRoot(NewRoot);
9793 
9794   assert(i == InVals.size() && "Argument register count mismatch!");
9795 
9796   // If any argument copy elisions occurred and we have debug info, update the
9797   // stale frame indices used in the dbg.declare variable info table.
9798   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9799   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9800     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9801       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9802       if (I != ArgCopyElisionFrameIndexMap.end())
9803         VI.Slot = I->second;
9804     }
9805   }
9806 
9807   // Finally, if the target has anything special to do, allow it to do so.
9808   EmitFunctionEntryCode();
9809 }
9810 
9811 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9812 /// ensure constants are generated when needed.  Remember the virtual registers
9813 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9814 /// directly add them, because expansion might result in multiple MBB's for one
9815 /// BB.  As such, the start of the BB might correspond to a different MBB than
9816 /// the end.
9817 void
9818 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9819   const Instruction *TI = LLVMBB->getTerminator();
9820 
9821   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9822 
9823   // Check PHI nodes in successors that expect a value to be available from this
9824   // block.
9825   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9826     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9827     if (!isa<PHINode>(SuccBB->begin())) continue;
9828     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9829 
9830     // If this terminator has multiple identical successors (common for
9831     // switches), only handle each succ once.
9832     if (!SuccsHandled.insert(SuccMBB).second)
9833       continue;
9834 
9835     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9836 
9837     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9838     // nodes and Machine PHI nodes, but the incoming operands have not been
9839     // emitted yet.
9840     for (const PHINode &PN : SuccBB->phis()) {
9841       // Ignore dead phi's.
9842       if (PN.use_empty())
9843         continue;
9844 
9845       // Skip empty types
9846       if (PN.getType()->isEmptyTy())
9847         continue;
9848 
9849       unsigned Reg;
9850       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9851 
9852       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9853         unsigned &RegOut = ConstantsOut[C];
9854         if (RegOut == 0) {
9855           RegOut = FuncInfo.CreateRegs(C->getType());
9856           CopyValueToVirtualRegister(C, RegOut);
9857         }
9858         Reg = RegOut;
9859       } else {
9860         DenseMap<const Value *, unsigned>::iterator I =
9861           FuncInfo.ValueMap.find(PHIOp);
9862         if (I != FuncInfo.ValueMap.end())
9863           Reg = I->second;
9864         else {
9865           assert(isa<AllocaInst>(PHIOp) &&
9866                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9867                  "Didn't codegen value into a register!??");
9868           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9869           CopyValueToVirtualRegister(PHIOp, Reg);
9870         }
9871       }
9872 
9873       // Remember that this register needs to added to the machine PHI node as
9874       // the input for this MBB.
9875       SmallVector<EVT, 4> ValueVTs;
9876       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9877       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9878       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9879         EVT VT = ValueVTs[vti];
9880         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9881         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9882           FuncInfo.PHINodesToUpdate.push_back(
9883               std::make_pair(&*MBBI++, Reg + i));
9884         Reg += NumRegisters;
9885       }
9886     }
9887   }
9888 
9889   ConstantsOut.clear();
9890 }
9891 
9892 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9893 /// is 0.
9894 MachineBasicBlock *
9895 SelectionDAGBuilder::StackProtectorDescriptor::
9896 AddSuccessorMBB(const BasicBlock *BB,
9897                 MachineBasicBlock *ParentMBB,
9898                 bool IsLikely,
9899                 MachineBasicBlock *SuccMBB) {
9900   // If SuccBB has not been created yet, create it.
9901   if (!SuccMBB) {
9902     MachineFunction *MF = ParentMBB->getParent();
9903     MachineFunction::iterator BBI(ParentMBB);
9904     SuccMBB = MF->CreateMachineBasicBlock(BB);
9905     MF->insert(++BBI, SuccMBB);
9906   }
9907   // Add it as a successor of ParentMBB.
9908   ParentMBB->addSuccessor(
9909       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9910   return SuccMBB;
9911 }
9912 
9913 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9914   MachineFunction::iterator I(MBB);
9915   if (++I == FuncInfo.MF->end())
9916     return nullptr;
9917   return &*I;
9918 }
9919 
9920 /// During lowering new call nodes can be created (such as memset, etc.).
9921 /// Those will become new roots of the current DAG, but complications arise
9922 /// when they are tail calls. In such cases, the call lowering will update
9923 /// the root, but the builder still needs to know that a tail call has been
9924 /// lowered in order to avoid generating an additional return.
9925 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9926   // If the node is null, we do have a tail call.
9927   if (MaybeTC.getNode() != nullptr)
9928     DAG.setRoot(MaybeTC);
9929   else
9930     HasTailCall = true;
9931 }
9932 
9933 uint64_t
9934 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9935                                        unsigned First, unsigned Last) const {
9936   assert(Last >= First);
9937   const APInt &LowCase = Clusters[First].Low->getValue();
9938   const APInt &HighCase = Clusters[Last].High->getValue();
9939   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9940 
9941   // FIXME: A range of consecutive cases has 100% density, but only requires one
9942   // comparison to lower. We should discriminate against such consecutive ranges
9943   // in jump tables.
