xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 0aef16afd5ff7d1eacc818bec5a69679cce2f115)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/Analysis/DebugInfo.h"
46 #include "llvm/Target/TargetData.h"
47 #include "llvm/Target/TargetFrameLowering.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetIntrinsicInfo.h"
50 #include "llvm/Target/TargetLibraryInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87 
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91 
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103 
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107 
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113 
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121 
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123 
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133 
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136 
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138 
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145 
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176 
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179 
180   if (PartVT == ValueVT)
181     return Val;
182 
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195 
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getTargetConstant(1, TLI.getPointerTy()));
201 
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204 
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207 
208   llvm_unreachable("Unknown mismatch!");
209 }
210 
211 /// getCopyFromParts - Create a value that contains the specified legal parts
212 /// combined into the value they represent.  If the parts combine to a type
213 /// larger then ValueVT then AssertOp can be used to specify whether the extra
214 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
215 /// (ISD::AssertSext).
216 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
217                                       const SDValue *Parts, unsigned NumParts,
218                                       EVT PartVT, EVT ValueVT) {
219   assert(ValueVT.isVector() && "Not a vector value");
220   assert(NumParts > 0 && "No parts to assemble!");
221   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
222   SDValue Val = Parts[0];
223 
224   // Handle a multi-element vector.
225   if (NumParts > 1) {
226     EVT IntermediateVT, RegisterVT;
227     unsigned NumIntermediates;
228     unsigned NumRegs =
229     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
230                                NumIntermediates, RegisterVT);
231     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
232     NumParts = NumRegs; // Silence a compiler warning.
233     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
234     assert(RegisterVT == Parts[0].getValueType() &&
235            "Part type doesn't match part!");
236 
237     // Assemble the parts into intermediate operands.
238     SmallVector<SDValue, 8> Ops(NumIntermediates);
239     if (NumIntermediates == NumParts) {
240       // If the register was not expanded, truncate or copy the value,
241       // as appropriate.
242       for (unsigned i = 0; i != NumParts; ++i)
243         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
244                                   PartVT, IntermediateVT);
245     } else if (NumParts > 0) {
246       // If the intermediate type was expanded, build the intermediate
247       // operands from the parts.
248       assert(NumParts % NumIntermediates == 0 &&
249              "Must expand into a divisible number of parts!");
250       unsigned Factor = NumParts / NumIntermediates;
251       for (unsigned i = 0; i != NumIntermediates; ++i)
252         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
253                                   PartVT, IntermediateVT);
254     }
255 
256     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
257     // intermediate operands.
258     Val = DAG.getNode(IntermediateVT.isVector() ?
259                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
260                       ValueVT, &Ops[0], NumIntermediates);
261   }
262 
263   // There is now one part, held in Val.  Correct it to match ValueVT.
264   PartVT = Val.getValueType();
265 
266   if (PartVT == ValueVT)
267     return Val;
268 
269   if (PartVT.isVector()) {
270     // If the element type of the source/dest vectors are the same, but the
271     // parts vector has more elements than the value vector, then we have a
272     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
273     // elements we want.
274     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
275       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
276              "Cannot narrow, it would be a lossy transformation");
277       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
278                          DAG.getIntPtrConstant(0));
279     }
280 
281     // Vector/Vector bitcast.
282     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
283       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284 
285     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
286       "Cannot handle this kind of promotion");
287     // Promoted vector extract
288     bool Smaller = ValueVT.bitsLE(PartVT);
289     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
290                        DL, ValueVT, Val);
291 
292   }
293 
294   // Trivial bitcast if the types are the same size and the destination
295   // vector type is legal.
296   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
297       TLI.isTypeLegal(ValueVT))
298     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299 
300   // Handle cases such as i8 -> <1 x i1>
301   assert(ValueVT.getVectorNumElements() == 1 &&
302          "Only trivial scalar-to-vector conversions should get here!");
303 
304   if (ValueVT.getVectorNumElements() == 1 &&
305       ValueVT.getVectorElementType() != PartVT) {
306     bool Smaller = ValueVT.bitsLE(PartVT);
307     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
308                        DL, ValueVT.getScalarType(), Val);
309   }
310 
311   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
312 }
313 
314 
315 
316 
317 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
318                                  SDValue Val, SDValue *Parts, unsigned NumParts,
319                                  EVT PartVT);
320 
321 /// getCopyToParts - Create a series of nodes that contain the specified value
322 /// split into legal parts.  If the parts contain more bits than Val, then, for
323 /// integers, ExtendKind can be used to specify how to generate the extra bits.
324 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
325                            SDValue Val, SDValue *Parts, unsigned NumParts,
326                            EVT PartVT,
327                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
328   EVT ValueVT = Val.getValueType();
329 
330   // Handle the vector case separately.
331   if (ValueVT.isVector())
332     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   unsigned PartBits = PartVT.getSizeInBits();
336   unsigned OrigNumParts = NumParts;
337   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
338 
339   if (NumParts == 0)
340     return;
341 
342   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
343   if (PartVT == ValueVT) {
344     assert(NumParts == 1 && "No-op copy with multiple parts!");
345     Parts[0] = Val;
346     return;
347   }
348 
349   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
350     // If the parts cover more bits than the value has, promote the value.
351     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
352       assert(NumParts == 1 && "Do not know what to promote to!");
353       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
354     } else {
355       assert(PartVT.isInteger() && ValueVT.isInteger() &&
356              "Unknown mismatch!");
357       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
358       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
359     }
360   } else if (PartBits == ValueVT.getSizeInBits()) {
361     // Different types of the same size.
362     assert(NumParts == 1 && PartVT != ValueVT);
363     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
364   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
365     // If the parts cover less bits than value has, truncate the value.
366     assert(PartVT.isInteger() && ValueVT.isInteger() &&
367            "Unknown mismatch!");
368     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
369     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
370   }
371 
372   // The value may have changed - recompute ValueVT.
373   ValueVT = Val.getValueType();
374   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
375          "Failed to tile the value with PartVT!");
376 
377   if (NumParts == 1) {
378     assert(PartVT == ValueVT && "Type conversion failed!");
379     Parts[0] = Val;
380     return;
381   }
382 
383   // Expand the value into multiple parts.
384   if (NumParts & (NumParts - 1)) {
385     // The number of parts is not a power of 2.  Split off and copy the tail.
386     assert(PartVT.isInteger() && ValueVT.isInteger() &&
387            "Do not know what to expand to!");
388     unsigned RoundParts = 1 << Log2_32(NumParts);
389     unsigned RoundBits = RoundParts * PartBits;
390     unsigned OddParts = NumParts - RoundParts;
391     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
392                                  DAG.getIntPtrConstant(RoundBits));
393     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
394 
395     if (TLI.isBigEndian())
396       // The odd parts were reversed by getCopyToParts - unreverse them.
397       std::reverse(Parts + RoundParts, Parts + NumParts);
398 
399     NumParts = RoundParts;
400     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
401     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
402   }
403 
404   // The number of parts is a power of 2.  Repeatedly bisect the value using
405   // EXTRACT_ELEMENT.
406   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
407                          EVT::getIntegerVT(*DAG.getContext(),
408                                            ValueVT.getSizeInBits()),
409                          Val);
410 
411   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
412     for (unsigned i = 0; i < NumParts; i += StepSize) {
413       unsigned ThisBits = StepSize * PartBits / 2;
414       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
415       SDValue &Part0 = Parts[i];
416       SDValue &Part1 = Parts[i+StepSize/2];
417 
418       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
419                           ThisVT, Part0, DAG.getIntPtrConstant(1));
420       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
421                           ThisVT, Part0, DAG.getIntPtrConstant(0));
422 
423       if (ThisBits == PartBits && ThisVT != PartVT) {
424         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
425         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
426       }
427     }
428   }
429 
430   if (TLI.isBigEndian())
431     std::reverse(Parts, Parts + OrigNumParts);
432 }
433 
434 
435 /// getCopyToPartsVector - Create a series of nodes that contain the specified
436 /// value split into legal parts.
437 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
438                                  SDValue Val, SDValue *Parts, unsigned NumParts,
439                                  EVT PartVT) {
440   EVT ValueVT = Val.getValueType();
441   assert(ValueVT.isVector() && "Not a vector");
442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
443 
444   if (NumParts == 1) {
445     if (PartVT == ValueVT) {
446       // Nothing to do.
447     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
448       // Bitconvert vector->vector case.
449       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
450     } else if (PartVT.isVector() &&
451                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
452                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
453       EVT ElementVT = PartVT.getVectorElementType();
454       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
455       // undef elements.
456       SmallVector<SDValue, 16> Ops;
457       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
458         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
459                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
460 
461       for (unsigned i = ValueVT.getVectorNumElements(),
462            e = PartVT.getVectorNumElements(); i != e; ++i)
463         Ops.push_back(DAG.getUNDEF(ElementVT));
464 
465       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
466 
467       // FIXME: Use CONCAT for 2x -> 4x.
468 
469       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
470       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
471     } else if (PartVT.isVector() &&
472                PartVT.getVectorElementType().bitsGE(
473                  ValueVT.getVectorElementType()) &&
474                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
475 
476       // Promoted vector extract
477       bool Smaller = PartVT.bitsLE(ValueVT);
478       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
479                         DL, PartVT, Val);
480     } else{
481       // Vector -> scalar conversion.
482       assert(ValueVT.getVectorNumElements() == 1 &&
483              "Only trivial vector-to-scalar conversions should get here!");
484       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
485                         PartVT, Val, DAG.getIntPtrConstant(0));
486 
487       bool Smaller = ValueVT.bitsLE(PartVT);
488       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
489                          DL, PartVT, Val);
490     }
491 
492     Parts[0] = Val;
493     return;
494   }
495 
496   // Handle a multi-element vector.
497   EVT IntermediateVT, RegisterVT;
498   unsigned NumIntermediates;
499   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
500                                                 IntermediateVT,
501                                                 NumIntermediates, RegisterVT);
502   unsigned NumElements = ValueVT.getVectorNumElements();
503 
504   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
505   NumParts = NumRegs; // Silence a compiler warning.
506   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
507 
508   // Split the vector into intermediate operands.
509   SmallVector<SDValue, 8> Ops(NumIntermediates);
510   for (unsigned i = 0; i != NumIntermediates; ++i) {
511     if (IntermediateVT.isVector())
512       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
513                            IntermediateVT, Val,
514                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
515     else
516       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
517                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
518   }
519 
520   // Split the intermediate operands into legal parts.
521   if (NumParts == NumIntermediates) {
522     // If the register was not expanded, promote or copy the value,
523     // as appropriate.
524     for (unsigned i = 0; i != NumParts; ++i)
525       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
526   } else if (NumParts > 0) {
527     // If the intermediate type was expanded, split each the value into
528     // legal parts.
529     assert(NumParts % NumIntermediates == 0 &&
530            "Must expand into a divisible number of parts!");
531     unsigned Factor = NumParts / NumIntermediates;
532     for (unsigned i = 0; i != NumIntermediates; ++i)
533       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
534   }
535 }
536 
537 
538 
539 
540 namespace {
541   /// RegsForValue - This struct represents the registers (physical or virtual)
542   /// that a particular set of values is assigned, and the type information
543   /// about the value. The most common situation is to represent one value at a
544   /// time, but struct or array values are handled element-wise as multiple
545   /// values.  The splitting of aggregates is performed recursively, so that we
546   /// never have aggregate-typed registers. The values at this point do not
547   /// necessarily have legal types, so each value may require one or more
548   /// registers of some legal type.
549   ///
550   struct RegsForValue {
551     /// ValueVTs - The value types of the values, which may not be legal, and
552     /// may need be promoted or synthesized from one or more registers.
553     ///
554     SmallVector<EVT, 4> ValueVTs;
555 
556     /// RegVTs - The value types of the registers. This is the same size as
557     /// ValueVTs and it records, for each value, what the type of the assigned
558     /// register or registers are. (Individual values are never synthesized
559     /// from more than one type of register.)
560     ///
561     /// With virtual registers, the contents of RegVTs is redundant with TLI's
562     /// getRegisterType member function, however when with physical registers
563     /// it is necessary to have a separate record of the types.
564     ///
565     SmallVector<EVT, 4> RegVTs;
566 
567     /// Regs - This list holds the registers assigned to the values.
568     /// Each legal or promoted value requires one register, and each
569     /// expanded value requires multiple registers.
570     ///
571     SmallVector<unsigned, 4> Regs;
572 
573     RegsForValue() {}
574 
575     RegsForValue(const SmallVector<unsigned, 4> &regs,
576                  EVT regvt, EVT valuevt)
577       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
578 
579     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
580                  unsigned Reg, Type *Ty) {
581       ComputeValueVTs(tli, Ty, ValueVTs);
582 
583       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
584         EVT ValueVT = ValueVTs[Value];
585         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
586         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
587         for (unsigned i = 0; i != NumRegs; ++i)
588           Regs.push_back(Reg + i);
589         RegVTs.push_back(RegisterVT);
590         Reg += NumRegs;
591       }
592     }
593 
594     /// areValueTypesLegal - Return true if types of all the values are legal.
595     bool areValueTypesLegal(const TargetLowering &TLI) {
596       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
597         EVT RegisterVT = RegVTs[Value];
598         if (!TLI.isTypeLegal(RegisterVT))
599           return false;
600       }
601       return true;
602     }
603 
604     /// append - Add the specified values to this one.
605     void append(const RegsForValue &RHS) {
606       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
607       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
608       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
609     }
610 
611     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
612     /// this value and returns the result as a ValueVTs value.  This uses
613     /// Chain/Flag as the input and updates them for the output Chain/Flag.
614     /// If the Flag pointer is NULL, no flag is used.
615     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
616                             DebugLoc dl,
617                             SDValue &Chain, SDValue *Flag) const;
618 
619     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
620     /// specified value into the registers specified by this object.  This uses
621     /// Chain/Flag as the input and updates them for the output Chain/Flag.
622     /// If the Flag pointer is NULL, no flag is used.
623     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
624                        SDValue &Chain, SDValue *Flag) const;
625 
626     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
627     /// operand list.  This adds the code marker, matching input operand index
628     /// (if applicable), and includes the number of values added into it.
629     void AddInlineAsmOperands(unsigned Kind,
630                               bool HasMatching, unsigned MatchingIdx,
631                               SelectionDAG &DAG,
632                               std::vector<SDValue> &Ops) const;
633   };
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       DebugLoc dl,
643                                       SDValue &Chain, SDValue *Flag) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     EVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (Flag == 0) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       // FIXME: We capture more information than the dag can represent.  For
688       // now, just use the tightest assertzext/assertsext possible.
689       bool isSExt = true;
690       EVT FromVT(MVT::Other);
691       if (NumSignBits == RegSize)
692         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
693       else if (NumZeroBits >= RegSize-1)
694         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
695       else if (NumSignBits > RegSize-8)
696         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
697       else if (NumZeroBits >= RegSize-8)
698         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
699       else if (NumSignBits > RegSize-16)
700         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
701       else if (NumZeroBits >= RegSize-16)
702         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
703       else if (NumSignBits > RegSize-32)
704         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
705       else if (NumZeroBits >= RegSize-32)
706         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
707       else
708         continue;
709 
710       // Add an assertion node.
711       assert(FromVT != MVT::Other);
712       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
713                              RegisterVT, P, DAG.getValueType(FromVT));
714     }
715 
716     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
717                                      NumRegs, RegisterVT, ValueVT);
718     Part += NumRegs;
719     Parts.clear();
720   }
721 
722   return DAG.getNode(ISD::MERGE_VALUES, dl,
723                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
724                      &Values[0], ValueVTs.size());
725 }
726 
727 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
728 /// specified value into the registers specified by this object.  This uses
729 /// Chain/Flag as the input and updates them for the output Chain/Flag.
730 /// If the Flag pointer is NULL, no flag is used.
731 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
732                                  SDValue &Chain, SDValue *Flag) const {
733   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
734 
735   // Get the list of the values's legal parts.
736   unsigned NumRegs = Regs.size();
737   SmallVector<SDValue, 8> Parts(NumRegs);
738   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
739     EVT ValueVT = ValueVTs[Value];
740     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
741     EVT RegisterVT = RegVTs[Value];
742 
743     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
744                    &Parts[Part], NumParts, RegisterVT);
745     Part += NumParts;
746   }
747 
748   // Copy the parts into the registers.
749   SmallVector<SDValue, 8> Chains(NumRegs);
750   for (unsigned i = 0; i != NumRegs; ++i) {
751     SDValue Part;
752     if (Flag == 0) {
753       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
754     } else {
755       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
756       *Flag = Part.getValue(1);
757     }
758 
759     Chains[i] = Part.getValue(0);
760   }
761 
762   if (NumRegs == 1 || Flag)
763     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
764     // flagged to it. That is the CopyToReg nodes and the user are considered
765     // a single scheduling unit. If we create a TokenFactor and return it as
766     // chain, then the TokenFactor is both a predecessor (operand) of the
767     // user as well as a successor (the TF operands are flagged to the user).
768     // c1, f1 = CopyToReg
769     // c2, f2 = CopyToReg
770     // c3     = TokenFactor c1, c2
771     // ...
772     //        = op c3, ..., f2
773     Chain = Chains[NumRegs-1];
774   else
775     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
776 }
777 
778 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
779 /// operand list.  This adds the code marker and includes the number of
780 /// values added into it.
781 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
782                                         unsigned MatchingIdx,
783                                         SelectionDAG &DAG,
784                                         std::vector<SDValue> &Ops) const {
785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
786 
787   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
788   if (HasMatching)
789     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
790   else if (!Regs.empty() &&
791            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
792     // Put the register class of the virtual registers in the flag word.  That
793     // way, later passes can recompute register class constraints for inline
794     // assembly as well as normal instructions.
795     // Don't do this for tied operands that can use the regclass information
796     // from the def.
797     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
798     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
799     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
800   }
801 
802   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
803   Ops.push_back(Res);
804 
805   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
806     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
807     EVT RegisterVT = RegVTs[Value];
808     for (unsigned i = 0; i != NumRegs; ++i) {
809       assert(Reg < Regs.size() && "Mismatch in # registers expected");
810       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
811     }
812   }
813 }
814 
815 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
816                                const TargetLibraryInfo *li) {
817   AA = &aa;
818   GFI = gfi;
819   LibInfo = li;
820   TD = DAG.getTarget().getTargetData();
821   LPadToCallSiteMap.clear();
822 }
823 
824 /// clear - Clear out the current SelectionDAG and the associated
825 /// state and prepare this SelectionDAGBuilder object to be used
826 /// for a new block. This doesn't clear out information about
827 /// additional blocks that are needed to complete switch lowering
828 /// or PHI node updating; that information is cleared out as it is
829 /// consumed.
830 void SelectionDAGBuilder::clear() {
831   NodeMap.clear();
832   UnusedArgNodeMap.clear();
833   PendingLoads.clear();
834   PendingExports.clear();
835   CurDebugLoc = DebugLoc();
836   HasTailCall = false;
837 }
838 
839 /// clearDanglingDebugInfo - Clear the dangling debug information
840 /// map. This function is seperated from the clear so that debug
841 /// information that is dangling in a basic block can be properly
842 /// resolved in a different basic block. This allows the
843 /// SelectionDAG to resolve dangling debug information attached
844 /// to PHI nodes.
845 void SelectionDAGBuilder::clearDanglingDebugInfo() {
846   DanglingDebugInfoMap.clear();
847 }
848 
849 /// getRoot - Return the current virtual root of the Selection DAG,
850 /// flushing any PendingLoad items. This must be done before emitting
851 /// a store or any other node that may need to be ordered after any
852 /// prior load instructions.
853 ///
854 SDValue SelectionDAGBuilder::getRoot() {
855   if (PendingLoads.empty())
856     return DAG.getRoot();
857 
858   if (PendingLoads.size() == 1) {
859     SDValue Root = PendingLoads[0];
860     DAG.setRoot(Root);
861     PendingLoads.clear();
862     return Root;
863   }
864 
865   // Otherwise, we have to make a token factor node.
866   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
867                                &PendingLoads[0], PendingLoads.size());
868   PendingLoads.clear();
869   DAG.setRoot(Root);
870   return Root;
871 }
872 
873 /// getControlRoot - Similar to getRoot, but instead of flushing all the
874 /// PendingLoad items, flush all the PendingExports items. It is necessary
875 /// to do this before emitting a terminator instruction.
876 ///
877 SDValue SelectionDAGBuilder::getControlRoot() {
878   SDValue Root = DAG.getRoot();
879 
880   if (PendingExports.empty())
881     return Root;
882 
883   // Turn all of the CopyToReg chains into one factored node.
884   if (Root.getOpcode() != ISD::EntryToken) {
885     unsigned i = 0, e = PendingExports.size();
886     for (; i != e; ++i) {
887       assert(PendingExports[i].getNode()->getNumOperands() > 1);
888       if (PendingExports[i].getNode()->getOperand(0) == Root)
889         break;  // Don't add the root if we already indirectly depend on it.
890     }
891 
892     if (i == e)
893       PendingExports.push_back(Root);
894   }
895 
896   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
897                      &PendingExports[0],
898                      PendingExports.size());
899   PendingExports.clear();
900   DAG.setRoot(Root);
901   return Root;
902 }
903 
904 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
905   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
906   DAG.AssignOrdering(Node, SDNodeOrder);
907 
908   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
909     AssignOrderingToNode(Node->getOperand(I).getNode());
910 }
911 
912 void SelectionDAGBuilder::visit(const Instruction &I) {
913   // Set up outgoing PHI node register values before emitting the terminator.
914   if (isa<TerminatorInst>(&I))
915     HandlePHINodesInSuccessorBlocks(I.getParent());
916 
917   CurDebugLoc = I.getDebugLoc();
918 
919   visit(I.getOpcode(), I);
920 
921   if (!isa<TerminatorInst>(&I) && !HasTailCall)
922     CopyToExportRegsIfNeeded(&I);
923 
924   CurDebugLoc = DebugLoc();
925 }
926 
927 void SelectionDAGBuilder::visitPHI(const PHINode &) {
928   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
929 }
930 
931 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
932   // Note: this doesn't use InstVisitor, because it has to work with
933   // ConstantExpr's in addition to instructions.
934   switch (Opcode) {
935   default: llvm_unreachable("Unknown instruction type encountered!");
936     // Build the switch statement using the Instruction.def file.
937 #define HANDLE_INST(NUM, OPCODE, CLASS) \
938     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
939 #include "llvm/Instruction.def"
940   }
941 
942   // Assign the ordering to the freshly created DAG nodes.
943   if (NodeMap.count(&I)) {
944     ++SDNodeOrder;
945     AssignOrderingToNode(getValue(&I).getNode());
946   }
947 }
948 
949 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
950 // generate the debug data structures now that we've seen its definition.
951 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
952                                                    SDValue Val) {
953   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
954   if (DDI.getDI()) {
955     const DbgValueInst *DI = DDI.getDI();
956     DebugLoc dl = DDI.getdl();
957     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
958     MDNode *Variable = DI->getVariable();
959     uint64_t Offset = DI->getOffset();
960     SDDbgValue *SDV;
961     if (Val.getNode()) {
962       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
963         SDV = DAG.getDbgValue(Variable, Val.getNode(),
964                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
965         DAG.AddDbgValue(SDV, Val.getNode(), false);
966       }
967     } else
968       DEBUG(dbgs() << "Dropping debug info for " << DI);
969     DanglingDebugInfoMap[V] = DanglingDebugInfo();
970   }
971 }
972 
973 /// getValue - Return an SDValue for the given Value.
974 SDValue SelectionDAGBuilder::getValue(const Value *V) {
975   // If we already have an SDValue for this value, use it. It's important
976   // to do this first, so that we don't create a CopyFromReg if we already
977   // have a regular SDValue.
978   SDValue &N = NodeMap[V];
979   if (N.getNode()) return N;
980 
981   // If there's a virtual register allocated and initialized for this
982   // value, use it.
983   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
984   if (It != FuncInfo.ValueMap.end()) {
985     unsigned InReg = It->second;
986     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
987     SDValue Chain = DAG.getEntryNode();
988     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
989     resolveDanglingDebugInfo(V, N);
990     return N;
991   }
992 
993   // Otherwise create a new SDValue and remember it.
994   SDValue Val = getValueImpl(V);
995   NodeMap[V] = Val;
996   resolveDanglingDebugInfo(V, Val);
997   return Val;
998 }
999 
1000 /// getNonRegisterValue - Return an SDValue for the given Value, but
1001 /// don't look in FuncInfo.ValueMap for a virtual register.
1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1003   // If we already have an SDValue for this value, use it.
1004   SDValue &N = NodeMap[V];
1005   if (N.getNode()) return N;
1006 
1007   // Otherwise create a new SDValue and remember it.
1008   SDValue Val = getValueImpl(V);
1009   NodeMap[V] = Val;
1010   resolveDanglingDebugInfo(V, Val);
1011   return Val;
1012 }
1013 
1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1015 /// Create an SDValue for the given value.
1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1017   if (const Constant *C = dyn_cast<Constant>(V)) {
1018     EVT VT = TLI.getValueType(V->getType(), true);
1019 
1020     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1021       return DAG.getConstant(*CI, VT);
1022 
1023     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1024       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1025 
1026     if (isa<ConstantPointerNull>(C))
1027       return DAG.getConstant(0, TLI.getPointerTy());
1028 
1029     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1030       return DAG.getConstantFP(*CFP, VT);
1031 
1032     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1033       return DAG.getUNDEF(VT);
1034 
1035     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1036       visit(CE->getOpcode(), *CE);
1037       SDValue N1 = NodeMap[V];
1038       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1039       return N1;
1040     }
1041 
1042     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1043       SmallVector<SDValue, 4> Constants;
1044       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1045            OI != OE; ++OI) {
1046         SDNode *Val = getValue(*OI).getNode();
1047         // If the operand is an empty aggregate, there are no values.
1048         if (!Val) continue;
1049         // Add each leaf value from the operand to the Constants list
1050         // to form a flattened list of all the values.
1051         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1052           Constants.push_back(SDValue(Val, i));
1053       }
1054 
1055       return DAG.getMergeValues(&Constants[0], Constants.size(),
1056                                 getCurDebugLoc());
1057     }
1058 
1059     if (const ConstantDataSequential *CDS =
1060           dyn_cast<ConstantDataSequential>(C)) {
1061       SmallVector<SDValue, 4> Ops;
1062       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1063         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1064         // Add each leaf value from the operand to the Constants list
1065         // to form a flattened list of all the values.
