xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 0b4af3a5f4de61552000e4a864f63f2002cc525b)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <iterator>
108 #include <limits>
109 #include <optional>
110 #include <tuple>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 using namespace SwitchCG;
115 
116 #define DEBUG_TYPE "isel"
117 
118 /// LimitFloatPrecision - Generate low-precision inline sequences for
119 /// some float libcalls (6, 8 or 12 bits).
120 static unsigned LimitFloatPrecision;
121 
122 static cl::opt<bool>
123     InsertAssertAlign("insert-assert-align", cl::init(true),
124                       cl::desc("Insert the experimental `assertalign` node."),
125                       cl::ReallyHidden);
126 
127 static cl::opt<unsigned, true>
128     LimitFPPrecision("limit-float-precision",
129                      cl::desc("Generate low-precision inline sequences "
130                               "for some float libcalls"),
131                      cl::location(LimitFloatPrecision), cl::Hidden,
132                      cl::init(0));
133 
134 static cl::opt<unsigned> SwitchPeelThreshold(
135     "switch-peel-threshold", cl::Hidden, cl::init(66),
136     cl::desc("Set the case probability threshold for peeling the case from a "
137              "switch statement. A value greater than 100 will void this "
138              "optimization"));
139 
140 // Limit the width of DAG chains. This is important in general to prevent
141 // DAG-based analysis from blowing up. For example, alias analysis and
142 // load clustering may not complete in reasonable time. It is difficult to
143 // recognize and avoid this situation within each individual analysis, and
144 // future analyses are likely to have the same behavior. Limiting DAG width is
145 // the safe approach and will be especially important with global DAGs.
146 //
147 // MaxParallelChains default is arbitrarily high to avoid affecting
148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
149 // sequence over this should have been converted to llvm.memcpy by the
150 // frontend. It is easy to induce this behavior with .ll code such as:
151 // %buffer = alloca [4096 x i8]
152 // %data = load [4096 x i8]* %argPtr
153 // store [4096 x i8] %data, [4096 x i8]* %buffer
154 static const unsigned MaxParallelChains = 64;
155 
156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
157                                       const SDValue *Parts, unsigned NumParts,
158                                       MVT PartVT, EVT ValueVT, const Value *V,
159                                       SDValue InChain,
160                                       std::optional<CallingConv::ID> CC);
161 
162 /// getCopyFromParts - Create a value that contains the specified legal parts
163 /// combined into the value they represent.  If the parts combine to a type
164 /// larger than ValueVT then AssertOp can be used to specify whether the extra
165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
166 /// (ISD::AssertSext).
167 static SDValue
168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
169                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
170                  SDValue InChain,
171                  std::optional<CallingConv::ID> CC = std::nullopt,
172                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
173   // Let the target assemble the parts if it wants to
174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
175   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
176                                                    PartVT, ValueVT, CC))
177     return Val;
178 
179   if (ValueVT.isVector())
180     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
181                                   InChain, CC);
182 
183   assert(NumParts > 0 && "No parts to assemble!");
184   SDValue Val = Parts[0];
185 
186   if (NumParts > 1) {
187     // Assemble the value from multiple parts.
188     if (ValueVT.isInteger()) {
189       unsigned PartBits = PartVT.getSizeInBits();
190       unsigned ValueBits = ValueVT.getSizeInBits();
191 
192       // Assemble the power of 2 part.
193       unsigned RoundParts = llvm::bit_floor(NumParts);
194       unsigned RoundBits = PartBits * RoundParts;
195       EVT RoundVT = RoundBits == ValueBits ?
196         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
197       SDValue Lo, Hi;
198 
199       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
200 
201       if (RoundParts > 2) {
202         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
203                               InChain);
204         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
205                               PartVT, HalfVT, V, InChain);
206       } else {
207         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
208         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
209       }
210 
211       if (DAG.getDataLayout().isBigEndian())
212         std::swap(Lo, Hi);
213 
214       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
215 
216       if (RoundParts < NumParts) {
217         // Assemble the trailing non-power-of-2 part.
218         unsigned OddParts = NumParts - RoundParts;
219         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
220         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
221                               OddVT, V, InChain, CC);
222 
223         // Combine the round and odd parts.
224         Lo = Val;
225         if (DAG.getDataLayout().isBigEndian())
226           std::swap(Lo, Hi);
227         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
228         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
229         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
230                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
231                                          TLI.getShiftAmountTy(
232                                              TotalVT, DAG.getDataLayout())));
233         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
234         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
235       }
236     } else if (PartVT.isFloatingPoint()) {
237       // FP split into multiple FP parts (for ppcf128)
238       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
239              "Unexpected split");
240       SDValue Lo, Hi;
241       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
242       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
243       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
244         std::swap(Lo, Hi);
245       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
246     } else {
247       // FP split into integer parts (soft fp)
248       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
249              !PartVT.isVector() && "Unexpected split");
250       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
251       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
252                              InChain, CC);
253     }
254   }
255 
256   // There is now one part, held in Val.  Correct it to match ValueVT.
257   // PartEVT is the type of the register class that holds the value.
258   // ValueVT is the type of the inline asm operation.
259   EVT PartEVT = Val.getValueType();
260 
261   if (PartEVT == ValueVT)
262     return Val;
263 
264   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
265       ValueVT.bitsLT(PartEVT)) {
266     // For an FP value in an integer part, we need to truncate to the right
267     // width first.
268     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
269     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
270   }
271 
272   // Handle types that have the same size.
273   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
274     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
275 
276   // Handle types with different sizes.
277   if (PartEVT.isInteger() && ValueVT.isInteger()) {
278     if (ValueVT.bitsLT(PartEVT)) {
279       // For a truncate, see if we have any information to
280       // indicate whether the truncated bits will always be
281       // zero or sign-extension.
282       if (AssertOp)
283         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
284                           DAG.getValueType(ValueVT));
285       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
286     }
287     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
288   }
289 
290   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
291     // FP_ROUND's are always exact here.
292     if (ValueVT.bitsLT(Val.getValueType())) {
293 
294       SDValue NoChange =
295           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
296 
297       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
298               llvm::Attribute::StrictFP)) {
299         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
300                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
301                            NoChange);
302       }
303 
304       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
305     }
306 
307     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
308   }
309 
310   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
311   // then truncating.
312   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
313       ValueVT.bitsLT(PartEVT)) {
314     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
315     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
316   }
317 
318   report_fatal_error("Unknown mismatch in getCopyFromParts!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (CI->isInlineAsm())
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       SDValue InChain,
344                                       std::optional<CallingConv::ID> CallConv) {
345   assert(ValueVT.isVector() && "Not a vector value");
346   assert(NumParts > 0 && "No parts to assemble!");
347   const bool IsABIRegCopy = CallConv.has_value();
348 
349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
350   SDValue Val = Parts[0];
351 
352   // Handle a multi-element vector.
353   if (NumParts > 1) {
354     EVT IntermediateVT;
355     MVT RegisterVT;
356     unsigned NumIntermediates;
357     unsigned NumRegs;
358 
359     if (IsABIRegCopy) {
360       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
361           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
362           NumIntermediates, RegisterVT);
363     } else {
364       NumRegs =
365           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
366                                      NumIntermediates, RegisterVT);
367     }
368 
369     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
370     NumParts = NumRegs; // Silence a compiler warning.
371     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
372     assert(RegisterVT.getSizeInBits() ==
373            Parts[0].getSimpleValueType().getSizeInBits() &&
374            "Part type sizes don't match!");
375 
376     // Assemble the parts into intermediate operands.
377     SmallVector<SDValue, 8> Ops(NumIntermediates);
378     if (NumIntermediates == NumParts) {
379       // If the register was not expanded, truncate or copy the value,
380       // as appropriate.
381       for (unsigned i = 0; i != NumParts; ++i)
382         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
383                                   V, InChain, CallConv);
384     } else if (NumParts > 0) {
385       // If the intermediate type was expanded, build the intermediate
386       // operands from the parts.
387       assert(NumParts % NumIntermediates == 0 &&
388              "Must expand into a divisible number of parts!");
389       unsigned Factor = NumParts / NumIntermediates;
390       for (unsigned i = 0; i != NumIntermediates; ++i)
391         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
392                                   IntermediateVT, V, InChain, CallConv);
393     }
394 
395     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
396     // intermediate operands.
397     EVT BuiltVectorTy =
398         IntermediateVT.isVector()
399             ? EVT::getVectorVT(
400                   *DAG.getContext(), IntermediateVT.getScalarType(),
401                   IntermediateVT.getVectorElementCount() * NumParts)
402             : EVT::getVectorVT(*DAG.getContext(),
403                                IntermediateVT.getScalarType(),
404                                NumIntermediates);
405     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
406                                                 : ISD::BUILD_VECTOR,
407                       DL, BuiltVectorTy, Ops);
408   }
409 
410   // There is now one part, held in Val.  Correct it to match ValueVT.
411   EVT PartEVT = Val.getValueType();
412 
413   if (PartEVT == ValueVT)
414     return Val;
415 
416   if (PartEVT.isVector()) {
417     // Vector/Vector bitcast.
418     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
419       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420 
421     // If the parts vector has more elements than the value vector, then we
422     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
423     // Extract the elements we want.
424     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
425       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
426               ValueVT.getVectorElementCount().getKnownMinValue()) &&
427              (PartEVT.getVectorElementCount().isScalable() ==
428               ValueVT.getVectorElementCount().isScalable()) &&
429              "Cannot narrow, it would be a lossy transformation");
430       PartEVT =
431           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
432                            ValueVT.getVectorElementCount());
433       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
434                         DAG.getVectorIdxConstant(0, DL));
435       if (PartEVT == ValueVT)
436         return Val;
437       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
438         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
441       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443     }
444 
445     // Promoted vector extract
446     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
447   }
448 
449   // Trivial bitcast if the types are the same size and the destination
450   // vector type is legal.
451   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
452       TLI.isTypeLegal(ValueVT))
453     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454 
455   if (ValueVT.getVectorNumElements() != 1) {
456      // Certain ABIs require that vectors are passed as integers. For vectors
457      // are the same size, this is an obvious bitcast.
458      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
459        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
460      } else if (ValueVT.bitsLT(PartEVT)) {
461        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
462        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
463        // Drop the extra bits.
464        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
465        return DAG.getBitcast(ValueVT, Val);
466      }
467 
468      diagnosePossiblyInvalidConstraint(
469          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
470      return DAG.getUNDEF(ValueVT);
471   }
472 
473   // Handle cases such as i8 -> <1 x i1>
474   EVT ValueSVT = ValueVT.getVectorElementType();
475   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
476     unsigned ValueSize = ValueSVT.getSizeInBits();
477     if (ValueSize == PartEVT.getSizeInBits()) {
478       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
479     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
480       // It's possible a scalar floating point type gets softened to integer and
481       // then promoted to a larger integer. If PartEVT is the larger integer
482       // we need to truncate it and then bitcast to the FP type.
483       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
484       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
485       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
486       Val = DAG.getBitcast(ValueSVT, Val);
487     } else {
488       Val = ValueVT.isFloatingPoint()
489                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
490                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
491     }
492   }
493 
494   return DAG.getBuildVector(ValueVT, DL, Val);
495 }
496 
497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
498                                  SDValue Val, SDValue *Parts, unsigned NumParts,
499                                  MVT PartVT, const Value *V,
500                                  std::optional<CallingConv::ID> CallConv);
501 
502 /// getCopyToParts - Create a series of nodes that contain the specified value
503 /// split into legal parts.  If the parts contain more bits than Val, then, for
504 /// integers, ExtendKind can be used to specify how to generate the extra bits.
505 static void
506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
507                unsigned NumParts, MVT PartVT, const Value *V,
508                std::optional<CallingConv::ID> CallConv = std::nullopt,
509                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
510   // Let the target split the parts if it wants to
511   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
512   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
513                                       CallConv))
514     return;
515   EVT ValueVT = Val.getValueType();
516 
517   // Handle the vector case separately.
518   if (ValueVT.isVector())
519     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
520                                 CallConv);
521 
522   unsigned OrigNumParts = NumParts;
523   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
524          "Copying to an illegal type!");
525 
526   if (NumParts == 0)
527     return;
528 
529   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
530   EVT PartEVT = PartVT;
531   if (PartEVT == ValueVT) {
532     assert(NumParts == 1 && "No-op copy with multiple parts!");
533     Parts[0] = Val;
534     return;
535   }
536 
537   unsigned PartBits = PartVT.getSizeInBits();
538   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
539     // If the parts cover more bits than the value has, promote the value.
540     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
541       assert(NumParts == 1 && "Do not know what to promote to!");
542       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
543     } else {
544       if (ValueVT.isFloatingPoint()) {
545         // FP values need to be bitcast, then extended if they are being put
546         // into a larger container.
547         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
548         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
549       }
550       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
551              ValueVT.isInteger() &&
552              "Unknown mismatch!");
553       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
554       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
555       if (PartVT == MVT::x86mmx)
556         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557     }
558   } else if (PartBits == ValueVT.getSizeInBits()) {
559     // Different types of the same size.
560     assert(NumParts == 1 && PartEVT != ValueVT);
561     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
562   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
563     // If the parts cover less bits than value has, truncate the value.
564     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
565            ValueVT.isInteger() &&
566            "Unknown mismatch!");
567     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
568     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
569     if (PartVT == MVT::x86mmx)
570       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571   }
572 
573   // The value may have changed - recompute ValueVT.
574   ValueVT = Val.getValueType();
575   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
576          "Failed to tile the value with PartVT!");
577 
578   if (NumParts == 1) {
579     if (PartEVT != ValueVT) {
580       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
581                                         "scalar-to-vector conversion failed");
582       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
583     }
584 
585     Parts[0] = Val;
586     return;
587   }
588 
589   // Expand the value into multiple parts.
590   if (NumParts & (NumParts - 1)) {
591     // The number of parts is not a power of 2.  Split off and copy the tail.
592     assert(PartVT.isInteger() && ValueVT.isInteger() &&
593            "Do not know what to expand to!");
594     unsigned RoundParts = llvm::bit_floor(NumParts);
595     unsigned RoundBits = RoundParts * PartBits;
596     unsigned OddParts = NumParts - RoundParts;
597     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
598       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
599 
600     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
601                    CallConv);
602 
603     if (DAG.getDataLayout().isBigEndian())
604       // The odd parts were reversed by getCopyToParts - unreverse them.
605       std::reverse(Parts + RoundParts, Parts + NumParts);
606 
607     NumParts = RoundParts;
608     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
609     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
610   }
611 
612   // The number of parts is a power of 2.  Repeatedly bisect the value using
613   // EXTRACT_ELEMENT.
614   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
615                          EVT::getIntegerVT(*DAG.getContext(),
616                                            ValueVT.getSizeInBits()),
617                          Val);
618 
619   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
620     for (unsigned i = 0; i < NumParts; i += StepSize) {
621       unsigned ThisBits = StepSize * PartBits / 2;
622       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
623       SDValue &Part0 = Parts[i];
624       SDValue &Part1 = Parts[i+StepSize/2];
625 
626       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
628       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
629                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
630 
631       if (ThisBits == PartBits && ThisVT != PartVT) {
632         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
633         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
634       }
635     }
636   }
637 
638   if (DAG.getDataLayout().isBigEndian())
639     std::reverse(Parts, Parts + OrigNumParts);
640 }
641 
642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
643                                      const SDLoc &DL, EVT PartVT) {
644   if (!PartVT.isVector())
645     return SDValue();
646 
647   EVT ValueVT = Val.getValueType();
648   EVT PartEVT = PartVT.getVectorElementType();
649   EVT ValueEVT = ValueVT.getVectorElementType();
650   ElementCount PartNumElts = PartVT.getVectorElementCount();
651   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
652 
653   // We only support widening vectors with equivalent element types and
654   // fixed/scalable properties. If a target needs to widen a fixed-length type
655   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
656   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
657       PartNumElts.isScalable() != ValueNumElts.isScalable())
658     return SDValue();
659 
660   // Have a try for bf16 because some targets share its ABI with fp16.
661   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
662     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
663            "Cannot widen to illegal type");
664     Val = DAG.getNode(ISD::BITCAST, DL,
665                       ValueVT.changeVectorElementType(MVT::f16), Val);
666   } else if (PartEVT != ValueEVT) {
667     return SDValue();
668   }
669 
670   // Widening a scalable vector to another scalable vector is done by inserting
671   // the vector into a larger undef one.
672   if (PartNumElts.isScalable())
673     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
674                        Val, DAG.getVectorIdxConstant(0, DL));
675 
676   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
677   // undef elements.
678   SmallVector<SDValue, 16> Ops;
679   DAG.ExtractVectorElements(Val, Ops);
680   SDValue EltUndef = DAG.getUNDEF(PartEVT);
681   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
682 
683   // FIXME: Use CONCAT for 2x -> 4x.
684   return DAG.getBuildVector(PartVT, DL, Ops);
685 }
686 
687 /// getCopyToPartsVector - Create a series of nodes that contain the specified
688 /// value split into legal parts.
689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
690                                  SDValue Val, SDValue *Parts, unsigned NumParts,
691                                  MVT PartVT, const Value *V,
692                                  std::optional<CallingConv::ID> CallConv) {
693   EVT ValueVT = Val.getValueType();
694   assert(ValueVT.isVector() && "Not a vector");
695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
696   const bool IsABIRegCopy = CallConv.has_value();
697 
698   if (NumParts == 1) {
699     EVT PartEVT = PartVT;
700     if (PartEVT == ValueVT) {
701       // Nothing to do.
702     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
703       // Bitconvert vector->vector case.
704       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
705     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
706       Val = Widened;
707     } else if (PartVT.isVector() &&
708                PartEVT.getVectorElementType().bitsGE(
709                    ValueVT.getVectorElementType()) &&
710                PartEVT.getVectorElementCount() ==
711                    ValueVT.getVectorElementCount()) {
712 
713       // Promoted vector extract
714       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
715     } else if (PartEVT.isVector() &&
716                PartEVT.getVectorElementType() !=
717                    ValueVT.getVectorElementType() &&
718                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
719                    TargetLowering::TypeWidenVector) {
720       // Combination of widening and promotion.
721       EVT WidenVT =
722           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
723                            PartVT.getVectorElementCount());
724       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
725       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
726     } else {
727       // Don't extract an integer from a float vector. This can happen if the
728       // FP type gets softened to integer and then promoted. The promotion
729       // prevents it from being picked up by the earlier bitcast case.
730       if (ValueVT.getVectorElementCount().isScalar() &&
731           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
732         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
733                           DAG.getVectorIdxConstant(0, DL));
734       } else {
735         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
736         assert(PartVT.getFixedSizeInBits() > ValueSize &&
737                "lossy conversion of vector to scalar type");
738         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
739         Val = DAG.getBitcast(IntermediateType, Val);
740         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
741       }
742     }
743 
744     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
745     Parts[0] = Val;
746     return;
747   }
748 
749   // Handle a multi-element vector.
750   EVT IntermediateVT;
751   MVT RegisterVT;
752   unsigned NumIntermediates;
753   unsigned NumRegs;
754   if (IsABIRegCopy) {
755     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
756         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
757         RegisterVT);
758   } else {
759     NumRegs =
760         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
761                                    NumIntermediates, RegisterVT);
762   }
763 
764   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
765   NumParts = NumRegs; // Silence a compiler warning.
766   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
767 
768   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
769          "Mixing scalable and fixed vectors when copying in parts");
770 
771   std::optional<ElementCount> DestEltCnt;
772 
773   if (IntermediateVT.isVector())
774     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
775   else
776     DestEltCnt = ElementCount::getFixed(NumIntermediates);
777 
778   EVT BuiltVectorTy = EVT::getVectorVT(
779       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
780 
781   if (ValueVT == BuiltVectorTy) {
782     // Nothing to do.
783   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
784     // Bitconvert vector->vector case.
785     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
786   } else {
787     if (BuiltVectorTy.getVectorElementType().bitsGT(
788             ValueVT.getVectorElementType())) {
789       // Integer promotion.
790       ValueVT = EVT::getVectorVT(*DAG.getContext(),
791                                  BuiltVectorTy.getVectorElementType(),
792                                  ValueVT.getVectorElementCount());
793       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
794     }
795 
796     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
797       Val = Widened;
798     }
799   }
800 
801   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
802 
803   // Split the vector into intermediate operands.
804   SmallVector<SDValue, 8> Ops(NumIntermediates);
805   for (unsigned i = 0; i != NumIntermediates; ++i) {
806     if (IntermediateVT.isVector()) {
807       // This does something sensible for scalable vectors - see the
808       // definition of EXTRACT_SUBVECTOR for further details.
809       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
810       Ops[i] =
811           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
812                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
813     } else {
814       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
815                            DAG.getVectorIdxConstant(i, DL));
816     }
817   }
818 
819   // Split the intermediate operands into legal parts.
820   if (NumParts == NumIntermediates) {
821     // If the register was not expanded, promote or copy the value,
822     // as appropriate.
823     for (unsigned i = 0; i != NumParts; ++i)
824       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
825   } else if (NumParts > 0) {
826     // If the intermediate type was expanded, split each the value into
827     // legal parts.
828     assert(NumIntermediates != 0 && "division by zero");
829     assert(NumParts % NumIntermediates == 0 &&
830            "Must expand into a divisible number of parts!");
831     unsigned Factor = NumParts / NumIntermediates;
832     for (unsigned i = 0; i != NumIntermediates; ++i)
833       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
834                      CallConv);
835   }
836 }
837 
838 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
839                            EVT valuevt, std::optional<CallingConv::ID> CC)
840     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
841       RegCount(1, regs.size()), CallConv(CC) {}
842 
843 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
844                            const DataLayout &DL, unsigned Reg, Type *Ty,
845                            std::optional<CallingConv::ID> CC) {
846   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
847 
848   CallConv = CC;
849 
850   for (EVT ValueVT : ValueVTs) {
851     unsigned NumRegs =
852         isABIMangled()
853             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
854             : TLI.getNumRegisters(Context, ValueVT);
855     MVT RegisterVT =
856         isABIMangled()
857             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
858             : TLI.getRegisterType(Context, ValueVT);
859     for (unsigned i = 0; i != NumRegs; ++i)
860       Regs.push_back(Reg + i);
861     RegVTs.push_back(RegisterVT);
862     RegCount.push_back(NumRegs);
863     Reg += NumRegs;
864   }
865 }
866 
867 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
868                                       FunctionLoweringInfo &FuncInfo,
869                                       const SDLoc &dl, SDValue &Chain,
870                                       SDValue *Glue, const Value *V) const {
871   // A Value with type {} or [0 x %t] needs no registers.
872   if (ValueVTs.empty())
873     return SDValue();
874 
875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
876 
877   // Assemble the legal parts into the final values.
878   SmallVector<SDValue, 4> Values(ValueVTs.size());
879   SmallVector<SDValue, 8> Parts;
880   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
881     // Copy the legal parts from the registers.
882     EVT ValueVT = ValueVTs[Value];
883     unsigned NumRegs = RegCount[Value];
884     MVT RegisterVT = isABIMangled()
885                          ? TLI.getRegisterTypeForCallingConv(
886                                *DAG.getContext(), *CallConv, RegVTs[Value])
887                          : RegVTs[Value];
888 
889     Parts.resize(NumRegs);
890     for (unsigned i = 0; i != NumRegs; ++i) {
891       SDValue P;
892       if (!Glue) {
893         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
894       } else {
895         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
896         *Glue = P.getValue(2);
897       }
898 
899       Chain = P.getValue(1);
900       Parts[i] = P;
901 
902       // If the source register was virtual and if we know something about it,
903       // add an assert node.
904       if (!Register::isVirtualRegister(Regs[Part + i]) ||
905           !RegisterVT.isInteger())
906         continue;
907 
908       const FunctionLoweringInfo::LiveOutInfo *LOI =
909         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
910       if (!LOI)
911         continue;
912 
913       unsigned RegSize = RegisterVT.getScalarSizeInBits();
914       unsigned NumSignBits = LOI->NumSignBits;
915       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
916 
917       if (NumZeroBits == RegSize) {
918         // The current value is a zero.
919         // Explicitly express that as it would be easier for
920         // optimizations to kick in.
921         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
922         continue;
923       }
924 
925       // FIXME: We capture more information than the dag can represent.  For
926       // now, just use the tightest assertzext/assertsext possible.
927       bool isSExt;
928       EVT FromVT(MVT::Other);
929       if (NumZeroBits) {
930         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
931         isSExt = false;
932       } else if (NumSignBits > 1) {
933         FromVT =
934             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
935         isSExt = true;
936       } else {
937         continue;
938       }
939       // Add an assertion node.
940       assert(FromVT != MVT::Other);
941       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
942                              RegisterVT, P, DAG.getValueType(FromVT));
943     }
944 
945     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
946                                      RegisterVT, ValueVT, V, Chain, CallConv);
947     Part += NumRegs;
948     Parts.clear();
949   }
950 
951   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
952 }
953 
954 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
955                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
956                                  const Value *V,
957                                  ISD::NodeType PreferredExtendType) const {
958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
959   ISD::NodeType ExtendKind = PreferredExtendType;
960 
961   // Get the list of the values's legal parts.
962   unsigned NumRegs = Regs.size();
963   SmallVector<SDValue, 8> Parts(NumRegs);
964   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
965     unsigned NumParts = RegCount[Value];
966 
967     MVT RegisterVT = isABIMangled()
968                          ? TLI.getRegisterTypeForCallingConv(
969                                *DAG.getContext(), *CallConv, RegVTs[Value])
970                          : RegVTs[Value];
971 
972     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
973       ExtendKind = ISD::ZERO_EXTEND;
974 
975     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
976                    NumParts, RegisterVT, V, CallConv, ExtendKind);
977     Part += NumParts;
978   }
979 
980   // Copy the parts into the registers.
981   SmallVector<SDValue, 8> Chains(NumRegs);
982   for (unsigned i = 0; i != NumRegs; ++i) {
983     SDValue Part;
984     if (!Glue) {
985       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
986     } else {
987       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
988       *Glue = Part.getValue(1);
989     }
990 
991     Chains[i] = Part.getValue(0);
992   }
993 
994   if (NumRegs == 1 || Glue)
995     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
996     // flagged to it. That is the CopyToReg nodes and the user are considered
997     // a single scheduling unit. If we create a TokenFactor and return it as
998     // chain, then the TokenFactor is both a predecessor (operand) of the
999     // user as well as a successor (the TF operands are flagged to the user).
1000     // c1, f1 = CopyToReg
1001     // c2, f2 = CopyToReg
1002     // c3     = TokenFactor c1, c2
1003     // ...
1004     //        = op c3, ..., f2
1005     Chain = Chains[NumRegs-1];
1006   else
1007     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1008 }
1009 
1010 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1011                                         unsigned MatchingIdx, const SDLoc &dl,
1012                                         SelectionDAG &DAG,
1013                                         std::vector<SDValue> &Ops) const {
1014   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1015 
1016   InlineAsm::Flag Flag(Code, Regs.size());
1017   if (HasMatching)
1018     Flag.setMatchingOp(MatchingIdx);
1019   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1020     // Put the register class of the virtual registers in the flag word.  That
1021     // way, later passes can recompute register class constraints for inline
1022     // assembly as well as normal instructions.
1023     // Don't do this for tied operands that can use the regclass information
1024     // from the def.
1025     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1026     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1027     Flag.setRegClass(RC->getID());
1028   }
1029 
1030   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1031   Ops.push_back(Res);
1032 
1033   if (Code == InlineAsm::Kind::Clobber) {
1034     // Clobbers should always have a 1:1 mapping with registers, and may
1035     // reference registers that have illegal (e.g. vector) types. Hence, we
1036     // shouldn't try to apply any sort of splitting logic to them.
1037     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1038            "No 1:1 mapping from clobbers to regs?");
1039     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1040     (void)SP;
1041     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1042       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1043       assert(
1044           (Regs[I] != SP ||
1045            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1046           "If we clobbered the stack pointer, MFI should know about it.");
1047     }
1048     return;
1049   }
1050 
1051   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1052     MVT RegisterVT = RegVTs[Value];
1053     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1054                                            RegisterVT);
1055     for (unsigned i = 0; i != NumRegs; ++i) {
1056       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1057       unsigned TheReg = Regs[Reg++];
1058       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1059     }
1060   }
1061 }
1062 
1063 SmallVector<std::pair<unsigned, TypeSize>, 4>
1064 RegsForValue::getRegsAndSizes() const {
1065   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1066   unsigned I = 0;
1067   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1068     unsigned RegCount = std::get<0>(CountAndVT);
1069     MVT RegisterVT = std::get<1>(CountAndVT);
1070     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1071     for (unsigned E = I + RegCount; I != E; ++I)
1072       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1073   }
1074   return OutVec;
1075 }
1076 
1077 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1078                                AssumptionCache *ac,
1079                                const TargetLibraryInfo *li) {
1080   AA = aa;
1081   AC = ac;
1082   GFI = gfi;
1083   LibInfo = li;
1084   Context = DAG.getContext();
1085   LPadToCallSiteMap.clear();
1086   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1087   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1088       *DAG.getMachineFunction().getFunction().getParent());
1089 }
1090 
1091 void SelectionDAGBuilder::clear() {
1092   NodeMap.clear();
1093   UnusedArgNodeMap.clear();
1094   PendingLoads.clear();
1095   PendingExports.clear();
1096   PendingConstrainedFP.clear();
1097   PendingConstrainedFPStrict.clear();
1098   CurInst = nullptr;
1099   HasTailCall = false;
1100   SDNodeOrder = LowestSDNodeOrder;
1101   StatepointLowering.clear();
1102 }
1103 
1104 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1105   DanglingDebugInfoMap.clear();
1106 }
1107 
1108 // Update DAG root to include dependencies on Pending chains.
1109 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1110   SDValue Root = DAG.getRoot();
1111 
1112   if (Pending.empty())
1113     return Root;
1114 
1115   // Add current root to PendingChains, unless we already indirectly
1116   // depend on it.
1117   if (Root.getOpcode() != ISD::EntryToken) {
1118     unsigned i = 0, e = Pending.size();
1119     for (; i != e; ++i) {
1120       assert(Pending[i].getNode()->getNumOperands() > 1);
1121       if (Pending[i].getNode()->getOperand(0) == Root)
1122         break;  // Don't add the root if we already indirectly depend on it.
1123     }
1124 
1125     if (i == e)
1126       Pending.push_back(Root);
1127   }
1128 
1129   if (Pending.size() == 1)
1130     Root = Pending[0];
1131   else
1132     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1133 
1134   DAG.setRoot(Root);
1135   Pending.clear();
1136   return Root;
1137 }
1138 
1139 SDValue SelectionDAGBuilder::getMemoryRoot() {
1140   return updateRoot(PendingLoads);
1141 }
1142 
1143 SDValue SelectionDAGBuilder::getRoot() {
1144   // Chain up all pending constrained intrinsics together with all
1145   // pending loads, by simply appending them to PendingLoads and
1146   // then calling getMemoryRoot().
1147   PendingLoads.reserve(PendingLoads.size() +
1148                        PendingConstrainedFP.size() +
1149                        PendingConstrainedFPStrict.size());
1150   PendingLoads.append(PendingConstrainedFP.begin(),
1151                       PendingConstrainedFP.end());
1152   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1153                       PendingConstrainedFPStrict.end());
1154   PendingConstrainedFP.clear();
1155   PendingConstrainedFPStrict.clear();
1156   return getMemoryRoot();
1157 }
1158 
1159 SDValue SelectionDAGBuilder::getControlRoot() {
1160   // We need to emit pending fpexcept.strict constrained intrinsics,
1161   // so append them to the PendingExports list.
1162   PendingExports.append(PendingConstrainedFPStrict.begin(),
1163                         PendingConstrainedFPStrict.end());
1164   PendingConstrainedFPStrict.clear();
1165   return updateRoot(PendingExports);
1166 }
1167 
1168 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1169                                              DILocalVariable *Variable,
1170                                              DIExpression *Expression,
1171                                              DebugLoc DL) {
1172   assert(Variable && "Missing variable");
1173 
1174   // Check if address has undef value.
1175   if (!Address || isa<UndefValue>(Address) ||
1176       (Address->use_empty() && !isa<Argument>(Address))) {
1177     LLVM_DEBUG(
1178         dbgs()
1179         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1180     return;
1181   }
1182 
1183   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1184 
1185   SDValue &N = NodeMap[Address];
1186   if (!N.getNode() && isa<Argument>(Address))
1187     // Check unused arguments map.
1188     N = UnusedArgNodeMap[Address];
1189   SDDbgValue *SDV;
1190   if (N.getNode()) {
1191     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1192       Address = BCI->getOperand(0);
1193     // Parameters are handled specially.
1194     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1195     if (IsParameter && FINode) {
1196       // Byval parameter. We have a frame index at this point.
1197       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1198                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1199     } else if (isa<Argument>(Address)) {
1200       // Address is an argument, so try to emit its dbg value using
1201       // virtual register info from the FuncInfo.ValueMap.
1202       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1203                                FuncArgumentDbgValueKind::Declare, N);
1204       return;
1205     } else {
1206       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1207                             true, DL, SDNodeOrder);
1208     }
1209     DAG.AddDbgValue(SDV, IsParameter);
1210   } else {
1211     // If Address is an argument then try to emit its dbg value using
1212     // virtual register info from the FuncInfo.ValueMap.
1213     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1214                                   FuncArgumentDbgValueKind::Declare, N)) {
1215       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1216                         << " (could not emit func-arg dbg_value)\n");
1217     }
1218   }
1219   return;
1220 }
1221 
1222 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1223   // Add SDDbgValue nodes for any var locs here. Do so before updating
1224   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1225   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1226     // Add SDDbgValue nodes for any var locs here. Do so before updating
1227     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1228     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1229          It != End; ++It) {
1230       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1231       dropDanglingDebugInfo(Var, It->Expr);
1232       if (It->Values.isKillLocation(It->Expr)) {
1233         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1234         continue;
1235       }
1236       SmallVector<Value *> Values(It->Values.location_ops());
1237       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1238                             It->Values.hasArgList())) {
1239         SmallVector<Value *, 4> Vals;
1240         for (Value *V : It->Values.location_ops())
1241           Vals.push_back(V);
1242         addDanglingDebugInfo(Vals,
1243                              FnVarLocs->getDILocalVariable(It->VariableID),
1244                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1245       }
1246     }
1247   }
1248 
1249   // We must skip DbgVariableRecords if they've already been processed above as
1250   // we have just emitted the debug values resulting from assignment tracking
1251   // analysis, making any existing DbgVariableRecords redundant (and probably
1252   // less correct). We still need to process DbgLabelRecords. This does sink
1253   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1254   // be important as it does so deterministcally and ordering between
1255   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1256   // printing).
1257   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1258   // Is there is any debug-info attached to this instruction, in the form of
1259   // DbgRecord non-instruction debug-info records.
1260   for (DbgRecord &DR : I.getDbgRecordRange()) {
1261     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1262       assert(DLR->getLabel() && "Missing label");
1263       SDDbgLabel *SDV =
1264           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1265       DAG.AddDbgLabel(SDV);
1266       continue;
1267     }
1268 
1269     if (SkipDbgVariableRecords)
1270       continue;
1271     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1272     DILocalVariable *Variable = DVR.getVariable();
1273     DIExpression *Expression = DVR.getExpression();
1274     dropDanglingDebugInfo(Variable, Expression);
1275 
1276     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1277       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1278         continue;
1279       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1280                         << "\n");
1281       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1282                          DVR.getDebugLoc());
1283       continue;
1284     }
1285 
1286     // A DbgVariableRecord with no locations is a kill location.
1287     SmallVector<Value *, 4> Values(DVR.location_ops());
1288     if (Values.empty()) {
1289       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1290                            SDNodeOrder);
1291       continue;
1292     }
1293 
1294     // A DbgVariableRecord with an undef or absent location is also a kill
1295     // location.
1296     if (llvm::any_of(Values,
1297                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1298       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1299                            SDNodeOrder);
1300       continue;
1301     }
1302 
1303     bool IsVariadic = DVR.hasArgList();
1304     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1305                           SDNodeOrder, IsVariadic)) {
1306       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1307                            DVR.getDebugLoc(), SDNodeOrder);
1308     }
1309   }
1310 }
1311 
1312 void SelectionDAGBuilder::visit(const Instruction &I) {
1313   visitDbgInfo(I);
1314 
1315   // Set up outgoing PHI node register values before emitting the terminator.
1316   if (I.isTerminator()) {
1317     HandlePHINodesInSuccessorBlocks(I.getParent());
1318   }
1319 
1320   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1321   if (!isa<DbgInfoIntrinsic>(I))
1322     ++SDNodeOrder;
1323 
1324   CurInst = &I;
1325 
1326   // Set inserted listener only if required.
1327   bool NodeInserted = false;
1328   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1329   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1330   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1331   if (PCSectionsMD || MMRA) {
1332     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1333         DAG, [&](SDNode *) { NodeInserted = true; });
1334   }
1335 
1336   visit(I.getOpcode(), I);
1337 
1338   if (!I.isTerminator() && !HasTailCall &&
1339       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1340     CopyToExportRegsIfNeeded(&I);
1341 
1342   // Handle metadata.
1343   if (PCSectionsMD || MMRA) {
1344     auto It = NodeMap.find(&I);
1345     if (It != NodeMap.end()) {
1346       if (PCSectionsMD)
1347         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1348       if (MMRA)
1349         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1350     } else if (NodeInserted) {
1351       // This should not happen; if it does, don't let it go unnoticed so we can
1352       // fix it. Relevant visit*() function is probably missing a setValue().
1353       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1354              << I.getModule()->getName() << "]\n";
1355       LLVM_DEBUG(I.dump());
1356       assert(false);
1357     }
1358   }
1359 
1360   CurInst = nullptr;
1361 }
1362 
1363 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1364   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1365 }
1366 
1367 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1368   // Note: this doesn't use InstVisitor, because it has to work with
1369   // ConstantExpr's in addition to instructions.
1370   switch (Opcode) {
1371   default: llvm_unreachable("Unknown instruction type encountered!");
1372     // Build the switch statement using the Instruction.def file.
1373 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1374     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1375 #include "llvm/IR/Instruction.def"
1376   }
1377 }
1378 
1379 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1380                                             DILocalVariable *Variable,
1381                                             DebugLoc DL, unsigned Order,
1382                                             SmallVectorImpl<Value *> &Values,
1383                                             DIExpression *Expression) {
1384   // For variadic dbg_values we will now insert an undef.
1385   // FIXME: We can potentially recover these!
1386   SmallVector<SDDbgOperand, 2> Locs;
1387   for (const Value *V : Values) {
1388     auto *Undef = UndefValue::get(V->getType());
1389     Locs.push_back(SDDbgOperand::fromConst(Undef));
1390   }
1391   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1392                                         /*IsIndirect=*/false, DL, Order,
1393                                         /*IsVariadic=*/true);
1394   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1395   return true;
1396 }
1397 
1398 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1399                                                DILocalVariable *Var,
1400                                                DIExpression *Expr,
1401                                                bool IsVariadic, DebugLoc DL,
1402                                                unsigned Order) {
1403   if (IsVariadic) {
1404     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1405     return;
1406   }
1407   // TODO: Dangling debug info will eventually either be resolved or produce
1408   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1409   // between the original dbg.value location and its resolved DBG_VALUE,
1410   // which we should ideally fill with an extra Undef DBG_VALUE.
1411   assert(Values.size() == 1);
1412   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1413 }
1414 
1415 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1416                                                 const DIExpression *Expr) {
1417   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1418     DIVariable *DanglingVariable = DDI.getVariable();
1419     DIExpression *DanglingExpr = DDI.getExpression();
1420     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1421       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1422                         << printDDI(nullptr, DDI) << "\n");
1423       return true;
1424     }
1425     return false;
1426   };
1427 
1428   for (auto &DDIMI : DanglingDebugInfoMap) {
1429     DanglingDebugInfoVector &DDIV = DDIMI.second;
1430 
1431     // If debug info is to be dropped, run it through final checks to see
1432     // whether it can be salvaged.
1433     for (auto &DDI : DDIV)
1434       if (isMatchingDbgValue(DDI))
1435         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1436 
1437     erase_if(DDIV, isMatchingDbgValue);
1438   }
1439 }
1440 
1441 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1442 // generate the debug data structures now that we've seen its definition.
1443 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1444                                                    SDValue Val) {
1445   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1446   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1447     return;
1448 
1449   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1450   for (auto &DDI : DDIV) {
1451     DebugLoc DL = DDI.getDebugLoc();
1452     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1453     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1454     DILocalVariable *Variable = DDI.getVariable();
1455     DIExpression *Expr = DDI.getExpression();
1456     assert(Variable->isValidLocationForIntrinsic(DL) &&
1457            "Expected inlined-at fields to agree");
1458     SDDbgValue *SDV;
1459     if (Val.getNode()) {
1460       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1461       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1462       // we couldn't resolve it directly when examining the DbgValue intrinsic
1463       // in the first place we should not be more successful here). Unless we
1464       // have some test case that prove this to be correct we should avoid
1465       // calling EmitFuncArgumentDbgValue here.
1466       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1467                                     FuncArgumentDbgValueKind::Value, Val)) {
1468         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1469                           << printDDI(V, DDI) << "\n");
1470         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1471         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1472         // inserted after the definition of Val when emitting the instructions
1473         // after ISel. An alternative could be to teach
1474         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1475         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1476                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1477                    << ValSDNodeOrder << "\n");
1478         SDV = getDbgValue(Val, Variable, Expr, DL,
1479                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1480         DAG.AddDbgValue(SDV, false);
1481       } else
1482         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1483                           << printDDI(V, DDI)
1484                           << " in EmitFuncArgumentDbgValue\n");
1485     } else {
1486       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1487                         << "\n");
1488       auto Undef = UndefValue::get(V->getType());
1489       auto SDV =
1490           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1491       DAG.AddDbgValue(SDV, false);
1492     }
1493   }
1494   DDIV.clear();
1495 }
1496 
1497 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1498                                                     DanglingDebugInfo &DDI) {
1499   // TODO: For the variadic implementation, instead of only checking the fail
1500   // state of `handleDebugValue`, we need know specifically which values were
1501   // invalid, so that we attempt to salvage only those values when processing
1502   // a DIArgList.
1503   const Value *OrigV = V;
1504   DILocalVariable *Var = DDI.getVariable();
1505   DIExpression *Expr = DDI.getExpression();
1506   DebugLoc DL = DDI.getDebugLoc();
1507   unsigned SDOrder = DDI.getSDNodeOrder();
1508 
1509   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1510   // that DW_OP_stack_value is desired.
1511   bool StackValue = true;
1512 
1513   // Can this Value can be encoded without any further work?
1514   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1515     return;
1516 
1517   // Attempt to salvage back through as many instructions as possible. Bail if
1518   // a non-instruction is seen, such as a constant expression or global
1519   // variable. FIXME: Further work could recover those too.
1520   while (isa<Instruction>(V)) {
1521     const Instruction &VAsInst = *cast<const Instruction>(V);
1522     // Temporary "0", awaiting real implementation.
1523     SmallVector<uint64_t, 16> Ops;
1524     SmallVector<Value *, 4> AdditionalValues;
1525     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1526                              Expr->getNumLocationOperands(), Ops,
1527                              AdditionalValues);
1528     // If we cannot salvage any further, and haven't yet found a suitable debug
1529     // expression, bail out.
1530     if (!V)
1531       break;
1532 
1533     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1534     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1535     // here for variadic dbg_values, remove that condition.
1536     if (!AdditionalValues.empty())
1537       break;
1538 
1539     // New value and expr now represent this debuginfo.
1540     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1541 
1542     // Some kind of simplification occurred: check whether the operand of the
1543     // salvaged debug expression can be encoded in this DAG.
1544     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1545       LLVM_DEBUG(
1546           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1547                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1548       return;
1549     }
1550   }
1551 
1552   // This was the final opportunity to salvage this debug information, and it
1553   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1554   // any earlier variable location.
1555   assert(OrigV && "V shouldn't be null");
1556   auto *Undef = UndefValue::get(OrigV->getType());
1557   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1558   DAG.AddDbgValue(SDV, false);
1559   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1560                     << printDDI(OrigV, DDI) << "\n");
1561 }
1562 
1563 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1564                                                DIExpression *Expr,
1565                                                DebugLoc DbgLoc,
1566                                                unsigned Order) {
1567   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1568   DIExpression *NewExpr =
1569       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1570   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1571                    /*IsVariadic*/ false);
1572 }
1573 
1574 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1575                                            DILocalVariable *Var,
1576                                            DIExpression *Expr, DebugLoc DbgLoc,
1577                                            unsigned Order, bool IsVariadic) {
1578   if (Values.empty())
1579     return true;
1580 
1581   // Filter EntryValue locations out early.
1582   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1583     return true;
1584 
1585   SmallVector<SDDbgOperand> LocationOps;
1586   SmallVector<SDNode *> Dependencies;
1587   for (const Value *V : Values) {
1588     // Constant value.
1589     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1590         isa<ConstantPointerNull>(V)) {
1591       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1592       continue;
1593     }
1594 
1595     // Look through IntToPtr constants.
1596     if (auto *CE = dyn_cast<ConstantExpr>(V))
1597       if (CE->getOpcode() == Instruction::IntToPtr) {
1598         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1599         continue;
1600       }
1601 
1602     // If the Value is a frame index, we can create a FrameIndex debug value
1603     // without relying on the DAG at all.
1604     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1605       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1606       if (SI != FuncInfo.StaticAllocaMap.end()) {
1607         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1608         continue;
1609       }
1610     }
1611 
1612     // Do not use getValue() in here; we don't want to generate code at
1613     // this point if it hasn't been done yet.
1614     SDValue N = NodeMap[V];
1615     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1616       N = UnusedArgNodeMap[V];
1617     if (N.getNode()) {
1618       // Only emit func arg dbg value for non-variadic dbg.values for now.
1619       if (!IsVariadic &&
1620           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1621                                    FuncArgumentDbgValueKind::Value, N))
1622         return true;
1623       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1624         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1625         // describe stack slot locations.
1626         //
1627         // Consider "int x = 0; int *px = &x;". There are two kinds of
1628         // interesting debug values here after optimization:
1629         //
1630         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1631         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1632         //
1633         // Both describe the direct values of their associated variables.
1634         Dependencies.push_back(N.getNode());
1635         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1636         continue;
1637       }
1638       LocationOps.emplace_back(
1639           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1640       continue;
1641     }
1642 
1643     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1644     // Special rules apply for the first dbg.values of parameter variables in a
1645     // function. Identify them by the fact they reference Argument Values, that
1646     // they're parameters, and they are parameters of the current function. We
1647     // need to let them dangle until they get an SDNode.
1648     bool IsParamOfFunc =
1649         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1650     if (IsParamOfFunc)
1651       return false;
1652 
1653     // The value is not used in this block yet (or it would have an SDNode).
1654     // We still want the value to appear for the user if possible -- if it has
1655     // an associated VReg, we can refer to that instead.
1656     auto VMI = FuncInfo.ValueMap.find(V);
1657     if (VMI != FuncInfo.ValueMap.end()) {
1658       unsigned Reg = VMI->second;
1659       // If this is a PHI node, it may be split up into several MI PHI nodes
1660       // (in FunctionLoweringInfo::set).
1661       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1662                        V->getType(), std::nullopt);
1663       if (RFV.occupiesMultipleRegs()) {
1664         // FIXME: We could potentially support variadic dbg_values here.
1665         if (IsVariadic)
1666           return false;
1667         unsigned Offset = 0;
1668         unsigned BitsToDescribe = 0;
1669         if (auto VarSize = Var->getSizeInBits())
1670           BitsToDescribe = *VarSize;
1671         if (auto Fragment = Expr->getFragmentInfo())
1672           BitsToDescribe = Fragment->SizeInBits;
1673         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1674           // Bail out if all bits are described already.
1675           if (Offset >= BitsToDescribe)
1676             break;
1677           // TODO: handle scalable vectors.
1678           unsigned RegisterSize = RegAndSize.second;
1679           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1680                                       ? BitsToDescribe - Offset
1681                                       : RegisterSize;
1682           auto FragmentExpr = DIExpression::createFragmentExpression(
1683               Expr, Offset, FragmentSize);
1684           if (!FragmentExpr)
1685             continue;
1686           SDDbgValue *SDV = DAG.getVRegDbgValue(
1687               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1688           DAG.AddDbgValue(SDV, false);
1689           Offset += RegisterSize;
1690         }
1691         return true;
1692       }
1693       // We can use simple vreg locations for variadic dbg_values as well.