9944 
9945   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9946 }
9947 
9948 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9949     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9950     unsigned Last) const {
9951   assert(Last >= First);
9952   assert(TotalCases[Last] >= TotalCases[First]);
9953   uint64_t NumCases =
9954       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9955   return NumCases;
9956 }
9957 
9958 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9959                                          unsigned First, unsigned Last,
9960                                          const SwitchInst *SI,
9961                                          MachineBasicBlock *DefaultMBB,
9962                                          CaseCluster &JTCluster) {
9963   assert(First <= Last);
9964 
9965   auto Prob = BranchProbability::getZero();
9966   unsigned NumCmps = 0;
9967   std::vector<MachineBasicBlock*> Table;
9968   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9969 
9970   // Initialize probabilities in JTProbs.
9971   for (unsigned I = First; I <= Last; ++I)
9972     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9973 
9974   for (unsigned I = First; I <= Last; ++I) {
9975     assert(Clusters[I].Kind == CC_Range);
9976     Prob += Clusters[I].Prob;
9977     const APInt &Low = Clusters[I].Low->getValue();
9978     const APInt &High = Clusters[I].High->getValue();
9979     NumCmps += (Low == High) ? 1 : 2;
9980     if (I != First) {
9981       // Fill the gap between this and the previous cluster.
9982       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9983       assert(PreviousHigh.slt(Low));
9984       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9985       for (uint64_t J = 0; J < Gap; J++)
9986         Table.push_back(DefaultMBB);
9987     }
9988     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9989     for (uint64_t J = 0; J < ClusterSize; ++J)
9990       Table.push_back(Clusters[I].MBB);
9991     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9992   }
9993 
9994   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9995   unsigned NumDests = JTProbs.size();
9996   if (TLI.isSuitableForBitTests(
9997           NumDests, NumCmps, Clusters[First].Low->getValue(),
9998           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9999     // Clusters[First..Last] should be lowered as bit tests instead.
10000     return false;
10001   }
10002 
10003   // Create the MBB that will load from and jump through the table.
10004   // Note: We create it here, but it's not inserted into the function yet.
10005   MachineFunction *CurMF = FuncInfo.MF;
10006   MachineBasicBlock *JumpTableMBB =
10007       CurMF->CreateMachineBasicBlock(SI->getParent());
10008 
10009   // Add successors. Note: use table order for determinism.
10010   SmallPtrSet<MachineBasicBlock *, 8> Done;
10011   for (MachineBasicBlock *Succ : Table) {
10012     if (Done.count(Succ))
10013       continue;
10014     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
10015     Done.insert(Succ);
10016   }
10017   JumpTableMBB->normalizeSuccProbs();
10018 
10019   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
10020                      ->createJumpTableIndex(Table);
10021 
10022   // Set up the jump table info.
10023   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
10024   JumpTableHeader JTH(Clusters[First].Low->getValue(),
10025                       Clusters[Last].High->getValue(), SI->getCondition(),
10026                       nullptr, false);
10027   JTCases.emplace_back(std::move(JTH), std::move(JT));
10028 
10029   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
10030                                      JTCases.size() - 1, Prob);
10031   return true;
10032 }
10033 
10034 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
10035                                          const SwitchInst *SI,
10036                                          MachineBasicBlock *DefaultMBB) {
10037 #ifndef NDEBUG
10038   // Clusters must be non-empty, sorted, and only contain Range clusters.
10039   assert(!Clusters.empty());
10040   for (CaseCluster &C : Clusters)
10041     assert(C.Kind == CC_Range);
10042   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
10043     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
10044 #endif
10045 
10046   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10047   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
10048     return;
10049 
10050   const int64_t N = Clusters.size();
10051   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
10052   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
10053 
10054   if (N < 2 || N < MinJumpTableEntries)
10055     return;
10056 
10057   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
10058   SmallVector<unsigned, 8> TotalCases(N);
10059   for (unsigned i = 0; i < N; ++i) {
10060     const APInt &Hi = Clusters[i].High->getValue();
10061     const APInt &Lo = Clusters[i].Low->getValue();
10062     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
10063     if (i != 0)
10064       TotalCases[i] += TotalCases[i - 1];
10065   }
10066 
10067   // Cheap case: the whole range may be suitable for jump table.
10068   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
10069   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
10070   assert(NumCases < UINT64_MAX / 100);
10071   assert(Range >= NumCases);
10072   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
10073     CaseCluster JTCluster;
10074     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
10075       Clusters[0] = JTCluster;
10076       Clusters.resize(1);
10077       return;
10078     }
10079   }
10080 
10081   // The algorithm below is not suitable for -O0.