1066         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1067           Ops.push_back(SDValue(Val, i));
1068       }
1069 
1070       if (isa<ArrayType>(CDS->getType()))
1071         return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1072       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1073                                       VT, &Ops[0], Ops.size());
1074     }
1075 
1076     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1077       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1078              "Unknown struct or array constant!");
1079 
1080       SmallVector<EVT, 4> ValueVTs;
1081       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1082       unsigned NumElts = ValueVTs.size();
1083       if (NumElts == 0)
1084         return SDValue(); // empty struct
1085       SmallVector<SDValue, 4> Constants(NumElts);
1086       for (unsigned i = 0; i != NumElts; ++i) {
1087         EVT EltVT = ValueVTs[i];
1088         if (isa<UndefValue>(C))
1089           Constants[i] = DAG.getUNDEF(EltVT);
1090         else if (EltVT.isFloatingPoint())
1091           Constants[i] = DAG.getConstantFP(0, EltVT);
1092         else
1093           Constants[i] = DAG.getConstant(0, EltVT);
1094       }
1095 
1096       return DAG.getMergeValues(&Constants[0], NumElts,
1097                                 getCurDebugLoc());
1098     }
1099 
1100     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1101       return DAG.getBlockAddress(BA, VT);
1102 
1103     VectorType *VecTy = cast<VectorType>(V->getType());
1104     unsigned NumElements = VecTy->getNumElements();
1105 
1106     // Now that we know the number and type of the elements, get that number of
1107     // elements into the Ops array based on what kind of constant it is.
1108     SmallVector<SDValue, 16> Ops;
1109     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1110       for (unsigned i = 0; i != NumElements; ++i)
1111         Ops.push_back(getValue(CV->getOperand(i)));
1112     } else {
1113       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1114       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1115 
1116       SDValue Op;
1117       if (EltVT.isFloatingPoint())
1118         Op = DAG.getConstantFP(0, EltVT);
1119       else
1120         Op = DAG.getConstant(0, EltVT);
1121       Ops.assign(NumElements, Op);
1122     }
1123 
1124     // Create a BUILD_VECTOR node.
1125     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1126                                     VT, &Ops[0], Ops.size());
1127   }
1128 
1129   // If this is a static alloca, generate it as the frameindex instead of
1130   // computation.
1131   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1132     DenseMap<const AllocaInst*, int>::iterator SI =
1133       FuncInfo.StaticAllocaMap.find(AI);
1134     if (SI != FuncInfo.StaticAllocaMap.end())
1135       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1136   }
1137 
1138   // If this is an instruction which fast-isel has deferred, select it now.
1139   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1140     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1141     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1142     SDValue Chain = DAG.getEntryNode();
1143     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1144   }
1145 
1146   llvm_unreachable("Can't get register for value!");
1147 }
1148 
1149 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1150   SDValue Chain = getControlRoot();
1151   SmallVector<ISD::OutputArg, 8> Outs;
1152   SmallVector<SDValue, 8> OutVals;
1153 
1154   if (!FuncInfo.CanLowerReturn) {
1155     unsigned DemoteReg = FuncInfo.DemoteRegister;
1156     const Function *F = I.getParent()->getParent();
1157 
1158     // Emit a store of the return value through the virtual register.
1159     // Leave Outs empty so that LowerReturn won't try to load return
1160     // registers the usual way.
1161     SmallVector<EVT, 1> PtrValueVTs;
1162     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1163                     PtrValueVTs);
1164 
1165     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1166     SDValue RetOp = getValue(I.getOperand(0));
1167 
1168     SmallVector<EVT, 4> ValueVTs;
1169     SmallVector<uint64_t, 4> Offsets;
1170     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1171     unsigned NumValues = ValueVTs.size();
1172 
1173     SmallVector<SDValue, 4> Chains(NumValues);
1174     for (unsigned i = 0; i != NumValues; ++i) {
1175       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1176                                 RetPtr.getValueType(), RetPtr,
1177                                 DAG.getIntPtrConstant(Offsets[i]));
1178       Chains[i] =
1179         DAG.getStore(Chain, getCurDebugLoc(),
1180                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1181                      // FIXME: better loc info would be nice.
1182                      Add, MachinePointerInfo(), false, false, 0);
1183     }
1184 
1185     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1186                         MVT::Other, &Chains[0], NumValues);
1187   } else if (I.getNumOperands() != 0) {
1188     SmallVector<EVT, 4> ValueVTs;
1189     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1190     unsigned NumValues = ValueVTs.size();
1191     if (NumValues) {
1192       SDValue RetOp = getValue(I.getOperand(0));
1193       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1194         EVT VT = ValueVTs[j];
1195 
1196         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1197 
1198         const Function *F = I.getParent()->getParent();
1199         if (F->paramHasAttr(0, Attribute::SExt))
1200           ExtendKind = ISD::SIGN_EXTEND;
1201         else if (F->paramHasAttr(0, Attribute::ZExt))
1202           ExtendKind = ISD::ZERO_EXTEND;
1203 
1204         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1205           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1206 
1207         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1208         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1209         SmallVector<SDValue, 4> Parts(NumParts);
1210         getCopyToParts(DAG, getCurDebugLoc(),
1211                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1212                        &Parts[0], NumParts, PartVT, ExtendKind);
1213 
1214         // 'inreg' on function refers to return value
1215         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1216         if (F->paramHasAttr(0, Attribute::InReg))
1217           Flags.setInReg();
1218 
1219         // Propagate extension type if any
1220         if (ExtendKind == ISD::SIGN_EXTEND)
1221           Flags.setSExt();
1222         else if (ExtendKind == ISD::ZERO_EXTEND)
1223           Flags.setZExt();
1224 
1225         for (unsigned i = 0; i < NumParts; ++i) {
1226           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1227                                         /*isfixed=*/true));
1228           OutVals.push_back(Parts[i]);
1229         }
1230       }
1231     }
1232   }
1233 
1234   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1235   CallingConv::ID CallConv =
1236     DAG.getMachineFunction().getFunction()->getCallingConv();
1237   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1238                           Outs, OutVals, getCurDebugLoc(), DAG);
1239 
1240   // Verify that the target's LowerReturn behaved as expected.
1241   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1242          "LowerReturn didn't return a valid chain!");
1243 
1244   // Update the DAG with the new chain value resulting from return lowering.
1245   DAG.setRoot(Chain);
1246 }
1247 
1248 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1249 /// created for it, emit nodes to copy the value into the virtual
1250 /// registers.
1251 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1252   // Skip empty types
1253   if (V->getType()->isEmptyTy())
1254     return;
1255 
1256   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1257   if (VMI != FuncInfo.ValueMap.end()) {
1258     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1259     CopyValueToVirtualRegister(V, VMI->second);
1260   }
1261 }
1262 
1263 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1264 /// the current basic block, add it to ValueMap now so that we'll get a
1265 /// CopyTo/FromReg.
1266 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1267   // No need to export constants.
1268   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1269 
1270   // Already exported?
1271   if (FuncInfo.isExportedInst(V)) return;
1272 
1273   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1274   CopyValueToVirtualRegister(V, Reg);
1275 }
1276 
1277 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1278                                                      const BasicBlock *FromBB) {
1279   // The operands of the setcc have to be in this block.  We don't know
1280   // how to export them from some other block.
1281   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1282     // Can export from current BB.
1283     if (VI->getParent() == FromBB)
1284       return true;
1285 
1286     // Is already exported, noop.
1287     return FuncInfo.isExportedInst(V);
1288   }
1289 
1290   // If this is an argument, we can export it if the BB is the entry block or
1291   // if it is already exported.
1292   if (isa<Argument>(V)) {
1293     if (FromBB == &FromBB->getParent()->getEntryBlock())
1294       return true;
1295 
1296     // Otherwise, can only export this if it is already exported.
1297     return FuncInfo.isExportedInst(V);
1298   }
1299 
1300   // Otherwise, constants can always be exported.
1301   return true;
1302 }
1303 
1304 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1305 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1306                                             const MachineBasicBlock *Dst) const {
1307   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1308   if (!BPI)
1309     return 0;
1310   const BasicBlock *SrcBB = Src->getBasicBlock();
1311   const BasicBlock *DstBB = Dst->getBasicBlock();
1312   return BPI->getEdgeWeight(SrcBB, DstBB);
1313 }
1314 
1315 void SelectionDAGBuilder::
1316 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1317                        uint32_t Weight /* = 0 */) {
1318   if (!Weight)
1319     Weight = getEdgeWeight(Src, Dst);
1320   Src->addSuccessor(Dst, Weight);
1321 }
1322 
1323 
1324 static bool InBlock(const Value *V, const BasicBlock *BB) {
1325   if (const Instruction *I = dyn_cast<Instruction>(V))
1326     return I->getParent() == BB;
1327   return true;
1328 }
1329 
1330 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1331 /// This function emits a branch and is used at the leaves of an OR or an
1332 /// AND operator tree.
1333 ///
1334 void
1335 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1336                                                   MachineBasicBlock *TBB,
1337                                                   MachineBasicBlock *FBB,
1338                                                   MachineBasicBlock *CurBB,
1339                                                   MachineBasicBlock *SwitchBB) {
1340   const BasicBlock *BB = CurBB->getBasicBlock();
1341 
1342   // If the leaf of the tree is a comparison, merge the condition into
1343   // the caseblock.
1344   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1345     // The operands of the cmp have to be in this block.  We don't know
1346     // how to export them from some other block.  If this is the first block
1347     // of the sequence, no exporting is needed.
1348     if (CurBB == SwitchBB ||
1349         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1350          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1351       ISD::CondCode Condition;
1352       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1353         Condition = getICmpCondCode(IC->getPredicate());
1354       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1355         Condition = getFCmpCondCode(FC->getPredicate());
1356         if (TM.Options.NoNaNsFPMath)
1357           Condition = getFCmpCodeWithoutNaN(Condition);
1358       } else {
1359         Condition = ISD::SETEQ; // silence warning.
1360         llvm_unreachable("Unknown compare instruction");
1361       }
1362 
1363       CaseBlock CB(Condition, BOp->getOperand(0),
1364                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1365       SwitchCases.push_back(CB);
1366       return;
1367     }
1368   }
1369 
1370   // Create a CaseBlock record representing this branch.
1371   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1372                NULL, TBB, FBB, CurBB);
1373   SwitchCases.push_back(CB);
1374 }
1375 
1376 /// FindMergedConditions - If Cond is an expression like
1377 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1378                                                MachineBasicBlock *TBB,
1379                                                MachineBasicBlock *FBB,
1380                                                MachineBasicBlock *CurBB,
1381                                                MachineBasicBlock *SwitchBB,
1382                                                unsigned Opc) {
1383   // If this node is not part of the or/and tree, emit it as a branch.
1384   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1385   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1386       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1387       BOp->getParent() != CurBB->getBasicBlock() ||
1388       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1389       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1390     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1391     return;
1392   }
1393 
1394   //  Create TmpBB after CurBB.
1395   MachineFunction::iterator BBI = CurBB;
1396   MachineFunction &MF = DAG.getMachineFunction();
1397   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1398   CurBB->getParent()->insert(++BBI, TmpBB);
1399 
1400   if (Opc == Instruction::Or) {
1401     // Codegen X | Y as:
1402     //   jmp_if_X TBB
1403     //   jmp TmpBB
1404     // TmpBB:
1405     //   jmp_if_Y TBB
1406     //   jmp FBB
1407     //
1408 
1409     // Emit the LHS condition.
1410     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1411 
1412     // Emit the RHS condition into TmpBB.
1413     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1414   } else {
1415     assert(Opc == Instruction::And && "Unknown merge op!");
1416     // Codegen X & Y as:
1417     //   jmp_if_X TmpBB
1418     //   jmp FBB
1419     // TmpBB:
1420     //   jmp_if_Y TBB
1421     //   jmp FBB
1422     //
1423     //  This requires creation of TmpBB after CurBB.
1424 
1425     // Emit the LHS condition.
1426     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1427 
1428     // Emit the RHS condition into TmpBB.
1429     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1430   }
1431 }
1432 
1433 /// If the set of cases should be emitted as a series of branches, return true.
1434 /// If we should emit this as a bunch of and/or'd together conditions, return
1435 /// false.
1436 bool
1437 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1438   if (Cases.size() != 2) return true;
1439 
1440   // If this is two comparisons of the same values or'd or and'd together, they
1441   // will get folded into a single comparison, so don't emit two blocks.
1442   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1443        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1444       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1445        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1446     return false;
1447   }
1448 
1449   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1450   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1451   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1452       Cases[0].CC == Cases[1].CC &&
1453       isa<Constant>(Cases[0].CmpRHS) &&
1454       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1455     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1456       return false;
1457     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1458       return false;
1459   }
1460 
1461   return true;
1462 }
1463 
1464 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1465   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1466 
1467   // Update machine-CFG edges.
1468   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1469 
1470   // Figure out which block is immediately after the current one.
1471   MachineBasicBlock *NextBlock = 0;
1472   MachineFunction::iterator BBI = BrMBB;
1473   if (++BBI != FuncInfo.MF->end())
1474     NextBlock = BBI;
1475 
1476   if (I.isUnconditional()) {
1477     // Update machine-CFG edges.
1478     BrMBB->addSuccessor(Succ0MBB);
1479 
1480     // If this is not a fall-through branch, emit the branch.
1481     if (Succ0MBB != NextBlock)
1482       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1483                               MVT::Other, getControlRoot(),
1484                               DAG.getBasicBlock(Succ0MBB)));
1485 
1486     return;
1487   }
1488 
1489   // If this condition is one of the special cases we handle, do special stuff
1490   // now.
1491   const Value *CondVal = I.getCondition();
1492   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1493 
1494   // If this is a series of conditions that are or'd or and'd together, emit
1495   // this as a sequence of branches instead of setcc's with and/or operations.
1496   // As long as jumps are not expensive, this should improve performance.
1497   // For example, instead of something like:
1498   //     cmp A, B
1499   //     C = seteq
1500   //     cmp D, E
1501   //     F = setle
1502   //     or C, F
1503   //     jnz foo
1504   // Emit:
1505   //     cmp A, B
1506   //     je foo
1507   //     cmp D, E
1508   //     jle foo
1509   //
1510   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1511     if (!TLI.isJumpExpensive() &&
1512         BOp->hasOneUse() &&
1513         (BOp->getOpcode() == Instruction::And ||
1514          BOp->getOpcode() == Instruction::Or)) {
1515       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1516                            BOp->getOpcode());
1517       // If the compares in later blocks need to use values not currently
1518       // exported from this block, export them now.  This block should always
1519       // be the first entry.
1520       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1521 
1522       // Allow some cases to be rejected.
1523       if (ShouldEmitAsBranches(SwitchCases)) {
1524         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1525           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1526           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1527         }
1528 
1529         // Emit the branch for this block.
1530         visitSwitchCase(SwitchCases[0], BrMBB);
1531         SwitchCases.erase(SwitchCases.begin());
1532         return;
1533       }
1534 
1535       // Okay, we decided not to do this, remove any inserted MBB's and clear
1536       // SwitchCases.
1537       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1538         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1539 
1540       SwitchCases.clear();
1541     }
1542   }
1543 
1544   // Create a CaseBlock record representing this branch.
1545   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1546                NULL, Succ0MBB, Succ1MBB, BrMBB);
1547 
1548   // Use visitSwitchCase to actually insert the fast branch sequence for this
1549   // cond branch.
1550   visitSwitchCase(CB, BrMBB);
1551 }
1552 
1553 /// visitSwitchCase - Emits the necessary code to represent a single node in
1554 /// the binary search tree resulting from lowering a switch instruction.
1555 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1556                                           MachineBasicBlock *SwitchBB) {
1557   SDValue Cond;
1558   SDValue CondLHS = getValue(CB.CmpLHS);
1559   DebugLoc dl = getCurDebugLoc();
1560 
1561   // Build the setcc now.
1562   if (CB.CmpMHS == NULL) {
1563     // Fold "(X == true)" to X and "(X == false)" to !X to
1564     // handle common cases produced by branch lowering.
1565     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1566         CB.CC == ISD::SETEQ)
1567       Cond = CondLHS;
1568     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1569              CB.CC == ISD::SETEQ) {
1570       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1571       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1572     } else
1573       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1574   } else {
1575     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1576 
1577     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1578     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1579 
1580     SDValue CmpOp = getValue(CB.CmpMHS);
1581     EVT VT = CmpOp.getValueType();
1582 
1583     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1584       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1585                           ISD::SETLE);
1586     } else {
1587       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1588                                 VT, CmpOp, DAG.getConstant(Low, VT));
1589       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1590                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1591     }
1592   }
1593 
1594   // Update successor info
1595   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1596   addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1597 
1598   // Set NextBlock to be the MBB immediately after the current one, if any.
1599   // This is used to avoid emitting unnecessary branches to the next block.
1600   MachineBasicBlock *NextBlock = 0;
1601   MachineFunction::iterator BBI = SwitchBB;
1602   if (++BBI != FuncInfo.MF->end())
1603     NextBlock = BBI;
1604 
1605   // If the lhs block is the next block, invert the condition so that we can
1606   // fall through to the lhs instead of the rhs block.
1607   if (CB.TrueBB == NextBlock) {
1608     std::swap(CB.TrueBB, CB.FalseBB);
1609     SDValue True = DAG.getConstant(1, Cond.getValueType());
1610     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1611   }
1612 
1613   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1614                                MVT::Other, getControlRoot(), Cond,
1615                                DAG.getBasicBlock(CB.TrueBB));
1616 
1617   // Insert the false branch. Do this even if it's a fall through branch,
1618   // this makes it easier to do DAG optimizations which require inverting
1619   // the branch condition.
1620   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1621                        DAG.getBasicBlock(CB.FalseBB));
1622 
1623   DAG.setRoot(BrCond);
1624 }
1625 
1626 /// visitJumpTable - Emit JumpTable node in the current MBB
1627 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1628   // Emit the code for the jump table
1629   assert(JT.Reg != -1U && "Should lower JT Header first!");
1630   EVT PTy = TLI.getPointerTy();
1631   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1632                                      JT.Reg, PTy);
1633   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1634   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1635                                     MVT::Other, Index.getValue(1),
1636                                     Table, Index);
1637   DAG.setRoot(BrJumpTable);
1638 }
1639 
1640 /// visitJumpTableHeader - This function emits necessary code to produce index
1641 /// in the JumpTable from switch case.
1642 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1643                                                JumpTableHeader &JTH,
1644                                                MachineBasicBlock *SwitchBB) {
1645   // Subtract the lowest switch case value from the value being switched on and
1646   // conditional branch to default mbb if the result is greater than the
1647   // difference between smallest and largest cases.
1648   SDValue SwitchOp = getValue(JTH.SValue);
1649   EVT VT = SwitchOp.getValueType();
1650   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1651                             DAG.getConstant(JTH.First, VT));
1652 
1653   // The SDNode we just created, which holds the value being switched on minus
1654   // the smallest case value, needs to be copied to a virtual register so it
1655   // can be used as an index into the jump table in a subsequent basic block.
1656   // This value may be smaller or larger than the target's pointer type, and
1657   // therefore require extension or truncating.
1658   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1659 
1660   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1661   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1662                                     JumpTableReg, SwitchOp);
1663   JT.Reg = JumpTableReg;
1664 
1665   // Emit the range check for the jump table, and branch to the default block
1666   // for the switch statement if the value being switched on exceeds the largest
1667   // case in the switch.
1668   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1669                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1670                              DAG.getConstant(JTH.Last-JTH.First,VT),
1671                              ISD::SETUGT);
1672 
1673   // Set NextBlock to be the MBB immediately after the current one, if any.
1674   // This is used to avoid emitting unnecessary branches to the next block.
1675   MachineBasicBlock *NextBlock = 0;
1676   MachineFunction::iterator BBI = SwitchBB;
1677 
1678   if (++BBI != FuncInfo.MF->end())
1679     NextBlock = BBI;
1680 
1681   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1682                                MVT::Other, CopyTo, CMP,
1683                                DAG.getBasicBlock(JT.Default));
1684 
1685   if (JT.MBB != NextBlock)
1686     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1687                          DAG.getBasicBlock(JT.MBB));
1688 
1689   DAG.setRoot(BrCond);
1690 }
1691 
1692 /// visitBitTestHeader - This function emits necessary code to produce value
1693 /// suitable for "bit tests"
1694 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1695                                              MachineBasicBlock *SwitchBB) {
1696   // Subtract the minimum value
1697   SDValue SwitchOp = getValue(B.SValue);
1698   EVT VT = SwitchOp.getValueType();
1699   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1700                             DAG.getConstant(B.First, VT));
1701 
1702   // Check range
1703   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1704                                   TLI.getSetCCResultType(Sub.getValueType()),
1705                                   Sub, DAG.getConstant(B.Range, VT),
1706                                   ISD::SETUGT);
1707 
1708   // Determine the type of the test operands.
1709   bool UsePtrType = false;
1710   if (!TLI.isTypeLegal(VT))
1711     UsePtrType = true;
1712   else {
1713     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1714       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1715         // Switch table case range are encoded into series of masks.
1716         // Just use pointer type, it's guaranteed to fit.
1717         UsePtrType = true;
1718         break;
1719       }
1720   }
1721   if (UsePtrType) {
1722     VT = TLI.getPointerTy();
1723     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1724   }
1725 
1726   B.RegVT = VT;
1727   B.Reg = FuncInfo.CreateReg(VT);
1728   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1729                                     B.Reg, Sub);
1730 
1731   // Set NextBlock to be the MBB immediately after the current one, if any.
1732   // This is used to avoid emitting unnecessary branches to the next block.
1733   MachineBasicBlock *NextBlock = 0;
1734   MachineFunction::iterator BBI = SwitchBB;
1735   if (++BBI != FuncInfo.MF->end())
1736     NextBlock = BBI;
1737 
1738   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1739 
1740   addSuccessorWithWeight(SwitchBB, B.Default);
1741   addSuccessorWithWeight(SwitchBB, MBB);
1742 
1743   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1744                                 MVT::Other, CopyTo, RangeCmp,
1745                                 DAG.getBasicBlock(B.Default));
1746 
1747   if (MBB != NextBlock)
1748     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1749                           DAG.getBasicBlock(MBB));
1750 
1751   DAG.setRoot(BrRange);
1752 }
1753 
1754 /// visitBitTestCase - this function produces one "bit test"
1755 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1756                                            MachineBasicBlock* NextMBB,
1757                                            unsigned Reg,
1758                                            BitTestCase &B,
1759                                            MachineBasicBlock *SwitchBB) {
1760   EVT VT = BB.RegVT;
1761   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1762                                        Reg, VT);
1763   SDValue Cmp;
1764   unsigned PopCount = CountPopulation_64(B.Mask);
1765   if (PopCount == 1) {
1766     // Testing for a single bit; just compare the shift count with what it
1767     // would need to be to shift a 1 bit in that position.
1768     Cmp = DAG.getSetCC(getCurDebugLoc(),
1769                        TLI.getSetCCResultType(VT),
1770                        ShiftOp,
1771                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1772                        ISD::SETEQ);
1773   } else if (PopCount == BB.Range) {
1774     // There is only one zero bit in the range, test for it directly.
1775     Cmp = DAG.getSetCC(getCurDebugLoc(),
1776                        TLI.getSetCCResultType(VT),
1777                        ShiftOp,
1778                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1779                        ISD::SETNE);
1780   } else {
1781     // Make desired shift
1782     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1783                                     DAG.getConstant(1, VT), ShiftOp);
1784 
1785     // Emit bit tests and jumps
1786     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1787                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1788     Cmp = DAG.getSetCC(getCurDebugLoc(),
1789                        TLI.getSetCCResultType(VT),
1790                        AndOp, DAG.getConstant(0, VT),
1791                        ISD::SETNE);
1792   }
1793 
1794   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1795   addSuccessorWithWeight(SwitchBB, NextMBB);
1796 
1797   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1798                               MVT::Other, getControlRoot(),
1799                               Cmp, DAG.getBasicBlock(B.TargetBB));
1800 
1801   // Set NextBlock to be the MBB immediately after the current one, if any.
1802   // This is used to avoid emitting unnecessary branches to the next block.
1803   MachineBasicBlock *NextBlock = 0;
1804   MachineFunction::iterator BBI = SwitchBB;
1805   if (++BBI != FuncInfo.MF->end())
1806     NextBlock = BBI;
1807 
1808   if (NextMBB != NextBlock)
1809     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1810                         DAG.getBasicBlock(NextMBB));
1811 
1812   DAG.setRoot(BrAnd);
1813 }
1814 
1815 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1816   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1817 
1818   // Retrieve successors.
1819   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1820   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1821 
1822   const Value *Callee(I.getCalledValue());
1823   if (isa<InlineAsm>(Callee))
1824     visitInlineAsm(&I);
1825   else
1826     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1827 
1828   // If the value of the invoke is used outside of its defining block, make it
1829   // available as a virtual register.
1830   CopyToExportRegsIfNeeded(&I);
1831 
1832   // Update successor info
1833   addSuccessorWithWeight(InvokeMBB, Return);
1834   addSuccessorWithWeight(InvokeMBB, LandingPad);
1835 
1836   // Drop into normal successor.
1837   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1838                           MVT::Other, getControlRoot(),
1839                           DAG.getBasicBlock(Return)));
1840 }
1841 
1842 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1843   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1844 }
1845 
1846 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1847   assert(FuncInfo.MBB->isLandingPad() &&
1848          "Call to landingpad not in landing pad!");
1849 
1850   MachineBasicBlock *MBB = FuncInfo.MBB;
1851   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1852   AddLandingPadInfo(LP, MMI, MBB);
1853 
1854   SmallVector<EVT, 2> ValueVTs;
1855   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1856 
1857   // Insert the EXCEPTIONADDR instruction.
1858   assert(FuncInfo.MBB->isLandingPad() &&
1859          "Call to eh.exception not in landing pad!");
1860   SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1861   SDValue Ops[2];
1862   Ops[0] = DAG.getRoot();
1863   SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1864   SDValue Chain = Op1.getValue(1);
1865 
1866   // Insert the EHSELECTION instruction.
1867   VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1868   Ops[0] = Op1;
1869   Ops[1] = Chain;
1870   SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1871   Chain = Op2.getValue(1);
1872   Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1873 
1874   Ops[0] = Op1;
1875   Ops[1] = Op2;
1876   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1877                             DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1878                             &Ops[0], 2);
1879 
1880   std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1881   setValue(&LP, RetPair.first);
1882   DAG.setRoot(RetPair.second);
1883 }
1884 
1885 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1886 /// small case ranges).