1694       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1695       continue;
1696     }
1697     // We failed to create a SDDbgOperand for V.
1698     return false;
1699   }
1700 
1701   // We have created a SDDbgOperand for each Value in Values.
1702   // Should use Order instead of SDNodeOrder?
1703   assert(!LocationOps.empty());
1704   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1705                                         /*IsIndirect=*/false, DbgLoc,
1706                                         SDNodeOrder, IsVariadic);
1707   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1708   return true;
1709 }
1710 
1711 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1712   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1713   for (auto &Pair : DanglingDebugInfoMap)
1714     for (auto &DDI : Pair.second)
1715       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1716   clearDanglingDebugInfo();
1717 }
1718 
1719 /// getCopyFromRegs - If there was virtual register allocated for the value V
1720 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1721 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1722   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1723   SDValue Result;
1724 
1725   if (It != FuncInfo.ValueMap.end()) {
1726     Register InReg = It->second;
1727 
1728     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1729                      DAG.getDataLayout(), InReg, Ty,
1730                      std::nullopt); // This is not an ABI copy.
1731     SDValue Chain = DAG.getEntryNode();
1732     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1733                                  V);
1734     resolveDanglingDebugInfo(V, Result);
1735   }
1736 
1737   return Result;
1738 }
1739 
1740 /// getValue - Return an SDValue for the given Value.
1741 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1742   // If we already have an SDValue for this value, use it. It's important
1743   // to do this first, so that we don't create a CopyFromReg if we already
1744   // have a regular SDValue.
1745   SDValue &N = NodeMap[V];
1746   if (N.getNode()) return N;
1747 
1748   // If there's a virtual register allocated and initialized for this
1749   // value, use it.
1750   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1751     return copyFromReg;
1752 
1753   // Otherwise create a new SDValue and remember it.
1754   SDValue Val = getValueImpl(V);
1755   NodeMap[V] = Val;
1756   resolveDanglingDebugInfo(V, Val);
1757   return Val;
1758 }
1759 
1760 /// getNonRegisterValue - Return an SDValue for the given Value, but
1761 /// don't look in FuncInfo.ValueMap for a virtual register.
1762 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1763   // If we already have an SDValue for this value, use it.
1764   SDValue &N = NodeMap[V];
1765   if (N.getNode()) {
1766     if (isIntOrFPConstant(N)) {
1767       // Remove the debug location from the node as the node is about to be used
1768       // in a location which may differ from the original debug location.  This
1769       // is relevant to Constant and ConstantFP nodes because they can appear
1770       // as constant expressions inside PHI nodes.
1771       N->setDebugLoc(DebugLoc());
1772     }
1773     return N;
1774   }
1775 
1776   // Otherwise create a new SDValue and remember it.
1777   SDValue Val = getValueImpl(V);
1778   NodeMap[V] = Val;
1779   resolveDanglingDebugInfo(V, Val);
1780   return Val;
1781 }
1782 
1783 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1784 /// Create an SDValue for the given value.
1785 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1787 
1788   if (const Constant *C = dyn_cast<Constant>(V)) {
1789     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1790 
1791     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1792       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1793 
1794     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1795       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1796 
1797     if (isa<ConstantPointerNull>(C)) {
1798       unsigned AS = V->getType()->getPointerAddressSpace();
1799       return DAG.getConstant(0, getCurSDLoc(),
1800                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1801     }
1802 
1803     if (match(C, m_VScale()))
1804       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1805 
1806     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1807       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1808 
1809     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1810       return DAG.getUNDEF(VT);
1811 
1812     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1813       visit(CE->getOpcode(), *CE);
1814       SDValue N1 = NodeMap[V];
1815       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1816       return N1;
1817     }
1818 
1819     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1820       SmallVector<SDValue, 4> Constants;
1821       for (const Use &U : C->operands()) {
1822         SDNode *Val = getValue(U).getNode();
1823         // If the operand is an empty aggregate, there are no values.
1824         if (!Val) continue;
1825         // Add each leaf value from the operand to the Constants list
1826         // to form a flattened list of all the values.
1827         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1828           Constants.push_back(SDValue(Val, i));
1829       }
1830 
1831       return DAG.getMergeValues(Constants, getCurSDLoc());
1832     }
1833 
1834     if (const ConstantDataSequential *CDS =
1835           dyn_cast<ConstantDataSequential>(C)) {
1836       SmallVector<SDValue, 4> Ops;
1837       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1838         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1839         // Add each leaf value from the operand to the Constants list
1840         // to form a flattened list of all the values.
1841         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1842           Ops.push_back(SDValue(Val, i));
1843       }
1844 
1845       if (isa<ArrayType>(CDS->getType()))
1846         return DAG.getMergeValues(Ops, getCurSDLoc());
1847       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1848     }
1849 
1850     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1851       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1852              "Unknown struct or array constant!");
1853 
1854       SmallVector<EVT, 4> ValueVTs;
1855       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1856       unsigned NumElts = ValueVTs.size();
1857       if (NumElts == 0)
1858         return SDValue(); // empty struct
1859       SmallVector<SDValue, 4> Constants(NumElts);
1860       for (unsigned i = 0; i != NumElts; ++i) {
1861         EVT EltVT = ValueVTs[i];
1862         if (isa<UndefValue>(C))
1863           Constants[i] = DAG.getUNDEF(EltVT);
1864         else if (EltVT.isFloatingPoint())
1865           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1866         else
1867           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1868       }
1869 
1870       return DAG.getMergeValues(Constants, getCurSDLoc());
1871     }
1872 
1873     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1874       return DAG.getBlockAddress(BA, VT);
1875 
1876     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1877       return getValue(Equiv->getGlobalValue());
1878 
1879     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1880       return getValue(NC->getGlobalValue());
1881 
1882     if (VT == MVT::aarch64svcount) {
1883       assert(C->isNullValue() && "Can only zero this target type!");
1884       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1885                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1886     }
1887 
1888     VectorType *VecTy = cast<VectorType>(V->getType());
1889 
1890     // Now that we know the number and type of the elements, get that number of
1891     // elements into the Ops array based on what kind of constant it is.
1892     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1893       SmallVector<SDValue, 16> Ops;
1894       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1895       for (unsigned i = 0; i != NumElements; ++i)
1896         Ops.push_back(getValue(CV->getOperand(i)));
1897 
1898       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1899     }
1900 
1901     if (isa<ConstantAggregateZero>(C)) {
1902       EVT EltVT =
1903           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1904 
1905       SDValue Op;
1906       if (EltVT.isFloatingPoint())
1907         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1908       else
1909         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1910 
1911       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1912     }
1913 
1914     llvm_unreachable("Unknown vector constant");
1915   }
1916 
1917   // If this is a static alloca, generate it as the frameindex instead of
1918   // computation.
1919   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1920     DenseMap<const AllocaInst*, int>::iterator SI =
1921       FuncInfo.StaticAllocaMap.find(AI);
1922     if (SI != FuncInfo.StaticAllocaMap.end())
1923       return DAG.getFrameIndex(
1924           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1925   }
1926 
1927   // If this is an instruction which fast-isel has deferred, select it now.
1928   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1929     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1930 
1931     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1932                      Inst->getType(), std::nullopt);
1933     SDValue Chain = DAG.getEntryNode();
1934     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1935   }
1936 
1937   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1938     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1939 
1940   if (const auto *BB = dyn_cast<BasicBlock>(V))
1941     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1942 
1943   llvm_unreachable("Can't get register for value!");
1944 }
1945 
1946 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1947   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1948   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1949   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1950   bool IsSEH = isAsynchronousEHPersonality(Pers);
1951   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1952   if (!IsSEH)
1953     CatchPadMBB->setIsEHScopeEntry();
1954   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1955   if (IsMSVCCXX || IsCoreCLR)
1956     CatchPadMBB->setIsEHFuncletEntry();
1957 }
1958 
1959 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1960   // Update machine-CFG edge.
1961   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1962   FuncInfo.MBB->addSuccessor(TargetMBB);
1963   TargetMBB->setIsEHCatchretTarget(true);
1964   DAG.getMachineFunction().setHasEHCatchret(true);
1965 
1966   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1967   bool IsSEH = isAsynchronousEHPersonality(Pers);
1968   if (IsSEH) {
1969     // If this is not a fall-through branch or optimizations are switched off,
1970     // emit the branch.
1971     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1972         TM.getOptLevel() == CodeGenOptLevel::None)
1973       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1974                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1975     return;
1976   }
1977 
1978   // Figure out the funclet membership for the catchret's successor.
1979   // This will be used by the FuncletLayout pass to determine how to order the
1980   // BB's.
1981   // A 'catchret' returns to the outer scope's color.
1982   Value *ParentPad = I.getCatchSwitchParentPad();
1983   const BasicBlock *SuccessorColor;
1984   if (isa<ConstantTokenNone>(ParentPad))
1985     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1986   else
1987     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1988   assert(SuccessorColor && "No parent funclet for catchret!");
1989   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1990   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1991 
1992   // Create the terminator node.
1993   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1994                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1995                             DAG.getBasicBlock(SuccessorColorMBB));
1996   DAG.setRoot(Ret);
1997 }
1998 
1999 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2000   // Don't emit any special code for the cleanuppad instruction. It just marks
2001   // the start of an EH scope/funclet.
2002   FuncInfo.MBB->setIsEHScopeEntry();
2003   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2004   if (Pers != EHPersonality::Wasm_CXX) {
2005     FuncInfo.MBB->setIsEHFuncletEntry();
2006     FuncInfo.MBB->setIsCleanupFuncletEntry();
2007   }
2008 }
2009 
2010 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2011 // not match, it is OK to add only the first unwind destination catchpad to the
2012 // successors, because there will be at least one invoke instruction within the
2013 // catch scope that points to the next unwind destination, if one exists, so
2014 // CFGSort cannot mess up with BB sorting order.
2015 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2016 // call within them, and catchpads only consisting of 'catch (...)' have a
2017 // '__cxa_end_catch' call within them, both of which generate invokes in case
2018 // the next unwind destination exists, i.e., the next unwind destination is not
2019 // the caller.)
2020 //
2021 // Having at most one EH pad successor is also simpler and helps later
2022 // transformations.
2023 //
2024 // For example,
2025 // current:
2026 //   invoke void @foo to ... unwind label %catch.dispatch
2027 // catch.dispatch:
2028 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2029 // catch.start:
2030 //   ...
2031 //   ... in this BB or some other child BB dominated by this BB there will be an
2032 //   invoke that points to 'next' BB as an unwind destination
2033 //
2034 // next: ; We don't need to add this to 'current' BB's successor
2035 //   ...
2036 static void findWasmUnwindDestinations(
2037     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2038     BranchProbability Prob,
2039     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2040         &UnwindDests) {
2041   while (EHPadBB) {
2042     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2043     if (isa<CleanupPadInst>(Pad)) {
2044       // Stop on cleanup pads.
2045       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2046       UnwindDests.back().first->setIsEHScopeEntry();
2047       break;
2048     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2049       // Add the catchpad handlers to the possible destinations. We don't
2050       // continue to the unwind destination of the catchswitch for wasm.
2051       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2052         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2053         UnwindDests.back().first->setIsEHScopeEntry();
2054       }
2055       break;
2056     } else {
2057       continue;
2058     }
2059   }
2060 }
2061 
2062 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2063 /// many places it could ultimately go. In the IR, we have a single unwind
2064 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2065 /// This function skips over imaginary basic blocks that hold catchswitch
2066 /// instructions, and finds all the "real" machine
2067 /// basic block destinations. As those destinations may not be successors of
2068 /// EHPadBB, here we also calculate the edge probability to those destinations.
2069 /// The passed-in Prob is the edge probability to EHPadBB.
2070 static void findUnwindDestinations(
2071     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2072     BranchProbability Prob,
2073     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2074         &UnwindDests) {
2075   EHPersonality Personality =
2076     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2077   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2078   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2079   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2080   bool IsSEH = isAsynchronousEHPersonality(Personality);
2081 
2082   if (IsWasmCXX) {
2083     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2084     assert(UnwindDests.size() <= 1 &&
2085            "There should be at most one unwind destination for wasm");
2086     return;
2087   }
2088 
2089   while (EHPadBB) {
2090     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2091     BasicBlock *NewEHPadBB = nullptr;
2092     if (isa<LandingPadInst>(Pad)) {
2093       // Stop on landingpads. They are not funclets.
2094       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2095       break;
2096     } else if (isa<CleanupPadInst>(Pad)) {
2097       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2098       // personalities.
2099       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2100       UnwindDests.back().first->setIsEHScopeEntry();
2101       UnwindDests.back().first->setIsEHFuncletEntry();
2102       break;
2103     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2104       // Add the catchpad handlers to the possible destinations.
2105       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2106         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2107         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2108         if (IsMSVCCXX || IsCoreCLR)
2109           UnwindDests.back().first->setIsEHFuncletEntry();
2110         if (!IsSEH)
2111           UnwindDests.back().first->setIsEHScopeEntry();
2112       }
2113       NewEHPadBB = CatchSwitch->getUnwindDest();
2114     } else {
2115       continue;
2116     }
2117 
2118     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2119     if (BPI && NewEHPadBB)
2120       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2121     EHPadBB = NewEHPadBB;
2122   }
2123 }
2124 
2125 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2126   // Update successor info.
2127   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2128   auto UnwindDest = I.getUnwindDest();
2129   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2130   BranchProbability UnwindDestProb =
2131       (BPI && UnwindDest)
2132           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2133           : BranchProbability::getZero();
2134   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2135   for (auto &UnwindDest : UnwindDests) {
2136     UnwindDest.first->setIsEHPad();
2137     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2138   }
2139   FuncInfo.MBB->normalizeSuccProbs();
2140 
2141   // Create the terminator node.
2142   SDValue Ret =
2143       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2144   DAG.setRoot(Ret);
2145 }
2146 
2147 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2148   report_fatal_error("visitCatchSwitch not yet implemented!");
2149 }
2150 
2151 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2152   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2153   auto &DL = DAG.getDataLayout();
2154   SDValue Chain = getControlRoot();
2155   SmallVector<ISD::OutputArg, 8> Outs;
2156   SmallVector<SDValue, 8> OutVals;
2157 
2158   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2159   // lower
2160   //
2161   //   %val = call <ty> @llvm.experimental.deoptimize()
2162   //   ret <ty> %val
2163   //
2164   // differently.
2165   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2166     LowerDeoptimizingReturn();
2167     return;
2168   }
2169 
2170   if (!FuncInfo.CanLowerReturn) {
2171     unsigned DemoteReg = FuncInfo.DemoteRegister;
2172     const Function *F = I.getParent()->getParent();
2173 
2174     // Emit a store of the return value through the virtual register.
2175     // Leave Outs empty so that LowerReturn won't try to load return
2176     // registers the usual way.
2177     SmallVector<EVT, 1> PtrValueVTs;
2178     ComputeValueVTs(TLI, DL,
2179                     PointerType::get(F->getContext(),
2180                                      DAG.getDataLayout().getAllocaAddrSpace()),
2181                     PtrValueVTs);
2182 
2183     SDValue RetPtr =
2184         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2185     SDValue RetOp = getValue(I.getOperand(0));
2186 
2187     SmallVector<EVT, 4> ValueVTs, MemVTs;
2188     SmallVector<uint64_t, 4> Offsets;
2189     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2190                     &Offsets, 0);
2191     unsigned NumValues = ValueVTs.size();
2192 
2193     SmallVector<SDValue, 4> Chains(NumValues);
2194     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2195     for (unsigned i = 0; i != NumValues; ++i) {
2196       // An aggregate return value cannot wrap around the address space, so
2197       // offsets to its parts don't wrap either.
2198       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2199                                            TypeSize::getFixed(Offsets[i]));
2200 
2201       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2202       if (MemVTs[i] != ValueVTs[i])
2203         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2204       Chains[i] = DAG.getStore(
2205           Chain, getCurSDLoc(), Val,
2206           // FIXME: better loc info would be nice.
2207           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2208           commonAlignment(BaseAlign, Offsets[i]));
2209     }
2210 
2211     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2212                         MVT::Other, Chains);
2213   } else if (I.getNumOperands() != 0) {
2214     SmallVector<EVT, 4> ValueVTs;
2215     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2216     unsigned NumValues = ValueVTs.size();
2217     if (NumValues) {
2218       SDValue RetOp = getValue(I.getOperand(0));
2219 
2220       const Function *F = I.getParent()->getParent();
2221 
2222       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2223           I.getOperand(0)->getType(), F->getCallingConv(),
2224           /*IsVarArg*/ false, DL);
2225 
2226       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2227       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2228         ExtendKind = ISD::SIGN_EXTEND;
2229       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2230         ExtendKind = ISD::ZERO_EXTEND;
2231 
2232       LLVMContext &Context = F->getContext();
2233       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2234 
2235       for (unsigned j = 0; j != NumValues; ++j) {
2236         EVT VT = ValueVTs[j];
2237 
2238         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2239           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2240 
2241         CallingConv::ID CC = F->getCallingConv();
2242 
2243         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2244         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2245         SmallVector<SDValue, 4> Parts(NumParts);
2246         getCopyToParts(DAG, getCurSDLoc(),
2247                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2248                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2249 
2250         // 'inreg' on function refers to return value
2251         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2252         if (RetInReg)
2253           Flags.setInReg();
2254 
2255         if (I.getOperand(0)->getType()->isPointerTy()) {
2256           Flags.setPointer();
2257           Flags.setPointerAddrSpace(
2258               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2259         }
2260 
2261         if (NeedsRegBlock) {
2262           Flags.setInConsecutiveRegs();
2263           if (j == NumValues - 1)
2264             Flags.setInConsecutiveRegsLast();
2265         }
2266 
2267         // Propagate extension type if any
2268         if (ExtendKind == ISD::SIGN_EXTEND)
2269           Flags.setSExt();
2270         else if (ExtendKind == ISD::ZERO_EXTEND)
2271           Flags.setZExt();
2272 
2273         for (unsigned i = 0; i < NumParts; ++i) {
2274           Outs.push_back(ISD::OutputArg(Flags,
2275                                         Parts[i].getValueType().getSimpleVT(),
2276                                         VT, /*isfixed=*/true, 0, 0));
2277           OutVals.push_back(Parts[i]);
2278         }
2279       }
2280     }
2281   }
2282 
2283   // Push in swifterror virtual register as the last element of Outs. This makes
2284   // sure swifterror virtual register will be returned in the swifterror
2285   // physical register.
2286   const Function *F = I.getParent()->getParent();
2287   if (TLI.supportSwiftError() &&
2288       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2289     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2290     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2291     Flags.setSwiftError();
2292     Outs.push_back(ISD::OutputArg(
2293         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2294         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2295     // Create SDNode for the swifterror virtual register.
2296     OutVals.push_back(
2297         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2298                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2299                         EVT(TLI.getPointerTy(DL))));
2300   }
2301 
2302   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2303   CallingConv::ID CallConv =
2304     DAG.getMachineFunction().getFunction().getCallingConv();
2305   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2306       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2307 
2308   // Verify that the target's LowerReturn behaved as expected.
2309   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2310          "LowerReturn didn't return a valid chain!");
2311 
2312   // Update the DAG with the new chain value resulting from return lowering.
2313   DAG.setRoot(Chain);
2314 }
2315 
2316 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2317 /// created for it, emit nodes to copy the value into the virtual
2318 /// registers.
2319 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2320   // Skip empty types
2321   if (V->getType()->isEmptyTy())
2322     return;
2323 
2324   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2325   if (VMI != FuncInfo.ValueMap.end()) {
2326     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2327            "Unused value assigned virtual registers!");
2328     CopyValueToVirtualRegister(V, VMI->second);
2329   }
2330 }
2331 
2332 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2333 /// the current basic block, add it to ValueMap now so that we'll get a
2334 /// CopyTo/FromReg.
2335 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2336   // No need to export constants.
2337   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2338 
2339   // Already exported?
2340   if (FuncInfo.isExportedInst(V)) return;
2341 
2342   Register Reg = FuncInfo.InitializeRegForValue(V);
2343   CopyValueToVirtualRegister(V, Reg);
2344 }
2345 
2346 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2347                                                      const BasicBlock *FromBB) {
2348   // The operands of the setcc have to be in this block.  We don't know
2349   // how to export them from some other block.
2350   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2351     // Can export from current BB.
2352     if (VI->getParent() == FromBB)
2353       return true;
2354 
2355     // Is already exported, noop.
2356     return FuncInfo.isExportedInst(V);
2357   }
2358 
2359   // If this is an argument, we can export it if the BB is the entry block or
2360   // if it is already exported.
2361   if (isa<Argument>(V)) {
2362     if (FromBB->isEntryBlock())
2363       return true;
2364 
2365     // Otherwise, can only export this if it is already exported.
2366     return FuncInfo.isExportedInst(V);
2367   }
2368 
2369   // Otherwise, constants can always be exported.
2370   return true;
2371 }
2372 
2373 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2374 BranchProbability
2375 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2376                                         const MachineBasicBlock *Dst) const {
2377   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2378   const BasicBlock *SrcBB = Src->getBasicBlock();
2379   const BasicBlock *DstBB = Dst->getBasicBlock();
2380   if (!BPI) {
2381     // If BPI is not available, set the default probability as 1 / N, where N is
2382     // the number of successors.
2383     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2384     return BranchProbability(1, SuccSize);
2385   }
2386   return BPI->getEdgeProbability(SrcBB, DstBB);
2387 }
2388 
2389 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2390                                                MachineBasicBlock *Dst,
2391                                                BranchProbability Prob) {
2392   if (!FuncInfo.BPI)
2393     Src->addSuccessorWithoutProb(Dst);
2394   else {
2395     if (Prob.isUnknown())
2396       Prob = getEdgeProbability(Src, Dst);
2397     Src->addSuccessor(Dst, Prob);
2398   }
2399 }
2400 
2401 static bool InBlock(const Value *V, const BasicBlock *BB) {
2402   if (const Instruction *I = dyn_cast<Instruction>(V))
2403     return I->getParent() == BB;
2404   return true;
2405 }
2406 
2407 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2408 /// This function emits a branch and is used at the leaves of an OR or an
2409 /// AND operator tree.
2410 void
2411 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2412                                                   MachineBasicBlock *TBB,
2413                                                   MachineBasicBlock *FBB,
2414                                                   MachineBasicBlock *CurBB,
2415                                                   MachineBasicBlock *SwitchBB,
2416                                                   BranchProbability TProb,
2417                                                   BranchProbability FProb,
2418                                                   bool InvertCond) {
2419   const BasicBlock *BB = CurBB->getBasicBlock();
2420 
2421   // If the leaf of the tree is a comparison, merge the condition into
2422   // the caseblock.
2423   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2424     // The operands of the cmp have to be in this block.  We don't know
2425     // how to export them from some other block.  If this is the first block
2426     // of the sequence, no exporting is needed.
2427     if (CurBB == SwitchBB ||
2428         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2429          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2430       ISD::CondCode Condition;
2431       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2432         ICmpInst::Predicate Pred =
2433             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2434         Condition = getICmpCondCode(Pred);
2435       } else {
2436         const FCmpInst *FC = cast<FCmpInst>(Cond);
2437         FCmpInst::Predicate Pred =
2438             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2439         Condition = getFCmpCondCode(Pred);
2440         if (TM.Options.NoNaNsFPMath)
2441           Condition = getFCmpCodeWithoutNaN(Condition);
2442       }
2443 
2444       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2445                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2446       SL->SwitchCases.push_back(CB);
2447       return;
2448     }
2449   }
2450 
2451   // Create a CaseBlock record representing this branch.
2452   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2453   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2454                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2455   SL->SwitchCases.push_back(CB);
2456 }
2457 
2458 // Collect dependencies on V recursively. This is used for the cost analysis in
2459 // `shouldKeepJumpConditionsTogether`.
2460 static bool collectInstructionDeps(
2461     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2462     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2463     unsigned Depth = 0) {
2464   // Return false if we have an incomplete count.
2465   if (Depth >= SelectionDAG::MaxRecursionDepth)
2466     return false;
2467 
2468   auto *I = dyn_cast<Instruction>(V);
2469   if (I == nullptr)
2470     return true;
2471 
2472   if (Necessary != nullptr) {
2473     // This instruction is necessary for the other side of the condition so
2474     // don't count it.
2475     if (Necessary->contains(I))
2476       return true;
2477   }
2478 
2479   // Already added this dep.
2480   if (!Deps->try_emplace(I, false).second)
2481     return true;
2482 
2483   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2484     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2485                                 Depth + 1))
2486       return false;
2487   return true;
2488 }
2489 
2490 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2491     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2492     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2493     TargetLoweringBase::CondMergingParams Params) const {
2494   if (I.getNumSuccessors() != 2)
2495     return false;
2496 
2497   if (!I.isConditional())
2498     return false;
2499 
2500   if (Params.BaseCost < 0)
2501     return false;
2502 
2503   // Baseline cost.
2504   InstructionCost CostThresh = Params.BaseCost;
2505 
2506   BranchProbabilityInfo *BPI = nullptr;
2507   if (Params.LikelyBias || Params.UnlikelyBias)
2508     BPI = FuncInfo.BPI;
2509   if (BPI != nullptr) {
2510     // See if we are either likely to get an early out or compute both lhs/rhs
2511     // of the condition.
2512     BasicBlock *IfFalse = I.getSuccessor(0);
2513     BasicBlock *IfTrue = I.getSuccessor(1);
2514 
2515     std::optional<bool> Likely;
2516     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2517       Likely = true;
2518     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2519       Likely = false;
2520 
2521     if (Likely) {
2522       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2523         // Its likely we will have to compute both lhs and rhs of condition
2524         CostThresh += Params.LikelyBias;
2525       else {
2526         if (Params.UnlikelyBias < 0)
2527           return false;
2528         // Its likely we will get an early out.
2529         CostThresh -= Params.UnlikelyBias;
2530       }
2531     }
2532   }
2533 
2534   if (CostThresh <= 0)
2535     return false;
2536 
2537   // Collect "all" instructions that lhs condition is dependent on.
2538   // Use map for stable iteration (to avoid non-determanism of iteration of
2539   // SmallPtrSet). The `bool` value is just a dummy.
2540   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2541   collectInstructionDeps(&LhsDeps, Lhs);
2542   // Collect "all" instructions that rhs condition is dependent on AND are
2543   // dependencies of lhs. This gives us an estimate on which instructions we
2544   // stand to save by splitting the condition.
2545   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2546     return false;
2547   // Add the compare instruction itself unless its a dependency on the LHS.
2548   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2549     if (!LhsDeps.contains(RhsI))
2550       RhsDeps.try_emplace(RhsI, false);
2551 
2552   const auto &TLI = DAG.getTargetLoweringInfo();
2553   const auto &TTI =
2554       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2555 
2556   InstructionCost CostOfIncluding = 0;
2557   // See if this instruction will need to computed independently of whether RHS
2558   // is.
2559   Value *BrCond = I.getCondition();
2560   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2561     for (const auto *U : Ins->users()) {
2562       // If user is independent of RHS calculation we don't need to count it.
2563       if (auto *UIns = dyn_cast<Instruction>(U))
2564         if (UIns != BrCond && !RhsDeps.contains(UIns))
2565           return false;
2566     }
2567     return true;
2568   };
2569 
2570   // Prune instructions from RHS Deps that are dependencies of unrelated
2571   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2572   // arbitrary and just meant to cap the how much time we spend in the pruning
2573   // loop. Its highly unlikely to come into affect.
2574   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2575   // Stop after a certain point. No incorrectness from including too many
2576   // instructions.
2577   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2578     const Instruction *ToDrop = nullptr;
2579     for (const auto &InsPair : RhsDeps) {
2580       if (!ShouldCountInsn(InsPair.first)) {
2581         ToDrop = InsPair.first;
2582         break;
2583       }
2584     }
2585     if (ToDrop == nullptr)
2586       break;
2587     RhsDeps.erase(ToDrop);
2588   }
2589 
2590   for (const auto &InsPair : RhsDeps) {
2591     // Finally accumulate latency that we can only attribute to computing the
2592     // RHS condition. Use latency because we are essentially trying to calculate
2593     // the cost of the dependency chain.
2594     // Possible TODO: We could try to estimate ILP and make this more precise.
2595     CostOfIncluding +=
2596         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2597 
2598     if (CostOfIncluding > CostThresh)
2599       return false;
2600   }
2601   return true;
2602 }
2603 
2604 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2605                                                MachineBasicBlock *TBB,
2606                                                MachineBasicBlock *FBB,
2607                                                MachineBasicBlock *CurBB,
2608                                                MachineBasicBlock *SwitchBB,
2609                                                Instruction::BinaryOps Opc,
2610                                                BranchProbability TProb,
2611                                                BranchProbability FProb,
2612                                                bool InvertCond) {
2613   // Skip over not part of the tree and remember to invert op and operands at
2614   // next level.
2615   Value *NotCond;
2616   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2617       InBlock(NotCond, CurBB->getBasicBlock())) {
2618     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2619                          !InvertCond);
2620     return;
2621   }
2622 
2623   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2624   const Value *BOpOp0, *BOpOp1;
2625   // Compute the effective opcode for Cond, taking into account whether it needs
2626   // to be inverted, e.g.
2627   //   and (not (or A, B)), C
2628   // gets lowered as
2629   //   and (and (not A, not B), C)
2630   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2631   if (BOp) {
2632     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2633                ? Instruction::And
2634                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2635                       ? Instruction::Or
2636                       : (Instruction::BinaryOps)0);
2637     if (InvertCond) {
2638       if (BOpc == Instruction::And)
2639         BOpc = Instruction::Or;
2640       else if (BOpc == Instruction::Or)
2641         BOpc = Instruction::And;
2642     }
2643   }
2644 
2645   // If this node is not part of the or/and tree, emit it as a branch.
2646   // Note that all nodes in the tree should have same opcode.
2647   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2648   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2649       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2650       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2651     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2652                                  TProb, FProb, InvertCond);
2653     return;
2654   }
2655 
2656   //  Create TmpBB after CurBB.
2657   MachineFunction::iterator BBI(CurBB);
2658   MachineFunction &MF = DAG.getMachineFunction();
2659   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2660   CurBB->getParent()->insert(++BBI, TmpBB);
2661 
2662   if (Opc == Instruction::Or) {
2663     // Codegen X | Y as:
2664     // BB1:
2665     //   jmp_if_X TBB
2666     //   jmp TmpBB
2667     // TmpBB:
2668     //   jmp_if_Y TBB
2669     //   jmp FBB
2670     //
2671 
2672     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2673     // The requirement is that
2674     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2675     //     = TrueProb for original BB.
2676     // Assuming the original probabilities are A and B, one choice is to set
2677     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2678     // A/(1+B) and 2B/(1+B). This choice assumes that
2679     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2680     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2681     // TmpBB, but the math is more complicated.
2682 
2683     auto NewTrueProb = TProb / 2;
2684     auto NewFalseProb = TProb / 2 + FProb;
2685     // Emit the LHS condition.
2686     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2687                          NewFalseProb, InvertCond);
2688 
2689     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2690     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2691     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2692     // Emit the RHS condition into TmpBB.
2693     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2694                          Probs[1], InvertCond);
2695   } else {
2696     assert(Opc == Instruction::And && "Unknown merge op!");
2697     // Codegen X & Y as:
2698     // BB1:
2699     //   jmp_if_X TmpBB
2700     //   jmp FBB
2701     // TmpBB:
2702     //   jmp_if_Y TBB
2703     //   jmp FBB
2704     //
2705     //  This requires creation of TmpBB after CurBB.
2706 
2707     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2708     // The requirement is that
2709     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2710     //     = FalseProb for original BB.
2711     // Assuming the original probabilities are A and B, one choice is to set
2712     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2713     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2714     // TrueProb for BB1 * FalseProb for TmpBB.
2715 
2716     auto NewTrueProb = TProb + FProb / 2;
2717     auto NewFalseProb = FProb / 2;
2718     // Emit the LHS condition.
2719     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2720                          NewFalseProb, InvertCond);
2721 
2722     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2723     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2724     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2725     // Emit the RHS condition into TmpBB.
2726     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2727                          Probs[1], InvertCond);
2728   }
2729 }
2730 
2731 /// If the set of cases should be emitted as a series of branches, return true.
2732 /// If we should emit this as a bunch of and/or'd together conditions, return
2733 /// false.
2734 bool
2735 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2736   if (Cases.size() != 2) return true;
2737 
2738   // If this is two comparisons of the same values or'd or and'd together, they
2739   // will get folded into a single comparison, so don't emit two blocks.
2740   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2741        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2742       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2743        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2744     return false;
2745   }
2746 
2747   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2748   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2749   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2750       Cases[0].CC == Cases[1].CC &&
2751       isa<Constant>(Cases[0].CmpRHS) &&
2752       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2753     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2754       return false;
2755     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2756       return false;
2757   }
2758 
2759   return true;
2760 }
2761 
2762 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2763   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2764 
2765   // Update machine-CFG edges.
2766   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2767 
2768   if (I.isUnconditional()) {
2769     // Update machine-CFG edges.
2770     BrMBB->addSuccessor(Succ0MBB);
2771 
2772     // If this is not a fall-through branch or optimizations are switched off,
2773     // emit the branch.
2774     if (Succ0MBB != NextBlock(BrMBB) ||
2775         TM.getOptLevel() == CodeGenOptLevel::None) {
2776       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2777                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2778       setValue(&I, Br);
2779       DAG.setRoot(Br);
2780     }
2781 
2782     return;
2783   }
2784 
2785   // If this condition is one of the special cases we handle, do special stuff
2786   // now.
2787   const Value *CondVal = I.getCondition();
2788   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2789 
2790   // If this is a series of conditions that are or'd or and'd together, emit
2791   // this as a sequence of branches instead of setcc's with and/or operations.
2792   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2793   // unpredictable branches, and vector extracts because those jumps are likely
2794   // expensive for any target), this should improve performance.
2795   // For example, instead of something like:
2796   //     cmp A, B
2797   //     C = seteq
2798   //     cmp D, E
2799   //     F = setle
2800   //     or C, F
2801   //     jnz foo
2802   // Emit:
2803   //     cmp A, B
2804   //     je foo
2805   //     cmp D, E
2806   //     jle foo
2807   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2808   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2809       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2810     Value *Vec;
2811     const Value *BOp0, *BOp1;
2812     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2813     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2814       Opcode = Instruction::And;
2815     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2816       Opcode = Instruction::Or;
2817 
2818     if (Opcode &&
2819         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2820           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2821         !shouldKeepJumpConditionsTogether(
2822             FuncInfo, I, Opcode, BOp0, BOp1,
2823             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2824                 Opcode, BOp0, BOp1))) {
2825       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2826                            getEdgeProbability(BrMBB, Succ0MBB),
2827                            getEdgeProbability(BrMBB, Succ1MBB),
2828                            /*InvertCond=*/false);
2829       // If the compares in later blocks need to use values not currently
2830       // exported from this block, export them now.  This block should always
2831       // be the first entry.
2832       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2833 
2834       // Allow some cases to be rejected.
2835       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2836         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2837           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2838           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2839         }
2840 
2841         // Emit the branch for this block.
2842         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2843         SL->SwitchCases.erase(SL->SwitchCases.begin());
2844         return;
2845       }
2846 
2847       // Okay, we decided not to do this, remove any inserted MBB's and clear
2848       // SwitchCases.
2849       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2850         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2851 
2852       SL->SwitchCases.clear();
2853     }
2854   }
2855 
2856   // Create a CaseBlock record representing this branch.
2857   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2858                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2859 
2860   // Use visitSwitchCase to actually insert the fast branch sequence for this
2861   // cond branch.
2862   visitSwitchCase(CB, BrMBB);
2863 }
2864 
2865 /// visitSwitchCase - Emits the necessary code to represent a single node in
2866 /// the binary search tree resulting from lowering a switch instruction.
2867 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2868                                           MachineBasicBlock *SwitchBB) {
2869   SDValue Cond;
2870   SDValue CondLHS = getValue(CB.CmpLHS);
2871   SDLoc dl = CB.DL;
2872 
2873   if (CB.CC == ISD::SETTRUE) {
2874     // Branch or fall through to TrueBB.
2875     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2876     SwitchBB->normalizeSuccProbs();
2877     if (CB.TrueBB != NextBlock(SwitchBB)) {
2878       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2879                               DAG.getBasicBlock(CB.TrueBB)));
2880     }
2881     return;
2882   }
2883 
2884   auto &TLI = DAG.getTargetLoweringInfo();
2885   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2886 
2887   // Build the setcc now.
2888   if (!CB.CmpMHS) {
2889     // Fold "(X == true)" to X and "(X == false)" to !X to
2890     // handle common cases produced by branch lowering.
2891     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2892         CB.CC == ISD::SETEQ)
2893       Cond = CondLHS;
2894     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2895              CB.CC == ISD::SETEQ) {
2896       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2897       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2898     } else {
2899       SDValue CondRHS = getValue(CB.CmpRHS);
2900 
2901       // If a pointer's DAG type is larger than its memory type then the DAG
2902       // values are zero-extended. This breaks signed comparisons so truncate
2903       // back to the underlying type before doing the compare.
2904       if (CondLHS.getValueType() != MemVT) {
2905         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2906         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2907       }
2908       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2909     }
2910   } else {
2911     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2912 
2913     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2914     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2915 
2916     SDValue CmpOp = getValue(CB.CmpMHS);
2917     EVT VT = CmpOp.getValueType();
2918 
2919     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2920       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2921                           ISD::SETLE);
2922     } else {
2923       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2924                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2925       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2926                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2927     }
2928   }
2929 
2930   // Update successor info
2931   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2932   // TrueBB and FalseBB are always different unless the incoming IR is
2933   // degenerate. This only happens when running llc on weird IR.
2934   if (CB.TrueBB != CB.FalseBB)
2935     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2936   SwitchBB->normalizeSuccProbs();
2937 
2938   // If the lhs block is the next block, invert the condition so that we can
2939   // fall through to the lhs instead of the rhs block.
2940   if (CB.TrueBB == NextBlock(SwitchBB)) {
2941     std::swap(CB.TrueBB, CB.FalseBB);
2942     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2943     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2944   }
2945 
2946   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2947                                MVT::Other, getControlRoot(), Cond,
2948                                DAG.getBasicBlock(CB.TrueBB));
2949 
2950   setValue(CurInst, BrCond);
2951 
2952   // Insert the false branch. Do this even if it's a fall through branch,
2953   // this makes it easier to do DAG optimizations which require inverting
2954   // the branch condition.
2955   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2956                        DAG.getBasicBlock(CB.FalseBB));
2957 
2958   DAG.setRoot(BrCond);
2959 }
2960 
2961 /// visitJumpTable - Emit JumpTable node in the current MBB
2962 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2963   // Emit the code for the jump table
2964   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2965   assert(JT.Reg != -1U && "Should lower JT Header first!");
2966   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2967   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2968   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2969   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2970                                     Index.getValue(1), Table, Index);
2971   DAG.setRoot(BrJumpTable);
2972 }
2973 
2974 /// visitJumpTableHeader - This function emits necessary code to produce index
2975 /// in the JumpTable from switch case.
2976 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2977                                                JumpTableHeader &JTH,
2978                                                MachineBasicBlock *SwitchBB) {
2979   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2980   const SDLoc &dl = *JT.SL;
2981 
2982   // Subtract the lowest switch case value from the value being switched on.
2983   SDValue SwitchOp = getValue(JTH.SValue);
2984   EVT VT = SwitchOp.getValueType();
2985   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2986                             DAG.getConstant(JTH.First, dl, VT));
2987 
2988   // The SDNode we just created, which holds the value being switched on minus
2989   // the smallest case value, needs to be copied to a virtual register so it
2990   // can be used as an index into the jump table in a subsequent basic block.
2991   // This value may be smaller or larger than the target's pointer type, and
2992   // therefore require extension or truncating.
2993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2994   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2995 
2996   unsigned JumpTableReg =
2997       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2998   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2999                                     JumpTableReg, SwitchOp);
3000   JT.Reg = JumpTableReg;
3001 
3002   if (!JTH.FallthroughUnreachable) {
3003     // Emit the range check for the jump table, and branch to the default block
3004     // for the switch statement if the value being switched on exceeds the
3005     // largest case in the switch.
3006     SDValue CMP = DAG.getSetCC(
3007         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3008                                    Sub.getValueType()),
3009         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3010 
3011     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3012                                  MVT::Other, CopyTo, CMP,
3013                                  DAG.getBasicBlock(JT.Default));
3014 
3015     // Avoid emitting unnecessary branches to the next block.
3016     if (JT.MBB != NextBlock(SwitchBB))
3017       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3018                            DAG.getBasicBlock(JT.MBB));
3019 
3020     DAG.setRoot(BrCond);
3021   } else {
3022     // Avoid emitting unnecessary branches to the next block.
3023     if (JT.MBB != NextBlock(SwitchBB))
3024       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3025                               DAG.getBasicBlock(JT.MBB)));
3026     else
3027       DAG.setRoot(CopyTo);
3028   }
3029 }
3030 
3031 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3032 /// variable if there exists one.
3033 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3034                                  SDValue &Chain) {
3035   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3036   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3037   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3038   MachineFunction &MF = DAG.getMachineFunction();
3039   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3040   MachineSDNode *Node =
3041       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3042   if (Global) {
3043     MachinePointerInfo MPInfo(Global);
3044     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3045                  MachineMemOperand::MODereferenceable;
3046     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3047         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3048         DAG.getEVTAlign(PtrTy));
3049     DAG.setNodeMemRefs(Node, {MemRef});
3050   }
3051   if (PtrTy != PtrMemTy)
3052     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3053   return SDValue(Node, 0);
3054 }
3055 
3056 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3057 /// tail spliced into a stack protector check success bb.
3058 ///
3059 /// For a high level explanation of how this fits into the stack protector
3060 /// generation see the comment on the declaration of class
3061 /// StackProtectorDescriptor.
3062 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3063                                                   MachineBasicBlock *ParentBB) {
3064 
3065   // First create the loads to the guard/stack slot for the comparison.
3066   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3067   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3068   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3069 
3070   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3071   int FI = MFI.getStackProtectorIndex();
3072 
3073   SDValue Guard;
3074   SDLoc dl = getCurSDLoc();
3075   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3076   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3077   Align Align =
3078       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3079 
3080   // Generate code to load the content of the guard slot.
3081   SDValue GuardVal = DAG.getLoad(
3082       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3083       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3084       MachineMemOperand::MOVolatile);
3085 
3086   if (TLI.useStackGuardXorFP())
3087     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3088 
3089   // Retrieve guard check function, nullptr if instrumentation is inlined.
3090   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3091     // The target provides a guard check function to validate the guard value.
3092     // Generate a call to that function with the content of the guard slot as
3093     // argument.
3094     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3095     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3096 
3097     TargetLowering::ArgListTy Args;
3098     TargetLowering::ArgListEntry Entry;
3099     Entry.Node = GuardVal;
3100     Entry.Ty = FnTy->getParamType(0);
3101     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3102       Entry.IsInReg = true;
3103     Args.push_back(Entry);
3104 
3105     TargetLowering::CallLoweringInfo CLI(DAG);
3106     CLI.setDebugLoc(getCurSDLoc())
3107         .setChain(DAG.getEntryNode())
3108         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3109                    getValue(GuardCheckFn), std::move(Args));
3110 
3111     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3112     DAG.setRoot(Result.second);
3113     return;
3114   }
3115 
3116   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3117   // Otherwise, emit a volatile load to retrieve the stack guard value.
3118   SDValue Chain = DAG.getEntryNode();
3119   if (TLI.useLoadStackGuardNode()) {
3120     Guard = getLoadStackGuard(DAG, dl, Chain);
3121   } else {
3122     const Value *IRGuard = TLI.getSDagStackGuard(M);
3123     SDValue GuardPtr = getValue(IRGuard);
3124 
3125     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3126                         MachinePointerInfo(IRGuard, 0), Align,
3127                         MachineMemOperand::MOVolatile);
3128   }
3129 
3130   // Perform the comparison via a getsetcc.
3131   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3132                                                         *DAG.getContext(),
3133                                                         Guard.getValueType()),
3134                              Guard, GuardVal, ISD::SETNE);
3135 
3136   // If the guard/stackslot do not equal, branch to failure MBB.
3137   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3138                                MVT::Other, GuardVal.getOperand(0),
3139                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3140   // Otherwise branch to success MBB.
3141   SDValue Br = DAG.getNode(ISD::BR, dl,
3142                            MVT::Other, BrCond,
3143                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3144 
3145   DAG.setRoot(Br);
3146 }
3147 
3148 /// Codegen the failure basic block for a stack protector check.
3149 ///
3150 /// A failure stack protector machine basic block consists simply of a call to
3151 /// __stack_chk_fail().
3152 ///
3153 /// For a high level explanation of how this fits into the stack protector
3154 /// generation see the comment on the declaration of class
3155 /// StackProtectorDescriptor.
3156 void
3157 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3158   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3159   TargetLowering::MakeLibCallOptions CallOptions;
3160   CallOptions.setDiscardResult(true);
3161   SDValue Chain =
3162       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3163                       std::nullopt, CallOptions, getCurSDLoc())
3164           .second;
3165   // On PS4/PS5, the "return address" must still be within the calling
3166   // function, even if it's at the very end, so emit an explicit TRAP here.
3167   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3168   if (TM.getTargetTriple().isPS())
3169     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3170   // WebAssembly needs an unreachable instruction after a non-returning call,
3171   // because the function return type can be different from __stack_chk_fail's
3172   // return type (void).
3173   if (TM.getTargetTriple().isWasm())
3174     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3175 
3176   DAG.setRoot(Chain);
3177 }
3178 
3179 /// visitBitTestHeader - This function emits necessary code to produce value
3180 /// suitable for "bit tests"
3181 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3182                                              MachineBasicBlock *SwitchBB) {
3183   SDLoc dl = getCurSDLoc();
3184 
3185   // Subtract the minimum value.
3186   SDValue SwitchOp = getValue(B.SValue);
3187   EVT VT = SwitchOp.getValueType();
3188   SDValue RangeSub =
3189       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3190 
3191   // Determine the type of the test operands.
3192   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3193   bool UsePtrType = false;
3194   if (!TLI.isTypeLegal(VT)) {
3195     UsePtrType = true;
3196   } else {
3197     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3198       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3199         // Switch table case range are encoded into series of masks.
3200         // Just use pointer type, it's guaranteed to fit.
3201         UsePtrType = true;
3202         break;
3203       }
3204   }
3205   SDValue Sub = RangeSub;
3206   if (UsePtrType) {
3207     VT = TLI.getPointerTy(DAG.getDataLayout());
3208     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3209   }
3210 
3211   B.RegVT = VT.getSimpleVT();
3212   B.Reg = FuncInfo.CreateReg(B.RegVT);
3213   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3214 
3215   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3216 
3217   if (!B.FallthroughUnreachable)
3218     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3219   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3220   SwitchBB->normalizeSuccProbs();
3221 
3222   SDValue Root = CopyTo;
3223   if (!B.FallthroughUnreachable) {
3224     // Conditional branch to the default block.
3225     SDValue RangeCmp = DAG.getSetCC(dl,
3226         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3227                                RangeSub.getValueType()),
3228         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3229         ISD::SETUGT);
3230 
3231     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3232                        DAG.getBasicBlock(B.Default));
3233   }
3234 
3235   // Avoid emitting unnecessary branches to the next block.
3236   if (MBB != NextBlock(SwitchBB))
3237     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3238 
3239   DAG.setRoot(Root);
3240 }
3241 
3242 /// visitBitTestCase - this function produces one "bit test"
3243 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3244                                            MachineBasicBlock* NextMBB,
3245                                            BranchProbability BranchProbToNext,
3246                                            unsigned Reg,
3247                                            BitTestCase &B,
3248                                            MachineBasicBlock *SwitchBB) {
3249   SDLoc dl = getCurSDLoc();
3250   MVT VT = BB.RegVT;
3251   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3252   SDValue Cmp;
3253   unsigned PopCount = llvm::popcount(B.Mask);
3254   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3255   if (PopCount == 1) {
3256     // Testing for a single bit; just compare the shift count with what it
3257     // would need to be to shift a 1 bit in that position.