10082   if (TM.getOptLevel() == CodeGenOpt::None)
10083     return;
10084 
10085   // Split Clusters into minimum number of dense partitions. The algorithm uses
10086   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
10087   // for the Case Statement'" (1994), but builds the MinPartitions array in
10088   // reverse order to make it easier to reconstruct the partitions in ascending
10089   // order. In the choice between two optimal partitionings, it picks the one
10090   // which yields more jump tables.
10091 
10092   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10093   SmallVector<unsigned, 8> MinPartitions(N);
10094   // LastElement[i] is the last element of the partition starting at i.
10095   SmallVector<unsigned, 8> LastElement(N);
10096   // PartitionsScore[i] is used to break ties when choosing between two
10097   // partitionings resulting in the same number of partitions.
10098   SmallVector<unsigned, 8> PartitionsScore(N);
10099   // For PartitionsScore, a small number of comparisons is considered as good as
10100   // a jump table and a single comparison is considered better than a jump
10101   // table.
10102   enum PartitionScores : unsigned {
10103     NoTable = 0,
10104     Table = 1,
10105     FewCases = 1,
10106     SingleCase = 2
10107   };
10108 
10109   // Base case: There is only one way to partition Clusters[N-1].
10110   MinPartitions[N - 1] = 1;
10111   LastElement[N - 1] = N - 1;
10112   PartitionsScore[N - 1] = PartitionScores::SingleCase;
10113 
10114   // Note: loop indexes are signed to avoid underflow.
10115   for (int64_t i = N - 2; i >= 0; i--) {
10116     // Find optimal partitioning of Clusters[i..N-1].
10117     // Baseline: Put Clusters[i] into a partition on its own.
10118     MinPartitions[i] = MinPartitions[i + 1] + 1;
10119     LastElement[i] = i;
10120     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
10121 
10122     // Search for a solution that results in fewer partitions.
10123     for (int64_t j = N - 1; j > i; j--) {
10124       // Try building a partition from Clusters[i..j].
10125       uint64_t Range = getJumpTableRange(Clusters, i, j);
10126       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
10127       assert(NumCases < UINT64_MAX / 100);
10128       assert(Range >= NumCases);
10129       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
10130         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10131         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
10132         int64_t NumEntries = j - i + 1;
10133 
10134         if (NumEntries == 1)
10135           Score += PartitionScores::SingleCase;
10136         else if (NumEntries <= SmallNumberOfEntries)
10137           Score += PartitionScores::FewCases;
10138         else if (NumEntries >= MinJumpTableEntries)
10139           Score += PartitionScores::Table;
10140 
10141         // If this leads to fewer partitions, or to the same number of
10142         // partitions with better score, it is a better partitioning.
10143         if (NumPartitions < MinPartitions[i] ||
10144             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
10145           MinPartitions[i] = NumPartitions;
10146           LastElement[i] = j;
10147           PartitionsScore[i] = Score;
10148         }
10149       }
10150     }
10151   }
10152 
10153   // Iterate over the partitions, replacing some with jump tables in-place.
10154   unsigned DstIndex = 0;
10155   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10156     Last = LastElement[First];
10157     assert(Last >= First);
10158     assert(DstIndex <= First);
10159     unsigned NumClusters = Last - First + 1;
10160 
10161     CaseCluster JTCluster;
10162     if (NumClusters >= MinJumpTableEntries &&
10163         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
10164       Clusters[DstIndex++] = JTCluster;
10165     } else {
10166       for (unsigned I = First; I <= Last; ++I)
10167         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
10168     }
10169   }
10170   Clusters.resize(DstIndex);
10171 }
10172 
10173 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
10174                                         unsigned First, unsigned Last,
10175                                         const SwitchInst *SI,
10176                                         CaseCluster &BTCluster) {
10177   assert(First <= Last);
10178   if (First == Last)
10179     return false;
10180 
10181   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10182   unsigned NumCmps = 0;
10183   for (int64_t I = First; I <= Last; ++I) {
10184     assert(Clusters[I].Kind == CC_Range);
10185     Dests.set(Clusters[I].MBB->getNumber());
10186     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
10187   }
10188   unsigned NumDests = Dests.count();
10189 
10190   APInt Low = Clusters[First].Low->getValue();
10191   APInt High = Clusters[Last].High->getValue();
10192   assert(Low.slt(High));
10193 
10194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10195   const DataLayout &DL = DAG.getDataLayout();
10196   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
10197     return false;
10198 
10199   APInt LowBound;
10200   APInt CmpRange;
10201 
10202   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
10203   assert(TLI.rangeFitsInWord(Low, High, DL) &&
10204          "Case range must fit in bit mask!");
10205 
10206   // Check if the clusters cover a contiguous range such that no value in the
10207   // range will jump to the default statement.