1887 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1888                                                  CaseRecVector& WorkList,
1889                                                  const Value* SV,
1890                                                  MachineBasicBlock *Default,
1891                                                  MachineBasicBlock *SwitchBB) {
1892   Case& BackCase  = *(CR.Range.second-1);
1893 
1894   // Size is the number of Cases represented by this range.
1895   size_t Size = CR.Range.second - CR.Range.first;
1896   if (Size > 3)
1897     return false;
1898 
1899   // Get the MachineFunction which holds the current MBB.  This is used when
1900   // inserting any additional MBBs necessary to represent the switch.
1901   MachineFunction *CurMF = FuncInfo.MF;
1902 
1903   // Figure out which block is immediately after the current one.
1904   MachineBasicBlock *NextBlock = 0;
1905   MachineFunction::iterator BBI = CR.CaseBB;
1906 
1907   if (++BBI != FuncInfo.MF->end())
1908     NextBlock = BBI;
1909 
1910   // If any two of the cases has the same destination, and if one value
1911   // is the same as the other, but has one bit unset that the other has set,
1912   // use bit manipulation to do two compares at once.  For example:
1913   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1914   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1915   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1916   if (Size == 2 && CR.CaseBB == SwitchBB) {
1917     Case &Small = *CR.Range.first;
1918     Case &Big = *(CR.Range.second-1);
1919 
1920     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1921       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1922       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1923 
1924       // Check that there is only one bit different.
1925       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1926           (SmallValue | BigValue) == BigValue) {
1927         // Isolate the common bit.
1928         APInt CommonBit = BigValue & ~SmallValue;
1929         assert((SmallValue | CommonBit) == BigValue &&
1930                CommonBit.countPopulation() == 1 && "Not a common bit?");
1931 
1932         SDValue CondLHS = getValue(SV);
1933         EVT VT = CondLHS.getValueType();
1934         DebugLoc DL = getCurDebugLoc();
1935 
1936         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1937                                  DAG.getConstant(CommonBit, VT));
1938         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1939                                     Or, DAG.getConstant(BigValue, VT),
1940                                     ISD::SETEQ);
1941 
1942         // Update successor info.
1943         addSuccessorWithWeight(SwitchBB, Small.BB);
1944         addSuccessorWithWeight(SwitchBB, Default);
1945 
1946         // Insert the true branch.
1947         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1948                                      getControlRoot(), Cond,
1949                                      DAG.getBasicBlock(Small.BB));
1950 
1951         // Insert the false branch.
1952         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1953                              DAG.getBasicBlock(Default));
1954 
1955         DAG.setRoot(BrCond);
1956         return true;
1957       }
1958     }
1959   }
1960 
1961   // Rearrange the case blocks so that the last one falls through if possible.
1962   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1963     // The last case block won't fall through into 'NextBlock' if we emit the
1964     // branches in this order.  See if rearranging a case value would help.
1965     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1966       if (I->BB == NextBlock) {
1967         std::swap(*I, BackCase);
1968         break;
1969       }
1970     }
1971   }
1972 
1973   // Create a CaseBlock record representing a conditional branch to
1974   // the Case's target mbb if the value being switched on SV is equal
1975   // to C.
1976   MachineBasicBlock *CurBlock = CR.CaseBB;
1977   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1978     MachineBasicBlock *FallThrough;
1979     if (I != E-1) {
1980       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1981       CurMF->insert(BBI, FallThrough);
1982 
1983       // Put SV in a virtual register to make it available from the new blocks.
1984       ExportFromCurrentBlock(SV);
1985     } else {
1986       // If the last case doesn't match, go to the default block.
1987       FallThrough = Default;
1988     }
1989 
1990     const Value *RHS, *LHS, *MHS;
1991     ISD::CondCode CC;
1992     if (I->High == I->Low) {
1993       // This is just small small case range :) containing exactly 1 case
1994       CC = ISD::SETEQ;
1995       LHS = SV; RHS = I->High; MHS = NULL;
1996     } else {
1997       CC = ISD::SETLE;
1998       LHS = I->Low; MHS = SV; RHS = I->High;
1999     }
2000 
2001     uint32_t ExtraWeight = I->ExtraWeight;
2002     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2003                  /* me */ CurBlock,
2004                  /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2005 
2006     // If emitting the first comparison, just call visitSwitchCase to emit the
2007     // code into the current block.  Otherwise, push the CaseBlock onto the
2008     // vector to be later processed by SDISel, and insert the node's MBB
2009     // before the next MBB.
2010     if (CurBlock == SwitchBB)
2011       visitSwitchCase(CB, SwitchBB);
2012     else
2013       SwitchCases.push_back(CB);
2014 
2015     CurBlock = FallThrough;
2016   }
2017 
2018   return true;
2019 }
2020 
2021 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2022   return !TLI.getTargetMachine().Options.DisableJumpTables &&
2023           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2024            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2025 }
2026 
2027 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2028   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2029   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2030   return (LastExt - FirstExt + 1ULL);
2031 }
2032 
2033 /// handleJTSwitchCase - Emit jumptable for current switch case range
2034 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2035                                              CaseRecVector &WorkList,
2036                                              const Value *SV,
2037                                              MachineBasicBlock *Default,
2038                                              MachineBasicBlock *SwitchBB) {
2039   Case& FrontCase = *CR.Range.first;
2040   Case& BackCase  = *(CR.Range.second-1);
2041 
2042   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2043   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2044 
2045   APInt TSize(First.getBitWidth(), 0);
2046   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2047     TSize += I->size();
2048 
2049   if (!areJTsAllowed(TLI) || TSize.ult(4))
2050     return false;
2051 
2052   APInt Range = ComputeRange(First, Last);
2053   // The density is TSize / Range. Require at least 40%.
2054   // It should not be possible for IntTSize to saturate for sane code, but make
2055   // sure we handle Range saturation correctly.
2056   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2057   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2058   if (IntTSize * 10 < IntRange * 4)
2059     return false;
2060 
2061   DEBUG(dbgs() << "Lowering jump table\n"
2062                << "First entry: " << First << ". Last entry: " << Last << '\n'
2063                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2064 
2065   // Get the MachineFunction which holds the current MBB.  This is used when
2066   // inserting any additional MBBs necessary to represent the switch.
2067   MachineFunction *CurMF = FuncInfo.MF;
2068 
2069   // Figure out which block is immediately after the current one.
2070   MachineFunction::iterator BBI = CR.CaseBB;
2071   ++BBI;
2072 
2073   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2074 
2075   // Create a new basic block to hold the code for loading the address
2076   // of the jump table, and jumping to it.  Update successor information;
2077   // we will either branch to the default case for the switch, or the jump
2078   // table.
2079   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2080   CurMF->insert(BBI, JumpTableBB);
2081 
2082   addSuccessorWithWeight(CR.CaseBB, Default);
2083   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2084 
2085   // Build a vector of destination BBs, corresponding to each target
2086   // of the jump table. If the value of the jump table slot corresponds to
2087   // a case statement, push the case's BB onto the vector, otherwise, push
2088   // the default BB.
2089   std::vector<MachineBasicBlock*> DestBBs;
2090   APInt TEI = First;
2091   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2092     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2093     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2094 
2095     if (Low.sle(TEI) && TEI.sle(High)) {
2096       DestBBs.push_back(I->BB);
2097       if (TEI==High)
2098         ++I;
2099     } else {
2100       DestBBs.push_back(Default);
2101     }
2102   }
2103 
2104   // Update successor info. Add one edge to each unique successor.
2105   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2106   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2107          E = DestBBs.end(); I != E; ++I) {
2108     if (!SuccsHandled[(*I)->getNumber()]) {
2109       SuccsHandled[(*I)->getNumber()] = true;
2110       addSuccessorWithWeight(JumpTableBB, *I);
2111     }
2112   }
2113 
2114   // Create a jump table index for this jump table.
2115   unsigned JTEncoding = TLI.getJumpTableEncoding();
2116   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2117                        ->createJumpTableIndex(DestBBs);
2118 
2119   // Set the jump table information so that we can codegen it as a second
2120   // MachineBasicBlock
2121   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2122   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2123   if (CR.CaseBB == SwitchBB)
2124     visitJumpTableHeader(JT, JTH, SwitchBB);
2125 
2126   JTCases.push_back(JumpTableBlock(JTH, JT));
2127   return true;
2128 }
2129 
2130 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2131 /// 2 subtrees.
2132 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2133                                                   CaseRecVector& WorkList,
2134                                                   const Value* SV,
2135                                                   MachineBasicBlock *Default,
2136                                                   MachineBasicBlock *SwitchBB) {
2137   // Get the MachineFunction which holds the current MBB.  This is used when
2138   // inserting any additional MBBs necessary to represent the switch.
2139   MachineFunction *CurMF = FuncInfo.MF;
2140 
2141   // Figure out which block is immediately after the current one.
2142   MachineFunction::iterator BBI = CR.CaseBB;
2143   ++BBI;
2144 
2145   Case& FrontCase = *CR.Range.first;
2146   Case& BackCase  = *(CR.Range.second-1);
2147   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2148 
2149   // Size is the number of Cases represented by this range.
2150   unsigned Size = CR.Range.second - CR.Range.first;
2151 
2152   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2153   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2154   double FMetric = 0;
2155   CaseItr Pivot = CR.Range.first + Size/2;
2156 
2157   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2158   // (heuristically) allow us to emit JumpTable's later.
2159   APInt TSize(First.getBitWidth(), 0);
2160   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2161        I!=E; ++I)
2162     TSize += I->size();
2163 
2164   APInt LSize = FrontCase.size();
2165   APInt RSize = TSize-LSize;
2166   DEBUG(dbgs() << "Selecting best pivot: \n"
2167                << "First: " << First << ", Last: " << Last <<'\n'
2168                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2169   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2170        J!=E; ++I, ++J) {
2171     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2172     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2173     APInt Range = ComputeRange(LEnd, RBegin);
2174     assert((Range - 2ULL).isNonNegative() &&
2175            "Invalid case distance");
2176     // Use volatile double here to avoid excess precision issues on some hosts,
2177     // e.g. that use 80-bit X87 registers.
2178     volatile double LDensity =
2179        (double)LSize.roundToDouble() /
2180                            (LEnd - First + 1ULL).roundToDouble();
2181     volatile double RDensity =
2182       (double)RSize.roundToDouble() /
2183                            (Last - RBegin + 1ULL).roundToDouble();
2184     double Metric = Range.logBase2()*(LDensity+RDensity);
2185     // Should always split in some non-trivial place
2186     DEBUG(dbgs() <<"=>Step\n"
2187                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2188                  << "LDensity: " << LDensity
2189                  << ", RDensity: " << RDensity << '\n'
2190                  << "Metric: " << Metric << '\n');
2191     if (FMetric < Metric) {
2192       Pivot = J;
2193       FMetric = Metric;
2194       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2195     }
2196 
2197     LSize += J->size();
2198     RSize -= J->size();
2199   }
2200   if (areJTsAllowed(TLI)) {
2201     // If our case is dense we *really* should handle it earlier!
2202     assert((FMetric > 0) && "Should handle dense range earlier!");
2203   } else {
2204     Pivot = CR.Range.first + Size/2;
2205   }
2206 
2207   CaseRange LHSR(CR.Range.first, Pivot);
2208   CaseRange RHSR(Pivot, CR.Range.second);
2209   const Constant *C = Pivot->Low;
2210   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2211 
2212   // We know that we branch to the LHS if the Value being switched on is
2213   // less than the Pivot value, C.  We use this to optimize our binary
2214   // tree a bit, by recognizing that if SV is greater than or equal to the
2215   // LHS's Case Value, and that Case Value is exactly one less than the
2216   // Pivot's Value, then we can branch directly to the LHS's Target,
2217   // rather than creating a leaf node for it.
2218   if ((LHSR.second - LHSR.first) == 1 &&
2219       LHSR.first->High == CR.GE &&
2220       cast<ConstantInt>(C)->getValue() ==
2221       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2222     TrueBB = LHSR.first->BB;
2223   } else {
2224     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2225     CurMF->insert(BBI, TrueBB);
2226     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2227 
2228     // Put SV in a virtual register to make it available from the new blocks.
2229     ExportFromCurrentBlock(SV);
2230   }
2231 
2232   // Similar to the optimization above, if the Value being switched on is
2233   // known to be less than the Constant CR.LT, and the current Case Value
2234   // is CR.LT - 1, then we can branch directly to the target block for
2235   // the current Case Value, rather than emitting a RHS leaf node for it.
2236   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2237       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2238       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2239     FalseBB = RHSR.first->BB;
2240   } else {
2241     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2242     CurMF->insert(BBI, FalseBB);
2243     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2244 
2245     // Put SV in a virtual register to make it available from the new blocks.
2246     ExportFromCurrentBlock(SV);
2247   }
2248 
2249   // Create a CaseBlock record representing a conditional branch to
2250   // the LHS node if the value being switched on SV is less than C.
2251   // Otherwise, branch to LHS.
2252   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2253 
2254   if (CR.CaseBB == SwitchBB)
2255     visitSwitchCase(CB, SwitchBB);
2256   else
2257     SwitchCases.push_back(CB);
2258 
2259   return true;
2260 }
2261 
2262 /// handleBitTestsSwitchCase - if current case range has few destination and
2263 /// range span less, than machine word bitwidth, encode case range into series
2264 /// of masks and emit bit tests with these masks.
2265 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2266                                                    CaseRecVector& WorkList,
2267                                                    const Value* SV,
2268                                                    MachineBasicBlock* Default,
2269                                                    MachineBasicBlock *SwitchBB){
2270   EVT PTy = TLI.getPointerTy();
2271   unsigned IntPtrBits = PTy.getSizeInBits();
2272 
2273   Case& FrontCase = *CR.Range.first;
2274   Case& BackCase  = *(CR.Range.second-1);
2275 
2276   // Get the MachineFunction which holds the current MBB.  This is used when
2277   // inserting any additional MBBs necessary to represent the switch.
2278   MachineFunction *CurMF = FuncInfo.MF;
2279 
2280   // If target does not have legal shift left, do not emit bit tests at all.
2281   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2282     return false;
2283 
2284   size_t numCmps = 0;
2285   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2286        I!=E; ++I) {
2287     // Single case counts one, case range - two.
2288     numCmps += (I->Low == I->High ? 1 : 2);
2289   }
2290 
2291   // Count unique destinations
2292   SmallSet<MachineBasicBlock*, 4> Dests;
2293   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2294     Dests.insert(I->BB);
2295     if (Dests.size() > 3)
2296       // Don't bother the code below, if there are too much unique destinations
2297       return false;
2298   }
2299   DEBUG(dbgs() << "Total number of unique destinations: "
2300         << Dests.size() << '\n'
2301         << "Total number of comparisons: " << numCmps << '\n');
2302 
2303   // Compute span of values.
2304   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2305   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2306   APInt cmpRange = maxValue - minValue;
2307 
2308   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2309                << "Low bound: " << minValue << '\n'
2310                << "High bound: " << maxValue << '\n');
2311 
2312   if (cmpRange.uge(IntPtrBits) ||
2313       (!(Dests.size() == 1 && numCmps >= 3) &&
2314        !(Dests.size() == 2 && numCmps >= 5) &&
2315        !(Dests.size() >= 3 && numCmps >= 6)))
2316     return false;
2317 
2318   DEBUG(dbgs() << "Emitting bit tests\n");
2319   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2320 
2321   // Optimize the case where all the case values fit in a
2322   // word without having to subtract minValue. In this case,
2323   // we can optimize away the subtraction.
2324   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2325     cmpRange = maxValue;
2326   } else {
2327     lowBound = minValue;
2328   }
2329 
2330   CaseBitsVector CasesBits;
2331   unsigned i, count = 0;
2332 
2333   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2334     MachineBasicBlock* Dest = I->BB;
2335     for (i = 0; i < count; ++i)
2336       if (Dest == CasesBits[i].BB)
2337         break;
2338 
2339     if (i == count) {
2340       assert((count < 3) && "Too much destinations to test!");
2341       CasesBits.push_back(CaseBits(0, Dest, 0));
2342       count++;
2343     }
2344 
2345     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2346     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2347 
2348     uint64_t lo = (lowValue - lowBound).getZExtValue();
2349     uint64_t hi = (highValue - lowBound).getZExtValue();
2350 
2351     for (uint64_t j = lo; j <= hi; j++) {
2352       CasesBits[i].Mask |=  1ULL << j;
2353       CasesBits[i].Bits++;
2354     }
2355 
2356   }
2357   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2358 
2359   BitTestInfo BTC;
2360 
2361   // Figure out which block is immediately after the current one.
2362   MachineFunction::iterator BBI = CR.CaseBB;
2363   ++BBI;
2364 
2365   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2366 
2367   DEBUG(dbgs() << "Cases:\n");
2368   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2369     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2370                  << ", Bits: " << CasesBits[i].Bits
2371                  << ", BB: " << CasesBits[i].BB << '\n');
2372 
2373     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2374     CurMF->insert(BBI, CaseBB);
2375     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2376                               CaseBB,
2377                               CasesBits[i].BB));
2378 
2379     // Put SV in a virtual register to make it available from the new blocks.
2380     ExportFromCurrentBlock(SV);
2381   }
2382 
2383   BitTestBlock BTB(lowBound, cmpRange, SV,
2384                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2385                    CR.CaseBB, Default, BTC);
2386 
2387   if (CR.CaseBB == SwitchBB)
2388     visitBitTestHeader(BTB, SwitchBB);
2389 
2390   BitTestCases.push_back(BTB);
2391 
2392   return true;
2393 }
2394 
2395 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2396 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2397                                        const SwitchInst& SI) {
2398   size_t numCmps = 0;
2399 
2400   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2401   // Start with "simple" cases
2402   for (size_t i = 0; i < SI.getNumCases(); ++i) {
2403     BasicBlock *SuccBB = SI.getCaseSuccessor(i);
2404     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2405 
2406     uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2407 
2408     Cases.push_back(Case(SI.getCaseValue(i),
2409                          SI.getCaseValue(i),
2410                          SMBB, ExtraWeight));
2411   }
2412   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2413 
2414   // Merge case into clusters
2415   if (Cases.size() >= 2)
2416     // Must recompute end() each iteration because it may be
2417     // invalidated by erase if we hold on to it
2418     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2419          J != Cases.end(); ) {
2420       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2421       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2422       MachineBasicBlock* nextBB = J->BB;
2423       MachineBasicBlock* currentBB = I->BB;
2424 
2425       // If the two neighboring cases go to the same destination, merge them
2426       // into a single case.
2427       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2428         I->High = J->High;
2429         J = Cases.erase(J);
2430 
2431         if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2432           uint32_t CurWeight = currentBB->getBasicBlock() ?
2433             BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2434           uint32_t NextWeight = nextBB->getBasicBlock() ?
2435             BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2436 
2437           BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2438                              CurWeight + NextWeight);
2439         }
2440       } else {
2441         I = J++;
2442       }
2443     }
2444 
2445   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2446     if (I->Low != I->High)
2447       // A range counts double, since it requires two compares.
2448       ++numCmps;
2449   }
2450 
2451   return numCmps;
2452 }
2453 
2454 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2455                                            MachineBasicBlock *Last) {
2456   // Update JTCases.
2457   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2458     if (JTCases[i].first.HeaderBB == First)
2459       JTCases[i].first.HeaderBB = Last;
2460 
2461   // Update BitTestCases.
2462   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2463     if (BitTestCases[i].Parent == First)
2464       BitTestCases[i].Parent = Last;
2465 }
2466 
2467 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2468   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2469 
2470   // Figure out which block is immediately after the current one.
2471   MachineBasicBlock *NextBlock = 0;
2472   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2473 
2474   // If there is only the default destination, branch to it if it is not the
2475   // next basic block.  Otherwise, just fall through.
2476   if (!SI.getNumCases()) {
2477     // Update machine-CFG edges.
2478 
2479     // If this is not a fall-through branch, emit the branch.
2480     SwitchMBB->addSuccessor(Default);
2481     if (Default != NextBlock)
2482       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2483                               MVT::Other, getControlRoot(),
2484                               DAG.getBasicBlock(Default)));
2485 
2486     return;
2487   }
2488 
2489   // If there are any non-default case statements, create a vector of Cases
2490   // representing each one, and sort the vector so that we can efficiently
2491   // create a binary search tree from them.
2492   CaseVector Cases;
2493   size_t numCmps = Clusterify(Cases, SI);
2494   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2495                << ". Total compares: " << numCmps << '\n');
2496   (void)numCmps;
2497 
2498   // Get the Value to be switched on and default basic blocks, which will be
2499   // inserted into CaseBlock records, representing basic blocks in the binary
2500   // search tree.
2501   const Value *SV = SI.getCondition();
2502 
2503   // Push the initial CaseRec onto the worklist
2504   CaseRecVector WorkList;
2505   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2506                              CaseRange(Cases.begin(),Cases.end())));
2507 
2508   while (!WorkList.empty()) {
2509     // Grab a record representing a case range to process off the worklist
2510     CaseRec CR = WorkList.back();
2511     WorkList.pop_back();
2512 
2513     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2514       continue;
2515 
2516     // If the range has few cases (two or less) emit a series of specific
2517     // tests.
2518     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2519       continue;
2520 
2521     // If the switch has more than 5 blocks, and at least 40% dense, and the
2522     // target supports indirect branches, then emit a jump table rather than
2523     // lowering the switch to a binary tree of conditional branches.
2524     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2525       continue;
2526 
2527     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2528     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2529     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2530   }
2531 }
2532 
2533 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2534   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2535 
2536   // Update machine-CFG edges with unique successors.
2537   SmallVector<BasicBlock*, 32> succs;
2538   succs.reserve(I.getNumSuccessors());
2539   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2540     succs.push_back(I.getSuccessor(i));
2541   array_pod_sort(succs.begin(), succs.end());
2542   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2543   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2544     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2545     addSuccessorWithWeight(IndirectBrMBB, Succ);
2546   }
2547 
2548   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2549                           MVT::Other, getControlRoot(),
2550                           getValue(I.getAddress())));
2551 }
2552 
2553 void SelectionDAGBuilder::visitFSub(const User &I) {
2554   // -0.0 - X --> fneg
2555   Type *Ty = I.getType();
2556   if (isa<Constant>(I.getOperand(0)) &&
2557       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2558     SDValue Op2 = getValue(I.getOperand(1));
2559     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2560                              Op2.getValueType(), Op2));
2561     return;
2562   }
2563 
2564   visitBinary(I, ISD::FSUB);
2565 }
2566 
2567 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2568   SDValue Op1 = getValue(I.getOperand(0));
2569   SDValue Op2 = getValue(I.getOperand(1));
2570   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2571                            Op1.getValueType(), Op1, Op2));
2572 }
2573 
2574 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2575   SDValue Op1 = getValue(I.getOperand(0));
2576   SDValue Op2 = getValue(I.getOperand(1));
2577 
2578   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2579 
2580   // Coerce the shift amount to the right type if we can.
2581   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2582     unsigned ShiftSize = ShiftTy.getSizeInBits();
2583     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2584     DebugLoc DL = getCurDebugLoc();
2585 
2586     // If the operand is smaller than the shift count type, promote it.
2587     if (ShiftSize > Op2Size)
2588       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2589 
2590     // If the operand is larger than the shift count type but the shift
2591     // count type has enough bits to represent any shift value, truncate
2592     // it now. This is a common case and it exposes the truncate to
2593     // optimization early.
2594     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2595       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2596     // Otherwise we'll need to temporarily settle for some other convenient
2597     // type.  Type legalization will make adjustments once the shiftee is split.
2598     else
2599       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2600   }
2601 
2602   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2603                            Op1.getValueType(), Op1, Op2));
2604 }
2605 
2606 void SelectionDAGBuilder::visitSDiv(const User &I) {
2607   SDValue Op1 = getValue(I.getOperand(0));
2608   SDValue Op2 = getValue(I.getOperand(1));
2609 
2610   // Turn exact SDivs into multiplications.
2611   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2612   // exact bit.
2613   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2614       !isa<ConstantSDNode>(Op1) &&
2615       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2616     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2617   else
2618     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2619                              Op1, Op2));
2620 }
2621 
2622 void SelectionDAGBuilder::visitICmp(const User &I) {
2623   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2624   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2625     predicate = IC->getPredicate();
2626   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2627     predicate = ICmpInst::Predicate(IC->getPredicate());
2628   SDValue Op1 = getValue(I.getOperand(0));
2629   SDValue Op2 = getValue(I.getOperand(1));
2630   ISD::CondCode Opcode = getICmpCondCode(predicate);
2631 
2632   EVT DestVT = TLI.getValueType(I.getType());
2633   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2634 }
2635 
2636 void SelectionDAGBuilder::visitFCmp(const User &I) {
2637   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2638   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2639     predicate = FC->getPredicate();
2640   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2641     predicate = FCmpInst::Predicate(FC->getPredicate());
2642   SDValue Op1 = getValue(I.getOperand(0));
2643   SDValue Op2 = getValue(I.getOperand(1));
2644   ISD::CondCode Condition = getFCmpCondCode(predicate);
2645   if (TM.Options.NoNaNsFPMath)
2646     Condition = getFCmpCodeWithoutNaN(Condition);
2647   EVT DestVT = TLI.getValueType(I.getType());
2648   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2649 }
2650 
2651 void SelectionDAGBuilder::visitSelect(const User &I) {
2652   SmallVector<EVT, 4> ValueVTs;
2653   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2654   unsigned NumValues = ValueVTs.size();
2655   if (NumValues == 0) return;
2656 
2657   SmallVector<SDValue, 4> Values(NumValues);
2658   SDValue Cond     = getValue(I.getOperand(0));
2659   SDValue TrueVal  = getValue(I.getOperand(1));
2660   SDValue FalseVal = getValue(I.getOperand(2));
2661   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2662     ISD::VSELECT : ISD::SELECT;
2663 
2664   for (unsigned i = 0; i != NumValues; ++i)
2665     Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2666                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2667                             Cond,
2668                             SDValue(TrueVal.getNode(),
2669                                     TrueVal.getResNo() + i),
2670                             SDValue(FalseVal.getNode(),
2671                                     FalseVal.getResNo() + i));
2672 
2673   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2674                            DAG.getVTList(&ValueVTs[0], NumValues),
2675                            &Values[0], NumValues));
2676 }
2677 
2678 void SelectionDAGBuilder::visitTrunc(const User &I) {
2679   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2680   SDValue N = getValue(I.getOperand(0));
2681   EVT DestVT = TLI.getValueType(I.getType());
2682   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2683 }
2684 
2685 void SelectionDAGBuilder::visitZExt(const User &I) {
2686   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2687   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2688   SDValue N = getValue(I.getOperand(0));
2689   EVT DestVT = TLI.getValueType(I.getType());
2690   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2691 }
2692 
2693 void SelectionDAGBuilder::visitSExt(const User &I) {
2694   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2695   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2696   SDValue N = getValue(I.getOperand(0));
2697   EVT DestVT = TLI.getValueType(I.getType());
2698   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2699 }
2700 
2701 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2702   // FPTrunc is never a no-op cast, no need to check
2703   SDValue N = getValue(I.getOperand(0));
2704   EVT DestVT = TLI.getValueType(I.getType());
2705   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2706                            DestVT, N,
2707                            DAG.getTargetConstant(0, TLI.getPointerTy())));
2708 }
2709 
2710 void SelectionDAGBuilder::visitFPExt(const User &I){
2711   // FPExt is never a no-op cast, no need to check
2712   SDValue N = getValue(I.getOperand(0));
2713   EVT DestVT = TLI.getValueType(I.getType());
2714   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2715 }
2716 
2717 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2718   // FPToUI is never a no-op cast, no need to check
2719   SDValue N = getValue(I.getOperand(0));
2720   EVT DestVT = TLI.getValueType(I.getType());
2721   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2722 }
2723 
2724 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2725   // FPToSI is never a no-op cast, no need to check
2726   SDValue N = getValue(I.getOperand(0));
2727   EVT DestVT = TLI.getValueType(I.getType());
2728   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2729 }
2730 
2731 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2732   // UIToFP is never a no-op cast, no need to check
2733   SDValue N = getValue(I.getOperand(0));
2734   EVT DestVT = TLI.getValueType(I.getType());
2735   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2736 }
2737 
2738 void SelectionDAGBuilder::visitSIToFP(const User &I){
2739   // SIToFP is never a no-op cast, no need to check
2740   SDValue N = getValue(I.getOperand(0));
2741   EVT DestVT = TLI.getValueType(I.getType());
2742   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2743 }
2744 
2745 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2746   // What to do depends on the size of the integer and the size of the pointer.