3258     Cmp = DAG.getSetCC(
3259         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3260         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3261         ISD::SETEQ);
3262   } else if (PopCount == BB.Range) {
3263     // There is only one zero bit in the range, test for it directly.
3264     Cmp = DAG.getSetCC(
3265         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3266         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3267   } else {
3268     // Make desired shift
3269     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3270                                     DAG.getConstant(1, dl, VT), ShiftOp);
3271 
3272     // Emit bit tests and jumps
3273     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3274                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3275     Cmp = DAG.getSetCC(
3276         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3277         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3278   }
3279 
3280   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3281   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3282   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3283   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3284   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3285   // one as they are relative probabilities (and thus work more like weights),
3286   // and hence we need to normalize them to let the sum of them become one.
3287   SwitchBB->normalizeSuccProbs();
3288 
3289   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3290                               MVT::Other, getControlRoot(),
3291                               Cmp, DAG.getBasicBlock(B.TargetBB));
3292 
3293   // Avoid emitting unnecessary branches to the next block.
3294   if (NextMBB != NextBlock(SwitchBB))
3295     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3296                         DAG.getBasicBlock(NextMBB));
3297 
3298   DAG.setRoot(BrAnd);
3299 }
3300 
3301 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3302   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3303 
3304   // Retrieve successors. Look through artificial IR level blocks like
3305   // catchswitch for successors.
3306   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3307   const BasicBlock *EHPadBB = I.getSuccessor(1);
3308   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3309 
3310   // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3311   // have to do anything here to lower funclet bundles.
3312   assert(!I.hasOperandBundlesOtherThan(
3313              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3314               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3315               LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3316               LLVMContext::OB_clang_arc_attachedcall}) &&
3317          "Cannot lower invokes with arbitrary operand bundles yet!");
3318 
3319   const Value *Callee(I.getCalledOperand());
3320   const Function *Fn = dyn_cast<Function>(Callee);
3321   if (isa<InlineAsm>(Callee))
3322     visitInlineAsm(I, EHPadBB);
3323   else if (Fn && Fn->isIntrinsic()) {
3324     switch (Fn->getIntrinsicID()) {
3325     default:
3326       llvm_unreachable("Cannot invoke this intrinsic");
3327     case Intrinsic::donothing:
3328       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3329     case Intrinsic::seh_try_begin:
3330     case Intrinsic::seh_scope_begin:
3331     case Intrinsic::seh_try_end:
3332     case Intrinsic::seh_scope_end:
3333       if (EHPadMBB)
3334           // a block referenced by EH table
3335           // so dtor-funclet not removed by opts
3336           EHPadMBB->setMachineBlockAddressTaken();
3337       break;
3338     case Intrinsic::experimental_patchpoint_void:
3339     case Intrinsic::experimental_patchpoint:
3340       visitPatchpoint(I, EHPadBB);
3341       break;
3342     case Intrinsic::experimental_gc_statepoint:
3343       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3344       break;
3345     case Intrinsic::wasm_rethrow: {
3346       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3347       // special because it can be invoked, so we manually lower it to a DAG
3348       // node here.
3349       SmallVector<SDValue, 8> Ops;
3350       Ops.push_back(getRoot()); // inchain
3351       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3352       Ops.push_back(
3353           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3354                                 TLI.getPointerTy(DAG.getDataLayout())));
3355       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3356       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3357       break;
3358     }
3359     }
3360   } else if (I.hasDeoptState()) {
3361     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3362     // Eventually we will support lowering the @llvm.experimental.deoptimize
3363     // intrinsic, and right now there are no plans to support other intrinsics
3364     // with deopt state.
3365     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3366   } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3367     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3368   } else {
3369     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3370   }
3371 
3372   // If the value of the invoke is used outside of its defining block, make it
3373   // available as a virtual register.
3374   // We already took care of the exported value for the statepoint instruction
3375   // during call to the LowerStatepoint.
3376   if (!isa<GCStatepointInst>(I)) {
3377     CopyToExportRegsIfNeeded(&I);
3378   }
3379 
3380   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3381   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3382   BranchProbability EHPadBBProb =
3383       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3384           : BranchProbability::getZero();
3385   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3386 
3387   // Update successor info.
3388   addSuccessorWithProb(InvokeMBB, Return);
3389   for (auto &UnwindDest : UnwindDests) {
3390     UnwindDest.first->setIsEHPad();
3391     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3392   }
3393   InvokeMBB->normalizeSuccProbs();
3394 
3395   // Drop into normal successor.
3396   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3397                           DAG.getBasicBlock(Return)));
3398 }
3399 
3400 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3401   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3402 
3403   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3404   // have to do anything here to lower funclet bundles.
3405   assert(!I.hasOperandBundlesOtherThan(
3406              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3407          "Cannot lower callbrs with arbitrary operand bundles yet!");
3408 
3409   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3410   visitInlineAsm(I);
3411   CopyToExportRegsIfNeeded(&I);
3412 
3413   // Retrieve successors.
3414   SmallPtrSet<BasicBlock *, 8> Dests;
3415   Dests.insert(I.getDefaultDest());
3416   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3417 
3418   // Update successor info.
3419   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3420   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3421     BasicBlock *Dest = I.getIndirectDest(i);
3422     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3423     Target->setIsInlineAsmBrIndirectTarget();
3424     Target->setMachineBlockAddressTaken();
3425     Target->setLabelMustBeEmitted();
3426     // Don't add duplicate machine successors.
3427     if (Dests.insert(Dest).second)
3428       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3429   }
3430   CallBrMBB->normalizeSuccProbs();
3431 
3432   // Drop into default successor.
3433   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3434                           MVT::Other, getControlRoot(),
3435                           DAG.getBasicBlock(Return)));
3436 }
3437 
3438 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3439   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3440 }
3441 
3442 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3443   assert(FuncInfo.MBB->isEHPad() &&
3444          "Call to landingpad not in landing pad!");
3445 
3446   // If there aren't registers to copy the values into (e.g., during SjLj
3447   // exceptions), then don't bother to create these DAG nodes.
3448   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3449   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3450   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3451       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3452     return;
3453 
3454   // If landingpad's return type is token type, we don't create DAG nodes
3455   // for its exception pointer and selector value. The extraction of exception
3456   // pointer or selector value from token type landingpads is not currently
3457   // supported.
3458   if (LP.getType()->isTokenTy())
3459     return;
3460 
3461   SmallVector<EVT, 2> ValueVTs;
3462   SDLoc dl = getCurSDLoc();
3463   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3464   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3465 
3466   // Get the two live-in registers as SDValues. The physregs have already been
3467   // copied into virtual registers.
3468   SDValue Ops[2];
3469   if (FuncInfo.ExceptionPointerVirtReg) {
3470     Ops[0] = DAG.getZExtOrTrunc(
3471         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3472                            FuncInfo.ExceptionPointerVirtReg,
3473                            TLI.getPointerTy(DAG.getDataLayout())),
3474         dl, ValueVTs[0]);
3475   } else {
3476     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3477   }
3478   Ops[1] = DAG.getZExtOrTrunc(
3479       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3480                          FuncInfo.ExceptionSelectorVirtReg,
3481                          TLI.getPointerTy(DAG.getDataLayout())),
3482       dl, ValueVTs[1]);
3483 
3484   // Merge into one.
3485   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3486                             DAG.getVTList(ValueVTs), Ops);
3487   setValue(&LP, Res);
3488 }
3489 
3490 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3491                                            MachineBasicBlock *Last) {
3492   // Update JTCases.
3493   for (JumpTableBlock &JTB : SL->JTCases)
3494     if (JTB.first.HeaderBB == First)
3495       JTB.first.HeaderBB = Last;
3496 
3497   // Update BitTestCases.
3498   for (BitTestBlock &BTB : SL->BitTestCases)
3499     if (BTB.Parent == First)
3500       BTB.Parent = Last;
3501 }
3502 
3503 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3504   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3505 
3506   // Update machine-CFG edges with unique successors.
3507   SmallSet<BasicBlock*, 32> Done;
3508   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3509     BasicBlock *BB = I.getSuccessor(i);
3510     bool Inserted = Done.insert(BB).second;
3511     if (!Inserted)
3512         continue;
3513 
3514     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3515     addSuccessorWithProb(IndirectBrMBB, Succ);
3516   }
3517   IndirectBrMBB->normalizeSuccProbs();
3518 
3519   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3520                           MVT::Other, getControlRoot(),
3521                           getValue(I.getAddress())));
3522 }
3523 
3524 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3525   if (!DAG.getTarget().Options.TrapUnreachable)
3526     return;
3527 
3528   // We may be able to ignore unreachable behind a noreturn call.
3529   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3530     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3531       if (Call->doesNotReturn())
3532         return;
3533     }
3534   }
3535 
3536   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3537 }
3538 
3539 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3540   SDNodeFlags Flags;
3541   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3542     Flags.copyFMF(*FPOp);
3543 
3544   SDValue Op = getValue(I.getOperand(0));
3545   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3546                                     Op, Flags);
3547   setValue(&I, UnNodeValue);
3548 }
3549 
3550 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3551   SDNodeFlags Flags;
3552   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3553     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3554     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3555   }
3556   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3557     Flags.setExact(ExactOp->isExact());
3558   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3559     Flags.setDisjoint(DisjointOp->isDisjoint());
3560   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3561     Flags.copyFMF(*FPOp);
3562 
3563   SDValue Op1 = getValue(I.getOperand(0));
3564   SDValue Op2 = getValue(I.getOperand(1));
3565   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3566                                      Op1, Op2, Flags);
3567   setValue(&I, BinNodeValue);
3568 }
3569 
3570 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3571   SDValue Op1 = getValue(I.getOperand(0));
3572   SDValue Op2 = getValue(I.getOperand(1));
3573 
3574   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3575       Op1.getValueType(), DAG.getDataLayout());
3576 
3577   // Coerce the shift amount to the right type if we can. This exposes the
3578   // truncate or zext to optimization early.
3579   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3580     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3581            "Unexpected shift type");
3582     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3583   }
3584 
3585   bool nuw = false;
3586   bool nsw = false;
3587   bool exact = false;
3588 
3589   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3590 
3591     if (const OverflowingBinaryOperator *OFBinOp =
3592             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3593       nuw = OFBinOp->hasNoUnsignedWrap();
3594       nsw = OFBinOp->hasNoSignedWrap();
3595     }
3596     if (const PossiblyExactOperator *ExactOp =
3597             dyn_cast<const PossiblyExactOperator>(&I))
3598       exact = ExactOp->isExact();
3599   }
3600   SDNodeFlags Flags;
3601   Flags.setExact(exact);
3602   Flags.setNoSignedWrap(nsw);
3603   Flags.setNoUnsignedWrap(nuw);
3604   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3605                             Flags);
3606   setValue(&I, Res);
3607 }
3608 
3609 void SelectionDAGBuilder::visitSDiv(const User &I) {
3610   SDValue Op1 = getValue(I.getOperand(0));
3611   SDValue Op2 = getValue(I.getOperand(1));
3612 
3613   SDNodeFlags Flags;
3614   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3615                  cast<PossiblyExactOperator>(&I)->isExact());
3616   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3617                            Op2, Flags));
3618 }
3619 
3620 void SelectionDAGBuilder::visitICmp(const User &I) {
3621   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3622   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3623     predicate = IC->getPredicate();
3624   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3625     predicate = ICmpInst::Predicate(IC->getPredicate());
3626   SDValue Op1 = getValue(I.getOperand(0));
3627   SDValue Op2 = getValue(I.getOperand(1));
3628   ISD::CondCode Opcode = getICmpCondCode(predicate);
3629 
3630   auto &TLI = DAG.getTargetLoweringInfo();
3631   EVT MemVT =
3632       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3633 
3634   // If a pointer's DAG type is larger than its memory type then the DAG values
3635   // are zero-extended. This breaks signed comparisons so truncate back to the
3636   // underlying type before doing the compare.
3637   if (Op1.getValueType() != MemVT) {
3638     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3639     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3640   }
3641 
3642   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3643                                                         I.getType());
3644   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3645 }
3646 
3647 void SelectionDAGBuilder::visitFCmp(const User &I) {
3648   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3649   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3650     predicate = FC->getPredicate();
3651   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3652     predicate = FCmpInst::Predicate(FC->getPredicate());
3653   SDValue Op1 = getValue(I.getOperand(0));
3654   SDValue Op2 = getValue(I.getOperand(1));
3655 
3656   ISD::CondCode Condition = getFCmpCondCode(predicate);
3657   auto *FPMO = cast<FPMathOperator>(&I);
3658   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3659     Condition = getFCmpCodeWithoutNaN(Condition);
3660 
3661   SDNodeFlags Flags;
3662   Flags.copyFMF(*FPMO);
3663   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3664 
3665   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3666                                                         I.getType());
3667   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3668 }
3669 
3670 // Check if the condition of the select has one use or two users that are both
3671 // selects with the same condition.
3672 static bool hasOnlySelectUsers(const Value *Cond) {
3673   return llvm::all_of(Cond->users(), [](const Value *V) {
3674     return isa<SelectInst>(V);
3675   });
3676 }
3677 
3678 void SelectionDAGBuilder::visitSelect(const User &I) {
3679   SmallVector<EVT, 4> ValueVTs;
3680   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3681                   ValueVTs);
3682   unsigned NumValues = ValueVTs.size();
3683   if (NumValues == 0) return;
3684 
3685   SmallVector<SDValue, 4> Values(NumValues);
3686   SDValue Cond     = getValue(I.getOperand(0));
3687   SDValue LHSVal   = getValue(I.getOperand(1));
3688   SDValue RHSVal   = getValue(I.getOperand(2));
3689   SmallVector<SDValue, 1> BaseOps(1, Cond);
3690   ISD::NodeType OpCode =
3691       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3692 
3693   bool IsUnaryAbs = false;
3694   bool Negate = false;
3695 
3696   SDNodeFlags Flags;
3697   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3698     Flags.copyFMF(*FPOp);
3699 
3700   Flags.setUnpredictable(
3701       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3702 
3703   // Min/max matching is only viable if all output VTs are the same.
3704   if (all_equal(ValueVTs)) {
3705     EVT VT = ValueVTs[0];
3706     LLVMContext &Ctx = *DAG.getContext();
3707     auto &TLI = DAG.getTargetLoweringInfo();
3708 
3709     // We care about the legality of the operation after it has been type
3710     // legalized.
3711     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3712       VT = TLI.getTypeToTransformTo(Ctx, VT);
3713 
3714     // If the vselect is legal, assume we want to leave this as a vector setcc +
3715     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3716     // min/max is legal on the scalar type.
3717     bool UseScalarMinMax = VT.isVector() &&
3718       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3719 
3720     // ValueTracking's select pattern matching does not account for -0.0,
3721     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3722     // -0.0 is less than +0.0.
3723     Value *LHS, *RHS;
3724     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3725     ISD::NodeType Opc = ISD::DELETED_NODE;
3726     switch (SPR.Flavor) {
3727     case SPF_UMAX:    Opc = ISD::UMAX; break;
3728     case SPF_UMIN:    Opc = ISD::UMIN; break;
3729     case SPF_SMAX:    Opc = ISD::SMAX; break;
3730     case SPF_SMIN:    Opc = ISD::SMIN; break;
3731     case SPF_FMINNUM:
3732       switch (SPR.NaNBehavior) {
3733       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3734       case SPNB_RETURNS_NAN: break;
3735       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3736       case SPNB_RETURNS_ANY:
3737         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3738             (UseScalarMinMax &&
3739              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3740           Opc = ISD::FMINNUM;
3741         break;
3742       }
3743       break;
3744     case SPF_FMAXNUM:
3745       switch (SPR.NaNBehavior) {
3746       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3747       case SPNB_RETURNS_NAN: break;
3748       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3749       case SPNB_RETURNS_ANY:
3750         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3751             (UseScalarMinMax &&
3752              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3753           Opc = ISD::FMAXNUM;
3754         break;
3755       }
3756       break;
3757     case SPF_NABS:
3758       Negate = true;
3759       [[fallthrough]];
3760     case SPF_ABS:
3761       IsUnaryAbs = true;
3762       Opc = ISD::ABS;
3763       break;
3764     default: break;
3765     }
3766 
3767     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3768         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3769          (UseScalarMinMax &&
3770           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3771         // If the underlying comparison instruction is used by any other
3772         // instruction, the consumed instructions won't be destroyed, so it is
3773         // not profitable to convert to a min/max.
3774         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3775       OpCode = Opc;
3776       LHSVal = getValue(LHS);
3777       RHSVal = getValue(RHS);
3778       BaseOps.clear();
3779     }
3780 
3781     if (IsUnaryAbs) {
3782       OpCode = Opc;
3783       LHSVal = getValue(LHS);
3784       BaseOps.clear();
3785     }
3786   }
3787 
3788   if (IsUnaryAbs) {
3789     for (unsigned i = 0; i != NumValues; ++i) {
3790       SDLoc dl = getCurSDLoc();
3791       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3792       Values[i] =
3793           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3794       if (Negate)
3795         Values[i] = DAG.getNegative(Values[i], dl, VT);
3796     }
3797   } else {
3798     for (unsigned i = 0; i != NumValues; ++i) {
3799       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3800       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3801       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3802       Values[i] = DAG.getNode(
3803           OpCode, getCurSDLoc(),
3804           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3805     }
3806   }
3807 
3808   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3809                            DAG.getVTList(ValueVTs), Values));
3810 }
3811 
3812 void SelectionDAGBuilder::visitTrunc(const User &I) {
3813   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3814   SDValue N = getValue(I.getOperand(0));
3815   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3816                                                         I.getType());
3817   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3818 }
3819 
3820 void SelectionDAGBuilder::visitZExt(const User &I) {
3821   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3822   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3823   SDValue N = getValue(I.getOperand(0));
3824   auto &TLI = DAG.getTargetLoweringInfo();
3825   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3826 
3827   SDNodeFlags Flags;
3828   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3829     Flags.setNonNeg(PNI->hasNonNeg());
3830 
3831   // Eagerly use nonneg information to canonicalize towards sign_extend if
3832   // that is the target's preference.
3833   // TODO: Let the target do this later.
3834   if (Flags.hasNonNeg() &&
3835       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3836     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3837     return;
3838   }
3839 
3840   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3841 }
3842 
3843 void SelectionDAGBuilder::visitSExt(const User &I) {
3844   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3845   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3846   SDValue N = getValue(I.getOperand(0));
3847   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3848                                                         I.getType());
3849   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3850 }
3851 
3852 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3853   // FPTrunc is never a no-op cast, no need to check
3854   SDValue N = getValue(I.getOperand(0));
3855   SDLoc dl = getCurSDLoc();
3856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3857   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3858   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3859                            DAG.getTargetConstant(
3860                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3861 }
3862 
3863 void SelectionDAGBuilder::visitFPExt(const User &I) {
3864   // FPExt is never a no-op cast, no need to check
3865   SDValue N = getValue(I.getOperand(0));
3866   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3867                                                         I.getType());
3868   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3869 }
3870 
3871 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3872   // FPToUI is never a no-op cast, no need to check
3873   SDValue N = getValue(I.getOperand(0));
3874   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3875                                                         I.getType());
3876   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3877 }
3878 
3879 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3880   // FPToSI is never a no-op cast, no need to check
3881   SDValue N = getValue(I.getOperand(0));
3882   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3883                                                         I.getType());
3884   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3885 }
3886 
3887 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3888   // UIToFP is never a no-op cast, no need to check
3889   SDValue N = getValue(I.getOperand(0));
3890   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3891                                                         I.getType());
3892   SDNodeFlags Flags;
3893   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3894     Flags.setNonNeg(PNI->hasNonNeg());
3895 
3896   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3897 }
3898 
3899 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3900   // SIToFP is never a no-op cast, no need to check
3901   SDValue N = getValue(I.getOperand(0));
3902   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3903                                                         I.getType());
3904   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3905 }
3906 
3907 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3908   // What to do depends on the size of the integer and the size of the pointer.
3909   // We can either truncate, zero extend, or no-op, accordingly.
3910   SDValue N = getValue(I.getOperand(0));
3911   auto &TLI = DAG.getTargetLoweringInfo();
3912   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3913                                                         I.getType());
3914   EVT PtrMemVT =
3915       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3916   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3917   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3918   setValue(&I, N);
3919 }
3920 
3921 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3922   // What to do depends on the size of the integer and the size of the pointer.
3923   // We can either truncate, zero extend, or no-op, accordingly.
3924   SDValue N = getValue(I.getOperand(0));
3925   auto &TLI = DAG.getTargetLoweringInfo();
3926   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3927   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3928   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3929   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3930   setValue(&I, N);
3931 }
3932 
3933 void SelectionDAGBuilder::visitBitCast(const User &I) {
3934   SDValue N = getValue(I.getOperand(0));
3935   SDLoc dl = getCurSDLoc();
3936   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3937                                                         I.getType());
3938 
3939   // BitCast assures us that source and destination are the same size so this is
3940   // either a BITCAST or a no-op.
3941   if (DestVT != N.getValueType())
3942     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3943                              DestVT, N)); // convert types.
3944   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3945   // might fold any kind of constant expression to an integer constant and that
3946   // is not what we are looking for. Only recognize a bitcast of a genuine
3947   // constant integer as an opaque constant.
3948   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3949     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3950                                  /*isOpaque*/true));
3951   else
3952     setValue(&I, N);            // noop cast.
3953 }
3954 
3955 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3957   const Value *SV = I.getOperand(0);
3958   SDValue N = getValue(SV);
3959   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3960 
3961   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3962   unsigned DestAS = I.getType()->getPointerAddressSpace();
3963 
3964   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3965     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3966 
3967   setValue(&I, N);
3968 }
3969 
3970 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3972   SDValue InVec = getValue(I.getOperand(0));
3973   SDValue InVal = getValue(I.getOperand(1));
3974   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3975                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3976   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3977                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3978                            InVec, InVal, InIdx));
3979 }
3980 
3981 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3982   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3983   SDValue InVec = getValue(I.getOperand(0));
3984   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3985                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3986   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3987                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3988                            InVec, InIdx));
3989 }
3990 
3991 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3992   SDValue Src1 = getValue(I.getOperand(0));
3993   SDValue Src2 = getValue(I.getOperand(1));
3994   ArrayRef<int> Mask;
3995   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3996     Mask = SVI->getShuffleMask();
3997   else
3998     Mask = cast<ConstantExpr>(I).getShuffleMask();
3999   SDLoc DL = getCurSDLoc();
4000   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4001   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4002   EVT SrcVT = Src1.getValueType();
4003 
4004   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4005       VT.isScalableVector()) {
4006     // Canonical splat form of first element of first input vector.
4007     SDValue FirstElt =
4008         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4009                     DAG.getVectorIdxConstant(0, DL));
4010     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4011     return;
4012   }
4013 
4014   // For now, we only handle splats for scalable vectors.
4015   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4016   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4017   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4018 
4019   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4020   unsigned MaskNumElts = Mask.size();
4021 
4022   if (SrcNumElts == MaskNumElts) {
4023     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4024     return;
4025   }
4026 
4027   // Normalize the shuffle vector since mask and vector length don't match.
4028   if (SrcNumElts < MaskNumElts) {
4029     // Mask is longer than the source vectors. We can use concatenate vector to
4030     // make the mask and vectors lengths match.
4031 
4032     if (MaskNumElts % SrcNumElts == 0) {
4033       // Mask length is a multiple of the source vector length.
4034       // Check if the shuffle is some kind of concatenation of the input
4035       // vectors.
4036       unsigned NumConcat = MaskNumElts / SrcNumElts;
4037       bool IsConcat = true;
4038       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4039       for (unsigned i = 0; i != MaskNumElts; ++i) {
4040         int Idx = Mask[i];
4041         if (Idx < 0)
4042           continue;
4043         // Ensure the indices in each SrcVT sized piece are sequential and that
4044         // the same source is used for the whole piece.
4045         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4046             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4047              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4048           IsConcat = false;
4049           break;
4050         }
4051         // Remember which source this index came from.
4052         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4053       }
4054 
4055       // The shuffle is concatenating multiple vectors together. Just emit
4056       // a CONCAT_VECTORS operation.
4057       if (IsConcat) {
4058         SmallVector<SDValue, 8> ConcatOps;
4059         for (auto Src : ConcatSrcs) {
4060           if (Src < 0)
4061             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4062           else if (Src == 0)
4063             ConcatOps.push_back(Src1);
4064           else
4065             ConcatOps.push_back(Src2);
4066         }
4067         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4068         return;
4069       }
4070     }
4071 
4072     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4073     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4074     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4075                                     PaddedMaskNumElts);
4076 
4077     // Pad both vectors with undefs to make them the same length as the mask.
4078     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4079 
4080     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4081     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4082     MOps1[0] = Src1;
4083     MOps2[0] = Src2;
4084 
4085     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4086     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4087 
4088     // Readjust mask for new input vector length.
4089     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4090     for (unsigned i = 0; i != MaskNumElts; ++i) {
4091       int Idx = Mask[i];
4092       if (Idx >= (int)SrcNumElts)
4093         Idx -= SrcNumElts - PaddedMaskNumElts;
4094       MappedOps[i] = Idx;
4095     }
4096 
4097     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4098 
4099     // If the concatenated vector was padded, extract a subvector with the
4100     // correct number of elements.
4101     if (MaskNumElts != PaddedMaskNumElts)
4102       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4103                            DAG.getVectorIdxConstant(0, DL));
4104 
4105     setValue(&I, Result);
4106     return;
4107   }
4108 
4109   if (SrcNumElts > MaskNumElts) {
4110     // Analyze the access pattern of the vector to see if we can extract
4111     // two subvectors and do the shuffle.
4112     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4113     bool CanExtract = true;
4114     for (int Idx : Mask) {
4115       unsigned Input = 0;
4116       if (Idx < 0)
4117         continue;
4118 
4119       if (Idx >= (int)SrcNumElts) {
4120         Input = 1;
4121         Idx -= SrcNumElts;
4122       }
4123 
4124       // If all the indices come from the same MaskNumElts sized portion of
4125       // the sources we can use extract. Also make sure the extract wouldn't
4126       // extract past the end of the source.
4127       int NewStartIdx = alignDown(Idx, MaskNumElts);
4128       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4129           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4130         CanExtract = false;
4131       // Make sure we always update StartIdx as we use it to track if all
4132       // elements are undef.
4133       StartIdx[Input] = NewStartIdx;
4134     }
4135 
4136     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4137       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4138       return;
4139     }
4140     if (CanExtract) {
4141       // Extract appropriate subvector and generate a vector shuffle
4142       for (unsigned Input = 0; Input < 2; ++Input) {
4143         SDValue &Src = Input == 0 ? Src1 : Src2;
4144         if (StartIdx[Input] < 0)
4145           Src = DAG.getUNDEF(VT);
4146         else {
4147           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4148                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4149         }
4150       }
4151 
4152       // Calculate new mask.
4153       SmallVector<int, 8> MappedOps(Mask);
4154       for (int &Idx : MappedOps) {
4155         if (Idx >= (int)SrcNumElts)
4156           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4157         else if (Idx >= 0)
4158           Idx -= StartIdx[0];
4159       }
4160 
4161       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4162       return;
4163     }
4164   }
4165 
4166   // We can't use either concat vectors or extract subvectors so fall back to
4167   // replacing the shuffle with extract and build vector.
4168   // to insert and build vector.
4169   EVT EltVT = VT.getVectorElementType();
4170   SmallVector<SDValue,8> Ops;
4171   for (int Idx : Mask) {
4172     SDValue Res;
4173 
4174     if (Idx < 0) {
4175       Res = DAG.getUNDEF(EltVT);
4176     } else {
4177       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4178       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4179 
4180       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4181                         DAG.getVectorIdxConstant(Idx, DL));
4182     }
4183 
4184     Ops.push_back(Res);
4185   }
4186 
4187   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4188 }
4189 
4190 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4191   ArrayRef<unsigned> Indices = I.getIndices();
4192   const Value *Op0 = I.getOperand(0);
4193   const Value *Op1 = I.getOperand(1);
4194   Type *AggTy = I.getType();
4195   Type *ValTy = Op1->getType();
4196   bool IntoUndef = isa<UndefValue>(Op0);
4197   bool FromUndef = isa<UndefValue>(Op1);
4198 
4199   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4200 
4201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4202   SmallVector<EVT, 4> AggValueVTs;
4203   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4204   SmallVector<EVT, 4> ValValueVTs;
4205   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4206 
4207   unsigned NumAggValues = AggValueVTs.size();
4208   unsigned NumValValues = ValValueVTs.size();
4209   SmallVector<SDValue, 4> Values(NumAggValues);
4210 
4211   // Ignore an insertvalue that produces an empty object
4212   if (!NumAggValues) {
4213     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4214     return;
4215   }
4216 
4217   SDValue Agg = getValue(Op0);
4218   unsigned i = 0;
4219   // Copy the beginning value(s) from the original aggregate.
4220   for (; i != LinearIndex; ++i)
4221     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4222                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4223   // Copy values from the inserted value(s).
4224   if (NumValValues) {
4225     SDValue Val = getValue(Op1);
4226     for (; i != LinearIndex + NumValValues; ++i)
4227       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4228                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4229   }
4230   // Copy remaining value(s) from the original aggregate.
4231   for (; i != NumAggValues; ++i)
4232     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4233                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4234 
4235   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4236                            DAG.getVTList(AggValueVTs), Values));
4237 }
4238 
4239 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4240   ArrayRef<unsigned> Indices = I.getIndices();
4241   const Value *Op0 = I.getOperand(0);
4242   Type *AggTy = Op0->getType();
4243   Type *ValTy = I.getType();
4244   bool OutOfUndef = isa<UndefValue>(Op0);
4245 
4246   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4247 
4248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4249   SmallVector<EVT, 4> ValValueVTs;
4250   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4251 
4252   unsigned NumValValues = ValValueVTs.size();
4253 
4254   // Ignore a extractvalue that produces an empty object
4255   if (!NumValValues) {
4256     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4257     return;
4258   }
4259 
4260   SmallVector<SDValue, 4> Values(NumValValues);
4261 
4262   SDValue Agg = getValue(Op0);
4263   // Copy out the selected value(s).
4264   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4265     Values[i - LinearIndex] =
4266       OutOfUndef ?
4267         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4268         SDValue(Agg.getNode(), Agg.getResNo() + i);
4269 
4270   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4271                            DAG.getVTList(ValValueVTs), Values));
4272 }
4273 
4274 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4275   Value *Op0 = I.getOperand(0);
4276   // Note that the pointer operand may be a vector of pointers. Take the scalar
4277   // element which holds a pointer.
4278   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4279   SDValue N = getValue(Op0);
4280   SDLoc dl = getCurSDLoc();
4281   auto &TLI = DAG.getTargetLoweringInfo();
4282 
4283   // Normalize Vector GEP - all scalar operands should be converted to the
4284   // splat vector.
4285   bool IsVectorGEP = I.getType()->isVectorTy();
4286   ElementCount VectorElementCount =
4287       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4288                   : ElementCount::getFixed(0);
4289 
4290   if (IsVectorGEP && !N.getValueType().isVector()) {
4291     LLVMContext &Context = *DAG.getContext();
4292     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4293     N = DAG.getSplat(VT, dl, N);
4294   }
4295 
4296   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4297        GTI != E; ++GTI) {
4298     const Value *Idx = GTI.getOperand();
4299     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4300       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4301       if (Field) {
4302         // N = N + Offset
4303         uint64_t Offset =
4304             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4305 
4306         // In an inbounds GEP with an offset that is nonnegative even when
4307         // interpreted as signed, assume there is no unsigned overflow.
4308         SDNodeFlags Flags;
4309         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4310           Flags.setNoUnsignedWrap(true);
4311 
4312         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4313                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4314       }
4315     } else {
4316       // IdxSize is the width of the arithmetic according to IR semantics.
4317       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4318       // (and fix up the result later).
4319       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4320       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4321       TypeSize ElementSize =
4322           GTI.getSequentialElementStride(DAG.getDataLayout());
4323       // We intentionally mask away the high bits here; ElementSize may not
4324       // fit in IdxTy.
4325       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4326       bool ElementScalable = ElementSize.isScalable();
4327 
4328       // If this is a scalar constant or a splat vector of constants,
4329       // handle it quickly.
4330       const auto *C = dyn_cast<Constant>(Idx);
4331       if (C && isa<VectorType>(C->getType()))
4332         C = C->getSplatValue();
4333 
4334       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4335       if (CI && CI->isZero())
4336         continue;
4337       if (CI && !ElementScalable) {
4338         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4339         LLVMContext &Context = *DAG.getContext();
4340         SDValue OffsVal;
4341         if (IsVectorGEP)
4342           OffsVal = DAG.getConstant(
4343               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4344         else
4345           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4346 
4347         // In an inbounds GEP with an offset that is nonnegative even when
4348         // interpreted as signed, assume there is no unsigned overflow.
4349         SDNodeFlags Flags;
4350         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4351           Flags.setNoUnsignedWrap(true);
4352 
4353         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4354 
4355         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4356         continue;
4357       }
4358 
4359       // N = N + Idx * ElementMul;
4360       SDValue IdxN = getValue(Idx);
4361 
4362       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4363         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4364                                   VectorElementCount);
4365         IdxN = DAG.getSplat(VT, dl, IdxN);
4366       }
4367 
4368       // If the index is smaller or larger than intptr_t, truncate or extend
4369       // it.
4370       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4371 
4372       if (ElementScalable) {
4373         EVT VScaleTy = N.getValueType().getScalarType();
4374         SDValue VScale = DAG.getNode(
4375             ISD::VSCALE, dl, VScaleTy,
4376             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4377         if (IsVectorGEP)
4378           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4379         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4380       } else {
4381         // If this is a multiply by a power of two, turn it into a shl
4382         // immediately.  This is a very common case.
4383         if (ElementMul != 1) {
4384           if (ElementMul.isPowerOf2()) {
4385             unsigned Amt = ElementMul.logBase2();
4386             IdxN = DAG.getNode(ISD::SHL, dl,
4387                                N.getValueType(), IdxN,
4388                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4389           } else {
4390             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4391                                             IdxN.getValueType());
4392             IdxN = DAG.getNode(ISD::MUL, dl,
4393                                N.getValueType(), IdxN, Scale);
4394           }
4395         }
4396       }
4397 
4398       N = DAG.getNode(ISD::ADD, dl,
4399                       N.getValueType(), N, IdxN);
4400     }
4401   }
4402 
4403   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4404   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4405   if (IsVectorGEP) {
4406     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4407     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4408   }
4409 
4410   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4411     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4412 
4413   setValue(&I, N);
4414 }
4415 
4416 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4417   // If this is a fixed sized alloca in the entry block of the function,
4418   // allocate it statically on the stack.
4419   if (FuncInfo.StaticAllocaMap.count(&I))
4420     return;   // getValue will auto-populate this.
4421 
4422   SDLoc dl = getCurSDLoc();
4423   Type *Ty = I.getAllocatedType();
4424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4425   auto &DL = DAG.getDataLayout();
4426   TypeSize TySize = DL.getTypeAllocSize(Ty);
4427   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4428 
4429   SDValue AllocSize = getValue(I.getArraySize());
4430 
4431   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4432   if (AllocSize.getValueType() != IntPtr)
4433     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4434 
4435   if (TySize.isScalable())
4436     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4437                             DAG.getVScale(dl, IntPtr,
4438                                           APInt(IntPtr.getScalarSizeInBits(),
4439                                                 TySize.getKnownMinValue())));
4440   else {
4441     SDValue TySizeValue =
4442         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4443     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4444                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4445   }
4446 
4447   // Handle alignment.  If the requested alignment is less than or equal to
4448   // the stack alignment, ignore it.  If the size is greater than or equal to
4449   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4450   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4451   if (*Alignment <= StackAlign)
4452     Alignment = std::nullopt;
4453 
4454   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4455   // Round the size of the allocation up to the stack alignment size
4456   // by add SA-1 to the size. This doesn't overflow because we're computing
4457   // an address inside an alloca.
4458   SDNodeFlags Flags;
4459   Flags.setNoUnsignedWrap(true);
4460   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4461                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4462 
4463   // Mask out the low bits for alignment purposes.
4464   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4465                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4466 
4467   SDValue Ops[] = {
4468       getRoot(), AllocSize,
4469       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4470   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4471   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4472   setValue(&I, DSA);
4473   DAG.setRoot(DSA.getValue(1));
4474 
4475   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4476 }
4477 
4478 static const MDNode *getRangeMetadata(const Instruction &I) {
4479   // If !noundef is not present, then !range violation results in a poison
4480   // value rather than immediate undefined behavior. In theory, transferring
4481   // these annotations to SDAG is fine, but in practice there are key SDAG
4482   // transforms that are known not to be poison-safe, such as folding logical
4483   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4484   // also present.
4485   if (!I.hasMetadata(LLVMContext::MD_noundef))
4486     return nullptr;
4487   return I.getMetadata(LLVMContext::MD_range);
4488 }
4489 
4490 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4491   if (I.isAtomic())
4492     return visitAtomicLoad(I);
4493 
4494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4495   const Value *SV = I.getOperand(0);
4496   if (TLI.supportSwiftError()) {
4497     // Swifterror values can come from either a function parameter with
4498     // swifterror attribute or an alloca with swifterror attribute.
4499     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4500       if (Arg->hasSwiftErrorAttr())
4501         return visitLoadFromSwiftError(I);
4502     }
4503 
4504     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4505       if (Alloca->isSwiftError())
4506         return visitLoadFromSwiftError(I);
4507     }
4508   }
4509 
4510   SDValue Ptr = getValue(SV);
4511 
4512   Type *Ty = I.getType();
4513   SmallVector<EVT, 4> ValueVTs, MemVTs;
4514   SmallVector<TypeSize, 4> Offsets;
4515   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4516   unsigned NumValues = ValueVTs.size();
4517   if (NumValues == 0)
4518     return;
4519 
4520   Align Alignment = I.getAlign();
4521   AAMDNodes AAInfo = I.getAAMetadata();
4522   const MDNode *Ranges = getRangeMetadata(I);
4523   bool isVolatile = I.isVolatile();
4524   MachineMemOperand::Flags MMOFlags =
4525       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4526 
4527   SDValue Root;
4528   bool ConstantMemory = false;
4529   if (isVolatile)
4530     // Serialize volatile loads with other side effects.
4531     Root = getRoot();
4532   else if (NumValues > MaxParallelChains)
4533     Root = getMemoryRoot();
4534   else if (AA &&
4535            AA->pointsToConstantMemory(MemoryLocation(
4536                SV,
4537                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4538                AAInfo))) {
4539     // Do not serialize (non-volatile) loads of constant memory with anything.
4540     Root = DAG.getEntryNode();
4541     ConstantMemory = true;
4542     MMOFlags |= MachineMemOperand::MOInvariant;
4543   } else {
4544     // Do not serialize non-volatile loads against each other.
4545     Root = DAG.getRoot();
4546   }
4547 
4548   SDLoc dl = getCurSDLoc();
4549 
4550   if (isVolatile)
4551     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4552 
4553   SmallVector<SDValue, 4> Values(NumValues);
4554   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4555 
4556   unsigned ChainI = 0;
4557   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4558     // Serializing loads here may result in excessive register pressure, and
4559     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4560     // could recover a bit by hoisting nodes upward in the chain by recognizing
4561     // they are side-effect free or do not alias. The optimizer should really
4562     // avoid this case by converting large object/array copies to llvm.memcpy
4563     // (MaxParallelChains should always remain as failsafe).
4564     if (ChainI == MaxParallelChains) {
4565       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4566       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4567                                   ArrayRef(Chains.data(), ChainI));
4568       Root = Chain;
4569       ChainI = 0;
4570     }
4571 
4572     // TODO: MachinePointerInfo only supports a fixed length offset.
4573     MachinePointerInfo PtrInfo =
4574         !Offsets[i].isScalable() || Offsets[i].isZero()
4575             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4576             : MachinePointerInfo();
4577 
4578     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4579     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4580                             MMOFlags, AAInfo, Ranges);
4581     Chains[ChainI] = L.getValue(1);
4582 
4583     if (MemVTs[i] != ValueVTs[i])
4584       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4585 
4586     Values[i] = L;
4587   }
4588 
4589   if (!ConstantMemory) {
4590     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4591                                 ArrayRef(Chains.data(), ChainI));
4592     if (isVolatile)
4593       DAG.setRoot(Chain);
4594     else
4595       PendingLoads.push_back(Chain);
4596   }
4597 
4598   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4599                            DAG.getVTList(ValueVTs), Values));
4600 }
4601 
4602 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4603   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4604          "call visitStoreToSwiftError when backend supports swifterror");
4605 
4606   SmallVector<EVT, 4> ValueVTs;
4607   SmallVector<uint64_t, 4> Offsets;
4608   const Value *SrcV = I.getOperand(0);
4609   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4610                   SrcV->getType(), ValueVTs, &Offsets, 0);
4611   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4612          "expect a single EVT for swifterror");
4613 
4614   SDValue Src = getValue(SrcV);
4615   // Create a virtual register, then update the virtual register.
4616   Register VReg =
4617       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4618   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4619   // Chain can be getRoot or getControlRoot.
4620   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4621                                       SDValue(Src.getNode(), Src.getResNo()));
4622   DAG.setRoot(CopyNode);
4623 }
4624 
4625 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4626   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4627          "call visitLoadFromSwiftError when backend supports swifterror");
4628 
4629   assert(!I.isVolatile() &&
4630          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4631          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4632          "Support volatile, non temporal, invariant for load_from_swift_error");
4633 
4634   const Value *SV = I.getOperand(0);
4635   Type *Ty = I.getType();
4636   assert(
4637       (!AA ||
4638        !AA->pointsToConstantMemory(MemoryLocation(
4639            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4640            I.getAAMetadata()))) &&
4641       "load_from_swift_error should not be constant memory");
4642 
4643   SmallVector<EVT, 4> ValueVTs;
4644   SmallVector<uint64_t, 4> Offsets;
4645   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4646                   ValueVTs, &Offsets, 0);
4647   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4648          "expect a single EVT for swifterror");
4649 
4650   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4651   SDValue L = DAG.getCopyFromReg(
4652       getRoot(), getCurSDLoc(),
4653       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4654 
4655   setValue(&I, L);
4656 }
4657 
4658 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4659   if (I.isAtomic())
4660     return visitAtomicStore(I);
4661 
4662   const Value *SrcV = I.getOperand(0);
4663   const Value *PtrV = I.getOperand(1);
4664 
4665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4666   if (TLI.supportSwiftError()) {
4667     // Swifterror values can come from either a function parameter with
4668     // swifterror attribute or an alloca with swifterror attribute.
4669     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4670       if (Arg->hasSwiftErrorAttr())
4671         return visitStoreToSwiftError(I);
4672     }
4673 
4674     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4675       if (Alloca->isSwiftError())
4676         return visitStoreToSwiftError(I);
4677     }
4678   }
4679 
4680   SmallVector<EVT, 4> ValueVTs, MemVTs;
4681   SmallVector<TypeSize, 4> Offsets;
4682   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4683                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4684   unsigned NumValues = ValueVTs.size();
4685   if (NumValues == 0)
4686     return;
4687 
4688   // Get the lowered operands. Note that we do this after
4689   // checking if NumResults is zero, because with zero results
4690   // the operands won't have values in the map.
4691   SDValue Src = getValue(SrcV);
4692   SDValue Ptr = getValue(PtrV);
4693 
4694   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4695   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4696   SDLoc dl = getCurSDLoc();
4697   Align Alignment = I.getAlign();
4698   AAMDNodes AAInfo = I.getAAMetadata();
4699 
4700   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4701 
4702   unsigned ChainI = 0;
4703   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4704     // See visitLoad comments.
4705     if (ChainI == MaxParallelChains) {
4706       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4707                                   ArrayRef(Chains.data(), ChainI));
4708       Root = Chain;
4709       ChainI = 0;
4710     }
4711 
4712     // TODO: MachinePointerInfo only supports a fixed length offset.
4713     MachinePointerInfo PtrInfo =
4714         !Offsets[i].isScalable() || Offsets[i].isZero()
4715             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4716             : MachinePointerInfo();
4717 
4718     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4719     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4720     if (MemVTs[i] != ValueVTs[i])
4721       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4722     SDValue St =
4723         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4724     Chains[ChainI] = St;
4725   }
4726 
4727   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4728                                   ArrayRef(Chains.data(), ChainI));
4729   setValue(&I, StoreNode);
4730   DAG.setRoot(StoreNode);
4731 }
4732 
4733 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4734                                            bool IsCompressing) {
4735   SDLoc sdl = getCurSDLoc();
4736 
4737   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4738                                Align &Alignment) {
4739     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4740     Src0 = I.getArgOperand(0);
4741     Ptr = I.getArgOperand(1);
4742     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4743     Mask = I.getArgOperand(3);
4744   };
4745   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4746                                     Align &Alignment) {
4747     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4748     Src0 = I.getArgOperand(0);
4749     Ptr = I.getArgOperand(1);
4750     Mask = I.getArgOperand(2);
4751     Alignment = I.getParamAlign(1).valueOrOne();
4752   };
4753 
4754   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4755   Align Alignment;
4756   if (IsCompressing)
4757     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4758   else
4759     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4760 
4761   SDValue Ptr = getValue(PtrOperand);
4762   SDValue Src0 = getValue(Src0Operand);
4763   SDValue Mask = getValue(MaskOperand);
4764   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4765 
4766   EVT VT = Src0.getValueType();
4767 
4768   auto MMOFlags = MachineMemOperand::MOStore;
4769   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4770     MMOFlags |= MachineMemOperand::MONonTemporal;
4771 
4772   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4773       MachinePointerInfo(PtrOperand), MMOFlags,
4774       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4775   SDValue StoreNode =
4776       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4777                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4778   DAG.setRoot(StoreNode);
4779   setValue(&I, StoreNode);
4780 }
4781 
4782 // Get a uniform base for the Gather/Scatter intrinsic.
4783 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4784 // We try to represent it as a base pointer + vector of indices.
4785 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4786 // The first operand of the GEP may be a single pointer or a vector of pointers
4787 // Example:
4788 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4789 //  or
4790 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4791 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4792 //
4793 // When the first GEP operand is a single pointer - it is the uniform base we
4794 // are looking for. If first operand of the GEP is a splat vector - we
4795 // extract the splat value and use it as a uniform base.
4796 // In all other cases the function returns 'false'.
4797 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4798                            ISD::MemIndexType &IndexType, SDValue &Scale,
4799                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4800                            uint64_t ElemSize) {
4801   SelectionDAG& DAG = SDB->DAG;
4802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4803   const DataLayout &DL = DAG.getDataLayout();
4804 
4805   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4806 
4807   // Handle splat constant pointer.
4808   if (auto *C = dyn_cast<Constant>(Ptr)) {
4809     C = C->getSplatValue();
4810     if (!C)
4811       return false;
4812 
4813     Base = SDB->getValue(C);
4814 
4815     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4816     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4817     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4818     IndexType = ISD::SIGNED_SCALED;
4819     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4820     return true;
4821   }
4822 
4823   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4824   if (!GEP || GEP->getParent() != CurBB)
4825     return false;
4826 
4827   if (GEP->getNumOperands() != 2)
4828     return false;
4829 
4830   const Value *BasePtr = GEP->getPointerOperand();
4831   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4832 
4833   // Make sure the base is scalar and the index is a vector.
4834   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4835     return false;
4836 
4837   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4838   if (ScaleVal.isScalable())
4839     return false;
4840 
4841   // Target may not support the required addressing mode.