10208   bool ContiguousRange = true;
10209   for (int64_t I = First + 1; I <= Last; ++I) {
10210     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
10211       ContiguousRange = false;
10212       break;
10213     }
10214   }
10215 
10216   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
10217     // Optimize the case where all the case values fit in a word without having
10218     // to subtract minValue. In this case, we can optimize away the subtraction.
10219     LowBound = APInt::getNullValue(Low.getBitWidth());
10220     CmpRange = High;
10221     ContiguousRange = false;
10222   } else {
10223     LowBound = Low;
10224     CmpRange = High - Low;
10225   }
10226 
10227   CaseBitsVector CBV;
10228   auto TotalProb = BranchProbability::getZero();
10229   for (unsigned i = First; i <= Last; ++i) {
10230     // Find the CaseBits for this destination.
10231     unsigned j;
10232     for (j = 0; j < CBV.size(); ++j)
10233       if (CBV[j].BB == Clusters[i].MBB)
10234         break;
10235     if (j == CBV.size())
10236       CBV.push_back(
10237           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10238     CaseBits *CB = &CBV[j];
10239 
10240     // Update Mask, Bits and ExtraProb.
10241     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10242     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10243     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10244     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10245     CB->Bits += Hi - Lo + 1;
10246     CB->ExtraProb += Clusters[i].Prob;
10247     TotalProb += Clusters[i].Prob;
10248   }
10249 
10250   BitTestInfo BTI;
10251   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10252     // Sort by probability first, number of bits second, bit mask third.
10253     if (a.ExtraProb != b.ExtraProb)
10254       return a.ExtraProb > b.ExtraProb;
10255     if (a.Bits != b.Bits)
10256       return a.Bits > b.Bits;
10257     return a.Mask < b.Mask;
10258   });
10259 
10260   for (auto &CB : CBV) {
10261     MachineBasicBlock *BitTestBB =
10262         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10263     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10264   }
10265   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10266                             SI->getCondition(), -1U, MVT::Other, false,
10267                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10268                             TotalProb);
10269 
10270   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10271                                     BitTestCases.size() - 1, TotalProb);
10272   return true;
10273 }
10274 
10275 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10276                                               const SwitchInst *SI) {
10277 // Partition Clusters into as few subsets as possible, where each subset has a
10278 // range that fits in a machine word and has <= 3 unique destinations.
10279 
10280 #ifndef NDEBUG
10281   // Clusters must be sorted and contain Range or JumpTable clusters.
10282   assert(!Clusters.empty());
10283   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10284   for (const CaseCluster &C : Clusters)
10285     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10286   for (unsigned i = 1; i < Clusters.size(); ++i)
10287     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10288 #endif
10289 
10290   // The algorithm below is not suitable for -O0.
10291   if (TM.getOptLevel() == CodeGenOpt::None)
10292     return;
10293 
10294   // If target does not have legal shift left, do not emit bit tests at all.
10295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10296   const DataLayout &DL = DAG.getDataLayout();
10297 
10298   EVT PTy = TLI.getPointerTy(DL);
10299   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10300     return;
10301 
10302   int BitWidth = PTy.getSizeInBits();
10303   const int64_t N = Clusters.size();
10304 
10305   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10306   SmallVector<unsigned, 8> MinPartitions(N);
10307   // LastElement[i] is the last element of the partition starting at i.
10308   SmallVector<unsigned, 8> LastElement(N);
10309 
10310   // FIXME: This might not be the best algorithm for finding bit test clusters.
10311 
10312   // Base case: There is only one way to partition Clusters[N-1].
10313   MinPartitions[N - 1] = 1;
10314   LastElement[N - 1] = N - 1;
10315 
10316   // Note: loop indexes are signed to avoid underflow.
10317   for (int64_t i = N - 2; i >= 0; --i) {
10318     // Find optimal partitioning of Clusters[i..N-1].
10319     // Baseline: Put Clusters[i] into a partition on its own.
10320     MinPartitions[i] = MinPartitions[i + 1] + 1;
10321     LastElement[i] = i;
10322 
10323     // Search for a solution that results in fewer partitions.
10324     // Note: the search is limited by BitWidth, reducing time complexity.
10325     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10326       // Try building a partition from Clusters[i..j].
10327 
10328       // Check the range.
10329       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10330                                Clusters[j].High->getValue(), DL))
10331         continue;
10332 
10333       // Check nbr of destinations and cluster types.
10334       // FIXME: This works, but doesn't seem very efficient.
10335       bool RangesOnly = true;
10336       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10337       for (int64_t k = i; k <= j; k++) {
10338         if (Clusters[k].Kind != CC_Range) {
10339           RangesOnly = false;
10340           break;
10341         }
10342         Dests.set(Clusters[k].MBB->getNumber());
10343       }
10344       if (!RangesOnly || Dests.count() > 3)
10345         break;
10346 
10347       // Check if it's a better partition.