2747   // We can either truncate, zero extend, or no-op, accordingly.
2748   SDValue N = getValue(I.getOperand(0));
2749   EVT DestVT = TLI.getValueType(I.getType());
2750   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2751 }
2752 
2753 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2754   // What to do depends on the size of the integer and the size of the pointer.
2755   // We can either truncate, zero extend, or no-op, accordingly.
2756   SDValue N = getValue(I.getOperand(0));
2757   EVT DestVT = TLI.getValueType(I.getType());
2758   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2759 }
2760 
2761 void SelectionDAGBuilder::visitBitCast(const User &I) {
2762   SDValue N = getValue(I.getOperand(0));
2763   EVT DestVT = TLI.getValueType(I.getType());
2764 
2765   // BitCast assures us that source and destination are the same size so this is
2766   // either a BITCAST or a no-op.
2767   if (DestVT != N.getValueType())
2768     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2769                              DestVT, N)); // convert types.
2770   else
2771     setValue(&I, N);            // noop cast.
2772 }
2773 
2774 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2775   SDValue InVec = getValue(I.getOperand(0));
2776   SDValue InVal = getValue(I.getOperand(1));
2777   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2778                               TLI.getPointerTy(),
2779                               getValue(I.getOperand(2)));
2780   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2781                            TLI.getValueType(I.getType()),
2782                            InVec, InVal, InIdx));
2783 }
2784 
2785 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2786   SDValue InVec = getValue(I.getOperand(0));
2787   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2788                               TLI.getPointerTy(),
2789                               getValue(I.getOperand(1)));
2790   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2791                            TLI.getValueType(I.getType()), InVec, InIdx));
2792 }
2793 
2794 // Utility for visitShuffleVector - Return true if every element in Mask,
2795 // begining // from position Pos and ending in Pos+Size, falls within the
2796 // specified sequential range [L, L+Pos). or is undef.
2797 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2798                                 int Pos, int Size, int Low) {
2799   for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2800     if (Mask[i] >= 0 && Mask[i] != Low)
2801       return false;
2802   return true;
2803 }
2804 
2805 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2806   SDValue Src1 = getValue(I.getOperand(0));
2807   SDValue Src2 = getValue(I.getOperand(1));
2808 
2809   SmallVector<int, 8> Mask;
2810   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2811   unsigned MaskNumElts = Mask.size();
2812 
2813   EVT VT = TLI.getValueType(I.getType());
2814   EVT SrcVT = Src1.getValueType();
2815   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2816 
2817   if (SrcNumElts == MaskNumElts) {
2818     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2819                                       &Mask[0]));
2820     return;
2821   }
2822 
2823   // Normalize the shuffle vector since mask and vector length don't match.
2824   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2825     // Mask is longer than the source vectors and is a multiple of the source
2826     // vectors.  We can use concatenate vector to make the mask and vectors
2827     // lengths match.
2828     if (SrcNumElts*2 == MaskNumElts) {
2829       // First check for Src1 in low and Src2 in high
2830       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2831           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2832         // The shuffle is concatenating two vectors together.
2833         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2834                                  VT, Src1, Src2));
2835         return;
2836       }
2837       // Then check for Src2 in low and Src1 in high
2838       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2839           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2840         // The shuffle is concatenating two vectors together.
2841         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2842                                  VT, Src2, Src1));
2843         return;
2844       }
2845     }
2846 
2847     // Pad both vectors with undefs to make them the same length as the mask.
2848     unsigned NumConcat = MaskNumElts / SrcNumElts;
2849     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2850     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2851     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2852 
2853     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2854     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2855     MOps1[0] = Src1;
2856     MOps2[0] = Src2;
2857 
2858     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2859                                                   getCurDebugLoc(), VT,
2860                                                   &MOps1[0], NumConcat);
2861     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2862                                                   getCurDebugLoc(), VT,
2863                                                   &MOps2[0], NumConcat);
2864 
2865     // Readjust mask for new input vector length.
2866     SmallVector<int, 8> MappedOps;
2867     for (unsigned i = 0; i != MaskNumElts; ++i) {
2868       int Idx = Mask[i];
2869       if (Idx < (int)SrcNumElts)
2870         MappedOps.push_back(Idx);
2871       else
2872         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2873     }
2874 
2875     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2876                                       &MappedOps[0]));
2877     return;
2878   }
2879 
2880   if (SrcNumElts > MaskNumElts) {
2881     // Analyze the access pattern of the vector to see if we can extract
2882     // two subvectors and do the shuffle. The analysis is done by calculating
2883     // the range of elements the mask access on both vectors.
2884     int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2885                         static_cast<int>(SrcNumElts+1)};
2886     int MaxRange[2] = {-1, -1};
2887 
2888     for (unsigned i = 0; i != MaskNumElts; ++i) {
2889       int Idx = Mask[i];
2890       int Input = 0;
2891       if (Idx < 0)
2892         continue;
2893 
2894       if (Idx >= (int)SrcNumElts) {
2895         Input = 1;
2896         Idx -= SrcNumElts;
2897       }
2898       if (Idx > MaxRange[Input])
2899         MaxRange[Input] = Idx;
2900       if (Idx < MinRange[Input])
2901         MinRange[Input] = Idx;
2902     }
2903 
2904     // Check if the access is smaller than the vector size and can we find
2905     // a reasonable extract index.
2906     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2907                                  // Extract.
2908     int StartIdx[2];  // StartIdx to extract from
2909     for (int Input=0; Input < 2; ++Input) {
2910       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2911         RangeUse[Input] = 0; // Unused
2912         StartIdx[Input] = 0;
2913       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2914         // Fits within range but we should see if we can find a good
2915         // start index that is a multiple of the mask length.
2916         if (MaxRange[Input] < (int)MaskNumElts) {
2917           RangeUse[Input] = 1; // Extract from beginning of the vector
2918           StartIdx[Input] = 0;
2919         } else {
2920           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2921           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2922               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2923             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2924         }
2925       }
2926     }
2927 
2928     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2929       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2930       return;
2931     }
2932     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2933       // Extract appropriate subvector and generate a vector shuffle
2934       for (int Input=0; Input < 2; ++Input) {
2935         SDValue &Src = Input == 0 ? Src1 : Src2;
2936         if (RangeUse[Input] == 0)
2937           Src = DAG.getUNDEF(VT);
2938         else
2939           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2940                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2941       }
2942 
2943       // Calculate new mask.
2944       SmallVector<int, 8> MappedOps;
2945       for (unsigned i = 0; i != MaskNumElts; ++i) {
2946         int Idx = Mask[i];
2947         if (Idx < 0)
2948           MappedOps.push_back(Idx);
2949         else if (Idx < (int)SrcNumElts)
2950           MappedOps.push_back(Idx - StartIdx[0]);
2951         else
2952           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2953       }
2954 
2955       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2956                                         &MappedOps[0]));
2957       return;
2958     }
2959   }
2960 
2961   // We can't use either concat vectors or extract subvectors so fall back to
2962   // replacing the shuffle with extract and build vector.
2963   // to insert and build vector.
2964   EVT EltVT = VT.getVectorElementType();
2965   EVT PtrVT = TLI.getPointerTy();
2966   SmallVector<SDValue,8> Ops;
2967   for (unsigned i = 0; i != MaskNumElts; ++i) {
2968     if (Mask[i] < 0) {
2969       Ops.push_back(DAG.getUNDEF(EltVT));
2970     } else {
2971       int Idx = Mask[i];
2972       SDValue Res;
2973 
2974       if (Idx < (int)SrcNumElts)
2975         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2976                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2977       else
2978         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2979                           EltVT, Src2,
2980                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2981 
2982       Ops.push_back(Res);
2983     }
2984   }
2985 
2986   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2987                            VT, &Ops[0], Ops.size()));
2988 }
2989 
2990 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2991   const Value *Op0 = I.getOperand(0);
2992   const Value *Op1 = I.getOperand(1);
2993   Type *AggTy = I.getType();
2994   Type *ValTy = Op1->getType();
2995   bool IntoUndef = isa<UndefValue>(Op0);
2996   bool FromUndef = isa<UndefValue>(Op1);
2997 
2998   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2999 
3000   SmallVector<EVT, 4> AggValueVTs;
3001   ComputeValueVTs(TLI, AggTy, AggValueVTs);
3002   SmallVector<EVT, 4> ValValueVTs;
3003   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3004 
3005   unsigned NumAggValues = AggValueVTs.size();
3006   unsigned NumValValues = ValValueVTs.size();
3007   SmallVector<SDValue, 4> Values(NumAggValues);
3008 
3009   SDValue Agg = getValue(Op0);
3010   unsigned i = 0;
3011   // Copy the beginning value(s) from the original aggregate.
3012   for (; i != LinearIndex; ++i)
3013     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3014                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3015   // Copy values from the inserted value(s).
3016   if (NumValValues) {
3017     SDValue Val = getValue(Op1);
3018     for (; i != LinearIndex + NumValValues; ++i)
3019       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3020                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3021   }
3022   // Copy remaining value(s) from the original aggregate.
3023   for (; i != NumAggValues; ++i)
3024     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3025                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3026 
3027   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3028                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
3029                            &Values[0], NumAggValues));
3030 }
3031 
3032 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3033   const Value *Op0 = I.getOperand(0);
3034   Type *AggTy = Op0->getType();
3035   Type *ValTy = I.getType();
3036   bool OutOfUndef = isa<UndefValue>(Op0);
3037 
3038   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3039 
3040   SmallVector<EVT, 4> ValValueVTs;
3041   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3042 
3043   unsigned NumValValues = ValValueVTs.size();
3044 
3045   // Ignore a extractvalue that produces an empty object
3046   if (!NumValValues) {
3047     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3048     return;
3049   }
3050 
3051   SmallVector<SDValue, 4> Values(NumValValues);
3052 
3053   SDValue Agg = getValue(Op0);
3054   // Copy out the selected value(s).
3055   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3056     Values[i - LinearIndex] =
3057       OutOfUndef ?
3058         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3059         SDValue(Agg.getNode(), Agg.getResNo() + i);
3060 
3061   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3062                            DAG.getVTList(&ValValueVTs[0], NumValValues),
3063                            &Values[0], NumValValues));
3064 }
3065 
3066 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3067   SDValue N = getValue(I.getOperand(0));
3068   Type *Ty = I.getOperand(0)->getType();
3069 
3070   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3071        OI != E; ++OI) {
3072     const Value *Idx = *OI;
3073     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3074       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3075       if (Field) {
3076         // N = N + Offset
3077         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3078         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3079                         DAG.getIntPtrConstant(Offset));
3080       }
3081 
3082       Ty = StTy->getElementType(Field);
3083     } else {
3084       Ty = cast<SequentialType>(Ty)->getElementType();
3085 
3086       // If this is a constant subscript, handle it quickly.
3087       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3088         if (CI->isZero()) continue;
3089         uint64_t Offs =
3090             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3091         SDValue OffsVal;
3092         EVT PTy = TLI.getPointerTy();
3093         unsigned PtrBits = PTy.getSizeInBits();
3094         if (PtrBits < 64)
3095           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3096                                 TLI.getPointerTy(),
3097                                 DAG.getConstant(Offs, MVT::i64));
3098         else
3099           OffsVal = DAG.getIntPtrConstant(Offs);
3100 
3101         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3102                         OffsVal);
3103         continue;
3104       }
3105 
3106       // N = N + Idx * ElementSize;
3107       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3108                                 TD->getTypeAllocSize(Ty));
3109       SDValue IdxN = getValue(Idx);
3110 
3111       // If the index is smaller or larger than intptr_t, truncate or extend
3112       // it.
3113       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3114 
3115       // If this is a multiply by a power of two, turn it into a shl
3116       // immediately.  This is a very common case.
3117       if (ElementSize != 1) {
3118         if (ElementSize.isPowerOf2()) {
3119           unsigned Amt = ElementSize.logBase2();
3120           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3121                              N.getValueType(), IdxN,
3122                              DAG.getConstant(Amt, IdxN.getValueType()));
3123         } else {
3124           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3125           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3126                              N.getValueType(), IdxN, Scale);
3127         }
3128       }
3129 
3130       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3131                       N.getValueType(), N, IdxN);
3132     }
3133   }
3134 
3135   setValue(&I, N);
3136 }
3137 
3138 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3139   // If this is a fixed sized alloca in the entry block of the function,
3140   // allocate it statically on the stack.
3141   if (FuncInfo.StaticAllocaMap.count(&I))
3142     return;   // getValue will auto-populate this.
3143 
3144   Type *Ty = I.getAllocatedType();
3145   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3146   unsigned Align =
3147     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3148              I.getAlignment());
3149 
3150   SDValue AllocSize = getValue(I.getArraySize());
3151 
3152   EVT IntPtr = TLI.getPointerTy();
3153   if (AllocSize.getValueType() != IntPtr)
3154     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3155 
3156   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3157                           AllocSize,
3158                           DAG.getConstant(TySize, IntPtr));
3159 
3160   // Handle alignment.  If the requested alignment is less than or equal to
3161   // the stack alignment, ignore it.  If the size is greater than or equal to
3162   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3163   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3164   if (Align <= StackAlign)
3165     Align = 0;
3166 
3167   // Round the size of the allocation up to the stack alignment size
3168   // by add SA-1 to the size.
3169   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3170                           AllocSize.getValueType(), AllocSize,
3171                           DAG.getIntPtrConstant(StackAlign-1));
3172 
3173   // Mask out the low bits for alignment purposes.
3174   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3175                           AllocSize.getValueType(), AllocSize,
3176                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3177 
3178   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3179   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3180   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3181                             VTs, Ops, 3);
3182   setValue(&I, DSA);
3183   DAG.setRoot(DSA.getValue(1));
3184 
3185   // Inform the Frame Information that we have just allocated a variable-sized
3186   // object.
3187   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3188 }
3189 
3190 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3191   if (I.isAtomic())
3192     return visitAtomicLoad(I);
3193 
3194   const Value *SV = I.getOperand(0);
3195   SDValue Ptr = getValue(SV);
3196 
3197   Type *Ty = I.getType();
3198 
3199   bool isVolatile = I.isVolatile();
3200   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3201   bool isInvariant = I.getMetadata("invariant.load") != 0;
3202   unsigned Alignment = I.getAlignment();
3203   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3204 
3205   SmallVector<EVT, 4> ValueVTs;
3206   SmallVector<uint64_t, 4> Offsets;
3207   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3208   unsigned NumValues = ValueVTs.size();
3209   if (NumValues == 0)
3210     return;
3211 
3212   SDValue Root;
3213   bool ConstantMemory = false;
3214   if (I.isVolatile() || NumValues > MaxParallelChains)
3215     // Serialize volatile loads with other side effects.
3216     Root = getRoot();
3217   else if (AA->pointsToConstantMemory(
3218              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3219     // Do not serialize (non-volatile) loads of constant memory with anything.
3220     Root = DAG.getEntryNode();
3221     ConstantMemory = true;
3222   } else {
3223     // Do not serialize non-volatile loads against each other.
3224     Root = DAG.getRoot();
3225   }
3226 
3227   SmallVector<SDValue, 4> Values(NumValues);
3228   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3229                                           NumValues));
3230   EVT PtrVT = Ptr.getValueType();
3231   unsigned ChainI = 0;
3232   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3233     // Serializing loads here may result in excessive register pressure, and
3234     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3235     // could recover a bit by hoisting nodes upward in the chain by recognizing
3236     // they are side-effect free or do not alias. The optimizer should really
3237     // avoid this case by converting large object/array copies to llvm.memcpy
3238     // (MaxParallelChains should always remain as failsafe).
3239     if (ChainI == MaxParallelChains) {
3240       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3241       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3242                                   MVT::Other, &Chains[0], ChainI);
3243       Root = Chain;
3244       ChainI = 0;
3245     }
3246     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3247                             PtrVT, Ptr,
3248                             DAG.getConstant(Offsets[i], PtrVT));
3249     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3250                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3251                             isNonTemporal, isInvariant, Alignment, TBAAInfo);
3252 
3253     Values[i] = L;
3254     Chains[ChainI] = L.getValue(1);
3255   }
3256 
3257   if (!ConstantMemory) {
3258     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3259                                 MVT::Other, &Chains[0], ChainI);
3260     if (isVolatile)
3261       DAG.setRoot(Chain);
3262     else
3263       PendingLoads.push_back(Chain);
3264   }
3265 
3266   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3267                            DAG.getVTList(&ValueVTs[0], NumValues),
3268                            &Values[0], NumValues));
3269 }
3270 
3271 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3272   if (I.isAtomic())
3273     return visitAtomicStore(I);
3274 
3275   const Value *SrcV = I.getOperand(0);
3276   const Value *PtrV = I.getOperand(1);
3277 
3278   SmallVector<EVT, 4> ValueVTs;
3279   SmallVector<uint64_t, 4> Offsets;
3280   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3281   unsigned NumValues = ValueVTs.size();
3282   if (NumValues == 0)
3283     return;
3284 
3285   // Get the lowered operands. Note that we do this after
3286   // checking if NumResults is zero, because with zero results
3287   // the operands won't have values in the map.
3288   SDValue Src = getValue(SrcV);
3289   SDValue Ptr = getValue(PtrV);
3290 
3291   SDValue Root = getRoot();
3292   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3293                                           NumValues));
3294   EVT PtrVT = Ptr.getValueType();
3295   bool isVolatile = I.isVolatile();
3296   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3297   unsigned Alignment = I.getAlignment();
3298   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3299 
3300   unsigned ChainI = 0;
3301   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3302     // See visitLoad comments.
3303     if (ChainI == MaxParallelChains) {
3304       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3305                                   MVT::Other, &Chains[0], ChainI);
3306       Root = Chain;
3307       ChainI = 0;
3308     }
3309     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3310                               DAG.getConstant(Offsets[i], PtrVT));
3311     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3312                               SDValue(Src.getNode(), Src.getResNo() + i),
3313                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3314                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3315     Chains[ChainI] = St;
3316   }
3317 
3318   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3319                                   MVT::Other, &Chains[0], ChainI);
3320   ++SDNodeOrder;
3321   AssignOrderingToNode(StoreNode.getNode());
3322   DAG.setRoot(StoreNode);
3323 }
3324 
3325 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3326                                     SynchronizationScope Scope,
3327                                     bool Before, DebugLoc dl,
3328                                     SelectionDAG &DAG,
3329                                     const TargetLowering &TLI) {
3330   // Fence, if necessary
3331   if (Before) {
3332     if (Order == AcquireRelease || Order == SequentiallyConsistent)
3333       Order = Release;
3334     else if (Order == Acquire || Order == Monotonic)
3335       return Chain;
3336   } else {
3337     if (Order == AcquireRelease)
3338       Order = Acquire;
3339     else if (Order == Release || Order == Monotonic)
3340       return Chain;
3341   }
3342   SDValue Ops[3];
3343   Ops[0] = Chain;
3344   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3345   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3346   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3347 }
3348 
3349 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3350   DebugLoc dl = getCurDebugLoc();
3351   AtomicOrdering Order = I.getOrdering();
3352   SynchronizationScope Scope = I.getSynchScope();
3353 
3354   SDValue InChain = getRoot();
3355 
3356   if (TLI.getInsertFencesForAtomic())
3357     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3358                                    DAG, TLI);
3359 
3360   SDValue L =
3361     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3362                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3363                   InChain,
3364                   getValue(I.getPointerOperand()),
3365                   getValue(I.getCompareOperand()),
3366                   getValue(I.getNewValOperand()),
3367                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3368                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3369                   Scope);
3370 
3371   SDValue OutChain = L.getValue(1);
3372 
3373   if (TLI.getInsertFencesForAtomic())
3374     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3375                                     DAG, TLI);
3376 
3377   setValue(&I, L);
3378   DAG.setRoot(OutChain);
3379 }
3380 
3381 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3382   DebugLoc dl = getCurDebugLoc();
3383   ISD::NodeType NT;
3384   switch (I.getOperation()) {
3385   default: llvm_unreachable("Unknown atomicrmw operation");
3386   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3387   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3388   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3389   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3390   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3391   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3392   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3393   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3394   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3395   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3396   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3397   }
3398   AtomicOrdering Order = I.getOrdering();
3399   SynchronizationScope Scope = I.getSynchScope();
3400 
3401   SDValue InChain = getRoot();
3402 
3403   if (TLI.getInsertFencesForAtomic())
3404     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3405                                    DAG, TLI);
3406 
3407   SDValue L =
3408     DAG.getAtomic(NT, dl,
3409                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
3410                   InChain,
3411                   getValue(I.getPointerOperand()),
3412                   getValue(I.getValOperand()),
3413                   I.getPointerOperand(), 0 /* Alignment */,
3414                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3415                   Scope);
3416 
3417   SDValue OutChain = L.getValue(1);
3418 
3419   if (TLI.getInsertFencesForAtomic())
3420     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3421                                     DAG, TLI);
3422 
3423   setValue(&I, L);
3424   DAG.setRoot(OutChain);
3425 }
3426 
3427 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3428   DebugLoc dl = getCurDebugLoc();
3429   SDValue Ops[3];
3430   Ops[0] = getRoot();
3431   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3432   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3433   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3434 }
3435 
3436 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3437   DebugLoc dl = getCurDebugLoc();
3438   AtomicOrdering Order = I.getOrdering();
3439   SynchronizationScope Scope = I.getSynchScope();
3440 
3441   SDValue InChain = getRoot();
3442 
3443   EVT VT = EVT::getEVT(I.getType());
3444 
3445   if (I.getAlignment() * 8 < VT.getSizeInBits())
3446     report_fatal_error("Cannot generate unaligned atomic load");
3447 
3448   SDValue L =
3449     DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3450                   getValue(I.getPointerOperand()),
3451                   I.getPointerOperand(), I.getAlignment(),
3452                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3453                   Scope);
3454 
3455   SDValue OutChain = L.getValue(1);
3456 
3457   if (TLI.getInsertFencesForAtomic())
3458     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3459                                     DAG, TLI);
3460 
3461   setValue(&I, L);
3462   DAG.setRoot(OutChain);
3463 }
3464 
3465 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3466   DebugLoc dl = getCurDebugLoc();
3467 
3468   AtomicOrdering Order = I.getOrdering();
3469   SynchronizationScope Scope = I.getSynchScope();
3470 
3471   SDValue InChain = getRoot();
3472 
3473   EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3474 
3475   if (I.getAlignment() * 8 < VT.getSizeInBits())
3476     report_fatal_error("Cannot generate unaligned atomic store");
3477 
3478   if (TLI.getInsertFencesForAtomic())
3479     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3480                                    DAG, TLI);
3481 
3482   SDValue OutChain =
3483     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3484                   InChain,
3485                   getValue(I.getPointerOperand()),
3486                   getValue(I.getValueOperand()),
3487                   I.getPointerOperand(), I.getAlignment(),
3488                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3489                   Scope);
3490 
3491   if (TLI.getInsertFencesForAtomic())
3492     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3493                                     DAG, TLI);
3494 
3495   DAG.setRoot(OutChain);
3496 }
3497 
3498 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3499 /// node.
3500 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3501                                                unsigned Intrinsic) {
3502   bool HasChain = !I.doesNotAccessMemory();
3503   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3504 
3505   // Build the operand list.
3506   SmallVector<SDValue, 8> Ops;
3507   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3508     if (OnlyLoad) {
3509       // We don't need to serialize loads against other loads.
3510       Ops.push_back(DAG.getRoot());
3511     } else {
3512       Ops.push_back(getRoot());
3513     }
3514   }
3515 
3516   // Info is set by getTgtMemInstrinsic
3517   TargetLowering::IntrinsicInfo Info;
3518   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3519 
3520   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3521   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3522       Info.opc == ISD::INTRINSIC_W_CHAIN)
3523     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3524 
3525   // Add all operands of the call to the operand list.
3526   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3527     SDValue Op = getValue(I.getArgOperand(i));
3528     Ops.push_back(Op);
3529   }
3530 
3531   SmallVector<EVT, 4> ValueVTs;
3532   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3533 
3534   if (HasChain)
3535     ValueVTs.push_back(MVT::Other);
3536 
3537   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3538 
3539   // Create the node.