4842   if (ScaleVal != 1 &&
4843       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4844     return false;
4845 
4846   Base = SDB->getValue(BasePtr);
4847   Index = SDB->getValue(IndexVal);
4848   IndexType = ISD::SIGNED_SCALED;
4849 
4850   Scale =
4851       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4852   return true;
4853 }
4854 
4855 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4856   SDLoc sdl = getCurSDLoc();
4857 
4858   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4859   const Value *Ptr = I.getArgOperand(1);
4860   SDValue Src0 = getValue(I.getArgOperand(0));
4861   SDValue Mask = getValue(I.getArgOperand(3));
4862   EVT VT = Src0.getValueType();
4863   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4864                         ->getMaybeAlignValue()
4865                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4867 
4868   SDValue Base;
4869   SDValue Index;
4870   ISD::MemIndexType IndexType;
4871   SDValue Scale;
4872   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4873                                     I.getParent(), VT.getScalarStoreSize());
4874 
4875   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4876   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4877       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4878       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4879   if (!UniformBase) {
4880     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4881     Index = getValue(Ptr);
4882     IndexType = ISD::SIGNED_SCALED;
4883     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4884   }
4885 
4886   EVT IdxVT = Index.getValueType();
4887   EVT EltTy = IdxVT.getVectorElementType();
4888   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4889     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4890     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4891   }
4892 
4893   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4894   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4895                                          Ops, MMO, IndexType, false);
4896   DAG.setRoot(Scatter);
4897   setValue(&I, Scatter);
4898 }
4899 
4900 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4901   SDLoc sdl = getCurSDLoc();
4902 
4903   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4904                               Align &Alignment) {
4905     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4906     Ptr = I.getArgOperand(0);
4907     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4908     Mask = I.getArgOperand(2);
4909     Src0 = I.getArgOperand(3);
4910   };
4911   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4912                                  Align &Alignment) {
4913     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4914     Ptr = I.getArgOperand(0);
4915     Alignment = I.getParamAlign(0).valueOrOne();
4916     Mask = I.getArgOperand(1);
4917     Src0 = I.getArgOperand(2);
4918   };
4919 
4920   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4921   Align Alignment;
4922   if (IsExpanding)
4923     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4924   else
4925     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4926 
4927   SDValue Ptr = getValue(PtrOperand);
4928   SDValue Src0 = getValue(Src0Operand);
4929   SDValue Mask = getValue(MaskOperand);
4930   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4931 
4932   EVT VT = Src0.getValueType();
4933   AAMDNodes AAInfo = I.getAAMetadata();
4934   const MDNode *Ranges = getRangeMetadata(I);
4935 
4936   // Do not serialize masked loads of constant memory with anything.
4937   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4938   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4939 
4940   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4941 
4942   auto MMOFlags = MachineMemOperand::MOLoad;
4943   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4944     MMOFlags |= MachineMemOperand::MONonTemporal;
4945 
4946   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4947       MachinePointerInfo(PtrOperand), MMOFlags,
4948       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4949 
4950   SDValue Load =
4951       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4952                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4953   if (AddToChain)
4954     PendingLoads.push_back(Load.getValue(1));
4955   setValue(&I, Load);
4956 }
4957 
4958 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4959   SDLoc sdl = getCurSDLoc();
4960 
4961   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4962   const Value *Ptr = I.getArgOperand(0);
4963   SDValue Src0 = getValue(I.getArgOperand(3));
4964   SDValue Mask = getValue(I.getArgOperand(2));
4965 
4966   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4967   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4968   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4969                         ->getMaybeAlignValue()
4970                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4971 
4972   const MDNode *Ranges = getRangeMetadata(I);
4973 
4974   SDValue Root = DAG.getRoot();
4975   SDValue Base;
4976   SDValue Index;
4977   ISD::MemIndexType IndexType;
4978   SDValue Scale;
4979   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4980                                     I.getParent(), VT.getScalarStoreSize());
4981   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4982   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4983       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4984       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
4985       Ranges);
4986 
4987   if (!UniformBase) {
4988     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4989     Index = getValue(Ptr);
4990     IndexType = ISD::SIGNED_SCALED;
4991     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4992   }
4993 
4994   EVT IdxVT = Index.getValueType();
4995   EVT EltTy = IdxVT.getVectorElementType();
4996   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4997     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4998     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4999   }
5000 
5001   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5002   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5003                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5004 
5005   PendingLoads.push_back(Gather.getValue(1));
5006   setValue(&I, Gather);
5007 }
5008 
5009 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5010   SDLoc dl = getCurSDLoc();
5011   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5012   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5013   SyncScope::ID SSID = I.getSyncScopeID();
5014 
5015   SDValue InChain = getRoot();
5016 
5017   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5018   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5019 
5020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5021   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5022 
5023   MachineFunction &MF = DAG.getMachineFunction();
5024   MachineMemOperand *MMO = MF.getMachineMemOperand(
5025       MachinePointerInfo(I.getPointerOperand()), Flags,
5026       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5027       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5028 
5029   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5030                                    dl, MemVT, VTs, InChain,
5031                                    getValue(I.getPointerOperand()),
5032                                    getValue(I.getCompareOperand()),
5033                                    getValue(I.getNewValOperand()), MMO);
5034 
5035   SDValue OutChain = L.getValue(2);
5036 
5037   setValue(&I, L);
5038   DAG.setRoot(OutChain);
5039 }
5040 
5041 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5042   SDLoc dl = getCurSDLoc();
5043   ISD::NodeType NT;
5044   switch (I.getOperation()) {
5045   default: llvm_unreachable("Unknown atomicrmw operation");
5046   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5047   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5048   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5049   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5050   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5051   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5052   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5053   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5054   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5055   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5056   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5057   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5058   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5059   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5060   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5061   case AtomicRMWInst::UIncWrap:
5062     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5063     break;
5064   case AtomicRMWInst::UDecWrap:
5065     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5066     break;
5067   }
5068   AtomicOrdering Ordering = I.getOrdering();
5069   SyncScope::ID SSID = I.getSyncScopeID();
5070 
5071   SDValue InChain = getRoot();
5072 
5073   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5075   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5076 
5077   MachineFunction &MF = DAG.getMachineFunction();
5078   MachineMemOperand *MMO = MF.getMachineMemOperand(
5079       MachinePointerInfo(I.getPointerOperand()), Flags,
5080       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5081       AAMDNodes(), nullptr, SSID, Ordering);
5082 
5083   SDValue L =
5084     DAG.getAtomic(NT, dl, MemVT, InChain,
5085                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5086                   MMO);
5087 
5088   SDValue OutChain = L.getValue(1);
5089 
5090   setValue(&I, L);
5091   DAG.setRoot(OutChain);
5092 }
5093 
5094 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5095   SDLoc dl = getCurSDLoc();
5096   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5097   SDValue Ops[3];
5098   Ops[0] = getRoot();
5099   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5100                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5101   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5102                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5103   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5104   setValue(&I, N);
5105   DAG.setRoot(N);
5106 }
5107 
5108 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5109   SDLoc dl = getCurSDLoc();
5110   AtomicOrdering Order = I.getOrdering();
5111   SyncScope::ID SSID = I.getSyncScopeID();
5112 
5113   SDValue InChain = getRoot();
5114 
5115   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5116   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5117   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5118 
5119   if (!TLI.supportsUnalignedAtomics() &&
5120       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5121     report_fatal_error("Cannot generate unaligned atomic load");
5122 
5123   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5124 
5125   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5126       MachinePointerInfo(I.getPointerOperand()), Flags,
5127       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5128       nullptr, SSID, Order);
5129 
5130   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5131 
5132   SDValue Ptr = getValue(I.getPointerOperand());
5133   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5134                             Ptr, MMO);
5135 
5136   SDValue OutChain = L.getValue(1);
5137   if (MemVT != VT)
5138     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5139 
5140   setValue(&I, L);
5141   DAG.setRoot(OutChain);
5142 }
5143 
5144 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5145   SDLoc dl = getCurSDLoc();
5146 
5147   AtomicOrdering Ordering = I.getOrdering();
5148   SyncScope::ID SSID = I.getSyncScopeID();
5149 
5150   SDValue InChain = getRoot();
5151 
5152   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5153   EVT MemVT =
5154       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5155 
5156   if (!TLI.supportsUnalignedAtomics() &&
5157       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5158     report_fatal_error("Cannot generate unaligned atomic store");
5159 
5160   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5161 
5162   MachineFunction &MF = DAG.getMachineFunction();
5163   MachineMemOperand *MMO = MF.getMachineMemOperand(
5164       MachinePointerInfo(I.getPointerOperand()), Flags,
5165       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5166       nullptr, SSID, Ordering);
5167 
5168   SDValue Val = getValue(I.getValueOperand());
5169   if (Val.getValueType() != MemVT)
5170     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5171   SDValue Ptr = getValue(I.getPointerOperand());
5172 
5173   SDValue OutChain =
5174       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5175 
5176   setValue(&I, OutChain);
5177   DAG.setRoot(OutChain);
5178 }
5179 
5180 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5181 /// node.
5182 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5183                                                unsigned Intrinsic) {
5184   // Ignore the callsite's attributes. A specific call site may be marked with
5185   // readnone, but the lowering code will expect the chain based on the
5186   // definition.
5187   const Function *F = I.getCalledFunction();
5188   bool HasChain = !F->doesNotAccessMemory();
5189   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5190 
5191   // Build the operand list.
5192   SmallVector<SDValue, 8> Ops;
5193   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5194     if (OnlyLoad) {
5195       // We don't need to serialize loads against other loads.
5196       Ops.push_back(DAG.getRoot());
5197     } else {
5198       Ops.push_back(getRoot());
5199     }
5200   }
5201 
5202   // Info is set by getTgtMemIntrinsic
5203   TargetLowering::IntrinsicInfo Info;
5204   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5205   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5206                                                DAG.getMachineFunction(),
5207                                                Intrinsic);
5208 
5209   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5210   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5211       Info.opc == ISD::INTRINSIC_W_CHAIN)
5212     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5213                                         TLI.getPointerTy(DAG.getDataLayout())));
5214 
5215   // Add all operands of the call to the operand list.
5216   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5217     const Value *Arg = I.getArgOperand(i);
5218     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5219       Ops.push_back(getValue(Arg));
5220       continue;
5221     }
5222 
5223     // Use TargetConstant instead of a regular constant for immarg.
5224     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5225     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5226       assert(CI->getBitWidth() <= 64 &&
5227              "large intrinsic immediates not handled");
5228       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5229     } else {
5230       Ops.push_back(
5231           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5232     }
5233   }
5234 
5235   SmallVector<EVT, 4> ValueVTs;
5236   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5237 
5238   if (HasChain)
5239     ValueVTs.push_back(MVT::Other);
5240 
5241   SDVTList VTs = DAG.getVTList(ValueVTs);
5242 
5243   // Propagate fast-math-flags from IR to node(s).
5244   SDNodeFlags Flags;
5245   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5246     Flags.copyFMF(*FPMO);
5247   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5248 
5249   // Create the node.
5250   SDValue Result;
5251 
5252   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5253     auto *Token = Bundle->Inputs[0].get();
5254     SDValue ConvControlToken = getValue(Token);
5255     assert(Ops.back().getValueType() != MVT::Glue &&
5256            "Did not expected another glue node here.");
5257     ConvControlToken =
5258         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5259     Ops.push_back(ConvControlToken);
5260   }
5261 
5262   // In some cases, custom collection of operands from CallInst I may be needed.
5263   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5264   if (IsTgtIntrinsic) {
5265     // This is target intrinsic that touches memory
5266     //
5267     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5268     //       didn't yield anything useful.
5269     MachinePointerInfo MPI;
5270     if (Info.ptrVal)
5271       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5272     else if (Info.fallbackAddressSpace)
5273       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5274     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5275                                      Info.memVT, MPI, Info.align, Info.flags,
5276                                      Info.size, I.getAAMetadata());
5277   } else if (!HasChain) {
5278     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5279   } else if (!I.getType()->isVoidTy()) {
5280     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5281   } else {
5282     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5283   }
5284 
5285   if (HasChain) {
5286     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5287     if (OnlyLoad)
5288       PendingLoads.push_back(Chain);
5289     else
5290       DAG.setRoot(Chain);
5291   }
5292 
5293   if (!I.getType()->isVoidTy()) {
5294     if (!isa<VectorType>(I.getType()))
5295       Result = lowerRangeToAssertZExt(DAG, I, Result);
5296 
5297     MaybeAlign Alignment = I.getRetAlign();
5298 
5299     // Insert `assertalign` node if there's an alignment.
5300     if (InsertAssertAlign && Alignment) {
5301       Result =
5302           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5303     }
5304   }
5305 
5306   setValue(&I, Result);
5307 }
5308 
5309 /// GetSignificand - Get the significand and build it into a floating-point
5310 /// number with exponent of 1:
5311 ///
5312 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5313 ///
5314 /// where Op is the hexadecimal representation of floating point value.
5315 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5316   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5317                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5318   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5319                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5320   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5321 }
5322 
5323 /// GetExponent - Get the exponent:
5324 ///
5325 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5326 ///
5327 /// where Op is the hexadecimal representation of floating point value.
5328 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5329                            const TargetLowering &TLI, const SDLoc &dl) {
5330   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5331                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5332   SDValue t1 = DAG.getNode(
5333       ISD::SRL, dl, MVT::i32, t0,
5334       DAG.getConstant(23, dl,
5335                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5336   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5337                            DAG.getConstant(127, dl, MVT::i32));
5338   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5339 }
5340 
5341 /// getF32Constant - Get 32-bit floating point constant.
5342 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5343                               const SDLoc &dl) {
5344   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5345                            MVT::f32);
5346 }
5347 
5348 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5349                                        SelectionDAG &DAG) {
5350   // TODO: What fast-math-flags should be set on the floating-point nodes?
5351 
5352   //   IntegerPartOfX = ((int32_t)(t0);
5353   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5354 
5355   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5356   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5357   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5358 
5359   //   IntegerPartOfX <<= 23;
5360   IntegerPartOfX =
5361       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5362                   DAG.getConstant(23, dl,
5363                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5364                                       MVT::i32, DAG.getDataLayout())));
5365 
5366   SDValue TwoToFractionalPartOfX;
5367   if (LimitFloatPrecision <= 6) {
5368     // For floating-point precision of 6:
5369     //
5370     //   TwoToFractionalPartOfX =
5371     //     0.997535578f +
5372     //       (0.735607626f + 0.252464424f * x) * x;
5373     //
5374     // error 0.0144103317, which is 6 bits
5375     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5376                              getF32Constant(DAG, 0x3e814304, dl));
5377     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5378                              getF32Constant(DAG, 0x3f3c50c8, dl));
5379     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5380     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5381                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5382   } else if (LimitFloatPrecision <= 12) {
5383     // For floating-point precision of 12:
5384     //
5385     //   TwoToFractionalPartOfX =
5386     //     0.999892986f +
5387     //       (0.696457318f +
5388     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5389     //
5390     // error 0.000107046256, which is 13 to 14 bits
5391     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5392                              getF32Constant(DAG, 0x3da235e3, dl));
5393     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5394                              getF32Constant(DAG, 0x3e65b8f3, dl));
5395     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5396     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5397                              getF32Constant(DAG, 0x3f324b07, dl));
5398     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5399     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5400                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5401   } else { // LimitFloatPrecision <= 18
5402     // For floating-point precision of 18:
5403     //
5404     //   TwoToFractionalPartOfX =
5405     //     0.999999982f +
5406     //       (0.693148872f +
5407     //         (0.240227044f +
5408     //           (0.554906021e-1f +
5409     //             (0.961591928e-2f +
5410     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5411     // error 2.47208000*10^(-7), which is better than 18 bits
5412     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5413                              getF32Constant(DAG, 0x3924b03e, dl));
5414     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5415                              getF32Constant(DAG, 0x3ab24b87, dl));
5416     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5417     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5418                              getF32Constant(DAG, 0x3c1d8c17, dl));
5419     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5420     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5421                              getF32Constant(DAG, 0x3d634a1d, dl));
5422     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5423     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5424                              getF32Constant(DAG, 0x3e75fe14, dl));
5425     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5426     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5427                               getF32Constant(DAG, 0x3f317234, dl));
5428     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5429     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5430                                          getF32Constant(DAG, 0x3f800000, dl));
5431   }
5432 
5433   // Add the exponent into the result in integer domain.
5434   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5435   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5436                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5437 }
5438 
5439 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5440 /// limited-precision mode.
5441 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5442                          const TargetLowering &TLI, SDNodeFlags Flags) {
5443   if (Op.getValueType() == MVT::f32 &&
5444       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5445 
5446     // Put the exponent in the right bit position for later addition to the
5447     // final result:
5448     //
5449     // t0 = Op * log2(e)
5450 
5451     // TODO: What fast-math-flags should be set here?
5452     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5453                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5454     return getLimitedPrecisionExp2(t0, dl, DAG);
5455   }
5456 
5457   // No special expansion.
5458   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5459 }
5460 
5461 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5462 /// limited-precision mode.
5463 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5464                          const TargetLowering &TLI, SDNodeFlags Flags) {
5465   // TODO: What fast-math-flags should be set on the floating-point nodes?
5466 
5467   if (Op.getValueType() == MVT::f32 &&
5468       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5469     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5470 
5471     // Scale the exponent by log(2).
5472     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5473     SDValue LogOfExponent =
5474         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5475                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5476 
5477     // Get the significand and build it into a floating-point number with
5478     // exponent of 1.
5479     SDValue X = GetSignificand(DAG, Op1, dl);
5480 
5481     SDValue LogOfMantissa;
5482     if (LimitFloatPrecision <= 6) {
5483       // For floating-point precision of 6:
5484       //
5485       //   LogofMantissa =
5486       //     -1.1609546f +
5487       //       (1.4034025f - 0.23903021f * x) * x;
5488       //
5489       // error 0.0034276066, which is better than 8 bits
5490       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5491                                getF32Constant(DAG, 0xbe74c456, dl));
5492       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5493                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5494       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5495       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5496                                   getF32Constant(DAG, 0x3f949a29, dl));
5497     } else if (LimitFloatPrecision <= 12) {
5498       // For floating-point precision of 12:
5499       //
5500       //   LogOfMantissa =
5501       //     -1.7417939f +
5502       //       (2.8212026f +
5503       //         (-1.4699568f +
5504       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5505       //
5506       // error 0.000061011436, which is 14 bits
5507       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5508                                getF32Constant(DAG, 0xbd67b6d6, dl));
5509       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5510                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5511       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5512       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5513                                getF32Constant(DAG, 0x3fbc278b, dl));
5514       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5515       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5516                                getF32Constant(DAG, 0x40348e95, dl));
5517       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5518       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5519                                   getF32Constant(DAG, 0x3fdef31a, dl));
5520     } else { // LimitFloatPrecision <= 18
5521       // For floating-point precision of 18:
5522       //
5523       //   LogOfMantissa =
5524       //     -2.1072184f +
5525       //       (4.2372794f +
5526       //         (-3.7029485f +
5527       //           (2.2781945f +
5528       //             (-0.87823314f +
5529       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5530       //
5531       // error 0.0000023660568, which is better than 18 bits
5532       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5533                                getF32Constant(DAG, 0xbc91e5ac, dl));
5534       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5535                                getF32Constant(DAG, 0x3e4350aa, dl));
5536       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5537       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5538                                getF32Constant(DAG, 0x3f60d3e3, dl));
5539       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5540       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5541                                getF32Constant(DAG, 0x4011cdf0, dl));
5542       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5543       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5544                                getF32Constant(DAG, 0x406cfd1c, dl));
5545       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5546       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5547                                getF32Constant(DAG, 0x408797cb, dl));
5548       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5549       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5550                                   getF32Constant(DAG, 0x4006dcab, dl));
5551     }
5552 
5553     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5554   }
5555 
5556   // No special expansion.
5557   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5558 }
5559 
5560 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5561 /// limited-precision mode.
5562 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5563                           const TargetLowering &TLI, SDNodeFlags Flags) {
5564   // TODO: What fast-math-flags should be set on the floating-point nodes?
5565 
5566   if (Op.getValueType() == MVT::f32 &&
5567       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5568     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5569 
5570     // Get the exponent.
5571     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5572 
5573     // Get the significand and build it into a floating-point number with
5574     // exponent of 1.
5575     SDValue X = GetSignificand(DAG, Op1, dl);
5576 
5577     // Different possible minimax approximations of significand in
5578     // floating-point for various degrees of accuracy over [1,2].
5579     SDValue Log2ofMantissa;
5580     if (LimitFloatPrecision <= 6) {
5581       // For floating-point precision of 6:
5582       //
5583       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5584       //
5585       // error 0.0049451742, which is more than 7 bits
5586       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5587                                getF32Constant(DAG, 0xbeb08fe0, dl));
5588       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5589                                getF32Constant(DAG, 0x40019463, dl));
5590       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5591       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5592                                    getF32Constant(DAG, 0x3fd6633d, dl));
5593     } else if (LimitFloatPrecision <= 12) {
5594       // For floating-point precision of 12:
5595       //
5596       //   Log2ofMantissa =
5597       //     -2.51285454f +
5598       //       (4.07009056f +
5599       //         (-2.12067489f +
5600       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5601       //
5602       // error 0.0000876136000, which is better than 13 bits
5603       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5604                                getF32Constant(DAG, 0xbda7262e, dl));
5605       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5606                                getF32Constant(DAG, 0x3f25280b, dl));
5607       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5608       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5609                                getF32Constant(DAG, 0x4007b923, dl));
5610       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5611       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5612                                getF32Constant(DAG, 0x40823e2f, dl));
5613       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5614       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5615                                    getF32Constant(DAG, 0x4020d29c, dl));
5616     } else { // LimitFloatPrecision <= 18
5617       // For floating-point precision of 18:
5618       //
5619       //   Log2ofMantissa =
5620       //     -3.0400495f +
5621       //       (6.1129976f +
5622       //         (-5.3420409f +
5623       //           (3.2865683f +
5624       //             (-1.2669343f +
5625       //               (0.27515199f -
5626       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5627       //
5628       // error 0.0000018516, which is better than 18 bits
5629       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5630                                getF32Constant(DAG, 0xbcd2769e, dl));
5631       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5632                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5633       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5634       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5635                                getF32Constant(DAG, 0x3fa22ae7, dl));
5636       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5637       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5638                                getF32Constant(DAG, 0x40525723, dl));
5639       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5640       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5641                                getF32Constant(DAG, 0x40aaf200, dl));
5642       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5643       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5644                                getF32Constant(DAG, 0x40c39dad, dl));
5645       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5646       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5647                                    getF32Constant(DAG, 0x4042902c, dl));
5648     }
5649 
5650     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5651   }
5652 
5653   // No special expansion.
5654   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5655 }
5656 
5657 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5658 /// limited-precision mode.
5659 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5660                            const TargetLowering &TLI, SDNodeFlags Flags) {
5661   // TODO: What fast-math-flags should be set on the floating-point nodes?
5662 
5663   if (Op.getValueType() == MVT::f32 &&
5664       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5665     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5666 
5667     // Scale the exponent by log10(2) [0.30102999f].
5668     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5669     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5670                                         getF32Constant(DAG, 0x3e9a209a, dl));
5671 
5672     // Get the significand and build it into a floating-point number with
5673     // exponent of 1.
5674     SDValue X = GetSignificand(DAG, Op1, dl);
5675 
5676     SDValue Log10ofMantissa;
5677     if (LimitFloatPrecision <= 6) {
5678       // For floating-point precision of 6:
5679       //
5680       //   Log10ofMantissa =
5681       //     -0.50419619f +
5682       //       (0.60948995f - 0.10380950f * x) * x;
5683       //
5684       // error 0.0014886165, which is 6 bits
5685       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5686                                getF32Constant(DAG, 0xbdd49a13, dl));
5687       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5688                                getF32Constant(DAG, 0x3f1c0789, dl));
5689       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5690       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5691                                     getF32Constant(DAG, 0x3f011300, dl));
5692     } else if (LimitFloatPrecision <= 12) {
5693       // For floating-point precision of 12:
5694       //
5695       //   Log10ofMantissa =
5696       //     -0.64831180f +
5697       //       (0.91751397f +
5698       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5699       //
5700       // error 0.00019228036, which is better than 12 bits
5701       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5702                                getF32Constant(DAG, 0x3d431f31, dl));
5703       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5704                                getF32Constant(DAG, 0x3ea21fb2, dl));
5705       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5706       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5707                                getF32Constant(DAG, 0x3f6ae232, dl));
5708       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5709       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5710                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5711     } else { // LimitFloatPrecision <= 18
5712       // For floating-point precision of 18:
5713       //
5714       //   Log10ofMantissa =
5715       //     -0.84299375f +
5716       //       (1.5327582f +
5717       //         (-1.0688956f +
5718       //           (0.49102474f +
5719       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5720       //
5721       // error 0.0000037995730, which is better than 18 bits
5722       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5723                                getF32Constant(DAG, 0x3c5d51ce, dl));
5724       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5725                                getF32Constant(DAG, 0x3e00685a, dl));
5726       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5727       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5728                                getF32Constant(DAG, 0x3efb6798, dl));
5729       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5730       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5731                                getF32Constant(DAG, 0x3f88d192, dl));
5732       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5733       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5734                                getF32Constant(DAG, 0x3fc4316c, dl));
5735       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5736       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5737                                     getF32Constant(DAG, 0x3f57ce70, dl));
5738     }
5739 
5740     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5741   }
5742 
5743   // No special expansion.
5744   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5745 }
5746 
5747 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5748 /// limited-precision mode.
5749 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5750                           const TargetLowering &TLI, SDNodeFlags Flags) {
5751   if (Op.getValueType() == MVT::f32 &&
5752       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5753     return getLimitedPrecisionExp2(Op, dl, DAG);
5754 
5755   // No special expansion.
5756   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5757 }
5758 
5759 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5760 /// limited-precision mode with x == 10.0f.
5761 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5762                          SelectionDAG &DAG, const TargetLowering &TLI,
5763                          SDNodeFlags Flags) {
5764   bool IsExp10 = false;
5765   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5766       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5767     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5768       APFloat Ten(10.0f);
5769       IsExp10 = LHSC->isExactlyValue(Ten);
5770     }
5771   }
5772 
5773   // TODO: What fast-math-flags should be set on the FMUL node?
5774   if (IsExp10) {
5775     // Put the exponent in the right bit position for later addition to the
5776     // final result:
5777     //
5778     //   #define LOG2OF10 3.3219281f
5779     //   t0 = Op * LOG2OF10;
5780     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5781                              getF32Constant(DAG, 0x40549a78, dl));
5782     return getLimitedPrecisionExp2(t0, dl, DAG);
5783   }
5784 
5785   // No special expansion.
5786   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5787 }
5788 
5789 /// ExpandPowI - Expand a llvm.powi intrinsic.
5790 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5791                           SelectionDAG &DAG) {
5792   // If RHS is a constant, we can expand this out to a multiplication tree if
5793   // it's beneficial on the target, otherwise we end up lowering to a call to
5794   // __powidf2 (for example).
5795   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5796     unsigned Val = RHSC->getSExtValue();
5797 
5798     // powi(x, 0) -> 1.0
5799     if (Val == 0)
5800       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5801 
5802     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5803             Val, DAG.shouldOptForSize())) {
5804       // Get the exponent as a positive value.
5805       if ((int)Val < 0)
5806         Val = -Val;
5807       // We use the simple binary decomposition method to generate the multiply
5808       // sequence.  There are more optimal ways to do this (for example,
5809       // powi(x,15) generates one more multiply than it should), but this has
5810       // the benefit of being both really simple and much better than a libcall.
5811       SDValue Res; // Logically starts equal to 1.0
5812       SDValue CurSquare = LHS;
5813       // TODO: Intrinsics should have fast-math-flags that propagate to these
5814       // nodes.
5815       while (Val) {
5816         if (Val & 1) {
5817           if (Res.getNode())
5818             Res =
5819                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5820           else
5821             Res = CurSquare; // 1.0*CurSquare.
5822         }
5823 
5824         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5825                                 CurSquare, CurSquare);
5826         Val >>= 1;
5827       }
5828 
5829       // If the original was negative, invert the result, producing 1/(x*x*x).
5830       if (RHSC->getSExtValue() < 0)
5831         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5832                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5833       return Res;
5834     }
5835   }
5836 
5837   // Otherwise, expand to a libcall.
5838   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5839 }
5840 
5841 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5842                             SDValue LHS, SDValue RHS, SDValue Scale,
5843                             SelectionDAG &DAG, const TargetLowering &TLI) {
5844   EVT VT = LHS.getValueType();
5845   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5846   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5847   LLVMContext &Ctx = *DAG.getContext();
5848 
5849   // If the type is legal but the operation isn't, this node might survive all
5850   // the way to operation legalization. If we end up there and we do not have
5851   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5852   // node.
5853 
5854   // Coax the legalizer into expanding the node during type legalization instead
5855   // by bumping the size by one bit. This will force it to Promote, enabling the
5856   // early expansion and avoiding the need to expand later.
5857 
5858   // We don't have to do this if Scale is 0; that can always be expanded, unless
5859   // it's a saturating signed operation. Those can experience true integer
5860   // division overflow, a case which we must avoid.
5861 
5862   // FIXME: We wouldn't have to do this (or any of the early
5863   // expansion/promotion) if it was possible to expand a libcall of an
5864   // illegal type during operation legalization. But it's not, so things
5865   // get a bit hacky.
5866   unsigned ScaleInt = Scale->getAsZExtVal();
5867   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5868       (TLI.isTypeLegal(VT) ||
5869        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5870     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5871         Opcode, VT, ScaleInt);
5872     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5873       EVT PromVT;
5874       if (VT.isScalarInteger())
5875         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5876       else if (VT.isVector()) {
5877         PromVT = VT.getVectorElementType();
5878         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5879         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5880       } else
5881         llvm_unreachable("Wrong VT for DIVFIX?");
5882       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5883       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5884       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5885       // For saturating operations, we need to shift up the LHS to get the
5886       // proper saturation width, and then shift down again afterwards.
5887       if (Saturating)
5888         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5889                           DAG.getConstant(1, DL, ShiftTy));
5890       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5891       if (Saturating)
5892         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5893                           DAG.getConstant(1, DL, ShiftTy));
5894       return DAG.getZExtOrTrunc(Res, DL, VT);
5895     }
5896   }
5897 
5898   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5899 }
5900 
5901 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5902 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5903 static void
5904 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5905                      const SDValue &N) {
5906   switch (N.getOpcode()) {
5907   case ISD::CopyFromReg: {
5908     SDValue Op = N.getOperand(1);
5909     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5910                       Op.getValueType().getSizeInBits());
5911     return;
5912   }
5913   case ISD::BITCAST:
5914   case ISD::AssertZext:
5915   case ISD::AssertSext:
5916   case ISD::TRUNCATE:
5917     getUnderlyingArgRegs(Regs, N.getOperand(0));
5918     return;
5919   case ISD::BUILD_PAIR:
5920   case ISD::BUILD_VECTOR:
5921   case ISD::CONCAT_VECTORS:
5922     for (SDValue Op : N->op_values())
5923       getUnderlyingArgRegs(Regs, Op);
5924     return;
5925   default:
5926     return;
5927   }
5928 }
5929 
5930 /// If the DbgValueInst is a dbg_value of a function argument, create the
5931 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5932 /// instruction selection, they will be inserted to the entry BB.
5933 /// We don't currently support this for variadic dbg_values, as they shouldn't
5934 /// appear for function arguments or in the prologue.
5935 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5936     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5937     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5938   const Argument *Arg = dyn_cast<Argument>(V);
5939   if (!Arg)
5940     return false;
5941 
5942   MachineFunction &MF = DAG.getMachineFunction();
5943   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5944 
5945   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5946   // we've been asked to pursue.
5947   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5948                               bool Indirect) {
5949     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5950       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5951       // pointing at the VReg, which will be patched up later.
5952       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5953       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5954           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5955           /* isKill */ false, /* isDead */ false,
5956           /* isUndef */ false, /* isEarlyClobber */ false,
5957           /* SubReg */ 0, /* isDebug */ true)});
5958 
5959       auto *NewDIExpr = FragExpr;
5960       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5961       // the DIExpression.
5962       if (Indirect)
5963         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5964       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5965       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5966       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5967     } else {
5968       // Create a completely standard DBG_VALUE.
5969       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5970       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5971     }
5972   };
5973 
5974   if (Kind == FuncArgumentDbgValueKind::Value) {
5975     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5976     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5977     // the entry block.
5978     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5979     if (!IsInEntryBlock)
5980       return false;
5981 
5982     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5983     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5984     // variable that also is a param.
5985     //
5986     // Although, if we are at the top of the entry block already, we can still
5987     // emit using ArgDbgValue. This might catch some situations when the
5988     // dbg.value refers to an argument that isn't used in the entry block, so
5989     // any CopyToReg node would be optimized out and the only way to express
5990     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5991     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5992     // we should only emit as ArgDbgValue if the Variable is an argument to the
5993     // current function, and the dbg.value intrinsic is found in the entry
5994     // block.
5995     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5996         !DL->getInlinedAt();
5997     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5998     if (!IsInPrologue && !VariableIsFunctionInputArg)
5999       return false;
6000 
6001     // Here we assume that a function argument on IR level only can be used to
6002     // describe one input parameter on source level. If we for example have
6003     // source code like this
6004     //
6005     //    struct A { long x, y; };
6006     //    void foo(struct A a, long b) {
6007     //      ...
6008     //      b = a.x;
6009     //      ...
6010     //    }
6011     //
6012     // and IR like this
6013     //
6014     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6015     //  entry:
6016     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6017     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6018     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6019     //    ...
6020     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6021     //    ...
6022     //
6023     // then the last dbg.value is describing a parameter "b" using a value that
6024     // is an argument. But since we already has used %a1 to describe a parameter
6025     // we should not handle that last dbg.value here (that would result in an
6026     // incorrect hoisting of the DBG_VALUE to the function entry).
6027     // Notice that we allow one dbg.value per IR level argument, to accommodate
6028     // for the situation with fragments above.
6029     // If there is no node for the value being handled, we return true to skip
6030     // the normal generation of debug info, as it would kill existing debug
6031     // info for the parameter in case of duplicates.
6032     if (VariableIsFunctionInputArg) {
6033       unsigned ArgNo = Arg->getArgNo();
6034       if (ArgNo >= FuncInfo.DescribedArgs.size())
6035         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6036       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6037         return !NodeMap[V].getNode();
6038       FuncInfo.DescribedArgs.set(ArgNo);
6039     }
6040   }
6041 
6042   bool IsIndirect = false;
6043   std::optional<MachineOperand> Op;
6044   // Some arguments' frame index is recorded during argument lowering.
6045   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6046   if (FI != std::numeric_limits<int>::max())
6047     Op = MachineOperand::CreateFI(FI);
6048 
6049   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6050   if (!Op && N.getNode()) {
6051     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6052     Register Reg;
6053     if (ArgRegsAndSizes.size() == 1)
6054       Reg = ArgRegsAndSizes.front().first;
6055 
6056     if (Reg && Reg.isVirtual()) {
6057       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6058       Register PR = RegInfo.getLiveInPhysReg(Reg);
6059       if (PR)
6060         Reg = PR;
6061     }
6062     if (Reg) {
6063       Op = MachineOperand::CreateReg(Reg, false);
6064       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6065     }
6066   }
6067 
6068   if (!Op && N.getNode()) {
6069     // Check if frame index is available.
6070     SDValue LCandidate = peekThroughBitcasts(N);
6071     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6072       if (FrameIndexSDNode *FINode =
6073           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6074         Op = MachineOperand::CreateFI(FINode->getIndex());
6075   }
6076 
6077   if (!Op) {
6078     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6079     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6080                                          SplitRegs) {
6081       unsigned Offset = 0;
6082       for (const auto &RegAndSize : SplitRegs) {
6083         // If the expression is already a fragment, the current register
6084         // offset+size might extend beyond the fragment. In this case, only
6085         // the register bits that are inside the fragment are relevant.
6086         int RegFragmentSizeInBits = RegAndSize.second;
6087         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6088           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6089           // The register is entirely outside the expression fragment,
6090           // so is irrelevant for debug info.
6091           if (Offset >= ExprFragmentSizeInBits)
6092             break;
6093           // The register is partially outside the expression fragment, only
6094           // the low bits within the fragment are relevant for debug info.
6095           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6096             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6097           }
6098         }
6099 
6100         auto FragmentExpr = DIExpression::createFragmentExpression(
6101             Expr, Offset, RegFragmentSizeInBits);
6102         Offset += RegAndSize.second;
6103         // If a valid fragment expression cannot be created, the variable's
6104         // correct value cannot be determined and so it is set as Undef.
6105         if (!FragmentExpr) {
6106           SDDbgValue *SDV = DAG.getConstantDbgValue(
6107               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6108           DAG.AddDbgValue(SDV, false);
6109           continue;
6110         }
6111         MachineInstr *NewMI =
6112             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6113                              Kind != FuncArgumentDbgValueKind::Value);
6114         FuncInfo.ArgDbgValues.push_back(NewMI);
6115       }
6116     };
6117 
6118     // Check if ValueMap has reg number.
6119     DenseMap<const Value *, Register>::const_iterator
6120       VMI = FuncInfo.ValueMap.find(V);
6121     if (VMI != FuncInfo.ValueMap.end()) {
6122       const auto &TLI = DAG.getTargetLoweringInfo();
6123       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6124                        V->getType(), std::nullopt);
6125       if (RFV.occupiesMultipleRegs()) {
6126         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6127         return true;
6128       }
6129 
6130       Op = MachineOperand::CreateReg(VMI->second, false);
6131       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6132     } else if (ArgRegsAndSizes.size() > 1) {
6133       // This was split due to the calling convention, and no virtual register
6134       // mapping exists for the value.
6135       splitMultiRegDbgValue(ArgRegsAndSizes);
6136       return true;
6137     }
6138   }
6139 
6140   if (!Op)
6141     return false;
6142 
6143   assert(Variable->isValidLocationForIntrinsic(DL) &&
6144          "Expected inlined-at fields to agree");
6145   MachineInstr *NewMI = nullptr;
6146 
6147   if (Op->isReg())
6148     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6149   else
6150     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6151                     Variable, Expr);
6152 
6153   // Otherwise, use ArgDbgValues.
6154   FuncInfo.ArgDbgValues.push_back(NewMI);
6155   return true;
6156 }
6157 
6158 /// Return the appropriate SDDbgValue based on N.
6159 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6160                                              DILocalVariable *Variable,
6161                                              DIExpression *Expr,
6162                                              const DebugLoc &dl,
6163                                              unsigned DbgSDNodeOrder) {
6164   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6165     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6166     // stack slot locations.
6167     //
6168     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6169     // debug values here after optimization:
6170     //
6171     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6172     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6173     //
6174     // Both describe the direct values of their associated variables.
6175     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6176                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6177   }
6178   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6179                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6180 }
6181 
6182 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6183   switch (Intrinsic) {
6184   case Intrinsic::smul_fix:
6185     return ISD::SMULFIX;
6186   case Intrinsic::umul_fix:
6187     return ISD::UMULFIX;
6188   case Intrinsic::smul_fix_sat:
6189     return ISD::SMULFIXSAT;
6190   case Intrinsic::umul_fix_sat:
6191     return ISD::UMULFIXSAT;
6192   case Intrinsic::sdiv_fix:
6193     return ISD::SDIVFIX;
6194   case Intrinsic::udiv_fix:
6195     return ISD::UDIVFIX;
6196   case Intrinsic::sdiv_fix_sat:
6197     return ISD::SDIVFIXSAT;
6198   case Intrinsic::udiv_fix_sat:
6199     return ISD::UDIVFIXSAT;
6200   default:
6201     llvm_unreachable("Unhandled fixed point intrinsic");
6202   }
6203 }
6204 
6205 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6206                                            const char *FunctionName) {
6207   assert(FunctionName && "FunctionName must not be nullptr");
6208   SDValue Callee = DAG.getExternalSymbol(
6209       FunctionName,
6210       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6211   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6212 }
6213 
6214 /// Given a @llvm.call.preallocated.setup, return the corresponding
6215 /// preallocated call.
6216 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6217   assert(cast<CallBase>(PreallocatedSetup)
6218                  ->getCalledFunction()
6219                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6220          "expected call_preallocated_setup Value");
6221   for (const auto *U : PreallocatedSetup->users()) {
6222     auto *UseCall = cast<CallBase>(U);
6223     const Function *Fn = UseCall->getCalledFunction();
6224     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6225       return UseCall;
6226     }
6227   }
6228   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6229 }
6230 
6231 /// If DI is a debug value with an EntryValue expression, lower it using the
6232 /// corresponding physical register of the associated Argument value
6233 /// (guaranteed to exist by the verifier).
6234 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6235     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6236     DIExpression *Expr, DebugLoc DbgLoc) {
6237   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6238     return false;
6239 
6240   // These properties are guaranteed by the verifier.
6241   const Argument *Arg = cast<Argument>(Values[0]);
6242   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6243 
6244   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6245   if (ArgIt == FuncInfo.ValueMap.end()) {
6246     LLVM_DEBUG(
6247         dbgs() << "Dropping dbg.value: expression is entry_value but "
6248                   "couldn't find an associated register for the Argument\n");
6249     return true;
6250   }
6251   Register ArgVReg = ArgIt->getSecond();
6252 
6253   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6254     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6255       SDDbgValue *SDV = DAG.getVRegDbgValue(
6256           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6257       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6258       return true;
6259     }
6260   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6261                        "couldn't find a physical register\n");
6262   return true;
6263 }
6264 
6265 /// Lower the call to the specified intrinsic function.
6266 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6267                                                   unsigned Intrinsic) {
6268   SDLoc sdl = getCurSDLoc();
6269   switch (Intrinsic) {
6270   case Intrinsic::experimental_convergence_anchor:
6271     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6272     break;
6273   case Intrinsic::experimental_convergence_entry:
6274     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6275     break;
6276   case Intrinsic::experimental_convergence_loop: {
6277     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6278     auto *Token = Bundle->Inputs[0].get();
6279     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6280                              getValue(Token)));
6281     break;
6282   }
6283   }
6284 }
6285 
6286 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6287                                                unsigned IntrinsicID) {
6288   // For now, we're only lowering an 'add' histogram.
6289   // We can add others later, e.g. saturating adds, min/max.
6290   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6291          "Tried to lower unsupported histogram type");
6292   SDLoc sdl = getCurSDLoc();
6293   Value *Ptr = I.getOperand(0);
6294   SDValue Inc = getValue(I.getOperand(1));
6295   SDValue Mask = getValue(I.getOperand(2));
6296 
6297   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6298   DataLayout TargetDL = DAG.getDataLayout();
6299   EVT VT = Inc.getValueType();
6300   Align Alignment = DAG.getEVTAlign(VT);
6301 
6302   const MDNode *Ranges = getRangeMetadata(I);
6303 
6304   SDValue Root = DAG.getRoot();
6305   SDValue Base;
6306   SDValue Index;
6307   ISD::MemIndexType IndexType;
6308   SDValue Scale;
6309   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6310                                     I.getParent(), VT.getScalarStoreSize());
6311 
6312   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6313 
6314   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6315       MachinePointerInfo(AS),
6316       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6317       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6318 
6319   if (!UniformBase) {
6320     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6321     Index = getValue(Ptr);
6322     IndexType = ISD::SIGNED_SCALED;
6323     Scale =
6324         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6325   }
6326 
6327   EVT IdxVT = Index.getValueType();
6328   EVT EltTy = IdxVT.getVectorElementType();
6329   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6330     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6331     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6332   }
6333 
6334   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6335 
6336   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6337   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6338                                              Ops, MMO, IndexType);
6339 
6340   setValue(&I, Histogram);
6341   DAG.setRoot(Histogram);
6342 }
6343 
6344 /// Lower the call to the specified intrinsic function.
6345 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6346                                              unsigned Intrinsic) {
6347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6348   SDLoc sdl = getCurSDLoc();
6349   DebugLoc dl = getCurDebugLoc();
6350   SDValue Res;
6351 
6352   SDNodeFlags Flags;
6353   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6354     Flags.copyFMF(*FPOp);
6355 
6356   switch (Intrinsic) {
6357   default:
6358     // By default, turn this into a target intrinsic node.
6359     visitTargetIntrinsic(I, Intrinsic);
6360     return;
6361   case Intrinsic::vscale: {
6362     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6363     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6364     return;
6365   }
6366   case Intrinsic::vastart:  visitVAStart(I); return;
6367   case Intrinsic::vaend:    visitVAEnd(I); return;
6368   case Intrinsic::vacopy:   visitVACopy(I); return;
6369   case Intrinsic::returnaddress:
6370     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6371                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6372                              getValue(I.getArgOperand(0))));
6373     return;
6374   case Intrinsic::addressofreturnaddress:
6375     setValue(&I,
6376              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6377                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6378     return;
6379   case Intrinsic::sponentry:
6380     setValue(&I,
6381              DAG.getNode(ISD::SPONENTRY, sdl,
6382                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6383     return;
6384   case Intrinsic::frameaddress:
6385     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6386                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6387                              getValue(I.getArgOperand(0))));
6388     return;
6389   case Intrinsic::read_volatile_register:
6390   case Intrinsic::read_register: {
6391     Value *Reg = I.getArgOperand(0);
6392     SDValue Chain = getRoot();
6393     SDValue RegName =
6394         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6395     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6396     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6397       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6398     setValue(&I, Res);
6399     DAG.setRoot(Res.getValue(1));
6400     return;
6401   }
6402   case Intrinsic::write_register: {
6403     Value *Reg = I.getArgOperand(0);
6404     Value *RegValue = I.getArgOperand(1);
6405     SDValue Chain = getRoot();
6406     SDValue RegName =
6407         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6408     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6409                             RegName, getValue(RegValue)));
6410     return;
6411   }
6412   case Intrinsic::memcpy: {
6413     const auto &MCI = cast<MemCpyInst>(I);
6414     SDValue Op1 = getValue(I.getArgOperand(0));
6415     SDValue Op2 = getValue(I.getArgOperand(1));
6416     SDValue Op3 = getValue(I.getArgOperand(2));
6417     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6418     Align DstAlign = MCI.getDestAlign().valueOrOne();
6419     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6420     Align Alignment = std::min(DstAlign, SrcAlign);
6421     bool isVol = MCI.isVolatile();
6422     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6423     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6424     // node.
6425     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6426     SDValue MC = DAG.getMemcpy(
6427         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6428         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6429         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6430     updateDAGForMaybeTailCall(MC);
6431     return;
6432   }
6433   case Intrinsic::memcpy_inline: {
6434     const auto &MCI = cast<MemCpyInlineInst>(I);
6435     SDValue Dst = getValue(I.getArgOperand(0));
6436     SDValue Src = getValue(I.getArgOperand(1));
6437     SDValue Size = getValue(I.getArgOperand(2));
6438     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6439     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6440     Align DstAlign = MCI.getDestAlign().valueOrOne();
6441     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6442     Align Alignment = std::min(DstAlign, SrcAlign);
6443     bool isVol = MCI.isVolatile();
6444     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6445     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6446     // node.
6447     SDValue MC = DAG.getMemcpy(
6448         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6449         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6450         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6451     updateDAGForMaybeTailCall(MC);
6452     return;
6453   }
6454   case Intrinsic::memset: {
6455     const auto &MSI = cast<MemSetInst>(I);
6456     SDValue Op1 = getValue(I.getArgOperand(0));
6457     SDValue Op2 = getValue(I.getArgOperand(1));
6458     SDValue Op3 = getValue(I.getArgOperand(2));
6459     // @llvm.memset defines 0 and 1 to both mean no alignment.
6460     Align Alignment = MSI.getDestAlign().valueOrOne();
6461     bool isVol = MSI.isVolatile();
6462     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6463     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6464     SDValue MS = DAG.getMemset(
6465         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6466         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6467     updateDAGForMaybeTailCall(MS);
6468     return;
6469   }
6470   case Intrinsic::memset_inline: {
6471     const auto &MSII = cast<MemSetInlineInst>(I);
6472     SDValue Dst = getValue(I.getArgOperand(0));
6473     SDValue Value = getValue(I.getArgOperand(1));
6474     SDValue Size = getValue(I.getArgOperand(2));
6475     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6476     // @llvm.memset defines 0 and 1 to both mean no alignment.
6477     Align DstAlign = MSII.getDestAlign().valueOrOne();
6478     bool isVol = MSII.isVolatile();
6479     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6480     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6481     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6482                                /* AlwaysInline */ true, isTC,
6483                                MachinePointerInfo(I.getArgOperand(0)),
6484                                I.getAAMetadata());
6485     updateDAGForMaybeTailCall(MC);
6486     return;
6487   }
6488   case Intrinsic::memmove: {
6489     const auto &MMI = cast<MemMoveInst>(I);
6490     SDValue Op1 = getValue(I.getArgOperand(0));
6491     SDValue Op2 = getValue(I.getArgOperand(1));
6492     SDValue Op3 = getValue(I.getArgOperand(2));
6493     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6494     Align DstAlign = MMI.getDestAlign().valueOrOne();
6495     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6496     Align Alignment = std::min(DstAlign, SrcAlign);
6497     bool isVol = MMI.isVolatile();
6498     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6499     // FIXME: Support passing different dest/src alignments to the memmove DAG
6500     // node.