10348       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10349       if (NumPartitions < MinPartitions[i]) {
10350         // Found a better partition.
10351         MinPartitions[i] = NumPartitions;
10352         LastElement[i] = j;
10353       }
10354     }
10355   }
10356 
10357   // Iterate over the partitions, replacing with bit-test clusters in-place.
10358   unsigned DstIndex = 0;
10359   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10360     Last = LastElement[First];
10361     assert(First <= Last);
10362     assert(DstIndex <= First);
10363 
10364     CaseCluster BitTestCluster;
10365     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10366       Clusters[DstIndex++] = BitTestCluster;
10367     } else {
10368       size_t NumClusters = Last - First + 1;
10369       std::memmove(&Clusters[DstIndex], &Clusters[First],
10370                    sizeof(Clusters[0]) * NumClusters);
10371       DstIndex += NumClusters;
10372     }
10373   }
10374   Clusters.resize(DstIndex);
10375 }
10376 
10377 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10378                                         MachineBasicBlock *SwitchMBB,
10379                                         MachineBasicBlock *DefaultMBB) {
10380   MachineFunction *CurMF = FuncInfo.MF;
10381   MachineBasicBlock *NextMBB = nullptr;
10382   MachineFunction::iterator BBI(W.MBB);
10383   if (++BBI != FuncInfo.MF->end())
10384     NextMBB = &*BBI;
10385 
10386   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10387 
10388   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10389 
10390   if (Size == 2 && W.MBB == SwitchMBB) {
10391     // If any two of the cases has the same destination, and if one value
10392     // is the same as the other, but has one bit unset that the other has set,
10393     // use bit manipulation to do two compares at once.  For example:
10394     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10395     // TODO: This could be extended to merge any 2 cases in switches with 3
10396     // cases.
10397     // TODO: Handle cases where W.CaseBB != SwitchBB.
10398     CaseCluster &Small = *W.FirstCluster;
10399     CaseCluster &Big = *W.LastCluster;
10400 
10401     if (Small.Low == Small.High && Big.Low == Big.High &&
10402         Small.MBB == Big.MBB) {
10403       const APInt &SmallValue = Small.Low->getValue();
10404       const APInt &BigValue = Big.Low->getValue();
10405 
10406       // Check that there is only one bit different.
10407       APInt CommonBit = BigValue ^ SmallValue;
10408       if (CommonBit.isPowerOf2()) {
10409         SDValue CondLHS = getValue(Cond);
10410         EVT VT = CondLHS.getValueType();
10411         SDLoc DL = getCurSDLoc();
10412 
10413         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10414                                  DAG.getConstant(CommonBit, DL, VT));
10415         SDValue Cond = DAG.getSetCC(
10416             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10417             ISD::SETEQ);
10418 
10419         // Update successor info.
10420         // Both Small and Big will jump to Small.BB, so we sum up the
10421         // probabilities.
10422         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10423         if (BPI)
10424           addSuccessorWithProb(
10425               SwitchMBB, DefaultMBB,
10426               // The default destination is the first successor in IR.
10427               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10428         else
10429           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10430 
10431         // Insert the true branch.
10432         SDValue BrCond =
10433             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10434                         DAG.getBasicBlock(Small.MBB));
10435         // Insert the false branch.
10436         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10437                              DAG.getBasicBlock(DefaultMBB));
10438 
10439         DAG.setRoot(BrCond);
10440         return;
10441       }
10442     }
10443   }
10444 
10445   if (TM.getOptLevel() != CodeGenOpt::None) {
10446     // Here, we order cases by probability so the most likely case will be
10447     // checked first. However, two clusters can have the same probability in
10448     // which case their relative ordering is non-deterministic. So we use Low
10449     // as a tie-breaker as clusters are guaranteed to never overlap.
10450     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10451                [](const CaseCluster &a, const CaseCluster &b) {
10452       return a.Prob != b.Prob ?
10453              a.Prob > b.Prob :
10454              a.Low->getValue().slt(b.Low->getValue());
10455     });
10456 
10457     // Rearrange the case blocks so that the last one falls through if possible
10458     // without changing the order of probabilities.
10459     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10460       --I;
10461       if (I->Prob > W.LastCluster->Prob)
10462         break;
10463       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10464         std::swap(*I, *W.LastCluster);
10465         break;
10466       }
10467     }
10468   }
10469 
10470   // Compute total probability.
10471   BranchProbability DefaultProb = W.DefaultProb;
10472   BranchProbability UnhandledProbs = DefaultProb;
10473   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10474     UnhandledProbs += I->Prob;
10475 
10476   MachineBasicBlock *CurMBB = W.MBB;
10477   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10478     bool FallthroughUnreachable = false;
10479     MachineBasicBlock *Fallthrough;
10480     if (I == W.LastCluster) {
10481       // For the last cluster, fall through to the default destination.