3540   SDValue Result;
3541   if (IsTgtIntrinsic) {
3542     // This is target intrinsic that touches memory
3543     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3544                                      VTs, &Ops[0], Ops.size(),
3545                                      Info.memVT,
3546                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3547                                      Info.align, Info.vol,
3548                                      Info.readMem, Info.writeMem);
3549   } else if (!HasChain) {
3550     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3551                          VTs, &Ops[0], Ops.size());
3552   } else if (!I.getType()->isVoidTy()) {
3553     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3554                          VTs, &Ops[0], Ops.size());
3555   } else {
3556     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3557                          VTs, &Ops[0], Ops.size());
3558   }
3559 
3560   if (HasChain) {
3561     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3562     if (OnlyLoad)
3563       PendingLoads.push_back(Chain);
3564     else
3565       DAG.setRoot(Chain);
3566   }
3567 
3568   if (!I.getType()->isVoidTy()) {
3569     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3570       EVT VT = TLI.getValueType(PTy);
3571       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3572     }
3573 
3574     setValue(&I, Result);
3575   }
3576 }
3577 
3578 /// GetSignificand - Get the significand and build it into a floating-point
3579 /// number with exponent of 1:
3580 ///
3581 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3582 ///
3583 /// where Op is the hexidecimal representation of floating point value.
3584 static SDValue
3585 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3586   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3587                            DAG.getConstant(0x007fffff, MVT::i32));
3588   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3589                            DAG.getConstant(0x3f800000, MVT::i32));
3590   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3591 }
3592 
3593 /// GetExponent - Get the exponent:
3594 ///
3595 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3596 ///
3597 /// where Op is the hexidecimal representation of floating point value.
3598 static SDValue
3599 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3600             DebugLoc dl) {
3601   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3602                            DAG.getConstant(0x7f800000, MVT::i32));
3603   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3604                            DAG.getConstant(23, TLI.getPointerTy()));
3605   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3606                            DAG.getConstant(127, MVT::i32));
3607   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3608 }
3609 
3610 /// getF32Constant - Get 32-bit floating point constant.
3611 static SDValue
3612 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3613   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3614 }
3615 
3616 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3617 const char *
3618 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3619   SDValue Op1 = getValue(I.getArgOperand(0));
3620   SDValue Op2 = getValue(I.getArgOperand(1));
3621 
3622   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3623   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3624   return 0;
3625 }
3626 
3627 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3628 /// limited-precision mode.
3629 void
3630 SelectionDAGBuilder::visitExp(const CallInst &I) {
3631   SDValue result;
3632   DebugLoc dl = getCurDebugLoc();
3633 
3634   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3635       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3636     SDValue Op = getValue(I.getArgOperand(0));
3637 
3638     // Put the exponent in the right bit position for later addition to the
3639     // final result:
3640     //
3641     //   #define LOG2OFe 1.4426950f
3642     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3643     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3644                              getF32Constant(DAG, 0x3fb8aa3b));
3645     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3646 
3647     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3648     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3649     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3650 
3651     //   IntegerPartOfX <<= 23;
3652     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3653                                  DAG.getConstant(23, TLI.getPointerTy()));
3654 
3655     if (LimitFloatPrecision <= 6) {
3656       // For floating-point precision of 6:
3657       //
3658       //   TwoToFractionalPartOfX =
3659       //     0.997535578f +
3660       //       (0.735607626f + 0.252464424f * x) * x;
3661       //
3662       // error 0.0144103317, which is 6 bits
3663       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3664                                getF32Constant(DAG, 0x3e814304));
3665       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3666                                getF32Constant(DAG, 0x3f3c50c8));
3667       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3668       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3669                                getF32Constant(DAG, 0x3f7f5e7e));
3670       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3671 
3672       // Add the exponent into the result in integer domain.
3673       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3674                                TwoToFracPartOfX, IntegerPartOfX);
3675 
3676       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3677     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3678       // For floating-point precision of 12:
3679       //
3680       //   TwoToFractionalPartOfX =
3681       //     0.999892986f +
3682       //       (0.696457318f +
3683       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3684       //
3685       // 0.000107046256 error, which is 13 to 14 bits
3686       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3687                                getF32Constant(DAG, 0x3da235e3));
3688       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3689                                getF32Constant(DAG, 0x3e65b8f3));
3690       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3691       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3692                                getF32Constant(DAG, 0x3f324b07));
3693       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3694       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3695                                getF32Constant(DAG, 0x3f7ff8fd));
3696       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3697 
3698       // Add the exponent into the result in integer domain.
3699       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3700                                TwoToFracPartOfX, IntegerPartOfX);
3701 
3702       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3703     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3704       // For floating-point precision of 18:
3705       //
3706       //   TwoToFractionalPartOfX =
3707       //     0.999999982f +
3708       //       (0.693148872f +
3709       //         (0.240227044f +
3710       //           (0.554906021e-1f +
3711       //             (0.961591928e-2f +
3712       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3713       //
3714       // error 2.47208000*10^(-7), which is better than 18 bits
3715       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3716                                getF32Constant(DAG, 0x3924b03e));
3717       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3718                                getF32Constant(DAG, 0x3ab24b87));
3719       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3720       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3721                                getF32Constant(DAG, 0x3c1d8c17));
3722       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3723       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3724                                getF32Constant(DAG, 0x3d634a1d));
3725       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3726       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3727                                getF32Constant(DAG, 0x3e75fe14));
3728       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3729       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3730                                 getF32Constant(DAG, 0x3f317234));
3731       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3732       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3733                                 getF32Constant(DAG, 0x3f800000));
3734       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3735                                              MVT::i32, t13);
3736 
3737       // Add the exponent into the result in integer domain.
3738       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3739                                 TwoToFracPartOfX, IntegerPartOfX);
3740 
3741       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3742     }
3743   } else {
3744     // No special expansion.
3745     result = DAG.getNode(ISD::FEXP, dl,
3746                          getValue(I.getArgOperand(0)).getValueType(),
3747                          getValue(I.getArgOperand(0)));
3748   }
3749 
3750   setValue(&I, result);
3751 }
3752 
3753 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3754 /// limited-precision mode.
3755 void
3756 SelectionDAGBuilder::visitLog(const CallInst &I) {
3757   SDValue result;
3758   DebugLoc dl = getCurDebugLoc();
3759 
3760   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3761       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3762     SDValue Op = getValue(I.getArgOperand(0));
3763     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3764 
3765     // Scale the exponent by log(2) [0.69314718f].
3766     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3767     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3768                                         getF32Constant(DAG, 0x3f317218));
3769 
3770     // Get the significand and build it into a floating-point number with
3771     // exponent of 1.
3772     SDValue X = GetSignificand(DAG, Op1, dl);
3773 
3774     if (LimitFloatPrecision <= 6) {
3775       // For floating-point precision of 6:
3776       //
3777       //   LogofMantissa =
3778       //     -1.1609546f +
3779       //       (1.4034025f - 0.23903021f * x) * x;
3780       //
3781       // error 0.0034276066, which is better than 8 bits
3782       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3783                                getF32Constant(DAG, 0xbe74c456));
3784       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3785                                getF32Constant(DAG, 0x3fb3a2b1));
3786       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3787       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3788                                           getF32Constant(DAG, 0x3f949a29));
3789 
3790       result = DAG.getNode(ISD::FADD, dl,
3791                            MVT::f32, LogOfExponent, LogOfMantissa);
3792     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3793       // For floating-point precision of 12:
3794       //
3795       //   LogOfMantissa =
3796       //     -1.7417939f +
3797       //       (2.8212026f +
3798       //         (-1.4699568f +
3799       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3800       //
3801       // error 0.000061011436, which is 14 bits
3802       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3803                                getF32Constant(DAG, 0xbd67b6d6));
3804       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3805                                getF32Constant(DAG, 0x3ee4f4b8));
3806       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3807       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3808                                getF32Constant(DAG, 0x3fbc278b));
3809       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3810       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3811                                getF32Constant(DAG, 0x40348e95));
3812       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3813       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3814                                           getF32Constant(DAG, 0x3fdef31a));
3815 
3816       result = DAG.getNode(ISD::FADD, dl,
3817                            MVT::f32, LogOfExponent, LogOfMantissa);
3818     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3819       // For floating-point precision of 18:
3820       //
3821       //   LogOfMantissa =
3822       //     -2.1072184f +
3823       //       (4.2372794f +
3824       //         (-3.7029485f +
3825       //           (2.2781945f +
3826       //             (-0.87823314f +
3827       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3828       //
3829       // error 0.0000023660568, which is better than 18 bits
3830       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3831                                getF32Constant(DAG, 0xbc91e5ac));
3832       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3833                                getF32Constant(DAG, 0x3e4350aa));
3834       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3835       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3836                                getF32Constant(DAG, 0x3f60d3e3));
3837       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3838       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3839                                getF32Constant(DAG, 0x4011cdf0));
3840       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3841       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3842                                getF32Constant(DAG, 0x406cfd1c));
3843       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3844       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3845                                getF32Constant(DAG, 0x408797cb));
3846       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3847       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3848                                           getF32Constant(DAG, 0x4006dcab));
3849 
3850       result = DAG.getNode(ISD::FADD, dl,
3851                            MVT::f32, LogOfExponent, LogOfMantissa);
3852     }
3853   } else {
3854     // No special expansion.
3855     result = DAG.getNode(ISD::FLOG, dl,
3856                          getValue(I.getArgOperand(0)).getValueType(),
3857                          getValue(I.getArgOperand(0)));
3858   }
3859 
3860   setValue(&I, result);
3861 }
3862 
3863 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3864 /// limited-precision mode.
3865 void
3866 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3867   SDValue result;
3868   DebugLoc dl = getCurDebugLoc();
3869 
3870   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3871       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3872     SDValue Op = getValue(I.getArgOperand(0));
3873     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3874 
3875     // Get the exponent.
3876     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3877 
3878     // Get the significand and build it into a floating-point number with
3879     // exponent of 1.
3880     SDValue X = GetSignificand(DAG, Op1, dl);
3881 
3882     // Different possible minimax approximations of significand in
3883     // floating-point for various degrees of accuracy over [1,2].
3884     if (LimitFloatPrecision <= 6) {
3885       // For floating-point precision of 6:
3886       //
3887       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3888       //
3889       // error 0.0049451742, which is more than 7 bits
3890       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3891                                getF32Constant(DAG, 0xbeb08fe0));
3892       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3893                                getF32Constant(DAG, 0x40019463));
3894       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3895       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3896                                            getF32Constant(DAG, 0x3fd6633d));
3897 
3898       result = DAG.getNode(ISD::FADD, dl,
3899                            MVT::f32, LogOfExponent, Log2ofMantissa);
3900     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3901       // For floating-point precision of 12:
3902       //
3903       //   Log2ofMantissa =
3904       //     -2.51285454f +
3905       //       (4.07009056f +
3906       //         (-2.12067489f +
3907       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3908       //
3909       // error 0.0000876136000, which is better than 13 bits
3910       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3911                                getF32Constant(DAG, 0xbda7262e));
3912       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3913                                getF32Constant(DAG, 0x3f25280b));
3914       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3915       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3916                                getF32Constant(DAG, 0x4007b923));
3917       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3918       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3919                                getF32Constant(DAG, 0x40823e2f));
3920       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3921       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3922                                            getF32Constant(DAG, 0x4020d29c));
3923 
3924       result = DAG.getNode(ISD::FADD, dl,
3925                            MVT::f32, LogOfExponent, Log2ofMantissa);
3926     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3927       // For floating-point precision of 18:
3928       //
3929       //   Log2ofMantissa =
3930       //     -3.0400495f +
3931       //       (6.1129976f +
3932       //         (-5.3420409f +
3933       //           (3.2865683f +
3934       //             (-1.2669343f +
3935       //               (0.27515199f -
3936       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3937       //
3938       // error 0.0000018516, which is better than 18 bits
3939       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3940                                getF32Constant(DAG, 0xbcd2769e));
3941       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3942                                getF32Constant(DAG, 0x3e8ce0b9));
3943       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3944       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3945                                getF32Constant(DAG, 0x3fa22ae7));
3946       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3947       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3948                                getF32Constant(DAG, 0x40525723));
3949       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3950       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3951                                getF32Constant(DAG, 0x40aaf200));
3952       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3953       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3954                                getF32Constant(DAG, 0x40c39dad));
3955       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3956       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3957                                            getF32Constant(DAG, 0x4042902c));
3958 
3959       result = DAG.getNode(ISD::FADD, dl,
3960                            MVT::f32, LogOfExponent, Log2ofMantissa);
3961     }
3962   } else {
3963     // No special expansion.
3964     result = DAG.getNode(ISD::FLOG2, dl,
3965                          getValue(I.getArgOperand(0)).getValueType(),
3966                          getValue(I.getArgOperand(0)));
3967   }
3968 
3969   setValue(&I, result);
3970 }
3971 
3972 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3973 /// limited-precision mode.
3974 void
3975 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3976   SDValue result;
3977   DebugLoc dl = getCurDebugLoc();
3978 
3979   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3980       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3981     SDValue Op = getValue(I.getArgOperand(0));
3982     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3983 
3984     // Scale the exponent by log10(2) [0.30102999f].
3985     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3986     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3987                                         getF32Constant(DAG, 0x3e9a209a));
3988 
3989     // Get the significand and build it into a floating-point number with
3990     // exponent of 1.
3991     SDValue X = GetSignificand(DAG, Op1, dl);
3992 
3993     if (LimitFloatPrecision <= 6) {
3994       // For floating-point precision of 6:
3995       //
3996       //   Log10ofMantissa =
3997       //     -0.50419619f +
3998       //       (0.60948995f - 0.10380950f * x) * x;
3999       //
4000       // error 0.0014886165, which is 6 bits
4001       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4002                                getF32Constant(DAG, 0xbdd49a13));
4003       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4004                                getF32Constant(DAG, 0x3f1c0789));
4005       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4006       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4007                                             getF32Constant(DAG, 0x3f011300));
4008 
4009       result = DAG.getNode(ISD::FADD, dl,
4010                            MVT::f32, LogOfExponent, Log10ofMantissa);
4011     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4012       // For floating-point precision of 12:
4013       //
4014       //   Log10ofMantissa =
4015       //     -0.64831180f +
4016       //       (0.91751397f +
4017       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4018       //
4019       // error 0.00019228036, which is better than 12 bits
4020       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4021                                getF32Constant(DAG, 0x3d431f31));
4022       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4023                                getF32Constant(DAG, 0x3ea21fb2));
4024       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4025       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4026                                getF32Constant(DAG, 0x3f6ae232));
4027       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4028       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4029                                             getF32Constant(DAG, 0x3f25f7c3));
4030 
4031       result = DAG.getNode(ISD::FADD, dl,
4032                            MVT::f32, LogOfExponent, Log10ofMantissa);
4033     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4034       // For floating-point precision of 18:
4035       //
4036       //   Log10ofMantissa =
4037       //     -0.84299375f +
4038       //       (1.5327582f +
4039       //         (-1.0688956f +
4040       //           (0.49102474f +
4041       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4042       //
4043       // error 0.0000037995730, which is better than 18 bits
4044       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4045                                getF32Constant(DAG, 0x3c5d51ce));
4046       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4047                                getF32Constant(DAG, 0x3e00685a));
4048       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4049       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4050                                getF32Constant(DAG, 0x3efb6798));
4051       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4052       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4053                                getF32Constant(DAG, 0x3f88d192));
4054       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4055       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4056                                getF32Constant(DAG, 0x3fc4316c));
4057       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4058       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4059                                             getF32Constant(DAG, 0x3f57ce70));
4060 
4061       result = DAG.getNode(ISD::FADD, dl,
4062                            MVT::f32, LogOfExponent, Log10ofMantissa);
4063     }
4064   } else {
4065     // No special expansion.
4066     result = DAG.getNode(ISD::FLOG10, dl,
4067                          getValue(I.getArgOperand(0)).getValueType(),
4068                          getValue(I.getArgOperand(0)));
4069   }
4070 
4071   setValue(&I, result);
4072 }
4073 
4074 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4075 /// limited-precision mode.
4076 void
4077 SelectionDAGBuilder::visitExp2(const CallInst &I) {
4078   SDValue result;
4079   DebugLoc dl = getCurDebugLoc();
4080 
4081   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4082       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4083     SDValue Op = getValue(I.getArgOperand(0));
4084 
4085     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4086 
4087     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4088     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4089     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4090 
4091     //   IntegerPartOfX <<= 23;
4092     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4093                                  DAG.getConstant(23, TLI.getPointerTy()));
4094 
4095     if (LimitFloatPrecision <= 6) {
4096       // For floating-point precision of 6:
4097       //
4098       //   TwoToFractionalPartOfX =
4099       //     0.997535578f +
4100       //       (0.735607626f + 0.252464424f * x) * x;
4101       //
4102       // error 0.0144103317, which is 6 bits
4103       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4104                                getF32Constant(DAG, 0x3e814304));
4105       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4106                                getF32Constant(DAG, 0x3f3c50c8));
4107       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4108       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4109                                getF32Constant(DAG, 0x3f7f5e7e));
4110       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4111       SDValue TwoToFractionalPartOfX =
4112         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4113 
4114       result = DAG.getNode(ISD::BITCAST, dl,
4115                            MVT::f32, TwoToFractionalPartOfX);
4116     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4117       // For floating-point precision of 12:
4118       //
4119       //   TwoToFractionalPartOfX =
4120       //     0.999892986f +
4121       //       (0.696457318f +
4122       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4123       //
4124       // error 0.000107046256, which is 13 to 14 bits
4125       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4126                                getF32Constant(DAG, 0x3da235e3));
4127       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4128                                getF32Constant(DAG, 0x3e65b8f3));
4129       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4130       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4131                                getF32Constant(DAG, 0x3f324b07));
4132       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4133       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4134                                getF32Constant(DAG, 0x3f7ff8fd));
4135       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4136       SDValue TwoToFractionalPartOfX =
4137         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4138 
4139       result = DAG.getNode(ISD::BITCAST, dl,
4140                            MVT::f32, TwoToFractionalPartOfX);
4141     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4142       // For floating-point precision of 18:
4143       //
4144       //   TwoToFractionalPartOfX =
4145       //     0.999999982f +
4146       //       (0.693148872f +
4147       //         (0.240227044f +
4148       //           (0.554906021e-1f +
4149       //             (0.961591928e-2f +
4150       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4151       // error 2.47208000*10^(-7), which is better than 18 bits
4152       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4153                                getF32Constant(DAG, 0x3924b03e));
4154       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4155                                getF32Constant(DAG, 0x3ab24b87));
4156       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4157       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4158                                getF32Constant(DAG, 0x3c1d8c17));
4159       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4160       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4161                                getF32Constant(DAG, 0x3d634a1d));
4162       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4163       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4164                                getF32Constant(DAG, 0x3e75fe14));
4165       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4166       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4167                                 getF32Constant(DAG, 0x3f317234));
4168       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4169       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4170                                 getF32Constant(DAG, 0x3f800000));
4171       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4172       SDValue TwoToFractionalPartOfX =
4173         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4174 
4175       result = DAG.getNode(ISD::BITCAST, dl,
4176                            MVT::f32, TwoToFractionalPartOfX);
4177     }
4178   } else {
4179     // No special expansion.
4180     result = DAG.getNode(ISD::FEXP2, dl,
4181                          getValue(I.getArgOperand(0)).getValueType(),
4182                          getValue(I.getArgOperand(0)));
4183   }
4184 
4185   setValue(&I, result);
4186 }
4187 
4188 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4189 /// limited-precision mode with x == 10.0f.
4190 void
4191 SelectionDAGBuilder::visitPow(const CallInst &I) {
4192   SDValue result;
4193   const Value *Val = I.getArgOperand(0);
4194   DebugLoc dl = getCurDebugLoc();
4195   bool IsExp10 = false;
4196 
4197   if (getValue(Val).getValueType() == MVT::f32 &&
4198       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4199       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4200     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4201       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4202         APFloat Ten(10.0f);
4203         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4204       }
4205     }
4206   }
4207 
4208   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4209     SDValue Op = getValue(I.getArgOperand(1));
4210 
4211     // Put the exponent in the right bit position for later addition to the
4212     // final result:
4213     //
4214     //   #define LOG2OF10 3.3219281f
4215     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4216     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4217                              getF32Constant(DAG, 0x40549a78));
4218     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4219 
4220     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4221     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4222     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4223 
4224     //   IntegerPartOfX <<= 23;
4225     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4226                                  DAG.getConstant(23, TLI.getPointerTy()));
4227 
4228     if (LimitFloatPrecision <= 6) {
4229       // For floating-point precision of 6:
4230       //
4231       //   twoToFractionalPartOfX =
4232       //     0.997535578f +
4233       //       (0.735607626f + 0.252464424f * x) * x;
4234       //
4235       // error 0.0144103317, which is 6 bits
4236       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4237                                getF32Constant(DAG, 0x3e814304));
4238       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4239                                getF32Constant(DAG, 0x3f3c50c8));
4240       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4241       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4242                                getF32Constant(DAG, 0x3f7f5e7e));
4243       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4244       SDValue TwoToFractionalPartOfX =
4245         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4246 
4247       result = DAG.getNode(ISD::BITCAST, dl,
4248                            MVT::f32, TwoToFractionalPartOfX);
4249     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4250       // For floating-point precision of 12:
4251       //
4252       //   TwoToFractionalPartOfX =
4253       //     0.999892986f +
4254       //       (0.696457318f +
4255       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4256       //
4257       // error 0.000107046256, which is 13 to 14 bits
4258       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4259                                getF32Constant(DAG, 0x3da235e3));
4260       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4261                                getF32Constant(DAG, 0x3e65b8f3));
4262       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4263       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4264                                getF32Constant(DAG, 0x3f324b07));
4265       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4266       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4267                                getF32Constant(DAG, 0x3f7ff8fd));
4268       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4269       SDValue TwoToFractionalPartOfX =
4270         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4271 
4272       result = DAG.getNode(ISD::BITCAST, dl,
4273                            MVT::f32, TwoToFractionalPartOfX);
4274     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4275       // For floating-point precision of 18:
4276       //
4277       //   TwoToFractionalPartOfX =
4278       //     0.999999982f +
4279       //       (0.693148872f +
4280       //         (0.240227044f +
4281       //           (0.554906021e-1f +
4282       //             (0.961591928e-2f +
4283       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4284       // error 2.47208000*10^(-7), which is better than 18 bits
4285       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4286                                getF32Constant(DAG, 0x3924b03e));
4287       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4288                                getF32Constant(DAG, 0x3ab24b87));
4289       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4290       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4291                                getF32Constant(DAG, 0x3c1d8c17));
4292       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4293       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4294                                getF32Constant(DAG, 0x3d634a1d));
4295       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4296       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4297                                getF32Constant(DAG, 0x3e75fe14));
4298       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4299       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4300                                 getF32Constant(DAG, 0x3f317234));
4301       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4302       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4303                                 getF32Constant(DAG, 0x3f800000));
4304       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4305       SDValue TwoToFractionalPartOfX =
4306         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4307 
4308       result = DAG.getNode(ISD::BITCAST, dl,
4309                            MVT::f32, TwoToFractionalPartOfX);
4310     }
4311   } else {
4312     // No special expansion.
4313     result = DAG.getNode(ISD::FPOW, dl,
4314                          getValue(I.getArgOperand(0)).getValueType(),
4315                          getValue(I.getArgOperand(0)),
4316                          getValue(I.getArgOperand(1)));
4317   }
4318 
4319   setValue(&I, result);
4320 }
4321 
4322 
4323 /// ExpandPowI - Expand a llvm.powi intrinsic.
4324 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4325                           SelectionDAG &DAG) {
4326   // If RHS is a constant, we can expand this out to a multiplication tree,
4327   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4328   // optimizing for size, we only want to do this if the expansion would produce
4329   // a small number of multiplies, otherwise we do the full expansion.
4330   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4331     // Get the exponent as a positive value.
4332     unsigned Val = RHSC->getSExtValue();
4333     if ((int)Val < 0) Val = -Val;
4334 
4335     // powi(x, 0) -> 1.0
4336     if (Val == 0)
4337       return DAG.getConstantFP(1.0, LHS.getValueType());
4338 
4339     const Function *F = DAG.getMachineFunction().getFunction();
4340     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4341         // If optimizing for size, don't insert too many multiplies.  This
4342         // inserts up to 5 multiplies.
4343         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4344       // We use the simple binary decomposition method to generate the multiply
4345       // sequence.  There are more optimal ways to do this (for example,
4346       // powi(x,15) generates one more multiply than it should), but this has
4347       // the benefit of being both really simple and much better than a libcall.
4348       SDValue Res;  // Logically starts equal to 1.0
4349       SDValue CurSquare = LHS;
4350       while (Val) {
4351         if (Val & 1) {
4352           if (Res.getNode())
4353             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4354           else
4355             Res = CurSquare;  // 1.0*CurSquare.
4356         }
4357 
4358         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4359                                 CurSquare, CurSquare);
4360         Val >>= 1;
4361       }
4362 
4363       // If the original was negative, invert the result, producing 1/(x*x*x).
4364       if (RHSC->getSExtValue() < 0)
4365         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4366                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4367       return Res;
4368     }
4369   }
4370 
4371   // Otherwise, expand to a libcall.
4372   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4373 }
4374 
4375 // getTruncatedArgReg - Find underlying register used for an truncated
4376 // argument.
4377 static unsigned getTruncatedArgReg(const SDValue &N) {
4378   if (N.getOpcode() != ISD::TRUNCATE)
4379     return 0;
4380 
4381   const SDValue &Ext = N.getOperand(0);
4382   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4383     const SDValue &CFR = Ext.getOperand(0);
4384     if (CFR.getOpcode() == ISD::CopyFromReg)
4385       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4386     else
4387       if (CFR.getOpcode() == ISD::TRUNCATE)
4388         return getTruncatedArgReg(CFR);
4389   }
4390   return 0;
4391 }
4392 
4393 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4394 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4395 /// At the end of instruction selection, they will be inserted to the entry BB.
4396 bool
4397 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4398                                               int64_t Offset,
4399                                               const SDValue &N) {
4400   const Argument *Arg = dyn_cast<Argument>(V);
4401   if (!Arg)
4402     return false;
4403 
4404   MachineFunction &MF = DAG.getMachineFunction();
4405   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4406   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4407 
4408   // Ignore inlined function arguments here.
4409   DIVariable DV(Variable);
4410   if (DV.isInlinedFnArgument(MF.getFunction()))
4411     return false;
4412 
4413   unsigned Reg = 0;
4414   // Some arguments' frame index is recorded during argument lowering.