6501     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6502     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6503                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6504                                 MachinePointerInfo(I.getArgOperand(1)),
6505                                 I.getAAMetadata(), AA);
6506     updateDAGForMaybeTailCall(MM);
6507     return;
6508   }
6509   case Intrinsic::memcpy_element_unordered_atomic: {
6510     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6511     SDValue Dst = getValue(MI.getRawDest());
6512     SDValue Src = getValue(MI.getRawSource());
6513     SDValue Length = getValue(MI.getLength());
6514 
6515     Type *LengthTy = MI.getLength()->getType();
6516     unsigned ElemSz = MI.getElementSizeInBytes();
6517     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6518     SDValue MC =
6519         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6520                             isTC, MachinePointerInfo(MI.getRawDest()),
6521                             MachinePointerInfo(MI.getRawSource()));
6522     updateDAGForMaybeTailCall(MC);
6523     return;
6524   }
6525   case Intrinsic::memmove_element_unordered_atomic: {
6526     auto &MI = cast<AtomicMemMoveInst>(I);
6527     SDValue Dst = getValue(MI.getRawDest());
6528     SDValue Src = getValue(MI.getRawSource());
6529     SDValue Length = getValue(MI.getLength());
6530 
6531     Type *LengthTy = MI.getLength()->getType();
6532     unsigned ElemSz = MI.getElementSizeInBytes();
6533     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6534     SDValue MC =
6535         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6536                              isTC, MachinePointerInfo(MI.getRawDest()),
6537                              MachinePointerInfo(MI.getRawSource()));
6538     updateDAGForMaybeTailCall(MC);
6539     return;
6540   }
6541   case Intrinsic::memset_element_unordered_atomic: {
6542     auto &MI = cast<AtomicMemSetInst>(I);
6543     SDValue Dst = getValue(MI.getRawDest());
6544     SDValue Val = getValue(MI.getValue());
6545     SDValue Length = getValue(MI.getLength());
6546 
6547     Type *LengthTy = MI.getLength()->getType();
6548     unsigned ElemSz = MI.getElementSizeInBytes();
6549     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6550     SDValue MC =
6551         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6552                             isTC, MachinePointerInfo(MI.getRawDest()));
6553     updateDAGForMaybeTailCall(MC);
6554     return;
6555   }
6556   case Intrinsic::call_preallocated_setup: {
6557     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6558     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6559     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6560                               getRoot(), SrcValue);
6561     setValue(&I, Res);
6562     DAG.setRoot(Res);
6563     return;
6564   }
6565   case Intrinsic::call_preallocated_arg: {
6566     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6567     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6568     SDValue Ops[3];
6569     Ops[0] = getRoot();
6570     Ops[1] = SrcValue;
6571     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6572                                    MVT::i32); // arg index
6573     SDValue Res = DAG.getNode(
6574         ISD::PREALLOCATED_ARG, sdl,
6575         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6576     setValue(&I, Res);
6577     DAG.setRoot(Res.getValue(1));
6578     return;
6579   }
6580   case Intrinsic::dbg_declare: {
6581     const auto &DI = cast<DbgDeclareInst>(I);
6582     // Debug intrinsics are handled separately in assignment tracking mode.
6583     // Some intrinsics are handled right after Argument lowering.
6584     if (AssignmentTrackingEnabled ||
6585         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6586       return;
6587     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6588     DILocalVariable *Variable = DI.getVariable();
6589     DIExpression *Expression = DI.getExpression();
6590     dropDanglingDebugInfo(Variable, Expression);
6591     // Assume dbg.declare can not currently use DIArgList, i.e.
6592     // it is non-variadic.
6593     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6594     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6595                        DI.getDebugLoc());
6596     return;
6597   }
6598   case Intrinsic::dbg_label: {
6599     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6600     DILabel *Label = DI.getLabel();
6601     assert(Label && "Missing label");
6602 
6603     SDDbgLabel *SDV;
6604     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6605     DAG.AddDbgLabel(SDV);
6606     return;
6607   }
6608   case Intrinsic::dbg_assign: {
6609     // Debug intrinsics are handled seperately in assignment tracking mode.
6610     if (AssignmentTrackingEnabled)
6611       return;
6612     // If assignment tracking hasn't been enabled then fall through and treat
6613     // the dbg.assign as a dbg.value.
6614     [[fallthrough]];
6615   }
6616   case Intrinsic::dbg_value: {
6617     // Debug intrinsics are handled seperately in assignment tracking mode.
6618     if (AssignmentTrackingEnabled)
6619       return;
6620     const DbgValueInst &DI = cast<DbgValueInst>(I);
6621     assert(DI.getVariable() && "Missing variable");
6622 
6623     DILocalVariable *Variable = DI.getVariable();
6624     DIExpression *Expression = DI.getExpression();
6625     dropDanglingDebugInfo(Variable, Expression);
6626 
6627     if (DI.isKillLocation()) {
6628       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6629       return;
6630     }
6631 
6632     SmallVector<Value *, 4> Values(DI.getValues());
6633     if (Values.empty())
6634       return;
6635 
6636     bool IsVariadic = DI.hasArgList();
6637     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6638                           SDNodeOrder, IsVariadic))
6639       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6640                            DI.getDebugLoc(), SDNodeOrder);
6641     return;
6642   }
6643 
6644   case Intrinsic::eh_typeid_for: {
6645     // Find the type id for the given typeinfo.
6646     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6647     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6648     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6649     setValue(&I, Res);
6650     return;
6651   }
6652 
6653   case Intrinsic::eh_return_i32:
6654   case Intrinsic::eh_return_i64:
6655     DAG.getMachineFunction().setCallsEHReturn(true);
6656     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6657                             MVT::Other,
6658                             getControlRoot(),
6659                             getValue(I.getArgOperand(0)),
6660                             getValue(I.getArgOperand(1))));
6661     return;
6662   case Intrinsic::eh_unwind_init:
6663     DAG.getMachineFunction().setCallsUnwindInit(true);
6664     return;
6665   case Intrinsic::eh_dwarf_cfa:
6666     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6667                              TLI.getPointerTy(DAG.getDataLayout()),
6668                              getValue(I.getArgOperand(0))));
6669     return;
6670   case Intrinsic::eh_sjlj_callsite: {
6671     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6672     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6673     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6674 
6675     MMI.setCurrentCallSite(CI->getZExtValue());
6676     return;
6677   }
6678   case Intrinsic::eh_sjlj_functioncontext: {
6679     // Get and store the index of the function context.
6680     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6681     AllocaInst *FnCtx =
6682       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6683     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6684     MFI.setFunctionContextIndex(FI);
6685     return;
6686   }
6687   case Intrinsic::eh_sjlj_setjmp: {
6688     SDValue Ops[2];
6689     Ops[0] = getRoot();
6690     Ops[1] = getValue(I.getArgOperand(0));
6691     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6692                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6693     setValue(&I, Op.getValue(0));
6694     DAG.setRoot(Op.getValue(1));
6695     return;
6696   }
6697   case Intrinsic::eh_sjlj_longjmp:
6698     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6699                             getRoot(), getValue(I.getArgOperand(0))));
6700     return;
6701   case Intrinsic::eh_sjlj_setup_dispatch:
6702     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6703                             getRoot()));
6704     return;
6705   case Intrinsic::masked_gather:
6706     visitMaskedGather(I);
6707     return;
6708   case Intrinsic::masked_load:
6709     visitMaskedLoad(I);
6710     return;
6711   case Intrinsic::masked_scatter:
6712     visitMaskedScatter(I);
6713     return;
6714   case Intrinsic::masked_store:
6715     visitMaskedStore(I);
6716     return;
6717   case Intrinsic::masked_expandload:
6718     visitMaskedLoad(I, true /* IsExpanding */);
6719     return;
6720   case Intrinsic::masked_compressstore:
6721     visitMaskedStore(I, true /* IsCompressing */);
6722     return;
6723   case Intrinsic::powi:
6724     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6725                             getValue(I.getArgOperand(1)), DAG));
6726     return;
6727   case Intrinsic::log:
6728     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6729     return;
6730   case Intrinsic::log2:
6731     setValue(&I,
6732              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6733     return;
6734   case Intrinsic::log10:
6735     setValue(&I,
6736              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6737     return;
6738   case Intrinsic::exp:
6739     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6740     return;
6741   case Intrinsic::exp2:
6742     setValue(&I,
6743              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6744     return;
6745   case Intrinsic::pow:
6746     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6747                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6748     return;
6749   case Intrinsic::sqrt:
6750   case Intrinsic::fabs:
6751   case Intrinsic::sin:
6752   case Intrinsic::cos:
6753   case Intrinsic::exp10:
6754   case Intrinsic::floor:
6755   case Intrinsic::ceil:
6756   case Intrinsic::trunc:
6757   case Intrinsic::rint:
6758   case Intrinsic::nearbyint:
6759   case Intrinsic::round:
6760   case Intrinsic::roundeven:
6761   case Intrinsic::canonicalize: {
6762     unsigned Opcode;
6763     // clang-format off
6764     switch (Intrinsic) {
6765     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6766     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6767     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6768     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6769     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6770     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6771     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6772     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6773     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6774     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6775     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6776     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6777     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6778     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6779     }
6780     // clang-format on
6781 
6782     setValue(&I, DAG.getNode(Opcode, sdl,
6783                              getValue(I.getArgOperand(0)).getValueType(),
6784                              getValue(I.getArgOperand(0)), Flags));
6785     return;
6786   }
6787   case Intrinsic::lround:
6788   case Intrinsic::llround:
6789   case Intrinsic::lrint:
6790   case Intrinsic::llrint: {
6791     unsigned Opcode;
6792     // clang-format off
6793     switch (Intrinsic) {
6794     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6795     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6796     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6797     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6798     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6799     }
6800     // clang-format on
6801 
6802     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6803     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6804                              getValue(I.getArgOperand(0))));
6805     return;
6806   }
6807   case Intrinsic::minnum:
6808     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6809                              getValue(I.getArgOperand(0)).getValueType(),
6810                              getValue(I.getArgOperand(0)),
6811                              getValue(I.getArgOperand(1)), Flags));
6812     return;
6813   case Intrinsic::maxnum:
6814     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6815                              getValue(I.getArgOperand(0)).getValueType(),
6816                              getValue(I.getArgOperand(0)),
6817                              getValue(I.getArgOperand(1)), Flags));
6818     return;
6819   case Intrinsic::minimum:
6820     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6821                              getValue(I.getArgOperand(0)).getValueType(),
6822                              getValue(I.getArgOperand(0)),
6823                              getValue(I.getArgOperand(1)), Flags));
6824     return;
6825   case Intrinsic::maximum:
6826     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6827                              getValue(I.getArgOperand(0)).getValueType(),
6828                              getValue(I.getArgOperand(0)),
6829                              getValue(I.getArgOperand(1)), Flags));
6830     return;
6831   case Intrinsic::copysign:
6832     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6833                              getValue(I.getArgOperand(0)).getValueType(),
6834                              getValue(I.getArgOperand(0)),
6835                              getValue(I.getArgOperand(1)), Flags));
6836     return;
6837   case Intrinsic::ldexp:
6838     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6839                              getValue(I.getArgOperand(0)).getValueType(),
6840                              getValue(I.getArgOperand(0)),
6841                              getValue(I.getArgOperand(1)), Flags));
6842     return;
6843   case Intrinsic::frexp: {
6844     SmallVector<EVT, 2> ValueVTs;
6845     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6846     SDVTList VTs = DAG.getVTList(ValueVTs);
6847     setValue(&I,
6848              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6849     return;
6850   }
6851   case Intrinsic::arithmetic_fence: {
6852     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6853                              getValue(I.getArgOperand(0)).getValueType(),
6854                              getValue(I.getArgOperand(0)), Flags));
6855     return;
6856   }
6857   case Intrinsic::fma:
6858     setValue(&I, DAG.getNode(
6859                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6860                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6861                      getValue(I.getArgOperand(2)), Flags));
6862     return;
6863 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6864   case Intrinsic::INTRINSIC:
6865 #include "llvm/IR/ConstrainedOps.def"
6866     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6867     return;
6868 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6869 #include "llvm/IR/VPIntrinsics.def"
6870     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6871     return;
6872   case Intrinsic::fptrunc_round: {
6873     // Get the last argument, the metadata and convert it to an integer in the
6874     // call
6875     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6876     std::optional<RoundingMode> RoundMode =
6877         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6878 
6879     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6880 
6881     // Propagate fast-math-flags from IR to node(s).
6882     SDNodeFlags Flags;
6883     Flags.copyFMF(*cast<FPMathOperator>(&I));
6884     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6885 
6886     SDValue Result;
6887     Result = DAG.getNode(
6888         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6889         DAG.getTargetConstant((int)*RoundMode, sdl,
6890                               TLI.getPointerTy(DAG.getDataLayout())));
6891     setValue(&I, Result);
6892 
6893     return;
6894   }
6895   case Intrinsic::fmuladd: {
6896     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6897     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6898         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6899       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6900                                getValue(I.getArgOperand(0)).getValueType(),
6901                                getValue(I.getArgOperand(0)),
6902                                getValue(I.getArgOperand(1)),
6903                                getValue(I.getArgOperand(2)), Flags));
6904     } else {
6905       // TODO: Intrinsic calls should have fast-math-flags.
6906       SDValue Mul = DAG.getNode(
6907           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6908           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6909       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6910                                 getValue(I.getArgOperand(0)).getValueType(),
6911                                 Mul, getValue(I.getArgOperand(2)), Flags);
6912       setValue(&I, Add);
6913     }
6914     return;
6915   }
6916   case Intrinsic::convert_to_fp16:
6917     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6918                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6919                                          getValue(I.getArgOperand(0)),
6920                                          DAG.getTargetConstant(0, sdl,
6921                                                                MVT::i32))));
6922     return;
6923   case Intrinsic::convert_from_fp16:
6924     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6925                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6926                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6927                                          getValue(I.getArgOperand(0)))));
6928     return;
6929   case Intrinsic::fptosi_sat: {
6930     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6931     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6932                              getValue(I.getArgOperand(0)),
6933                              DAG.getValueType(VT.getScalarType())));
6934     return;
6935   }
6936   case Intrinsic::fptoui_sat: {
6937     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6938     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6939                              getValue(I.getArgOperand(0)),
6940                              DAG.getValueType(VT.getScalarType())));
6941     return;
6942   }
6943   case Intrinsic::set_rounding:
6944     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6945                       {getRoot(), getValue(I.getArgOperand(0))});
6946     setValue(&I, Res);
6947     DAG.setRoot(Res.getValue(0));
6948     return;
6949   case Intrinsic::is_fpclass: {
6950     const DataLayout DLayout = DAG.getDataLayout();
6951     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6952     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6953     FPClassTest Test = static_cast<FPClassTest>(
6954         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6955     MachineFunction &MF = DAG.getMachineFunction();
6956     const Function &F = MF.getFunction();
6957     SDValue Op = getValue(I.getArgOperand(0));
6958     SDNodeFlags Flags;
6959     Flags.setNoFPExcept(
6960         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6961     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6962     // expansion can use illegal types. Making expansion early allows
6963     // legalizing these types prior to selection.
6964     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6965       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6966       setValue(&I, Result);
6967       return;
6968     }
6969 
6970     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6971     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6972     setValue(&I, V);
6973     return;
6974   }
6975   case Intrinsic::get_fpenv: {
6976     const DataLayout DLayout = DAG.getDataLayout();
6977     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6978     Align TempAlign = DAG.getEVTAlign(EnvVT);
6979     SDValue Chain = getRoot();
6980     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6981     // and temporary storage in stack.
6982     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6983       Res = DAG.getNode(
6984           ISD::GET_FPENV, sdl,
6985           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6986                         MVT::Other),
6987           Chain);
6988     } else {
6989       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6990       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6991       auto MPI =
6992           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6993       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6994           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
6995           TempAlign);
6996       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6997       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6998     }
6999     setValue(&I, Res);
7000     DAG.setRoot(Res.getValue(1));
7001     return;
7002   }
7003   case Intrinsic::set_fpenv: {
7004     const DataLayout DLayout = DAG.getDataLayout();
7005     SDValue Env = getValue(I.getArgOperand(0));
7006     EVT EnvVT = Env.getValueType();
7007     Align TempAlign = DAG.getEVTAlign(EnvVT);
7008     SDValue Chain = getRoot();
7009     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7010     // environment from memory.
7011     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7012       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7013     } else {
7014       // Allocate space in stack, copy environment bits into it and use this
7015       // memory in SET_FPENV_MEM.
7016       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7017       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7018       auto MPI =
7019           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7020       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7021                            MachineMemOperand::MOStore);
7022       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7023           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7024           TempAlign);
7025       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7026     }
7027     DAG.setRoot(Chain);
7028     return;
7029   }
7030   case Intrinsic::reset_fpenv:
7031     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7032     return;
7033   case Intrinsic::get_fpmode:
7034     Res = DAG.getNode(
7035         ISD::GET_FPMODE, sdl,
7036         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7037                       MVT::Other),
7038         DAG.getRoot());
7039     setValue(&I, Res);
7040     DAG.setRoot(Res.getValue(1));
7041     return;
7042   case Intrinsic::set_fpmode:
7043     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7044                       getValue(I.getArgOperand(0)));
7045     DAG.setRoot(Res);
7046     return;
7047   case Intrinsic::reset_fpmode: {
7048     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7049     DAG.setRoot(Res);
7050     return;
7051   }
7052   case Intrinsic::pcmarker: {
7053     SDValue Tmp = getValue(I.getArgOperand(0));
7054     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7055     return;
7056   }
7057   case Intrinsic::readcyclecounter: {
7058     SDValue Op = getRoot();
7059     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7060                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7061     setValue(&I, Res);
7062     DAG.setRoot(Res.getValue(1));
7063     return;
7064   }
7065   case Intrinsic::readsteadycounter: {
7066     SDValue Op = getRoot();
7067     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7068                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7069     setValue(&I, Res);
7070     DAG.setRoot(Res.getValue(1));
7071     return;
7072   }
7073   case Intrinsic::bitreverse:
7074     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7075                              getValue(I.getArgOperand(0)).getValueType(),
7076                              getValue(I.getArgOperand(0))));
7077     return;
7078   case Intrinsic::bswap:
7079     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7080                              getValue(I.getArgOperand(0)).getValueType(),
7081                              getValue(I.getArgOperand(0))));
7082     return;
7083   case Intrinsic::cttz: {
7084     SDValue Arg = getValue(I.getArgOperand(0));
7085     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7086     EVT Ty = Arg.getValueType();
7087     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7088                              sdl, Ty, Arg));
7089     return;
7090   }
7091   case Intrinsic::ctlz: {
7092     SDValue Arg = getValue(I.getArgOperand(0));
7093     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7094     EVT Ty = Arg.getValueType();
7095     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7096                              sdl, Ty, Arg));
7097     return;
7098   }
7099   case Intrinsic::ctpop: {
7100     SDValue Arg = getValue(I.getArgOperand(0));
7101     EVT Ty = Arg.getValueType();
7102     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7103     return;
7104   }
7105   case Intrinsic::fshl:
7106   case Intrinsic::fshr: {
7107     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7108     SDValue X = getValue(I.getArgOperand(0));
7109     SDValue Y = getValue(I.getArgOperand(1));
7110     SDValue Z = getValue(I.getArgOperand(2));
7111     EVT VT = X.getValueType();
7112 
7113     if (X == Y) {
7114       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7115       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7116     } else {
7117       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7118       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7119     }
7120     return;
7121   }
7122   case Intrinsic::sadd_sat: {
7123     SDValue Op1 = getValue(I.getArgOperand(0));
7124     SDValue Op2 = getValue(I.getArgOperand(1));
7125     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7126     return;
7127   }
7128   case Intrinsic::uadd_sat: {
7129     SDValue Op1 = getValue(I.getArgOperand(0));
7130     SDValue Op2 = getValue(I.getArgOperand(1));
7131     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7132     return;
7133   }
7134   case Intrinsic::ssub_sat: {
7135     SDValue Op1 = getValue(I.getArgOperand(0));
7136     SDValue Op2 = getValue(I.getArgOperand(1));
7137     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7138     return;
7139   }
7140   case Intrinsic::usub_sat: {
7141     SDValue Op1 = getValue(I.getArgOperand(0));
7142     SDValue Op2 = getValue(I.getArgOperand(1));
7143     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7144     return;
7145   }
7146   case Intrinsic::sshl_sat: {
7147     SDValue Op1 = getValue(I.getArgOperand(0));
7148     SDValue Op2 = getValue(I.getArgOperand(1));
7149     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7150     return;
7151   }
7152   case Intrinsic::ushl_sat: {
7153     SDValue Op1 = getValue(I.getArgOperand(0));
7154     SDValue Op2 = getValue(I.getArgOperand(1));
7155     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7156     return;
7157   }
7158   case Intrinsic::smul_fix:
7159   case Intrinsic::umul_fix:
7160   case Intrinsic::smul_fix_sat:
7161   case Intrinsic::umul_fix_sat: {
7162     SDValue Op1 = getValue(I.getArgOperand(0));
7163     SDValue Op2 = getValue(I.getArgOperand(1));
7164     SDValue Op3 = getValue(I.getArgOperand(2));
7165     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7166                              Op1.getValueType(), Op1, Op2, Op3));
7167     return;
7168   }
7169   case Intrinsic::sdiv_fix:
7170   case Intrinsic::udiv_fix:
7171   case Intrinsic::sdiv_fix_sat:
7172   case Intrinsic::udiv_fix_sat: {
7173     SDValue Op1 = getValue(I.getArgOperand(0));
7174     SDValue Op2 = getValue(I.getArgOperand(1));
7175     SDValue Op3 = getValue(I.getArgOperand(2));
7176     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7177                               Op1, Op2, Op3, DAG, TLI));
7178     return;
7179   }
7180   case Intrinsic::smax: {
7181     SDValue Op1 = getValue(I.getArgOperand(0));
7182     SDValue Op2 = getValue(I.getArgOperand(1));
7183     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7184     return;
7185   }
7186   case Intrinsic::smin: {
7187     SDValue Op1 = getValue(I.getArgOperand(0));
7188     SDValue Op2 = getValue(I.getArgOperand(1));
7189     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7190     return;
7191   }
7192   case Intrinsic::umax: {
7193     SDValue Op1 = getValue(I.getArgOperand(0));
7194     SDValue Op2 = getValue(I.getArgOperand(1));
7195     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7196     return;
7197   }
7198   case Intrinsic::umin: {
7199     SDValue Op1 = getValue(I.getArgOperand(0));
7200     SDValue Op2 = getValue(I.getArgOperand(1));
7201     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7202     return;
7203   }
7204   case Intrinsic::abs: {
7205     // TODO: Preserve "int min is poison" arg in SDAG?
7206     SDValue Op1 = getValue(I.getArgOperand(0));
7207     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7208     return;
7209   }
7210   case Intrinsic::stacksave: {
7211     SDValue Op = getRoot();
7212     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7213     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7214     setValue(&I, Res);
7215     DAG.setRoot(Res.getValue(1));
7216     return;
7217   }
7218   case Intrinsic::stackrestore:
7219     Res = getValue(I.getArgOperand(0));
7220     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7221     return;
7222   case Intrinsic::get_dynamic_area_offset: {
7223     SDValue Op = getRoot();
7224     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7225     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7226     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7227     // target.
7228     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7229       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7230                          " intrinsic!");
7231     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7232                       Op);
7233     DAG.setRoot(Op);
7234     setValue(&I, Res);
7235     return;
7236   }
7237   case Intrinsic::stackguard: {
7238     MachineFunction &MF = DAG.getMachineFunction();
7239     const Module &M = *MF.getFunction().getParent();
7240     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7241     SDValue Chain = getRoot();
7242     if (TLI.useLoadStackGuardNode()) {
7243       Res = getLoadStackGuard(DAG, sdl, Chain);
7244       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7245     } else {
7246       const Value *Global = TLI.getSDagStackGuard(M);
7247       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7248       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7249                         MachinePointerInfo(Global, 0), Align,
7250                         MachineMemOperand::MOVolatile);
7251     }
7252     if (TLI.useStackGuardXorFP())
7253       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7254     DAG.setRoot(Chain);
7255     setValue(&I, Res);
7256     return;
7257   }
7258   case Intrinsic::stackprotector: {
7259     // Emit code into the DAG to store the stack guard onto the stack.
7260     MachineFunction &MF = DAG.getMachineFunction();
7261     MachineFrameInfo &MFI = MF.getFrameInfo();
7262     SDValue Src, Chain = getRoot();
7263 
7264     if (TLI.useLoadStackGuardNode())
7265       Src = getLoadStackGuard(DAG, sdl, Chain);
7266     else
7267       Src = getValue(I.getArgOperand(0));   // The guard's value.
7268 
7269     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7270 
7271     int FI = FuncInfo.StaticAllocaMap[Slot];
7272     MFI.setStackProtectorIndex(FI);
7273     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7274 
7275     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7276 
7277     // Store the stack protector onto the stack.
7278     Res = DAG.getStore(
7279         Chain, sdl, Src, FIN,
7280         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7281         MaybeAlign(), MachineMemOperand::MOVolatile);
7282     setValue(&I, Res);
7283     DAG.setRoot(Res);
7284     return;
7285   }
7286   case Intrinsic::objectsize:
7287     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7288 
7289   case Intrinsic::is_constant:
7290     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7291 
7292   case Intrinsic::annotation:
7293   case Intrinsic::ptr_annotation:
7294   case Intrinsic::launder_invariant_group:
7295   case Intrinsic::strip_invariant_group:
7296     // Drop the intrinsic, but forward the value
7297     setValue(&I, getValue(I.getOperand(0)));
7298     return;
7299 
7300   case Intrinsic::assume:
7301   case Intrinsic::experimental_noalias_scope_decl:
7302   case Intrinsic::var_annotation:
7303   case Intrinsic::sideeffect:
7304     // Discard annotate attributes, noalias scope declarations, assumptions, and
7305     // artificial side-effects.
7306     return;
7307 
7308   case Intrinsic::codeview_annotation: {
7309     // Emit a label associated with this metadata.
7310     MachineFunction &MF = DAG.getMachineFunction();
7311     MCSymbol *Label =
7312         MF.getMMI().getContext().createTempSymbol("annotation", true);
7313     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7314     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7315     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7316     DAG.setRoot(Res);
7317     return;
7318   }
7319 
7320   case Intrinsic::init_trampoline: {
7321     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7322 
7323     SDValue Ops[6];
7324     Ops[0] = getRoot();
7325     Ops[1] = getValue(I.getArgOperand(0));
7326     Ops[2] = getValue(I.getArgOperand(1));
7327     Ops[3] = getValue(I.getArgOperand(2));
7328     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7329     Ops[5] = DAG.getSrcValue(F);
7330 
7331     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7332 
7333     DAG.setRoot(Res);
7334     return;
7335   }
7336   case Intrinsic::adjust_trampoline:
7337     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7338                              TLI.getPointerTy(DAG.getDataLayout()),
7339                              getValue(I.getArgOperand(0))));
7340     return;
7341   case Intrinsic::gcroot: {
7342     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7343            "only valid in functions with gc specified, enforced by Verifier");
7344     assert(GFI && "implied by previous");
7345     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7346     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7347 
7348     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7349     GFI->addStackRoot(FI->getIndex(), TypeMap);
7350     return;
7351   }
7352   case Intrinsic::gcread:
7353   case Intrinsic::gcwrite:
7354     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7355   case Intrinsic::get_rounding:
7356     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7357     setValue(&I, Res);
7358     DAG.setRoot(Res.getValue(1));
7359     return;
7360 
7361   case Intrinsic::expect:
7362     // Just replace __builtin_expect(exp, c) with EXP.
7363     setValue(&I, getValue(I.getArgOperand(0)));
7364     return;
7365 
7366   case Intrinsic::ubsantrap:
7367   case Intrinsic::debugtrap:
7368   case Intrinsic::trap: {
7369     StringRef TrapFuncName =
7370         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7371     if (TrapFuncName.empty()) {
7372       switch (Intrinsic) {
7373       case Intrinsic::trap:
7374         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7375         break;
7376       case Intrinsic::debugtrap:
7377         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7378         break;
7379       case Intrinsic::ubsantrap:
7380         DAG.setRoot(DAG.getNode(
7381             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7382             DAG.getTargetConstant(
7383                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7384                 MVT::i32)));
7385         break;
7386       default: llvm_unreachable("unknown trap intrinsic");
7387       }
7388       return;
7389     }
7390     TargetLowering::ArgListTy Args;
7391     if (Intrinsic == Intrinsic::ubsantrap) {
7392       Args.push_back(TargetLoweringBase::ArgListEntry());
7393       Args[0].Val = I.getArgOperand(0);
7394       Args[0].Node = getValue(Args[0].Val);
7395       Args[0].Ty = Args[0].Val->getType();
7396     }
7397 
7398     TargetLowering::CallLoweringInfo CLI(DAG);
7399     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7400         CallingConv::C, I.getType(),
7401         DAG.getExternalSymbol(TrapFuncName.data(),
7402                               TLI.getPointerTy(DAG.getDataLayout())),
7403         std::move(Args));
7404 
7405     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7406     DAG.setRoot(Result.second);
7407     return;
7408   }
7409 
7410   case Intrinsic::allow_runtime_check:
7411   case Intrinsic::allow_ubsan_check:
7412     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7413     return;
7414 
7415   case Intrinsic::uadd_with_overflow:
7416   case Intrinsic::sadd_with_overflow:
7417   case Intrinsic::usub_with_overflow:
7418   case Intrinsic::ssub_with_overflow:
7419   case Intrinsic::umul_with_overflow:
7420   case Intrinsic::smul_with_overflow: {
7421     ISD::NodeType Op;
7422     switch (Intrinsic) {
7423     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7424     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7425     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7426     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7427     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7428     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7429     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7430     }
7431     SDValue Op1 = getValue(I.getArgOperand(0));
7432     SDValue Op2 = getValue(I.getArgOperand(1));
7433 
7434     EVT ResultVT = Op1.getValueType();
7435     EVT OverflowVT = MVT::i1;
7436     if (ResultVT.isVector())
7437       OverflowVT = EVT::getVectorVT(
7438           *Context, OverflowVT, ResultVT.getVectorElementCount());
7439 
7440     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7441     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7442     return;
7443   }
7444   case Intrinsic::prefetch: {
7445     SDValue Ops[5];
7446     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7447     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7448     Ops[0] = DAG.getRoot();
7449     Ops[1] = getValue(I.getArgOperand(0));
7450     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7451                                    MVT::i32);
7452     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7453                                    MVT::i32);
7454     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7455                                    MVT::i32);
7456     SDValue Result = DAG.getMemIntrinsicNode(
7457         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7458         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7459         /* align */ std::nullopt, Flags);
7460 
7461     // Chain the prefetch in parallel with any pending loads, to stay out of
7462     // the way of later optimizations.
7463     PendingLoads.push_back(Result);
7464     Result = getRoot();
7465     DAG.setRoot(Result);
7466     return;
7467   }
7468   case Intrinsic::lifetime_start:
7469   case Intrinsic::lifetime_end: {
7470     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7471     // Stack coloring is not enabled in O0, discard region information.
7472     if (TM.getOptLevel() == CodeGenOptLevel::None)
7473       return;
7474 
7475     const int64_t ObjectSize =
7476         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7477     Value *const ObjectPtr = I.getArgOperand(1);
7478     SmallVector<const Value *, 4> Allocas;
7479     getUnderlyingObjects(ObjectPtr, Allocas);
7480 
7481     for (const Value *Alloca : Allocas) {
7482       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7483 
7484       // Could not find an Alloca.
7485       if (!LifetimeObject)
7486         continue;
7487 
7488       // First check that the Alloca is static, otherwise it won't have a
7489       // valid frame index.
7490       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7491       if (SI == FuncInfo.StaticAllocaMap.end())
7492         return;
7493 
7494       const int FrameIndex = SI->second;
7495       int64_t Offset;
7496       if (GetPointerBaseWithConstantOffset(
7497               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7498         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7499       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7500                                 Offset);
7501       DAG.setRoot(Res);
7502     }
7503     return;
7504   }
7505   case Intrinsic::pseudoprobe: {
7506     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7507     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7508     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7509     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7510     DAG.setRoot(Res);
7511     return;
7512   }
7513   case Intrinsic::invariant_start:
7514     // Discard region information.
7515     setValue(&I,
7516              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7517     return;
7518   case Intrinsic::invariant_end:
7519     // Discard region information.
7520     return;
7521   case Intrinsic::clear_cache: {
7522     SDValue InputChain = DAG.getRoot();
7523     SDValue StartVal = getValue(I.getArgOperand(0));
7524     SDValue EndVal = getValue(I.getArgOperand(1));
7525     Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7526                       {InputChain, StartVal, EndVal});
7527     setValue(&I, Res);
7528     DAG.setRoot(Res);
7529     return;
7530   }
7531   case Intrinsic::donothing:
7532   case Intrinsic::seh_try_begin:
7533   case Intrinsic::seh_scope_begin:
7534   case Intrinsic::seh_try_end:
7535   case Intrinsic::seh_scope_end:
7536     // ignore
7537     return;
7538   case Intrinsic::experimental_stackmap:
7539     visitStackmap(I);
7540     return;
7541   case Intrinsic::experimental_patchpoint_void:
7542   case Intrinsic::experimental_patchpoint:
7543     visitPatchpoint(I);
7544     return;
7545   case Intrinsic::experimental_gc_statepoint:
7546     LowerStatepoint(cast<GCStatepointInst>(I));
7547     return;
7548   case Intrinsic::experimental_gc_result:
7549     visitGCResult(cast<GCResultInst>(I));
7550     return;
7551   case Intrinsic::experimental_gc_relocate:
7552     visitGCRelocate(cast<GCRelocateInst>(I));
7553     return;
7554   case Intrinsic::instrprof_cover:
7555     llvm_unreachable("instrprof failed to lower a cover");
7556   case Intrinsic::instrprof_increment:
7557     llvm_unreachable("instrprof failed to lower an increment");
7558   case Intrinsic::instrprof_timestamp:
7559     llvm_unreachable("instrprof failed to lower a timestamp");
7560   case Intrinsic::instrprof_value_profile:
7561     llvm_unreachable("instrprof failed to lower a value profiling call");
7562   case Intrinsic::instrprof_mcdc_parameters:
7563     llvm_unreachable("instrprof failed to lower mcdc parameters");
7564   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7565     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7566   case Intrinsic::instrprof_mcdc_condbitmap_update:
7567     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7568   case Intrinsic::localescape: {
7569     MachineFunction &MF = DAG.getMachineFunction();
7570     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7571 
7572     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7573     // is the same on all targets.
7574     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7575       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7576       if (isa<ConstantPointerNull>(Arg))
7577         continue; // Skip null pointers. They represent a hole in index space.
7578       AllocaInst *Slot = cast<AllocaInst>(Arg);
7579       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7580              "can only escape static allocas");
7581       int FI = FuncInfo.StaticAllocaMap[Slot];
7582       MCSymbol *FrameAllocSym =
7583           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7584               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7585       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7586               TII->get(TargetOpcode::LOCAL_ESCAPE))
7587           .addSym(FrameAllocSym)
7588           .addFrameIndex(FI);
7589     }
7590 
7591     return;
7592   }
7593 
7594   case Intrinsic::localrecover: {
7595     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7596     MachineFunction &MF = DAG.getMachineFunction();
7597 
7598     // Get the symbol that defines the frame offset.
7599     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7600     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7601     unsigned IdxVal =
7602         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7603     MCSymbol *FrameAllocSym =
7604         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7605             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7606 
7607     Value *FP = I.getArgOperand(1);
7608     SDValue FPVal = getValue(FP);
7609     EVT PtrVT = FPVal.getValueType();
7610 
7611     // Create a MCSymbol for the label to avoid any target lowering
7612     // that would make this PC relative.
7613     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7614     SDValue OffsetVal =
7615         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7616 
7617     // Add the offset to the FP.
7618     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7619     setValue(&I, Add);
7620 
7621     return;
7622   }
7623 
7624   case Intrinsic::eh_exceptionpointer:
7625   case Intrinsic::eh_exceptioncode: {
7626     // Get the exception pointer vreg, copy from it, and resize it to fit.
7627     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7628     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7629     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7630     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7631     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7632     if (Intrinsic == Intrinsic::eh_exceptioncode)
7633       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7634     setValue(&I, N);
7635     return;
7636   }
7637   case Intrinsic::xray_customevent: {
7638     // Here we want to make sure that the intrinsic behaves as if it has a
7639     // specific calling convention.
7640     const auto &Triple = DAG.getTarget().getTargetTriple();
7641     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7642       return;
7643 
7644     SmallVector<SDValue, 8> Ops;
7645 
7646     // We want to say that we always want the arguments in registers.
7647     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7648     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7649     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7650     SDValue Chain = getRoot();
7651     Ops.push_back(LogEntryVal);
7652     Ops.push_back(StrSizeVal);
7653     Ops.push_back(Chain);
7654 
7655     // We need to enforce the calling convention for the callsite, so that
7656     // argument ordering is enforced correctly, and that register allocation can
7657     // see that some registers may be assumed clobbered and have to preserve
7658     // them across calls to the intrinsic.
7659     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7660                                            sdl, NodeTys, Ops);
7661     SDValue patchableNode = SDValue(MN, 0);
7662     DAG.setRoot(patchableNode);
7663     setValue(&I, patchableNode);
7664     return;
7665   }
7666   case Intrinsic::xray_typedevent: {
7667     // Here we want to make sure that the intrinsic behaves as if it has a
7668     // specific calling convention.
7669     const auto &Triple = DAG.getTarget().getTargetTriple();
7670     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7671       return;
7672 
7673     SmallVector<SDValue, 8> Ops;
7674 
7675     // We want to say that we always want the arguments in registers.
7676     // It's unclear to me how manipulating the selection DAG here forces callers
7677     // to provide arguments in registers instead of on the stack.
7678     SDValue LogTypeId = getValue(I.getArgOperand(0));
7679     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7680     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7681     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7682     SDValue Chain = getRoot();
7683     Ops.push_back(LogTypeId);
7684     Ops.push_back(LogEntryVal);
7685     Ops.push_back(StrSizeVal);
7686     Ops.push_back(Chain);
7687 
7688     // We need to enforce the calling convention for the callsite, so that
7689     // argument ordering is enforced correctly, and that register allocation can
7690     // see that some registers may be assumed clobbered and have to preserve
7691     // them across calls to the intrinsic.
7692     MachineSDNode *MN = DAG.getMachineNode(
7693         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7694     SDValue patchableNode = SDValue(MN, 0);
7695     DAG.setRoot(patchableNode);
7696     setValue(&I, patchableNode);
7697     return;
7698   }
7699   case Intrinsic::experimental_deoptimize:
7700     LowerDeoptimizeCall(&I);
7701     return;
7702   case Intrinsic::experimental_stepvector:
7703     visitStepVector(I);
7704     return;
7705   case Intrinsic::vector_reduce_fadd:
7706   case Intrinsic::vector_reduce_fmul:
7707   case Intrinsic::vector_reduce_add:
7708   case Intrinsic::vector_reduce_mul:
7709   case Intrinsic::vector_reduce_and:
7710   case Intrinsic::vector_reduce_or:
7711   case Intrinsic::vector_reduce_xor:
7712   case Intrinsic::vector_reduce_smax:
7713   case Intrinsic::vector_reduce_smin:
7714   case Intrinsic::vector_reduce_umax:
7715   case Intrinsic::vector_reduce_umin:
7716   case Intrinsic::vector_reduce_fmax:
7717   case Intrinsic::vector_reduce_fmin:
7718   case Intrinsic::vector_reduce_fmaximum:
7719   case Intrinsic::vector_reduce_fminimum:
7720     visitVectorReduce(I, Intrinsic);
7721     return;
7722 
7723   case Intrinsic::icall_branch_funnel: {
7724     SmallVector<SDValue, 16> Ops;
7725     Ops.push_back(getValue(I.getArgOperand(0)));
7726 
7727     int64_t Offset;
7728     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7729         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7730     if (!Base)
7731       report_fatal_error(
7732           "llvm.icall.branch.funnel operand must be a GlobalValue");
7733     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7734 
7735     struct BranchFunnelTarget {
7736       int64_t Offset;
7737       SDValue Target;
7738     };
7739     SmallVector<BranchFunnelTarget, 8> Targets;
7740 
7741     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7742       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7743           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7744       if (ElemBase != Base)
7745         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7746                            "to the same GlobalValue");
7747 
7748       SDValue Val = getValue(I.getArgOperand(Op + 1));
7749       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7750       if (!GA)
7751         report_fatal_error(
7752             "llvm.icall.branch.funnel operand must be a GlobalValue");
7753       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7754                                      GA->getGlobal(), sdl, Val.getValueType(),
7755                                      GA->getOffset())});
7756     }
7757     llvm::sort(Targets,
7758                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7759                  return T1.Offset < T2.Offset;
7760                });
7761 
7762     for (auto &T : Targets) {
7763       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7764       Ops.push_back(T.Target);
7765     }
7766 
7767     Ops.push_back(DAG.getRoot()); // Chain
7768     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7769                                  MVT::Other, Ops),
7770               0);
7771     DAG.setRoot(N);
7772     setValue(&I, N);
7773     HasTailCall = true;
7774     return;
7775   }
7776 
7777   case Intrinsic::wasm_landingpad_index:
7778     // Information this intrinsic contained has been transferred to
7779     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7780     // delete it now.
7781     return;
7782 
7783   case Intrinsic::aarch64_settag:
7784   case Intrinsic::aarch64_settag_zero: {
7785     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7786     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7787     SDValue Val = TSI.EmitTargetCodeForSetTag(
7788         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7789         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7790         ZeroMemory);
7791     DAG.setRoot(Val);
7792     setValue(&I, Val);
7793     return;
7794   }
7795   case Intrinsic::amdgcn_cs_chain: {
7796     assert(I.arg_size() == 5 && "Additional args not supported yet");
7797     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7798            "Non-zero flags not supported yet");
7799 
7800     // At this point we don't care if it's amdgpu_cs_chain or
7801     // amdgpu_cs_chain_preserve.
7802     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7803 
7804     Type *RetTy = I.getType();
7805     assert(RetTy->isVoidTy() && "Should not return");
7806 
7807     SDValue Callee = getValue(I.getOperand(0));
7808 
7809     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7810     // We'll also tack the value of the EXEC mask at the end.
7811     TargetLowering::ArgListTy Args;
7812     Args.reserve(3);
7813 
7814     for (unsigned Idx : {2, 3, 1}) {
7815       TargetLowering::ArgListEntry Arg;
7816       Arg.Node = getValue(I.getOperand(Idx));
7817       Arg.Ty = I.getOperand(Idx)->getType();
7818       Arg.setAttributes(&I, Idx);
7819       Args.push_back(Arg);
7820     }
7821 
7822     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7823     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7824     Args[2].IsInReg = true; // EXEC should be inreg
7825 
7826     TargetLowering::CallLoweringInfo CLI(DAG);
7827     CLI.setDebugLoc(getCurSDLoc())
7828         .setChain(getRoot())
7829         .setCallee(CC, RetTy, Callee, std::move(Args))
7830         .setNoReturn(true)
7831         .setTailCall(true)
7832         .setConvergent(I.isConvergent());
7833     CLI.CB = &I;
7834     std::pair<SDValue, SDValue> Result =
7835         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7836     (void)Result;
7837     assert(!Result.first.getNode() && !Result.second.getNode() &&
7838            "Should've lowered as tail call");
7839 
7840     HasTailCall = true;
7841     return;
7842   }
7843   case Intrinsic::ptrmask: {
7844     SDValue Ptr = getValue(I.getOperand(0));
7845     SDValue Mask = getValue(I.getOperand(1));
7846 
7847     // On arm64_32, pointers are 32 bits when stored in memory, but
7848     // zero-extended to 64 bits when in registers.  Thus the mask is 32 bits to
7849     // match the index type, but the pointer is 64 bits, so the the mask must be
7850     // zero-extended up to 64 bits to match the pointer.
7851     EVT PtrVT =
7852         TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7853     EVT MemVT =
7854         TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7855     assert(PtrVT == Ptr.getValueType());
7856     assert(MemVT == Mask.getValueType());
7857     if (MemVT != PtrVT)
7858       Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
7859 
7860     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7861     return;
7862   }
7863   case Intrinsic::threadlocal_address: {
7864     setValue(&I, getValue(I.getOperand(0)));
7865     return;
7866   }
7867   case Intrinsic::get_active_lane_mask: {
7868     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7869     SDValue Index = getValue(I.getOperand(0));
7870     EVT ElementVT = Index.getValueType();
7871 
7872     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7873       visitTargetIntrinsic(I, Intrinsic);
7874       return;
7875     }
7876 
7877     SDValue TripCount = getValue(I.getOperand(1));
7878     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7879                                  CCVT.getVectorElementCount());
7880 
7881     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7882     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7883     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7884     SDValue VectorInduction = DAG.getNode(
7885         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7886     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7887                                  VectorTripCount, ISD::CondCode::SETULT);
7888     setValue(&I, SetCC);
7889     return;
7890   }
7891   case Intrinsic::experimental_get_vector_length: {
7892     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7893            "Expected positive VF");
7894     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7895     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7896 
7897     SDValue Count = getValue(I.getOperand(0));
7898     EVT CountVT = Count.getValueType();
7899 
7900     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7901       visitTargetIntrinsic(I, Intrinsic);
7902       return;
7903     }
7904 
7905     // Expand to a umin between the trip count and the maximum elements the type
7906     // can hold.
7907     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7908 
7909     // Extend the trip count to at least the result VT.
7910     if (CountVT.bitsLT(VT)) {
7911       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7912       CountVT = VT;
7913     }
7914 
7915     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7916                                          ElementCount::get(VF, IsScalable));
7917 
7918     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7919     // Clip to the result type if needed.
7920     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7921 
7922     setValue(&I, Trunc);
7923     return;
7924   }
7925   case Intrinsic::experimental_cttz_elts: {
7926     auto DL = getCurSDLoc();
7927     SDValue Op = getValue(I.getOperand(0));
7928     EVT OpVT = Op.getValueType();
7929 
7930     if (!TLI.shouldExpandCttzElements(OpVT)) {
7931       visitTargetIntrinsic(I, Intrinsic);
7932       return;
7933     }
7934 
7935     if (OpVT.getScalarType() != MVT::i1) {
7936       // Compare the input vector elements to zero & use to count trailing zeros
7937       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7938       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7939                               OpVT.getVectorElementCount());
7940       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7941     }
7942 
7943     // If the zero-is-poison flag is set, we can assume the upper limit
7944     // of the result is VF-1.
7945     bool ZeroIsPoison =
7946         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
7947     ConstantRange VScaleRange(1, true); // Dummy value.
7948     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
7949       VScaleRange = getVScaleRange(I.getCaller(), 64);
7950     unsigned EltWidth = TLI.getBitWidthForCttzElements(
7951         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
7952 
7953     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7954 
7955     // Create the new vector type & get the vector length
7956     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7957                                  OpVT.getVectorElementCount());
7958 
7959     SDValue VL =
7960         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7961 
7962     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7963     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7964     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7965     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7966     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7967     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7968     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7969 
7970     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7971     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7972 
7973     setValue(&I, Ret);
7974     return;
7975   }
7976   case Intrinsic::vector_insert: {
7977     SDValue Vec = getValue(I.getOperand(0));
7978     SDValue SubVec = getValue(I.getOperand(1));
7979     SDValue Index = getValue(I.getOperand(2));
7980 
7981     // The intrinsic's index type is i64, but the SDNode requires an index type
7982     // suitable for the target. Convert the index as required.
7983     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7984     if (Index.getValueType() != VectorIdxTy)
7985       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7986 
7987     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7988     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7989                              Index));
7990     return;
7991   }
7992   case Intrinsic::vector_extract: {
7993     SDValue Vec = getValue(I.getOperand(0));
7994     SDValue Index = getValue(I.getOperand(1));
7995     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7996 
7997     // The intrinsic's index type is i64, but the SDNode requires an index type
7998     // suitable for the target. Convert the index as required.