10482       Fallthrough = DefaultMBB;
10483       FallthroughUnreachable = isa<UnreachableInst>(
10484           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10485     } else {
10486       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10487       CurMF->insert(BBI, Fallthrough);
10488       // Put Cond in a virtual register to make it available from the new blocks.
10489       ExportFromCurrentBlock(Cond);
10490     }
10491     UnhandledProbs -= I->Prob;
10492 
10493     switch (I->Kind) {
10494       case CC_JumpTable: {
10495         // FIXME: Optimize away range check based on pivot comparisons.
10496         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10497         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10498 
10499         // The jump block hasn't been inserted yet; insert it here.
10500         MachineBasicBlock *JumpMBB = JT->MBB;
10501         CurMF->insert(BBI, JumpMBB);
10502 
10503         auto JumpProb = I->Prob;
10504         auto FallthroughProb = UnhandledProbs;
10505 
10506         // If the default statement is a target of the jump table, we evenly
10507         // distribute the default probability to successors of CurMBB. Also
10508         // update the probability on the edge from JumpMBB to Fallthrough.
10509         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10510                                               SE = JumpMBB->succ_end();
10511              SI != SE; ++SI) {
10512           if (*SI == DefaultMBB) {
10513             JumpProb += DefaultProb / 2;
10514             FallthroughProb -= DefaultProb / 2;
10515             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10516             JumpMBB->normalizeSuccProbs();
10517             break;
10518           }
10519         }
10520 
10521         if (FallthroughUnreachable) {
10522           // Skip the range check if the fallthrough block is unreachable.
10523           JTH->OmitRangeCheck = true;
10524         }
10525 
10526         if (!JTH->OmitRangeCheck)
10527           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10528         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10529         CurMBB->normalizeSuccProbs();
10530 
10531         // The jump table header will be inserted in our current block, do the
10532         // range check, and fall through to our fallthrough block.
10533         JTH->HeaderBB = CurMBB;
10534         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10535 
10536         // If we're in the right place, emit the jump table header right now.
10537         if (CurMBB == SwitchMBB) {
10538           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10539           JTH->Emitted = true;
10540         }
10541         break;
10542       }
10543       case CC_BitTests: {
10544         // FIXME: If Fallthrough is unreachable, skip the range check.
10545 
10546         // FIXME: Optimize away range check based on pivot comparisons.
10547         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10548 
10549         // The bit test blocks haven't been inserted yet; insert them here.
10550         for (BitTestCase &BTC : BTB->Cases)
10551           CurMF->insert(BBI, BTC.ThisBB);
10552 
10553         // Fill in fields of the BitTestBlock.
10554         BTB->Parent = CurMBB;
10555         BTB->Default = Fallthrough;
10556 
10557         BTB->DefaultProb = UnhandledProbs;
10558         // If the cases in bit test don't form a contiguous range, we evenly
10559         // distribute the probability on the edge to Fallthrough to two
10560         // successors of CurMBB.
10561         if (!BTB->ContiguousRange) {
10562           BTB->Prob += DefaultProb / 2;
10563           BTB->DefaultProb -= DefaultProb / 2;
10564         }
10565 
10566         // If we're in the right place, emit the bit test header right now.
10567         if (CurMBB == SwitchMBB) {
10568           visitBitTestHeader(*BTB, SwitchMBB);
10569           BTB->Emitted = true;
10570         }
10571         break;
10572       }
10573       case CC_Range: {
10574         const Value *RHS, *LHS, *MHS;
10575         ISD::CondCode CC;
10576         if (I->Low == I->High) {
10577           // Check Cond == I->Low.
10578           CC = ISD::SETEQ;
10579           LHS = Cond;
10580           RHS=I->Low;
10581           MHS = nullptr;
10582         } else {
10583           // Check I->Low <= Cond <= I->High.
10584           CC = ISD::SETLE;
10585           LHS = I->Low;
10586           MHS = Cond;
10587           RHS = I->High;
10588         }
10589 
10590         // If Fallthrough is unreachable, fold away the comparison.
10591         if (FallthroughUnreachable)
10592           CC = ISD::SETTRUE;
10593 
10594         // The false probability is the sum of all unhandled cases.
10595         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10596                      getCurSDLoc(), I->Prob, UnhandledProbs);
10597 
10598         if (CurMBB == SwitchMBB)
10599           visitSwitchCase(CB, SwitchMBB);
10600         else
10601           SwitchCases.push_back(CB);
10602 
10603         break;
10604       }
10605     }
10606     CurMBB = Fallthrough;
10607   }
10608 }
10609 
10610 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10611                                               CaseClusterIt First,
10612                                               CaseClusterIt Last) {
10613   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10614     if (X.Prob != CC.Prob)
10615       return X.Prob > CC.Prob;
10616 
10617     // Ties are broken by comparing the case value.