4415   Offset = FuncInfo.getArgumentFrameIndex(Arg);
4416   if (Offset)
4417       Reg = TRI->getFrameRegister(MF);
4418 
4419   if (!Reg && N.getNode()) {
4420     if (N.getOpcode() == ISD::CopyFromReg)
4421       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4422     else
4423       Reg = getTruncatedArgReg(N);
4424     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4425       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4426       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4427       if (PR)
4428         Reg = PR;
4429     }
4430   }
4431 
4432   if (!Reg) {
4433     // Check if ValueMap has reg number.
4434     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4435     if (VMI != FuncInfo.ValueMap.end())
4436       Reg = VMI->second;
4437   }
4438 
4439   if (!Reg && N.getNode()) {
4440     // Check if frame index is available.
4441     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4442       if (FrameIndexSDNode *FINode =
4443           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4444         Reg = TRI->getFrameRegister(MF);
4445         Offset = FINode->getIndex();
4446       }
4447   }
4448 
4449   if (!Reg)
4450     return false;
4451 
4452   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4453                                     TII->get(TargetOpcode::DBG_VALUE))
4454     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4455   FuncInfo.ArgDbgValues.push_back(&*MIB);
4456   return true;
4457 }
4458 
4459 // VisualStudio defines setjmp as _setjmp
4460 #if defined(_MSC_VER) && defined(setjmp) && \
4461                          !defined(setjmp_undefined_for_msvc)
4462 #  pragma push_macro("setjmp")
4463 #  undef setjmp
4464 #  define setjmp_undefined_for_msvc
4465 #endif
4466 
4467 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4468 /// we want to emit this as a call to a named external function, return the name
4469 /// otherwise lower it and return null.
4470 const char *
4471 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4472   DebugLoc dl = getCurDebugLoc();
4473   SDValue Res;
4474 
4475   switch (Intrinsic) {
4476   default:
4477     // By default, turn this into a target intrinsic node.
4478     visitTargetIntrinsic(I, Intrinsic);
4479     return 0;
4480   case Intrinsic::vastart:  visitVAStart(I); return 0;
4481   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4482   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4483   case Intrinsic::returnaddress:
4484     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4485                              getValue(I.getArgOperand(0))));
4486     return 0;
4487   case Intrinsic::frameaddress:
4488     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4489                              getValue(I.getArgOperand(0))));
4490     return 0;
4491   case Intrinsic::setjmp:
4492     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4493   case Intrinsic::longjmp:
4494     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4495   case Intrinsic::memcpy: {
4496     // Assert for address < 256 since we support only user defined address
4497     // spaces.
4498     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4499            < 256 &&
4500            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4501            < 256 &&
4502            "Unknown address space");
4503     SDValue Op1 = getValue(I.getArgOperand(0));
4504     SDValue Op2 = getValue(I.getArgOperand(1));
4505     SDValue Op3 = getValue(I.getArgOperand(2));
4506     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4507     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4508     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4509                               MachinePointerInfo(I.getArgOperand(0)),
4510                               MachinePointerInfo(I.getArgOperand(1))));
4511     return 0;
4512   }
4513   case Intrinsic::memset: {
4514     // Assert for address < 256 since we support only user defined address
4515     // spaces.
4516     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4517            < 256 &&
4518            "Unknown address space");
4519     SDValue Op1 = getValue(I.getArgOperand(0));
4520     SDValue Op2 = getValue(I.getArgOperand(1));
4521     SDValue Op3 = getValue(I.getArgOperand(2));
4522     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4523     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4524     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4525                               MachinePointerInfo(I.getArgOperand(0))));
4526     return 0;
4527   }
4528   case Intrinsic::memmove: {
4529     // Assert for address < 256 since we support only user defined address
4530     // spaces.
4531     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4532            < 256 &&
4533            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4534            < 256 &&
4535            "Unknown address space");
4536     SDValue Op1 = getValue(I.getArgOperand(0));
4537     SDValue Op2 = getValue(I.getArgOperand(1));
4538     SDValue Op3 = getValue(I.getArgOperand(2));
4539     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4540     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4541     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4542                                MachinePointerInfo(I.getArgOperand(0)),
4543                                MachinePointerInfo(I.getArgOperand(1))));
4544     return 0;
4545   }
4546   case Intrinsic::dbg_declare: {
4547     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4548     MDNode *Variable = DI.getVariable();
4549     const Value *Address = DI.getAddress();
4550     if (!Address || !DIVariable(Variable).Verify())
4551       return 0;
4552 
4553     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4554     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4555     // absolute, but not relative, values are different depending on whether
4556     // debug info exists.
4557     ++SDNodeOrder;
4558 
4559     // Check if address has undef value.
4560     if (isa<UndefValue>(Address) ||
4561         (Address->use_empty() && !isa<Argument>(Address))) {
4562       DEBUG(dbgs() << "Dropping debug info for " << DI);
4563       return 0;
4564     }
4565 
4566     SDValue &N = NodeMap[Address];
4567     if (!N.getNode() && isa<Argument>(Address))
4568       // Check unused arguments map.
4569       N = UnusedArgNodeMap[Address];
4570     SDDbgValue *SDV;
4571     if (N.getNode()) {
4572       // Parameters are handled specially.
4573       bool isParameter =
4574         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4575       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4576         Address = BCI->getOperand(0);
4577       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4578 
4579       if (isParameter && !AI) {
4580         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4581         if (FINode)
4582           // Byval parameter.  We have a frame index at this point.
4583           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4584                                 0, dl, SDNodeOrder);
4585         else {
4586           // Address is an argument, so try to emit its dbg value using
4587           // virtual register info from the FuncInfo.ValueMap.
4588           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4589           return 0;
4590         }
4591       } else if (AI)
4592         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4593                               0, dl, SDNodeOrder);
4594       else {
4595         // Can't do anything with other non-AI cases yet.
4596         DEBUG(dbgs() << "Dropping debug info for " << DI);
4597         return 0;
4598       }
4599       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4600     } else {
4601       // If Address is an argument then try to emit its dbg value using
4602       // virtual register info from the FuncInfo.ValueMap.
4603       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4604         // If variable is pinned by a alloca in dominating bb then
4605         // use StaticAllocaMap.
4606         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4607           if (AI->getParent() != DI.getParent()) {
4608             DenseMap<const AllocaInst*, int>::iterator SI =
4609               FuncInfo.StaticAllocaMap.find(AI);
4610             if (SI != FuncInfo.StaticAllocaMap.end()) {
4611               SDV = DAG.getDbgValue(Variable, SI->second,
4612                                     0, dl, SDNodeOrder);
4613               DAG.AddDbgValue(SDV, 0, false);
4614               return 0;
4615             }
4616           }
4617         }
4618         DEBUG(dbgs() << "Dropping debug info for " << DI);
4619       }
4620     }
4621     return 0;
4622   }
4623   case Intrinsic::dbg_value: {
4624     const DbgValueInst &DI = cast<DbgValueInst>(I);
4625     if (!DIVariable(DI.getVariable()).Verify())
4626       return 0;
4627 
4628     MDNode *Variable = DI.getVariable();
4629     uint64_t Offset = DI.getOffset();
4630     const Value *V = DI.getValue();
4631     if (!V)
4632       return 0;
4633 
4634     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4635     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4636     // absolute, but not relative, values are different depending on whether
4637     // debug info exists.
4638     ++SDNodeOrder;
4639     SDDbgValue *SDV;
4640     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4641       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4642       DAG.AddDbgValue(SDV, 0, false);
4643     } else {
4644       // Do not use getValue() in here; we don't want to generate code at
4645       // this point if it hasn't been done yet.
4646       SDValue N = NodeMap[V];
4647       if (!N.getNode() && isa<Argument>(V))
4648         // Check unused arguments map.
4649         N = UnusedArgNodeMap[V];
4650       if (N.getNode()) {
4651         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4652           SDV = DAG.getDbgValue(Variable, N.getNode(),
4653                                 N.getResNo(), Offset, dl, SDNodeOrder);
4654           DAG.AddDbgValue(SDV, N.getNode(), false);
4655         }
4656       } else if (!V->use_empty() ) {
4657         // Do not call getValue(V) yet, as we don't want to generate code.
4658         // Remember it for later.
4659         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4660         DanglingDebugInfoMap[V] = DDI;
4661       } else {
4662         // We may expand this to cover more cases.  One case where we have no
4663         // data available is an unreferenced parameter.
4664         DEBUG(dbgs() << "Dropping debug info for " << DI);
4665       }
4666     }
4667 
4668     // Build a debug info table entry.
4669     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4670       V = BCI->getOperand(0);
4671     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4672     // Don't handle byval struct arguments or VLAs, for example.
4673     if (!AI)
4674       return 0;
4675     DenseMap<const AllocaInst*, int>::iterator SI =
4676       FuncInfo.StaticAllocaMap.find(AI);
4677     if (SI == FuncInfo.StaticAllocaMap.end())
4678       return 0; // VLAs.
4679     int FI = SI->second;
4680 
4681     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4682     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4683       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4684     return 0;
4685   }
4686 
4687   case Intrinsic::eh_typeid_for: {
4688     // Find the type id for the given typeinfo.
4689     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4690     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4691     Res = DAG.getConstant(TypeID, MVT::i32);
4692     setValue(&I, Res);
4693     return 0;
4694   }
4695 
4696   case Intrinsic::eh_return_i32:
4697   case Intrinsic::eh_return_i64:
4698     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4699     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4700                             MVT::Other,
4701                             getControlRoot(),
4702                             getValue(I.getArgOperand(0)),
4703                             getValue(I.getArgOperand(1))));
4704     return 0;
4705   case Intrinsic::eh_unwind_init:
4706     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4707     return 0;
4708   case Intrinsic::eh_dwarf_cfa: {
4709     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4710                                         TLI.getPointerTy());
4711     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4712                                  TLI.getPointerTy(),
4713                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4714                                              TLI.getPointerTy()),
4715                                  CfaArg);
4716     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4717                              TLI.getPointerTy(),
4718                              DAG.getConstant(0, TLI.getPointerTy()));
4719     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4720                              FA, Offset));
4721     return 0;
4722   }
4723   case Intrinsic::eh_sjlj_callsite: {
4724     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4725     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4726     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4727     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4728 
4729     MMI.setCurrentCallSite(CI->getZExtValue());
4730     return 0;
4731   }
4732   case Intrinsic::eh_sjlj_functioncontext: {
4733     // Get and store the index of the function context.
4734     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4735     AllocaInst *FnCtx =
4736       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4737     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4738     MFI->setFunctionContextIndex(FI);
4739     return 0;
4740   }
4741   case Intrinsic::eh_sjlj_setjmp: {
4742     SDValue Ops[2];
4743     Ops[0] = getRoot();
4744     Ops[1] = getValue(I.getArgOperand(0));
4745     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4746                              DAG.getVTList(MVT::i32, MVT::Other),
4747                              Ops, 2);
4748     setValue(&I, Op.getValue(0));
4749     DAG.setRoot(Op.getValue(1));
4750     return 0;
4751   }
4752   case Intrinsic::eh_sjlj_longjmp: {
4753     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4754                             getRoot(), getValue(I.getArgOperand(0))));
4755     return 0;
4756   }
4757 
4758   case Intrinsic::x86_mmx_pslli_w:
4759   case Intrinsic::x86_mmx_pslli_d:
4760   case Intrinsic::x86_mmx_pslli_q:
4761   case Intrinsic::x86_mmx_psrli_w:
4762   case Intrinsic::x86_mmx_psrli_d:
4763   case Intrinsic::x86_mmx_psrli_q:
4764   case Intrinsic::x86_mmx_psrai_w:
4765   case Intrinsic::x86_mmx_psrai_d: {
4766     SDValue ShAmt = getValue(I.getArgOperand(1));
4767     if (isa<ConstantSDNode>(ShAmt)) {
4768       visitTargetIntrinsic(I, Intrinsic);
4769       return 0;
4770     }
4771     unsigned NewIntrinsic = 0;
4772     EVT ShAmtVT = MVT::v2i32;
4773     switch (Intrinsic) {
4774     case Intrinsic::x86_mmx_pslli_w:
4775       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4776       break;
4777     case Intrinsic::x86_mmx_pslli_d:
4778       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4779       break;
4780     case Intrinsic::x86_mmx_pslli_q:
4781       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4782       break;
4783     case Intrinsic::x86_mmx_psrli_w:
4784       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4785       break;
4786     case Intrinsic::x86_mmx_psrli_d:
4787       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4788       break;
4789     case Intrinsic::x86_mmx_psrli_q:
4790       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4791       break;
4792     case Intrinsic::x86_mmx_psrai_w:
4793       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4794       break;
4795     case Intrinsic::x86_mmx_psrai_d:
4796       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4797       break;
4798     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4799     }
4800 
4801     // The vector shift intrinsics with scalars uses 32b shift amounts but
4802     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4803     // to be zero.
4804     // We must do this early because v2i32 is not a legal type.
4805     DebugLoc dl = getCurDebugLoc();
4806     SDValue ShOps[2];
4807     ShOps[0] = ShAmt;
4808     ShOps[1] = DAG.getConstant(0, MVT::i32);
4809     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4810     EVT DestVT = TLI.getValueType(I.getType());
4811     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4812     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4813                        DAG.getConstant(NewIntrinsic, MVT::i32),
4814                        getValue(I.getArgOperand(0)), ShAmt);
4815     setValue(&I, Res);
4816     return 0;
4817   }
4818   case Intrinsic::convertff:
4819   case Intrinsic::convertfsi:
4820   case Intrinsic::convertfui:
4821   case Intrinsic::convertsif:
4822   case Intrinsic::convertuif:
4823   case Intrinsic::convertss:
4824   case Intrinsic::convertsu:
4825   case Intrinsic::convertus:
4826   case Intrinsic::convertuu: {
4827     ISD::CvtCode Code = ISD::CVT_INVALID;
4828     switch (Intrinsic) {
4829     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4830     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4831     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4832     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4833     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4834     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4835     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4836     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4837     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4838     }
4839     EVT DestVT = TLI.getValueType(I.getType());
4840     const Value *Op1 = I.getArgOperand(0);
4841     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4842                                DAG.getValueType(DestVT),
4843                                DAG.getValueType(getValue(Op1).getValueType()),
4844                                getValue(I.getArgOperand(1)),
4845                                getValue(I.getArgOperand(2)),
4846                                Code);
4847     setValue(&I, Res);
4848     return 0;
4849   }
4850   case Intrinsic::sqrt:
4851     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4852                              getValue(I.getArgOperand(0)).getValueType(),
4853                              getValue(I.getArgOperand(0))));
4854     return 0;
4855   case Intrinsic::powi:
4856     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4857                             getValue(I.getArgOperand(1)), DAG));
4858     return 0;
4859   case Intrinsic::sin:
4860     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4861                              getValue(I.getArgOperand(0)).getValueType(),
4862                              getValue(I.getArgOperand(0))));
4863     return 0;
4864   case Intrinsic::cos:
4865     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4866                              getValue(I.getArgOperand(0)).getValueType(),
4867                              getValue(I.getArgOperand(0))));
4868     return 0;
4869   case Intrinsic::log:
4870     visitLog(I);
4871     return 0;
4872   case Intrinsic::log2:
4873     visitLog2(I);
4874     return 0;
4875   case Intrinsic::log10:
4876     visitLog10(I);
4877     return 0;
4878   case Intrinsic::exp:
4879     visitExp(I);
4880     return 0;
4881   case Intrinsic::exp2:
4882     visitExp2(I);
4883     return 0;
4884   case Intrinsic::pow:
4885     visitPow(I);
4886     return 0;
4887   case Intrinsic::fma:
4888     setValue(&I, DAG.getNode(ISD::FMA, dl,
4889                              getValue(I.getArgOperand(0)).getValueType(),
4890                              getValue(I.getArgOperand(0)),
4891                              getValue(I.getArgOperand(1)),
4892                              getValue(I.getArgOperand(2))));
4893     return 0;
4894   case Intrinsic::convert_to_fp16:
4895     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4896                              MVT::i16, getValue(I.getArgOperand(0))));
4897     return 0;
4898   case Intrinsic::convert_from_fp16:
4899     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4900                              MVT::f32, getValue(I.getArgOperand(0))));
4901     return 0;
4902   case Intrinsic::pcmarker: {
4903     SDValue Tmp = getValue(I.getArgOperand(0));
4904     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4905     return 0;
4906   }
4907   case Intrinsic::readcyclecounter: {
4908     SDValue Op = getRoot();
4909     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4910                       DAG.getVTList(MVT::i64, MVT::Other),
4911                       &Op, 1);
4912     setValue(&I, Res);
4913     DAG.setRoot(Res.getValue(1));
4914     return 0;
4915   }
4916   case Intrinsic::bswap:
4917     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4918                              getValue(I.getArgOperand(0)).getValueType(),
4919                              getValue(I.getArgOperand(0))));
4920     return 0;
4921   case Intrinsic::cttz: {
4922     SDValue Arg = getValue(I.getArgOperand(0));
4923     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4924     EVT Ty = Arg.getValueType();
4925     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4926                              dl, Ty, Arg));
4927     return 0;
4928   }
4929   case Intrinsic::ctlz: {
4930     SDValue Arg = getValue(I.getArgOperand(0));
4931     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4932     EVT Ty = Arg.getValueType();
4933     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4934                              dl, Ty, Arg));
4935     return 0;
4936   }
4937   case Intrinsic::ctpop: {
4938     SDValue Arg = getValue(I.getArgOperand(0));
4939     EVT Ty = Arg.getValueType();
4940     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4941     return 0;
4942   }
4943   case Intrinsic::stacksave: {
4944     SDValue Op = getRoot();
4945     Res = DAG.getNode(ISD::STACKSAVE, dl,
4946                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4947     setValue(&I, Res);
4948     DAG.setRoot(Res.getValue(1));
4949     return 0;
4950   }
4951   case Intrinsic::stackrestore: {
4952     Res = getValue(I.getArgOperand(0));
4953     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4954     return 0;
4955   }
4956   case Intrinsic::stackprotector: {
4957     // Emit code into the DAG to store the stack guard onto the stack.
4958     MachineFunction &MF = DAG.getMachineFunction();
4959     MachineFrameInfo *MFI = MF.getFrameInfo();
4960     EVT PtrTy = TLI.getPointerTy();
4961 
4962     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4963     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4964 
4965     int FI = FuncInfo.StaticAllocaMap[Slot];
4966     MFI->setStackProtectorIndex(FI);
4967 
4968     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4969 
4970     // Store the stack protector onto the stack.
4971     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4972                        MachinePointerInfo::getFixedStack(FI),
4973                        true, false, 0);
4974     setValue(&I, Res);
4975     DAG.setRoot(Res);
4976     return 0;
4977   }
4978   case Intrinsic::objectsize: {
4979     // If we don't know by now, we're never going to know.
4980     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4981 
4982     assert(CI && "Non-constant type in __builtin_object_size?");
4983 
4984     SDValue Arg = getValue(I.getCalledValue());
4985     EVT Ty = Arg.getValueType();
4986 
4987     if (CI->isZero())
4988       Res = DAG.getConstant(-1ULL, Ty);
4989     else
4990       Res = DAG.getConstant(0, Ty);
4991 
4992     setValue(&I, Res);
4993     return 0;
4994   }
4995   case Intrinsic::var_annotation:
4996     // Discard annotate attributes
4997     return 0;
4998 
4999   case Intrinsic::init_trampoline: {
5000     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5001 
5002     SDValue Ops[6];
5003     Ops[0] = getRoot();
5004     Ops[1] = getValue(I.getArgOperand(0));
5005     Ops[2] = getValue(I.getArgOperand(1));
5006     Ops[3] = getValue(I.getArgOperand(2));
5007     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5008     Ops[5] = DAG.getSrcValue(F);
5009 
5010     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5011 
5012     DAG.setRoot(Res);
5013     return 0;
5014   }
5015   case Intrinsic::adjust_trampoline: {
5016     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5017                              TLI.getPointerTy(),
5018                              getValue(I.getArgOperand(0))));
5019     return 0;
5020   }
5021   case Intrinsic::gcroot:
5022     if (GFI) {
5023       const Value *Alloca = I.getArgOperand(0);
5024       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5025 
5026       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5027       GFI->addStackRoot(FI->getIndex(), TypeMap);
5028     }
5029     return 0;
5030   case Intrinsic::gcread:
5031   case Intrinsic::gcwrite:
5032     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5033   case Intrinsic::flt_rounds:
5034     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5035     return 0;
5036 
5037   case Intrinsic::expect: {
5038     // Just replace __builtin_expect(exp, c) with EXP.
5039     setValue(&I, getValue(I.getArgOperand(0)));
5040     return 0;
5041   }
5042 
5043   case Intrinsic::trap: {
5044     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5045     if (TrapFuncName.empty()) {
5046       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5047       return 0;
5048     }
5049     TargetLowering::ArgListTy Args;
5050     std::pair<SDValue, SDValue> Result =
5051       TLI.LowerCallTo(getRoot(), I.getType(),
5052                  false, false, false, false, 0, CallingConv::C,
5053                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5054                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5055                  Args, DAG, getCurDebugLoc());
5056     DAG.setRoot(Result.second);
5057     return 0;
5058   }
5059   case Intrinsic::uadd_with_overflow:
5060     return implVisitAluOverflow(I, ISD::UADDO);
5061   case Intrinsic::sadd_with_overflow:
5062     return implVisitAluOverflow(I, ISD::SADDO);
5063   case Intrinsic::usub_with_overflow:
5064     return implVisitAluOverflow(I, ISD::USUBO);
5065   case Intrinsic::ssub_with_overflow:
5066     return implVisitAluOverflow(I, ISD::SSUBO);
5067   case Intrinsic::umul_with_overflow:
5068     return implVisitAluOverflow(I, ISD::UMULO);
5069   case Intrinsic::smul_with_overflow:
5070     return implVisitAluOverflow(I, ISD::SMULO);
5071 
5072   case Intrinsic::prefetch: {
5073     SDValue Ops[5];
5074     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5075     Ops[0] = getRoot();
5076     Ops[1] = getValue(I.getArgOperand(0));
5077     Ops[2] = getValue(I.getArgOperand(1));
5078     Ops[3] = getValue(I.getArgOperand(2));
5079     Ops[4] = getValue(I.getArgOperand(3));
5080     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5081                                         DAG.getVTList(MVT::Other),
5082                                         &Ops[0], 5,
5083                                         EVT::getIntegerVT(*Context, 8),
5084                                         MachinePointerInfo(I.getArgOperand(0)),
5085                                         0, /* align */
5086                                         false, /* volatile */
5087                                         rw==0, /* read */
5088                                         rw==1)); /* write */
5089     return 0;
5090   }
5091 
5092   case Intrinsic::invariant_start:
5093   case Intrinsic::lifetime_start:
5094     // Discard region information.
5095     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5096     return 0;
5097   case Intrinsic::invariant_end:
5098   case Intrinsic::lifetime_end:
5099     // Discard region information.
5100     return 0;
5101   }
5102 }
5103 
5104 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5105                                       bool isTailCall,
5106                                       MachineBasicBlock *LandingPad) {
5107   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5108   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5109   Type *RetTy = FTy->getReturnType();
5110   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5111   MCSymbol *BeginLabel = 0;
5112 
5113   TargetLowering::ArgListTy Args;
5114   TargetLowering::ArgListEntry Entry;
5115   Args.reserve(CS.arg_size());
5116 
5117   // Check whether the function can return without sret-demotion.
5118   SmallVector<ISD::OutputArg, 4> Outs;
5119   SmallVector<uint64_t, 4> Offsets;
5120   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5121                 Outs, TLI, &Offsets);
5122 
5123   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5124 					   DAG.getMachineFunction(),
5125 					   FTy->isVarArg(), Outs,
5126 					   FTy->getContext());
5127 
5128   SDValue DemoteStackSlot;
5129   int DemoteStackIdx = -100;
5130 
5131   if (!CanLowerReturn) {
5132     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5133                       FTy->getReturnType());
5134     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5135                       FTy->getReturnType());
5136     MachineFunction &MF = DAG.getMachineFunction();
5137     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5138     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5139 
5140     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5141     Entry.Node = DemoteStackSlot;
5142     Entry.Ty = StackSlotPtrType;
5143     Entry.isSExt = false;
5144     Entry.isZExt = false;
5145     Entry.isInReg = false;
5146     Entry.isSRet = true;
5147     Entry.isNest = false;
5148     Entry.isByVal = false;
5149     Entry.Alignment = Align;
5150     Args.push_back(Entry);
5151     RetTy = Type::getVoidTy(FTy->getContext());
5152   }
5153 
5154   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5155        i != e; ++i) {
5156     const Value *V = *i;
5157 
5158     // Skip empty types
5159     if (V->getType()->isEmptyTy())
5160       continue;
5161 
5162     SDValue ArgNode = getValue(V);
5163     Entry.Node = ArgNode; Entry.Ty = V->getType();
5164 
5165     unsigned attrInd = i - CS.arg_begin() + 1;
5166     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5167     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5168     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5169     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5170     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5171     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5172     Entry.Alignment = CS.getParamAlignment(attrInd);
5173     Args.push_back(Entry);
5174   }
5175 
5176   if (LandingPad) {
5177     // Insert a label before the invoke call to mark the try range.  This can be
5178     // used to detect deletion of the invoke via the MachineModuleInfo.
5179     BeginLabel = MMI.getContext().CreateTempSymbol();
5180 
5181     // For SjLj, keep track of which landing pads go with which invokes
5182     // so as to maintain the ordering of pads in the LSDA.
5183     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5184     if (CallSiteIndex) {
5185       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5186       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5187 
5188       // Now that the call site is handled, stop tracking it.
5189       MMI.setCurrentCallSite(0);
5190     }
5191 
5192     // Both PendingLoads and PendingExports must be flushed here;
5193     // this call might not return.
5194     (void)getRoot();
5195     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5196   }
5197 
5198   // Check if target-independent constraints permit a tail call here.
5199   // Target-dependent constraints are checked within TLI.LowerCallTo.
5200   if (isTailCall &&
5201       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5202     isTailCall = false;
5203 
5204   // If there's a possibility that fast-isel has already selected some amount
5205   // of the current basic block, don't emit a tail call.