7999     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8000     if (Index.getValueType() != VectorIdxTy)
8001       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8002 
8003     setValue(&I,
8004              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8005     return;
8006   }
8007   case Intrinsic::vector_reverse:
8008     visitVectorReverse(I);
8009     return;
8010   case Intrinsic::vector_splice:
8011     visitVectorSplice(I);
8012     return;
8013   case Intrinsic::callbr_landingpad:
8014     visitCallBrLandingPad(I);
8015     return;
8016   case Intrinsic::vector_interleave2:
8017     visitVectorInterleave(I);
8018     return;
8019   case Intrinsic::vector_deinterleave2:
8020     visitVectorDeinterleave(I);
8021     return;
8022   case Intrinsic::experimental_convergence_anchor:
8023   case Intrinsic::experimental_convergence_entry:
8024   case Intrinsic::experimental_convergence_loop:
8025     visitConvergenceControl(I, Intrinsic);
8026     return;
8027   case Intrinsic::experimental_vector_histogram_add: {
8028     visitVectorHistogram(I, Intrinsic);
8029     return;
8030   }
8031   }
8032 }
8033 
8034 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8035     const ConstrainedFPIntrinsic &FPI) {
8036   SDLoc sdl = getCurSDLoc();
8037 
8038   // We do not need to serialize constrained FP intrinsics against
8039   // each other or against (nonvolatile) loads, so they can be
8040   // chained like loads.
8041   SDValue Chain = DAG.getRoot();
8042   SmallVector<SDValue, 4> Opers;
8043   Opers.push_back(Chain);
8044   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8045     Opers.push_back(getValue(FPI.getArgOperand(I)));
8046 
8047   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8048     assert(Result.getNode()->getNumValues() == 2);
8049 
8050     // Push node to the appropriate list so that future instructions can be
8051     // chained up correctly.
8052     SDValue OutChain = Result.getValue(1);
8053     switch (EB) {
8054     case fp::ExceptionBehavior::ebIgnore:
8055       // The only reason why ebIgnore nodes still need to be chained is that
8056       // they might depend on the current rounding mode, and therefore must
8057       // not be moved across instruction that may change that mode.
8058       [[fallthrough]];
8059     case fp::ExceptionBehavior::ebMayTrap:
8060       // These must not be moved across calls or instructions that may change
8061       // floating-point exception masks.
8062       PendingConstrainedFP.push_back(OutChain);
8063       break;
8064     case fp::ExceptionBehavior::ebStrict:
8065       // These must not be moved across calls or instructions that may change
8066       // floating-point exception masks or read floating-point exception flags.
8067       // In addition, they cannot be optimized out even if unused.
8068       PendingConstrainedFPStrict.push_back(OutChain);
8069       break;
8070     }
8071   };
8072 
8073   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8074   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8075   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8076   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8077 
8078   SDNodeFlags Flags;
8079   if (EB == fp::ExceptionBehavior::ebIgnore)
8080     Flags.setNoFPExcept(true);
8081 
8082   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8083     Flags.copyFMF(*FPOp);
8084 
8085   unsigned Opcode;
8086   switch (FPI.getIntrinsicID()) {
8087   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8088 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8089   case Intrinsic::INTRINSIC:                                                   \
8090     Opcode = ISD::STRICT_##DAGN;                                               \
8091     break;
8092 #include "llvm/IR/ConstrainedOps.def"
8093   case Intrinsic::experimental_constrained_fmuladd: {
8094     Opcode = ISD::STRICT_FMA;
8095     // Break fmuladd into fmul and fadd.
8096     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8097         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8098       Opers.pop_back();
8099       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8100       pushOutChain(Mul, EB);
8101       Opcode = ISD::STRICT_FADD;
8102       Opers.clear();
8103       Opers.push_back(Mul.getValue(1));
8104       Opers.push_back(Mul.getValue(0));
8105       Opers.push_back(getValue(FPI.getArgOperand(2)));
8106     }
8107     break;
8108   }
8109   }
8110 
8111   // A few strict DAG nodes carry additional operands that are not
8112   // set up by the default code above.
8113   switch (Opcode) {
8114   default: break;
8115   case ISD::STRICT_FP_ROUND:
8116     Opers.push_back(
8117         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8118     break;
8119   case ISD::STRICT_FSETCC:
8120   case ISD::STRICT_FSETCCS: {
8121     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8122     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8123     if (TM.Options.NoNaNsFPMath)
8124       Condition = getFCmpCodeWithoutNaN(Condition);
8125     Opers.push_back(DAG.getCondCode(Condition));
8126     break;
8127   }
8128   }
8129 
8130   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8131   pushOutChain(Result, EB);
8132 
8133   SDValue FPResult = Result.getValue(0);
8134   setValue(&FPI, FPResult);
8135 }
8136 
8137 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8138   std::optional<unsigned> ResOPC;
8139   switch (VPIntrin.getIntrinsicID()) {
8140   case Intrinsic::vp_ctlz: {
8141     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8142     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8143     break;
8144   }
8145   case Intrinsic::vp_cttz: {
8146     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8147     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8148     break;
8149   }
8150   case Intrinsic::vp_cttz_elts: {
8151     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8152     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8153     break;
8154   }
8155 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8156   case Intrinsic::VPID:                                                        \
8157     ResOPC = ISD::VPSD;                                                        \
8158     break;
8159 #include "llvm/IR/VPIntrinsics.def"
8160   }
8161 
8162   if (!ResOPC)
8163     llvm_unreachable(
8164         "Inconsistency: no SDNode available for this VPIntrinsic!");
8165 
8166   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8167       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8168     if (VPIntrin.getFastMathFlags().allowReassoc())
8169       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8170                                                 : ISD::VP_REDUCE_FMUL;
8171   }
8172 
8173   return *ResOPC;
8174 }
8175 
8176 void SelectionDAGBuilder::visitVPLoad(
8177     const VPIntrinsic &VPIntrin, EVT VT,
8178     const SmallVectorImpl<SDValue> &OpValues) {
8179   SDLoc DL = getCurSDLoc();
8180   Value *PtrOperand = VPIntrin.getArgOperand(0);
8181   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8182   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8183   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8184   SDValue LD;
8185   // Do not serialize variable-length loads of constant memory with
8186   // anything.
8187   if (!Alignment)
8188     Alignment = DAG.getEVTAlign(VT);
8189   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8190   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8191   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8192   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8193       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8194       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8195   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8196                      MMO, false /*IsExpanding */);
8197   if (AddToChain)
8198     PendingLoads.push_back(LD.getValue(1));
8199   setValue(&VPIntrin, LD);
8200 }
8201 
8202 void SelectionDAGBuilder::visitVPGather(
8203     const VPIntrinsic &VPIntrin, EVT VT,
8204     const SmallVectorImpl<SDValue> &OpValues) {
8205   SDLoc DL = getCurSDLoc();
8206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8207   Value *PtrOperand = VPIntrin.getArgOperand(0);
8208   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8209   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8210   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8211   SDValue LD;
8212   if (!Alignment)
8213     Alignment = DAG.getEVTAlign(VT.getScalarType());
8214   unsigned AS =
8215     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8216   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8217       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8218       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8219   SDValue Base, Index, Scale;
8220   ISD::MemIndexType IndexType;
8221   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8222                                     this, VPIntrin.getParent(),
8223                                     VT.getScalarStoreSize());
8224   if (!UniformBase) {
8225     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8226     Index = getValue(PtrOperand);
8227     IndexType = ISD::SIGNED_SCALED;
8228     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8229   }
8230   EVT IdxVT = Index.getValueType();
8231   EVT EltTy = IdxVT.getVectorElementType();
8232   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8233     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8234     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8235   }
8236   LD = DAG.getGatherVP(
8237       DAG.getVTList(VT, MVT::Other), VT, DL,
8238       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8239       IndexType);
8240   PendingLoads.push_back(LD.getValue(1));
8241   setValue(&VPIntrin, LD);
8242 }
8243 
8244 void SelectionDAGBuilder::visitVPStore(
8245     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8246   SDLoc DL = getCurSDLoc();
8247   Value *PtrOperand = VPIntrin.getArgOperand(1);
8248   EVT VT = OpValues[0].getValueType();
8249   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8250   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8251   SDValue ST;
8252   if (!Alignment)
8253     Alignment = DAG.getEVTAlign(VT);
8254   SDValue Ptr = OpValues[1];
8255   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8256   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8257       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8258       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8259   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8260                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8261                       /* IsTruncating */ false, /*IsCompressing*/ false);
8262   DAG.setRoot(ST);
8263   setValue(&VPIntrin, ST);
8264 }
8265 
8266 void SelectionDAGBuilder::visitVPScatter(
8267     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8268   SDLoc DL = getCurSDLoc();
8269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8270   Value *PtrOperand = VPIntrin.getArgOperand(1);
8271   EVT VT = OpValues[0].getValueType();
8272   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8273   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8274   SDValue ST;
8275   if (!Alignment)
8276     Alignment = DAG.getEVTAlign(VT.getScalarType());
8277   unsigned AS =
8278       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8279   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8280       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8281       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8282   SDValue Base, Index, Scale;
8283   ISD::MemIndexType IndexType;
8284   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8285                                     this, VPIntrin.getParent(),
8286                                     VT.getScalarStoreSize());
8287   if (!UniformBase) {
8288     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8289     Index = getValue(PtrOperand);
8290     IndexType = ISD::SIGNED_SCALED;
8291     Scale =
8292       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8293   }
8294   EVT IdxVT = Index.getValueType();
8295   EVT EltTy = IdxVT.getVectorElementType();
8296   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8297     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8298     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8299   }
8300   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8301                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8302                          OpValues[2], OpValues[3]},
8303                         MMO, IndexType);
8304   DAG.setRoot(ST);
8305   setValue(&VPIntrin, ST);
8306 }
8307 
8308 void SelectionDAGBuilder::visitVPStridedLoad(
8309     const VPIntrinsic &VPIntrin, EVT VT,
8310     const SmallVectorImpl<SDValue> &OpValues) {
8311   SDLoc DL = getCurSDLoc();
8312   Value *PtrOperand = VPIntrin.getArgOperand(0);
8313   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8314   if (!Alignment)
8315     Alignment = DAG.getEVTAlign(VT.getScalarType());
8316   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8317   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8318   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8319   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8320   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8321   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8322   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8323       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8324       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8325 
8326   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8327                                     OpValues[2], OpValues[3], MMO,
8328                                     false /*IsExpanding*/);
8329 
8330   if (AddToChain)
8331     PendingLoads.push_back(LD.getValue(1));
8332   setValue(&VPIntrin, LD);
8333 }
8334 
8335 void SelectionDAGBuilder::visitVPStridedStore(
8336     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8337   SDLoc DL = getCurSDLoc();
8338   Value *PtrOperand = VPIntrin.getArgOperand(1);
8339   EVT VT = OpValues[0].getValueType();
8340   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8341   if (!Alignment)
8342     Alignment = DAG.getEVTAlign(VT.getScalarType());
8343   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8344   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8345   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8346       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8347       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8348 
8349   SDValue ST = DAG.getStridedStoreVP(
8350       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8351       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8352       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8353       /*IsCompressing*/ false);
8354 
8355   DAG.setRoot(ST);
8356   setValue(&VPIntrin, ST);
8357 }
8358 
8359 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8361   SDLoc DL = getCurSDLoc();
8362 
8363   ISD::CondCode Condition;
8364   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8365   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8366   if (IsFP) {
8367     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8368     // flags, but calls that don't return floating-point types can't be
8369     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8370     Condition = getFCmpCondCode(CondCode);
8371     if (TM.Options.NoNaNsFPMath)
8372       Condition = getFCmpCodeWithoutNaN(Condition);
8373   } else {
8374     Condition = getICmpCondCode(CondCode);
8375   }
8376 
8377   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8378   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8379   // #2 is the condition code
8380   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8381   SDValue EVL = getValue(VPIntrin.getOperand(4));
8382   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8383   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8384          "Unexpected target EVL type");
8385   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8386 
8387   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8388                                                         VPIntrin.getType());
8389   setValue(&VPIntrin,
8390            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8391 }
8392 
8393 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8394     const VPIntrinsic &VPIntrin) {
8395   SDLoc DL = getCurSDLoc();
8396   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8397 
8398   auto IID = VPIntrin.getIntrinsicID();
8399 
8400   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8401     return visitVPCmp(*CmpI);
8402 
8403   SmallVector<EVT, 4> ValueVTs;
8404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8405   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8406   SDVTList VTs = DAG.getVTList(ValueVTs);
8407 
8408   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8409 
8410   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8411   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8412          "Unexpected target EVL type");
8413 
8414   // Request operands.
8415   SmallVector<SDValue, 7> OpValues;
8416   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8417     auto Op = getValue(VPIntrin.getArgOperand(I));
8418     if (I == EVLParamPos)
8419       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8420     OpValues.push_back(Op);
8421   }
8422 
8423   switch (Opcode) {
8424   default: {
8425     SDNodeFlags SDFlags;
8426     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8427       SDFlags.copyFMF(*FPMO);
8428     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8429     setValue(&VPIntrin, Result);
8430     break;
8431   }
8432   case ISD::VP_LOAD:
8433     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8434     break;
8435   case ISD::VP_GATHER:
8436     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8437     break;
8438   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8439     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8440     break;
8441   case ISD::VP_STORE:
8442     visitVPStore(VPIntrin, OpValues);
8443     break;
8444   case ISD::VP_SCATTER:
8445     visitVPScatter(VPIntrin, OpValues);
8446     break;
8447   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8448     visitVPStridedStore(VPIntrin, OpValues);
8449     break;
8450   case ISD::VP_FMULADD: {
8451     assert(OpValues.size() == 5 && "Unexpected number of operands");
8452     SDNodeFlags SDFlags;
8453     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8454       SDFlags.copyFMF(*FPMO);
8455     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8456         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8457       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8458     } else {
8459       SDValue Mul = DAG.getNode(
8460           ISD::VP_FMUL, DL, VTs,
8461           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8462       SDValue Add =
8463           DAG.getNode(ISD::VP_FADD, DL, VTs,
8464                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8465       setValue(&VPIntrin, Add);
8466     }
8467     break;
8468   }
8469   case ISD::VP_IS_FPCLASS: {
8470     const DataLayout DLayout = DAG.getDataLayout();
8471     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8472     auto Constant = OpValues[1]->getAsZExtVal();
8473     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8474     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8475                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8476     setValue(&VPIntrin, V);
8477     return;
8478   }
8479   case ISD::VP_INTTOPTR: {
8480     SDValue N = OpValues[0];
8481     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8482     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8483     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8484                                OpValues[2]);
8485     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8486                              OpValues[2]);
8487     setValue(&VPIntrin, N);
8488     break;
8489   }
8490   case ISD::VP_PTRTOINT: {
8491     SDValue N = OpValues[0];
8492     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8493                                                           VPIntrin.getType());
8494     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8495                                        VPIntrin.getOperand(0)->getType());
8496     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8497                                OpValues[2]);
8498     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8499                              OpValues[2]);
8500     setValue(&VPIntrin, N);
8501     break;
8502   }
8503   case ISD::VP_ABS:
8504   case ISD::VP_CTLZ:
8505   case ISD::VP_CTLZ_ZERO_UNDEF:
8506   case ISD::VP_CTTZ:
8507   case ISD::VP_CTTZ_ZERO_UNDEF:
8508   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8509   case ISD::VP_CTTZ_ELTS: {
8510     SDValue Result =
8511         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8512     setValue(&VPIntrin, Result);
8513     break;
8514   }
8515   }
8516 }
8517 
8518 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8519                                           const BasicBlock *EHPadBB,
8520                                           MCSymbol *&BeginLabel) {
8521   MachineFunction &MF = DAG.getMachineFunction();
8522   MachineModuleInfo &MMI = MF.getMMI();
8523 
8524   // Insert a label before the invoke call to mark the try range.  This can be
8525   // used to detect deletion of the invoke via the MachineModuleInfo.
8526   BeginLabel = MMI.getContext().createTempSymbol();
8527 
8528   // For SjLj, keep track of which landing pads go with which invokes
8529   // so as to maintain the ordering of pads in the LSDA.
8530   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8531   if (CallSiteIndex) {
8532     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8533     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8534 
8535     // Now that the call site is handled, stop tracking it.
8536     MMI.setCurrentCallSite(0);
8537   }
8538 
8539   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8540 }
8541 
8542 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8543                                         const BasicBlock *EHPadBB,
8544                                         MCSymbol *BeginLabel) {
8545   assert(BeginLabel && "BeginLabel should've been set");
8546 
8547   MachineFunction &MF = DAG.getMachineFunction();
8548   MachineModuleInfo &MMI = MF.getMMI();
8549 
8550   // Insert a label at the end of the invoke call to mark the try range.  This
8551   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8552   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8553   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8554 
8555   // Inform MachineModuleInfo of range.
8556   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8557   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8558   // actually use outlined funclets and their LSDA info style.
8559   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8560     assert(II && "II should've been set");
8561     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8562     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8563   } else if (!isScopedEHPersonality(Pers)) {
8564     assert(EHPadBB);
8565     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8566   }
8567 
8568   return Chain;
8569 }
8570 
8571 std::pair<SDValue, SDValue>
8572 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8573                                     const BasicBlock *EHPadBB) {
8574   MCSymbol *BeginLabel = nullptr;
8575 
8576   if (EHPadBB) {
8577     // Both PendingLoads and PendingExports must be flushed here;
8578     // this call might not return.
8579     (void)getRoot();
8580     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8581     CLI.setChain(getRoot());
8582   }
8583 
8584   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8585   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8586 
8587   assert((CLI.IsTailCall || Result.second.getNode()) &&
8588          "Non-null chain expected with non-tail call!");
8589   assert((Result.second.getNode() || !Result.first.getNode()) &&
8590          "Null value expected with tail call!");
8591 
8592   if (!Result.second.getNode()) {
8593     // As a special case, a null chain means that a tail call has been emitted
8594     // and the DAG root is already updated.
8595     HasTailCall = true;
8596 
8597     // Since there's no actual continuation from this block, nothing can be
8598     // relying on us setting vregs for them.
8599     PendingExports.clear();
8600   } else {
8601     DAG.setRoot(Result.second);
8602   }
8603 
8604   if (EHPadBB) {
8605     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8606                            BeginLabel));
8607   }
8608 
8609   return Result;
8610 }
8611 
8612 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8613                                       bool isTailCall, bool isMustTailCall,
8614                                       const BasicBlock *EHPadBB,
8615                                       const TargetLowering::PtrAuthInfo *PAI) {
8616   auto &DL = DAG.getDataLayout();
8617   FunctionType *FTy = CB.getFunctionType();
8618   Type *RetTy = CB.getType();
8619 
8620   TargetLowering::ArgListTy Args;
8621   Args.reserve(CB.arg_size());
8622 
8623   const Value *SwiftErrorVal = nullptr;
8624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8625 
8626   if (isTailCall) {
8627     // Avoid emitting tail calls in functions with the disable-tail-calls
8628     // attribute.
8629     auto *Caller = CB.getParent()->getParent();
8630     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8631         "true" && !isMustTailCall)
8632       isTailCall = false;
8633 
8634     // We can't tail call inside a function with a swifterror argument. Lowering
8635     // does not support this yet. It would have to move into the swifterror
8636     // register before the call.
8637     if (TLI.supportSwiftError() &&
8638         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8639       isTailCall = false;
8640   }
8641 
8642   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8643     TargetLowering::ArgListEntry Entry;
8644     const Value *V = *I;
8645 
8646     // Skip empty types
8647     if (V->getType()->isEmptyTy())
8648       continue;
8649 
8650     SDValue ArgNode = getValue(V);
8651     Entry.Node = ArgNode; Entry.Ty = V->getType();
8652 
8653     Entry.setAttributes(&CB, I - CB.arg_begin());
8654 
8655     // Use swifterror virtual register as input to the call.
8656     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8657       SwiftErrorVal = V;
8658       // We find the virtual register for the actual swifterror argument.
8659       // Instead of using the Value, we use the virtual register instead.
8660       Entry.Node =
8661           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8662                           EVT(TLI.getPointerTy(DL)));
8663     }
8664 
8665     Args.push_back(Entry);
8666 
8667     // If we have an explicit sret argument that is an Instruction, (i.e., it
8668     // might point to function-local memory), we can't meaningfully tail-call.
8669     if (Entry.IsSRet && isa<Instruction>(V))
8670       isTailCall = false;
8671   }
8672 
8673   // If call site has a cfguardtarget operand bundle, create and add an
8674   // additional ArgListEntry.
8675   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8676     TargetLowering::ArgListEntry Entry;
8677     Value *V = Bundle->Inputs[0];
8678     SDValue ArgNode = getValue(V);
8679     Entry.Node = ArgNode;
8680     Entry.Ty = V->getType();
8681     Entry.IsCFGuardTarget = true;
8682     Args.push_back(Entry);
8683   }
8684 
8685   // Check if target-independent constraints permit a tail call here.
8686   // Target-dependent constraints are checked within TLI->LowerCallTo.
8687   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8688     isTailCall = false;
8689 
8690   // Disable tail calls if there is an swifterror argument. Targets have not
8691   // been updated to support tail calls.
8692   if (TLI.supportSwiftError() && SwiftErrorVal)
8693     isTailCall = false;
8694 
8695   ConstantInt *CFIType = nullptr;
8696   if (CB.isIndirectCall()) {
8697     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8698       if (!TLI.supportKCFIBundles())
8699         report_fatal_error(
8700             "Target doesn't support calls with kcfi operand bundles.");
8701       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8702       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8703     }
8704   }
8705 
8706   SDValue ConvControlToken;
8707   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8708     auto *Token = Bundle->Inputs[0].get();
8709     ConvControlToken = getValue(Token);
8710   }
8711 
8712   TargetLowering::CallLoweringInfo CLI(DAG);
8713   CLI.setDebugLoc(getCurSDLoc())
8714       .setChain(getRoot())
8715       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8716       .setTailCall(isTailCall)
8717       .setConvergent(CB.isConvergent())
8718       .setIsPreallocated(
8719           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8720       .setCFIType(CFIType)
8721       .setConvergenceControlToken(ConvControlToken);
8722 
8723   // Set the pointer authentication info if we have it.
8724   if (PAI) {
8725     if (!TLI.supportPtrAuthBundles())
8726       report_fatal_error(
8727           "This target doesn't support calls with ptrauth operand bundles.");
8728     CLI.setPtrAuth(*PAI);
8729   }
8730 
8731   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8732 
8733   if (Result.first.getNode()) {
8734     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8735     setValue(&CB, Result.first);
8736   }
8737 
8738   // The last element of CLI.InVals has the SDValue for swifterror return.
8739   // Here we copy it to a virtual register and update SwiftErrorMap for
8740   // book-keeping.
8741   if (SwiftErrorVal && TLI.supportSwiftError()) {
8742     // Get the last element of InVals.
8743     SDValue Src = CLI.InVals.back();
8744     Register VReg =
8745         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8746     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8747     DAG.setRoot(CopyNode);
8748   }
8749 }
8750 
8751 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8752                              SelectionDAGBuilder &Builder) {
8753   // Check to see if this load can be trivially constant folded, e.g. if the
8754   // input is from a string literal.
8755   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8756     // Cast pointer to the type we really want to load.
8757     Type *LoadTy =
8758         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8759     if (LoadVT.isVector())
8760       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8761 
8762     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8763                                          PointerType::getUnqual(LoadTy));
8764 
8765     if (const Constant *LoadCst =
8766             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8767                                          LoadTy, Builder.DAG.getDataLayout()))
8768       return Builder.getValue(LoadCst);
8769   }
8770 
8771   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8772   // still constant memory, the input chain can be the entry node.
8773   SDValue Root;
8774   bool ConstantMemory = false;
8775 
8776   // Do not serialize (non-volatile) loads of constant memory with anything.
8777   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8778     Root = Builder.DAG.getEntryNode();
8779     ConstantMemory = true;
8780   } else {
8781     // Do not serialize non-volatile loads against each other.
8782     Root = Builder.DAG.getRoot();
8783   }
8784 
8785   SDValue Ptr = Builder.getValue(PtrVal);
8786   SDValue LoadVal =
8787       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8788                           MachinePointerInfo(PtrVal), Align(1));
8789 
8790   if (!ConstantMemory)
8791     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8792   return LoadVal;
8793 }
8794 
8795 /// Record the value for an instruction that produces an integer result,
8796 /// converting the type where necessary.
8797 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8798                                                   SDValue Value,
8799                                                   bool IsSigned) {
8800   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8801                                                     I.getType(), true);
8802   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8803   setValue(&I, Value);
8804 }
8805 
8806 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8807 /// true and lower it. Otherwise return false, and it will be lowered like a
8808 /// normal call.
8809 /// The caller already checked that \p I calls the appropriate LibFunc with a
8810 /// correct prototype.
8811 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8812   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8813   const Value *Size = I.getArgOperand(2);
8814   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8815   if (CSize && CSize->getZExtValue() == 0) {
8816     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8817                                                           I.getType(), true);
8818     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8819     return true;
8820   }
8821 
8822   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8823   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8824       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8825       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8826   if (Res.first.getNode()) {
8827     processIntegerCallValue(I, Res.first, true);
8828     PendingLoads.push_back(Res.second);
8829     return true;
8830   }
8831 
8832   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8833   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8834   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8835     return false;
8836 
8837   // If the target has a fast compare for the given size, it will return a
8838   // preferred load type for that size. Require that the load VT is legal and
8839   // that the target supports unaligned loads of that type. Otherwise, return
8840   // INVALID.
8841   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8842     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8843     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8844     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8845       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8846       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8847       // TODO: Check alignment of src and dest ptrs.
8848       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8849       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8850       if (!TLI.isTypeLegal(LVT) ||
8851           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8852           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8853         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8854     }
8855 
8856     return LVT;
8857   };
8858 
8859   // This turns into unaligned loads. We only do this if the target natively
8860   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8861   // we'll only produce a small number of byte loads.
8862   MVT LoadVT;
8863   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8864   switch (NumBitsToCompare) {
8865   default:
8866     return false;
8867   case 16:
8868     LoadVT = MVT::i16;
8869     break;
8870   case 32:
8871     LoadVT = MVT::i32;
8872     break;
8873   case 64:
8874   case 128:
8875   case 256:
8876     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8877     break;
8878   }
8879 
8880   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8881     return false;
8882 
8883   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8884   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8885 
8886   // Bitcast to a wide integer type if the loads are vectors.
8887   if (LoadVT.isVector()) {
8888     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8889     LoadL = DAG.getBitcast(CmpVT, LoadL);
8890     LoadR = DAG.getBitcast(CmpVT, LoadR);
8891   }
8892 
8893   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8894   processIntegerCallValue(I, Cmp, false);
8895   return true;
8896 }
8897 
8898 /// See if we can lower a memchr call into an optimized form. If so, return
8899 /// true and lower it. Otherwise return false, and it will be lowered like a
8900 /// normal call.
8901 /// The caller already checked that \p I calls the appropriate LibFunc with a
8902 /// correct prototype.
8903 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8904   const Value *Src = I.getArgOperand(0);
8905   const Value *Char = I.getArgOperand(1);
8906   const Value *Length = I.getArgOperand(2);
8907 
8908   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8909   std::pair<SDValue, SDValue> Res =
8910     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8911                                 getValue(Src), getValue(Char), getValue(Length),
8912                                 MachinePointerInfo(Src));
8913   if (Res.first.getNode()) {
8914     setValue(&I, Res.first);
8915     PendingLoads.push_back(Res.second);
8916     return true;
8917   }
8918 
8919   return false;
8920 }
8921 
8922 /// See if we can lower a mempcpy call into an optimized form. If so, return
8923 /// true and lower it. Otherwise return false, and it will be lowered like a
8924 /// normal call.
8925 /// The caller already checked that \p I calls the appropriate LibFunc with a
8926 /// correct prototype.
8927 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8928   SDValue Dst = getValue(I.getArgOperand(0));
8929   SDValue Src = getValue(I.getArgOperand(1));
8930   SDValue Size = getValue(I.getArgOperand(2));
8931 
8932   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8933   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8934   // DAG::getMemcpy needs Alignment to be defined.
8935   Align Alignment = std::min(DstAlign, SrcAlign);
8936 
8937   SDLoc sdl = getCurSDLoc();
8938 
8939   // In the mempcpy context we need to pass in a false value for isTailCall
8940   // because the return pointer needs to be adjusted by the size of
8941   // the copied memory.
8942   SDValue Root = getMemoryRoot();
8943   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8944                              /*isTailCall=*/false,
8945                              MachinePointerInfo(I.getArgOperand(0)),
8946                              MachinePointerInfo(I.getArgOperand(1)),
8947                              I.getAAMetadata());
8948   assert(MC.getNode() != nullptr &&
8949          "** memcpy should not be lowered as TailCall in mempcpy context **");
8950   DAG.setRoot(MC);
8951 
8952   // Check if Size needs to be truncated or extended.
8953   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8954 
8955   // Adjust return pointer to point just past the last dst byte.
8956   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8957                                     Dst, Size);
8958   setValue(&I, DstPlusSize);
8959   return true;
8960 }
8961 
8962 /// See if we can lower a strcpy call into an optimized form.  If so, return
8963 /// true and lower it, otherwise return false and it will be lowered like a
8964 /// normal call.
8965 /// The caller already checked that \p I calls the appropriate LibFunc with a
8966 /// correct prototype.
8967 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8968   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8969 
8970   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8971   std::pair<SDValue, SDValue> Res =
8972     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8973                                 getValue(Arg0), getValue(Arg1),
8974                                 MachinePointerInfo(Arg0),
8975                                 MachinePointerInfo(Arg1), isStpcpy);
8976   if (Res.first.getNode()) {
8977     setValue(&I, Res.first);
8978     DAG.setRoot(Res.second);
8979     return true;
8980   }
8981 
8982   return false;
8983 }
8984 
8985 /// See if we can lower a strcmp call into an optimized form.  If so, return
8986 /// true and lower it, otherwise return false and it will be lowered like a
8987 /// normal call.
8988 /// The caller already checked that \p I calls the appropriate LibFunc with a
8989 /// correct prototype.
8990 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8991   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8992 
8993   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8994   std::pair<SDValue, SDValue> Res =
8995     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8996                                 getValue(Arg0), getValue(Arg1),
8997                                 MachinePointerInfo(Arg0),
8998                                 MachinePointerInfo(Arg1));
8999   if (Res.first.getNode()) {
9000     processIntegerCallValue(I, Res.first, true);
9001     PendingLoads.push_back(Res.second);
9002     return true;
9003   }
9004 
9005   return false;
9006 }
9007 
9008 /// See if we can lower a strlen call into an optimized form.  If so, return
9009 /// true and lower it, otherwise return false and it will be lowered like a
9010 /// normal call.
9011 /// The caller already checked that \p I calls the appropriate LibFunc with a
9012 /// correct prototype.
9013 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9014   const Value *Arg0 = I.getArgOperand(0);
9015 
9016   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9017   std::pair<SDValue, SDValue> Res =
9018     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9019                                 getValue(Arg0), MachinePointerInfo(Arg0));
9020   if (Res.first.getNode()) {
9021     processIntegerCallValue(I, Res.first, false);
9022     PendingLoads.push_back(Res.second);
9023     return true;
9024   }
9025 
9026   return false;
9027 }
9028 
9029 /// See if we can lower a strnlen call into an optimized form.  If so, return
9030 /// true and lower it, otherwise return false and it will be lowered like a
9031 /// normal call.
9032 /// The caller already checked that \p I calls the appropriate LibFunc with a
9033 /// correct prototype.
9034 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9035   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9036 
9037   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9038   std::pair<SDValue, SDValue> Res =
9039     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9040                                  getValue(Arg0), getValue(Arg1),
9041                                  MachinePointerInfo(Arg0));
9042   if (Res.first.getNode()) {
9043     processIntegerCallValue(I, Res.first, false);
9044     PendingLoads.push_back(Res.second);
9045     return true;
9046   }
9047 
9048   return false;
9049 }
9050 
9051 /// See if we can lower a unary floating-point operation into an SDNode with
9052 /// the specified Opcode.  If so, return true and lower it, otherwise return
9053 /// false and it will be lowered like a normal call.
9054 /// The caller already checked that \p I calls the appropriate LibFunc with a
9055 /// correct prototype.
9056 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9057                                               unsigned Opcode) {
9058   // We already checked this call's prototype; verify it doesn't modify errno.
9059   if (!I.onlyReadsMemory())
9060     return false;
9061 
9062   SDNodeFlags Flags;
9063   Flags.copyFMF(cast<FPMathOperator>(I));
9064 
9065   SDValue Tmp = getValue(I.getArgOperand(0));
9066   setValue(&I,
9067            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9068   return true;
9069 }
9070 
9071 /// See if we can lower a binary floating-point operation into an SDNode with
9072 /// the specified Opcode. If so, return true and lower it. Otherwise return
9073 /// false, and it will be lowered like a normal call.
9074 /// The caller already checked that \p I calls the appropriate LibFunc with a
9075 /// correct prototype.
9076 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9077                                                unsigned Opcode) {
9078   // We already checked this call's prototype; verify it doesn't modify errno.
9079   if (!I.onlyReadsMemory())
9080     return false;
9081 
9082   SDNodeFlags Flags;
9083   Flags.copyFMF(cast<FPMathOperator>(I));
9084 
9085   SDValue Tmp0 = getValue(I.getArgOperand(0));
9086   SDValue Tmp1 = getValue(I.getArgOperand(1));
9087   EVT VT = Tmp0.getValueType();
9088   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9089   return true;
9090 }
9091 
9092 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9093   // Handle inline assembly differently.
9094   if (I.isInlineAsm()) {
9095     visitInlineAsm(I);
9096     return;
9097   }
9098 
9099   diagnoseDontCall(I);
9100 
9101   if (Function *F = I.getCalledFunction()) {
9102     if (F->isDeclaration()) {
9103       // Is this an LLVM intrinsic or a target-specific intrinsic?
9104       unsigned IID = F->getIntrinsicID();
9105       if (!IID)
9106         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9107           IID = II->getIntrinsicID(F);
9108 
9109       if (IID) {
9110         visitIntrinsicCall(I, IID);
9111         return;
9112       }
9113     }
9114 
9115     // Check for well-known libc/libm calls.  If the function is internal, it
9116     // can't be a library call.  Don't do the check if marked as nobuiltin for
9117     // some reason or the call site requires strict floating point semantics.
9118     LibFunc Func;
9119     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9120         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9121         LibInfo->hasOptimizedCodeGen(Func)) {
9122       switch (Func) {
9123       default: break;
9124       case LibFunc_bcmp:
9125         if (visitMemCmpBCmpCall(I))
9126           return;
9127         break;
9128       case LibFunc_copysign:
9129       case LibFunc_copysignf:
9130       case LibFunc_copysignl:
9131         // We already checked this call's prototype; verify it doesn't modify
9132         // errno.
9133         if (I.onlyReadsMemory()) {
9134           SDValue LHS = getValue(I.getArgOperand(0));
9135           SDValue RHS = getValue(I.getArgOperand(1));
9136           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9137                                    LHS.getValueType(), LHS, RHS));
9138           return;
9139         }
9140         break;
9141       case LibFunc_fabs:
9142       case LibFunc_fabsf:
9143       case LibFunc_fabsl:
9144         if (visitUnaryFloatCall(I, ISD::FABS))
9145           return;
9146         break;
9147       case LibFunc_fmin:
9148       case LibFunc_fminf:
9149       case LibFunc_fminl:
9150         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9151           return;
9152         break;
9153       case LibFunc_fmax:
9154       case LibFunc_fmaxf:
9155       case LibFunc_fmaxl:
9156         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9157           return;
9158         break;
9159       case LibFunc_sin:
9160       case LibFunc_sinf:
9161       case LibFunc_sinl:
9162         if (visitUnaryFloatCall(I, ISD::FSIN))
9163           return;
9164         break;
9165       case LibFunc_cos:
9166       case LibFunc_cosf:
9167       case LibFunc_cosl:
9168         if (visitUnaryFloatCall(I, ISD::FCOS))
9169           return;
9170         break;
9171       case LibFunc_sqrt:
9172       case LibFunc_sqrtf:
9173       case LibFunc_sqrtl:
9174       case LibFunc_sqrt_finite:
9175       case LibFunc_sqrtf_finite:
9176       case LibFunc_sqrtl_finite:
9177         if (visitUnaryFloatCall(I, ISD::FSQRT))
9178           return;
9179         break;
9180       case LibFunc_floor:
9181       case LibFunc_floorf:
9182       case LibFunc_floorl:
9183         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9184           return;
9185         break;
9186       case LibFunc_nearbyint:
9187       case LibFunc_nearbyintf:
9188       case LibFunc_nearbyintl:
9189         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9190           return;
9191         break;
9192       case LibFunc_ceil:
9193       case LibFunc_ceilf:
9194       case LibFunc_ceill:
9195         if (visitUnaryFloatCall(I, ISD::FCEIL))
9196           return;
9197         break;
9198       case LibFunc_rint:
9199       case LibFunc_rintf:
9200       case LibFunc_rintl:
9201         if (visitUnaryFloatCall(I, ISD::FRINT))
9202           return;
9203         break;
9204       case LibFunc_round:
9205       case LibFunc_roundf:
9206       case LibFunc_roundl:
9207         if (visitUnaryFloatCall(I, ISD::FROUND))
9208           return;
9209         break;
9210       case LibFunc_trunc:
9211       case LibFunc_truncf:
9212       case LibFunc_truncl:
9213         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9214           return;
9215         break;
9216       case LibFunc_log2:
9217       case LibFunc_log2f:
9218       case LibFunc_log2l:
9219         if (visitUnaryFloatCall(I, ISD::FLOG2))
9220           return;
9221         break;
9222       case LibFunc_exp2:
9223       case LibFunc_exp2f:
9224       case LibFunc_exp2l:
9225         if (visitUnaryFloatCall(I, ISD::FEXP2))
9226           return;
9227         break;
9228       case LibFunc_exp10:
9229       case LibFunc_exp10f:
9230       case LibFunc_exp10l:
9231         if (visitUnaryFloatCall(I, ISD::FEXP10))
9232           return;
9233         break;
9234       case LibFunc_ldexp:
9235       case LibFunc_ldexpf:
9236       case LibFunc_ldexpl:
9237         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9238           return;
9239         break;
9240       case LibFunc_memcmp:
9241         if (visitMemCmpBCmpCall(I))
9242           return;
9243         break;
9244       case LibFunc_mempcpy:
9245         if (visitMemPCpyCall(I))
9246           return;
9247         break;
9248       case LibFunc_memchr:
9249         if (visitMemChrCall(I))
9250           return;
9251         break;
9252       case LibFunc_strcpy:
9253         if (visitStrCpyCall(I, false))
9254           return;
9255         break;
9256       case LibFunc_stpcpy:
9257         if (visitStrCpyCall(I, true))
9258           return;
9259         break;
9260       case LibFunc_strcmp:
9261         if (visitStrCmpCall(I))
9262           return;
9263         break;
9264       case LibFunc_strlen:
9265         if (visitStrLenCall(I))
9266           return;
9267         break;
9268       case LibFunc_strnlen:
9269         if (visitStrNLenCall(I))
9270           return;
9271         break;
9272       }
9273     }
9274   }
9275 
9276   if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9277     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9278     return;
9279   }
9280 
9281   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9282   // have to do anything here to lower funclet bundles.
9283   // CFGuardTarget bundles are lowered in LowerCallTo.
9284   assert(!I.hasOperandBundlesOtherThan(
9285              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9286               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9287               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9288               LLVMContext::OB_convergencectrl}) &&
9289          "Cannot lower calls with arbitrary operand bundles!");
9290 
9291   SDValue Callee = getValue(I.getCalledOperand());
9292 
9293   if (I.hasDeoptState())
9294     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9295   else
9296     // Check if we can potentially perform a tail call. More detailed checking
9297     // is be done within LowerCallTo, after more information about the call is
9298     // known.
9299     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9300 }
9301 
9302 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9303     const CallBase &CB, const BasicBlock *EHPadBB) {
9304   auto PAB = CB.getOperandBundle("ptrauth");
9305   const Value *CalleeV = CB.getCalledOperand();
9306 
9307   // Gather the call ptrauth data from the operand bundle:
9308   //   [ i32 <key>, i64 <discriminator> ]
9309   const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9310   const Value *Discriminator = PAB->Inputs[1];
9311 
9312   assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9313   assert(Discriminator->getType()->isIntegerTy(64) &&
9314          "Invalid ptrauth discriminator");
9315 
9316   // Functions should never be ptrauth-called directly.
9317   assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9318 
9319   // Otherwise, do an authenticated indirect call.
9320   TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9321                                      getValue(Discriminator)};
9322 
9323   LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9324               EHPadBB, &PAI);
9325 }
9326 
9327 namespace {
9328 
9329 /// AsmOperandInfo - This contains information for each constraint that we are
9330 /// lowering.
9331 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9332 public:
9333   /// CallOperand - If this is the result output operand or a clobber
9334   /// this is null, otherwise it is the incoming operand to the CallInst.
9335   /// This gets modified as the asm is processed.
9336   SDValue CallOperand;
9337 
9338   /// AssignedRegs - If this is a register or register class operand, this
9339   /// contains the set of register corresponding to the operand.
9340   RegsForValue AssignedRegs;
9341 
9342   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9343     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9344   }
9345 
9346   /// Whether or not this operand accesses memory
9347   bool hasMemory(const TargetLowering &TLI) const {
9348     // Indirect operand accesses access memory.
9349     if (isIndirect)
9350       return true;
9351 
9352     for (const auto &Code : Codes)
9353       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9354         return true;
9355 
9356     return false;
9357   }
9358 };
9359 
9360 
9361 } // end anonymous namespace
9362 
9363 /// Make sure that the output operand \p OpInfo and its corresponding input
9364 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9365 /// out).
9366 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9367                                SDISelAsmOperandInfo &MatchingOpInfo,
9368                                SelectionDAG &DAG) {
9369   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9370     return;
9371 
9372   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9373   const auto &TLI = DAG.getTargetLoweringInfo();
9374 
9375   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9376       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9377                                        OpInfo.ConstraintVT);
9378   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9379       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9380                                        MatchingOpInfo.ConstraintVT);
9381   if ((OpInfo.ConstraintVT.isInteger() !=
9382        MatchingOpInfo.ConstraintVT.isInteger()) ||
9383       (MatchRC.second != InputRC.second)) {
9384     // FIXME: error out in a more elegant fashion
9385     report_fatal_error("Unsupported asm: input constraint"
9386                        " with a matching output constraint of"
9387                        " incompatible type!");
9388   }
9389   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9390 }
9391 
9392 /// Get a direct memory input to behave well as an indirect operand.
9393 /// This may introduce stores, hence the need for a \p Chain.
9394 /// \return The (possibly updated) chain.
9395 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9396                                         SDISelAsmOperandInfo &OpInfo,
9397                                         SelectionDAG &DAG) {
9398   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9399 
9400   // If we don't have an indirect input, put it in the constpool if we can,
9401   // otherwise spill it to a stack slot.
9402   // TODO: This isn't quite right. We need to handle these according to
9403   // the addressing mode that the constraint wants. Also, this may take
9404   // an additional register for the computation and we don't want that
9405   // either.
9406 
9407   // If the operand is a float, integer, or vector constant, spill to a
9408   // constant pool entry to get its address.
9409   const Value *OpVal = OpInfo.CallOperandVal;
9410   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9411       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9412     OpInfo.CallOperand = DAG.getConstantPool(
9413         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9414     return Chain;
9415   }
9416 
9417   // Otherwise, create a stack slot and emit a store to it before the asm.
9418   Type *Ty = OpVal->getType();
9419   auto &DL = DAG.getDataLayout();
9420   uint64_t TySize = DL.getTypeAllocSize(Ty);
9421   MachineFunction &MF = DAG.getMachineFunction();
9422   int SSFI = MF.getFrameInfo().CreateStackObject(
9423       TySize, DL.getPrefTypeAlign(Ty), false);
9424   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9425   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9426                             MachinePointerInfo::getFixedStack(MF, SSFI),
9427                             TLI.getMemValueType(DL, Ty));
9428   OpInfo.CallOperand = StackSlot;
9429 
9430   return Chain;
9431 }
9432 
9433 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9434 /// specified operand.  We prefer to assign virtual registers, to allow the
9435 /// register allocator to handle the assignment process.  However, if the asm
9436 /// uses features that we can't model on machineinstrs, we have SDISel do the
9437 /// allocation.  This produces generally horrible, but correct, code.
9438 ///
9439 ///   OpInfo describes the operand
9440 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9441 static std::optional<unsigned>
9442 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9443                      SDISelAsmOperandInfo &OpInfo,
9444                      SDISelAsmOperandInfo &RefOpInfo) {
9445   LLVMContext &Context = *DAG.getContext();
9446   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9447 
9448   MachineFunction &MF = DAG.getMachineFunction();
9449   SmallVector<unsigned, 4> Regs;
9450   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9451 
9452   // No work to do for memory/address operands.
9453   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9454       OpInfo.ConstraintType == TargetLowering::C_Address)
9455     return std::nullopt;
9456 
9457   // If this is a constraint for a single physreg, or a constraint for a
9458   // register class, find it.
9459   unsigned AssignedReg;
9460   const TargetRegisterClass *RC;
9461   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9462       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9463   // RC is unset only on failure. Return immediately.
9464   if (!RC)
9465     return std::nullopt;
9466 
9467   // Get the actual register value type.  This is important, because the user
9468   // may have asked for (e.g.) the AX register in i32 type.  We need to
9469   // remember that AX is actually i16 to get the right extension.
9470   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9471 
9472   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9473     // If this is an FP operand in an integer register (or visa versa), or more
9474     // generally if the operand value disagrees with the register class we plan
9475     // to stick it in, fix the operand type.
9476     //
9477     // If this is an input value, the bitcast to the new type is done now.
9478     // Bitcast for output value is done at the end of visitInlineAsm().
9479     if ((OpInfo.Type == InlineAsm::isOutput ||
9480          OpInfo.Type == InlineAsm::isInput) &&
9481         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9482       // Try to convert to the first EVT that the reg class contains.  If the
9483       // types are identical size, use a bitcast to convert (e.g. two differing
9484       // vector types).  Note: output bitcast is done at the end of
9485       // visitInlineAsm().
9486       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9487         // Exclude indirect inputs while they are unsupported because the code
9488         // to perform the load is missing and thus OpInfo.CallOperand still
9489         // refers to the input address rather than the pointed-to value.
9490         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9491           OpInfo.CallOperand =
9492               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9493         OpInfo.ConstraintVT = RegVT;
9494         // If the operand is an FP value and we want it in integer registers,
9495         // use the corresponding integer type. This turns an f64 value into
9496         // i64, which can be passed with two i32 values on a 32-bit machine.
9497       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9498         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9499         if (OpInfo.Type == InlineAsm::isInput)
9500           OpInfo.CallOperand =
9501               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9502         OpInfo.ConstraintVT = VT;
9503       }
9504     }
9505   }
9506 
9507   // No need to allocate a matching input constraint since the constraint it's
9508   // matching to has already been allocated.
9509   if (OpInfo.isMatchingInputConstraint())
9510     return std::nullopt;
9511 
9512   EVT ValueVT = OpInfo.ConstraintVT;
9513   if (OpInfo.ConstraintVT == MVT::Other)
9514     ValueVT = RegVT;
9515 
9516   // Initialize NumRegs.
9517   unsigned NumRegs = 1;
9518   if (OpInfo.ConstraintVT != MVT::Other)
9519     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9520 
9521   // If this is a constraint for a specific physical register, like {r17},
9522   // assign it now.
9523 
9524   // If this associated to a specific register, initialize iterator to correct
9525   // place. If virtual, make sure we have enough registers
9526 
9527   // Initialize iterator if necessary
9528   TargetRegisterClass::iterator I = RC->begin();
9529   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9530 
9531   // Do not check for single registers.
9532   if (AssignedReg) {
9533     I = std::find(I, RC->end(), AssignedReg);
9534     if (I == RC->end()) {
9535       // RC does not contain the selected register, which indicates a
9536       // mismatch between the register and the required type/bitwidth.
9537       return {AssignedReg};
9538     }
9539   }
9540 
9541   for (; NumRegs; --NumRegs, ++I) {
9542     assert(I != RC->end() && "Ran out of registers to allocate!");
9543     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9544     Regs.push_back(R);
9545   }
9546 
9547   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9548   return std::nullopt;
9549 }
9550 
9551 static unsigned
9552 findMatchingInlineAsmOperand(unsigned OperandNo,
9553                              const std::vector<SDValue> &AsmNodeOperands) {
9554   // Scan until we find the definition we already emitted of this operand.