10618     return X.Low->getValue().slt(CC.Low->getValue());
10619   });
10620 }
10621 
10622 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10623                                         const SwitchWorkListItem &W,
10624                                         Value *Cond,
10625                                         MachineBasicBlock *SwitchMBB) {
10626   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10627          "Clusters not sorted?");
10628 
10629   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10630 
10631   // Balance the tree based on branch probabilities to create a near-optimal (in
10632   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10633   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10634   CaseClusterIt LastLeft = W.FirstCluster;
10635   CaseClusterIt FirstRight = W.LastCluster;
10636   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10637   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10638 
10639   // Move LastLeft and FirstRight towards each other from opposite directions to
10640   // find a partitioning of the clusters which balances the probability on both
10641   // sides. If LeftProb and RightProb are equal, alternate which side is
10642   // taken to ensure 0-probability nodes are distributed evenly.
10643   unsigned I = 0;
10644   while (LastLeft + 1 < FirstRight) {
10645     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10646       LeftProb += (++LastLeft)->Prob;
10647     else
10648       RightProb += (--FirstRight)->Prob;
10649     I++;
10650   }
10651 
10652   while (true) {
10653     // Our binary search tree differs from a typical BST in that ours can have up
10654     // to three values in each leaf. The pivot selection above doesn't take that
10655     // into account, which means the tree might require more nodes and be less
10656     // efficient. We compensate for this here.
10657 
10658     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10659     unsigned NumRight = W.LastCluster - FirstRight + 1;
10660 
10661     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10662       // If one side has less than 3 clusters, and the other has more than 3,
10663       // consider taking a cluster from the other side.
10664 
10665       if (NumLeft < NumRight) {
10666         // Consider moving the first cluster on the right to the left side.
10667         CaseCluster &CC = *FirstRight;
10668         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10669         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10670         if (LeftSideRank <= RightSideRank) {
10671           // Moving the cluster to the left does not demote it.
10672           ++LastLeft;
10673           ++FirstRight;
10674           continue;
10675         }
10676       } else {
10677         assert(NumRight < NumLeft);
10678         // Consider moving the last element on the left to the right side.
10679         CaseCluster &CC = *LastLeft;
10680         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10681         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10682         if (RightSideRank <= LeftSideRank) {
10683           // Moving the cluster to the right does not demot it.
10684           --LastLeft;
10685           --FirstRight;
10686           continue;
10687         }
10688       }
10689     }
10690     break;
10691   }
10692 
10693   assert(LastLeft + 1 == FirstRight);
10694   assert(LastLeft >= W.FirstCluster);
10695   assert(FirstRight <= W.LastCluster);
10696 
10697   // Use the first element on the right as pivot since we will make less-than
10698   // comparisons against it.
10699   CaseClusterIt PivotCluster = FirstRight;
10700   assert(PivotCluster > W.FirstCluster);
10701   assert(PivotCluster <= W.LastCluster);
10702 
10703   CaseClusterIt FirstLeft = W.FirstCluster;
10704   CaseClusterIt LastRight = W.LastCluster;
10705 
10706   const ConstantInt *Pivot = PivotCluster->Low;
10707 
10708   // New blocks will be inserted immediately after the current one.
10709   MachineFunction::iterator BBI(W.MBB);
10710   ++BBI;
10711 
10712   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10713   // we can branch to its destination directly if it's squeezed exactly in
10714   // between the known lower bound and Pivot - 1.
10715   MachineBasicBlock *LeftMBB;
10716   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10717       FirstLeft->Low == W.GE &&
10718       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10719     LeftMBB = FirstLeft->MBB;
10720   } else {
10721     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10722     FuncInfo.MF->insert(BBI, LeftMBB);
10723     WorkList.push_back(
10724         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10725     // Put Cond in a virtual register to make it available from the new blocks.
10726     ExportFromCurrentBlock(Cond);
10727   }
10728 
10729   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10730   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10731   // directly if RHS.High equals the current upper bound.
10732   MachineBasicBlock *RightMBB;
10733   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10734       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10735     RightMBB = FirstRight->MBB;
10736   } else {
10737     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10738     FuncInfo.MF->insert(BBI, RightMBB);
10739     WorkList.push_back(
10740         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10741     // Put Cond in a virtual register to make it available from the new blocks.
10742     ExportFromCurrentBlock(Cond);
10743   }
10744 
10745   // Create the CaseBlock record that will be used to lower the branch.
10746   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10747                getCurSDLoc(), LeftProb, RightProb);
10748 
10749   if (W.MBB == SwitchMBB)
10750     visitSwitchCase(CB, SwitchMBB);
10751   else
10752     SwitchCases.push_back(CB);
10753 }
10754 
10755 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10756 // from the swith statement.
10757 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10758                                             BranchProbability PeeledCaseProb) {
10759   if (PeeledCaseProb == BranchProbability::getOne())
10760     return BranchProbability::getZero();
10761   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10762 
10763   uint32_t Numerator = CaseProb.getNumerator();
10764   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10765   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10766 }
10767 
10768 // Try to peel the top probability case if it exceeds the threshold.