5206   if (isTailCall && TM.Options.EnableFastISel)
5207     isTailCall = false;
5208 
5209   std::pair<SDValue,SDValue> Result =
5210     TLI.LowerCallTo(getRoot(), RetTy,
5211                     CS.paramHasAttr(0, Attribute::SExt),
5212                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5213                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5214                     CS.getCallingConv(),
5215                     isTailCall,
5216                     !CS.getInstruction()->use_empty(),
5217                     Callee, Args, DAG, getCurDebugLoc());
5218   assert((isTailCall || Result.second.getNode()) &&
5219          "Non-null chain expected with non-tail call!");
5220   assert((Result.second.getNode() || !Result.first.getNode()) &&
5221          "Null value expected with tail call!");
5222   if (Result.first.getNode()) {
5223     setValue(CS.getInstruction(), Result.first);
5224   } else if (!CanLowerReturn && Result.second.getNode()) {
5225     // The instruction result is the result of loading from the
5226     // hidden sret parameter.
5227     SmallVector<EVT, 1> PVTs;
5228     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5229 
5230     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5231     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5232     EVT PtrVT = PVTs[0];
5233     unsigned NumValues = Outs.size();
5234     SmallVector<SDValue, 4> Values(NumValues);
5235     SmallVector<SDValue, 4> Chains(NumValues);
5236 
5237     for (unsigned i = 0; i < NumValues; ++i) {
5238       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5239                                 DemoteStackSlot,
5240                                 DAG.getConstant(Offsets[i], PtrVT));
5241       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5242                               Add,
5243                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5244                               false, false, false, 1);
5245       Values[i] = L;
5246       Chains[i] = L.getValue(1);
5247     }
5248 
5249     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5250                                 MVT::Other, &Chains[0], NumValues);
5251     PendingLoads.push_back(Chain);
5252 
5253     // Collect the legal value parts into potentially illegal values
5254     // that correspond to the original function's return values.
5255     SmallVector<EVT, 4> RetTys;
5256     RetTy = FTy->getReturnType();
5257     ComputeValueVTs(TLI, RetTy, RetTys);
5258     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5259     SmallVector<SDValue, 4> ReturnValues;
5260     unsigned CurReg = 0;
5261     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5262       EVT VT = RetTys[I];
5263       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5264       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5265 
5266       SDValue ReturnValue =
5267         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5268                          RegisterVT, VT, AssertOp);
5269       ReturnValues.push_back(ReturnValue);
5270       CurReg += NumRegs;
5271     }
5272 
5273     setValue(CS.getInstruction(),
5274              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5275                          DAG.getVTList(&RetTys[0], RetTys.size()),
5276                          &ReturnValues[0], ReturnValues.size()));
5277   }
5278 
5279   // Assign order to nodes here. If the call does not produce a result, it won't
5280   // be mapped to a SDNode and visit() will not assign it an order number.
5281   if (!Result.second.getNode()) {
5282     // As a special case, a null chain means that a tail call has been emitted and
5283     // the DAG root is already updated.
5284     HasTailCall = true;
5285     ++SDNodeOrder;
5286     AssignOrderingToNode(DAG.getRoot().getNode());
5287   } else {
5288     DAG.setRoot(Result.second);
5289     ++SDNodeOrder;
5290     AssignOrderingToNode(Result.second.getNode());
5291   }
5292 
5293   if (LandingPad) {
5294     // Insert a label at the end of the invoke call to mark the try range.  This
5295     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5296     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5297     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5298 
5299     // Inform MachineModuleInfo of range.
5300     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5301   }
5302 }
5303 
5304 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5305 /// value is equal or not-equal to zero.
5306 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5307   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5308        UI != E; ++UI) {
5309     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5310       if (IC->isEquality())
5311         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5312           if (C->isNullValue())
5313             continue;
5314     // Unknown instruction.
5315     return false;
5316   }
5317   return true;
5318 }
5319 
5320 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5321                              Type *LoadTy,
5322                              SelectionDAGBuilder &Builder) {
5323 
5324   // Check to see if this load can be trivially constant folded, e.g. if the
5325   // input is from a string literal.
5326   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5327     // Cast pointer to the type we really want to load.
5328     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5329                                          PointerType::getUnqual(LoadTy));
5330 
5331     if (const Constant *LoadCst =
5332           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5333                                        Builder.TD))
5334       return Builder.getValue(LoadCst);
5335   }
5336 
5337   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5338   // still constant memory, the input chain can be the entry node.
5339   SDValue Root;
5340   bool ConstantMemory = false;
5341 
5342   // Do not serialize (non-volatile) loads of constant memory with anything.
5343   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5344     Root = Builder.DAG.getEntryNode();
5345     ConstantMemory = true;
5346   } else {
5347     // Do not serialize non-volatile loads against each other.
5348     Root = Builder.DAG.getRoot();
5349   }
5350 
5351   SDValue Ptr = Builder.getValue(PtrVal);
5352   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5353                                         Ptr, MachinePointerInfo(PtrVal),
5354                                         false /*volatile*/,
5355                                         false /*nontemporal*/,
5356                                         false /*isinvariant*/, 1 /* align=1 */);
5357 
5358   if (!ConstantMemory)
5359     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5360   return LoadVal;
5361 }
5362 
5363 
5364 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5365 /// If so, return true and lower it, otherwise return false and it will be
5366 /// lowered like a normal call.
5367 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5368   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5369   if (I.getNumArgOperands() != 3)
5370     return false;
5371 
5372   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5373   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5374       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5375       !I.getType()->isIntegerTy())
5376     return false;
5377 
5378   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5379 
5380   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5381   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5382   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5383     bool ActuallyDoIt = true;
5384     MVT LoadVT;
5385     Type *LoadTy;
5386     switch (Size->getZExtValue()) {
5387     default:
5388       LoadVT = MVT::Other;
5389       LoadTy = 0;
5390       ActuallyDoIt = false;
5391       break;
5392     case 2:
5393       LoadVT = MVT::i16;
5394       LoadTy = Type::getInt16Ty(Size->getContext());
5395       break;
5396     case 4:
5397       LoadVT = MVT::i32;
5398       LoadTy = Type::getInt32Ty(Size->getContext());
5399       break;
5400     case 8:
5401       LoadVT = MVT::i64;
5402       LoadTy = Type::getInt64Ty(Size->getContext());
5403       break;
5404         /*
5405     case 16:
5406       LoadVT = MVT::v4i32;
5407       LoadTy = Type::getInt32Ty(Size->getContext());
5408       LoadTy = VectorType::get(LoadTy, 4);
5409       break;
5410          */
5411     }
5412 
5413     // This turns into unaligned loads.  We only do this if the target natively
5414     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5415     // we'll only produce a small number of byte loads.
5416 
5417     // Require that we can find a legal MVT, and only do this if the target
5418     // supports unaligned loads of that type.  Expanding into byte loads would
5419     // bloat the code.
5420     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5421       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5422       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5423       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5424         ActuallyDoIt = false;
5425     }
5426 
5427     if (ActuallyDoIt) {
5428       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5429       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5430 
5431       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5432                                  ISD::SETNE);
5433       EVT CallVT = TLI.getValueType(I.getType(), true);
5434       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5435       return true;
5436     }
5437   }
5438 
5439 
5440   return false;
5441 }
5442 
5443 
5444 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5445   // Handle inline assembly differently.
5446   if (isa<InlineAsm>(I.getCalledValue())) {
5447     visitInlineAsm(&I);
5448     return;
5449   }
5450 
5451   // See if any floating point values are being passed to this function. This is
5452   // used to emit an undefined reference to fltused on Windows.
5453   FunctionType *FT =
5454     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5455   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5456   if (FT->isVarArg() &&
5457       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5458     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5459       Type* T = I.getArgOperand(i)->getType();
5460       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5461            i != e; ++i) {
5462         if (!i->isFloatingPointTy()) continue;
5463         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5464         break;
5465       }
5466     }
5467   }
5468 
5469   const char *RenameFn = 0;
5470   if (Function *F = I.getCalledFunction()) {
5471     if (F->isDeclaration()) {
5472       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5473         if (unsigned IID = II->getIntrinsicID(F)) {
5474           RenameFn = visitIntrinsicCall(I, IID);
5475           if (!RenameFn)
5476             return;
5477         }
5478       }
5479       if (unsigned IID = F->getIntrinsicID()) {
5480         RenameFn = visitIntrinsicCall(I, IID);
5481         if (!RenameFn)
5482           return;
5483       }
5484     }
5485 
5486     // Check for well-known libc/libm calls.  If the function is internal, it
5487     // can't be a library call.
5488     if (!F->hasLocalLinkage() && F->hasName()) {
5489       StringRef Name = F->getName();
5490       if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5491           (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5492           (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5493         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5494             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5495             I.getType() == I.getArgOperand(0)->getType() &&
5496             I.getType() == I.getArgOperand(1)->getType()) {
5497           SDValue LHS = getValue(I.getArgOperand(0));
5498           SDValue RHS = getValue(I.getArgOperand(1));
5499           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5500                                    LHS.getValueType(), LHS, RHS));
5501           return;
5502         }
5503       } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5504                  (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5505                  (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5506         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5507             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5508             I.getType() == I.getArgOperand(0)->getType()) {
5509           SDValue Tmp = getValue(I.getArgOperand(0));
5510           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5511                                    Tmp.getValueType(), Tmp));
5512           return;
5513         }
5514       } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5515                  (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5516                  (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5517         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5518             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5519             I.getType() == I.getArgOperand(0)->getType() &&
5520             I.onlyReadsMemory()) {
5521           SDValue Tmp = getValue(I.getArgOperand(0));
5522           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5523                                    Tmp.getValueType(), Tmp));
5524           return;
5525         }
5526       } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5527                  (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5528                  (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5529         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5530             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5531             I.getType() == I.getArgOperand(0)->getType() &&
5532             I.onlyReadsMemory()) {
5533           SDValue Tmp = getValue(I.getArgOperand(0));
5534           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5535                                    Tmp.getValueType(), Tmp));
5536           return;
5537         }
5538       } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5539                  (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5540                  (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5541         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5542             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5543             I.getType() == I.getArgOperand(0)->getType() &&
5544             I.onlyReadsMemory()) {
5545           SDValue Tmp = getValue(I.getArgOperand(0));
5546           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5547                                    Tmp.getValueType(), Tmp));
5548           return;
5549         }
5550       } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5551                  (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5552                  (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5553         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5554             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5555             I.getType() == I.getArgOperand(0)->getType()) {
5556           SDValue Tmp = getValue(I.getArgOperand(0));
5557           setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5558                                    Tmp.getValueType(), Tmp));
5559           return;
5560         }
5561       } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5562                  (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5563                  (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5564         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5565             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5566             I.getType() == I.getArgOperand(0)->getType()) {
5567           SDValue Tmp = getValue(I.getArgOperand(0));
5568           setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5569                                    Tmp.getValueType(), Tmp));
5570           return;
5571         }
5572       } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5573                  (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5574                  (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5575         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5576             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5577             I.getType() == I.getArgOperand(0)->getType()) {
5578           SDValue Tmp = getValue(I.getArgOperand(0));
5579           setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5580                                    Tmp.getValueType(), Tmp));
5581           return;
5582         }
5583       } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5584                  (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5585                  (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5586         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5587             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5588             I.getType() == I.getArgOperand(0)->getType()) {
5589           SDValue Tmp = getValue(I.getArgOperand(0));
5590           setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5591                                    Tmp.getValueType(), Tmp));
5592           return;
5593         }
5594       } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5595                  (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5596                  (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5597         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5598             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5599             I.getType() == I.getArgOperand(0)->getType()) {
5600           SDValue Tmp = getValue(I.getArgOperand(0));
5601           setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5602                                    Tmp.getValueType(), Tmp));
5603           return;
5604         }
5605       } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5606                  (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5607                  (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5608         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5609             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5610             I.getType() == I.getArgOperand(0)->getType()) {
5611           SDValue Tmp = getValue(I.getArgOperand(0));
5612           setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5613                                    Tmp.getValueType(), Tmp));
5614           return;
5615         }
5616       } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5617                  (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5618                  (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5619         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5620             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5621             I.getType() == I.getArgOperand(0)->getType()) {
5622           SDValue Tmp = getValue(I.getArgOperand(0));
5623           setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5624                                    Tmp.getValueType(), Tmp));
5625           return;
5626         }
5627       } else if (Name == "memcmp") {
5628         if (visitMemCmpCall(I))
5629           return;
5630       }
5631     }
5632   }
5633 
5634   SDValue Callee;
5635   if (!RenameFn)
5636     Callee = getValue(I.getCalledValue());
5637   else
5638     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5639 
5640   // Check if we can potentially perform a tail call. More detailed checking is
5641   // be done within LowerCallTo, after more information about the call is known.
5642   LowerCallTo(&I, Callee, I.isTailCall());
5643 }
5644 
5645 namespace {
5646 
5647 /// AsmOperandInfo - This contains information for each constraint that we are
5648 /// lowering.
5649 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5650 public:
5651   /// CallOperand - If this is the result output operand or a clobber
5652   /// this is null, otherwise it is the incoming operand to the CallInst.
5653   /// This gets modified as the asm is processed.
5654   SDValue CallOperand;
5655 
5656   /// AssignedRegs - If this is a register or register class operand, this
5657   /// contains the set of register corresponding to the operand.
5658   RegsForValue AssignedRegs;
5659 
5660   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5661     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5662   }
5663 
5664   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5665   /// busy in OutputRegs/InputRegs.
5666   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5667                          std::set<unsigned> &OutputRegs,
5668                          std::set<unsigned> &InputRegs,
5669                          const TargetRegisterInfo &TRI) const {
5670     if (isOutReg) {
5671       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5672         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5673     }
5674     if (isInReg) {
5675       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5676         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5677     }
5678   }
5679 
5680   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5681   /// corresponds to.  If there is no Value* for this operand, it returns
5682   /// MVT::Other.
5683   EVT getCallOperandValEVT(LLVMContext &Context,
5684                            const TargetLowering &TLI,
5685                            const TargetData *TD) const {
5686     if (CallOperandVal == 0) return MVT::Other;
5687 
5688     if (isa<BasicBlock>(CallOperandVal))
5689       return TLI.getPointerTy();
5690 
5691     llvm::Type *OpTy = CallOperandVal->getType();
5692 
5693     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5694     // If this is an indirect operand, the operand is a pointer to the
5695     // accessed type.
5696     if (isIndirect) {
5697       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5698       if (!PtrTy)
5699         report_fatal_error("Indirect operand for inline asm not a pointer!");
5700       OpTy = PtrTy->getElementType();
5701     }
5702 
5703     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5704     if (StructType *STy = dyn_cast<StructType>(OpTy))
5705       if (STy->getNumElements() == 1)
5706         OpTy = STy->getElementType(0);
5707 
5708     // If OpTy is not a single value, it may be a struct/union that we
5709     // can tile with integers.
5710     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5711       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5712       switch (BitSize) {
5713       default: break;
5714       case 1:
5715       case 8:
5716       case 16:
5717       case 32:
5718       case 64:
5719       case 128:
5720         OpTy = IntegerType::get(Context, BitSize);
5721         break;
5722       }
5723     }
5724 
5725     return TLI.getValueType(OpTy, true);
5726   }
5727 
5728 private:
5729   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5730   /// specified set.
5731   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5732                                 const TargetRegisterInfo &TRI) {
5733     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5734     Regs.insert(Reg);
5735     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5736       for (; *Aliases; ++Aliases)
5737         Regs.insert(*Aliases);
5738   }
5739 };
5740 
5741 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5742 
5743 } // end anonymous namespace
5744 
5745 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5746 /// specified operand.  We prefer to assign virtual registers, to allow the
5747 /// register allocator to handle the assignment process.  However, if the asm
5748 /// uses features that we can't model on machineinstrs, we have SDISel do the
5749 /// allocation.  This produces generally horrible, but correct, code.
5750 ///
5751 ///   OpInfo describes the operand.
5752 ///   Input and OutputRegs are the set of already allocated physical registers.
5753 ///
5754 static void GetRegistersForValue(SelectionDAG &DAG,
5755                                  const TargetLowering &TLI,
5756                                  DebugLoc DL,
5757                                  SDISelAsmOperandInfo &OpInfo,
5758                                  std::set<unsigned> &OutputRegs,
5759                                  std::set<unsigned> &InputRegs) {
5760   LLVMContext &Context = *DAG.getContext();
5761 
5762   // Compute whether this value requires an input register, an output register,
5763   // or both.
5764   bool isOutReg = false;
5765   bool isInReg = false;
5766   switch (OpInfo.Type) {
5767   case InlineAsm::isOutput:
5768     isOutReg = true;
5769 
5770     // If there is an input constraint that matches this, we need to reserve
5771     // the input register so no other inputs allocate to it.
5772     isInReg = OpInfo.hasMatchingInput();
5773     break;
5774   case InlineAsm::isInput:
5775     isInReg = true;
5776     isOutReg = false;
5777     break;
5778   case InlineAsm::isClobber:
5779     isOutReg = true;
5780     isInReg = true;
5781     break;
5782   }
5783 
5784 
5785   MachineFunction &MF = DAG.getMachineFunction();
5786   SmallVector<unsigned, 4> Regs;
5787 
5788   // If this is a constraint for a single physreg, or a constraint for a
5789   // register class, find it.
5790   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5791     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5792                                      OpInfo.ConstraintVT);
5793 
5794   unsigned NumRegs = 1;
5795   if (OpInfo.ConstraintVT != MVT::Other) {
5796     // If this is a FP input in an integer register (or visa versa) insert a bit
5797     // cast of the input value.  More generally, handle any case where the input
5798     // value disagrees with the register class we plan to stick this in.
5799     if (OpInfo.Type == InlineAsm::isInput &&
5800         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5801       // Try to convert to the first EVT that the reg class contains.  If the
5802       // types are identical size, use a bitcast to convert (e.g. two differing
5803       // vector types).
5804       EVT RegVT = *PhysReg.second->vt_begin();
5805       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5806         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5807                                          RegVT, OpInfo.CallOperand);
5808         OpInfo.ConstraintVT = RegVT;
5809       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5810         // If the input is a FP value and we want it in FP registers, do a
5811         // bitcast to the corresponding integer type.  This turns an f64 value
5812         // into i64, which can be passed with two i32 values on a 32-bit
5813         // machine.
5814         RegVT = EVT::getIntegerVT(Context,
5815                                   OpInfo.ConstraintVT.getSizeInBits());
5816         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5817                                          RegVT, OpInfo.CallOperand);
5818         OpInfo.ConstraintVT = RegVT;
5819       }
5820     }
5821 
5822     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5823   }
5824 
5825   EVT RegVT;
5826   EVT ValueVT = OpInfo.ConstraintVT;
5827 
5828   // If this is a constraint for a specific physical register, like {r17},
5829   // assign it now.
5830   if (unsigned AssignedReg = PhysReg.first) {
5831     const TargetRegisterClass *RC = PhysReg.second;
5832     if (OpInfo.ConstraintVT == MVT::Other)
5833       ValueVT = *RC->vt_begin();
5834 
5835     // Get the actual register value type.  This is important, because the user
5836     // may have asked for (e.g.) the AX register in i32 type.  We need to
5837     // remember that AX is actually i16 to get the right extension.
5838     RegVT = *RC->vt_begin();
5839 
5840     // This is a explicit reference to a physical register.
5841     Regs.push_back(AssignedReg);
5842 
5843     // If this is an expanded reference, add the rest of the regs to Regs.
5844     if (NumRegs != 1) {
5845       TargetRegisterClass::iterator I = RC->begin();
5846       for (; *I != AssignedReg; ++I)
5847         assert(I != RC->end() && "Didn't find reg!");
5848 
5849       // Already added the first reg.
5850       --NumRegs; ++I;
5851       for (; NumRegs; --NumRegs, ++I) {
5852         assert(I != RC->end() && "Ran out of registers to allocate!");
5853         Regs.push_back(*I);
5854       }
5855     }
5856 
5857     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5858     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5859     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5860     return;
5861   }
5862 
5863   // Otherwise, if this was a reference to an LLVM register class, create vregs
5864   // for this reference.
5865   if (const TargetRegisterClass *RC = PhysReg.second) {
5866     RegVT = *RC->vt_begin();
5867     if (OpInfo.ConstraintVT == MVT::Other)
5868       ValueVT = RegVT;
5869 
5870     // Create the appropriate number of virtual registers.
5871     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5872     for (; NumRegs; --NumRegs)
5873       Regs.push_back(RegInfo.createVirtualRegister(RC));
5874 
5875     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5876     return;
5877   }
5878 
5879   // Otherwise, we couldn't allocate enough registers for this.
5880 }
5881 
5882 /// visitInlineAsm - Handle a call to an InlineAsm object.
5883 ///
5884 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5885   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5886 
5887   /// ConstraintOperands - Information about all of the constraints.
5888   SDISelAsmOperandInfoVector ConstraintOperands;
5889 
5890   std::set<unsigned> OutputRegs, InputRegs;
5891 
5892   TargetLowering::AsmOperandInfoVector
5893     TargetConstraints = TLI.ParseConstraints(CS);
5894 
5895   bool hasMemory = false;
5896 
5897   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5898   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5899   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5900     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5901     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5902 
5903     EVT OpVT = MVT::Other;
5904 
5905     // Compute the value type for each operand.
5906     switch (OpInfo.Type) {
5907     case InlineAsm::isOutput:
5908       // Indirect outputs just consume an argument.
5909       if (OpInfo.isIndirect) {
5910         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5911         break;
5912       }
5913 
5914       // The return value of the call is this value.  As such, there is no
5915       // corresponding argument.
5916       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5917       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5918         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5919       } else {
5920         assert(ResNo == 0 && "Asm only has one result!");
5921         OpVT = TLI.getValueType(CS.getType());
5922       }
5923       ++ResNo;
5924       break;
5925     case InlineAsm::isInput:
5926       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5927       break;
5928     case InlineAsm::isClobber:
5929       // Nothing to do.
5930       break;
5931     }
5932 
5933     // If this is an input or an indirect output, process the call argument.
5934     // BasicBlocks are labels, currently appearing only in asm's.
5935     if (OpInfo.CallOperandVal) {
5936       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5937         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5938       } else {
5939         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5940       }
5941 
5942       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5943     }
5944 
5945     OpInfo.ConstraintVT = OpVT;
5946 
5947     // Indirect operand accesses access memory.
5948     if (OpInfo.isIndirect)
5949       hasMemory = true;
5950     else {
5951       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5952         TargetLowering::ConstraintType
5953           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5954         if (CType == TargetLowering::C_Memory) {
5955           hasMemory = true;
5956           break;
5957         }
5958       }
5959     }
5960   }
5961 
5962   SDValue Chain, Flag;
5963 
5964   // We won't need to flush pending loads if this asm doesn't touch
5965   // memory and is nonvolatile.
5966   if (hasMemory || IA->hasSideEffects())
5967     Chain = getRoot();
5968   else
5969     Chain = DAG.getRoot();
5970 
5971   // Second pass over the constraints: compute which constraint option to use
5972   // and assign registers to constraints that want a specific physreg.
5973   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5974     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5975 
5976     // If this is an output operand with a matching input operand, look up the
5977     // matching input. If their types mismatch, e.g. one is an integer, the
5978     // other is floating point, or their sizes are different, flag it as an
5979     // error.
5980     if (OpInfo.hasMatchingInput()) {
5981       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5982 
5983       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5984 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5985 	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5986                                            OpInfo.ConstraintVT);
5987 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5988 	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5989                                            Input.ConstraintVT);
5990         if ((OpInfo.ConstraintVT.isInteger() !=
5991              Input.ConstraintVT.isInteger()) ||
5992             (MatchRC.second != InputRC.second)) {
5993           report_fatal_error("Unsupported asm: input constraint"
5994                              " with a matching output constraint of"
5995                              " incompatible type!");
5996         }
5997         Input.ConstraintVT = OpInfo.ConstraintVT;
5998       }
5999     }
6000 
6001     // Compute the constraint code and ConstraintType to use.
6002     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6003 
6004     // If this is a memory input, and if the operand is not indirect, do what we
6005     // need to to provide an address for the memory input.
6006     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6007         !OpInfo.isIndirect) {
6008       assert((OpInfo.isMultipleAlternative ||
6009               (OpInfo.Type == InlineAsm::isInput)) &&
6010              "Can only indirectify direct input operands!");
6011 
6012       // Memory operands really want the address of the value.  If we don't have
6013       // an indirect input, put it in the constpool if we can, otherwise spill
6014       // it to a stack slot.
6015       // TODO: This isn't quite right. We need to handle these according to
6016       // the addressing mode that the constraint wants. Also, this may take
6017       // an additional register for the computation and we don't want that
6018       // either.
6019 
6020       // If the operand is a float, integer, or vector constant, spill to a
6021       // constant pool entry to get its address.
6022       const Value *OpVal = OpInfo.CallOperandVal;
6023       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6024           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6025         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6026                                                  TLI.getPointerTy());
6027       } else {
6028         // Otherwise, create a stack slot and emit a store to it before the
6029         // asm.
6030         Type *Ty = OpVal->getType();
6031         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6032         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6033         MachineFunction &MF = DAG.getMachineFunction();
6034         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6035         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6036         Chain = DAG.getStore(Chain, getCurDebugLoc(),
6037                              OpInfo.CallOperand, StackSlot,
6038                              MachinePointerInfo::getFixedStack(SSFI),
6039                              false, false, 0);
6040         OpInfo.CallOperand = StackSlot;
6041       }
6042 
6043       // There is no longer a Value* corresponding to this operand.
6044       OpInfo.CallOperandVal = 0;
6045 
6046       // It is now an indirect operand.
6047       OpInfo.isIndirect = true;
6048     }
6049 
6050     // If this constraint is for a specific register, allocate it before
6051     // anything else.
6052     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6053       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6054                            InputRegs);
6055   }
6056 
6057   // Second pass - Loop over all of the operands, assigning virtual or physregs
6058   // to register class operands.
6059   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6060     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6061 
6062     // C_Register operands have already been allocated, Other/Memory don't need
6063     // to be.
6064     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6065       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6066                            InputRegs);
6067   }
6068 
6069   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6070   std::vector<SDValue> AsmNodeOperands;
6071   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6072   AsmNodeOperands.push_back(
6073           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6074                                       TLI.getPointerTy()));
6075 
6076   // If we have a !srcloc metadata node associated with it, we want to attach
6077   // this to the ultimately generated inline asm machineinstr.  To do this, we
6078   // pass in the third operand as this (potentially null) inline asm MDNode.
6079   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6080   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6081 
6082   // Remember the HasSideEffect and AlignStack bits as operand 3.