9555   unsigned CurOp = InlineAsm::Op_FirstOperand;
9556   for (; OperandNo; --OperandNo) {
9557     // Advance to the next operand.
9558     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9559     const InlineAsm::Flag F(OpFlag);
9560     assert(
9561         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9562         "Skipped past definitions?");
9563     CurOp += F.getNumOperandRegisters() + 1;
9564   }
9565   return CurOp;
9566 }
9567 
9568 namespace {
9569 
9570 class ExtraFlags {
9571   unsigned Flags = 0;
9572 
9573 public:
9574   explicit ExtraFlags(const CallBase &Call) {
9575     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9576     if (IA->hasSideEffects())
9577       Flags |= InlineAsm::Extra_HasSideEffects;
9578     if (IA->isAlignStack())
9579       Flags |= InlineAsm::Extra_IsAlignStack;
9580     if (Call.isConvergent())
9581       Flags |= InlineAsm::Extra_IsConvergent;
9582     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9583   }
9584 
9585   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9586     // Ideally, we would only check against memory constraints.  However, the
9587     // meaning of an Other constraint can be target-specific and we can't easily
9588     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9589     // for Other constraints as well.
9590     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9591         OpInfo.ConstraintType == TargetLowering::C_Other) {
9592       if (OpInfo.Type == InlineAsm::isInput)
9593         Flags |= InlineAsm::Extra_MayLoad;
9594       else if (OpInfo.Type == InlineAsm::isOutput)
9595         Flags |= InlineAsm::Extra_MayStore;
9596       else if (OpInfo.Type == InlineAsm::isClobber)
9597         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9598     }
9599   }
9600 
9601   unsigned get() const { return Flags; }
9602 };
9603 
9604 } // end anonymous namespace
9605 
9606 static bool isFunction(SDValue Op) {
9607   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9608     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9609       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9610 
9611       // In normal "call dllimport func" instruction (non-inlineasm) it force
9612       // indirect access by specifing call opcode. And usually specially print
9613       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9614       // not do in this way now. (In fact, this is similar with "Data Access"
9615       // action). So here we ignore dllimport function.
9616       if (Fn && !Fn->hasDLLImportStorageClass())
9617         return true;
9618     }
9619   }
9620   return false;
9621 }
9622 
9623 /// visitInlineAsm - Handle a call to an InlineAsm object.
9624 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9625                                          const BasicBlock *EHPadBB) {
9626   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9627 
9628   /// ConstraintOperands - Information about all of the constraints.
9629   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9630 
9631   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9632   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9633       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9634 
9635   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9636   // AsmDialect, MayLoad, MayStore).
9637   bool HasSideEffect = IA->hasSideEffects();
9638   ExtraFlags ExtraInfo(Call);
9639 
9640   for (auto &T : TargetConstraints) {
9641     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9642     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9643 
9644     if (OpInfo.CallOperandVal)
9645       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9646 
9647     if (!HasSideEffect)
9648       HasSideEffect = OpInfo.hasMemory(TLI);
9649 
9650     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9651     // FIXME: Could we compute this on OpInfo rather than T?
9652 
9653     // Compute the constraint code and ConstraintType to use.
9654     TLI.ComputeConstraintToUse(T, SDValue());
9655 
9656     if (T.ConstraintType == TargetLowering::C_Immediate &&
9657         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9658       // We've delayed emitting a diagnostic like the "n" constraint because
9659       // inlining could cause an integer showing up.
9660       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9661                                           "' expects an integer constant "
9662                                           "expression");
9663 
9664     ExtraInfo.update(T);
9665   }
9666 
9667   // We won't need to flush pending loads if this asm doesn't touch
9668   // memory and is nonvolatile.
9669   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9670 
9671   bool EmitEHLabels = isa<InvokeInst>(Call);
9672   if (EmitEHLabels) {
9673     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9674   }
9675   bool IsCallBr = isa<CallBrInst>(Call);
9676 
9677   if (IsCallBr || EmitEHLabels) {
9678     // If this is a callbr or invoke we need to flush pending exports since
9679     // inlineasm_br and invoke are terminators.
9680     // We need to do this before nodes are glued to the inlineasm_br node.
9681     Chain = getControlRoot();
9682   }
9683 
9684   MCSymbol *BeginLabel = nullptr;
9685   if (EmitEHLabels) {
9686     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9687   }
9688 
9689   int OpNo = -1;
9690   SmallVector<StringRef> AsmStrs;
9691   IA->collectAsmStrs(AsmStrs);
9692 
9693   // Second pass over the constraints: compute which constraint option to use.
9694   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9695     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9696       OpNo++;
9697 
9698     // If this is an output operand with a matching input operand, look up the
9699     // matching input. If their types mismatch, e.g. one is an integer, the
9700     // other is floating point, or their sizes are different, flag it as an
9701     // error.
9702     if (OpInfo.hasMatchingInput()) {
9703       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9704       patchMatchingInput(OpInfo, Input, DAG);
9705     }
9706 
9707     // Compute the constraint code and ConstraintType to use.
9708     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9709 
9710     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9711          OpInfo.Type == InlineAsm::isClobber) ||
9712         OpInfo.ConstraintType == TargetLowering::C_Address)
9713       continue;
9714 
9715     // In Linux PIC model, there are 4 cases about value/label addressing:
9716     //
9717     // 1: Function call or Label jmp inside the module.
9718     // 2: Data access (such as global variable, static variable) inside module.
9719     // 3: Function call or Label jmp outside the module.
9720     // 4: Data access (such as global variable) outside the module.
9721     //
9722     // Due to current llvm inline asm architecture designed to not "recognize"
9723     // the asm code, there are quite troubles for us to treat mem addressing
9724     // differently for same value/adress used in different instuctions.
9725     // For example, in pic model, call a func may in plt way or direclty
9726     // pc-related, but lea/mov a function adress may use got.
9727     //
9728     // Here we try to "recognize" function call for the case 1 and case 3 in
9729     // inline asm. And try to adjust the constraint for them.
9730     //
9731     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9732     // label, so here we don't handle jmp function label now, but we need to
9733     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9734     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9735         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9736         TM.getCodeModel() != CodeModel::Large) {
9737       OpInfo.isIndirect = false;
9738       OpInfo.ConstraintType = TargetLowering::C_Address;
9739     }
9740 
9741     // If this is a memory input, and if the operand is not indirect, do what we
9742     // need to provide an address for the memory input.
9743     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9744         !OpInfo.isIndirect) {
9745       assert((OpInfo.isMultipleAlternative ||
9746               (OpInfo.Type == InlineAsm::isInput)) &&
9747              "Can only indirectify direct input operands!");
9748 
9749       // Memory operands really want the address of the value.
9750       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9751 
9752       // There is no longer a Value* corresponding to this operand.
9753       OpInfo.CallOperandVal = nullptr;
9754 
9755       // It is now an indirect operand.
9756       OpInfo.isIndirect = true;
9757     }
9758 
9759   }
9760 
9761   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9762   std::vector<SDValue> AsmNodeOperands;
9763   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9764   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9765       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9766 
9767   // If we have a !srcloc metadata node associated with it, we want to attach
9768   // this to the ultimately generated inline asm machineinstr.  To do this, we
9769   // pass in the third operand as this (potentially null) inline asm MDNode.
9770   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9771   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9772 
9773   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9774   // bits as operand 3.
9775   AsmNodeOperands.push_back(DAG.getTargetConstant(
9776       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9777 
9778   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9779   // this, assign virtual and physical registers for inputs and otput.
9780   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9781     // Assign Registers.
9782     SDISelAsmOperandInfo &RefOpInfo =
9783         OpInfo.isMatchingInputConstraint()
9784             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9785             : OpInfo;
9786     const auto RegError =
9787         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9788     if (RegError) {
9789       const MachineFunction &MF = DAG.getMachineFunction();
9790       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9791       const char *RegName = TRI.getName(*RegError);
9792       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9793                                    "' allocated for constraint '" +
9794                                    Twine(OpInfo.ConstraintCode) +
9795                                    "' does not match required type");
9796       return;
9797     }
9798 
9799     auto DetectWriteToReservedRegister = [&]() {
9800       const MachineFunction &MF = DAG.getMachineFunction();
9801       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9802       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9803         if (Register::isPhysicalRegister(Reg) &&
9804             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9805           const char *RegName = TRI.getName(Reg);
9806           emitInlineAsmError(Call, "write to reserved register '" +
9807                                        Twine(RegName) + "'");
9808           return true;
9809         }
9810       }
9811       return false;
9812     };
9813     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9814             (OpInfo.Type == InlineAsm::isInput &&
9815              !OpInfo.isMatchingInputConstraint())) &&
9816            "Only address as input operand is allowed.");
9817 
9818     switch (OpInfo.Type) {
9819     case InlineAsm::isOutput:
9820       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9821         const InlineAsm::ConstraintCode ConstraintID =
9822             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9823         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9824                "Failed to convert memory constraint code to constraint id.");
9825 
9826         // Add information to the INLINEASM node to know about this output.
9827         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9828         OpFlags.setMemConstraint(ConstraintID);
9829         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9830                                                         MVT::i32));
9831         AsmNodeOperands.push_back(OpInfo.CallOperand);
9832       } else {
9833         // Otherwise, this outputs to a register (directly for C_Register /
9834         // C_RegisterClass, and a target-defined fashion for
9835         // C_Immediate/C_Other). Find a register that we can use.
9836         if (OpInfo.AssignedRegs.Regs.empty()) {
9837           emitInlineAsmError(
9838               Call, "couldn't allocate output register for constraint '" +
9839                         Twine(OpInfo.ConstraintCode) + "'");
9840           return;
9841         }
9842 
9843         if (DetectWriteToReservedRegister())
9844           return;
9845 
9846         // Add information to the INLINEASM node to know that this register is
9847         // set.
9848         OpInfo.AssignedRegs.AddInlineAsmOperands(
9849             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9850                                   : InlineAsm::Kind::RegDef,
9851             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9852       }
9853       break;
9854 
9855     case InlineAsm::isInput:
9856     case InlineAsm::isLabel: {
9857       SDValue InOperandVal = OpInfo.CallOperand;
9858 
9859       if (OpInfo.isMatchingInputConstraint()) {
9860         // If this is required to match an output register we have already set,
9861         // just use its register.
9862         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9863                                                   AsmNodeOperands);
9864         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9865         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9866           if (OpInfo.isIndirect) {
9867             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9868             emitInlineAsmError(Call, "inline asm not supported yet: "
9869                                      "don't know how to handle tied "
9870                                      "indirect register inputs");
9871             return;
9872           }
9873 
9874           SmallVector<unsigned, 4> Regs;
9875           MachineFunction &MF = DAG.getMachineFunction();
9876           MachineRegisterInfo &MRI = MF.getRegInfo();
9877           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9878           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9879           Register TiedReg = R->getReg();
9880           MVT RegVT = R->getSimpleValueType(0);
9881           const TargetRegisterClass *RC =
9882               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9883               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9884                                       : TRI.getMinimalPhysRegClass(TiedReg);
9885           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9886             Regs.push_back(MRI.createVirtualRegister(RC));
9887 
9888           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9889 
9890           SDLoc dl = getCurSDLoc();
9891           // Use the produced MatchedRegs object to
9892           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9893           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9894                                            OpInfo.getMatchedOperand(), dl, DAG,
9895                                            AsmNodeOperands);
9896           break;
9897         }
9898 
9899         assert(Flag.isMemKind() && "Unknown matching constraint!");
9900         assert(Flag.getNumOperandRegisters() == 1 &&
9901                "Unexpected number of operands");
9902         // Add information to the INLINEASM node to know about this input.
9903         // See InlineAsm.h isUseOperandTiedToDef.
9904         Flag.clearMemConstraint();
9905         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9906         AsmNodeOperands.push_back(DAG.getTargetConstant(
9907             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9908         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9909         break;
9910       }
9911 
9912       // Treat indirect 'X' constraint as memory.
9913       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9914           OpInfo.isIndirect)
9915         OpInfo.ConstraintType = TargetLowering::C_Memory;
9916 
9917       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9918           OpInfo.ConstraintType == TargetLowering::C_Other) {
9919         std::vector<SDValue> Ops;
9920         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9921                                           Ops, DAG);
9922         if (Ops.empty()) {
9923           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9924             if (isa<ConstantSDNode>(InOperandVal)) {
9925               emitInlineAsmError(Call, "value out of range for constraint '" +
9926                                            Twine(OpInfo.ConstraintCode) + "'");
9927               return;
9928             }
9929 
9930           emitInlineAsmError(Call,
9931                              "invalid operand for inline asm constraint '" +
9932                                  Twine(OpInfo.ConstraintCode) + "'");
9933           return;
9934         }
9935 
9936         // Add information to the INLINEASM node to know about this input.
9937         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9938         AsmNodeOperands.push_back(DAG.getTargetConstant(
9939             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9940         llvm::append_range(AsmNodeOperands, Ops);
9941         break;
9942       }
9943 
9944       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9945         assert((OpInfo.isIndirect ||
9946                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9947                "Operand must be indirect to be a mem!");
9948         assert(InOperandVal.getValueType() ==
9949                    TLI.getPointerTy(DAG.getDataLayout()) &&
9950                "Memory operands expect pointer values");
9951 
9952         const InlineAsm::ConstraintCode ConstraintID =
9953             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9954         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9955                "Failed to convert memory constraint code to constraint id.");
9956 
9957         // Add information to the INLINEASM node to know about this input.
9958         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9959         ResOpType.setMemConstraint(ConstraintID);
9960         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9961                                                         getCurSDLoc(),
9962                                                         MVT::i32));
9963         AsmNodeOperands.push_back(InOperandVal);
9964         break;
9965       }
9966 
9967       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9968         const InlineAsm::ConstraintCode ConstraintID =
9969             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9970         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9971                "Failed to convert memory constraint code to constraint id.");
9972 
9973         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9974 
9975         SDValue AsmOp = InOperandVal;
9976         if (isFunction(InOperandVal)) {
9977           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9978           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9979           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9980                                              InOperandVal.getValueType(),
9981                                              GA->getOffset());
9982         }
9983 
9984         // Add information to the INLINEASM node to know about this input.
9985         ResOpType.setMemConstraint(ConstraintID);
9986 
9987         AsmNodeOperands.push_back(
9988             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9989 
9990         AsmNodeOperands.push_back(AsmOp);
9991         break;
9992       }
9993 
9994       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9995               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9996              "Unknown constraint type!");
9997 
9998       // TODO: Support this.
9999       if (OpInfo.isIndirect) {
10000         emitInlineAsmError(
10001             Call, "Don't know how to handle indirect register inputs yet "
10002                   "for constraint '" +
10003                       Twine(OpInfo.ConstraintCode) + "'");
10004         return;
10005       }
10006 
10007       // Copy the input into the appropriate registers.
10008       if (OpInfo.AssignedRegs.Regs.empty()) {
10009         emitInlineAsmError(Call,
10010                            "couldn't allocate input reg for constraint '" +
10011                                Twine(OpInfo.ConstraintCode) + "'");
10012         return;
10013       }
10014 
10015       if (DetectWriteToReservedRegister())
10016         return;
10017 
10018       SDLoc dl = getCurSDLoc();
10019 
10020       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10021                                         &Call);
10022 
10023       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10024                                                0, dl, DAG, AsmNodeOperands);
10025       break;
10026     }
10027     case InlineAsm::isClobber:
10028       // Add the clobbered value to the operand list, so that the register
10029       // allocator is aware that the physreg got clobbered.
10030       if (!OpInfo.AssignedRegs.Regs.empty())
10031         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10032                                                  false, 0, getCurSDLoc(), DAG,
10033                                                  AsmNodeOperands);
10034       break;
10035     }
10036   }
10037 
10038   // Finish up input operands.  Set the input chain and add the flag last.
10039   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10040   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10041 
10042   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10043   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10044                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10045   Glue = Chain.getValue(1);
10046 
10047   // Do additional work to generate outputs.
10048 
10049   SmallVector<EVT, 1> ResultVTs;
10050   SmallVector<SDValue, 1> ResultValues;
10051   SmallVector<SDValue, 8> OutChains;
10052 
10053   llvm::Type *CallResultType = Call.getType();
10054   ArrayRef<Type *> ResultTypes;
10055   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10056     ResultTypes = StructResult->elements();
10057   else if (!CallResultType->isVoidTy())
10058     ResultTypes = ArrayRef(CallResultType);
10059 
10060   auto CurResultType = ResultTypes.begin();
10061   auto handleRegAssign = [&](SDValue V) {
10062     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10063     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10064     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10065     ++CurResultType;
10066     // If the type of the inline asm call site return value is different but has
10067     // same size as the type of the asm output bitcast it.  One example of this
10068     // is for vectors with different width / number of elements.  This can
10069     // happen for register classes that can contain multiple different value
10070     // types.  The preg or vreg allocated may not have the same VT as was
10071     // expected.
10072     //
10073     // This can also happen for a return value that disagrees with the register
10074     // class it is put in, eg. a double in a general-purpose register on a
10075     // 32-bit machine.
10076     if (ResultVT != V.getValueType() &&
10077         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10078       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10079     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10080              V.getValueType().isInteger()) {
10081       // If a result value was tied to an input value, the computed result
10082       // may have a wider width than the expected result.  Extract the
10083       // relevant portion.
10084       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10085     }
10086     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10087     ResultVTs.push_back(ResultVT);
10088     ResultValues.push_back(V);
10089   };
10090 
10091   // Deal with output operands.
10092   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10093     if (OpInfo.Type == InlineAsm::isOutput) {
10094       SDValue Val;
10095       // Skip trivial output operands.
10096       if (OpInfo.AssignedRegs.Regs.empty())
10097         continue;
10098 
10099       switch (OpInfo.ConstraintType) {
10100       case TargetLowering::C_Register:
10101       case TargetLowering::C_RegisterClass:
10102         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10103                                                   Chain, &Glue, &Call);
10104         break;
10105       case TargetLowering::C_Immediate:
10106       case TargetLowering::C_Other:
10107         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10108                                               OpInfo, DAG);
10109         break;
10110       case TargetLowering::C_Memory:
10111         break; // Already handled.
10112       case TargetLowering::C_Address:
10113         break; // Silence warning.
10114       case TargetLowering::C_Unknown:
10115         assert(false && "Unexpected unknown constraint");
10116       }
10117 
10118       // Indirect output manifest as stores. Record output chains.
10119       if (OpInfo.isIndirect) {
10120         const Value *Ptr = OpInfo.CallOperandVal;
10121         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10122         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10123                                      MachinePointerInfo(Ptr));
10124         OutChains.push_back(Store);
10125       } else {
10126         // generate CopyFromRegs to associated registers.
10127         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10128         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10129           for (const SDValue &V : Val->op_values())
10130             handleRegAssign(V);
10131         } else
10132           handleRegAssign(Val);
10133       }
10134     }
10135   }
10136 
10137   // Set results.
10138   if (!ResultValues.empty()) {
10139     assert(CurResultType == ResultTypes.end() &&
10140            "Mismatch in number of ResultTypes");
10141     assert(ResultValues.size() == ResultTypes.size() &&
10142            "Mismatch in number of output operands in asm result");
10143 
10144     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10145                             DAG.getVTList(ResultVTs), ResultValues);
10146     setValue(&Call, V);
10147   }
10148 
10149   // Collect store chains.
10150   if (!OutChains.empty())
10151     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10152 
10153   if (EmitEHLabels) {
10154     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10155   }
10156 
10157   // Only Update Root if inline assembly has a memory effect.
10158   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10159       EmitEHLabels)
10160     DAG.setRoot(Chain);
10161 }
10162 
10163 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10164                                              const Twine &Message) {
10165   LLVMContext &Ctx = *DAG.getContext();
10166   Ctx.emitError(&Call, Message);
10167 
10168   // Make sure we leave the DAG in a valid state
10169   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10170   SmallVector<EVT, 1> ValueVTs;
10171   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10172 
10173   if (ValueVTs.empty())
10174     return;
10175 
10176   SmallVector<SDValue, 1> Ops;
10177   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
10178     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
10179 
10180   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10181 }
10182 
10183 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10184   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10185                           MVT::Other, getRoot(),
10186                           getValue(I.getArgOperand(0)),
10187                           DAG.getSrcValue(I.getArgOperand(0))));
10188 }
10189 
10190 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10191   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10192   const DataLayout &DL = DAG.getDataLayout();
10193   SDValue V = DAG.getVAArg(
10194       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10195       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10196       DL.getABITypeAlign(I.getType()).value());
10197   DAG.setRoot(V.getValue(1));
10198 
10199   if (I.getType()->isPointerTy())
10200     V = DAG.getPtrExtOrTrunc(
10201         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10202   setValue(&I, V);
10203 }
10204 
10205 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10206   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10207                           MVT::Other, getRoot(),
10208                           getValue(I.getArgOperand(0)),
10209                           DAG.getSrcValue(I.getArgOperand(0))));
10210 }
10211 
10212 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10213   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10214                           MVT::Other, getRoot(),
10215                           getValue(I.getArgOperand(0)),
10216                           getValue(I.getArgOperand(1)),
10217                           DAG.getSrcValue(I.getArgOperand(0)),
10218                           DAG.getSrcValue(I.getArgOperand(1))));
10219 }
10220 
10221 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10222                                                     const Instruction &I,
10223                                                     SDValue Op) {
10224   const MDNode *Range = getRangeMetadata(I);
10225   if (!Range)
10226     return Op;
10227 
10228   ConstantRange CR = getConstantRangeFromMetadata(*Range);
10229   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
10230     return Op;
10231 
10232   APInt Lo = CR.getUnsignedMin();
10233   if (!Lo.isMinValue())
10234     return Op;
10235 
10236   APInt Hi = CR.getUnsignedMax();
10237   unsigned Bits = std::max(Hi.getActiveBits(),
10238                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10239 
10240   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10241 
10242   SDLoc SL = getCurSDLoc();
10243 
10244   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10245                              DAG.getValueType(SmallVT));
10246   unsigned NumVals = Op.getNode()->getNumValues();
10247   if (NumVals == 1)
10248     return ZExt;
10249 
10250   SmallVector<SDValue, 4> Ops;
10251 
10252   Ops.push_back(ZExt);
10253   for (unsigned I = 1; I != NumVals; ++I)
10254     Ops.push_back(Op.getValue(I));
10255 
10256   return DAG.getMergeValues(Ops, SL);
10257 }
10258 
10259 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10260 /// the call being lowered.
10261 ///
10262 /// This is a helper for lowering intrinsics that follow a target calling
10263 /// convention or require stack pointer adjustment. Only a subset of the
10264 /// intrinsic's operands need to participate in the calling convention.
10265 void SelectionDAGBuilder::populateCallLoweringInfo(
10266     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10267     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10268     AttributeSet RetAttrs, bool IsPatchPoint) {
10269   TargetLowering::ArgListTy Args;
10270   Args.reserve(NumArgs);
10271 
10272   // Populate the argument list.
10273   // Attributes for args start at offset 1, after the return attribute.
10274   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10275        ArgI != ArgE; ++ArgI) {
10276     const Value *V = Call->getOperand(ArgI);
10277 
10278     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10279 
10280     TargetLowering::ArgListEntry Entry;
10281     Entry.Node = getValue(V);
10282     Entry.Ty = V->getType();
10283     Entry.setAttributes(Call, ArgI);
10284     Args.push_back(Entry);
10285   }
10286 
10287   CLI.setDebugLoc(getCurSDLoc())
10288       .setChain(getRoot())
10289       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10290                  RetAttrs)
10291       .setDiscardResult(Call->use_empty())
10292       .setIsPatchPoint(IsPatchPoint)
10293       .setIsPreallocated(
10294           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10295 }
10296 
10297 /// Add a stack map intrinsic call's live variable operands to a stackmap
10298 /// or patchpoint target node's operand list.
10299 ///
10300 /// Constants are converted to TargetConstants purely as an optimization to
10301 /// avoid constant materialization and register allocation.
10302 ///
10303 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10304 /// generate addess computation nodes, and so FinalizeISel can convert the
10305 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10306 /// address materialization and register allocation, but may also be required
10307 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10308 /// alloca in the entry block, then the runtime may assume that the alloca's
10309 /// StackMap location can be read immediately after compilation and that the
10310 /// location is valid at any point during execution (this is similar to the
10311 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10312 /// only available in a register, then the runtime would need to trap when
10313 /// execution reaches the StackMap in order to read the alloca's location.
10314 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10315                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10316                                 SelectionDAGBuilder &Builder) {
10317   SelectionDAG &DAG = Builder.DAG;
10318   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10319     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10320 
10321     // Things on the stack are pointer-typed, meaning that they are already
10322     // legal and can be emitted directly to target nodes.
10323     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10324       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10325     } else {
10326       // Otherwise emit a target independent node to be legalised.
10327       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10328     }
10329   }
10330 }
10331 
10332 /// Lower llvm.experimental.stackmap.
10333 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10334   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10335   //                                  [live variables...])
10336 
10337   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10338 
10339   SDValue Chain, InGlue, Callee;
10340   SmallVector<SDValue, 32> Ops;
10341 
10342   SDLoc DL = getCurSDLoc();
10343   Callee = getValue(CI.getCalledOperand());
10344 
10345   // The stackmap intrinsic only records the live variables (the arguments
10346   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10347   // intrinsic, this won't be lowered to a function call. This means we don't
10348   // have to worry about calling conventions and target specific lowering code.
10349   // Instead we perform the call lowering right here.
10350   //
10351   // chain, flag = CALLSEQ_START(chain, 0, 0)
10352   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10353   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10354   //
10355   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10356   InGlue = Chain.getValue(1);
10357 
10358   // Add the STACKMAP operands, starting with DAG house-keeping.
10359   Ops.push_back(Chain);
10360   Ops.push_back(InGlue);
10361 
10362   // Add the <id>, <numShadowBytes> operands.
10363   //
10364   // These do not require legalisation, and can be emitted directly to target
10365   // constant nodes.
10366   SDValue ID = getValue(CI.getArgOperand(0));
10367   assert(ID.getValueType() == MVT::i64);
10368   SDValue IDConst =
10369       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10370   Ops.push_back(IDConst);
10371 
10372   SDValue Shad = getValue(CI.getArgOperand(1));
10373   assert(Shad.getValueType() == MVT::i32);
10374   SDValue ShadConst =
10375       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10376   Ops.push_back(ShadConst);
10377 
10378   // Add the live variables.
10379   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10380 
10381   // Create the STACKMAP node.
10382   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10383   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10384   InGlue = Chain.getValue(1);
10385 
10386   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10387 
10388   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10389 
10390   // Set the root to the target-lowered call chain.
10391   DAG.setRoot(Chain);
10392 
10393   // Inform the Frame Information that we have a stackmap in this function.
10394   FuncInfo.MF->getFrameInfo().setHasStackMap();
10395 }
10396 
10397 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10398 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10399                                           const BasicBlock *EHPadBB) {
10400   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10401   //                                         i32 <numBytes>,
10402   //                                         i8* <target>,
10403   //                                         i32 <numArgs>,
10404   //                                         [Args...],
10405   //                                         [live variables...])
10406 
10407   CallingConv::ID CC = CB.getCallingConv();
10408   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10409   bool HasDef = !CB.getType()->isVoidTy();
10410   SDLoc dl = getCurSDLoc();
10411   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10412 
10413   // Handle immediate and symbolic callees.
10414   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10415     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10416                                    /*isTarget=*/true);
10417   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10418     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10419                                          SDLoc(SymbolicCallee),
10420                                          SymbolicCallee->getValueType(0));
10421 
10422   // Get the real number of arguments participating in the call <numArgs>
10423   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10424   unsigned NumArgs = NArgVal->getAsZExtVal();
10425 
10426   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10427   // Intrinsics include all meta-operands up to but not including CC.
10428   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10429   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10430          "Not enough arguments provided to the patchpoint intrinsic");
10431 
10432   // For AnyRegCC the arguments are lowered later on manually.
10433   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10434   Type *ReturnTy =
10435       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10436 
10437   TargetLowering::CallLoweringInfo CLI(DAG);
10438   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10439                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10440   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10441 
10442   SDNode *CallEnd = Result.second.getNode();
10443   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10444     CallEnd = CallEnd->getOperand(0).getNode();
10445 
10446   /// Get a call instruction from the call sequence chain.
10447   /// Tail calls are not allowed.
10448   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10449          "Expected a callseq node.");
10450   SDNode *Call = CallEnd->getOperand(0).getNode();
10451   bool HasGlue = Call->getGluedNode();
10452 
10453   // Replace the target specific call node with the patchable intrinsic.
10454   SmallVector<SDValue, 8> Ops;
10455 
10456   // Push the chain.
10457   Ops.push_back(*(Call->op_begin()));
10458 
10459   // Optionally, push the glue (if any).
10460   if (HasGlue)
10461     Ops.push_back(*(Call->op_end() - 1));
10462 
10463   // Push the register mask info.
10464   if (HasGlue)
10465     Ops.push_back(*(Call->op_end() - 2));
10466   else
10467     Ops.push_back(*(Call->op_end() - 1));
10468 
10469   // Add the <id> and <numBytes> constants.
10470   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10471   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10472   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10473   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10474 
10475   // Add the callee.
10476   Ops.push_back(Callee);
10477 
10478   // Adjust <numArgs> to account for any arguments that have been passed on the
10479   // stack instead.
10480   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10481   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10482   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10483   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10484 
10485   // Add the calling convention
10486   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10487 
10488   // Add the arguments we omitted previously. The register allocator should
10489   // place these in any free register.
10490   if (IsAnyRegCC)
10491     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10492       Ops.push_back(getValue(CB.getArgOperand(i)));
10493 
10494   // Push the arguments from the call instruction.
10495   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10496   Ops.append(Call->op_begin() + 2, e);
10497 
10498   // Push live variables for the stack map.
10499   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10500 
10501   SDVTList NodeTys;
10502   if (IsAnyRegCC && HasDef) {
10503     // Create the return types based on the intrinsic definition
10504     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10505     SmallVector<EVT, 3> ValueVTs;
10506     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10507     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10508 
10509     // There is always a chain and a glue type at the end
10510     ValueVTs.push_back(MVT::Other);
10511     ValueVTs.push_back(MVT::Glue);
10512     NodeTys = DAG.getVTList(ValueVTs);
10513   } else
10514     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10515 
10516   // Replace the target specific call node with a PATCHPOINT node.
10517   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10518 
10519   // Update the NodeMap.
10520   if (HasDef) {
10521     if (IsAnyRegCC)
10522       setValue(&CB, SDValue(PPV.getNode(), 0));
10523     else
10524       setValue(&CB, Result.first);
10525   }
10526 
10527   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10528   // call sequence. Furthermore the location of the chain and glue can change
10529   // when the AnyReg calling convention is used and the intrinsic returns a
10530   // value.
10531   if (IsAnyRegCC && HasDef) {
10532     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10533     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10534     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10535   } else
10536     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10537   DAG.DeleteNode(Call);
10538 
10539   // Inform the Frame Information that we have a patchpoint in this function.
10540   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10541 }
10542 
10543 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10544                                             unsigned Intrinsic) {
10545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10546   SDValue Op1 = getValue(I.getArgOperand(0));
10547   SDValue Op2;
10548   if (I.arg_size() > 1)
10549     Op2 = getValue(I.getArgOperand(1));
10550   SDLoc dl = getCurSDLoc();
10551   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10552   SDValue Res;
10553   SDNodeFlags SDFlags;
10554   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10555     SDFlags.copyFMF(*FPMO);
10556 
10557   switch (Intrinsic) {
10558   case Intrinsic::vector_reduce_fadd:
10559     if (SDFlags.hasAllowReassociation())
10560       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10561                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10562                         SDFlags);
10563     else
10564       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10565     break;
10566   case Intrinsic::vector_reduce_fmul:
10567     if (SDFlags.hasAllowReassociation())
10568       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10569                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10570                         SDFlags);
10571     else
10572       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10573     break;
10574   case Intrinsic::vector_reduce_add:
10575     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10576     break;
10577   case Intrinsic::vector_reduce_mul:
10578     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10579     break;
10580   case Intrinsic::vector_reduce_and:
10581     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10582     break;
10583   case Intrinsic::vector_reduce_or:
10584     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10585     break;
10586   case Intrinsic::vector_reduce_xor:
10587     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10588     break;
10589   case Intrinsic::vector_reduce_smax:
10590     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10591     break;
10592   case Intrinsic::vector_reduce_smin:
10593     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10594     break;
10595   case Intrinsic::vector_reduce_umax:
10596     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10597     break;
10598   case Intrinsic::vector_reduce_umin:
10599     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10600     break;
10601   case Intrinsic::vector_reduce_fmax:
10602     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10603     break;
10604   case Intrinsic::vector_reduce_fmin:
10605     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10606     break;
10607   case Intrinsic::vector_reduce_fmaximum:
10608     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10609     break;
10610   case Intrinsic::vector_reduce_fminimum:
10611     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10612     break;
10613   default:
10614     llvm_unreachable("Unhandled vector reduce intrinsic");
10615   }
10616   setValue(&I, Res);
10617 }
10618 
10619 /// Returns an AttributeList representing the attributes applied to the return
10620 /// value of the given call.
10621 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10622   SmallVector<Attribute::AttrKind, 2> Attrs;
10623   if (CLI.RetSExt)
10624     Attrs.push_back(Attribute::SExt);
10625   if (CLI.RetZExt)
10626     Attrs.push_back(Attribute::ZExt);
10627   if (CLI.IsInReg)
10628     Attrs.push_back(Attribute::InReg);
10629 
10630   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10631                             Attrs);
10632 }
10633 
10634 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10635 /// implementation, which just calls LowerCall.
10636 /// FIXME: When all targets are
10637 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10638 std::pair<SDValue, SDValue>
10639 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10640   // Handle the incoming return values from the call.
10641   CLI.Ins.clear();
10642   Type *OrigRetTy = CLI.RetTy;
10643   SmallVector<EVT, 4> RetTys;
10644   SmallVector<TypeSize, 4> Offsets;
10645   auto &DL = CLI.DAG.getDataLayout();
10646   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10647 
10648   if (CLI.IsPostTypeLegalization) {
10649     // If we are lowering a libcall after legalization, split the return type.
10650     SmallVector<EVT, 4> OldRetTys;
10651     SmallVector<TypeSize, 4> OldOffsets;
10652     RetTys.swap(OldRetTys);
10653     Offsets.swap(OldOffsets);
10654 
10655     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10656       EVT RetVT = OldRetTys[i];
10657       uint64_t Offset = OldOffsets[i];
10658       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10659       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10660       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10661       RetTys.append(NumRegs, RegisterVT);
10662       for (unsigned j = 0; j != NumRegs; ++j)
10663         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10664     }
10665   }
10666 
10667   SmallVector<ISD::OutputArg, 4> Outs;
10668   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10669 
10670   bool CanLowerReturn =
10671       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10672                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10673 
10674   SDValue DemoteStackSlot;
10675   int DemoteStackIdx = -100;
10676   if (!CanLowerReturn) {
10677     // FIXME: equivalent assert?
10678     // assert(!CS.hasInAllocaArgument() &&
10679     //        "sret demotion is incompatible with inalloca");
10680     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10681     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10682     MachineFunction &MF = CLI.DAG.getMachineFunction();
10683     DemoteStackIdx =
10684         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10685     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10686                                               DL.getAllocaAddrSpace());
10687 
10688     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10689     ArgListEntry Entry;
10690     Entry.Node = DemoteStackSlot;
10691     Entry.Ty = StackSlotPtrType;
10692     Entry.IsSExt = false;
10693     Entry.IsZExt = false;
10694     Entry.IsInReg = false;
10695     Entry.IsSRet = true;
10696     Entry.IsNest = false;
10697     Entry.IsByVal = false;
10698     Entry.IsByRef = false;
10699     Entry.IsReturned = false;
10700     Entry.IsSwiftSelf = false;
10701     Entry.IsSwiftAsync = false;
10702     Entry.IsSwiftError = false;
10703     Entry.IsCFGuardTarget = false;
10704     Entry.Alignment = Alignment;
10705     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10706     CLI.NumFixedArgs += 1;
10707     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10708     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10709 
10710     // sret demotion isn't compatible with tail-calls, since the sret argument
10711     // points into the callers stack frame.
10712     CLI.IsTailCall = false;
10713   } else {
10714     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10715         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10716     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10717       ISD::ArgFlagsTy Flags;
10718       if (NeedsRegBlock) {
10719         Flags.setInConsecutiveRegs();
10720         if (I == RetTys.size() - 1)
10721           Flags.setInConsecutiveRegsLast();
10722       }
10723       EVT VT = RetTys[I];
10724       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10725                                                      CLI.CallConv, VT);
10726       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10727                                                        CLI.CallConv, VT);
10728       for (unsigned i = 0; i != NumRegs; ++i) {
10729         ISD::InputArg MyFlags;
10730         MyFlags.Flags = Flags;
10731         MyFlags.VT = RegisterVT;
10732         MyFlags.ArgVT = VT;
10733         MyFlags.Used = CLI.IsReturnValueUsed;
10734         if (CLI.RetTy->isPointerTy()) {
10735           MyFlags.Flags.setPointer();
10736           MyFlags.Flags.setPointerAddrSpace(
10737               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10738         }
10739         if (CLI.RetSExt)
10740           MyFlags.Flags.setSExt();
10741         if (CLI.RetZExt)
10742           MyFlags.Flags.setZExt();
10743         if (CLI.IsInReg)
10744           MyFlags.Flags.setInReg();
10745         CLI.Ins.push_back(MyFlags);
10746       }
10747     }
10748   }
10749 
10750   // We push in swifterror return as the last element of CLI.Ins.
10751   ArgListTy &Args = CLI.getArgs();
10752   if (supportSwiftError()) {
10753     for (const ArgListEntry &Arg : Args) {
10754       if (Arg.IsSwiftError) {
10755         ISD::InputArg MyFlags;
10756         MyFlags.VT = getPointerTy(DL);
10757         MyFlags.ArgVT = EVT(getPointerTy(DL));
10758         MyFlags.Flags.setSwiftError();
10759         CLI.Ins.push_back(MyFlags);
10760       }
10761     }
10762   }
10763 
10764   // Handle all of the outgoing arguments.
10765   CLI.Outs.clear();
10766   CLI.OutVals.clear();
10767   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10768     SmallVector<EVT, 4> ValueVTs;
10769     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10770     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10771     Type *FinalType = Args[i].Ty;
10772     if (Args[i].IsByVal)
10773       FinalType = Args[i].IndirectType;
10774     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10775         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10776     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10777          ++Value) {
10778       EVT VT = ValueVTs[Value];
10779       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10780       SDValue Op = SDValue(Args[i].Node.getNode(),
10781                            Args[i].Node.getResNo() + Value);
10782       ISD::ArgFlagsTy Flags;
10783 
10784       // Certain targets (such as MIPS), may have a different ABI alignment
10785       // for a type depending on the context. Give the target a chance to
10786       // specify the alignment it wants.
10787       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10788       Flags.setOrigAlign(OriginalAlignment);
10789 
10790       if (Args[i].Ty->isPointerTy()) {
10791         Flags.setPointer();
10792         Flags.setPointerAddrSpace(
10793             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10794       }
10795       if (Args[i].IsZExt)
10796         Flags.setZExt();
10797       if (Args[i].IsSExt)
10798         Flags.setSExt();
10799       if (Args[i].IsInReg) {
10800         // If we are using vectorcall calling convention, a structure that is
10801         // passed InReg - is surely an HVA
10802         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10803             isa<StructType>(FinalType)) {
10804           // The first value of a structure is marked
10805           if (0 == Value)
10806             Flags.setHvaStart();
10807           Flags.setHva();
10808         }
10809         // Set InReg Flag
10810         Flags.setInReg();
10811       }
10812       if (Args[i].IsSRet)
10813         Flags.setSRet();
10814       if (Args[i].IsSwiftSelf)
10815         Flags.setSwiftSelf();
10816       if (Args[i].IsSwiftAsync)
10817         Flags.setSwiftAsync();
10818       if (Args[i].IsSwiftError)
10819         Flags.setSwiftError();
10820       if (Args[i].IsCFGuardTarget)
10821         Flags.setCFGuardTarget();
10822       if (Args[i].IsByVal)
10823         Flags.setByVal();
10824       if (Args[i].IsByRef)
10825         Flags.setByRef();
10826       if (Args[i].IsPreallocated) {
10827         Flags.setPreallocated();
10828         // Set the byval flag for CCAssignFn callbacks that don't know about
10829         // preallocated.  This way we can know how many bytes we should've
10830         // allocated and how many bytes a callee cleanup function will pop.  If
10831         // we port preallocated to more targets, we'll have to add custom
10832         // preallocated handling in the various CC lowering callbacks.
10833         Flags.setByVal();
10834       }
10835       if (Args[i].IsInAlloca) {
10836         Flags.setInAlloca();
10837         // Set the byval flag for CCAssignFn callbacks that don't know about
10838         // inalloca.  This way we can know how many bytes we should've allocated
10839         // and how many bytes a callee cleanup function will pop.  If we port
10840         // inalloca to more targets, we'll have to add custom inalloca handling
10841         // in the various CC lowering callbacks.
10842         Flags.setByVal();
10843       }
10844       Align MemAlign;
10845       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10846         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10847         Flags.setByValSize(FrameSize);
10848 
10849         // info is not there but there are cases it cannot get right.
10850         if (auto MA = Args[i].Alignment)
10851           MemAlign = *MA;
10852         else
10853           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10854       } else if (auto MA = Args[i].Alignment) {
10855         MemAlign = *MA;
10856       } else {
10857         MemAlign = OriginalAlignment;
10858       }
10859       Flags.setMemAlign(MemAlign);
10860       if (Args[i].IsNest)
10861         Flags.setNest();
10862       if (NeedsRegBlock)
10863         Flags.setInConsecutiveRegs();
10864 
10865       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10866                                                  CLI.CallConv, VT);
10867       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10868                                                         CLI.CallConv, VT);
10869       SmallVector<SDValue, 4> Parts(NumParts);
10870       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10871 
10872       if (Args[i].IsSExt)
10873         ExtendKind = ISD::SIGN_EXTEND;
10874       else if (Args[i].IsZExt)
10875         ExtendKind = ISD::ZERO_EXTEND;
10876 
10877       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10878       // for now.
10879       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10880           CanLowerReturn) {
10881         assert((CLI.RetTy == Args[i].Ty ||
10882                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10883                  CLI.RetTy->getPointerAddressSpace() ==
10884                      Args[i].Ty->getPointerAddressSpace())) &&
10885                RetTys.size() == NumValues && "unexpected use of 'returned'");
10886         // Before passing 'returned' to the target lowering code, ensure that
10887         // either the register MVT and the actual EVT are the same size or that
10888         // the return value and argument are extended in the same way; in these
10889         // cases it's safe to pass the argument register value unchanged as the
10890         // return register value (although it's at the target's option whether
10891         // to do so)
10892         // TODO: allow code generation to take advantage of partially preserved
10893         // registers rather than clobbering the entire register when the
10894         // parameter extension method is not compatible with the return
10895         // extension method
10896         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10897             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10898              CLI.RetZExt == Args[i].IsZExt))
10899           Flags.setReturned();
10900       }
10901 
10902       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10903                      CLI.CallConv, ExtendKind);
10904 
10905       for (unsigned j = 0; j != NumParts; ++j) {
10906         // if it isn't first piece, alignment must be 1
10907         // For scalable vectors the scalable part is currently handled
10908         // by individual targets, so we just use the known minimum size here.
10909         ISD::OutputArg MyFlags(
10910             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10911             i < CLI.NumFixedArgs, i,
10912             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10913         if (NumParts > 1 && j == 0)
10914           MyFlags.Flags.setSplit();
10915         else if (j != 0) {
10916           MyFlags.Flags.setOrigAlign(Align(1));
10917           if (j == NumParts - 1)
10918             MyFlags.Flags.setSplitEnd();
10919         }
10920 
10921         CLI.Outs.push_back(MyFlags);
10922         CLI.OutVals.push_back(Parts[j]);
10923       }
10924 
10925       if (NeedsRegBlock && Value == NumValues - 1)
10926         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10927     }
10928   }
10929 
10930   SmallVector<SDValue, 4> InVals;
10931   CLI.Chain = LowerCall(CLI, InVals);
10932 
10933   // Update CLI.InVals to use outside of this function.
10934   CLI.InVals = InVals;
10935 
10936   // Verify that the target's LowerCall behaved as expected.
10937   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10938          "LowerCall didn't return a valid chain!");
10939   assert((!CLI.IsTailCall || InVals.empty()) &&
10940          "LowerCall emitted a return value for a tail call!");
10941   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10942          "LowerCall didn't emit the correct number of values!");
10943 
10944   // For a tail call, the return value is merely live-out and there aren't
10945   // any nodes in the DAG representing it. Return a special value to
10946   // indicate that a tail call has been emitted and no more Instructions
10947   // should be processed in the current block.
10948   if (CLI.IsTailCall) {
10949     CLI.DAG.setRoot(CLI.Chain);
10950     return std::make_pair(SDValue(), SDValue());
10951   }
10952 
10953 #ifndef NDEBUG
10954   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10955     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10956     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10957            "LowerCall emitted a value with the wrong type!");
10958   }
10959 #endif
10960 
10961   SmallVector<SDValue, 4> ReturnValues;
10962   if (!CanLowerReturn) {
10963     // The instruction result is the result of loading from the
10964     // hidden sret parameter.
10965     SmallVector<EVT, 1> PVTs;
10966     Type *PtrRetTy =
10967         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10968 
10969     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10970     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10971     EVT PtrVT = PVTs[0];
10972 
10973     unsigned NumValues = RetTys.size();
10974     ReturnValues.resize(NumValues);
10975     SmallVector<SDValue, 4> Chains(NumValues);
10976 
10977     // An aggregate return value cannot wrap around the address space, so
10978     // offsets to its parts don't wrap either.
10979     SDNodeFlags Flags;
10980     Flags.setNoUnsignedWrap(true);
10981 
10982     MachineFunction &MF = CLI.DAG.getMachineFunction();
10983     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10984     for (unsigned i = 0; i < NumValues; ++i) {
10985       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10986                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10987                                                         PtrVT), Flags);
10988       SDValue L = CLI.DAG.getLoad(
10989           RetTys[i], CLI.DL, CLI.Chain, Add,
10990           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10991                                             DemoteStackIdx, Offsets[i]),
10992           HiddenSRetAlign);
10993       ReturnValues[i] = L;
10994       Chains[i] = L.getValue(1);
10995     }
10996 
10997     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10998   } else {
10999     // Collect the legal value parts into potentially illegal values
11000     // that correspond to the original function's return values.
11001     std::optional<ISD::NodeType> AssertOp;
11002     if (CLI.RetSExt)
11003       AssertOp = ISD::AssertSext;
11004     else if (CLI.RetZExt)
11005       AssertOp = ISD::AssertZext;
11006     unsigned CurReg = 0;
11007     for (EVT VT : RetTys) {
11008       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11009                                                      CLI.CallConv, VT);
11010       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11011                                                        CLI.CallConv, VT);
11012 
11013       ReturnValues.push_back(getCopyFromParts(
11014           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11015           CLI.Chain, CLI.CallConv, AssertOp));
11016       CurReg += NumRegs;
11017     }
11018 
11019     // For a function returning void, there is no return value. We can't create
11020     // such a node, so we just return a null return value in that case. In
11021     // that case, nothing will actually look at the value.
11022     if (ReturnValues.empty())
11023       return std::make_pair(SDValue(), CLI.Chain);
11024   }
11025 
11026   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11027                                 CLI.DAG.getVTList(RetTys), ReturnValues);
11028   return std::make_pair(Res, CLI.Chain);
11029 }
11030 
11031 /// Places new result values for the node in Results (their number
11032 /// and types must exactly match those of the original return values of
11033 /// the node), or leaves Results empty, which indicates that the node is not
11034 /// to be custom lowered after all.
11035 void TargetLowering::LowerOperationWrapper(SDNode *N,
11036                                            SmallVectorImpl<SDValue> &Results,
11037                                            SelectionDAG &DAG) const {
11038   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11039 
11040   if (!Res.getNode())
11041     return;
11042 
11043   // If the original node has one result, take the return value from
11044   // LowerOperation as is. It might not be result number 0.