10769 // Return current MachineBasicBlock for the switch statement if the peeling
10770 // does not occur.
10771 // If the peeling is performed, return the newly created MachineBasicBlock
10772 // for the peeled switch statement. Also update Clusters to remove the peeled
10773 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10774 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10775     const SwitchInst &SI, CaseClusterVector &Clusters,
10776     BranchProbability &PeeledCaseProb) {
10777   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10778   // Don't perform if there is only one cluster or optimizing for size.
10779   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10780       TM.getOptLevel() == CodeGenOpt::None ||
10781       SwitchMBB->getParent()->getFunction().hasMinSize())
10782     return SwitchMBB;
10783 
10784   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10785   unsigned PeeledCaseIndex = 0;
10786   bool SwitchPeeled = false;
10787   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10788     CaseCluster &CC = Clusters[Index];
10789     if (CC.Prob < TopCaseProb)
10790       continue;
10791     TopCaseProb = CC.Prob;
10792     PeeledCaseIndex = Index;
10793     SwitchPeeled = true;
10794   }
10795   if (!SwitchPeeled)
10796     return SwitchMBB;
10797 
10798   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10799                     << TopCaseProb << "\n");
10800 
10801   // Record the MBB for the peeled switch statement.
10802   MachineFunction::iterator BBI(SwitchMBB);
10803   ++BBI;
10804   MachineBasicBlock *PeeledSwitchMBB =
10805       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10806   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10807 
10808   ExportFromCurrentBlock(SI.getCondition());
10809   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10810   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10811                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10812   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10813 
10814   Clusters.erase(PeeledCaseIt);
10815   for (CaseCluster &CC : Clusters) {
10816     LLVM_DEBUG(
10817         dbgs() << "Scale the probablity for one cluster, before scaling: "
10818                << CC.Prob << "\n");
10819     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10820     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10821   }
10822   PeeledCaseProb = TopCaseProb;
10823   return PeeledSwitchMBB;
10824 }
10825 
10826 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10827   // Extract cases from the switch.
10828   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10829   CaseClusterVector Clusters;
10830   Clusters.reserve(SI.getNumCases());
10831   for (auto I : SI.cases()) {
10832     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10833     const ConstantInt *CaseVal = I.getCaseValue();
10834     BranchProbability Prob =
10835         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10836             : BranchProbability(1, SI.getNumCases() + 1);
10837     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10838   }
10839 
10840   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10841 
10842   // Cluster adjacent cases with the same destination. We do this at all
10843   // optimization levels because it's cheap to do and will make codegen faster
10844   // if there are many clusters.
10845   sortAndRangeify(Clusters);
10846 
10847   // The branch probablity of the peeled case.
10848   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10849   MachineBasicBlock *PeeledSwitchMBB =
10850       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10851 
10852   // If there is only the default destination, jump there directly.
10853   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10854   if (Clusters.empty()) {
10855     assert(PeeledSwitchMBB == SwitchMBB);
10856     SwitchMBB->addSuccessor(DefaultMBB);
10857     if (DefaultMBB != NextBlock(SwitchMBB)) {
10858       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10859                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10860     }
10861     return;
10862   }
10863 
10864   findJumpTables(Clusters, &SI, DefaultMBB);
10865   findBitTestClusters(Clusters, &SI);
10866 
10867   LLVM_DEBUG({
10868     dbgs() << "Case clusters: ";
10869     for (const CaseCluster &C : Clusters) {
10870       if (C.Kind == CC_JumpTable)
10871         dbgs() << "JT:";
10872       if (C.Kind == CC_BitTests)
10873         dbgs() << "BT:";
10874 
10875       C.Low->getValue().print(dbgs(), true);
10876       if (C.Low != C.High) {
10877         dbgs() << '-';
10878         C.High->getValue().print(dbgs(), true);
10879       }
10880       dbgs() << ' ';
10881     }
10882     dbgs() << '\n';
10883   });
10884 
10885   assert(!Clusters.empty());
10886   SwitchWorkList WorkList;
10887   CaseClusterIt First = Clusters.begin();
10888   CaseClusterIt Last = Clusters.end() - 1;
10889   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10890   // Scale the branchprobability for DefaultMBB if the peel occurs and
10891   // DefaultMBB is not replaced.
10892   if (PeeledCaseProb != BranchProbability::getZero() &&
10893       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10894     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10895   WorkList.push_back(
10896       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10897 
10898   while (!WorkList.empty()) {
10899     SwitchWorkListItem W = WorkList.back();
10900     WorkList.pop_back();
10901     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10902 
10903     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10904         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10905       // For optimized builds, lower large range as a balanced binary tree.
10906       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10907       continue;
10908     }
10909 
10910     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10911   }
10912 }
10913