6083   unsigned ExtraInfo = 0;
6084   if (IA->hasSideEffects())
6085     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6086   if (IA->isAlignStack())
6087     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6088   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6089                                                   TLI.getPointerTy()));
6090 
6091   // Loop over all of the inputs, copying the operand values into the
6092   // appropriate registers and processing the output regs.
6093   RegsForValue RetValRegs;
6094 
6095   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6096   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6097 
6098   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6099     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6100 
6101     switch (OpInfo.Type) {
6102     case InlineAsm::isOutput: {
6103       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6104           OpInfo.ConstraintType != TargetLowering::C_Register) {
6105         // Memory output, or 'other' output (e.g. 'X' constraint).
6106         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6107 
6108         // Add information to the INLINEASM node to know about this output.
6109         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6110         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6111                                                         TLI.getPointerTy()));
6112         AsmNodeOperands.push_back(OpInfo.CallOperand);
6113         break;
6114       }
6115 
6116       // Otherwise, this is a register or register class output.
6117 
6118       // Copy the output from the appropriate register.  Find a register that
6119       // we can use.
6120       if (OpInfo.AssignedRegs.Regs.empty()) {
6121         LLVMContext &Ctx = *DAG.getContext();
6122         Ctx.emitError(CS.getInstruction(),
6123                       "couldn't allocate output register for constraint '" +
6124                            Twine(OpInfo.ConstraintCode) + "'");
6125         break;
6126       }
6127 
6128       // If this is an indirect operand, store through the pointer after the
6129       // asm.
6130       if (OpInfo.isIndirect) {
6131         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6132                                                       OpInfo.CallOperandVal));
6133       } else {
6134         // This is the result value of the call.
6135         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6136         // Concatenate this output onto the outputs list.
6137         RetValRegs.append(OpInfo.AssignedRegs);
6138       }
6139 
6140       // Add information to the INLINEASM node to know that this register is
6141       // set.
6142       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6143                                            InlineAsm::Kind_RegDefEarlyClobber :
6144                                                InlineAsm::Kind_RegDef,
6145                                                false,
6146                                                0,
6147                                                DAG,
6148                                                AsmNodeOperands);
6149       break;
6150     }
6151     case InlineAsm::isInput: {
6152       SDValue InOperandVal = OpInfo.CallOperand;
6153 
6154       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6155         // If this is required to match an output register we have already set,
6156         // just use its register.
6157         unsigned OperandNo = OpInfo.getMatchedOperand();
6158 
6159         // Scan until we find the definition we already emitted of this operand.
6160         // When we find it, create a RegsForValue operand.
6161         unsigned CurOp = InlineAsm::Op_FirstOperand;
6162         for (; OperandNo; --OperandNo) {
6163           // Advance to the next operand.
6164           unsigned OpFlag =
6165             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6166           assert((InlineAsm::isRegDefKind(OpFlag) ||
6167                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6168                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6169           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6170         }
6171 
6172         unsigned OpFlag =
6173           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6174         if (InlineAsm::isRegDefKind(OpFlag) ||
6175             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6176           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6177           if (OpInfo.isIndirect) {
6178             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6179             LLVMContext &Ctx = *DAG.getContext();
6180             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6181                           " don't know how to handle tied "
6182                           "indirect register inputs");
6183           }
6184 
6185           RegsForValue MatchedRegs;
6186           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6187           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6188           MatchedRegs.RegVTs.push_back(RegVT);
6189           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6190           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6191                i != e; ++i)
6192             MatchedRegs.Regs.push_back
6193               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6194 
6195           // Use the produced MatchedRegs object to
6196           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6197                                     Chain, &Flag);
6198           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6199                                            true, OpInfo.getMatchedOperand(),
6200                                            DAG, AsmNodeOperands);
6201           break;
6202         }
6203 
6204         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6205         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6206                "Unexpected number of operands");
6207         // Add information to the INLINEASM node to know about this input.
6208         // See InlineAsm.h isUseOperandTiedToDef.
6209         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6210                                                     OpInfo.getMatchedOperand());
6211         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6212                                                         TLI.getPointerTy()));
6213         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6214         break;
6215       }
6216 
6217       // Treat indirect 'X' constraint as memory.
6218       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6219           OpInfo.isIndirect)
6220         OpInfo.ConstraintType = TargetLowering::C_Memory;
6221 
6222       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6223         std::vector<SDValue> Ops;
6224         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6225                                          Ops, DAG);
6226         if (Ops.empty()) {
6227           LLVMContext &Ctx = *DAG.getContext();
6228           Ctx.emitError(CS.getInstruction(),
6229                         "invalid operand for inline asm constraint '" +
6230                         Twine(OpInfo.ConstraintCode) + "'");
6231           break;
6232         }
6233 
6234         // Add information to the INLINEASM node to know about this input.
6235         unsigned ResOpType =
6236           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6237         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6238                                                         TLI.getPointerTy()));
6239         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6240         break;
6241       }
6242 
6243       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6244         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6245         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6246                "Memory operands expect pointer values");
6247 
6248         // Add information to the INLINEASM node to know about this input.
6249         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6250         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6251                                                         TLI.getPointerTy()));
6252         AsmNodeOperands.push_back(InOperandVal);
6253         break;
6254       }
6255 
6256       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6257               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6258              "Unknown constraint type!");
6259       assert(!OpInfo.isIndirect &&
6260              "Don't know how to handle indirect register inputs yet!");
6261 
6262       // Copy the input into the appropriate registers.
6263       if (OpInfo.AssignedRegs.Regs.empty()) {
6264         LLVMContext &Ctx = *DAG.getContext();
6265         Ctx.emitError(CS.getInstruction(),
6266                       "couldn't allocate input reg for constraint '" +
6267                            Twine(OpInfo.ConstraintCode) + "'");
6268         break;
6269       }
6270 
6271       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6272                                         Chain, &Flag);
6273 
6274       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6275                                                DAG, AsmNodeOperands);
6276       break;
6277     }
6278     case InlineAsm::isClobber: {
6279       // Add the clobbered value to the operand list, so that the register
6280       // allocator is aware that the physreg got clobbered.
6281       if (!OpInfo.AssignedRegs.Regs.empty())
6282         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6283                                                  false, 0, DAG,
6284                                                  AsmNodeOperands);
6285       break;
6286     }
6287     }
6288   }
6289 
6290   // Finish up input operands.  Set the input chain and add the flag last.
6291   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6292   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6293 
6294   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6295                       DAG.getVTList(MVT::Other, MVT::Glue),
6296                       &AsmNodeOperands[0], AsmNodeOperands.size());
6297   Flag = Chain.getValue(1);
6298 
6299   // If this asm returns a register value, copy the result from that register
6300   // and set it as the value of the call.
6301   if (!RetValRegs.Regs.empty()) {
6302     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6303                                              Chain, &Flag);
6304 
6305     // FIXME: Why don't we do this for inline asms with MRVs?
6306     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6307       EVT ResultType = TLI.getValueType(CS.getType());
6308 
6309       // If any of the results of the inline asm is a vector, it may have the
6310       // wrong width/num elts.  This can happen for register classes that can
6311       // contain multiple different value types.  The preg or vreg allocated may
6312       // not have the same VT as was expected.  Convert it to the right type
6313       // with bit_convert.
6314       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6315         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6316                           ResultType, Val);
6317 
6318       } else if (ResultType != Val.getValueType() &&
6319                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6320         // If a result value was tied to an input value, the computed result may
6321         // have a wider width than the expected result.  Extract the relevant
6322         // portion.
6323         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6324       }
6325 
6326       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6327     }
6328 
6329     setValue(CS.getInstruction(), Val);
6330     // Don't need to use this as a chain in this case.
6331     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6332       return;
6333   }
6334 
6335   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6336 
6337   // Process indirect outputs, first output all of the flagged copies out of
6338   // physregs.
6339   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6340     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6341     const Value *Ptr = IndirectStoresToEmit[i].second;
6342     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6343                                              Chain, &Flag);
6344     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6345   }
6346 
6347   // Emit the non-flagged stores from the physregs.
6348   SmallVector<SDValue, 8> OutChains;
6349   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6350     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6351                                StoresToEmit[i].first,
6352                                getValue(StoresToEmit[i].second),
6353                                MachinePointerInfo(StoresToEmit[i].second),
6354                                false, false, 0);
6355     OutChains.push_back(Val);
6356   }
6357 
6358   if (!OutChains.empty())
6359     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6360                         &OutChains[0], OutChains.size());
6361 
6362   DAG.setRoot(Chain);
6363 }
6364 
6365 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6366   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6367                           MVT::Other, getRoot(),
6368                           getValue(I.getArgOperand(0)),
6369                           DAG.getSrcValue(I.getArgOperand(0))));
6370 }
6371 
6372 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6373   const TargetData &TD = *TLI.getTargetData();
6374   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6375                            getRoot(), getValue(I.getOperand(0)),
6376                            DAG.getSrcValue(I.getOperand(0)),
6377                            TD.getABITypeAlignment(I.getType()));
6378   setValue(&I, V);
6379   DAG.setRoot(V.getValue(1));
6380 }
6381 
6382 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6383   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6384                           MVT::Other, getRoot(),
6385                           getValue(I.getArgOperand(0)),
6386                           DAG.getSrcValue(I.getArgOperand(0))));
6387 }
6388 
6389 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6390   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6391                           MVT::Other, getRoot(),
6392                           getValue(I.getArgOperand(0)),
6393                           getValue(I.getArgOperand(1)),
6394                           DAG.getSrcValue(I.getArgOperand(0)),
6395                           DAG.getSrcValue(I.getArgOperand(1))));
6396 }
6397 
6398 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6399 /// implementation, which just calls LowerCall.
6400 /// FIXME: When all targets are
6401 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6402 std::pair<SDValue, SDValue>
6403 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6404                             bool RetSExt, bool RetZExt, bool isVarArg,
6405                             bool isInreg, unsigned NumFixedArgs,
6406                             CallingConv::ID CallConv, bool isTailCall,
6407                             bool isReturnValueUsed,
6408                             SDValue Callee,
6409                             ArgListTy &Args, SelectionDAG &DAG,
6410                             DebugLoc dl) const {
6411   // Handle all of the outgoing arguments.
6412   SmallVector<ISD::OutputArg, 32> Outs;
6413   SmallVector<SDValue, 32> OutVals;
6414   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6415     SmallVector<EVT, 4> ValueVTs;
6416     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6417     for (unsigned Value = 0, NumValues = ValueVTs.size();
6418          Value != NumValues; ++Value) {
6419       EVT VT = ValueVTs[Value];
6420       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6421       SDValue Op = SDValue(Args[i].Node.getNode(),
6422                            Args[i].Node.getResNo() + Value);
6423       ISD::ArgFlagsTy Flags;
6424       unsigned OriginalAlignment =
6425         getTargetData()->getABITypeAlignment(ArgTy);
6426 
6427       if (Args[i].isZExt)
6428         Flags.setZExt();
6429       if (Args[i].isSExt)
6430         Flags.setSExt();
6431       if (Args[i].isInReg)
6432         Flags.setInReg();
6433       if (Args[i].isSRet)
6434         Flags.setSRet();
6435       if (Args[i].isByVal) {
6436         Flags.setByVal();
6437         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6438         Type *ElementTy = Ty->getElementType();
6439         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6440         // For ByVal, alignment should come from FE.  BE will guess if this
6441         // info is not there but there are cases it cannot get right.
6442         unsigned FrameAlign;
6443         if (Args[i].Alignment)
6444           FrameAlign = Args[i].Alignment;
6445         else
6446           FrameAlign = getByValTypeAlignment(ElementTy);
6447         Flags.setByValAlign(FrameAlign);
6448       }
6449       if (Args[i].isNest)
6450         Flags.setNest();
6451       Flags.setOrigAlign(OriginalAlignment);
6452 
6453       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6454       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6455       SmallVector<SDValue, 4> Parts(NumParts);
6456       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6457 
6458       if (Args[i].isSExt)
6459         ExtendKind = ISD::SIGN_EXTEND;
6460       else if (Args[i].isZExt)
6461         ExtendKind = ISD::ZERO_EXTEND;
6462 
6463       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6464                      PartVT, ExtendKind);
6465 
6466       for (unsigned j = 0; j != NumParts; ++j) {
6467         // if it isn't first piece, alignment must be 1
6468         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6469                                i < NumFixedArgs);
6470         if (NumParts > 1 && j == 0)
6471           MyFlags.Flags.setSplit();
6472         else if (j != 0)
6473           MyFlags.Flags.setOrigAlign(1);
6474 
6475         Outs.push_back(MyFlags);
6476         OutVals.push_back(Parts[j]);
6477       }
6478     }
6479   }
6480 
6481   // Handle the incoming return values from the call.
6482   SmallVector<ISD::InputArg, 32> Ins;
6483   SmallVector<EVT, 4> RetTys;
6484   ComputeValueVTs(*this, RetTy, RetTys);
6485   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6486     EVT VT = RetTys[I];
6487     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6488     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6489     for (unsigned i = 0; i != NumRegs; ++i) {
6490       ISD::InputArg MyFlags;
6491       MyFlags.VT = RegisterVT.getSimpleVT();
6492       MyFlags.Used = isReturnValueUsed;
6493       if (RetSExt)
6494         MyFlags.Flags.setSExt();
6495       if (RetZExt)
6496         MyFlags.Flags.setZExt();
6497       if (isInreg)
6498         MyFlags.Flags.setInReg();
6499       Ins.push_back(MyFlags);
6500     }
6501   }
6502 
6503   SmallVector<SDValue, 4> InVals;
6504   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6505                     Outs, OutVals, Ins, dl, DAG, InVals);
6506 
6507   // Verify that the target's LowerCall behaved as expected.
6508   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6509          "LowerCall didn't return a valid chain!");
6510   assert((!isTailCall || InVals.empty()) &&
6511          "LowerCall emitted a return value for a tail call!");
6512   assert((isTailCall || InVals.size() == Ins.size()) &&
6513          "LowerCall didn't emit the correct number of values!");
6514 
6515   // For a tail call, the return value is merely live-out and there aren't
6516   // any nodes in the DAG representing it. Return a special value to
6517   // indicate that a tail call has been emitted and no more Instructions
6518   // should be processed in the current block.
6519   if (isTailCall) {
6520     DAG.setRoot(Chain);
6521     return std::make_pair(SDValue(), SDValue());
6522   }
6523 
6524   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6525           assert(InVals[i].getNode() &&
6526                  "LowerCall emitted a null value!");
6527           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6528                  "LowerCall emitted a value with the wrong type!");
6529         });
6530 
6531   // Collect the legal value parts into potentially illegal values
6532   // that correspond to the original function's return values.
6533   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6534   if (RetSExt)
6535     AssertOp = ISD::AssertSext;
6536   else if (RetZExt)
6537     AssertOp = ISD::AssertZext;
6538   SmallVector<SDValue, 4> ReturnValues;
6539   unsigned CurReg = 0;
6540   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6541     EVT VT = RetTys[I];
6542     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6543     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6544 
6545     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6546                                             NumRegs, RegisterVT, VT,
6547                                             AssertOp));
6548     CurReg += NumRegs;
6549   }
6550 
6551   // For a function returning void, there is no return value. We can't create
6552   // such a node, so we just return a null return value in that case. In
6553   // that case, nothing will actually look at the value.
6554   if (ReturnValues.empty())
6555     return std::make_pair(SDValue(), Chain);
6556 
6557   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6558                             DAG.getVTList(&RetTys[0], RetTys.size()),
6559                             &ReturnValues[0], ReturnValues.size());
6560   return std::make_pair(Res, Chain);
6561 }
6562 
6563 void TargetLowering::LowerOperationWrapper(SDNode *N,
6564                                            SmallVectorImpl<SDValue> &Results,
6565                                            SelectionDAG &DAG) const {
6566   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6567   if (Res.getNode())
6568     Results.push_back(Res);
6569 }
6570 
6571 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6572   llvm_unreachable("LowerOperation not implemented for this target!");
6573 }
6574 
6575 void
6576 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6577   SDValue Op = getNonRegisterValue(V);
6578   assert((Op.getOpcode() != ISD::CopyFromReg ||
6579           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6580          "Copy from a reg to the same reg!");
6581   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6582 
6583   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6584   SDValue Chain = DAG.getEntryNode();
6585   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6586   PendingExports.push_back(Chain);
6587 }
6588 
6589 #include "llvm/CodeGen/SelectionDAGISel.h"
6590 
6591 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6592 /// entry block, return true.  This includes arguments used by switches, since
6593 /// the switch may expand into multiple basic blocks.
6594 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6595   // With FastISel active, we may be splitting blocks, so force creation
6596   // of virtual registers for all non-dead arguments.
6597   if (FastISel)
6598     return A->use_empty();
6599 
6600   const BasicBlock *Entry = A->getParent()->begin();
6601   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6602        UI != E; ++UI) {
6603     const User *U = *UI;
6604     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6605       return false;  // Use not in entry block.
6606   }
6607   return true;
6608 }
6609 
6610 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6611   // If this is the entry block, emit arguments.
6612   const Function &F = *LLVMBB->getParent();
6613   SelectionDAG &DAG = SDB->DAG;
6614   DebugLoc dl = SDB->getCurDebugLoc();
6615   const TargetData *TD = TLI.getTargetData();
6616   SmallVector<ISD::InputArg, 16> Ins;
6617 
6618   // Check whether the function can return without sret-demotion.
6619   SmallVector<ISD::OutputArg, 4> Outs;
6620   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6621                 Outs, TLI);
6622 
6623   if (!FuncInfo->CanLowerReturn) {
6624     // Put in an sret pointer parameter before all the other parameters.
6625     SmallVector<EVT, 1> ValueVTs;
6626     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6627 
6628     // NOTE: Assuming that a pointer will never break down to more than one VT
6629     // or one register.
6630     ISD::ArgFlagsTy Flags;
6631     Flags.setSRet();
6632     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6633     ISD::InputArg RetArg(Flags, RegisterVT, true);
6634     Ins.push_back(RetArg);
6635   }
6636 
6637   // Set up the incoming argument description vector.
6638   unsigned Idx = 1;
6639   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6640        I != E; ++I, ++Idx) {
6641     SmallVector<EVT, 4> ValueVTs;
6642     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6643     bool isArgValueUsed = !I->use_empty();
6644     for (unsigned Value = 0, NumValues = ValueVTs.size();
6645          Value != NumValues; ++Value) {
6646       EVT VT = ValueVTs[Value];
6647       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6648       ISD::ArgFlagsTy Flags;
6649       unsigned OriginalAlignment =
6650         TD->getABITypeAlignment(ArgTy);
6651 
6652       if (F.paramHasAttr(Idx, Attribute::ZExt))
6653         Flags.setZExt();
6654       if (F.paramHasAttr(Idx, Attribute::SExt))
6655         Flags.setSExt();
6656       if (F.paramHasAttr(Idx, Attribute::InReg))
6657         Flags.setInReg();
6658       if (F.paramHasAttr(Idx, Attribute::StructRet))
6659         Flags.setSRet();
6660       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6661         Flags.setByVal();
6662         PointerType *Ty = cast<PointerType>(I->getType());
6663         Type *ElementTy = Ty->getElementType();
6664         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6665         // For ByVal, alignment should be passed from FE.  BE will guess if
6666         // this info is not there but there are cases it cannot get right.
6667         unsigned FrameAlign;
6668         if (F.getParamAlignment(Idx))
6669           FrameAlign = F.getParamAlignment(Idx);
6670         else
6671           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6672         Flags.setByValAlign(FrameAlign);
6673       }
6674       if (F.paramHasAttr(Idx, Attribute::Nest))
6675         Flags.setNest();
6676       Flags.setOrigAlign(OriginalAlignment);
6677 
6678       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6679       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6680       for (unsigned i = 0; i != NumRegs; ++i) {
6681         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6682         if (NumRegs > 1 && i == 0)
6683           MyFlags.Flags.setSplit();
6684         // if it isn't first piece, alignment must be 1
6685         else if (i > 0)
6686           MyFlags.Flags.setOrigAlign(1);
6687         Ins.push_back(MyFlags);
6688       }
6689     }
6690   }
6691 
6692   // Call the target to set up the argument values.
6693   SmallVector<SDValue, 8> InVals;
6694   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6695                                              F.isVarArg(), Ins,
6696                                              dl, DAG, InVals);
6697 
6698   // Verify that the target's LowerFormalArguments behaved as expected.
6699   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6700          "LowerFormalArguments didn't return a valid chain!");
6701   assert(InVals.size() == Ins.size() &&
6702          "LowerFormalArguments didn't emit the correct number of values!");
6703   DEBUG({
6704       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6705         assert(InVals[i].getNode() &&
6706                "LowerFormalArguments emitted a null value!");
6707         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6708                "LowerFormalArguments emitted a value with the wrong type!");
6709       }
6710     });
6711 
6712   // Update the DAG with the new chain value resulting from argument lowering.
6713   DAG.setRoot(NewRoot);
6714 
6715   // Set up the argument values.
6716   unsigned i = 0;
6717   Idx = 1;
6718   if (!FuncInfo->CanLowerReturn) {
6719     // Create a virtual register for the sret pointer, and put in a copy
6720     // from the sret argument into it.
6721     SmallVector<EVT, 1> ValueVTs;
6722     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6723     EVT VT = ValueVTs[0];
6724     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6725     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6726     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6727                                         RegVT, VT, AssertOp);
6728 
6729     MachineFunction& MF = SDB->DAG.getMachineFunction();
6730     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6731     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6732     FuncInfo->DemoteRegister = SRetReg;
6733     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6734                                     SRetReg, ArgValue);
6735     DAG.setRoot(NewRoot);
6736 
6737     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6738     // Idx indexes LLVM arguments.  Don't touch it.
6739     ++i;
6740   }
6741 
6742   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6743       ++I, ++Idx) {
6744     SmallVector<SDValue, 4> ArgValues;
6745     SmallVector<EVT, 4> ValueVTs;
6746     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6747     unsigned NumValues = ValueVTs.size();
6748 
6749     // If this argument is unused then remember its value. It is used to generate
6750     // debugging information.
6751     if (I->use_empty() && NumValues)
6752       SDB->setUnusedArgValue(I, InVals[i]);
6753 
6754     for (unsigned Val = 0; Val != NumValues; ++Val) {
6755       EVT VT = ValueVTs[Val];
6756       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6757       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6758 
6759       if (!I->use_empty()) {
6760         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6761         if (F.paramHasAttr(Idx, Attribute::SExt))
6762           AssertOp = ISD::AssertSext;
6763         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6764           AssertOp = ISD::AssertZext;
6765 
6766         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6767                                              NumParts, PartVT, VT,
6768                                              AssertOp));
6769       }
6770 
6771       i += NumParts;
6772     }
6773 
6774     // We don't need to do anything else for unused arguments.
6775     if (ArgValues.empty())
6776       continue;
6777 
6778     // Note down frame index.
6779     if (FrameIndexSDNode *FI =
6780 	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6781       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6782 
6783     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6784                                      SDB->getCurDebugLoc());
6785 
6786     SDB->setValue(I, Res);
6787     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6788       if (LoadSDNode *LNode =
6789           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6790         if (FrameIndexSDNode *FI =
6791             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6792         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6793     }
6794 
6795     // If this argument is live outside of the entry block, insert a copy from
6796     // wherever we got it to the vreg that other BB's will reference it as.
6797     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6798       // If we can, though, try to skip creating an unnecessary vreg.
6799       // FIXME: This isn't very clean... it would be nice to make this more
6800       // general.  It's also subtly incompatible with the hacks FastISel
6801       // uses with vregs.
6802       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6803       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6804         FuncInfo->ValueMap[I] = Reg;
6805         continue;
6806       }
6807     }
6808     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6809       FuncInfo->InitializeRegForValue(I);
6810       SDB->CopyToExportRegsIfNeeded(I);
6811     }
6812   }
6813 
6814   assert(i == InVals.size() && "Argument register count mismatch!");
6815 
6816   // Finally, if the target has anything special to do, allow it to do so.
6817   // FIXME: this should insert code into the DAG!
6818   EmitFunctionEntryCode();
6819 }
6820 
6821 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6822 /// ensure constants are generated when needed.  Remember the virtual registers
6823 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6824 /// directly add them, because expansion might result in multiple MBB's for one
6825 /// BB.  As such, the start of the BB might correspond to a different MBB than
6826 /// the end.
6827 ///
6828 void
6829 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6830   const TerminatorInst *TI = LLVMBB->getTerminator();
6831 
6832   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6833 
6834   // Check successor nodes' PHI nodes that expect a constant to be available
6835   // from this block.
6836   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6837     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6838     if (!isa<PHINode>(SuccBB->begin())) continue;
6839     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6840 
6841     // If this terminator has multiple identical successors (common for
6842     // switches), only handle each succ once.
6843     if (!SuccsHandled.insert(SuccMBB)) continue;
6844 
6845     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6846 
6847     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6848     // nodes and Machine PHI nodes, but the incoming operands have not been
6849     // emitted yet.
6850     for (BasicBlock::const_iterator I = SuccBB->begin();
6851          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6852       // Ignore dead phi's.
6853       if (PN->use_empty()) continue;
6854 
6855       // Skip empty types
6856       if (PN->getType()->isEmptyTy())
6857         continue;
6858 
6859       unsigned Reg;
6860       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6861 
6862       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6863         unsigned &RegOut = ConstantsOut[C];
6864         if (RegOut == 0) {
6865           RegOut = FuncInfo.CreateRegs(C->getType());
6866           CopyValueToVirtualRegister(C, RegOut);
6867         }
6868         Reg = RegOut;
6869       } else {
6870         DenseMap<const Value *, unsigned>::iterator I =
6871           FuncInfo.ValueMap.find(PHIOp);
6872         if (I != FuncInfo.ValueMap.end())
6873           Reg = I->second;
6874         else {
6875           assert(isa<AllocaInst>(PHIOp) &&
6876                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6877                  "Didn't codegen value into a register!??");
6878           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6879           CopyValueToVirtualRegister(PHIOp, Reg);
6880         }
6881       }
6882 
6883       // Remember that this register needs to added to the machine PHI node as
6884       // the input for this MBB.
6885       SmallVector<EVT, 4> ValueVTs;
6886       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6887       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6888         EVT VT = ValueVTs[vti];
6889         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6890         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6891           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6892         Reg += NumRegisters;
6893       }
6894     }
6895   }
6896   ConstantsOut.clear();
6897 }
6898