11045   if (N->getNumValues() == 1) {
11046     Results.push_back(Res);
11047     return;
11048   }
11049 
11050   // If the original node has multiple results, then the return node should
11051   // have the same number of results.
11052   assert((N->getNumValues() == Res->getNumValues()) &&
11053       "Lowering returned the wrong number of results!");
11054 
11055   // Places new result values base on N result number.
11056   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11057     Results.push_back(Res.getValue(I));
11058 }
11059 
11060 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11061   llvm_unreachable("LowerOperation not implemented for this target!");
11062 }
11063 
11064 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11065                                                      unsigned Reg,
11066                                                      ISD::NodeType ExtendType) {
11067   SDValue Op = getNonRegisterValue(V);
11068   assert((Op.getOpcode() != ISD::CopyFromReg ||
11069           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11070          "Copy from a reg to the same reg!");
11071   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11072 
11073   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11074   // If this is an InlineAsm we have to match the registers required, not the
11075   // notional registers required by the type.
11076 
11077   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11078                    std::nullopt); // This is not an ABI copy.
11079   SDValue Chain = DAG.getEntryNode();
11080 
11081   if (ExtendType == ISD::ANY_EXTEND) {
11082     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11083     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11084       ExtendType = PreferredExtendIt->second;
11085   }
11086   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11087   PendingExports.push_back(Chain);
11088 }
11089 
11090 #include "llvm/CodeGen/SelectionDAGISel.h"
11091 
11092 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11093 /// entry block, return true.  This includes arguments used by switches, since
11094 /// the switch may expand into multiple basic blocks.
11095 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11096   // With FastISel active, we may be splitting blocks, so force creation
11097   // of virtual registers for all non-dead arguments.
11098   if (FastISel)
11099     return A->use_empty();
11100 
11101   const BasicBlock &Entry = A->getParent()->front();
11102   for (const User *U : A->users())
11103     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11104       return false;  // Use not in entry block.
11105 
11106   return true;
11107 }
11108 
11109 using ArgCopyElisionMapTy =
11110     DenseMap<const Argument *,
11111              std::pair<const AllocaInst *, const StoreInst *>>;
11112 
11113 /// Scan the entry block of the function in FuncInfo for arguments that look
11114 /// like copies into a local alloca. Record any copied arguments in
11115 /// ArgCopyElisionCandidates.
11116 static void
11117 findArgumentCopyElisionCandidates(const DataLayout &DL,
11118                                   FunctionLoweringInfo *FuncInfo,
11119                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11120   // Record the state of every static alloca used in the entry block. Argument
11121   // allocas are all used in the entry block, so we need approximately as many
11122   // entries as we have arguments.
11123   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11124   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11125   unsigned NumArgs = FuncInfo->Fn->arg_size();
11126   StaticAllocas.reserve(NumArgs * 2);
11127 
11128   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11129     if (!V)
11130       return nullptr;
11131     V = V->stripPointerCasts();
11132     const auto *AI = dyn_cast<AllocaInst>(V);
11133     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11134       return nullptr;
11135     auto Iter = StaticAllocas.insert({AI, Unknown});
11136     return &Iter.first->second;
11137   };
11138 
11139   // Look for stores of arguments to static allocas. Look through bitcasts and
11140   // GEPs to handle type coercions, as long as the alloca is fully initialized
11141   // by the store. Any non-store use of an alloca escapes it and any subsequent
11142   // unanalyzed store might write it.
11143   // FIXME: Handle structs initialized with multiple stores.
11144   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11145     // Look for stores, and handle non-store uses conservatively.
11146     const auto *SI = dyn_cast<StoreInst>(&I);
11147     if (!SI) {
11148       // We will look through cast uses, so ignore them completely.
11149       if (I.isCast())
11150         continue;
11151       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11152       // to allocas.
11153       if (I.isDebugOrPseudoInst())
11154         continue;
11155       // This is an unknown instruction. Assume it escapes or writes to all
11156       // static alloca operands.
11157       for (const Use &U : I.operands()) {
11158         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11159           *Info = StaticAllocaInfo::Clobbered;
11160       }
11161       continue;
11162     }
11163 
11164     // If the stored value is a static alloca, mark it as escaped.
11165     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11166       *Info = StaticAllocaInfo::Clobbered;
11167 
11168     // Check if the destination is a static alloca.
11169     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11170     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11171     if (!Info)
11172       continue;
11173     const AllocaInst *AI = cast<AllocaInst>(Dst);
11174 
11175     // Skip allocas that have been initialized or clobbered.
11176     if (*Info != StaticAllocaInfo::Unknown)
11177       continue;
11178 
11179     // Check if the stored value is an argument, and that this store fully
11180     // initializes the alloca.
11181     // If the argument type has padding bits we can't directly forward a pointer
11182     // as the upper bits may contain garbage.
11183     // Don't elide copies from the same argument twice.
11184     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11185     const auto *Arg = dyn_cast<Argument>(Val);
11186     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11187         Arg->getType()->isEmptyTy() ||
11188         DL.getTypeStoreSize(Arg->getType()) !=
11189             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11190         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11191         ArgCopyElisionCandidates.count(Arg)) {
11192       *Info = StaticAllocaInfo::Clobbered;
11193       continue;
11194     }
11195 
11196     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11197                       << '\n');
11198 
11199     // Mark this alloca and store for argument copy elision.
11200     *Info = StaticAllocaInfo::Elidable;
11201     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11202 
11203     // Stop scanning if we've seen all arguments. This will happen early in -O0
11204     // builds, which is useful, because -O0 builds have large entry blocks and
11205     // many allocas.
11206     if (ArgCopyElisionCandidates.size() == NumArgs)
11207       break;
11208   }
11209 }
11210 
11211 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11212 /// ArgVal is a load from a suitable fixed stack object.
11213 static void tryToElideArgumentCopy(
11214     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11215     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11216     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11217     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11218     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11219   // Check if this is a load from a fixed stack object.
11220   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11221   if (!LNode)
11222     return;
11223   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11224   if (!FINode)
11225     return;
11226 
11227   // Check that the fixed stack object is the right size and alignment.
11228   // Look at the alignment that the user wrote on the alloca instead of looking
11229   // at the stack object.
11230   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11231   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11232   const AllocaInst *AI = ArgCopyIter->second.first;
11233   int FixedIndex = FINode->getIndex();
11234   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11235   int OldIndex = AllocaIndex;
11236   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11237   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11238     LLVM_DEBUG(
11239         dbgs() << "  argument copy elision failed due to bad fixed stack "
11240                   "object size\n");
11241     return;
11242   }
11243   Align RequiredAlignment = AI->getAlign();
11244   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11245     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11246                          "greater than stack argument alignment ("
11247                       << DebugStr(RequiredAlignment) << " vs "
11248                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11249     return;
11250   }
11251 
11252   // Perform the elision. Delete the old stack object and replace its only use
11253   // in the variable info map. Mark the stack object as mutable and aliased.
11254   LLVM_DEBUG({
11255     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11256            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11257            << '\n';
11258   });
11259   MFI.RemoveStackObject(OldIndex);
11260   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11261   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11262   AllocaIndex = FixedIndex;
11263   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11264   for (SDValue ArgVal : ArgVals)
11265     Chains.push_back(ArgVal.getValue(1));
11266 
11267   // Avoid emitting code for the store implementing the copy.
11268   const StoreInst *SI = ArgCopyIter->second.second;
11269   ElidedArgCopyInstrs.insert(SI);
11270 
11271   // Check for uses of the argument again so that we can avoid exporting ArgVal
11272   // if it is't used by anything other than the store.
11273   for (const Value *U : Arg.users()) {
11274     if (U != SI) {
11275       ArgHasUses = true;
11276       break;
11277     }
11278   }
11279 }
11280 
11281 void SelectionDAGISel::LowerArguments(const Function &F) {
11282   SelectionDAG &DAG = SDB->DAG;
11283   SDLoc dl = SDB->getCurSDLoc();
11284   const DataLayout &DL = DAG.getDataLayout();
11285   SmallVector<ISD::InputArg, 16> Ins;
11286 
11287   // In Naked functions we aren't going to save any registers.
11288   if (F.hasFnAttribute(Attribute::Naked))
11289     return;
11290 
11291   if (!FuncInfo->CanLowerReturn) {
11292     // Put in an sret pointer parameter before all the other parameters.
11293     SmallVector<EVT, 1> ValueVTs;
11294     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11295                     PointerType::get(F.getContext(),
11296                                      DAG.getDataLayout().getAllocaAddrSpace()),
11297                     ValueVTs);
11298 
11299     // NOTE: Assuming that a pointer will never break down to more than one VT
11300     // or one register.
11301     ISD::ArgFlagsTy Flags;
11302     Flags.setSRet();
11303     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11304     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11305                          ISD::InputArg::NoArgIndex, 0);
11306     Ins.push_back(RetArg);
11307   }
11308 
11309   // Look for stores of arguments to static allocas. Mark such arguments with a
11310   // flag to ask the target to give us the memory location of that argument if
11311   // available.
11312   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11313   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11314                                     ArgCopyElisionCandidates);
11315 
11316   // Set up the incoming argument description vector.
11317   for (const Argument &Arg : F.args()) {
11318     unsigned ArgNo = Arg.getArgNo();
11319     SmallVector<EVT, 4> ValueVTs;
11320     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11321     bool isArgValueUsed = !Arg.use_empty();
11322     unsigned PartBase = 0;
11323     Type *FinalType = Arg.getType();
11324     if (Arg.hasAttribute(Attribute::ByVal))
11325       FinalType = Arg.getParamByValType();
11326     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11327         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11328     for (unsigned Value = 0, NumValues = ValueVTs.size();
11329          Value != NumValues; ++Value) {
11330       EVT VT = ValueVTs[Value];
11331       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11332       ISD::ArgFlagsTy Flags;
11333 
11334 
11335       if (Arg.getType()->isPointerTy()) {
11336         Flags.setPointer();
11337         Flags.setPointerAddrSpace(
11338             cast<PointerType>(Arg.getType())->getAddressSpace());
11339       }
11340       if (Arg.hasAttribute(Attribute::ZExt))
11341         Flags.setZExt();
11342       if (Arg.hasAttribute(Attribute::SExt))
11343         Flags.setSExt();
11344       if (Arg.hasAttribute(Attribute::InReg)) {
11345         // If we are using vectorcall calling convention, a structure that is
11346         // passed InReg - is surely an HVA
11347         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11348             isa<StructType>(Arg.getType())) {
11349           // The first value of a structure is marked
11350           if (0 == Value)
11351             Flags.setHvaStart();
11352           Flags.setHva();
11353         }
11354         // Set InReg Flag
11355         Flags.setInReg();
11356       }
11357       if (Arg.hasAttribute(Attribute::StructRet))
11358         Flags.setSRet();
11359       if (Arg.hasAttribute(Attribute::SwiftSelf))
11360         Flags.setSwiftSelf();
11361       if (Arg.hasAttribute(Attribute::SwiftAsync))
11362         Flags.setSwiftAsync();
11363       if (Arg.hasAttribute(Attribute::SwiftError))
11364         Flags.setSwiftError();
11365       if (Arg.hasAttribute(Attribute::ByVal))
11366         Flags.setByVal();
11367       if (Arg.hasAttribute(Attribute::ByRef))
11368         Flags.setByRef();
11369       if (Arg.hasAttribute(Attribute::InAlloca)) {
11370         Flags.setInAlloca();
11371         // Set the byval flag for CCAssignFn callbacks that don't know about
11372         // inalloca.  This way we can know how many bytes we should've allocated
11373         // and how many bytes a callee cleanup function will pop.  If we port
11374         // inalloca to more targets, we'll have to add custom inalloca handling
11375         // in the various CC lowering callbacks.
11376         Flags.setByVal();
11377       }
11378       if (Arg.hasAttribute(Attribute::Preallocated)) {
11379         Flags.setPreallocated();
11380         // Set the byval flag for CCAssignFn callbacks that don't know about
11381         // preallocated.  This way we can know how many bytes we should've
11382         // allocated and how many bytes a callee cleanup function will pop.  If
11383         // we port preallocated to more targets, we'll have to add custom
11384         // preallocated handling in the various CC lowering callbacks.
11385         Flags.setByVal();
11386       }
11387 
11388       // Certain targets (such as MIPS), may have a different ABI alignment
11389       // for a type depending on the context. Give the target a chance to
11390       // specify the alignment it wants.
11391       const Align OriginalAlignment(
11392           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11393       Flags.setOrigAlign(OriginalAlignment);
11394 
11395       Align MemAlign;
11396       Type *ArgMemTy = nullptr;
11397       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11398           Flags.isByRef()) {
11399         if (!ArgMemTy)
11400           ArgMemTy = Arg.getPointeeInMemoryValueType();
11401 
11402         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11403 
11404         // For in-memory arguments, size and alignment should be passed from FE.
11405         // BE will guess if this info is not there but there are cases it cannot
11406         // get right.
11407         if (auto ParamAlign = Arg.getParamStackAlign())
11408           MemAlign = *ParamAlign;
11409         else if ((ParamAlign = Arg.getParamAlign()))
11410           MemAlign = *ParamAlign;
11411         else
11412           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11413         if (Flags.isByRef())
11414           Flags.setByRefSize(MemSize);
11415         else
11416           Flags.setByValSize(MemSize);
11417       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11418         MemAlign = *ParamAlign;
11419       } else {
11420         MemAlign = OriginalAlignment;
11421       }
11422       Flags.setMemAlign(MemAlign);
11423 
11424       if (Arg.hasAttribute(Attribute::Nest))
11425         Flags.setNest();
11426       if (NeedsRegBlock)
11427         Flags.setInConsecutiveRegs();
11428       if (ArgCopyElisionCandidates.count(&Arg))
11429         Flags.setCopyElisionCandidate();
11430       if (Arg.hasAttribute(Attribute::Returned))
11431         Flags.setReturned();
11432 
11433       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11434           *CurDAG->getContext(), F.getCallingConv(), VT);
11435       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11436           *CurDAG->getContext(), F.getCallingConv(), VT);
11437       for (unsigned i = 0; i != NumRegs; ++i) {
11438         // For scalable vectors, use the minimum size; individual targets
11439         // are responsible for handling scalable vector arguments and
11440         // return values.
11441         ISD::InputArg MyFlags(
11442             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11443             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11444         if (NumRegs > 1 && i == 0)
11445           MyFlags.Flags.setSplit();
11446         // if it isn't first piece, alignment must be 1
11447         else if (i > 0) {
11448           MyFlags.Flags.setOrigAlign(Align(1));
11449           if (i == NumRegs - 1)
11450             MyFlags.Flags.setSplitEnd();
11451         }
11452         Ins.push_back(MyFlags);
11453       }
11454       if (NeedsRegBlock && Value == NumValues - 1)
11455         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11456       PartBase += VT.getStoreSize().getKnownMinValue();
11457     }
11458   }
11459 
11460   // Call the target to set up the argument values.
11461   SmallVector<SDValue, 8> InVals;
11462   SDValue NewRoot = TLI->LowerFormalArguments(
11463       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11464 
11465   // Verify that the target's LowerFormalArguments behaved as expected.
11466   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11467          "LowerFormalArguments didn't return a valid chain!");
11468   assert(InVals.size() == Ins.size() &&
11469          "LowerFormalArguments didn't emit the correct number of values!");
11470   LLVM_DEBUG({
11471     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11472       assert(InVals[i].getNode() &&
11473              "LowerFormalArguments emitted a null value!");
11474       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11475              "LowerFormalArguments emitted a value with the wrong type!");
11476     }
11477   });
11478 
11479   // Update the DAG with the new chain value resulting from argument lowering.
11480   DAG.setRoot(NewRoot);
11481 
11482   // Set up the argument values.
11483   unsigned i = 0;
11484   if (!FuncInfo->CanLowerReturn) {
11485     // Create a virtual register for the sret pointer, and put in a copy
11486     // from the sret argument into it.
11487     SmallVector<EVT, 1> ValueVTs;
11488     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11489                     PointerType::get(F.getContext(),
11490                                      DAG.getDataLayout().getAllocaAddrSpace()),
11491                     ValueVTs);
11492     MVT VT = ValueVTs[0].getSimpleVT();
11493     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11494     std::optional<ISD::NodeType> AssertOp;
11495     SDValue ArgValue =
11496         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11497                          F.getCallingConv(), AssertOp);
11498 
11499     MachineFunction& MF = SDB->DAG.getMachineFunction();
11500     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11501     Register SRetReg =
11502         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11503     FuncInfo->DemoteRegister = SRetReg;
11504     NewRoot =
11505         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11506     DAG.setRoot(NewRoot);
11507 
11508     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11509     ++i;
11510   }
11511 
11512   SmallVector<SDValue, 4> Chains;
11513   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11514   for (const Argument &Arg : F.args()) {
11515     SmallVector<SDValue, 4> ArgValues;
11516     SmallVector<EVT, 4> ValueVTs;
11517     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11518     unsigned NumValues = ValueVTs.size();
11519     if (NumValues == 0)
11520       continue;
11521 
11522     bool ArgHasUses = !Arg.use_empty();
11523 
11524     // Elide the copying store if the target loaded this argument from a
11525     // suitable fixed stack object.
11526     if (Ins[i].Flags.isCopyElisionCandidate()) {
11527       unsigned NumParts = 0;
11528       for (EVT VT : ValueVTs)
11529         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11530                                                        F.getCallingConv(), VT);
11531 
11532       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11533                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11534                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11535     }
11536 
11537     // If this argument is unused then remember its value. It is used to generate
11538     // debugging information.
11539     bool isSwiftErrorArg =
11540         TLI->supportSwiftError() &&
11541         Arg.hasAttribute(Attribute::SwiftError);
11542     if (!ArgHasUses && !isSwiftErrorArg) {
11543       SDB->setUnusedArgValue(&Arg, InVals[i]);
11544 
11545       // Also remember any frame index for use in FastISel.
11546       if (FrameIndexSDNode *FI =
11547           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11548         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11549     }
11550 
11551     for (unsigned Val = 0; Val != NumValues; ++Val) {
11552       EVT VT = ValueVTs[Val];
11553       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11554                                                       F.getCallingConv(), VT);
11555       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11556           *CurDAG->getContext(), F.getCallingConv(), VT);
11557 
11558       // Even an apparent 'unused' swifterror argument needs to be returned. So
11559       // we do generate a copy for it that can be used on return from the
11560       // function.
11561       if (ArgHasUses || isSwiftErrorArg) {
11562         std::optional<ISD::NodeType> AssertOp;
11563         if (Arg.hasAttribute(Attribute::SExt))
11564           AssertOp = ISD::AssertSext;
11565         else if (Arg.hasAttribute(Attribute::ZExt))
11566           AssertOp = ISD::AssertZext;
11567 
11568         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11569                                              PartVT, VT, nullptr, NewRoot,
11570                                              F.getCallingConv(), AssertOp));
11571       }
11572 
11573       i += NumParts;
11574     }
11575 
11576     // We don't need to do anything else for unused arguments.
11577     if (ArgValues.empty())
11578       continue;
11579 
11580     // Note down frame index.
11581     if (FrameIndexSDNode *FI =
11582         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11583       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11584 
11585     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11586                                      SDB->getCurSDLoc());
11587 
11588     SDB->setValue(&Arg, Res);
11589     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11590       // We want to associate the argument with the frame index, among
11591       // involved operands, that correspond to the lowest address. The
11592       // getCopyFromParts function, called earlier, is swapping the order of
11593       // the operands to BUILD_PAIR depending on endianness. The result of
11594       // that swapping is that the least significant bits of the argument will
11595       // be in the first operand of the BUILD_PAIR node, and the most
11596       // significant bits will be in the second operand.
11597       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11598       if (LoadSDNode *LNode =
11599           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11600         if (FrameIndexSDNode *FI =
11601             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11602           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11603     }
11604 
11605     // Analyses past this point are naive and don't expect an assertion.
11606     if (Res.getOpcode() == ISD::AssertZext)
11607       Res = Res.getOperand(0);
11608 
11609     // Update the SwiftErrorVRegDefMap.
11610     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11611       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11612       if (Register::isVirtualRegister(Reg))
11613         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11614                                    Reg);
11615     }
11616 
11617     // If this argument is live outside of the entry block, insert a copy from
11618     // wherever we got it to the vreg that other BB's will reference it as.
11619     if (Res.getOpcode() == ISD::CopyFromReg) {
11620       // If we can, though, try to skip creating an unnecessary vreg.
11621       // FIXME: This isn't very clean... it would be nice to make this more
11622       // general.
11623       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11624       if (Register::isVirtualRegister(Reg)) {
11625         FuncInfo->ValueMap[&Arg] = Reg;
11626         continue;
11627       }
11628     }
11629     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11630       FuncInfo->InitializeRegForValue(&Arg);
11631       SDB->CopyToExportRegsIfNeeded(&Arg);
11632     }
11633   }
11634 
11635   if (!Chains.empty()) {
11636     Chains.push_back(NewRoot);
11637     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11638   }
11639 
11640   DAG.setRoot(NewRoot);
11641 
11642   assert(i == InVals.size() && "Argument register count mismatch!");
11643 
11644   // If any argument copy elisions occurred and we have debug info, update the
11645   // stale frame indices used in the dbg.declare variable info table.
11646   if (!ArgCopyElisionFrameIndexMap.empty()) {
11647     for (MachineFunction::VariableDbgInfo &VI :
11648          MF->getInStackSlotVariableDbgInfo()) {
11649       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11650       if (I != ArgCopyElisionFrameIndexMap.end())
11651         VI.updateStackSlot(I->second);
11652     }
11653   }
11654 
11655   // Finally, if the target has anything special to do, allow it to do so.
11656   emitFunctionEntryCode();
11657 }
11658 
11659 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11660 /// ensure constants are generated when needed.  Remember the virtual registers
11661 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11662 /// directly add them, because expansion might result in multiple MBB's for one
11663 /// BB.  As such, the start of the BB might correspond to a different MBB than
11664 /// the end.
11665 void
11666 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11668 
11669   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11670 
11671   // Check PHI nodes in successors that expect a value to be available from this
11672   // block.
11673   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11674     if (!isa<PHINode>(SuccBB->begin())) continue;
11675     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11676 
11677     // If this terminator has multiple identical successors (common for
11678     // switches), only handle each succ once.
11679     if (!SuccsHandled.insert(SuccMBB).second)
11680       continue;
11681 
11682     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11683 
11684     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11685     // nodes and Machine PHI nodes, but the incoming operands have not been
11686     // emitted yet.
11687     for (const PHINode &PN : SuccBB->phis()) {
11688       // Ignore dead phi's.
11689       if (PN.use_empty())
11690         continue;
11691 
11692       // Skip empty types
11693       if (PN.getType()->isEmptyTy())
11694         continue;
11695 
11696       unsigned Reg;
11697       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11698 
11699       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11700         unsigned &RegOut = ConstantsOut[C];
11701         if (RegOut == 0) {
11702           RegOut = FuncInfo.CreateRegs(C);
11703           // We need to zero/sign extend ConstantInt phi operands to match
11704           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11705           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11706           if (auto *CI = dyn_cast<ConstantInt>(C))
11707             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11708                                                     : ISD::ZERO_EXTEND;
11709           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11710         }
11711         Reg = RegOut;
11712       } else {
11713         DenseMap<const Value *, Register>::iterator I =
11714           FuncInfo.ValueMap.find(PHIOp);
11715         if (I != FuncInfo.ValueMap.end())
11716           Reg = I->second;
11717         else {
11718           assert(isa<AllocaInst>(PHIOp) &&
11719                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11720                  "Didn't codegen value into a register!??");
11721           Reg = FuncInfo.CreateRegs(PHIOp);
11722           CopyValueToVirtualRegister(PHIOp, Reg);
11723         }
11724       }
11725 
11726       // Remember that this register needs to added to the machine PHI node as
11727       // the input for this MBB.
11728       SmallVector<EVT, 4> ValueVTs;
11729       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11730       for (EVT VT : ValueVTs) {
11731         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11732         for (unsigned i = 0; i != NumRegisters; ++i)
11733           FuncInfo.PHINodesToUpdate.push_back(
11734               std::make_pair(&*MBBI++, Reg + i));
11735         Reg += NumRegisters;
11736       }
11737     }
11738   }
11739 
11740   ConstantsOut.clear();
11741 }
11742 
11743 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11744   MachineFunction::iterator I(MBB);
11745   if (++I == FuncInfo.MF->end())
11746     return nullptr;
11747   return &*I;
11748 }
11749 
11750 /// During lowering new call nodes can be created (such as memset, etc.).
11751 /// Those will become new roots of the current DAG, but complications arise
11752 /// when they are tail calls. In such cases, the call lowering will update
11753 /// the root, but the builder still needs to know that a tail call has been
11754 /// lowered in order to avoid generating an additional return.
11755 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11756   // If the node is null, we do have a tail call.
11757   if (MaybeTC.getNode() != nullptr)
11758     DAG.setRoot(MaybeTC);
11759   else
11760     HasTailCall = true;
11761 }
11762 
11763 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11764                                         MachineBasicBlock *SwitchMBB,
11765                                         MachineBasicBlock *DefaultMBB) {
11766   MachineFunction *CurMF = FuncInfo.MF;
11767   MachineBasicBlock *NextMBB = nullptr;
11768   MachineFunction::iterator BBI(W.MBB);
11769   if (++BBI != FuncInfo.MF->end())
11770     NextMBB = &*BBI;
11771 
11772   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11773 
11774   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11775 
11776   if (Size == 2 && W.MBB == SwitchMBB) {
11777     // If any two of the cases has the same destination, and if one value
11778     // is the same as the other, but has one bit unset that the other has set,
11779     // use bit manipulation to do two compares at once.  For example:
11780     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11781     // TODO: This could be extended to merge any 2 cases in switches with 3
11782     // cases.
11783     // TODO: Handle cases where W.CaseBB != SwitchBB.
11784     CaseCluster &Small = *W.FirstCluster;
11785     CaseCluster &Big = *W.LastCluster;
11786 
11787     if (Small.Low == Small.High && Big.Low == Big.High &&
11788         Small.MBB == Big.MBB) {
11789       const APInt &SmallValue = Small.Low->getValue();
11790       const APInt &BigValue = Big.Low->getValue();
11791 
11792       // Check that there is only one bit different.
11793       APInt CommonBit = BigValue ^ SmallValue;
11794       if (CommonBit.isPowerOf2()) {
11795         SDValue CondLHS = getValue(Cond);
11796         EVT VT = CondLHS.getValueType();
11797         SDLoc DL = getCurSDLoc();
11798 
11799         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11800                                  DAG.getConstant(CommonBit, DL, VT));
11801         SDValue Cond = DAG.getSetCC(
11802             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11803             ISD::SETEQ);
11804 
11805         // Update successor info.
11806         // Both Small and Big will jump to Small.BB, so we sum up the
11807         // probabilities.
11808         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11809         if (BPI)
11810           addSuccessorWithProb(
11811               SwitchMBB, DefaultMBB,
11812               // The default destination is the first successor in IR.
11813               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11814         else
11815           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11816 
11817         // Insert the true branch.
11818         SDValue BrCond =
11819             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11820                         DAG.getBasicBlock(Small.MBB));
11821         // Insert the false branch.
11822         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11823                              DAG.getBasicBlock(DefaultMBB));
11824 
11825         DAG.setRoot(BrCond);
11826         return;
11827       }
11828     }
11829   }
11830 
11831   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11832     // Here, we order cases by probability so the most likely case will be
11833     // checked first. However, two clusters can have the same probability in
11834     // which case their relative ordering is non-deterministic. So we use Low
11835     // as a tie-breaker as clusters are guaranteed to never overlap.
11836     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11837                [](const CaseCluster &a, const CaseCluster &b) {
11838       return a.Prob != b.Prob ?
11839              a.Prob > b.Prob :
11840              a.Low->getValue().slt(b.Low->getValue());
11841     });
11842 
11843     // Rearrange the case blocks so that the last one falls through if possible
11844     // without changing the order of probabilities.
11845     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11846       --I;
11847       if (I->Prob > W.LastCluster->Prob)
11848         break;
11849       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11850         std::swap(*I, *W.LastCluster);
11851         break;
11852       }
11853     }
11854   }
11855 
11856   // Compute total probability.
11857   BranchProbability DefaultProb = W.DefaultProb;
11858   BranchProbability UnhandledProbs = DefaultProb;
11859   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11860     UnhandledProbs += I->Prob;
11861 
11862   MachineBasicBlock *CurMBB = W.MBB;
11863   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11864     bool FallthroughUnreachable = false;
11865     MachineBasicBlock *Fallthrough;
11866     if (I == W.LastCluster) {
11867       // For the last cluster, fall through to the default destination.
11868       Fallthrough = DefaultMBB;
11869       FallthroughUnreachable = isa<UnreachableInst>(
11870           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11871     } else {
11872       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11873       CurMF->insert(BBI, Fallthrough);
11874       // Put Cond in a virtual register to make it available from the new blocks.
11875       ExportFromCurrentBlock(Cond);
11876     }
11877     UnhandledProbs -= I->Prob;
11878 
11879     switch (I->Kind) {
11880       case CC_JumpTable: {
11881         // FIXME: Optimize away range check based on pivot comparisons.
11882         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11883         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11884 
11885         // The jump block hasn't been inserted yet; insert it here.
11886         MachineBasicBlock *JumpMBB = JT->MBB;
11887         CurMF->insert(BBI, JumpMBB);
11888 
11889         auto JumpProb = I->Prob;
11890         auto FallthroughProb = UnhandledProbs;
11891 
11892         // If the default statement is a target of the jump table, we evenly
11893         // distribute the default probability to successors of CurMBB. Also
11894         // update the probability on the edge from JumpMBB to Fallthrough.
11895         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11896                                               SE = JumpMBB->succ_end();
11897              SI != SE; ++SI) {
11898           if (*SI == DefaultMBB) {
11899             JumpProb += DefaultProb / 2;
11900             FallthroughProb -= DefaultProb / 2;
11901             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11902             JumpMBB->normalizeSuccProbs();
11903             break;
11904           }
11905         }
11906 
11907         // If the default clause is unreachable, propagate that knowledge into
11908         // JTH->FallthroughUnreachable which will use it to suppress the range
11909         // check.
11910         //
11911         // However, don't do this if we're doing branch target enforcement,
11912         // because a table branch _without_ a range check can be a tempting JOP
11913         // gadget - out-of-bounds inputs that are impossible in correct
11914         // execution become possible again if an attacker can influence the
11915         // control flow. So if an attacker doesn't already have a BTI bypass
11916         // available, we don't want them to be able to get one out of this
11917         // table branch.
11918         if (FallthroughUnreachable) {
11919           Function &CurFunc = CurMF->getFunction();
11920           bool HasBranchTargetEnforcement = false;
11921           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11922             HasBranchTargetEnforcement =
11923                 CurFunc.getFnAttribute("branch-target-enforcement")
11924                     .getValueAsBool();
11925           } else {
11926             HasBranchTargetEnforcement =
11927                 CurMF->getMMI().getModule()->getModuleFlag(
11928                     "branch-target-enforcement");
11929           }
11930           if (!HasBranchTargetEnforcement)
11931             JTH->FallthroughUnreachable = true;
11932         }
11933 
11934         if (!JTH->FallthroughUnreachable)
11935           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11936         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11937         CurMBB->normalizeSuccProbs();
11938 
11939         // The jump table header will be inserted in our current block, do the
11940         // range check, and fall through to our fallthrough block.
11941         JTH->HeaderBB = CurMBB;
11942         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11943 
11944         // If we're in the right place, emit the jump table header right now.
11945         if (CurMBB == SwitchMBB) {
11946           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11947           JTH->Emitted = true;
11948         }
11949         break;
11950       }
11951       case CC_BitTests: {
11952         // FIXME: Optimize away range check based on pivot comparisons.
11953         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11954 
11955         // The bit test blocks haven't been inserted yet; insert them here.
11956         for (BitTestCase &BTC : BTB->Cases)
11957           CurMF->insert(BBI, BTC.ThisBB);
11958 
11959         // Fill in fields of the BitTestBlock.
11960         BTB->Parent = CurMBB;
11961         BTB->Default = Fallthrough;
11962 
11963         BTB->DefaultProb = UnhandledProbs;
11964         // If the cases in bit test don't form a contiguous range, we evenly
11965         // distribute the probability on the edge to Fallthrough to two
11966         // successors of CurMBB.
11967         if (!BTB->ContiguousRange) {
11968           BTB->Prob += DefaultProb / 2;
11969           BTB->DefaultProb -= DefaultProb / 2;
11970         }
11971 
11972         if (FallthroughUnreachable)
11973           BTB->FallthroughUnreachable = true;
11974 
11975         // If we're in the right place, emit the bit test header right now.
11976         if (CurMBB == SwitchMBB) {
11977           visitBitTestHeader(*BTB, SwitchMBB);
11978           BTB->Emitted = true;
11979         }
11980         break;
11981       }
11982       case CC_Range: {
11983         const Value *RHS, *LHS, *MHS;
11984         ISD::CondCode CC;
11985         if (I->Low == I->High) {
11986           // Check Cond == I->Low.
11987           CC = ISD::SETEQ;
11988           LHS = Cond;
11989           RHS=I->Low;
11990           MHS = nullptr;
11991         } else {
11992           // Check I->Low <= Cond <= I->High.
11993           CC = ISD::SETLE;
11994           LHS = I->Low;
11995           MHS = Cond;
11996           RHS = I->High;
11997         }
11998 
11999         // If Fallthrough is unreachable, fold away the comparison.
12000         if (FallthroughUnreachable)
12001           CC = ISD::SETTRUE;
12002 
12003         // The false probability is the sum of all unhandled cases.
12004         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12005                      getCurSDLoc(), I->Prob, UnhandledProbs);
12006 
12007         if (CurMBB == SwitchMBB)
12008           visitSwitchCase(CB, SwitchMBB);
12009         else
12010           SL->SwitchCases.push_back(CB);
12011 
12012         break;
12013       }
12014     }
12015     CurMBB = Fallthrough;
12016   }
12017 }
12018 
12019 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12020                                         const SwitchWorkListItem &W,
12021                                         Value *Cond,
12022                                         MachineBasicBlock *SwitchMBB) {
12023   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12024          "Clusters not sorted?");
12025   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12026 
12027   auto [LastLeft, FirstRight, LeftProb, RightProb] =
12028       SL->computeSplitWorkItemInfo(W);
12029 
12030   // Use the first element on the right as pivot since we will make less-than
12031   // comparisons against it.
12032   CaseClusterIt PivotCluster = FirstRight;
12033   assert(PivotCluster > W.FirstCluster);
12034   assert(PivotCluster <= W.LastCluster);
12035 
12036   CaseClusterIt FirstLeft = W.FirstCluster;
12037   CaseClusterIt LastRight = W.LastCluster;
12038 
12039   const ConstantInt *Pivot = PivotCluster->Low;
12040 
12041   // New blocks will be inserted immediately after the current one.
12042   MachineFunction::iterator BBI(W.MBB);
12043   ++BBI;
12044 
12045   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12046   // we can branch to its destination directly if it's squeezed exactly in
12047   // between the known lower bound and Pivot - 1.
12048   MachineBasicBlock *LeftMBB;
12049   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12050       FirstLeft->Low == W.GE &&
12051       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12052     LeftMBB = FirstLeft->MBB;
12053   } else {
12054     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12055     FuncInfo.MF->insert(BBI, LeftMBB);
12056     WorkList.push_back(
12057         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12058     // Put Cond in a virtual register to make it available from the new blocks.
12059     ExportFromCurrentBlock(Cond);
12060   }
12061 
12062   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12063   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12064   // directly if RHS.High equals the current upper bound.
12065   MachineBasicBlock *RightMBB;
12066   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12067       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12068     RightMBB = FirstRight->MBB;
12069   } else {
12070     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12071     FuncInfo.MF->insert(BBI, RightMBB);
12072     WorkList.push_back(
12073         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12074     // Put Cond in a virtual register to make it available from the new blocks.
12075     ExportFromCurrentBlock(Cond);
12076   }
12077 
12078   // Create the CaseBlock record that will be used to lower the branch.
12079   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12080                getCurSDLoc(), LeftProb, RightProb);
12081 
12082   if (W.MBB == SwitchMBB)
12083     visitSwitchCase(CB, SwitchMBB);
12084   else
12085     SL->SwitchCases.push_back(CB);
12086 }
12087 
12088 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12089 // from the swith statement.
12090 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12091                                             BranchProbability PeeledCaseProb) {
12092   if (PeeledCaseProb == BranchProbability::getOne())
12093     return BranchProbability::getZero();
12094   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12095 
12096   uint32_t Numerator = CaseProb.getNumerator();
12097   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12098   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12099 }
12100 
12101 // Try to peel the top probability case if it exceeds the threshold.
12102 // Return current MachineBasicBlock for the switch statement if the peeling
12103 // does not occur.
12104 // If the peeling is performed, return the newly created MachineBasicBlock
12105 // for the peeled switch statement. Also update Clusters to remove the peeled
12106 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12107 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12108     const SwitchInst &SI, CaseClusterVector &Clusters,
12109     BranchProbability &PeeledCaseProb) {
12110   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12111   // Don't perform if there is only one cluster or optimizing for size.
12112   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12113       TM.getOptLevel() == CodeGenOptLevel::None ||
12114       SwitchMBB->getParent()->getFunction().hasMinSize())
12115     return SwitchMBB;
12116 
12117   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12118   unsigned PeeledCaseIndex = 0;
12119   bool SwitchPeeled = false;
12120   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12121     CaseCluster &CC = Clusters[Index];
12122     if (CC.Prob < TopCaseProb)
12123       continue;
12124     TopCaseProb = CC.Prob;
12125     PeeledCaseIndex = Index;
12126     SwitchPeeled = true;
12127   }
12128   if (!SwitchPeeled)
12129     return SwitchMBB;
12130 
12131   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12132                     << TopCaseProb << "\n");
12133 
12134   // Record the MBB for the peeled switch statement.
12135   MachineFunction::iterator BBI(SwitchMBB);
12136   ++BBI;
12137   MachineBasicBlock *PeeledSwitchMBB =
12138       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12139   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12140 
12141   ExportFromCurrentBlock(SI.getCondition());
12142   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12143   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12144                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12145   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12146 
12147   Clusters.erase(PeeledCaseIt);
12148   for (CaseCluster &CC : Clusters) {
12149     LLVM_DEBUG(
12150         dbgs() << "Scale the probablity for one cluster, before scaling: "
12151                << CC.Prob << "\n");
12152     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12153     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12154   }
12155   PeeledCaseProb = TopCaseProb;
12156   return PeeledSwitchMBB;
12157 }
12158 
12159 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12160   // Extract cases from the switch.
12161   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12162   CaseClusterVector Clusters;
12163   Clusters.reserve(SI.getNumCases());
12164   for (auto I : SI.cases()) {
12165     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12166     const ConstantInt *CaseVal = I.getCaseValue();
12167     BranchProbability Prob =
12168         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12169             : BranchProbability(1, SI.getNumCases() + 1);
12170     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12171   }
12172 
12173   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12174 
12175   // Cluster adjacent cases with the same destination. We do this at all
12176   // optimization levels because it's cheap to do and will make codegen faster
12177   // if there are many clusters.
12178   sortAndRangeify(Clusters);
12179 
12180   // The branch probablity of the peeled case.
12181   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12182   MachineBasicBlock *PeeledSwitchMBB =
12183       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12184 
12185   // If there is only the default destination, jump there directly.
12186   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12187   if (Clusters.empty()) {
12188     assert(PeeledSwitchMBB == SwitchMBB);
12189     SwitchMBB->addSuccessor(DefaultMBB);
12190     if (DefaultMBB != NextBlock(SwitchMBB)) {
12191       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12192                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12193     }
12194     return;
12195   }
12196 
12197   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12198                      DAG.getBFI());
12199   SL->findBitTestClusters(Clusters, &SI);
12200 
12201   LLVM_DEBUG({
12202     dbgs() << "Case clusters: ";
12203     for (const CaseCluster &C : Clusters) {
12204       if (C.Kind == CC_JumpTable)
12205         dbgs() << "JT:";
12206       if (C.Kind == CC_BitTests)
12207         dbgs() << "BT:";
12208 
12209       C.Low->getValue().print(dbgs(), true);
12210       if (C.Low != C.High) {
12211         dbgs() << '-';
12212         C.High->getValue().print(dbgs(), true);
12213       }
12214       dbgs() << ' ';
12215     }
12216     dbgs() << '\n';
12217   });
12218 
12219   assert(!Clusters.empty());
12220   SwitchWorkList WorkList;
12221   CaseClusterIt First = Clusters.begin();
12222   CaseClusterIt Last = Clusters.end() - 1;
12223   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12224   // Scale the branchprobability for DefaultMBB if the peel occurs and
12225   // DefaultMBB is not replaced.
12226   if (PeeledCaseProb != BranchProbability::getZero() &&
12227       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12228     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12229   WorkList.push_back(
12230       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12231 
12232   while (!WorkList.empty()) {
12233     SwitchWorkListItem W = WorkList.pop_back_val();
12234     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12235 
12236     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12237         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12238       // For optimized builds, lower large range as a balanced binary tree.
12239       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12240       continue;
12241     }
12242 
12243     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12244   }
12245 }
12246 
12247 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12249   auto DL = getCurSDLoc();
12250   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12251   setValue(&I, DAG.getStepVector(DL, ResultVT));
12252 }
12253 
12254 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12256   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12257 
12258   SDLoc DL = getCurSDLoc();
12259   SDValue V = getValue(I.getOperand(0));
12260   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12261 
12262   if (VT.isScalableVector()) {
12263     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12264     return;
12265   }
12266 
12267   // Use VECTOR_SHUFFLE for the fixed-length vector
12268   // to maintain existing behavior.
12269   SmallVector<int, 8> Mask;
12270   unsigned NumElts = VT.getVectorMinNumElements();
12271   for (unsigned i = 0; i != NumElts; ++i)
12272     Mask.push_back(NumElts - 1 - i);
12273 
12274   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12275 }
12276 
12277 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12278   auto DL = getCurSDLoc();
12279   SDValue InVec = getValue(I.getOperand(0));
12280   EVT OutVT =
12281       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12282 
12283   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12284 
12285   // ISD Node needs the input vectors split into two equal parts
12286   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12287                            DAG.getVectorIdxConstant(0, DL));
12288   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12289                            DAG.getVectorIdxConstant(OutNumElts, DL));
12290 
12291   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12292   // legalisation and combines.
12293   if (OutVT.isFixedLengthVector()) {
12294     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12295                                         createStrideMask(0, 2, OutNumElts));
12296     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12297                                        createStrideMask(1, 2, OutNumElts));
12298     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12299     setValue(&I, Res);
12300     return;
12301   }
12302 
12303   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12304                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12305   setValue(&I, Res);
12306 }
12307 
12308 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12309   auto DL = getCurSDLoc();
12310   EVT InVT = getValue(I.getOperand(0)).getValueType();
12311   SDValue InVec0 = getValue(I.getOperand(0));
12312   SDValue InVec1 = getValue(I.getOperand(1));
12313   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12314   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12315 
12316   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12317   // legalisation and combines.
12318   if (OutVT.isFixedLengthVector()) {
12319     unsigned NumElts = InVT.getVectorMinNumElements();
12320     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12321     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12322                                       createInterleaveMask(NumElts, 2)));
12323     return;
12324   }
12325 
12326   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12327                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12328   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12329                     Res.getValue(1));
12330   setValue(&I, Res);
12331 }
12332 
12333 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12334   SmallVector<EVT, 4> ValueVTs;
12335   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12336                   ValueVTs);
12337   unsigned NumValues = ValueVTs.size();
12338   if (NumValues == 0) return;
12339 
12340   SmallVector<SDValue, 4> Values(NumValues);
12341   SDValue Op = getValue(I.getOperand(0));
12342 
12343   for (unsigned i = 0; i != NumValues; ++i)
12344     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12345                             SDValue(Op.getNode(), Op.getResNo() + i));
12346 
12347   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12348                            DAG.getVTList(ValueVTs), Values));
12349 }
12350 
12351 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12352   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12353   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12354 
12355   SDLoc DL = getCurSDLoc();
12356   SDValue V1 = getValue(I.getOperand(0));
12357   SDValue V2 = getValue(I.getOperand(1));
12358   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12359 
12360   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12361   if (VT.isScalableVector()) {
12362     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12363                              DAG.getVectorIdxConstant(Imm, DL)));
12364     return;
12365   }
12366 
12367   unsigned NumElts = VT.getVectorNumElements();
12368 
12369   uint64_t Idx = (NumElts + Imm) % NumElts;
12370 
12371   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12372   SmallVector<int, 8> Mask;
12373   for (unsigned i = 0; i < NumElts; ++i)
12374     Mask.push_back(Idx + i);
12375   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12376 }
12377 
12378 // Consider the following MIR after SelectionDAG, which produces output in
12379 // phyregs in the first case or virtregs in the second case.
12380 //
12381 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12382 // %5:gr32 = COPY $ebx
12383 // %6:gr32 = COPY $edx
12384 // %1:gr32 = COPY %6:gr32
12385 // %0:gr32 = COPY %5:gr32
12386 //
12387 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12388 // %1:gr32 = COPY %6:gr32
12389 // %0:gr32 = COPY %5:gr32
12390 //
12391 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12392 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12393 //
12394 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12395 // to a single virtreg (such as %0). The remaining outputs monotonically
12396 // increase in virtreg number from there. If a callbr has no outputs, then it
12397 // should not have a corresponding callbr landingpad; in fact, the callbr
12398 // landingpad would not even be able to refer to such a callbr.
12399 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12400   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12401   // There is definitely at least one copy.
12402   assert(MI->getOpcode() == TargetOpcode::COPY &&
12403          "start of copy chain MUST be COPY");
12404   Reg = MI->getOperand(1).getReg();
12405   MI = MRI.def_begin(Reg)->getParent();
12406   // There may be an optional second copy.
12407   if (MI->getOpcode() == TargetOpcode::COPY) {
12408     assert(Reg.isVirtual() && "expected COPY of virtual register");
12409     Reg = MI->getOperand(1).getReg();
12410     assert(Reg.isPhysical() && "expected COPY of physical register");
12411     MI = MRI.def_begin(Reg)->getParent();
12412   }
12413   // The start of the chain must be an INLINEASM_BR.
12414   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12415          "end of copy chain MUST be INLINEASM_BR");
12416   return Reg;
12417 }
12418 
12419 // We must do this walk rather than the simpler
12420 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12421 // otherwise we will end up with copies of virtregs only valid along direct
12422 // edges.
12423 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12424   SmallVector<EVT, 8> ResultVTs;
12425   SmallVector<SDValue, 8> ResultValues;
12426   const auto *CBR =
12427       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12428 
12429   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12430   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12431   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12432 
12433   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12434   SDValue Chain = DAG.getRoot();
12435 
12436   // Re-parse the asm constraints string.
12437   TargetLowering::AsmOperandInfoVector TargetConstraints =
12438       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12439   for (auto &T : TargetConstraints) {
12440     SDISelAsmOperandInfo OpInfo(T);
12441     if (OpInfo.Type != InlineAsm::isOutput)
12442       continue;
12443 
12444     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12445     // individual constraint.
12446     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12447 
12448     switch (OpInfo.ConstraintType) {
12449     case TargetLowering::C_Register:
12450     case TargetLowering::C_RegisterClass: {
12451       // Fill in OpInfo.AssignedRegs.Regs.
12452       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12453 
12454       // getRegistersForValue may produce 1 to many registers based on whether
12455       // the OpInfo.ConstraintVT is legal on the target or not.
12456       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12457         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12458         if (Register::isPhysicalRegister(OriginalDef))
12459           FuncInfo.MBB->addLiveIn(OriginalDef);
12460         // Update the assigned registers to use the original defs.
12461         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12462       }
12463 
12464       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12465           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12466       ResultValues.push_back(V);
12467       ResultVTs.push_back(OpInfo.ConstraintVT);
12468       break;
12469     }
12470     case TargetLowering::C_Other: {
12471       SDValue Flag;
12472       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12473                                                   OpInfo, DAG);
12474       ++InitialDef;
12475       ResultValues.push_back(V);
12476       ResultVTs.push_back(OpInfo.ConstraintVT);
12477       break;
12478     }
12479     default:
12480       break;
12481     }
12482   }
12483   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12484                           DAG.getVTList(ResultVTs), ResultValues);
12485   setValue(&I, V);
12486 }
12487